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Notation and symbols

Sets and numbers

N Set of all positive integers

Ny Set of all non-negative integers
N* NU {0}

Z Set of all integers

R Set of all real numbers

| A Cardinality of the set A

[n] The set {1,...,n} forn e N
14 Indicator function of the set A
f(x) =o(g(x)) Two functions f and g satisfy

lim, o f(z)/g(x) =0
f(x) ~g(x) as x — oo Two functions f and g satisfy

lim, . f(z)/g(x) =1

dij Kronecker symbol

aNb The minimum of a,b € R
Partitions

Pa Set of all partitions of the set A

Poo Set of all partitions of N

Pn Set of all partitions of [n]| for n € N

|| Number of blocks of the partition 7 € Py



Probability Theory

P(A) Probability of the event A

P(A|B) Conditional probability of A given B

E(X) Mean of the random variable X

Var(X) Variance of the random variable X
Cov(X,Y) Covariance of the random variables X and Y
€a Dirac measure at a

N(u,0?) Normal distribution with mean p € R

and variance o2 > 0 (N(u,0) = ¢,)
A Lebesgue measure
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Zusammenfassung

In dieser Dissertation werden zwei bekannte Prozesse aus dem Gebiet
der mathematischen Populationsgenetik untersucht. Dabei handelt es
sich zum einen um eine Klasse von Verzweigungsprozessen und zum
anderen um partitionswertige, austauschbare Coalescents.

Die Dissertation basiert auf drei wissenschaftlichen Arbeiten, die
hier in zeitlicher Reihenfolge Article I, II und III genannt werden.
Article I behandelt die Verzweigungsprozesse und Article 1T und III
behandeln die Coalescents.

Coalescents beschreiben die Genealogie von Populationen und
lassen sich leicht am Beispiel des Kingman-Coalescent erklaren, der
als erstes untersucht wurde. Man nehme eine Population bestehend
aus den Individuen 1,...,n und fasse jedes Individuum ¢ als den
einelementigen Block {i} auf. Je zwei Blocke {i}, {j} verschmelzen
nun nach einer exponentialverteilten Zeit zum Block {i,j}, un-
abhangig von anderen Paaren von Blocken. Nach dem ersten Ver-
schmelzen befindet sich der Coalescent in einem Zustand bestehend
aus n — 1 Blocken, namlich einem zweielementigen Block und n — 2
einelementigen Blocken. Erneut verschmelzen je zwei Blocke nach
einer exponentialverteilten Zeit. Mit fortlaufender Zeit verschmelzen
jeweils zwei Blocke bis der Prozess in der Partition endet, die nur aus
dem Block {1,...,n} besteht. Dieser Prozess lasst sich verallgemein-
ern, indem erlaubt wird, dass mehr als zwei Blocke zu einem ver-
schmelzen und dass mehrere Verschmelzungen zeitgleich stattfinden
diirfen. Als Voraussetzung fordern wir nur ein Neutralitat in der Form
der Annahme, dass der Prozess austauschbar ist.

Wir beweisen einen Grenzwertsatz fiir die Anzahl der Blocke
im Coalescent, der aus der Literatur bekannte Resultate erweit-
ert. Sei Nt(n) die Anzahl der Blocke zur Zeit ¢ > 0 in einem Co-
alescent, der mit n Individuen startet. Wir nennen (Nt(n) )
block counting process. In Article II und III suchen wir nach Be-
dingungen, welche die Existenz einer Folge (v(n,t)),en garantieren

>0 den

fur die Nt(n) Jv(n,t) fiir n — oo konvergiert. Die zentralen Resul-
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tate von Article II sind in Article III enthalten. Beide Arbeiten
zeigen die Konvergenz des skalierten block counting process im Sko-
rohod Raum der cadlag Pfade. Article II liefert Resultate fiir eine
Klasse von A-Coalescents, deren wichtigster Vertreter als zugrunde
liegendes Mafi die Beta-Verteilung ((1,b) mit Parametern 1 und
b > 0 besitzt. Article III befasst sich mit der grofleren Klasse von
=-Coalescents. Neben dieser Verallgemeinerung sind auch die Vo-
raussetzungen des zentralen Konvergenzsatzes schwacher. Die Be-
weise bestehen aus dem Nachweis der uniformen Konvergenz der
zugehorigen Generatoren. Der Grenzprozess ist ein verallgemeinerter
Ornstein-Uhlenbeck-Prozess. Fiir die sogenannte fization line werden
analoge FErgebnisse gezeigt.

Der in Article I betrachtete Verzweigungsprozess ist ein Popula-
tionsmodell in dem jedes Individuum eine exponentialverteilte Zeit
lebt, unabhangig von anderen Individuen, und im Moment seines
Todes eine zufallige Zahl an Nachkommen bekommt, die wiederum
unabhangig von den Lebensdauern und den Nachkommenszahlen an-
derer Individuen ist. Die Verteilung der Nachkommenszahl ist fiir alle
Individuen identisch. Sei Zt(n) die Grofie der Population zur Zeit ¢t > 0,
wenn die Population zu Beginn die Grofie n hat. Wir untersuchen die
Frage wann es Folgen (a(n,t)),eny und (b(n,t)),en derart gibt, dass

Z" — b(n,t)
a(n,t)

fiir n — oo konvergiert. Aufgrund der Verzweigungseigenschaft lasst
sich diese Frage unter Verwendung des zentralen Grenzwertsatzes
oder der Theorie iiber stabile Verteilungen beantworten. Dariiber
hinaus beweisen wir die Konvergenz im Skorohod Raum und stellen
Zusammenhange zwischen den notwendigen und hinreichenden Be-
dingungen fiir die Existenz der normalisierenden Folgen (a(n,t)),en
und (b(n,t)),en fir alle ¢ > 0 und der Nachkommensverteilung des
Verzweigungsprozesses dar.

Die Ergebnisse fiir Coalescents und Verzweigungsprozesse haben
einen Schnittpunkt. Der Bolthausen-Sznitman-Coalescent wird von
den Resultaten aus Article II und III abgedeckt. Gleichzeitig ist
die fixation line im Bolthausen-Sznitman-Coalescent ein Verzwei-
gungsprozess, der den Voraussetzungen aus Article I gentigt. The-
orem II.2.4 in Article II besagt in diesem Fall dasselbe wie Theo-
rem [.2.8 in Article I in logarithmischer Form. Diese Verbindung ist
bekannt, ebenso wie der zugehdrige Konvergenzsatz [19]. Der Versuch
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diese Resultate zu verallgemeinern, einerseits auf der Seite der Co-
alescents, andererseits auf der Seite der Verzweigungsprozesse, war
der Ursprung der in dieser Dissertation behandelten Fragestellungen.



Summary

In this dissertation two known processes from the field of mathemat-
ical population genetics are treated. The two processes are a class of
branching processes and partition-valued, exchangeable coalescents.

The dissertation is based on three scientific articles, which are
called Article I, IT and III here. Article I treats the branching pro-
cesses and Article IT and III treat the coalescents.

Coalescents describe the genealogy of populations. The Kingman
coalescent is the coalescent studied first and a fitting example that
can be used in order to explain more general coalescent processes.
Take a population that consists of the individuals 1,...,n and con-
sider each individual i as the singleton block {i}. Every pair of blocks
{i},{j} merges to be the block {i,j} after an exponentially dis-
tributed time, independently of other pairs of blocks. After the first
merger, the coalescent is in a state that consists of one block of size 2
and n — 2 singleton blocks. Again each pair of blocks merges into one
after an exponentially distributed time. This procedure repeats until
the coalescent reaches the absorbing state that consists only of the
block {1,...,n}. The process can be generalized by allowing multiple
blocks to merge into one and more than one merger to occur at the
same time. The only requirement is a neutrality assumption in the
form that the process needs to be exchangeable.

We provide scaling limits for the number of blocks in a coales-
cent, which extends known results from the literature. Let Nt(n) be
the number of blocks after time ¢ > 0 in a coalescent that started
with n individuals. We call (Nt(n))tzo the block counting process. In
Article IT and III, we search for conditions that guarantee the exis-
tence of a sequence (v(n,t))nen for which Nt(") Jv(n,t) converges as
n — oo for all ¢ > 0. The main results of Article II are contained
in Article III. Both works show the convergence of the scaled block
counting process in the space of cadlag paths endowed with the Sko-
rohod topology. Article II covers a class of A-coalescents, whose most
important member has the underlying measure A = (1, b), the beta
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distribution with parameters 1 and b > 0. Article I1I treats the larger
class of =-coalescents. Moreover, the assumptions of the main result
in Article III are less strict. The main results are proved by show-
ing the uniform convergence of the corresponding generators. The
limiting process is an Ornstein—Uhlenbeck type process. Analogous
results are stated for the so-called fixation line.

The branching process treated in Article I is a population model in
which each individual lives for an exponentially distributed time, in-
dependently of other individuals, and at the moment of its death the
individual produces a random number of offspring, which is indepen-
dent of the lifetimes and the offspring numbers of other individuals.
Let Zt(n) denote the size of the population after time ¢t > 0 if the pop-
ulation started from n individuals at time ¢t = 0. We investigate the

question of the existence of sequences (a(n,t)),en and (b(n,t)),en for
which
Z™ —b(n,t)
a(n, t)

converges as n — 0o. Due to the branching property, the question

can be answered by utilizing the central limit theorem or the theory
about stable distributions. We additionally prove the convergence
in the Skorohod space und show relations between the necessary
and sufficient conditions for the existence of normalizing sequences
(a(n,t))nen and (b(n,t))nen for all ¢ > 0 and the offspring distribu-
tion of the branching process.

The results for branching and coalescent processes overlap in one
point. The Bolthausen—Sznitman coalescent is covered by the results
of Article II and III. The fixation line in the Bolthausen—Sznitman
coalescent is also a branching processes that satisfies the assumptions
of Article I. In this case Theorem I1.2.4 in Article II states the same
as Theorem 1.2.8 in Article I, although in logarithmic form. This
relation has been known, just as the respective convergence results
[19]. The attempt to generalize this convergence result, on the side
of branching processes on one hand and on the side of coalescents on
the other has been the origin of the questions pursued in this thesis.
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Chapter 1

Introduction

In this chapter, the two stochastic models are introduced in whose
area of research the three articles on which this thesis is based lie.
First some standard vocabulary and notation on random partitions
is fixed. Then the definitions of exchangeable coalescents, the block
counting process and the properties “coming down from infinity”
and “dust” are given and fundamental results are listed. The known,
explicit construction of exchangeable coalescents by use of a Poisson
point process is included. The function + that, roughly speaking,
describes the expected size of a jump of the block counting process is
assigned to its own section and is repeatedly remarked on throughout
this chapter due to its importance in Article III. The fixation line is
introduced as the Siegmund-dual of the block counting process. At
the end of this chapter, Markov branching processes are covered. We
try to be concise and focus on the definitions and notions that are
needed in order to understand the content of Chapter 2.

1.1 Exchangeable random partitions

Let A be a set. A partition m of A is an equivalence relation on
A. The set A is partitioned into non-empty disjoint subsets, namely
the equivalence classes of 7, whose union equals A. The equivalence
classes of this relation, called blocks, are used to determine a partition
in the following. Let P4 denote the set of partitions of A. We write |7|
for the number of blocks of 7 € P4 and | B| for the size of some block
B of m. A block B of size |B| = 1 is called singleton. We can generate
new partitions by exchanging elements of the blocks or by restricting
m € P4 to a subset A' C A. For a permutation o of A, the blocks of
om € Py are defined to be all the sets 0B := {0i : ¢ € B}, where B
is a block of w. The restriction w|4 € Pa of m to A" comprises all
non-empty intersections B N A’ with blocks B of .



For the sets N := {1,2,...} and [n] := {1,...,n} with n € N we
use the notation Py, := Py, P, := Pj, and, in addition, [oo] := N.
For m € P, with m € N* := NU {co} and n € N* with n < m
we also define (") := 7|()- Listing the blocks in the increasing order
of their smallest element provides an unique representation of the
partition m € P,. We write m = {Bj, By, ...} when 7 consists of the
blocks By, By, ... and min B; < min B; for all i« < j, where the set
stands for {By, ..., Bj} if 7| < oo and for the infinitely large set if
|| = oo.

The following definition is going to enable to compactly describe
the transition between states in coalescent processes. Let n € N*,
m = {B1,By,...} € P, and 7 = {B],B5,...} € Pj. Then the
coagulation of w by n’ is defined as

coag(m, ') = U B;, U Bj,...; € P

JjEB] JjEBY

The definition can be extended by admitting « € P, with
m > |r| and setting coag(m,7’) := coag(m, (7')|™). During the
coagulation the blocks of m merge. Thus, m is a refinement of
coag(m,n’), meaning that each block of 7 is a subset of some block
of coag(m,7'). On the other hand, if 7 is a refinement of some par-
tition 7", then there exists 7’ such that 7" = coag(m, '), and 7’
becomes unique when the partition is restricted to [|«|]. For ex-
ample, if n = 10, 7 = {{1,3,5},{2,10},{4},{6},{7},{8},{9}}
and 7« = {{1,2},{5,6,7},{3},{4}}, then coag(m, ') =
{{1,2,3,5,10},{4},{6},{7.8,9}}.

The space Py, endowed with the metric
-1
d(m,7") = (sup {keN: ) = (ﬂ,)(k)}> : T, 7 € Poo,

(and the convention co™! = 0) is Polish. Due to the metric, we are
able to equip P, with the Borel-o-algebra and can define a random
partition of N as a P,-valued random variable. The o-algebra is
generated by the countably many open balls {7 € Py : 7" = 7'}
with n € N and 7’ € P,. For n € N a random partition of [n] is a P,-
valued random variable, where the o-algebra on the finite set P, is
the power set of P,,. It is straightforward to verify that the o-algebra
on P, is generated by the restriction maps Py — Py, 7 — 7™, with
n € N.



The class of random partitions introduced next are the ones whose

distributions do not change when elements are swapped between
blocks.

Definition 1.1.1. Let n € N. A random partition II of [n] is said
to be exchangeable if II and oIl have the same distribution for all
permutations ¢ of [n]. A random partition II of N is said to be ez-
changeable if the restriction II™ is an exchangeable random partition
of [n] for all n € N.

1.2 Exchangeable coalescents

Coalescents are partition-valued processes where blocks merge over
time. The below given, precise definition of the object with which we
work in Articles II and III goes back to Bertoin and Le Gall [5].

Definition 1.2.1. An exchangeable coalescent is a process Il =
(IT;)4>0 with state space Po and cadlag paths that satisfies the fol-
lowing properties:

(i) Iy = {{1}7 {2}7 . }

(ii) II is a time-homogeneous Markov process and, for all ¢ > 0, there
exists an exchangeable random partition 7; of N such that, for
all s > 0, the law of Il,,; conditional on II; is the law of the
coagulation of Il by .

Remark. Coagulating the partition {{1}, {2},...} € P by 7 results
in 7 itself. Choosing s = 0 in Definition 1.2.1 (ii) hence shows that
7 and II; have the same distribution for all ¢ > 0. In particular, II;
is exchangeable for all ¢ > 0.

Remark. Coalescents satisfying Definition 1.2.1 (i) are called standard
in the literature. We restrict our attention to standard exchangeable
coalescents and omit the additional term, since any non-standard
exchangeable coalescent can be easily deduced from a standard one.
For example, if II = (II;);>¢ is a standard exchangeable coalescent
and m € Py, then (coag(m,Il;))i>o is a Py-valued Markov process
with cadlag paths, intial state 7 and the same transition probabilities
as II.

Let IT = (II;);>0 be an exchangeable coalescent. For n € N the
restriction 11" = (Hgn))tzo to [n] has finite state space P,. We
call I exchangeable coalescent too or restricted coalescent or n-
coalescent if we want to put emphasis on the “size”. Applying the
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fact that the o-algebra on P, is generated by the family of open
balls {7 € Py : 7™ = 7,} with 7, € P, and n € N, which is also
closed upon intersecting, it can be shown that instead of Definition
1.2.1 (ii) it can equivalently be required that, for all n € N, 11 is a
Markov chain with transition probabilities

P(Hg@t =7 | =7) = P(coag(m,m) =7), (1.1)

s,t > 0,7, 7 € P,,n €N, where m; is the same random variable as
in Definition 1.2.1. The path property from Definition 1.2.1 transfers
too. As an immediate consequence of the definition of the metric d
on P., II has cadlag paths if and only if each restriction II™ has
cadlag paths.

The class of exchangeable coalescents was independently intro-
duced by Schweinsberg [30] and by Md&hle and Sagitov [23]. Mohle
and Sagitov obtained exchangeable coalescents as limits of ancestral
processes in a population model in discrete time with a constant,
finite size and an exchangeable reproduction law (Cannings model
8, 9]). Schweinsberg labeled these processes “coalescents with si-
multaneous multiple collisions”, refering to the fact that multiple
blocks merge into a single one at certain times and that such merg-
ers are allowed to occur at the same time. For j, kq,...,k; € N with
ki > ke > ... > kj and k1 > 2 we call a merging event during
which the n-coalescent TI™ moves from state 7 € P, to the state
coag(m,m) a (ki,...,kj)-collision if |w| = k := k; + ...+ k; and

(k)

m; consists of j blocks of sizes ki, ..., k;. Clearly, the assumption
that m; be exchangeable in (1.1) implies that the transition probabil-
ities from 7 to the outcome of a (ki, ..., k;)-collision only depend on

ki,...,k; and the time that has passed, and not on the sizes of the
blocks of 7 or on the integers that are contained in the blocks. Thus,
the rate at which a (ki, ..., k;)-collision occurs is equal to some fixed
value, denoted by ¢;(ki,...,k;), which also does not depend on n.
In [30], coalescents with simultaneous multiple collisions are defined
in the same way as exchangeable coalescents but Definition 1.2.1 (ii)
is replaced by

(ii)’ For all n € N, II™ is a Markov chain for which any possible
(ki,...,kj)-collision occurs at a rate equal to some fixed value

ik, ... kj).

In difference to [30] we do not treat singleton blocks of m; sepa-
rately and hence use a differing, adjusted notation. It is known that

4



Schweinsberg’s definition of coalescents with simultaneous multiple
collisions coincides with Definition 1.2.1. In fact, the argument just
sketched shows that Definition 1.2.1 implies (ii)’. It is straightforward
to prove that (ii)” in turn implies (1.1) and, consequently, Definition
1.2.1 (ii), where the random variable m; has the same distribution as
I1;.

An advantage of Schweinsberg’s definition is the fact that explicit
formulas for the rates ¢;(k1, ..., k;) are known. Schweinsberg proved
an one-to-one correspondence between exchangeable coalescents and
finite measures = on the infinite simplex A := {(u1,ug,...) : u3 >
ug > ..., o < 1}, see [30, Theorem 2]. For this reason ex-
changeable coalescents are also referred to as Z-coalescents.

Let = be a finite measure on A and decompose = in the form
= = agy+Z, where g denotes the Dirac measure at 0 := (0,0,...) €
A and a := Z({0}). Moreover, we use the notation |u| := > .., u;
and (u,u) = Y. u? for v € A and define the measure v via
v(du) := Zy(du)/(u, u). Then there exists an exchangeable coalescent
such that, for all j, ki,...,k; € Nwith ky > 2, by > ks > ... > kj,
the rate ¢;(ki1,. .., k;) equals

Apeanen [ 3 ()l 3 kv, 02

i1 Flrpl

where s := [{i € [j] : k; = 1}| and r := j—s. In Section 1.3, a possible
construction of an exchangeable coalescent whose rates are given by
(1.2) is presented for every finite measure = on A. Conversely, for
every exchangeable coalescent there exists a finite measure = on A
such that the rates are given by (1.2).

Shortly before the class of =-coalescents was introduced, Pitman
[26] and Sagitov [27] independently defined a class of coalescents
whose merging events only allow for multiple blocks to merge into a
single one but not more than one merger to occur at the same time.
These processes, called “coalescent with multiple collisions”, entail
an one-to-one correspondence with finite measures A on [0, 1] and are
hence also called A-coalescents. We identify a A-coalescent with the
exchangeable coalescent whose underlying measure = is defined via
=(B x {0} x {0} x ...) := A(B) for Borel-measurable B C [0, 1] and
={u € A : uy > 0}) := 0. In particular, A-coalescents constitute
a subclass of exchangeable coalescents. For A-coalescents the rates
(1.2) simplify notably. If the A-coalescent is in a state with & blocks,



any 7 blocks merge at the rate

)\k:,j = d)k—j—l-l(.ja ..., 1) = al{j:2} + /[01] uj_2(1 — u)k‘—j A(du),
EeN1<j<k.

In order to give a complete account of the development of ex-
changeable coalescents we want to remark that two famous A-
coalescents have been studied before the appearance of Pitman’s
and Sagitov’s works: the Kingman coalescent [18] whose underly-
ing measure A = ¢y is the Dirac measure at 0 € [0,1] with rates
Mj = lgj—p-1y and the Bolthausen—Sznitman coalescent [7] whose
underlying measure A = X is Lebesgue measure on [0, 1] with rates
Mej = =2 k= gN/(E—1lfor1<j<k.

To conclude this section, we want to clarify the terminology we use.
In the following we speak of exchangeable coalescents as coalescents.
If the underlying measure is important, we add it as prefix. We write
“A-coalescent” when statements concern only the class of coalescents
with multiple collisions, and we write “Z-coalescent” if we want to
stress that we are in the more general setting.

1.3 Poisson point process construction

In this section, we give an outline of the Poisson point process con-
struction of coalescents going back to Schweinsberg; for details we
refer the reader to [30]. The construction provides an explanatory,
probabilistic view on the rates ¢;(ki,...,k;), defined via (1.2), in
terms of an urn model.

Let = be a finite, non-zero measure on A. For u = (uy,ug,...) € A

define uy := 1 — |u| and “urns” as the tilings Jy := [0,up), J; :=
[ug, ug + u1), Jo := [ug + uy,uy + us + ug) of lengths wug, uq, us, . ..
of the interval [0,1). Let the “balls” be independent and identically
distributed (i.i.d.) random variables Uy, Uy, ... that have an uniform

distribution on [0, 1). For ¢ € Nand u € A define the random variable
Zi(u) by setting Z;(u) := j for j > 1 if the i-th ball lands in the urn
Jj, e, Uy € Jj and Zj(u) = —i if U; € Jy. For every u € A,
Z1(u), Zy(u), ... are independent random variables with P(Z;(u) =
j) = u; and P(Z;(u) = —i) = up for j > 1 and @ € N. We equip
7> with the product topology and denote the distribution of the
Z>-valued random variable (Z;(u), Zs(u),...) by P,. Let z; be the
sequence (21, 29,...) € Z*> such that z; = z; = 1 and 2z, = —k for



k & {i,j}. Define the measure L on Z* via

L(A) = a Y lgea + / P,(A) v(du) (1.3)

1<i<j A
for all measurable A C 7Z>. Define A, = {(z1,29,...) € Z% :
21, .., 2, 0ot all distinet} for n > 2 and Ay, = Ups0A, =

{(z1,22,...) € Z* : z =zjforsomei#j}. Then L(AS) =
JAP(Zi(u) # Zj(u) Y i+# j)v(du) = 0 and it can be shown that
L(A,) < oo for n > 2. As the union of A, for all n > 2 and A
equals Z*°, L is o-finite and, hence, a proper Poisson point process &
on [0,00) x Z* with intensity measure A ® L exists, i.e., there exist
([0, 00) x Z*°)-valued random variables (71, &), (15, &2), . .. and a N*-
valued random variable K such that £ = Zfil €(1y,¢)- In the following
we refer to any pair (73,&;) as a point of the Poisson point process £
and denote a generic point by (¢, 2).

Now we define a family of processes I, := (II,,;);>0 with state
spaces P, and rates ¢;(ki,...,k;), given by (1.2). Fix n € N. Let
I, o be the partition of [n] into singletons. For any 7" > 0 the Poisson
point process € has only finitely many points (¢, z) with z € A,, and
0 <t < T and none of them share the same first entry almost surely.
In particular, we can order all points (¢,z) with z € A, by their
first entry. Let II, have cadlag paths in the finite state space P,
with jumps only at times ¢ € [0,00), where ¢ is the first entry in
a point (t,z) of & with z € A,,. The second entry z determines the
outcome of the jump corresponding to (¢, z). Regard z € Z* as the
function ¢ — z;, @ € N. Ignoring the empty sets, the inverse images
2z Yj)={i € N:z = j}, j € Z, define a partition of N, say 7(z).
During the jump corresponding to (, z), let II,, move from its current
state I1,, ¢~ to I, ; := coag(Il,,—,m(z)). Given Il,;_ = {By,..., By},
each block of the resulting partition II,, ; is an union of blocks of I, ;—
such that B; and B; are contained in the same block of II,,; if and
only if z; = z;. Note that if z; < 0, then B; does not merge with any
other block.

From the definition of Poisson point processes it follows that I, is a
time-homogeneous Markov chain that jumps from = € P,, to ©’ € P,
at the rate L(A; ), where A, := {2z € Z* : coag(m,n(z)) = 7'}.
Suppose that @ = {By,..., Bi}. As seen above, A; . is the set of
z € 7> for which z; = z; if and only if B; and B; are contained in
the same block of 7’ for all 7, 7 € [k]. We can describe the probability
P, (Ar ) appearing in (1.3) in terms of the urn model: P, (A ») is
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the probability of the event that if 1 < ¢ # 57 < k, then the balls
U; and U; are in the same urn but not in urn Jy, ie., U, U; € Jp,
for some m > 1 if and only if B; and B; are contained in the same
block of n’. Bearing that in mind, it is straightforward to see that
P,(Az ) is equal to the integrand in (1.2), provided that 7’ is the
result of a coagulation of m by a partition of [k], whose blocks have
sizes ki, ..., k;. If only two blocks of m merge into one, i.e., k1 = 2
and j = k — 1, then the value a is added to the integral in (1.3).
Consequently, the rates of II,, are given by (1.2).

The family of processes II,,, n € N, is consistent in the sense that
if n < m, then II, and the restriction 1} := (Hg::?)t)tzo of I1,,, to [n]
are the same process. In order to see this note that every jump of
I1,,, which corresponds to some point (¢, z) with z € A, results in a
jump of II,,, since A,, C A,,, and the coagulating mechanism is the
same when only the integers from [n| are taken into account. Also, a
jump of I1,, corresponding to a point (¢, z) with z € A, \ 4, i.e., a
point which is not involved in the construction of II,, does not inflict
the integers from [n], which implies that Hgf) does not change during
this jump.

Thus, the Py-valued process I = (Il;)s> is well-defined by saying
that, for all ¢ > 0, I, is the partition m € P, such that () = 11, + for
all n € N. Clearly, II") =TI,,, for all n € N and ¢ > 0. The rates of
I .= (Hff”)tzo are also given by (1.2). In particular, I satisfies
Condition (ii)’” from Section 1.2. By construction, II; only consists
of singletons. Moreover, II has cadlag paths, since it is equivalent to
demand that II(™ has cadlag paths for all n € N. Thus, as shown in
the previous section, II is an exchangeable coalescent according to
Definition 1.2.1.

If A is a finite measure on [0, 1], which we identify with a certain
measure = on A, we only have the two urns Jy and J;. For a point
(t,z) of £ it holds that z; = —i or z; = 1 for all i« € N. During a
jump of the restricted A-coalescent I corresponding to the point
(t,2), the blocks B; of H,@ for which z; = 1 merge into a single
block and all other blocks remain unchanged. Hence, collisions of
multiple blocks are allowed but cannot occur simultaneously. Given
that II( contains the blocks By, ..., B) at time ¢ > 0, any fixed
choice B;,,...,B;, of blocks merges into a single one at the rate
¢k—j+1(J,1,...,1). The integrand in (1.2) is the probability of the
event that, for all 1 < ¢ < k, the ¢-th ball lands in urn J; if 7 €



{i1,...,7;} and in the other urn if ¢ ¢ {iy,...,4,;}. This event can
also be described as follows: consider a coin that shows heads with
probabiltiy u € (0, 1], flip the coin for each block and merge all blocks
for which the coin toss shows heads. Then the integrand in (1.2) is
the probability of the event that exactly the coins flipped for the
blocks B;,, ..., B;, show heads.

1.4 The block counting process

Let N; := |II;| and N \H \ denote the number of blocks in a
coalescent (II;);>o and in 1ts restriction to [n| for n € N after time
t > 0, respectively.

Definition 1.4.1. In an abuse of notation, we call the processes
N := (N)i»0 and N := (Nt(n))tzo block counting process.

The block counting process has non-increasing cadlag paths and
state space N* or [n]. Of course, one might ask if V; is even finite.
First we set this question aside and answer it in Section 1.6 as good
as it is known in the literature. In this section, we only consider the
process N ™ for n € N. We will see that N is a Markov process. The
distribution is uniquely determined by the rates. We aim to represent
the rates in a way that makes them accessible to computation. We
are especially interested in the limiting behavior of the rates as the
values of the states tend to infinity. To this end, we return to the
Poisson point process construction.

Fix n € N. The coalescent II(™ jumps at times ¢ > 0, where ¢ is the
first entry in a point (¢, z) of the Poisson point process with intensity
measure A ® L and z = (z1, 29,...) € A,,. The measure L on Z* is
defined via (1.3). During the jump at time ¢, blocks are coagulated
by the partition m(2), which is induced by the sets z71(j) = {i € N :
zi = j}, 7 € Z. More precisely, 1 moves from state H(n) to the
state I1" = coag(IL", 7(2)). Moreover, if N\ = |II"| = k, then

N =Y = |x(2)P] = [z, .., 5,

i.e., given that the block counting process N is in the state k before
the jump corresponding to (¢, z), the state of N (") after the jump is
the number of distinct values assumed by the numbers zq, ..., 2.
Suppose that I1(™ is in state 7 € P, and k := |r|. The set of
states that consist of exactly j < k blocks to which II™ can jump to
is given by {coag(m,n’) : 7" € Py, |7'| = j}. Recall that A, coap(r ) =

9



{2 € Z*® : 7(2)®) = 7'} and define

Ak’vj = U AW,Coag(w,w’) = {Z € 7> : |{Zl, ce ,Zk}‘ = ]}

7T/€7Dk7|7r/|:j

as the set of z € Z* leading to a transition from 7 to a partition that
consists of j blocks for 1 < j < k. The notation “Ay ;" is justified,
since the set depends on 7 only via k = |r|. The rate at which 1
moves from state 7 to a partition that consists of j blocks is given by
L(Ay ;). By using the fact that this term only depends on k, it can
be shown that N is a Markov chain which, for 1 < j < k, jumps
from state k to state j at the rate i ; :== L(Ay).

Note that P,(Ay ;) is the probability of the event that the en-
tries of (Z1(u), ..., Zr(u)) assume j distinct values. Any ball in urn
Jo leads to a negative, new value. The number of distinct, positive
values is the number of urns other than .J; to which at least one
of the first £ balls has been allocated. Thus, it makes sense to de-
fine X;(k,u) := Zle 15,(U;) as the number of balls in urn J; after
k€ Ny:={0,1,...} throws and

Y(ku) = Xo(k,u) + > Lxgwsy, keNpjueA, (14)

1>1

as the sum of the number of balls in urn Jy and the number of all
other occupied urns. Finally, we obtain P, (A ;) = P(Y(k,u) = j)
for u € A and, by (1.3),

s = a3 )1y + [0 =iv@0, 09

1 < j < k,k > 2. The representation (1.5) for the rates of the
block counting process plays a major role in the proofs of the main
convergence results in Article III. A comparable representation for
the rates for A-coalescents is defined in Article II.

The asymptotics of Y (k,u) as k — oo is of special interest.
First observe that, for i € Ny, the random variable X;(k,u) has
a binomial distribution with parameters k£ and wu;. In particular,
Xo(k,u)/k — 1 — |u|] almost surely as k — oo. For u € A let
K(k,u) == > o) Lx,(ku>1} denote the number of occupied urns
other than Jy after £ € N throws with mean ¢(k,u) := E(K(k,u)).
Then Y (k,u) = Xo(k,u)+ K (k,u) and ¢(k,u) = > .o, (1 — (1 —u;)F).
Lemma II1.5.1 shows that K(k,u)/é(k,u) — 1 almost surely as
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k — oo. From ¢(k,u)/k — 0 it follows that (see Lemma II1.5.2)
Y(k,u)

— 1 —|ul, k — oo,

almost surely for each u € A.

Explicit formulas for the rates of the block counting process are
known, but notationally complicated. It holds that (see [13, Eq. (1.3)]
or [14, Proposition 2.1])

k
Qrj = a<2> Lyj—k-1y + / Z frji(u

1<i<y

1<j<kk>2 where

fialw) = Y i C I DI

ki, lei€N (7=
feyteotly=k—j+i el

forie{l,...,j} and u € A.

1.5 The function v

Now we introduce a function known from the literature. See, for ex-
ample, [17, 20] for =-coalescents and [4, 10, 11, 21] for A-coalescents.
The relevance first became apparent in Schweinsberg’s work [29],
where the function is used in the formulation of a necessary and
sufficient condition for the A-coalescent to come down from infinity.

Recall that a = Z({0}) and v(du) = (u,u) 'Zg(du), where =, is
defined via = = agg + Zy. Define v : [0,00) — R via

v(z) = () /Z (1—w)" =1+ zu;)v(du),  (1.6)

i>1

€ [0,00). Some properties of v are collected in Lemma I11.2.1. In
particular, the function ~ is continuous and asymptotically grows at
least of order x but not faster than of order 2? as x — oo. On [1, c0),
the functions v and x + ~y(x)/x are strictly increasing. Moreover, by

kz_:l(k—j)qm _ a<§> + /AE(k—Y(k,u))u(du)

j=1

— a(l;) + /A(k — k(1= Jul) = > (1= (1= u)"))v(du)

1>1

— V(k)u keN,
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yielding the interpretation of the quantity v as the expected change
of the block counting process: if the block counting process is in state
k € [n] at time ¢, then after d¢ units of time

E(NINT = k) = k —(k)dt.

Besides Schweinsberg’s condition for the coalescent to come down
from infinity the function ~ can be used to formulate a necessary and
sufficient condition for the coalescent to have dust, see (1.13) below.

1.6 Coming down from infinity

In this section we give the definition of “coming down from infinity”
and one important condition for this characteristic. We also sum-
marize results of Berestycki, Berestycki and Limic’ work [4, 20, 21]
concerning the small-time behavior of the block counting process of
coalescents that come down from infinity, because there are parallels
to the results of Article III.

The first coalescent studied was the Kingman coalescent, the A-
coalescent with underlying measure A = ¢y. One remarkable result
Kingman proved states that the number of blocks is finite for all times
t > 0 almost surely. For the Bolthausen—Sznitman coalescent, the A-
coalescent whose underlying measure is the uniform distribution on
[0, 1], the number of blocks is infinite for all times ¢ > 0 almost surely.
Later Pitman showed that all A-coalescents either satisfy

P(Ny<ooVt>0) =1 (1.7)
or

P(Ny=00Vt>0) = 1, (1.8)
provided that A({1}) = 0 [26, Proposition 23]. The same dichotomy
is true for the larger class of =-coalescents. Define Ay := {u € A :

u1+. . .+u, = 1for some n € N} and suppose that Z(Ay) = 0. Again,
either (1.7) or (1.8) holds true [30, Lemma 31]. In the first case the
coalescent is said to come down from infinity or, abbreviating, to be
cdi and in the second to stay infinite.

Naturally, the question about conditions to decide between the two
properties arises. Schweinsberg proved that the A-coalescent comes
down from infinity if and only if A({1}) =0 and

/:O% (1.9)
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is finite for some (and hence all) ¢ > 1 [29, Theorem 1]. Clearly, if
A({1}) = 0 and the integral (1.9) is infinite for some ¢ > 1, then
the A-coalescent stays infinite. One of the two implications holds
true for =Z-coalescents but additional assumptions are needed for the
inversion. If Z(Af) = 0 and the integral (1.9) is finite for some ¢ > 1,
then the Z-coalescent comes down from infinity [30, Proposition 32.
Now define A, := {u € A: |u| <1 —¢} for e > 0. If Z(Ay) =0,
v(A\ A;) < oo for each € > 0 and the integral (1.9) is infinite for
some ¢ > 1, then the =-coalescent stays infinite [30, Proposition 33].
Schweinsberg’s criteria in fact use Y, (7(k)) ! instead of (1.9), but
in the original version the sum can be replaced by (1.9), since, as a
consequence of v being positive and monotonous, one is finite if and
only if the other is finite. Further work on the topic “coming down
from infinity” has been done in [17].

The case =(Ay) > 0 is described with the use of the Poisson point
process construction, e.g., in [30, Section 5.5]. Let = be a finite mea-

—

sure on A and decompose Z into = = =i + =, where =; is the
restriction of = to Ay and =y := E—Z=;. Replacing = by Z; and =3 in
(1.3) yields two measures Lz, and Lz, on Z>. Suppose that & and
&5 are two independent proper Poisson point processes with intensity
measures A ® Lz, and A ® Lz,. As in Section 1.3, we can construct
a =;-coalescent by merging blocks according to the points of &; for
i € {1,2}. Of course, & := & + & is a Poisson point process with in-
tensity measure A ® L. We say that a point (¢, z) of £ comes from Ay
if (t, z) is a point of & . Note that the set {21, 2o, ...} is finite for every
point (¢, z) of £ that comes from Ay, since the urn Jy is not present
and there are only finitely many other urns for v € Ay. Thus, only
finitely many blocks remain after a coagulation of the =-coalescent
corresponding to a point (¢, z) of £ that comes from A;. In particu-
lar, the =-coalescent does not stay infinite when =;(A) = Z(Ay) > 0.
It can be shown that the Z-coalescent comes down from infinity if
V(Ay) = 00, so Lz, (Z*) = oo, or if the Zs-coalescent comes down
from infinity. If the Zs-coalescent stays infinite and v(Ay) < oo, then
the =-coalescent neither comes down from infinity nor stays infinite.
For A-coalescents the atom at 1 is the rate at which the A-coalescent
jumps to the absorbing partition consisting only of the block N.
The coalescents in this work start with an infinite number of
blocks. If the coalescent comes down from infinity, then the number of

blocks NV; after time ¢ > 0 is finite but tends to infinity as ¢ — 0+. In
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[4], Berestycki et al. determine a rate of divergence for A-coalescents,
which they call “speed” of coming down from infinity. Almost at the
same time, Limic showed similar results for =-coalescents [20]. Sup-
pose that the integral (1.9) is finite for ¢ > 1. Then the function
v : (0,00) — (0,00), determined as the solution to

<
t:/ ) (1.10)
o(t) v(u)

is well-defined. Further assume that =(Af) = 0 and that the regu-
larity condition

/ 2 (du) < oo (1.11)
A
is given. Then
Ny

o(t)
almost surely [4, 20]. For A-coalescents the convergence (1.12) also
holds true in L, spaces for p > 1 [4, Theorem 2|. Observe that, given
the regularity condition (1.11), the assumption of the finiteness of the
integral (1.9) and Z(Af) = 0 pose no actual restriction, since both
conditions are necessary for the coalescent to come down from in-
finity. As every A-coalescent satisfies the regularity condition (1.11),
the prerequisites of [4, Theorems 1 and 2] reduce to the simple fact
that the A-coalescent comes down from infinity.

Note that a slightly different variant of «y is used in [4, 20]. But as
shown in [21, Lemma 2.2], the speed v(t) is asymptotically equivalent
if v is replaced by the different variant in (1.10). Thus, (1.12) still
holds true.

— 1, t — 0+, (1.12)

1.7 Coalescents with dust

Let IT = (II;);>0 be a coalescent and, for t > 0, let By(t), Ba(t), ...
denote the blocks of II;. A variant of de Finetti’s Theorem (see,
e.g., [18, Theorem 2] or [30, Lemma 40]) implies that the asymptotic
frequencies
PP 0L 1]
n—oo n

exist for each 7 > 1 and ¢t > 0 almost surely. As a consequence of
Kingman’s correspondence between exchangeable random partitions
of N and finite measures on A (see [18] or [30, Appendix A]), the
blocks of II; are either singletons or infinitely large. In fact, the in-
finitely large blocks have positive asymptotic frequency. Moreover,
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the number of singletons is either infinite or there are none. Define
Sy i=1-— 2]21 fi(t), t > 0, to be the frequency of singletons. In the
literature, a coalescent is said to have proper frequencies if S; = 0
for all ¢ > 0 almost surely. Coalescents are said to have dust, if they
do not have proper frequencies, i.e., if there exist singletons at some
time ¢ > 0. Given Z(Af) = 0, the presence of singletons in a coa-
lescent does not depend on the time, meaning that the number of
singletons is either infinite for all times ¢ > 0 almost surely or II;
has no singletons for all ¢ > 0 almost surely. If Z(Ay) > 0, then the
coalescent jumps to a state with only finitely many, infinitely large
blocks after a finite random time and no singletons remain.

It was first shown for A-coalescents by Pitman [26, Proposition 26]
and later for the larger class of Z-coalescents by Schweinsberg [30,
Proposition 30] that the coalescent has dust if and only if

a =10 and  p = /\u!u(du) < 0.
A

Note that the function z — ~(z)/z, > 1, is non-decreasing, con-
verges to u, and y(x)/x > a(x—1)/2 for x > 1. Hence, the coalescent
has dust if and only if

lim v(x)/x < oc. (1.13)

T—00

Of course, a coalescent IT = (I1;);>¢ with dust does not come down
from infinity, and if Z(Af) = 0, then II even stays infinite. An illus-
trative picture is provided in Article III.

1.8 The fixation line

The fixation line was introduced first by Pfaffelhuber und Wakol-
binger [25] in order to study the genealogy back to the most re-
cent common ancestor of the population in a continuous-time Moran
model, whose backwards genealogy is the Kingman coalescent. A
construction of the fixation line based on the Lookdown-model is
feasible for the full class of Z-coalescents, see Gaiser and Mohle [14].
Earlier Hénard [16] properly defined and studied the fixation line
of A-coalescents. Here it suffices to define the fixation line as the
Siegmund-dual [31] of the block counting process: the fixation line
L = (Lt)1>0 is a Markov process that satisfies (see [14])

P(Ly >n) = P(N” <m), mneNt>0,  (1.14)
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where the upper index “(m)” denotes the initial state L(()m) = m at

time ¢t = 0. For a thorough definition of the fixation line see [14] or
[16] and the references therein.

From (1.14) we can conclude that the fixation line has non-
decreasing paths. The fixation line explodes if and only if the block
counting process becomes finite, so if and only if the coalescent comes
down from infinity. We also obtain the following formula for the rates

i o= limyop t (P = §) = 64;). By (1.5),
Vhi = Z (i — @j+1.4)

1<i<k
= a(é) Lijmpyny + /AIP’(Y(]', w) < kY +1u) > k)v(du)

for 5,k € N with 5 > k, and note that only upward jumps are
possible. For A-coalescents we have

B J / k-1 k
Yei = | . u 1 —u)” A(du
for j,k € N with j > k.

1.9 Markov branching processes

The Bienaymé-Galton—-Watson process is a process Z = (Z,)nen,
that satisfies the recursion

Zn
Tt = Zgn n € Ny, (1.15)
=1

where & ,,, © € N,n € Ny, are i.i.d. Ny-valued random variables. The
process is usually interpreted as the size of an evolving population.
Start with a number Z; € N of individuals. Each individual lives
for one unit of time and at the moment of its death the individual
produces a random number of children, independently of the others.
The children also live for one unit of time and at the moment of
their death each of them produces new children, which again live for
one unit of time before they reproduce, and so on. The number of
children of an individual is independent of the offspring sizes of all
previously living individuals and the distribution of the number of
children is the same for all individuals. Label the individuals that
are alive at the same time by 1,2, ... and suppose that the offspring
size of individual ¢ that lives after n units of time is given by & . In

16



this case Z,, defined via (1.15), is equal to the size of the population
after n units of time.

The classical model has been adapted in various ways. We will
focus on the modification in which the lifetime of each individual
has an exponential distribution with parameter a € (0, 00), indepen-
dently of the lifetimes of other individuals and the offspring sizes,
and the number of children which are born at the end of a lifetime
are still i.i.d. Ny-valued random variables. Let Zt(n) denote the num-
ber of individuals that are alive at time ¢t > 0 in a population that
started from n € N individuals at time ¢ = 0. The assumptions about
the lifetime guarantee that Z(™ := (Zt(n))tzo is a time-homogeneous
Markov chain. The class of processes Z™ we have just constructed
are the well known continuous-time Markov branching processes with
discrete state space NyU{oo}. In the remainder of this section and in
Article I, Z( denotes a continuous-time Markov branching process
and is shortly referred to as branching process. We exemplary refer
the reader to the book by Athreya and Ney [2, Ch. 3] for results
about such branching processes.

From the construction it follows that the branching property holds,
stating that Z(™ has the same distribution as the sum of n indepen-
dent copies of Z = (Z)=0 := ZW. In order to understand the
behavior of the branching process it therefore suffices to analyze Z,
like it is done in most of the literature.

Let & be the size of the offspring of an arbitrary individual from the
population with mean m := E(¢) and probability generating function
(pgf) f, given by f(s) := E(s%), s € [0,1]. Also, let u(s) := a(f(s)—s),
s €10,1], and A := /(1) = a(m —1).

From now on we exclude the uninteresting case P(§ = 1) = 1. Then
the process almost surely either ends up in the absorbing state 0 or
Zy — 00 as t — o0o. The event that the process eventually reaches
the state 0 is called extinction. The probability of extinction, denoted
by ¢, is the smallest solution to the equation f(s) = s in [0, 1]. The
branching process is said to be critical (subcritical, supercritical) if
m =1 (m < 1,m > 1). In the subcritical and critical case it holds
that ¢ = 1 and in the supercritical case ¢ < 1. The branching process
does not explode, meaning that P(Z; < oo) = 1 for all t > 0 if and

only if
/1 ds
1-e $ — f(S)
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for some 1 — ¢ > ¢ > 0. Note that the process does not explode if
m < oo.

Of course, the distribution of Z is fully determined by the ex-
pected lifetime a~! and the offspring pgf f. The one-dimensional
distributions are accessible through the pgf F'(.,t) of Z;, defined via
F(s,t) := E(s%), s € [0,1],£ > 0, and uniquely determined by the
boundary condition F'(s,0) = s and the forward and backward equa-
tion

0 0 0
aF(s,t) = u(s)gF(s,t) and EF(S,t) = u(F(s,t)), (1.16)
t > 0,s € [0,1]. By the definition of w, the backward equation is
equivalent to
F(s,t) du
at = / YA 1.17
. fw - A7

for t > 0 as long as s # ¢. Moreover, let m(t) := E(Z;) denote the
expected size of the population after time ¢t > 0. Then m(t) = e
for ¢ > 0 and, as a consequence of the branching property, we obtain

that the process (Z;/m(t));>0 is a martingale, which is used in some
of the proofs of Article I.
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Chapter 2

Discussion of the results

Articles II and IIT provide scaling limits for the block counting pro-
cess of coalescents that stay infinite when the initial sample size n
tends to infinity. Analogous results can be stated for the fixation
line. The main results are presented in Section 2.1. Article I provides
scaling limits for branching processes, which are presented in Section
2.2. The connection between the two problems is explained at the
end of Subsection 2.2.3.

2.1 Scaling limits for the block counting process

The key assumption of the results for the block counting process and
the fixation line is formulated in terms of the function ~ introduced
in Section 1.5. A subsequent discussion provides a list of conditions
that are equivalent to the key assumption. In the second subsection,
the results are stated.

2.1.1 The key assumption

Define
k= lim 27" (x) € [0, 0] (2.1)

T—00
whenever this limit exists. Given that the limit in (2.1) exists, we call
Kk asymptotic curvature or curvature parameter. Note that the limit
does not exist for all coalescents. The key assumption of Article I11
is the following.

The limit x in (2.1) exists and is finite. (2.2)

The following comments should help to put the key assumption into
perspective. For coalescents with dust the limit exists and Kk = 0,
though there exist dust-free coalescents for which x = 0, see Example
[11.3.3. Given that the regularity condition (1.11) is satisfied, the key
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assumption implies that the coalescent does not come down from
infinity. If additionally v(Af) = 0, then the coalescent stays infinite.

The existence of the limit x can be linked to the behavior of =
near zero with the use of a Tauberian theorem. Define the function

G :10,1] = [0,00) via

G(t) = [ > lpglu)ulv(du),  te[0,1].
A

i>1
Proposition II1.2.3 states that (2.2) is equivalent to
k= lim t 'G(¢). (2.3)

t—0+

For A-coalescents (2.3) simplifies to

-1
Kk = t1—1>%}f—t A([0,1]). (2.4)
Eq. (2.4) essentially means that A behaves like Lebesgue measure
near 0. From (2.4) it can easily be seen that the Bolthausen—Sznitman
coalescent satisfies the key assumption with k = 1. As a generaliza-
tion, the (1, b)-coalescent, the particular A-coalescent whose under-
lying measure A = 3(1,b) has density function u > b(1 — u)’1,
u € |0, 1], satisfies the key assumption with k = b for all b > 0. The
B(1,b)-coalescent is treated in detail in Article IT (Example 11.4.2).
The assumptions of the main results of Article II are more re-
strictive. First of all we only consider A-coalescents. The main result
(Theorem I1.2.3) states the convergence of the scaled block counting
process under the assumption that (see Assumption A in Article IT)

/ u (A — kA)(du) < oo (2.5)
[0.1]

for some k > 0, where A\ denotes Lebesgue measure on [0, 1]. Addi-
tionally it is assumed that A({1}) = 0. In Article II, the constant
is denoted by b but we use k here, since the two constants in (2.2)
and (2.5) coincide. As shown in Lemma I1.9.1, (2.5) in fact implies
(2.4) and, hence, (2.2). The converse implication is not true. Article
IIT provides an example of a A-coalescent that satisfies the key as-
sumption although not being covered in Article II (Example I111.3.3).

The main results in Articles I and III are proved by verifying
that the generator of the transformed block counting process con-
verges uniformly. At the time of writing Article II, it wasn’t fully
understood that (2.2) is the suitable assumption under which the
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uniform convergence can be shown. By Proposition 1I1.2.2, the key
assumption (2.2) holds true if and only if

(@) = klogz + logl(x), x>0, (2.6)
T

for some slowly varying function ¢ : [0,00) — (0, 00). By the defini-
tion of slowly varying functions, it is equivalent to require that the

. (v(wy) B v(fv))

T—00 Ty €T

limit

exists for each y > 0. This condition is used in the proof of the main
result (cf. (2.9)).

2.1.2 Results

Recall that N = (Nt(n))tzo denotes the block counting process with
initial state n. In Articles II and III, we investigate the existence of
scaling constants v(n,t) for which the process X™ := (Xt(n>)t20,
defined via

Xt(n) = longm — logw(n,t), t>0,n€eN, (2.7)

converges to a non-degenerate limiting process as n — oo in the
space Dg[0, 00) of cadlag paths endowed with the Skorohod topology.
We consider the logarithmic form for technical reasons only. The
convergence results are presented in non-logarithmic form in Section
II1.2.5.

We are primarily interested in coalescents that do not come down
from infinity. In the literature, the problem is solved for coalescents
with dust and for the Bolthausen—Sznitman coalescent. In [14], it is
shown that for coalescents with dust the scaling v(n,t) == n, t >
0,n € N, can be chosen; also see [22]. In [19], it is shown that for
the Bolthausen-Sznitman coalescent the scaling v(n,t) := n® , t >
0,n € N, can be chosen. Earlier Goldschmidt and Martin [15] and
Baur and Bertoin [3] even showed the almost sure convergence of
Nt(n) /n¢" as n — oo for all t > 0. Both convergence results, the dust
case and the Bolthausen—Sznitman case, are reshown in Articles II
and III, although our methods differ and the convergence result in
[14] for coalescents with dust is slightly more general.

The scaling function for the block counting process can be de-
fined without any assumptions on v (or =Z). One might compare the
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definition to (1.10). Define v : [1,00) x [0, 00) — [1,00) via
©od

v(l,t) := 1 and / 0

v(z,t) 7(“)

Proposition III.2.4 shows that the scaling function is well-defined.
The proposition also states that v(z,.) is the solution to the initial

=t  xz>1,t>0. (28)

value problem

%v(x,t) = —y(v(z,t)), t>0, v(z,0) = w,

for all z > 1. The definition of the scaling function thus makes sense,
since (k) is the expected rate of decrease of the block counting
process if the coalescent currently is in a state with k blocks.

Now assume that the key assumption (2.2) is satisfied with x > 0.
Then there exist slowly varying functions ¢; : [1,00) — (0, 00) such
that (see Proposition I11.2.5)

v(z,t) = z¢ " l(z), x>1,t>0.

Put A* := {u € A : |u] = 1} and further assume that v(A*) =0
and that the regularity condition (1.11) holds true. The main result
(Theorem II1.2.7) states that the process X ™, defined via (2.7), con-
verges in Dg|[0,00) as n — oo for the particular scaling function v,
defined via (2.8). The limiting process, denoted by X, is an Ornstein—
Uhlenbeck type process that can be characterized as follows. Define
YR — C via

Y(x) = /A (1= |u))™ = 1+ iz|u])v(du), r € R.

The assumptions v¥(A*) = 0 and (1.11) imply that ¢ is the charac-
teristic exponent of an infinitely divisible distribution. The limiting
process X = (X;)i>0 is a real-valued Markov process with initial
value Xy = 0 and semigroup

E(f(Xore) | Xs = 2) = E(f(e ™2+ X3)),

r € R f € B(R),s,t > 0, where the marginal distributions are
determined by the characteristic functions

t
E(eXt) = exp (/ Y(e ™) dS), reRt>0.
0

The Markov process X is alternatively determined by the correspond-
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ing generator A, given by
Af(x) = —raf'(z)
+ [ (o +1og(1 = ul) = £(0) + ul (2)) v(dw),
r € R, for suitable functions f (see Lemma II1.4.1 or [28, The-
orem 3.1]). We are able to write the generator corresponding to
X® in a comparable way. The generators (Ag”))szo of the (time-
inhomogeneous) Markov process X are defined via Al f () =

limt_>0+(IE(f(X§Tt) \Xﬁn) = z) — f(x)) for s > 0. Write k£ =
k(s,x,n) = e"v(n,s) for (s,z) € E, and n € N. Then, by (1.5),

AP f(0) = 7o) (A2 - ) 29
+ [ B(f(a 105 8) — @) + (1 = X)) vldw),

where the random variables Y (k,u) are defined in Section 1.4. By
using the fact that Y (k,u)/k — 1 — |u| almost surely as k& — oo,
it can be shown that A§”> uniformly converges to A, implying the
desired convergence of X to X as n — ooc.

An analogous convergence result can be stated for the fixation line
(LS”)tZO with initial state L(()n) = n; see [14] for coalescents with dust
and [19] for the Bolthausen—Sznitman coalescent. The scaling w(x, t)
for the fixation line is defined as the inverse of v, in the sense that
w(.,t) is the inverse of v(.,t) for all t > 0. In order for w(z,t) to be
defined for all z > 1 the assumption [~ (y(u))™'du = oo for some
¢ > 1 is necessary. Given the key assumption (2.2), the map w(., ) is
regularly varying with index e for each ¢ > 0, since the property of
regular variation transfers to the inverse function. There exist slowly
varying functions ¢/ : [1,00) — (0,00) such that

w(z,t) = = 0 (), x>1,t>0.

Assume that v(A*) = 0 and that the regularity condition (1.11)
is given. Under these additional assumptions, the requirement
[(y(u)) ' du = oo simply means that the fixation line be non-
exploding. Theorem I11.2.10 states that the process Y™ := (Y,
defined via

(n))t207

Y;(n) = log L,E”) —logw(n,t)

converges in Dg|0,00) as n — 0.

23



2.2 Scaling limits for Markov branching processes

Recall that Z(™ = (Zt(n))tzo denotes a branching process with initial
state Zén) = n, offspring distribution ¢ and expected lifetime a~*.
Moreover, define Z := (Z;);>0 = (Zt(l))tzo, f as the offspring pgf,
given by f(s) := E(s%), s € [0, 1], and F(s, t) as the pgf of Z;, given by
F(s,t) = E(s%), s € [0,1],¢ > 0. We also use the notation m := E(£)
and m(t) := E(Z;) for the mean of ¢ and Z; for ¢ > 0.

In Article I, we pursue the question of the existence of constants
a(n,t) and b(n,t) for n € N and ¢ > 0 for which the process X ™ :=

(X120, defined via

Z™ —b(n,t)
a(n,t)

X" = t>0,n€N, (2.10)
converges in Dg[0,c0) to a non-degenerate limiting process as n —
00. The branching property states that Z has the same distribution
as n independent copies of Z. The problem of the convergence of one-
dimensional distributions of X can hence be solved by utilizing the
theory of stable distributions and their domains of attraction. The
necessary and sufficient conditions for convergence are well known
and are here expressed in terms of the pgf F(.,1).

We distinguish three cases, whose prerequisites differ in the finite-
ness of the offspring distribution’s first and second moment. Article I
contains three convergence results for the processes X (™, one in each
case, and results that relate particular asymptotics of F(.,t) to the
offspring pgf f. Examples for all three regimes are given in Article I.
A short discussion of scaling limits for explosive Markov branching
processes is included too.

2.2.1 The finite variance case

Assume that E(£?) < oco. Then E(Z?) < oo for all ¢+ > 0. Accord-
ing to the central limit theorem we can choose a(n,t) := /n and
b(n,t) := nm(t) in (2.10) in order for the one-dimensional distribu-
tions of X™ to converge. In fact, we apply a multivariate version
of the central limit theorem in order to obtain the convergence of
the finite-dimensional distributions. Afterwards the convergence in
Dg[0, 00) is established by using a criterion by Aldous for martin-
gales [1]. Theorem 1.2.1 states that the process X := (Xt(n))tzo,
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defined via

neNt>0,

converges in Dg[0,00) as n — 0o to a continuous Gaussian Markov
process.

2.2.2 The finite mean infinite variance case

Assume that m := E(£) < oo and E(£?) = oco. In order for the one-
dimensional distributions of the process X, defined via (2.10), to
converge we need Z; to belong to the domain of attraction of an a-
stable law with « € [1,2] for all ¢ > 0. Moreover, the parameter o
cannot depend on t. Indeed, if Z; belongs to the domain of attraction
of an a-stable law, then E(Z)) < oo for all < a and if in addition
a < 2, then E(Z”) = oo for all 8 > a. But the finiteness of moments
of Z; does not depend on the time, meaning that, for each » > 1,
E(Z]) < oo for all t > 0 if and only if E(¢") < co. Therefore, a does
not depend on t.

Article I does not cover the case @ = 1. Combining results by
Feller [12, Ch. XVIL5] and by Bingham and Doney [6, Theorem A]
shows that a necessary and sufficient condition for Z; to belong to
the domain of attraction of an a-stable law with a € (1,2] is given
by

1—F(s,t) =m(t)(1 —s) — (1 = 5)*%((1 —s)"), (2.11)
s €10,1),t > 0, where the function ¢; : [1,00) — R varies slowly for
each t > 0.

In the finite mean infinite variance case we assume that there exist

a € (1,2] and a slowly varying function ¢ : [1,00) — (0, 00) such that
1—f(s) = m(1—s5) — (1—s)%((1—-s)"), s €[0,1).
Then we can derive from the forward and backward equation, see

(1.16) and (1.17), that (2.11) holds true with the slowly varying func-
tion satisfying ¢;(z) = c(t)¢(z)(1 4+ o(1)) as  — oo, where

at if m = 1 (critical case),
c(t) = t) —m(t
Q m(at) = m(?) if m # 1 (non-critical case).
(a—1)(m—1)
Theorem 1.2.3 states that the process X™ := (Xt(n))tzo, defined via
oo 20—t
XM = 2 mmx neN,t>0,

Qn
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converges in Dg[0, 00) as n — 0o to a time-inhomogeneous Ornstein—
Uhlenbeck type process for a suitably chosen scaling sequence
(an)nen- As we have seen, the convergence of the one-dimensional
distribution follows from the theory about stable distributions and
their domains of attraction. The convergence in Dg[0, c0) is obtained
by showing that the semigroups converge uniformly on a sufficiently
large set.

2.2.3 The infinite mean case with non-explosion

Assume that m = oo and that the branching process still does not
explode. The distribution of Z; belongs to the domain of attraction
of an a(t)-stable law if and only if

P(Z > x) ~ z “OT(1 — a(t)) " (z), r — 00, (2.12)

for some slowly varying functions ¢; : [0,00) — (0,00). Here the
gamma function only has a corrective meaning. The assumption m =
oo implies that necessarily «(t) € (0, 1]. In difference to the previous
section, a(t) depends on ¢t > 0. Again, the case a(t) = 1 is excluded.
For a(t) < 1 it follows from Bingham and Doney [6, Theorem A]
that the tail behavior (2.12) is equivalent to

1—F(s,t) = (1—5)°Y0(1—-57Y, se0,1). (2.13)
Define the function ¢ : [1,00) — (0, 00) via
1—f(s) = (1—s)((1—s)"), s €[0,1).
Lemma 1.2.6 shows that (2.13) is satisfied for every t > 0 with «a(t) €

(0,1) and slowly varying functions ¢; : [1, 00) — (0, c0) if and only if
there exists A € (0, 00) such that

l(x) ~ Aloguz, T — 00. (2.14)

In this case a(t) = e 4 for all t > 0. The proof utilizes the backward
equation. If in addition the limit

B = lim ({(z) — Alogx) € R (2.15)

T—00

exists, then

lim £,(z) = exp (Eu - a(t))), t>0.

T—00 A

Under the assumption that (2.14) and (2.15) hold true, Theorem
1.2.8 states that the process X := (Xt(n))tzo, defined via

X" = gz >0 neN,
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converges in Dy ) [0,00) as n — oo to a continuous-state branching
process.

We are now able to describe the connection between Article I on
one hand and Articles IT and III on the other. The three articles
state the same result for one particular example. The Bolthausen—
Sznitman coalescent satisfies the assumptions of Articles IT and III.
The fixation line of the Bolthausen—Sznitman coalescent is also a
branching process with expected lifetime a=! = 1 and offspring pgf
f(s) =s+(1—s)log(l—s), s € [0,1]. Hence, Eq. (2.14) and Eq. (2.15)
hold true with ¢(z) =logx + 1,2 > 1, A= 1 and B = 1, and the
results of Article I in the infinite mean case are applicable. In this
case Theorem II.2.4 and Theorem I.2.8 both state that

;" n""

converges in Dg[0,00) as n — oo. The limiting process is Neveu'’s
continuous-state branching process [24]. Also see Example 1.2.9 or
Theorem I11.2.11 (although with a scaling that differs by a constant
not depending on n) and [19, Theorem 3.1 b)] for a more detailed
analysis of the fixation line of the Bolthausen—Sznitman coalescent.

Bibliography
[1] ALpous, D. (1989) Stopping times and tightness II. Ann. Probab. 17, no. 2, 586-595.

[2] ATHREYA, K. B. AND NEY, P. E. (1972) Branching Processes. Die Grundlehren der Math-
ematischen Wissenschaften 196, Springer.

[3] BAUR, E. AND BERTOIN, J. (2015) The fragmentation process of an infinite recursive tree
and Ornstein—Uhlenbeck type processes. FElectron. J. Probab. 20, no. 98, 20 pp.

[4] BERESTYCKI, J., BERESTYCKI, N. AND LiMIC, V. (2010) The A-coalescent speed of coming
down from infinity. Ann. Probab. 38, no. 1, 207-233.

[5] BEROIN, J. AND LE GALL, J.-F. (2003) Stochastic flows associated to coalescent processes.
Probab. Theory Related Fields 128, no. 2, 261-288.

[6] BinGHAM, N. H. AND DONEY, R. A. (1974) Asymptotic properties of supercritical branch-
ing processes I: The Galton-Watson process. Adv. Appl. Probab. 6, 711-731.

[7] BOLTHAUSEN, E. AND SzZNITMAN, A.-S. On Ruelle’s probability cascades and an abstract
cavity method. Comm. Math. Phys. 197, no. 2, 247-276.

[8] CaNNINGS, C. (1974) The latent roots of certain Markov chains arising in genetics: a new
approach, I. Haploid models. Adv. Appl. Probab. 6, no. 2, 260-290.

[9] CanNINGs, C. (1975) The latent roots of certain Markov chains arising in genetics: a new
approach, II. Further haploid models. Adv. Appl. Probab. 7, no. 2, 264-282.

[10] DiEHL, C. AND KERSTING, G. (2019) Tree lengths for general A-coalescents and the
asymptotic site frequency spectrum around the Bolthausen—Sznitman coalescent. Ann. Appl.
Probab. 29, no. 5, 2700-2743.

[11] DieHL, C. AND KERSTING, G. (2019) External branch lengths of A-coalescents without a
dust component. Electron. J. Probab. 24, no. 134, 36pp.

27



[12]

[13]

[14]

[15]

[17]

[18]
[19]

[26]
[27]

[28]

[30]

[31]

FELLER, W. (1971) An Introduction to Probability Theory and Its Applications. Volume 2,
Second Edition, Wiley, New York.

FREUND, F. AND M. MOHLE, M. (2009) On the number of allelic types for samples taken
from exchangeable coalescents with mutation. Adv. in Appl. Probab. 41, no. 4, 1082-1101.

GAISER, F. AND MOHLE, M. (2016) On the block counting process and the fixation line of
exchangeable coalescents. ALEA Lat. Am. J. Probab. Math. Stat. 13, no. 2, 809-833.

GoLDSCHMIDT, C. AND MARTIN, J. B. (2005) Random recursive trees and the Bolthausen—
Sznitman coalescent. Electron. J. Probab. 10, no. 21, 718-745.

HENARD, O. (2015) The fixation line in the A-coalescent Ann. Appl. Prob. 25, no. 5, 3007
3032.

HERRIGER, P. AND MOHLE, M. (2012) Conditions for exchangeable coalescents to come
down from infinity. ALEA Lat. Am. J. Probab. Math. Stat. 9, no. 2, 637-665.

KinGMAN, J. F. C. The coalescent. Stochastic Process. Appl. 13, no. 3, 235-248.

KUukLA, J. AND MOHLE, M. (2018) On the block counting process and the fixation line of
the Bolthausen—Sznitman coalescent. Stochastic Process. Appl. 128, no. 3, 939-962.

Limic, V. (2010) On the speed of coming down from infinity for Z-coalescent processes.
Electron. J. Probab. 15, no. 8, 217-240.

LiMic, V. AND TALARCZYK, A. (2015) Second order asymptotics for the block counting
process in a class of regularly varying A-coalescents. Ann. Probab. 43, no. 3, 1419-1455.

MOHLE, M. (2021) The rate of convergence of the block counting process of exchangeable
coalescents with dust. ALEA Lat. Am. J. Probab. Math. Stat. 18, no. 2, 1195-1220.

MOHLE, M. AND SAGITOV, S. (2001) A classification of coalescent processes for haploid
exchangeable population models. Ann. Probab. 29, no. 4, 1547-1562.

NEVEU, J. (1992) A continuous-state branching process in relation with the GREM model
of spin glass theory. Rapport interne no 267, Ecole Polytechnique.

PFAFFELHUBER, P. AND WAKOLBINGER, A. (2006) The process of most recent common
ancestors in an evolving coalescent. Stochastic Process. Appl. 116, no. 12, 1836—1859.

PrTMAN, J. (1999) Coalescents with multiple collisions. Ann. Probab. 27, no. 4, 1870-1902.

SacITov, S. (1999) The general coalescent with asynchronous mergers of ancestral lines .J.
Appl. Prob. 36, no. 4, 1116-1125.

SaTo, K. AND YAMAZATO, M. (1984) Operator-selfdecomposable distributions as limit
distributions of processes of Ornstein—Uhlenbeck type. Stochastic Process. Appl. 17, no. 1,
73-100.

SCHWEINSBERG, J. (2000) A necessary and sufficient condition for the A-coalescent to come
down from infinity Electron. Comm. Probab. 5, 1-11.

SCHWEINSBERG, J. (2000) Coalescents with simultaneous multiple collisions. Electron. J.
Probab. 5, no. 12, 50pp.

SIEGMUND, D. (1976) The equivalence of absorbing and reflecting barrier problems for
stochastically monotone Markov processes. Ann. Probability 4, no. 6, 914-924.

28



Article 1

Asymptotics of continuous-time
discrete state space branching
processes for large initial state

Mohle, M. and Vetter, B. (2021) Markov Process. Related
Fields 27, no. 1, 1-42.

Abstract.

Scaling limits for continuous-time branching processes with discrete state space are
provided as the initial state tends to infinity. Depending on the finiteness or non-
finiteness of the mean and/or the variance of the offspring distribution, the limits
are in general time-inhomogeneous Gaussian processes, time-inhomogeneous gener-
alized Ornstein—Uhlenbeck type processes or continuous-state branching processes.
We also provide transfer results showing how specific asymptotic relations for the
probability generating function of the offspring distribution carry over to those of the
one-dimensional distributions of the branching process.

Keywords: Branching process; generalized Mehler semigroup; Neveu’s continuous-
state branching process; Ornstein—Uhlenbeck type process; self-decomposability; sta-
ble law; time-inhomogeneous process; weak convergence

2020 Mathematics Subject Classification: Primary 60J80; 60F05 Secondary 60F17;
60G50; 60J27

I.1 Introduction

Suppose that the lifetime of each individual in some population is ex-
ponentially distributed with a given parameter a € (0,00) and that
at the end of its life each individual gives birth to k € Ny :={0,1,...}
individuals with probability p;, independently of the rest of the pop-
ulation. Assuming that the population consists of n € N :={1,2,...}
individuals at time ¢ = 0 we denote with Zt(n) the random number
of individuals alive at time ¢ > 0. The process Z(" := (Zt(n))tzo is a
classical continuous-time branching process with discrete state space
NoU{oo} and initial state Zén) = n. These processes have been stud-
ied extensively in the literature. For fundamental properties of these
processes we refer the reader to the classical books of Harris [18,
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Chapter V], Athreya and Ney [3, Chapter III] and Sewastjanow [39].
Define Z; := Zt(l) and Z := ZW for convenience. By the branching
property, Z is distributed as the sum of n independent copies of
7. The literature thus mainly focuses on the situation n = 1 and
most results focus on the asymptotic behavior of these processes as
the time ¢ tends to infinity.

In contrast we are interested in the asymptotic behavior of Z™ as
the initial state n tends to infinity. To the best of the authors knowl-
edge this question has not been discussed rigorously in the literature
for continuous-time discrete state space branching processes. Related
questions for discrete-time Bienaymé—Galton—Watson processes have
been studied extensively in the literature (see, for example, Lamperti
25, 26] or Green [17]), however in this situation time is usually scaled
as well, so these approaches differ from the continuous-time case. The
article of Sagitov [38] contains related results, however the critical
case is considered and again an additional time scaling is used.

The asymptotics as the initial state n tends to infinity may in
some sense be viewed as a non-natural question in branching pro-
cess theory, however this question has fundamental applications, for
example in coalescent theory. It is well known that the block count-
ing process of any exchangeable coalescent, restricted to a sample of
size n, has a Siegmund dual process, called the fixation line. For the
Bolthausen—Sznitman coalescent the fixation line is (see, for exam-
ple, [23]) a continuous-time discrete state space branching process
7™ with offspring distribution p, = 1/(k(k — 1)), k € {2,3...}. In
this context, the parameter n is the sample size and hence the ques-
tion about its asymptotic behavior when the sample size n becomes
large is natural and important. In fact, this example was the starting
point to become interested in the asymptotical behavior of branching
processes for large initial value.

The convergence results are provided in Section 1.2. We provide a
convergence result for the finite variance case (Theorem 1.2.1), an-
other result for the situation when the process has still finite mean
but infinite variance (Theorem 1.2.3) and for the situation when even
the mean is infinite but the process still does not explode in finite
time (Theorem 1.2.8). The limiting processes arising in Theorem 1.2.1
are (time-inhomogeneous) Gaussian processes whereas those in The-
orem [.2.3 are (time-inhomogeneous) Ornstein—Uhlenbeck type pro-
cesses. In Theorem [.2.8 continuous-state branching processes arise
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in the limit as n — oo. For all three regimes typical examples are
provided. The basic idea to obtain convergence results of this form
is relatively obvious. For fixed time ¢, since Zt(n) is a sum of n inde-
pendent copies of Z;, we can apply central limit theorems, leading
to the convergence of the one-dimensional distributions. We refer the
reader exemplary to the books of Petrov [31, 32] and Ibragimov and
Linnik [20] and the article of Geluk and De Haan [15] for classical
limiting results on sums of independent and identically distributed
random variables. However, we prove not only convergence of the
marginals or the finite-dimensional distributions. We provide func-
tional limiting results for the sequence of processes (Z™),cn. Their
proofs require some additional efforts. We think that the arising lim-
iting processes are quite interesting. For example, since the centering
or scaling of the space in Theorem I.2.1 and Theorem I.2.3 in general
explicitly depends on the time ¢, the limiting processes are in general
time-inhomogeneous.

The convergence results are as well based on crucial transfer re-
sults showing how particular asymptotic relations for the probabil-
ity generating function (pgf) of the offspring distribution carry over
to the pgf of Z;. Results of this form are for example provided in
Lemma [.2.2, Lemma [.2.6 and Lemma 1.2.7 and are of its own inter-
est. Despite the fact that there is a vast literature on continuous-time
branching processes, we have not been able to trace these results.

Throughout the article £ denotes a random variable taking values
in Ny with probability py := P(§ = k), k € Ny. For a space F
equipped with a c-algebra we denote with B(FE) the space of all
bounded measurable functions ¢ : £ — R. For a topological space

A~

X and K € {R,C} we denote by C'(X, K) the space of continuous
functions g : X — K vanishing at infinity and also write C'(X) for

~

C(X,R).

1.2 Results

Let f denote the pgf of £, i.e., f(s) :=E(s%) = >, prs” and define
u(s) :== a(f(s) — s) for s € [0,1]. Let r > 1. It is well known (see,
for example, Athreya and Ney [3, p. 111, Corollary 1]) that m,(t) :=
E(Z]) < oo for all ¢ > 0 if and only if E(£") = Y, o k'pr < o0.
Moreover m(t) := my(t) = e with A := v/(1—) = a(E(¢) — 1) and

I teM(eM — 1) + M if X £ 0,
malt) = { 7t + 1 if A =0, (1)
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with 72 := v (1-) = af"(1-) = aE(£(£—1)). Note that (I.1) slightly
corrects Eq. (5) on p. 109 in [3], which accidently provides the formula
for the second descending factorial moment E(Z;(Z; — 1)) instead of
the second moment E(Z?). In particular, if ma(t) < oo, then

eM(eM —1)/\ if A #£0,

I.2.1 The finite variance case

Assume that the second moment E(£?) = 3, ., k?py of the offspring
distribution is finite or, equivalently, that VarZZt) < oo for all t > 0.
In the following a A b := min{a, b} denotes the minimum of a,b € R.
We furthermore use for € R and o? > 0 the notation N(u,o?)
for the normal distribution with mean g and variance o with the
convention that N(u,0) is the Dirac measure at p. Our first fluctua-
tion result (Theorem 1.2.1) clarifies the asymptotic behavior of Zt(n)
as the initial state n tends to infinity. The proof of Theorem 1.2.1 is
provided in Section I.3.

Theorem 1.2.1. IfE(£?) < oo or, equivalently, if o*(t) := Var(Z;) <
oo for all t > 0, then, as n — oo, the process X" = (an))tzg,
defined via
n Z(n) _ t Z(n) . At
xm o Zznml) 4 —net o Ny>0, (12)
Vn Vn

converges in Dg|0, 00) to a continuous Gaussian Markov process X =
(Xt)i=0 with Xog = 0 and covariance function (s,t) — Cov(Xy, X;) =
E(X,X;) = m(|]s — t|)o*(s A t), s,t > 0.

Remarks.

1. (Continuity of X) Let s,t > 0 and = € R. Conditional on
Xs = x the random variable X ,; — X has a normal distri-
bution with mean p := zm(t) — x = x(m(t) — 1) and variance
v? = m(s)o?(t). Thus, E((Xep — X)* | X, = 2) = 30t +6p20% +
pt = 3m?%(s)ot(t) + 622 (m(t) — 1)*>m(s)o?(t) + z*(m(t) — 1)* or,
equivalently,

E((Xose — Xo)' [ Xs) = 3m*(s)o™(t) + 6X7(m(t) — 1)"m(s)o*(t)
+ X (m(t) — 1)~
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Taking expectation yields

E((Xore — Xo)Y) = 3m?(s)o’ (t) + 6E(XT) (m(t) — 1)*m(s)o”(t)
E(X7)(m(t) — 1)°

= 3m*(s)o™(t) + 60°(s)(m(t) — 1)*m(s)o*(t)
+ 30 (s)(m(t) — 1)

From this formula it follows that for every T' > 0 there exists a
constant K = K(T) € (0, 00) such that E((X,—X;)*) < K(s—t)?
for all s,t € [0,T]. By Kolmogorov’s continuity theorem (see, for
example, Kallenberg [22, p. 57, Theorem 3.23]) we can therefore
assume that X has continuous paths.

. (Generator) For A # 0 the Gaussian process X is time-
inhomogeneous. Note that Ts.g(z) = E(g(Xs) | Xs = 2) =

t) ++/m(s)X1)), s,t >0, g € B(R), z € R. Let C*(R)
denote the space of real-valued twice continuously differentiable
functions on R. For s > 0, g € C*(R) and x € R it follows that
Tsug(x) — g(=) o’

— / e "
lim , = Azg(z) + 5 mls)g (@),

where 02 := lim ,g0%(t)/t = 72 — X = aE((§ — 1)?). For A = 0
(critical case) the process X is a time-homogeneous Brownian
motion with generator Ag(z) = (72/2)¢"(z), g € C*(R), z € R,
where 72 = aVar(€).

. (Doob—Meyer decomposition) Define the process C' := (C})i>q
via C; = )\f(f Xsds, t > 0. Let F; :=0(X;,s <t), t>0. For all

0<s<Ht,
E(C, — Cy | F) = AE(/X du| F ) _ A/t (X, | F.) du

= /mu—stu-X/Ae“S

1) = Xym(t—s)
= (Xt\]-"s)—XS = E(Xt—XS|]:S).

Thus, the compensated process M := (M;)>0 := (X — Ch)i>0
is a martingale with respect to the filtration (F);>g. For A = 0
the process X itself is hence a martingale. Clearly, X = M + C
is the Doob—Meyer decomposition of X. The process C' is not
monotone, but decomposes into C' = C* — C~, where C* :=
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(Ci )0 and C~ := (C} )i, defined via C)" := )\fot X, ds and
C; ==X fot X, ds for all ¢ > 0, both have non-decreasing paths.

4. (Positive semi-definiteness) The limiting process X in Theorem
[.2.1 is Gaussian. For any finite number k of time points 0 < ¢ <

- < tp < oo it follows that (Xy,..., X ) has a multivariate
normal distribution with positive semi-definite covariance matrix

.....

.....

further properties of such min and max matrices and related meet
and join matrices we refer the reader exemplary to Bhatia [4, 5]
and Mattila and Haukkanen [27, 28]. For A # 0 (non-critical case)
it follows that the matrix (eMfi—tileAtnt) (eAtnt) 1)/N)ijeqt,...k}
is positive semi-definite.

Ezamples. (1) Let £ be geometrically distributed with parameter
p € (0,1). Define ¢ := 1 — p. Then all descending factorial moments
E((£);) = j!(q/p)’, j € Ny, are finite. Theorem 1.2.1 is hence applica-
ble with A = a(E(¢) —1) = a(q/p—1) and 72 = aE((£)3) = 2a(q/p)*.
For p = 1/2 (critical case) the process X is a Brownian motion with
generator Af(z) = af"(z), f € C*(R), z € R.

(i) If £ is Poisson distributed with parameter p € (0,00), then
again all descending factorial moments E((£);) = u/, j € Ny, are
finite. Theorem 1.2.1 is applicable with A = a(E(¢) — 1) = a(u — 1)
and 72 = aE((£)2) = ap?®. For u = 1 (critical case) the process X is
a Brownian motion with generator Af(x) = (a/2)f"(z), f € C*(R),
r e R.

(iii) Let aj,as > 0 with a; 4+ ag > 0. Theorem 1.2.1 is applicable
for birth and death processes with rates na; and nas for birth and
death respectively if the process is in state n. In this case we have
a=ai+ay, f(s)=(az+a1s?)/a, u(s) = ay +a1s* —as, A\ = a; — as
and 72 = 2ay. For a; = as (critical case) the process X is a Brownian
motion with generator Af(z) = aif”(z), f € C*(R), x € R.

1.2.2 The finite mean infinite variance case

In this subsection it is assumed that m := E({) < oo. Since f is
convex on [0,1], the inequality 1 — f(s) < m(1 — s) holds for all
s € [0,1]. In order to state appropriate limiting results it is usual
to control the difference between m(1 — s) and 1 — f(s). A typical
assumption of this form is the following.
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Assumption A. There exists a constant a € (1,2] and a function
L:[1,00) — (0,00) slowly varying (at infinity) such that

1—f(s) = m(1—5) — (1=8)"L((1-s)"), se&[0,1). (L3)
Since f is differentiable, Assumption A in particular implies that L
is differentiable. Define F'(s,t) := E(s?) for s € [0,1] and ¢ > 0. The

following lemma clarifies the structure of F'(s,t) under Assumption
A. Recall that m(t) := E(Z;) = eM < 0.

Lemma 1.2.2. If the offspring pgf f satisfies Assumption A, then,
for every t > 0,

1= F(s,t) = m(t)(1—s) — c(t)(1—5)"L((1—5)"Y)(1+0(1)), (14)

s — 1—,where

at if A=0,
c(t) = m(at) —m(t) M1 (L.5)
@-Dm-1  @-mx AP0

Remark. Although we are in this subsection mainly interested in the
infinite variance case, Lemma [.2.2 holds in particular for the finite
variance case. In this case expansion of f for s — 1— shows that (1.3)
holds with @ = 2 and L((1 — s)™') ~ f"(1-)/2 = E(£(€ — 1))/2 as
s — 1—. Moreover, c(t)f"(1-) = E(Z:(Z; — 1)) = F"(1—,t), where
F"(s,t) denotes the second derivative of F'(s,t) with respect to s.

In the following we are however interested in the infinite variance
situation, so we assume that E(£%) = oo. We are now able to state
our second main convergence result.

Theorem 1.2.3. Assume that m := E(£) < oo and E(£?) = oo.
Suppose that Assumption A holds. Let (a,)nen be a sequence of pos-
itive real numbers satisfying a, > 1 for all sufficiently large n and
L(ay) ~ a%/(an) as n — co. Then the process X := (Xt(n))tzg,
defined via

Xt(n) = 3 neNatZO;

converges in Dg[0,00) as n — oo to a limiting process X = (Xt)>0
with state space R and initial state Xy = 0, whose distribution s
characterized as follows. Conditional on X, = x the random variable
X,y is distributed as xm(t) 4+ (m(s))*X;, where Xy is a-stable with
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characteristic function u — E(e™*) = exp(c(t)(—iu)*/a), s,t > 0,
u € R, and Laplace transform n — E(e ") = exp(c(t)n®/a), n,t >
0. Note that E(X;) = 0, t > 0. The variance of Xy is equal to c(t)
for ao =2 whereas Var(X;) = oo fort >0 and o € (1,2).

Remark. As in Theorem 1.2.1 the limiting process X in Theorem
[.2.3 is time-homogeneous if and only if A = 0. We have T g(x) :=
E(g(X,00) | X, = 7) = E(glam(t) + (m(s))V2X,)) for s,¢ > 0, g €
B(R) and = € R. Note that Ts;g(x) is well-defined even for some
functions ¢ which are not bounded. For example, for Laplace test
functions of the form g = g, defined via g¢,(x) := e 7" for all z € R
and n > 0, we obtain the explicit formula

Tyt9y() — gy() . e—mtnz+et)m(s)n®/o _ o—nax

t—0 t t—0 t
Q

— lim ( — ' () + c'(t)m(s)”_) (e mls)e o
(0

= < —m/(0+)nx + c’iOJr)m(s)%) e

= ( — Az + am(s)n—) e "™, s,n >0,z eR. (1.6)
«

For a = 2 and g € C*(R) it follows from (I1.6) that

= dag/(x) + Sm(s)g(x),

s > 0,z € R showing that for a« = 2 the process X has the same
structure as in Theorem 1.2.1 with o2 replaced by the constant a.
Now assume that a € (1,2). Then, from (1.6), a straightforward
calculation based on the formula
/ e 77h—1+77hdh _ re—a)
0 hotl ala—1)

n>0,ac€(1,2), yields

Asg(x) = Axg' (x) +am(s) ol /OOO gl +h) —g(x) = hy () dh,

T2 —a) ho+1

s > 0,z € R, first for g = g, and, hence, for other classes of func-
tions g, for example for g € C?(R). These formulas for the semigroup
and the generator show that X is a time-inhomogeneous Ornstein—
Uhlenbeck type process [40]. For fundamental results on such pro-

cesses and related generalized Mehler semigroups we refer the reader
to [8].
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For aw = 2 we have a$/n ~ aL(a,) — oo as n — 00, in contrast to
the situation in Theorem 1.2.1, where a,, = y/n and, hence, a2 /n = 1.
For a@ = 2 the limiting random variable X; has a normal distribution
with mean 0 and variance ¢(t) given via (1.5) with a = 2.

Two examples are provided, one with o = 2 and the other with
a € (1,2). In the first example the underlying branching process
is supercritical whereas in the second example it is critical. In the
first example F'(s,t) can be expressed in terms of the Lambert W
function. In the second example F(s,t) is known explicitly.
Example 1.2.4. Suppose that pp = 4/((k — Dk(k + 1)) for k €
{2,3,.. .}, ie, f(5) =D, prs® = 2571 (1—5)*(—log(1—s)) —2+3s,
s € (0,1). Note that (I.3) holds with « = 2, m = E(§) = 3,
L(1) := 2 and L(z) := 2(logz)/(1 — 1/z) for > 1. Clearly,
L(x) ~ 2logx as x — oo. Moreover, A\ = 2a, m(t) := E(Z;) = 2™
and Var(Z;) = oo for ¢t > 0. The sequence (a,)nen, defined via
a; = 1 and a, := 2nlogn for n € N\ {1}, satisfies L(a,) ~
2loga, ~ logn = a?/(2n) as n — oco. By Theorem 1.2.3, the pro-
cess ((Z\" — ne®t)/\/2nlog n)iso converges in Dg[0,00) as n — oo
to a time-inhomogeneous process X = (X;);>o with distribution as
described in Theorem [.2.3. In particular, for every ¢t > 0, the ran-

dom variable X; has a normal distribution with mean 0 and variance

c(t) = 5e*(e* — 1). The pgf F(.,t) of Z; is computed as follows.

From the backward equation

F(s,t) 1
t = / ——dx
s u(z)

1 F(s,t) . ]
- - dr = — F(s,t)
a /s 2(1 —2)((x — 1) log(1 — x) — ) x 2 ()]
with v(x) := log(1 — x) — log(z + (1 — x)log(1 — z)), = € (0,1), we
conclude that

F(s,t) = v (2at 4 v(s)), (L.7)
where v™1 : R — (0,1) denotes the inverse of v, which turns out
to be of the form v71(y) = 1 + 1/W(h), where h := —exp(—1 —

e V) € (=1/e,0) and W = W_; denotes the lower branch of the
Lambert W function satisfying W(h)ew(h) = h and being real-valued
on [—1/e,0). Expansion of (I.7) shows that

F(s,t) = 1—e*"(1—s5)+e*(e**—1)(1—5)*log((1—s5) 1 4+0O((1—5)?),
s — 1—, in agreement with (I.4), since c(t) = e (e?* — 1) and

2
L(z) ~ 2logx as © — oo.
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Example 1.2.5. Let a € (1,2) and b € (0,1/a]. Assume that
f(s) = s+ b(1 —s)* s € [0,1]. Note that pg = b, py = 1 — b and
pr = b(—1)*(9) for k € {2,3,...}. In particular, p; ~ b/(T'(—a)k*")
as k — oo. Moreover, f/(s) = 1 — ba(l — s)*! and, therefore,
m = E(§) = f/(1—) = 1. Thus, the underlying branching process
is critical, the extinction probability is ¢ = 1 and (1.3) holds with
L =b. Note that u(s) = ab(1 — s)®. Theorem 1.2.3 is applicable with
a, = n/*. It follows that (n_l/o‘(Zt(n) —n))s>p converges in Dg[0, 00)
as n — oo to a process X with distribution as described in Theo-
rem [.2.3. In particular, for every ¢ > 0, the random variable X; has
characteristic function u +— exp(—abt(—iu)®), u € R. From

F(S,t) 1 F(Svt) 1
t = —dz = —d
¢ / fay—z / b1—a)

)
(1-F(s,t) - (1-s)
blaw —1)
it follows that F(s,t) = 1—((a—1)abt+(1—s)'=*)/0=) Generating

functions of this form can be traced back at least to Zolotarev [47,
Section 5]. Note that

1—F(s,t) = (1—3)—abt(1—s)a+%(abt)2(1_3)26«1+o((1_3)3a2),

s — 1—, in agreement with (I.4), since ¢(t) = at and L = b.

1.2.3 The infinite mean case with non-explosion

In this subsection it is assumed that m := E({) = oo or, equivalently,
that m(t) := E(Z;) = oo for all ¢ > 0. In order to state the result it
is convenient to define the function L : [1,00) — (0, 00) via

L(z) == z(1— f(1—2a71), x> 1. (L.8)

The substitution s = 1 — 2! shows that this definition is equivalent
to

L= f(s) = Q=9)L(1—s)),  sel1).  (L9)
Non-explosion is assumed throughout this subsection, which is equiv-

alent to (see, for example, Harris [18, Chapter V, Section 9, p. 106,
Theorem 9.1])

/618—;f(8)d8 B /(101)_1 x(L(:Ul)_l) dz = og

for all ¢ € (¢,1), where ¢ denotes the extinction probability. For
the theory of stable distributions and their domains of attraction we
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refer the reader to Geluk and de Haan [15]. For the moment let £ > 0
be fixed. Then Zt(”), suitably normalized, converges in distribution
as n — oo to a non-degenerate limit, i.e., Z; is in the domain of
attraction of a stable law if and only if the following condition is

satisfied. There exists a(t) € (0,1] and a slowly varying function
Ly : [1,00) — (0,00) such that

P(Z, > ) ~ z “OL,(z), T — 00. (1.10)

And, if a(t) = 1, then L;(z) — oo as * — oo. In this subsection
only the case a(t) < 1 is investigated. Recall that F(s,t) = E(s%)
for s € [0,1] and ¢ > 0. It follows from Bingham and Doney [6] that
(I.10) is then equivalent to

1—F(s,t) = (1—5)YL,(1—-5)Y, sel0,1), (111)

where, to be precise, the function L; of (I.11) replaces I'(1 — «(t)) L.

Then,
1—-F(s,t)
log 751

t) =
a(t) log(1—s) ’
Since L; is slowly varying and hence satisfies log L;(x)/logx — 0 as
xr — o0, it follows from (I.12) that

. log(1— F(s,t))
alt) = 51—1>I1n— log(1 — s)

t>0,s€l0,1). (1.12)

t>0. (1.13)

In particular, a(t) is uniquely determined by the pgf F'(.,t). Note that
(I.11) always holds for t = 0 with «(0) = 1 and ¢(0) = 1 because of
the boundary condition F(s,0) = s.
Suppose (I.11) holds for all ¢ > 0. From the iteration formula
F(s,t +u) = F(F(s,t),u) it follows that
(1= 8)" " Lyyu (1))

= 1—-F(s,t4+u) = 1—F(F(s,t),u)

= (1= F(s,1))"L,((1 = F(s.1)) ")

= (1= )WL =) Lu((1 = ) OL7((1 = 5) ™),
s € [0,1). Since all terms depending on L. are slowly varying, a(.)
has to be multiplicative, i.e., a(t+u) = a(t)a(u) for all ¢,u > 0. The
map k : [0,00) — [0, 00), defined via k(t) := —log«a(t) for all ¢t > 0,
is hence additive, so it satisfies the Cauchy functional equation. By

Aczel [1, p. 34, Theorem 1], k(t) = Ct and, hence, a(t) = e~ for
all t > 0, where C' := k(1) = —loga(l) € [0,00). Clearly, either
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a(t)=1forallt >0 or a(t) < 1 for all £ > 0, depending on whether
C =0or C > 0. Also, the map t — Li(x), t > 0, is continuously
differentiable and satisfies

Livo(1=8)7") = LI((1 = 9) YLu((1 = )DL (1= 5)7),

t,u>0,s€10,1), or Liyy(x) = Lfm)(x)Lu(xo‘(t)Lt_l(x)) for all ¢,u >
0 and all x > 1. The following result (Lemma I[.2.6) relates (I.11) to
the offspring pgf f. The map s — L((1—3s)7!) = %(SS), s € [0, 1], has
derivative s — i(%(j) — f'(s)), which is strictly positive on [0, 1),
since f is strictly convex. Thus, L is strictly increasing on [1, 00). We
also have L(z) — oo as © — 00, since m = oco. The proof of Lemma

[.2.6 is provided in Section L.5.

Lemma 1.2.6. If m := f/(1—) = oo, then the following conditions
are equivalent.

(1) For every t > 0 there ezists a(t) € (0,1) and a slowly varying
function Ly : [1,00) — (0,00) such that (1.11) holds.

(ii) For every t > 0 the limit
a(t) == lim a(s,t) € (0,1)

s—1—

exists, where a(s,t) == (1 — s)(ZF(s,t))/(1 — F(s,t)) for all
s €0,1).

(1ii) The limit

L(x) 1—f(s)

A= lim logz S (1—s)log((1—s)"1) (1-14)
exists in (0, 00).
In this case a(t) = e~ for all t > 0.
Remark. Note that
aA = a lim J(s) ~ 1 = lim u(s) — all = 5)

s—1+ (1 — s) log(1 — s) s=1- (1 — s)log(1 — s)

= lim us)
s—1- (1 — s)log(1 — s)

Thus, a(t) = e %4 can be alternatively computed from the function
u.
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Suppose that m = oo and that the limit A := lim,_,» L(x)/logz €
(0,00) in Lemma [.2.6 exists. Recall that, by Lemma 1.2.6, the ex-
istence of the limit A is equivalent to the existence of constants
a(t) € (0,1) and of slowly varying functions L; such that (I.11)
holds, i.e., 1 — F(s,t) = (1 — 5)*WL,((1 — s)7"). In the following we
focus on the particular situation that the limit

B(t) := lim L;(z) = lim L;((1 —s)™') = lim i(s,t)

T—00 s—1— s—1— (1 — S)Oé(t)

(I.15)

exists in (0, 00) for each t > 0. We already know that a(t) = e %4,
If (I.15) holds, then we must have A > 0, since otherwise a(t) = 1
and hence (t) = m(t) = oo, in contradiction to (I1.15). The following
result relates (I.15) to the offspring pgf f and provides an explicit
formula for 5(¢). The proof of Lemma 1.2.7 is provided in Section L.5.

Lemma 1.2.7. Suppose that m = oo and that (1.14) holds. If the
limit B := lim, . (L(z) — Alogz) € R exists, then (1.15) holds for
allt > 0. In this case

B(t) = exp <%(1 - @(t))) £>0.  (116)

We are now able to provide the third main convergence result. In
the following the notation E := [0, 00) is used.

Theorem 1.2.8. Suppose that m = oo and let L be defined via (1.8)
such that (see (1.9)) the relation 1 — f(s) = (1 —3s)L((1—s)7!) holds
for all s € [0,1). Assume that both limits

€ (0,00) and B := lim(L(z)— Alogz) € R

T—00 ]og xT T—00

exist. Fort > 0 define

B -1

alt) == e and B(t) = exp (T(l—a(t))>. (I.17)

Then, as n — 0o, the scaled process X™ := (Xt(m)tzo, defined via
Xt(n) — n_l/a(t)Zt(n), t>0,

converges in Dgl0,00) to a limiting continuous-state branching pro-
cess X = (Xi)i>0, whose distribution is characterized as follows.

(1) For every t > 0 the marginal random variable X; is «(t)-stable
with Laplace transform X\ — exp(—B(t)A*®), X > 0.
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(ii) The semigroup (T});>0 of X satisfies Tyg(x) = E(g(z"/*MX,)),
x,t > 0, g € B(FE), i.e., conditional on Xy = x the random
variable X4+ has the same distribution as /e X,

The proof of Theorem 1.2.8 is provided in Section 1.5. We now

provide three examples. In the first two examples the distribution of
Zy is known explicitly.
Example 1.2.9. Assume that ¢ has distribution p;, := P(§ = k) =
1/(k(k—1)), k € {2,3,...}. Note that £ = [ X |, where X has density
v+ 1/(x —1)% 2 > 2, so X has a shifted Pareto distribution with
parameter 1. Then, f(s) = s+(1—s)log(1—s) = 1—(1—s)L((1—s)71)
with L(x) := 1+ logz and u(s) := a(f(s) —s) = a(l — s) log(1 — s).
Note that A := lim, ,,, L(x)/logz = 1 and B := lim, ,(L(z) —
log x) = 1. From the backward equation (0/0t)F(s,t) = u(F(s,t)) it
follows that

= e = Lo togt -
/s u(x) YT & & s

- llog <log1(01g(—1 1;(2,)75)))

a
Thus, F(s,t) =1 — (1 —s)¢ " showing that Z, is Sibuya distributed
(see, for example, Christoph and Schreiber [10, Eq. (2)]) with param-
eter e~. The Sibuya distribution and similar distributions occur for
example in Gnedin [16, p. 84, Eq. (9)], Huillet and Mahle [19, p. 9],
Iksanov and Mohle [21, p. 225] and Pitman [33, p. 84, Eq. (18)], [34,
p. 70, Eq. (3.38)]. We conclude that (I.15) holds with «(t) := e
and f((t) := 1. By Theorem 1.2.8, as n — o0, the scaled process
X = (Zt(n)/neat)tzo converges in Dg|0,00) to a limiting process
X = (X,)s>0 such that X; has Laplace transform A — exp(—X¢ "),
A > 0, and the semigroup (T});>0 of X satisfies Tyg(z) = E(g(z°" X)),
x,t >0, g € B(E). We identify (X;/,)i>0 as Neveu’s continuous-state
branching process [29]. For a = 1 this example coincides with [23,
Theorem 2.1 b)| stating that the fixation line of the Bolthausen—
Sznitman n-coalescent, properly scaled, converges as n — oo to

Neveu’s continuous-state branching process.

FExample 1.2.10. Example 1.2.9 is easily generalized as follows. Fix
two constants b > 0 and ¢ > 0 with b + ¢ < 1 and assume that
po:=¢ p1:=1—b—cand p; := b/(k(k—1)) for £ > 2. Then,
f(s)=s+(1—=s)(c+blog(l—s))=1—(1—s)(1—c—"0blog(1—s)),
u(s) = a(f(s) —s) = a(l —s)(c+blog(l —s)) and L(z) =1 —c+
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blogx. For b = 1 and ¢ = 0 we are back in Example 1.2.9. Note
that A := lim, o L(z)/logz = b > 0 and B := lim, o (L(z) —
blogz) = 1—c € (0, 1]. The same argument as in Example 1.2.9 leads
to F(s,t) = 1—(1—s5)° " exp(cb (e~ —1)). Thus, Theorem 1.2.8 is
applicable with a(t) := e~ and B(t) := exp(cb~ (e~ — 1)), t > 0.
Clearly, these formulas for a(t) and f(t) are in agreement with those
from Lemma 1.2.6 and Lemma 1.2.7, namely a(t) = e %4 = ¢~
and ((t) = exp((B — 1)A71(1 — a(t))) = exp(cb~ (e — 1)), t > 0.
Ezrample 1.2.11. (Discrete Luria—Delbriick distribution) Assume that
¢ has a discrete Luria—Delbriick distribution with parameter b €
(0,00), i.e., f(s) = (1 —s)!1=9)/5 5 € (0,1). Note that f(0) = e™*
and f(s) = 1— (1 —8)L((1 —s)™1) for s € [0,1), where L(1) :=
1 —e®and L(z) := 2(1 — 2077)) for x € (1,00). Note that A :=
lim, ;o L(x)/logx = b and B := lim,,(L(x) — blogz) = 0. Let
q = q(b) denote the extinction probability, i.e., the smallest fixed
point of f in the interval [0, 1]. For all € € (g, 1),

/%d - /<OO> x<L<:c1>—1> v =

since L(z) ~ blogxz as ©* — oo. By the explosion criterion, the
associated branching process Z = (Z;);>0 does not explode. The
functions «(.) and S(.) are obtained as follows. By Lemma I.2.6,
at) = e 4 = 7%t > (. Furthermore,

B(t) = exp (%(1—(1@))) ~ exp (MT”) >0,

By Theorem 1.2.8, as n — oo, the scaled process X =
(Zt(n) /n");=o converges in Dg[0,00) to a limiting process X =
(X})i=0 such that X, has Laplace transform A — exp(—8(t)A¢ "),
A > bO, and the semigroup (73);>¢0 of X satisfies Tig(x) =

E(g(z¢ X)), ,t >0, g € B(E).

The previous three examples are summarized in the following ta-
ble.

’ Example H Example 1.2.9 \ Example 1.2.10 \ Example 1.2.11 ‘
Parameters — b>0,c>0,b+c<1 0<b<
pef f(s) s+(1—=s)log(l—s) | s+ (1—s)(c+blog(l—2s)) (1—s)b=9)/s
L(z) 1+ logx 1—c+blogz z(1 — )?/ (=)
Oé(t) e—at e—abt e—abt
0 I Sp(eb (e 1)) | exp((e ™ —1)/b)

Remark. Theorem 1.2.8 does not cover the situation when the limit
A :=lim, o L(z)/log z is either 0 or co. We leave the analysis of the
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two boundary cases A = 0 and A = oo for future work, but provide
two concrete examples.

FEzample 1.2.12. An example satisfying A = 0 (and E(§) = o0) is
obtained as follows. Define L(1) := 1, L(z) := 1 + loglog x — log(1 —
1/z) forz > 1and f(s) := 1—(1—s)L((1—s)"!) for s € [0, 1). Clearly,
L(z) ~ loglogz as * — oo. Hence, A := lim, ,, L(z)/logx = 0. In
the following it is clarified that f is a pgf. It is not hard to check
that the function ¢ : [0,1) — R, defined via g(0) := 0 and g(s) :=
log(—log(1—s))—log s for s € (0, 1), has the Taylor expansion g(s) =
> ns1 9ns" with coefficients g, := (nln)™! fol[x]ndx, n € N, where
[z], = x(x+1)--- (x4+n—1),ie, g1 =1/2, 90 =5/24, g3 = 1/8, and
soon. Thus, f(s) = 1—(1—s)(14+g(s)) = s—(1—s)g(s) has the Taylor
expansion f(s) =) -, pns" with coefficients p; =1 —¢g; = 1/2 and

1 ! 1!
n — Yn—1 — Yn — n-1dr — nd
b Jn=1 79 (n—1)(n— 1)!/0 -1 de nn!/o [l da

_ ! Ol[x]n_l(l_er ! )dx, neN\{1}.

n! n n—1

In particular, p, > 0 for all n € N. Thus, f is the pgf of some
(offspring) random variable ¢ taking values in N. Note that E(§) =
00, since lim, o L(z) = oco. From L(z) ~ loglogz as x — oo it
follows that the associated continuous-time branching process Z =
(Z¢)i>0 does not explode.

The asymptotics of p, as n — oo is obtained as follows. It is
easily seen that f”(s) ~ (1 —s)"%((1 — s)™1) as s — 1—, where
((u) := 1/logu. Moreover, the sequence

an = [s"f"(s) = (n+1)(n+2)pns2

1 [t 1—x 1
i n d7 EN,
n! O[l’] +1(n—i—2+n—l—1> Hon !

is strictly decreasing, since, by straightforward calculations,

1 1
)/0 @h(1—2)2—z)dz > 0, nel

fn=1 =t = n!(n + 2

From Karamata’s Tauberian theorem for power series (apply, for ex-
ample, Bingham, Goldie and Teugels [7, p. 40, Corollary 1.7.3] with
A:= f" c:=1and p:=1) it follows that a, = [s"]f"(s) ~ {(n) =
1/logn as n — co. Thus, p, ~ 1/(n?logn) as n — oo.

FExample 1.2.13. A fruitful example satisfying A = oo is the following.
Define L(z) := 1+ (1 + logx)log(l + logx) for x > 1 and f(s) :=
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1—(1—s)L((1—15)1),ie,
f(s) = s — (1—5)(1—1log(1—s))log(1—1log(1l—ys)), s€[0,1).

Clearly, f(1—) =1=: f(1) and f'(s) = (—log(1 —s))log(1 —log(1 —
s)), s € [0,1). By Lemma 1.6.5 provided in the appendix, f’ is ab-
solutely monotone and f(0) = f'(0) = f”(0) = 0, which implies
that f is the pgf of some (offspring) random variable ¢ taking values
in {3,4,...}. Note that A = oo implies lim, ,, L(x) = oo, which
is equivalent to E(§) = oco. Nevertheless, the associated continuous-
time branching process Z = (Z;);>o does not explode. The pgf F(., 1)
of Z; is even explicitly known. More precisely, solving the backward
equation

" / s L
at = ——du
Flsp) U — f(u)

= /S L du
 Jrey (1= u) (1 =log(1 — u))log(1 — log(1 — u))

= [log(log(1 — log(1 — w)))|p(sy = log 1Oglag<_1 1;g1(()1g(_1 ;(j)i)))

yields the solution F(s,t) = 1—exp(1—(1—log(1—s))* "), s € [0,1),
t > 0. In particular, for each o € (0, 1), the map s — 1 — exp(1 —
(1 —log(1l —s))*), s € [0,1), is a pgf, which does not seem to be
straightforward to verify directly.

1.2.4 The explosive case

We briefly comment on the situation when the branching process
may explode in finite time. Note that explosion implies that A :=
lim, o L(z)/logx = co. Thus, Theorem 1.2.8 is not applicable. We
have F'(1,t) < 1 for all £ > 0. For t > 0 let G(.,t) denote the pgf of
Z; conditioned on Z; < o0, i.e.,

F(s,t)
F(1,t)’
In this situation a convergence result in the spirit of the previous
theorems, but with F' replaced by G, is obtained as follows. For £ > 0
we have E(Z; | Z; < 00) = G'(1—,t) = F'(1—,t)/F(1,t) = oo. Thus,
it is natural to assume that 1 — G(s,t) = (1 — 8)*®L,((1 — 5)7") for
some «(t) € (0, 1] and some slowly varying function L;. Now assume

G(s,t) = se[0,1],t >0,

furthermore that the limits

Bt) = xh_gloLt(x) € (0, 00), t>0,
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exist. Then a(t) < 1 for all ¢ > 0. Now, for t > 0 and n € N, choose
an(t) such that Li(a,(t)) ~ (an(t)*®/(na(t)) as n — oo. Then
Zt(n) /a,(t), conditioned on Z; < oo, converges to X; in distribution
as n — oo, where X, has Laplace transform A — exp(—3(t)\*®),
A > 0. Example 1.2.14 below, going back at least to Sewastjanow [39,
Chapter 1, Section 8, Example 6], turns out to be in that regime.

Example 1.2.14. Suppose that £ is Sibuya distributed with parameter
€ (0,1), e, f(s) =1—(1—1s) s € [0,1]. Note that f has the
Taylor expansion f(s) = > -, pns" with coefficients

Pn = (Z)H)nl = r<ﬂa>1§((f:37 nel.

In particular, p, ~ (a/T(1 — a))n "t as n — oo. Moreover, f(s) =

1—(1-3s)R((1—s)1), where R(x) := 217 is regularly varying of
index 1 — a.. The backward equation

F(S,t) 1 F(S’t) 1
at = / ——dx = / dx
s flz) —z s l—z—(1—x)

_ [_ lOg(l — (1 — x)la)] F(s,t)
1l —« )

_ 1 | (1= s

= 10g 1 — (1 — F(S7t))1_a7

l -«
yields the explicit solution (see [39, p. 26, Eq. (19)])

t>0,

Fs,t) = 1 — (1 _eUaat( (1 s)l—a))”‘, (L.18)
s €10,1],t > 0. We have P(Z; = 00) = 1—F(1,t) = (1—6_(1_0‘)‘”)ﬁ
fort > 0,500 < P(Z; = 00) < 1 for all t > 0. The time T := inf{t >

0 : Z; = oo} of explosion satisfies P(T < 00) = limy_,o P(Z; = o0) =
1, so Z explodes in finite time almost surely. Note that T" has mean

E(T) = /OOO]P’(T>t)dt = /OOO]P)(Zt<oo)dt
= /00(1 — (1 — e U=ty 5y g,
0

The substitution z = 1 — e~ (1= yields

B0 = /olll_—iadx - () )
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where ¥ = I"/T" denotes the logarithmic derivative of the gamma
function and ~ is the Euler—-Mascheroni constant.
Let ¢ > 0 in the following. Expansion of (I.18) yields

F(s,t) = F(1,t) —

— Q(l . e—(l—a)at)ﬁe—(l—a)a%l . S)l—a
+ 0((1 =927, 51—, (1.19)
Rewriting (1.19) in the form

F(s,t)
(1,%)

(1 _ e—(l—a)at)ﬁe—(l—a)at (1 )1—a
= -5
(1= a)(1 = (1 — e (o))

+ O((1 — 5)2179)), s — 1—,

1—-G(s,t) =1 —

=

yields a(t) =1 — « for all £ > 0 and

(1 _ e—(l—a)at) ﬁe—(l—a)at

B(t) = lim Ly(x) =

—, t> 0.
700 (1—-a)(1—(1—e (A-aat)i=a)

Thus, the sequence a,(t) := (na(t)B(t))*® satisfies L;(a,(t)) ~
(an(£))°® /(na(t)) as n — oo and it follows that X = Z™ Ja, (),
conditioned on Z; < oo, converges to X; in distribution as n — oo,
where X, has Laplace transform \ — exp(—#(t)A*®), X > 0.

We leave the study of further examples of branching processes with
explosion similar to those of Example 1.2.14 to the interested reader.
One may for instance study the pgf f(s) := %arcsin s, s € [0,1],
occurring in Pakes [30, p. 276, Example 4.5]. A further example is
the offspring distribution p; = \/TEF(k:)/F(k +3/2), k € N, in which
case the offspring pgf has the form f(s) =1— /(1 — s)/sarcsin /s.

Let us finally discuss the situation when
1-G(s,t) = (1=s)Ly((1 =51, t>0, (1.20)

for some slowly varying function L;. Note that (see, for exam-
ple, Bingham and Doney [6, Theorem A]) (1.20) is equivalent to
Yo P(Zy > k| Zy < o0) ~ Li(n) as n — oo, which is Condition
(ii) in Rogozin’s relative stability theorem (see, for example, Bing-
ham, Goldie and Teugels [7, Theorem 8.8.1]). Let (a,(t))n,en be a
sequence such that Li(a,(t)) ~ a,(t)/n as n — oo. Then, by The-
orem 8.8.1 of [7], Zt(n)/an(t)|zt<Oo — 1 in probability as n — oo.
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Thus, in this situation we cannot have a non-degenerate limit. The
following example fits into this regime. In this example the limits

- Li(x)
t) =1 0 t>0
() = Jim 27 € (0,00), > 0,
exist.
Ezample 1.2.15. Define f(0) := 0, f(1) :=1 and
S

=1 —_— 1).
f(s) + log(1—3) s € (0,1)

It is easily seen that f has the Taylor expansion f(s) = 2@1 Pps"
with positive coefficients

! 1 (' T'(n—2)
= —1 n—1 r = — _— .
Dn (—1) /0 (n) dz o x[’(l—x) dz > 0, n €N

Thus, f is the pgf of some random variable ¢ taking values in N. Note
that p, = (—=1)"71b, /n! for all n € N, where b, := fol(:z:)n dz denotes
the n-th Bernoulli number of the second kind (see, e.g., Roman [37,
p. 114]). Here (z), := z(x — 1)---(x —n+ 1), n € N, denotes the
n-th descending factorial of x € R. From p, = 0 it follows that
the associated continuous-time branching process Z = (Z;);>0 has
extinction probability ¢ = 0. Note that f(s) = 1—(1—s)R((1—s)71),
where R(x) := (v — 1)/logz, x > 1, is regularly varying of index 1.
For all € € (¢,1) = (0,1),

L | 1 1
/ ——ds = / —ds
e ST f(S) e ST 1 - log(1—s)

— Jlog(s + (1 — 5)log(1 — )]
= —log(e + (1 —¢)log(l —¢)) < oo,

which shows that Z explodes. It is also known (see, for example,
Flajolet and Sedgewick [14, p. 387]) that p, ~ 1/(nlog*n) asn — oo.
Thus, p, tends slower to 0 than in Example 1.2.14. In this sense Z is
strongly explosive. The backward equation is

F(S,t) 1 F(Sat) 1
at :/ —du :/ —du
s flu)—u s I — v+ oi=

= [~log(u+ (1 — u)log(1 — u))};™"
s+ (1 —s)log(l —s)
F(s,t)+ (1 — F(s,t))log(l — F(s,t))

= log
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or, equivalently,

F(s,t) + (1 = F(s,t))log(l — F(s,t))
= e s+ (1—s)log(l—3s)) =: h(s,1).

It is straightforward to check that this equation has the solution

F(s,t) =1 — eXp(l—FW(%)), s€[0,1),t>0,
where W = WW_; denotes the lower branch of the Lambert W function
satisfying W (h)e" ™ = h and being real-valued on [—1/e, 0). Note
that P(Z; = 00) =1 — F(1,t) = exp(1 + W((e ™ — 1) /e)) for t > 0,
so 0 < P(Z; = 00) < 1 for t > 0. The time T := inf{t > 0: Z; = oo}
of explosion satisfies P(T" < 00) = limy_,oo P(Z; = 00) = exp(l +
W(—1/e)) = exp(0) = 1, so Z explodes in finite time almost surely.
Note that 7" has mean

E(T) = /OOO]P’(Zt < o0)dt = /OOO (1—eXp (1+W<e_at€_ 1>>>dt.

The substitution z =1 —e % (= ¢ = —é log(1 —z) and ﬁ—i - a(ll—x))
leads to .
1 11— 1+W(—
sy = L exp(L+W(=afe))
a Jo 1l—=x

The function below the integral has a singularity at + = 1. From
1+W(—xz/e) ~ \/2(1 — x) as x — 1 it follows that the function below
the integral behaves asymptotically as 1/2/(1 — x) as © — 1—, which
yields E(T") < oo. Numerical computations show that E(T') ~ 2.45/a.

Let G(s,t) := F(s,t)/F(1,t) denote the pgf of Z; conditioned on
Z; < oo. A somewhat tedious but straightforward calculation shows
that 1 — G(s,t) = (1 — s)L;((1 — s)~'), where L; is slowly varying
with

() = lim L) _ w
© 2—00 logx (w+1)(1 = (w+ 1)es)
with w = W(efaet_l). For ¢t > 0 let (a,(t)),en be a sequence such
that Li(a,(t)) ~ a,(t)/n as n — oo. Then, as explained before, for
every t > 0, conditional on Z; < oo, Zt(n) /a,(t) — 1 in probability
as n — 00. A concrete sequence (a,(t))nen is a,(t) = y(t)nlogn,
since, in this case, L;(a,(t)) = Li(y(t)nlogn) ~ Linlogn) ~
v(t) log(nlogn) ~ ~v(t)logn = a,(t)/n as n — oc.
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1.3 Proof of Theorem 1.2.1

The proof of Theorem 1.2.1 is quite natural and can be summarized
as follows. An application of the multivariate central limit theorem
yields the convergence of the finite-dimensional distributions. The
convergence in Dg[0,00) is then established using a criterion of Al-
dous [2]. The following proof is relatively short and elegant.

Proof. (of Theorem 1.2.1) Let us compute for s, > 0 the covariance
of Zs and Z,,,. For k € Ny,

E((Zy — m(s))(Zss — m(s + 1)) | Zs = k)
= (k —m(s))E(Z" —m(s +1))
= (k —m(s))(km(t) — m(s)m(t)) = m(t)(k —m(s))>

Thus, E((Zs—m(5))(Zst—m(s+1t)) | Zs) = m(t)(Zs—m(s))? almost
surely. Taking expectation yields Cov(Zs, Zs1¢) = m(t)Var(Z;) =
m(t)o?(s).

In order to verify the convergence X M X of the finite-
dimensional distributions fix k € Nand 0 < t; < --- < t < 0o, de-
fine the R¥-valued random variable Y := (Z;, —m(t1), ..., Zy, —m(t;))
and let Y7,Y5,... be independent copies of Y. By the branch-
ing property, (X", ..., X"y = (Z" = nm(t))/v/n, ..., (2" -
nm(tx))/+/n) has the same distribution as (Y; +---+Y,)/y/n, which
by the multivariate central limit theorem (see, for example, [44, p. 16,
Example 2.18]) converges in distribution as n — oo to a centered
normal distribution N (0, %) with covariance matrix ¥ = (0, j)1<i j<k
having entries 0; ; := E((Z;, — m(t;))(Z;, —m(t;))) = Cov(Zy,, Zy,) =
m(|t; — t;|)o?(t; At;). Thus, the convergence X n 1 X holds.

The convergence X™ — X in Dg[0,00) is achieved as follows.
Define the processes M ™ := (Mt(n))tzo, n € N, and M = (M;)i>0
via

zZ"
nm(t)

x"
m(t)

- 2

n € N,t >0 Then, M, MW, M® . .. are martingales and M is con-
tinuous, since the Gaussian process X is continuous and m(.) is con-
tinuous. Since E((M™)?) = Var(M™") = Var(Z")/(n(m(t))?) =
o?(t)/(m(t))? < oo does not depend on n € N, we conclude that, for
each t > 0, the family {Mt(n) : n € N} is uniformly integrable. The

Mt(n) = —1) and M, =
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convergence M ™ — M in Dg[0,00) therefore follows from Aldous’
criterion [2, Proposition 1.2]. Since the map ¢ +— m(t) is contin-
uous and deterministic it follows by multiplication with m(t) that

X — X in Dg|0,00). O

I.4 Proofs concerning Theorem 1.2.3

This section contains the proofs of Lemma I1.2.2 and Theorem 1.2.3.

Proof. (of Lemma 1.2.2) The proof distinguishes the critical and non-
critical case. Both cases are handled with different techniques. The
representation in the critical case (for age-dependent branching pro-
cesses) follows via an equivalence for the extinction probability from
a combination of the results of Slack [41, Theorem 1] and Vatutin
[45, Theorem 1]. The following more elementary proof (see Case 1)
is based on the backward equation and does not use extinction prob-
abilities.

Case 1. (A = 0) Let t > 0. In the critical case the backward equation
is

F(s,t) 1 F(s,t) 1
= / CEr / 01— (1 —a) ) ™

€ [0,1]. Since the map =z — f(x) — x is non-negative and non-
increasing on [0, 1] it follows that

F(s,t) —s
(1 =s)*L((1—5)7)

and, hence,

< at <

: F(s,t) —s
WD e L(T—5) )

.
= TG,

T

where the last equality holds, since 1 — F(s,t) ~ 1 — s as s — 1—.
Thus, limg ;1 (F(s,t) —s)/((1 = 8)*L((1 —s)71)) = at.

Case 2. (A #0) Fix t > 0. Set hy(s) := (1 — s)m(t) — (1 — F(s,t))
and ha(s) == (1 — 8)*L((1 — s5)7!) for s € [0,1). We have to verify
that limg 1 hi(s)/ha(s) = c(t), where ¢(t) is defined in (I.5). By
the forward and backward equation, R{(s) = —m(t) + £ F(s,t) =
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—m(t) + (f(F(s,t)) — F(s,1)/(f(s) — s). Moreover, hi(s) = (1 —
S)IL((1 — s)™)(L/((1 — s) ™) (1 — s)7V/L((1 — 5)™!) — ). From
Assumption (I.3), the asymptotic relation 1 — F(s,t) ~ m(t)(1 — s)
as s — 1— and (m(t))* = m(at) it follows that

o (0= Flssthm = (= (F(s,1)

) it = iy (S
(1= s)m a—f<»>
(I—=s)*L((1—s9)"1)
~ tim (1= m) 1—5 — (1= F(s,t))
L 1—3 aL((l 90

0= )= (=)= 0= (P12 ) 1= P

(= L1 =) )

— lim ( l—sm(t (1— F(s,t))

—m(t)

s—1—

(1 =s)*L((1—s)"")

i 9= ) HF ) - ris.0)
u—swL«r—@1>
:%m_l)mH(dﬂmwww»—@+aﬂF@¢»—F@¢»
S a(m—D(L =8P L((1—5) 1
(A =s)m) - (1 - F(Sﬁ)))
(1 =s)*L{(1—s)7")
e (o WS )
== lim (o s = ) 2y
Using
(1 m)(l —5) _ 1—m
fls) = 1—m+ (1 —s)* ' L((L=s)7")
we see that R(s) is given by
a—1 -1 1 —m
Bls) = —all =) L0 =) Iy e {157
— (1 —25) O‘lL ( it 31)_811_8 —oz)

(1—30‘1L 1—s) (1 -

( I—m+(1—s) 1L((1—s)—1)
=)

L'( 1—3 1—5
1—3

In order to see that hmiZHOO xL'(x)/L(x) = 0 we proceed as follows.
Define U : [1,00) — (0,00) via U(z) :=m —z(1 — f(1 — 1/x)) =
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v17@L(z) for & > 1, where the last equality holds by (I.3). Note
that U(z) = [~ u(y)dy, where u : [1,00) — (0,00) is defined via
u(z) == =U'(z) =1 - f(1—-1/z) — f'(1 — 1/z)/z. The function
u is non-increasing, since u'(z) = —f"(1 — 1/x)/2®> < 0 by the
convexity of f. From a variant of the monotone density theorem
(see, for example, Bingham, Goldie and Teugels [7, p. 39, Theo-
rem 1.7.2] and the comments thereafter) for integrals of the form
U(z) = [ u(y) dy it follows that u(z) ~ (o — 1)z “L(z) as z — oo.
Thus, lim, . 2zU'(x)/U(x) = 1 — a. Noting that zU'(x)/U(z) =
1 —a+al/(z)/L(z) we conclude that lim,_,. 2L'(z)/L(z) = 0. Ap-
plying this relation with x := (1 — s)™! yields

—m L'((1—s)~1)(1—5)"1!
. R(s) _a(l- 1fm+(1fs§0‘*1L( 51 — ((iL(()k)s()lfl)) )
fm ey = Am (=5 1)1
s—1— hQ(S) s—1— (=DE —
_ 0. (1.22)

The three quantities hi(s), ho(s) and (m(at)—m(t))/(m—1) are non-

negative, so, by (1.21), necessarily liminf, ,; h(s)/(h5(s)+ R(s)) >

0, leading to the boundary h}(s)/(h5(s)+ R(s)) > (1 —0)h}(s)/h5(s)

for any 0 < 6 < (v — 1)/a and sufficiently large s. Then
m(at) —m(t) , ( R (s) h1(5)>

> limsup | (1l — 96 — ,
1 = Hmsup {a(l=0)pm =5
and the second part of Lemma I.6.2 provides
hi(s) < m(at) —m(t)

h?igl_lp hals) = —— (1.23)
Now (I.21), (I.22) and (I1.23) yield
m(at) —m(t) .. hi(s) _ ha(s) hy(s)
TR ((O‘ha<s> ) h2<s>) y(s) + R(s)

_l(s)  R(s) )
ha(s) hy(s) + R(s)
= lim <ozh/1(S> — hl(s)).
S\ ") als)
The claim follows again from Lemma 1.6.2 in the appendix. Note that
Lemma 1.6.2 is applicable in both cases due to Lemma 1.6.1. ]

Proof. (of Theorem 1.2.3) The proof is divided into four parts. The
first part establishes the convergence of the one-dimensional distri-
butions. The second and third part give two auxiliary results, one is
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about the normalizing sequence (a,)nen and the other is a kind of
upper bound for the process, used in the final part to conclude the
convergence in Dg[0, 00).

Part 1. (Convergence of the one-dimensional distributions) Fix
t € [0,00), define Y := Z, for convenience and let Y7, Y5, ... be inde-
pendent copies of Y. By Lemma 1.2.2, Eq. (1.4) holds.

First assume that a € (1,2). Then, by Bingham and Doney
[6, Theorem A], applied with n = 1, Eq. (I1.4) is equivalent to
P(Y > z) ~ c(t)(-I'(1 — a)) ' L(z)x™%, x — oo. In particular, the
map z — P(Y > z) is regularly varying (at infinity) of index —a.
By Theorem 1 (ii) = (i) of Geluk and de Haan [15] (note that p =1
since Y > 0), it follows that the cumulative distribution function
of Y is in the domain of attraction of an a-stable distribution. The
results on p. 174 in [15] on the choice of the normalizing sequences
(an)nen and (by,)pen furthermore show that, if we choose (ay,)nen such
that L(a,) ~ a%/(an) as n — oo and b, := nE(Y)/a, = nm(t)/a,,
then (Zt(n) — nm(t))/ay 4 Y1+ ---+Y,)/a, — b, — X; in distri-
bution as n — oo, where X; is a-stable with characteristic function
u — exp(c(t)(—iu)*/a), u € R. Thus, the convergence of the one-
dimensional distributions holds.

The case a = 2 is handled similarly by noting that (1.4) is then
equivalent (see [6]) to E(1{y<,1Y?) ~ 2¢(t)L(z) as & — oo such that
we can apply Theorem 2 of [15].

Part 2. (Asymptotic relation for (a,)nen) Let (€,)nen be an arbitrary
sequence of positive real numbers converging to zero as n — oc.
For n € N and T" > 0 define S, := [—e,n/an, e,n/ay] x [0,77,
where (a,)nen is the normalizing sequence satisfying a,, /(L(ay,))"® ~
(an)'/* as n — oo. Bojani¢ and Seneta [9, p. 308] provide the
existence of another slowly varying function L* such that a, ~
(an)V/*L*(n'/*) asn — co. Set h(n) := (an)/*L*(n*/*)/a, forn € N
and h(r) := h(|r]) for r € R, r > 1. Then the asymptotic relation
simply means lim,_,, h(r) = 1. From

nh_{{)lo (le)régnj(nm(s) + za,) = o (I.24)
it follows that sup(, geg, , |h(nm(s) + za,) — 1| — 0 as n — oo.
Furthermore, limy, .0 sup, gcs, ; |za,/n| < lim, ., e, = 0 implies
lmy, o0 SUP(, g)es, 5 | (M(8) + Tan/n)* — (m(s))*] = 0 as well as,
using the uniform convergence theorem for slowly varying functions
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(see, for example, Bingham, Goldie and Teugels [7, Theorem 1.2.1]
or Bojani¢ and Seneta [9])

L*(nY(m(s) + za, /n)"/®)
L*(nl/a)

lim sup
o0 (x,s)GSn_’T

—1‘:0.

Having bounded limits, the listed uniformly convergent sequences
are uniformly bounded and thus their product converges uniformly
again, yielding

lim sup

anm S xra
Znm(s)tran (m(s))"®
n—0o0 (z,8)€ShT

Qn

= lim sup h(n) L*((nm(s) + xan)l/o‘)
=09 (1,5)€S,,.T h(nm(s) + xan) L* (nl/@)
za, \ /e
. <m(8) + n”) o (m(s))l/a
- (1.25)

Part 3. (Kind of upper bound for Xt(n)) In this part it is shown
that for each T' > 0 there exists a sequence (&,),en Of positive real

numbers with lim,, .., £, = 0 such that
lim ]P( sup | X" > 5”—”) = 0. (1.26)

=0 te[0,T] an

Let 0 .= 0if m < 1 and ¢ := T if m > 1. Then, for any sequence
(€n)nen of positive real numbers,
S Ealt
—m(d))

IP’( sup [ X;"] > M) < 1P’< sup
te[0,7) Qn te[0,7)

Applying Doob’s submartingale inequality to the martingale
(an X} Jm(t))i=0 = (Z{" /m(t) — n)i= yields

anXt(n)
m(t)

(a1 25) < 2050+

By the law of large numbers, the latter expectation converges to 0
as n — oo. Thus, the sequence (g,)neny can be chosen such that
lim,, _,~ €, = 0 and such that the right-hand side still converges to 0,
which implies that (I.26) holds for the particular sequence (&,)nen.
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Part 4. (Convergence in Dg[0,00)) In general, the processes X (™
and X are time-inhomogeneous. Let Y™ := (Xt(n),t)tzo and Y :=
(Xt,t)¢>0 denote the space-time processes of X () and X, respectively.
According to Revuz and Yor [36, p. 85, Exercise (1.10)], the processes
Y™ and Y are time-homogeneous Markov processes with state space
S := R x[0,00). Recall that S, 7 = [—e,n/a,, e,n/a,] x [0, T], where
(€n)nen is the sequence used in Part 3. In terms of Y™ (1.26) is
simply

lim P(Y," € $,7,0<t<T) = 1. (1.27)

n—oo

Corollary 8.7 on p. 232 of Ethier and Kurtz [12] states that (1.27)
jointly with the uniform convergence of the semigroups on the re-
stricted area S, 7 implies the convergence of Y™ to Y in Dg[0, 00),
hence the desired convergence of X(™ to X in Dg[0,00). Thus, it
remains to show that for each f € C (9), the space of real-valued
continuous functions on S vanishing at infinity, and ¢ € [0, T

im  sup [TV f(x,s) — T,f(z,s)| = 0, (1.28)

n—=00 (z,8)€SnT

where (ﬁ( ))t>0 and (7});>¢ denote the semigroups of Y( ") and Y,
respectively, i.e., Tt( )f(x s) = E(f(XS(Qt,S + t) |X = z) and
Tif(z,s) = E(f(XSH,s +1)|X, = 2) for all f € C(S) and
(x,s) € S. By Lemma 1.6.4, the space of all maps of the form
(z,5) — St gi(x)hi(s) with [ € N, g; € C(R) and h; € C([0,00))
is dense in C(S). Hence it suffices to show (1.28) for f = gh with
g€ C(R) and h € C(]0,0)), in which case

~

T f(x,5) = h(s+E(g(X0) | X" = )
— h(s+t)E <g (%Xﬁ’ + xm(t)))

n

for (z,s) € S, where k := k(n, s, z) := nm(s) + xa,, and

Tif(w5) = (s + OE(g(Xose), | Xs = @)
= h(s+t)E(g(m(s)"® Xt +am(t))), (z,s)€S.

Let ¢ > 0. Choose C > 0 such that supneN]P’(|X | > (C) <
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Splitting the mean along the event Ay := {|Xt(k)| < C'} yields

sup |1, f(x,5) — Ty f(w,5)|

(x,5)€Sn,T

—  sup h(s+t)'E<g(%Xt(k)+xm(t)))

(x,8)€Sn,T G,
— E(g((m(s))l/o‘Xt + :Em(t))) ‘

< nhu(( sup [E(g((m(s))*XP + em(t)))

x,8)ESn,T

— E(g((m(s)VX; + am(®))| + 2|lgle

a
+ sup ]E(lAk g(a—kXt(k) +xm(t))

(z,5)€Sn 1 n

~ ()X + o)) )

The second last supremum converges to 0 as n — oo due to Lemma
[.6.3 and since k — oo as n — oo by (1.24). The last supremum also
converges to 0 due to (1.25) together with the uniform continuity of
g. Since € > 0 can be chosen arbitrarily, (1.28) holds, which completes
the proof. O

I.5 Proofs concerning Theorem 1.2.8

This section contains the proofs of Lemma I[.2.6, Lemma 1.2.7 and
Theorem 1.2.8.

Proof. (of Lemma 1.2.6) Fix ¢ > 0. By Theorem 2 or Corollary 2.2
of Lamperti [24], applied with = := 1 — s to the function z — 1 —
F(1 —x,t), (I.11) holds if and only if

lim a(s,t) = a(t), (1.29)
where
a(s,t) = (1= 8)gF(s1) _ JWF(s, 1)) = F(s,t) 1=

1— F(s,t) 1 — F(s,t) f(s)—s

O L(L-F(s,)7) ~ 1
L({I—s) -1
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for all s € (0,1). Thus (i) and (ii) are equivalent. By the backward
equation,

/F(S,t) 1 4 /(1—8)_1 1 4 ( )
at = —du = x. (L.30
s f(u) —u (1-F(s,t))~1 I(L(:U) - 1)

Also, note that

log —— = log(L((1 - 5)™) — 1) — log(L((1 — F(s,£))™") — 1)

a(s,t)
(1-s)~! L
-/ L) g,
(1-F(sp) L(r) =1
(iii) = (ii): Applying integration by parts to (1.30) yields
[ log = r(ls)l
at = |—="—
L(z) —1 z=(1—F(s,t))"1

(1=5)"" logz  L'(x)
+ / dx. [.31
(1-F(s)- L(w) =1 L(z) — 1 (L31)

Let € > 0 be arbitrary. Since L(x)/logz — A > 0 as © — oo, there
exists K > 0 such that 1 —e < Alogx/(L(x) — 1) < 1+ ¢ for all
xr > K. But, if s is sufficiently close to 1, both inequalities hold
on the interval where it is integrated above in (1.31), implying that
Aat = lim,_,;_log(a(s,t))~!, which is exactly (1.29).

(i) = (iii): Assume that (I.11) holds for all £ > 0. By (1.13),

T log(l T F(Svt))
alt) = sllgl— log(1 — s)

As already seen before Lemma 1.2.6, there exists C' > 0 such that
at) = e " Thus,

log(1 — F(s,t
Ct = — lim log oe( (5,1))
51— log(1 — s)
(1—8)_1 1

= lim

dz. (1.32)
so1= J_p(sg) -1 Tlogx

Division of (I1.32) by (1.30) leads to
(1=s)7" 1
f(l—F(s,t))—1 xlogx

Jm - ; :
sy s
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Now exploit the monotonicity of logz and L(x) to conclude that

(1—s)~"
1 )f( 1dx

A < liminf 2e F<st>> - F(H))
B _ -1
— liminf DT 1hmmf L((1 =)™

S g (L= F(s,0) 1) a() i Tog((T—s) 1)
Similarly, A > a(t) limsup, ,;_ L((1 — s)71)/log((1 — s)~1). Letting
t — 0+ yields A =limy ;. L((1—s)7')/log((1 —s)™!), which is (iii)
and completes the proof. [

Proof. (of Lemma 1.2.7) By assumption, the function H(z) := L(z)—
1 — Alogz, v > 1, satisfies lim,_,,, H(z) = B — 1. Moreover, [(t),
defined via (1.16), satisfies

log B(t) = a/ot(B —1— Alogp(s))ds, t>0. (I.33)

Computing the derivative of L;(z) with respect to ¢t provides a rep-
resentation for L;(z) similar to (1.33), namely

0 0 alt —1
SLie) = 2 (@01 - F(1-21)

= 2O/ (t)(logz)(1 — F(1 —z~4,1))
— 2*Wa(f(F(1—a 1 t) = F(1 —a74t))

_ amo‘(t)(l . F(1 _ S[J_l,t)) <1 ;jg(ll__xx—_l,7t§))

1-F(1—a1¢)
BT i Aa(t)loga:)

= aLy(@)(L((1 = F(L—27",1)") = 1 - Aloga*®))

= aly(x) <L($O‘(t)Lt_1(x)) —1— Alog xo‘(t)>
= aly(x) (H(mo‘(t)Ltl(x)) — Alog Lt(x)), t>0,2>1.
Therefore,

t 0 T
log Li(x) = /0 GSLISJE:E;))dS
(

= a/t H(z*®) L7 (x)) — Alog Ly(z))ds, (1.34)
0

t > 0. Let t > 0 be fixed and € > 0 be arbitrary. If 1 —2~! > ¢, where
q denotes the extinction probability, then the map s — x*®) L1 (z) =

S
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(1—F(1—27",s))"" is non-increasing. Hence, |H (z**)L 1 (2)) — (B —

S

1)| < e for all s € [0,t] and sufficiently large x. By (1.33) and (1.34),

|log Li(x) — logB(t)] < act + aA/tHogLS(:C) —log ()] ds.
0

By Gronwall’s inequality,

t t
|log Li(x) — log B(t)| < aet + aA/ acs exp (/ aA dO’) ds
0 s

t

< ast(l +/ aAexp(aA(t — 3))ds>
0

= actexp(aAt).

Since € > 0 can be chosen arbitrarily small, the claim lim, o Li(z) =
B(t) follows. O

Proof. (of Theorem 1.2.8) The proof is divided into two steps. First
the assumption (I.15) is used to establish the convergence of the one-
dimensional distributions. Afterwards it is shown with some general
weak convergence machinery for Markov processes that the conver-
gence of the one-dimensional distributions is already sufficient for
convergence in Dg|0, 00), where E := [0, 00).

Step 1. (Convergence of the one-dimensional distributions) Fix
A\, t > 0. Define s, := exp(=An""*®) n € N. Note that s, — 1
as n — oo. We have E(exp(—)\Xt(n))) = ]E(exp(—An_l/O‘(t)Zt(n))) =
(E(exp(—=An~Y*® Z)))* = (F(s,,t))". Taking the logarithm yields

log E(exp(—AX™)) = nlog(l — (1 — F(sp,1)))
~ —n(l = F(sy,t)) ~ —nB(t)(1 — s,)""

as n — oo by (L.15). Since 1 — s, = 1 — exp(=An~YeW) ~
An~He®) ag n — oo it follows that the latter expression is asymp-
totically equal to —nfB(t)(An~YeW)el) — _g()A*® . Therefore,
limy, 0 E(exp(—AX™)) = exp(—B(t)A*®) = E(exp(—AX;)). This
pointwise convergence of the Laplace transforms implies the conver-
gence X" — X, in distribution as n — oc.

Step 2. (Convergence in Dg|0,00)) We proceed as in the proof of
[23, Theorem 2.1]. For n € N and ¢ > 0 define E,; := {j/n'/*® .
j € Np}. In general the process X (") is time-inhomogeneous. Let
Yy = (Xt(n),t)tzo and Y := (X}, t);>0 denote the space-time pro-
cesses of X and X, respectively. Note that Y™ has state space
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S = {(G/mY W t) 1§ € Noyt > 0} = Upao(Ens x {t}) and
Y has state space S := [0,00)%. According to Revuz and Yor [36,
p. 85, Exercise (1.10)] the process Y™ is time-homogeneous. De-
fine m, : B(S) — B(S,) via m,g(z,s) = g(z,s) for g € B(S5)
and (x,5) € S,. In the following it is shown that Y™ converges
in Dg[0,00) to Y as n — oco. Note that this convergence implies the
desired convergence of X(™ in Dg[0, 00) to X asn — co. For A\, n > 0
define the test function gy, via gy ,.(z,s) := e A" (z,s) € S. By
[23, Proposition 5.4], it suffices to verify that for every t > 0 and
A >0,

lim sup sup |V 79 (7. 5) = maligas(w,s)| = 0, (135)

=00 s>0 z€E,

where Ut(n) . B(S,) — B(S,) is defined via Ut(n)g(x, s) =
E(g(X", s+ 1) | X" = 2), g € B(S,), s > 0, z € E, . Note that
(Ut(n))tzo is the semigroup of Y.
Fixt>0and \,u>0. Foralln €N, s >0and z € £, ,
Ut(n)ﬂngk,u(% s) = ]E(anku(Xg)m s+1) | X[V =)
= E(exp(—AX\Y) — p(s + 1)) | X = x)
_ e—u(s+t)E(eXp(_)\n—l/a(s+t)Zs(i)t) | Zs(n) _ xnl/a(s))
_ 6—u(s+t)E(eXp(_)\n—l/a(s+t)Zt($n
and
7I_n(]tg)yu('fljn‘s)) = Utg)\,u(st)
= E(exp(—A Xyt — (s + 1)) | X, = 2)
= e "R (exp(—AXor) | X, = 2)
= e MR (exp(—Azt/*W X)),
Thus, one has to verify that

lim sup sup e~ H(s+t) |E(exp(_)\nfl/a(s+t)Zt(a:nl/o‘(s))

n—o0 s>0 l’EEn,s

)
— E(eXp(—)\xl/O‘(t)Xt))’ = 0.
We will even verify that

lim sup sup ‘E(exp(_)\n—l/a(sﬂ) Zt( Lml/“(”J)))

=00 ¢>0 >0

—E(exp(—)\xl/a(t)Xt))‘ = 0.
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Since a(s +t) = a(s)a(t), the quantity inside the absolute values
depends on n and s only via n'/*%). Since n'/*) is non-decreasing
in s it follows that the convergence for fixed s > 0 is slower as s is
smaller. So the slowest convergence holds for s = 0 (= a(s) = 1).
Thus it suffices to verify that for every ¢t > 0 and A > 0

lim sup E(exp(—An~ 00 z{LD)Yyy _ Eexp(—Az/*0 X,))| = 0.

=00 >0
The map z — E(exp(—Az'/*?® X)) is bounded, continuous and non-
increasing. Since Zt(l) < Zt@) < - almost surely it follows by Pélya’s
theorem [35, Satz I] that it suffices to verify the above convergence
pointwise for every x > 0. Defining k := |zn] it is readily seen
that this is equivalent to the convergence of the one-dimensional
distributions Xt(k) = k_l/o‘(t)Zt(k) — X, in distribution as £k — oo,
t > 0. But the convergence of the one-dimensional distributions holds
by Step 1. The proof is complete. [

1.6 Appendix

In this appendix five auxiliary results are provided. Lemma I1.6.1 and
Lemma 1.6.2 below are used in the proof of Lemma 1.2.2. Lemma 1.6.1
provides an asymptotic statement for Laplace transforms and gener-
ating functions, respectively. Lemma [.6.2 is a version of L’Hospital’s
rule, which is stated for completeness.

Lemma 1.6.1. Let & be a non-negative real-valued random variable
with m :=E(§) < co. Suppose that the cumulative distribution func-
tion F of £ satisfies 1 — F(x) < Cx™ for all x > 0 for some C' < o0
and o > 1. Then, for every € € [0, min(a — 1,1)),

¥ 1 — @A)+ Am
A+ Al+e

= 0, (.36)

where ¢ denotes the Laplace transform of &. If & takes only values in
Ny, then, for the same range of values of € as above,

(= sm— (1= f(s)

s—1— (1 — 3)1+5

where f denotes the pgf of €.

= 0, (1.37)

Remark. The tail condition is satisfied if E(£Y) < oo, since, by
Markov’s inequality, 1 — F'(z) = P(£* > 2%) < 2 “E(£).
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Proof. (of Lemma 1.6.1) Applying the well known formula E(g(¢)) =
9(0)+ [~ ¢'(x)(1 = F(2)) dz, g € C*([0,00)), to the function g(z) :=
e — 14 Az yields

©e(A) — 14+ m 1 [~

T = % i (1—F(x))(1— e_m) dx

11_6—)\z 00 1_67)@
S/OdeJrC/l de.
Since £ < 1, limy_,o(1 — e **) /)¢ = 0 and the first integral converges
to 0 by the dominated convergence theorem. Since (1 — e **)/(\z)°
is bounded uniformly in A and z, and o — ¢ > 1, the dominated
convergence theorem is again applicable and the second integral con-
verges to 0. If £ takes only values in Ny, then (1.37) follows from

(I.36) via the substitution A := —logs, s € (0, 1), and the fact that
—logs=(1—-5)+0O((1—s)?) as s — 1. O

The situation in the following lemma is the one of L’Hospital’s
rule.

Lemma 1.6.2. Let ¢, xg € [—00,0]. Let f,g: I — R be continuously
differentiable on an open interval I containing xo or having xy as a
limit point if the limit is one-sided. Assume further that ¢'(z) # 0
forall x € I\ {xo}. Let a € R\ {1}. If either

lim g'~V*(x) = lim f(z)/g""(z) = 0

J}Lrgogl_l/a(w) = xlggof(x)/gl/“(w) = 00,
and
lim (af (2)/g'(2) ~ [(2)/9(2)) = (1.38)

thenlim, ., f(z)/g(x) = c(a—1)"1. If the limit (I.38) does not exist,
it still holds that

lim inf (Jg”(x) _ f(x)) < liminf(o — 1)£

~—

T "(z) g(x) T—10 g(:p))
- EVAC))
< lmsupla = 1) 05

< e (05~ 567)
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Proof. A straightforward computation shows that

L (@) fl@) _ fl(w)g~ " (2) = (1/a)g 1 (x)g'(x) f (=)
a—1\ ¢(=) g() (1—1/a)g Vg (2) ’
where the numerator and the denominator are the derivatives of
f(x)g~"/*(x) and g'~1/(x), respectively. Thus the convergence of the
left-hand side to c(a — 1)7! € [—o0, o] implies lim, ., f(z)/g(x) =

limg s (f () /9" (2)) /9" (2) = c(a = 1)7". .

The following two results are needed in the proof of Theorem 1.2.3.
Lemma [.6.3 contains a statement on uniform weak convergence. The
last result (Lemma 1.6.4) provides a certain dense subset of C(R x
[0,00)).

Lemma 1.6.3. Let (X,,)nen be a sequence of real-valued random vari-
ables converging weakly to a real-valued random variable X . Then, for
every bounded and continuous function f: R — R and A, B > 0,

lim sup [E(f(aX,+0)) —E(f(aX+0))] = 0. (1.39)

" al<A,|b|<B

If f € C(R), then (1.39) even holds if the supremum is taken over
[—A, A] x R instead of |[—A, A] x [-B, B].

Proof. For n € N define g, : R? — R via g,(a,b) := E(f(aX, + b)),
a,b € R, and ¢ similarly with X, replaced by X. Fix A, B > 0.
Obtaining pointwise convergence of g, to g from weak convergence,
(1.39) follows, in view of the Arzela—Ascoli theorem, from the uniform
equicontinuity of {g, : n € N} on K := [-A, A] x [-B, B], that is,
for every € > 0 there exists 6 > 0 such that max{|a —d'[,|b—b"|} < ¢
implies |g,(a,b)—gn(a’,b")| < e foralln € Nand all (a,b), (¢’, V) € K.

Let ¢ > 0. By Prohorov’s theorem, the family of distributions of
the weakly convergent sequence (X,,),en is tight. Thus, there exists
C € (0,00) such that sup,yP(|X,| > C) < e and P(|X| > C) < e,
Using the uniform continuity of f on K, choose 6 > 0 such that
|z —y| < d(C' + 1) implies |f(z) — f(y)| < €. Consequently,

|gn(a,b) — gn(a’, V)| = [E(f(aX,+0)) — E(f(d'X, +1))]
2| fll + E(lyx,<cylf(aXn +0) — f(d' X, +V)])

<
< 2| fll + €

for (a,b), (a’,b") € K with max{|a—d'|,|b—"0|} < 0, proving the first
statement.
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If f € C(R), then there exists L > 0 such that |f(z)| < £ for
all |x| > L. In particular, (1.39) holds for B := AC + L. On the
remaining area [—A, A] x (R\ [-B, B]) all the functions g, and g
are sufficiently small. More precisely, if |a| < A and |b| > B, then
laX,, + b| > L on the event {|X,| < C}, hence

‘gn(av b)‘ = |E<f(aXn + b)>|
< ellfll + E(lyx, <oy f(aXn + D)) < ellf]] + €

for all n € N, and, similarly, |g(a,b)| < €|/ f|| + €, which proves the
additional statement. ]

Lemma 1.6.4. Let S := Rx|0,00). The space of functions f : S — R
of the form f(z,y) = Yi_, gi(x)hi(y) with 1 €N, gi,..., g € C(R)
and hy, ..., h € C(]0,00)) is dense in C(S).

Proof. Two proofs are provided. The first proof is elementary and
constructive. The second proof exploits the Stone—Weierstrass theo-
rem for locally compact spaces.

Proof 1. (elementary) Each f € C(S) can be transformed (with
the additional definition f(4o0,y) := 0 for all y € [0,00) and
f(x,00) := 0 for all z € R) into a map f € C([0,1]*) satisfying
f(0,y) = f(l,y) = f(x,1) =0 for all z,y € [0, 1] via

J?(%y) = f<1ix—i,%>, x,y€[0,1]2.

Thus, it suffices to verify that the space D of functions f : [0,1]> = R
of the form f(z,y) = S2t_, gi(x)hi(y) with I € N, g1,..., g € Dy :=
{g € C([0,1]) : g(0) = g(1) = 0} and hy,...,hy € Dy := {h €
C([0,1]) : ~(1) = 0} is dense in {f € C([0,1]) : f(0,y) = f(L,y) =
f(z,1) = 0 for all x,y € [0,1]}. This is seen as follows. Let m € N.
For i € {0,...,m} define x; :=i/m and g; : [0, 1] — [0, 1] via

gz($) = (1 — m\x — xz|) 1{|$*$¢|§1/m}? T € [0, 1].
Note that g, ..., gn form a partition of unity, i.e., Y 1" gi(z) = 1
for all z € [0,1]. Moreover, ¢g1,...,9m-1 € D;. In the same man-
ner define y; := j/m and h; : [0,1] — [0,1] via h;(y) = (1 —
m|y — Y1) 1y—y,i<1/m) for all j € {0,...,m}. Again, hy, ..., h, form
a partition of unity, i.e., > 5", h;(y) = 1 for all y € [0, 1]. Moreover,
ho,...,hm_1 € Dy. Now define f,, : [0,1]> — R via

fules) = 3 Fma@hi) = 3 Y S e i)
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x,y € [0, 1], where the last equality holds, since f(0,y) = f(1,y) =
flx,1) = 0 for all z,y € [0,1]. From ¢1,...,gm—1 € D; and
ho, ..., hm_1 € Do it follows that f,, € D. It remains to verify that
lim,, 00 || fn — f]] = 0. Let € > 0. Since f is uniformly continuous
on [0, 1]%, there exists § = d(¢) > 0 such that | f(2,y') — f(z,y)] < ¢
for all z,y, 2’y € [0,1] with |x — 2| < § and |y — 3/| < 0. For all
z,y € [0, 1] it follows from » 1", gi(¥)h;(y) = 1 that

(2, y) — f(z,y)| = :E: (f (@i ;) — f (2, y)) gi(x)hy(y)
< Z |f xuyj 33 y)‘gz( ) (y)

Now for each (z,y) € [0, 1]2 there exist i, jo € {0,...,m — 1} (de-
pending on z and y) such that x;; < x < x;4+1 and y;, <y < yj 41
Since g;(x) = 0 for all i € {0,...,m} \ {ip,%0 + 1} and h;(y) = 0 for
all j € {0,...,m}\ {Jjo,jo + 1}, we conclude that

|fm(@,y) — f(z,9)]
< [f(@ip, i) — f(@,9)| + |f (@i, Yjor1) — f(@,9)]
+ [ f(@igr1,Y50) — F(@, )| + [f(@igr1, Yjor1) — f(m,y)| < 4e
for all m € N with m > 1/4. Thus, lim,—, || fim — f]| = 0. O

Proof 2. (using the Stone-Weierstrass theorem) The space of func-
tions f : S — R of the form f(z,y) = Zi’:l gi(z)h;(y) with [ € N,
gi,---,q € G(R) and hy,..., h € 6([0, 00)) is a subalgebra of 5(5)
which separates points and vanishes nowhere, whence is dense in
C(S) by the Stone-Weierstrass theorem (see, for example, [11]). In
[11] the theorem is stated for complex-valued functions, but it re-
mains true for real-valued functions. To see this, let f € C(S) C
C(S,C) be arbitrary. By the theorem, there exist gy, gs, . . . € C(S, C)
such that lim,,, [|g, — f]| = 0. Then f, := Re(g,) € C'\(S), n € N,
and || fn — fIl < [lgn — fI| = 0 as n — oo, [

The last result (Lemma 1.6.5) states that a particular function is
absolutely monotone. This result is needed in Example 1.2.13, but is
as well of its own interest. For general information on absolutely and
completely monotonic functions we refer the reader to (Appendix A,

§4 of ) Steutel and van Harn [42] and Chapter IV of Widder [46].

Lemma 1.6.5. The function g(z) := (—log(1—2))log(1—log(1—2))
is absolutely monotone on [0, 1).
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Remark. The following proof of Lemma [.6.5 is based on a particular
integral representation (see (I1.41)) for the coefficient g, := ¢™(0)/n!
in front of z" in the Taylor expansion of g(z) around 0. Concrete
calculations of the coefficients g, via the summation formula (I.40)
or the integral representation (1.41) yield

1, 35 2476 7 - 535 8 2051

()—+1+++ +—2"+——2"+——=2"+0(z").
I\ = AT T TR 007 T4 20167 T 8640

Proof. (of Lemma 1.6.5) We have to verify that g, > 0 for all n € Nj.
Clearly, gy = ¢g(0) = 0 and g = w o v, where u(z) := xlog(z + 1) for
x >0 and v(z) := —log(1l — 2) for 0 < z < 1. The functions u and v
have derivatives v'(x) = log(z + 1) + z/(z + 1), x > 0,

k—2)! (k—1)!

B(2) = (~1)H( ke N\{1},z >
a) = O+ B2 ke (1hezo
and v (2) = (m — 1)!/(1 —2)™, m € N, 0 < z < 1. Note that
v is absolutely monotone, but u is not absolutely monotone, which

explains why the statement of Lemma 1.6.5 is less simple as it seems
at a first glance. By Faa di Bruno’s formula,

n! D fom) () P
g"(z) = > kll.._'. kn!“(k1+"'+k'”)(v(2)) 11 ( mf )>

ki,..., kn€Ng m=1

1 n!
B (1—2z)" Z“(k)(v(z)) Z R

k=1 1k1+2ko+---+nk,=n
Kyt =k

1
- (1—2z)" Zu(k)(v(z)”s(n,k”, neN0<z<],
k=1

where s(.,.) denote the Stirling numbers of the first kind. Thus,

™) (0 1 —
9
o= T S O, k)
k=1
— 1zn:(—1)’f i (n, k)| €N (1.40)
= IS k)l n : .

Plugging in k!/(k—1) = (k—=2)!+ (k—1)! = [T ¢*(1/t + 1/t*)e " dt
and interchanging the sum with the integral yields

© 1 1
= — Z(—t)ﬂs(n,kzﬂ(;+t—2>e_tdt, n € N.
0 p=2
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Applying the relation Y, _, z"|s(n, k)| = [z], = x(z+1) -+ (z+n—1)
to the point « := —t and noting that s(n,0) = 0 and s(n,1) = (n—1)!
for n € N yields
I 1 1
— _ — 1IN =+ =)t
g =11/ ([=tln + t(n 1).)(t+t2>e dt, n € N.

Noting that [—],/n! = (=1)"(’) shows that g, has the integral rep-
resentation

In = /OOO ((—1)” (2) + %) G + ;2) e dt, neN. (141)

In particular, g = 0. For n € {2,4,...} the map ¢ (—1)”(t) +t =

(fl) + L is non-decreasing and hence non-negative on [0, cc) i?nply?ing
that g, > 0 for even n. Assume now that n € {3,5,...}. Then the
map t — (—1)"(2) —I—% = % — (2), t > 0, has a single root at t = n
and is positive for ¢t € (0,n) and negative for ¢ € (n, c0). Decompose
gn = ]1 — IQ, where

e [ ()G
e ()b

The map ¢t — (£ — (!))(3 + %) takes on the interval (0,n — 1] its

n

minimum value 1/(n — 1) at the right most point n — 1. For n €
{3,5,...} we hence obtain for I the lower bound

o ()G

1 n—1 1 — —(n—1)
/ e tdt = —°
0

—n—1 n—1

S |-

For I, we obtain the upper bound

/N /1 1
I < — 4 — e tdt
o= [ )G
o ¢ 2 2 [
g/ —;etdt:—/ P(N; =n —1)dt,

n! n

where N; is Poisson distributed with parameter ¢t. Applying the for-
mula [“P(N, = k)dt = P(N,, < k) with & = n — 1 leads to
I, < (2/n)P(N, <n-—1) < 1/n, since P(N,, < n — 1) is increas-
ing in n with lim,,_,o P(N,, <n —1) = 1/2; see, for example, Teicher
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[43]. From I} > 1/n and I, < 1/n it follows that g, = I; — I, > 0 for
n € {3,5,...}. In summary, g, > 0 for all n € Nj. O

Remark. (Asymptotics of g,) It is easily seen that ¢'(z) ~ (1 —
271 — 27 as 2 — 1— in A\ {1}, where L(u) := loglogu
and A is defined as in Flajolet and Odlyzko [13, Eq. (2.5)]. By
Theorem 5 of [13], applied with o := —1 and f replaced by ¢,
[2"4¢'(2) ~ L(n) = loglogn as n — oco. From [2"]|¢'(2) = (n + 1)gn41
it follows that g, ~ n~!loglogn as n — oo.
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Article 11

Scaling limits for the block
counting process and the fixation
line for a class of A-coalescents

Mohle, M. and Vetter, B. (2021) ALEA Lat. Am. J. Probab.
Math. Stat. 19, no. 1, 641-664.

Abstract.

We provide scaling limits for the block counting process and the fixation line of A-
coalescents as the initial state n tends to infinity under the assumption that the
measure A on [0, 1] satisfies f[O,l] w1 |A—b)|(du) < oo for some b > 0. Here A denotes
the Lebesgue measure on [0, 1]. The main result states that the block counting process,
properly transformed, converges in the Skorohod space to a generalized Ornstein—
Uhlenbeck process as n tends to infinity. The result is applied to beta coalescents
with parameters 1 and b > 0. We split the generators into two parts by additively
decomposing A into a “Bolthausen—Sznitman part” bA and a “dust part” A —bA and
then prove the uniform convergence of both parts separately.

Keywords: Block counting process; Bolthausen—Sznitman coalescent; coalescent; dust;
fixation line; generalized Ornstein—Uhlenbeck process; time-inhomogeneous process;
weak convergence

2020 Mathematics Subject Classification: Primary 60J90 Secondary 60J27

I1.1 Introduction

The A-coalescent, independently introduced by Pitman [17] and Sag-
itov [20], is a Markov process I = (I1;);>0 with cadlag paths, values
in the space of partitions of N := {1,2,...}, starting at time ¢t = 0
from the partition {{1},{2},...} of N into singletons, whose behav-
ior is fully determined by a finite measure A on the Borel subsets of
[0, 1]. If the process is in a state with & > 2 blocks, any particular
j € {2,...,k} blocks merge at the rate

Aej = / w1 — u)* A(dw).
[0.1]

The reader is referred to [3] for a survey of A-coalescents. Unless
A({1}) > 0, II; has either infinitely many blocks for all ¢ > 0 almost
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surely or finitely many blocks for all £ > 0 almost surely. The A-
coalescent is said to stay infinite in the first case and to come down
from infinity in the second. An atom of A at 1 corresponds to the
rate of jumping to the trivial and absorbing partition consisting only
of the block N. For ¢ > 0 let Nt(n) denote the number of blocks
of the restriction H§”> = {BNn]|B € I, BN[n] # 0} of II; to
[n] := {1,...,n}. The block counting process N := (an))tzo is
a [n]-valued Markov process that jumps from state k > 2 to state
je{l,...,k—1} at the rate

k . .
Qhj = ( ] 1) / uk—]—l(l — u)]‘l A(du)
J — [0,1]

Clearly, N starts in n at time ¢t = 0, has decreasing paths and
eventually reaches the absorbing state 1. This work’s main objective
is to analyze the limiting behavior of the block counting process of A-
coalescents that stay infinite as the initial state n tends to infinity by
determining suitable scaling constants. The question of the existence
of scaling constants for which non-trivial limits can be obtained is
answered in the literature for coalescents with dust, i.e., (see [17, 24])
for measures A that satisfy

/[01] wAdu) < oo, A(O) = A({1}) =0, (IL1)

and for the Bolthausen—Sznitman coalescent [5], where A = X is the
uniform distribution on [0, 1], an example of a dust-free coalescent
that stays infinite. The respective convergence results are recalled in
Section II.2, where they are stated as Propositions I1.2.1 and I1.2.2.
This work provides unified proofs of Propositions I1.2.1 and 11.2.2
and extends the convergence results by combining both proofs. The
main result (Theorem I1.2.3) covers A-coalescents for which there
exists some b > 0 such that

/ wU A — BA|(du) < oo,
0.1

which can be understood that A is the sum of a “Bolthausen—
Sznitman part” bA and a “dust part” A — bA. Here |A — bA| denotes
the total variation of the signed measure A —b\. The assumption in-
cludes A-coalescents where A = §(1,b) is the beta distribution with
parameters 1 and b > 0. The main result states that

(log ;") — e " log )=
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converges in the Skorohod space Dg[0,00) as n tends to infinity.
The limiting process is influenced by both the “Bolthausen—Sznitman
part” and the “dust part”. The logarithmic version of the conver-
gence result has the advantage of putting the limiting process in
Theorem I1.2.3 to the class of generalized Ornstein—Uhlenbeck pro-
cesses, which have been studied extensively in the literature. In [14],
a work concerning the small-time behavior of the block counting
process for a broad class of A-coalescents that come down from in-
finity, a generalized Ornstein—Uhlenbeck process also appears in a
limit theorem for the block counting process. Regarding generalized
Ornstein—Uhlenbeck processes, the interested reader is referred to
[22].

The fixation line L = (L;)¢>0 is a N-valued Markov process that
jumps from state k € N to state j € {k + 1,k +2,...} at the rate

J k-1 k
k,j (] k? 1) /[071] ( ) ( )

The fixation line is the “time-reversal” of the block counting process
in the sense that the hitting times inf{t > 0 : Nt(n) < m} and
inf{t > 0 : Lgm) > n} share the same distribution, see [12, Lemma
2.1]. Here the upper index “(m)” denotes the initial state L(()m) =m
at time t = 0. Equivalently, the process L is Siegmund-dual [26] to

the block counting process, i.e., (see [13])
P(LM™ >n) = PN <m), mneN,t>0. (I1.2)

For a thorough definition of the fixation line see [12] and the ref-
erences therein. Theorem I1.2.4 states that (log L,E”) — elogn)i>o
converges in Dg|0, 00) as the initial value n tends to infinity.

The article is organized as follows. In Section II.2 the two known
convergence results for the block counting process of coalescents with
dust (Proposition 11.2.1) and the Bolthausen—Sznitman coalescent
(Proposition I1.2.2) are recalled and the main result (Theorem 11.2.3)
is stated. In Section II.3 well known results concerning generalized
Ornstein—Uhlenbeck processes are applied to our setting. In partic-
ular, the generator of the limiting process is determined. In Sec-
tion II.4 the main result is applied to beta coalescents with param-
eter 1 and b > 0. The line of proof is as follows. First, we prove
Propositions I1.2.1 and I1.2.2 in Sections II.5 and I1.6 by showing the
uniform convergence of the generators of the logarithm of the scaled
block counting processes. The decomposition of A into the uniform
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distribution multiplied by a constant and a measure that corresponds
to a coalescent with dust is transferred to the generators. This en-
ables us to use relations obtained in Sections I1.5 and II.6 to prove
Theorem I1.2.3 in Section II.7. Two proofs of Theorem I1.2.4 are
given in Section II.8.

Notation. Let E be a complete separable metric space. The Banach
space B(FE) of bounded measurable functions f : £ — R is equipped
with the usual supremum norm || f|| := sup,cz | f(x)| and the Banach
subspace C (E) C B(FE) consists of all continuous functions vanishing
at infinity. If £ C R? for some d € N, then Cj(E) denotes the space
of k-times continuously differentiable functions. A Feller semigroup
(T})1=0 is strongly continuous on C(E), i.c., limy_ ||7,.f — f|| = 0 for
cach f € C(E), and satisfies T;(C(E)) € C(E) for each t > 0. The
generators corresponding to Feller semigroups, usually denoted by
A, are understood to be defined on a dense subspace of @(E) The
Borel-o-field on R is denoted by B and A denotes Lebesgue measure
on ([0,1], BN [0,1]). For a measure space (2, F,u) and p > 0 the
space of measurable functions f : @ — R with [, |f[Pdp < oo is
denoted by LP(u) or, in short, LP.

I1.2 Results

Throughout the article A is a finite non-zero measure on ([0, 1], BN
0, 1]). Additionally, it is assumed that A({0}) = A({1}) = 0, because
coalescents in this article shall stay infinite and an atom at 0 would
imply that the coalescent comes down from infinity and an atom at
1 would imply that the block counting process N is almost surely
in state 1 for all n € N after a random finite time not depending on
n.

First, the two known results mentioned in the introduction are
presented. A block B € II; of size |B| = 1 is called a singleton. The
number of singletons in [n] divided by n converges to the frequency of
singletons as n tends to infinity, and if the frequency of singletons is
strictly positive, the coalescent is said to have dust. A necessary and
sufficient conditon for coalescents to have dust is given by Eq. (II.1).
For further results on A-coalescents with dust see [10] and [9]. Propo-
sition I1.2.1 below has been established in [9] and [16]. In both articles
the processes have non-logarithmic form and the blocks of the coales-
cent are allowed to even merge simultaneously. The limiting process
is the logarithm of the frequency of singletons process as described in
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[17, Proposition 26]. In [16] the uniform convergence of the generators
has been proven and a rate of convergence has been determined. In
this article the uniform convergence of the generators is going to be
proven as well, but with different techniques. In [9] the convergence
of the corresponding semigroups has been shown, which is equivalent
to the convergence of the generators on a core. The proof is carried
out, since parts are needed in order to verify Theorem II.2.3.

Proposition I1.2.1 (dust case). Suppose that f[o 1 ™t A(du) < oo.

Then the time-homogeneous Markov process X = (Xt(n))tzo =

(log Nt(n) —logn)>o converges in Dr|0,00) as n — oo to a limiting
process X = (Xi)i>o with initial value Xo = 0 and semigroup (T})i>0
given by

Tif(x) = E(f(Xspo)|Xs = 2) = E(f(z + X3)), (I1.3)

r € R, f € B(R),s,t > 0, where X; has characteristic function
E(exp(ivXy)) = exp(tip(v)), v € Rt > 0, with

P(v) = / (1 — )" — Du? A(du), veR. (IT.4)
[0,1]

Observe that —X is a pure-jump subordinator with characteristic ex-
ponent v — Y(—v), v € R.

The block counting process of the Bolthausen—Sznitman coales-
cent has been treated in [15] and [13]. Both works show that the
semigroup of (Nt(n) /n¢")i=0 converges on a dense subset of B([0, 00))
to the semigroup of the Mittag—Leffler process as n tends to infinity,
hence the processes converge in Dy [0, 00). Taking logarithms does

not spoil the convergence. If f € C(R), then f olog € C([0,00)),
and the semigroup and hence the generator A™ of the logarithm
of the scaled block counting process X = (log Nt(n) — e tlogn)i=o
converge as well. We prove the convergence of A™ in Section I11.6
directly. Since the scaling depends on ¢, the process X is time-
inhomogeneous, and in [13] the time-space process is used in order
to transfer the question of convergence to time-homogeneous Markov
processes. The time-space process is revisited in Section I1.6. By con-
structing the Bolthausen—Sznitman coalescent from a random recur-
sive tree, it is shown in [11] and [2] that Nt(n) /nf" converges almost
surely as n tends to infinity for each ¢ > 0. Since A is the particu-
lar beta distribution with both parameters equal to 1, the following
result is the case b = 1 of Example I1.4.2 provided in Section II.4.
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Proposition I1.2.2 (Bolthausen—Sznitman case). Suppose that
A = ). Then the time-inhomogeneous Markov process X =
(Xt(n))tzo := (log Nt(n)—e_t logn)i>o converges in Dg[0,00) asn — 0o
to the time-homogeneous Markov process X = (Xi)i>o0 with initial
value Xo = 0 and semigroup (T})i>o given by

Tif(z) = E(f(Xe)|Xs =2) = E(f(e'z + X)),

r € R, f € B(R),s,t > 0, where X; has characteristic function
¢i(v) := E(exp(ivX;)) = I'(1 + i) /T (1 +ie ), v € R, t > 0.

For b > 0 define the possibly signed measure Ap on BN [0, 1]
via Ap(B) := A(B) — bA(B), B € Bn|0,1]. Hahn’s decomposition
theorem states the existence of some set A € BN [0, 1] such that
A5 (B) :=Ap(BNA), Be BnN[0,1], and A;(B) := —Ap(B N A°),
B € Bn|0,1], define non-negative measures. The two non-negative
measures Aj; and A7, constitute the Jordan decomposition of Ap.
By using this decomposition, one can integrate with respect to the
signed measure Ap by defining [ fdAp := [ fdA}, — [ fdAL for
f € LY (Af) N LY(A}). The total variation |Ap| of Ap is given by
|Ap| := A}, + Ap. The assumption of Theorem I1.2.3 below is the
following.

Assumption A. There exists b > 0 such that f[o 1 u™ [Ap|(du) <
00, i.e., f[o 1 ut Af(du) < oo and f[o 1 ut A, (du) < oo,

Assumption A implies that b = lim._,q e 1A((0, €)), see Lemma 11.9.1
a) in the appendix. In particular, if Assumption A holds, then the
constant b is uniquely determined by the measure A. Schweinsberg’s
criterion [23] shows that the A-coalescent does not come down from
infinity under Assumption A, see Lemma I1.9.1 b). Moreover, the
A-coalescent is dust-free if and only if b > 0. Assumption A is for
example satisfied, if A has density f € C1([0,1]) with respect to A
for which lim, o f'(u) exists and is finite. In this case, b = f(0).
Suppose that A satisfies Assumption A. Let I'(z) :=
0w te " du, Re(z) > 0, denote the gamma function and ¥(z) :=
(logI')'(2) =1"(2)/T'(2), Re(z) > 0, the digamma function. Define

a = b(1+ V(1)) — /[ou u ' Ap(du) (I1.5)

and the infinitely divisible characteristic exponent ¢ : R — C via

Y) = dav + /[01]((1 — )" —1+ivu)u 2 A(du), veR. (IL6)
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Formally, the constant b of Assumption A only appears in the drift
part of ). Note however that b is uniquely determined by A. In this
sense b depends on A and therefore also influences (via A) the jump
part of ¥. Substituting ¢ : (0,1) = R, g(u) := log(1 — u), u € (0, 1),
shows that

Y(v) = iav + / (e — 1 +iv(l —e)) o(du), veR,
(—00,0)
where the measure o, defined via

o(A) = /1(A>u—2A(du), AeB, (1.7)

satisfies [ (u® A 1) o(du) < oo and o({0}) = 0. Hence, ¢ is a Lévy
measure, e’V v € R, is the characteristic function of an infinitely di-
visible distribution and the process described by Egs. (I1.8) and (11.9)
below belongs to the class of generalized Ornstein—Uhlenbeck pro-
cesses. Due to o((0,00)) = 0, the limiting process in Theorem 11.2.3
has only negative jumps. Compensation of small jumps occurs if and
only if b # 0. Further properties of the limiting process are presented
in Section II.3.

Theorem 11.2.3. Suppose that A satisfies Assumption A. Then the
possibly time-inhomogeneous Markov process X™ := (Xt(n))tzo =
(log Nt(n) — e logn)i=g converges in Dg[0,00) as n — oo to the
time-homogeneous Markov process X = (Xi)>0 with initial value

Xo = 0 and semigroup (T3)>o given by
Tf(x) == E(f(Xe)|Xs = 2) = E(f(e "z + X)), (I1.8)

r € R f € B(R),s,t > 0, where X; has characteristic function ¢,
given by

or(v) = exp(/@b “bsy ), veER,t>0, (IL.9)

and ¥ is given by (11.6).

The dust case and the Bolthausen—Sznitman case arise from As-
sumption A as follows. If f[o 1 u ' A(du) < oo, then Assumption A

holds with b = 0. Thus, @ = — [, u™" A(dw), the definitions (I1.4)
and (I1.6) for ¢ coincide and Proposition I1.2.1 and Theorem I1.2.3
describe the same limiting result. For A = A\, Assumption A holds

with b = 1 and without a dust part. In this case, a = 1 + ¥(1)
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and the underlying Lévy measure p has density f with respect to
Lebesgue measure on R\ {0} given by f(u) := e“(1—¢e%)~2 for u < 0
and f(u) := 0 for u > 0. The connection between Proposition 11.2.2
and Theorem I1.2.3 in the Bolthausen—Sznitman case is clarified in
Section I1.4.

A convergence result for the fixation line can be stated analogously
to Theorem I1.2.3; see also [9, Theorem 2.13 b)] for the case b = 0.

Theorem 11.2.4. Suppose that A satisfies Assumption A. Then the
possibly time-inhomogeneous Markov process Y™ = (Yt(n))tzo =
(log L§”> — el logn)so converges in Dg[0,00) as n — oo to the time-
homogeneous Markov process Y = (Yi)>o with initial value Yy = 0
and semigroup (T})i>o given by

Tif(y) = E(f(Ya)Ys =) = E(f(e"y + Y1), (I1.10)

y € R, f € B(R),s,t > 0, where Y; has characteristic function x:
given by

xe(w) = exp</w —ePw) ), weR,t >0, (I1.11)

and ¥ is given by (I11.6).

Remark 11.2.5. The process defined by (I1.10) and (II.11) is a gen-
eralized Ornstein—Uhlenbeck process with underlying characteristic
exponent v — ¥(—v), v € R, but with non-negative drift.

Remark 11.2.6. Let the random variable S; have characteristic func-
tion ¢y, given by (11.9), for ¢ > 0, and let X = (X;)i>0 and Y = (Y})i>0
denote the processes defined in Theorems I1.2.3 and II1.2.4, respec-
tively. Conditional on X, = =, X;., is distributed as e %z + S, for
all x € R. Note that Y} 4 —e X, 4 —ePS, and that conditional on
Y, = v, Y., is distributed as e’y — e"S,. Hence,

bt

P(e¥+ > z|e" =y) = P(y" e " > 1)
= Pa" e <y) = Peh <ylet =)
for all x,y,s,t > 0, i.e., e¥ is Siegmund-dual to e* (see [26]) par-

allel to the Siegmund-duality of the block counting process and the
fixation line.

Remark 11.2.7. For the Bolthausen—Sznitman case, the convergence
result corresponding to Theorem I11.2.4 is stated in [13, Theorem
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3.1 b)] in non-logarithmic form. The fixation line of the Bolthausen—
Sznitman coalescent is a continuous-time discrete state space branch-
ing process in which the offspring distribution has probability gen-
erating function f(s) = s+ (1 — s)log(1 — s), s € [0,1]. The limit-
ing process described in Theorem II.2.4 is the logarithm of Neveu'’s
continuous-state branching process. By Proposition I1.2.2, the char-
acteristic functions x; of the marginal distributions are given by (see

(13, Eq. (19)])
(1 —ieltw)
(1 —w) ’

xt(w) = gbt(—etw) = weR,t>0.

II.3 The limiting process

Standard computations (see [21, Lemma 17.1]) show that ¢;, given by
(I1.9), is the characteristic function of an infinitely divisible distribu-
tion for each t > 0 without Gaussian component and Lévy measure
0+ given by

t
01(A) = / / La(e "u) dso(du), AeB,t>0.
(—00,0) JO

Sato and Yamazato [22, Theorem 3.1] provide a formula for the
generator corresponding to the semigroup (73):>0, given by (I1.8).

Lemma I1.3.1. Suppose that A satisfies Assumption A. Let i be
given by (11.6), ¢ be defined by (11.9) and let the random variable X,
have characteristic function ¢; for eacht > 0. The family of operators
(T}) >0 defined by (11.8) is a Feller semigroup. Let D denote the space
of twice differentiable functions f : R — R such that f, f', f" € 6(R)
and such that the map © — z.f'(z), z € R, belongs to C(R). Then D
is a core for the generator A corresponding to (1t)i>o and

Af(z) = f'(z)(a — bx) (I1.12)
n / (f( +log(1 — w) — f(x) +uf'(2))u® A(du)
[0,1]

forx € R and f € D, where a is given by (11.5).

Proof. Substituting ¢ : (0,1) — R, g(u) := log(1 — u), u € (0,1),
shows that (I1.12) is an integro-differential operator of the form (1.1)
of [22] with dimension d = 1. In [22], operators of this form are
initially considered as acting on the space C? of twice differentiable
functions with compact support (see the explanations after Eq. (1.2)
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in [22]), but Step 3 of the proof of [22, Theorem 3.1] shows that
(IT.12) even holds for functions f € D (D C?). Note that the space
D is denoted by F} in [22]. The fact that D is a core for A is only a

different phrasing of the claim in Step 5 of the proof of [22, Theorem
3.1]. ]

The limiting process’s generator in the dust case (b = 0) is given
by

Af(z) = /[ (o logl =) — @)t M), w e R

in agreement with Eq. (I1.12).

The limiting process in Theorem I1.2.3 arises as the solution to
a certain stochastic differential equation. For the remainder of this
section, b > 0 is fixed and v is allowed to be the characteristic
exponent of an arbitrary infinitely divisible distribution on R, ex-
cept for Lemmata I1.3.2 and I1.3.3, which are applications of results
known from the literature to the coalescent setting. Let the Lévy
process L = (L;);>o with characteristic functions E(e*t) = (),
v € Rt > 0, be adapted to the filtration (F;);>o which satisfies the
usual hypotheses. In particular, L;;s — L is independent of F, for
all s, > 0. The Langevin equation with Lévy noise instead of a
Brownian motion

dX, = —bX,dt + dL,,  t>0, (I1.13)

with initial value Xy = x has an unique (F);>p-adapted solution
X = (Xy)t>0 with cadlag paths. The solution to (II.13) or the corre-
sponding semigroup are hence called generalized Ornstein—Uhlenbeck
or Ornstein—Uhlenbeck type process or semigroup. It holds that

t
X, = ez + / et dL,, t>0. (I1.14)
0

Various constructions for the stochastic integral in (I1.14) are possi-
ble, e.g., in [1, Sections 6.3 and 6.2] the stochastic integral is the It6-
integral with respect to semimartingales. The process X is a stochas-
tically continuous Markov process and the corresponding semigroup
is given by (IL1.8), where the characteristic functions ¢; of X; are given
by (I1.9) with underlying infinitely divisible characteristic exponent
W for t > 0.

Generalized Ornstein—Uhlenbeck processes bear a close connection
to self-decomposable distributions. A real-valued random variable S
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is called self-decomposable if for every a € [0, 1] there exists a ran-
dom variable S, independent of S such that S has the same dis-
tribution as a.S + S,. If ¢ is the characteristic function of S, then
S is self-decomposable if and only if v — ¢(v)/¢p(av), v € R, is
the characteristic function of a real-valued random variable for every
a € [0,1]. A distribution x on R or its characteristic function ¢ is
said to be self-decomposable if there exists a self-decomposable ran-
dom variable with distribution p. Suppose that the Lévy measure o
of the characteristic exponent v satisfies

/{| - log(1+ |ul) o(du) < oc. (I1.15)

According to [22, Theorems 4.1 and 4.2], X; converges in distribution
as t — oo to the unique stationary distribution p of X. The distri-
bution u is self-decomposable. Conversely, every self-decomposable
distribution can be obtained as the stationary distribution of a gen-
eralized Ornstein—Uhlenbeck process. If (I1.15) does not hold, then
there exists no stationary distribution. The following lemma is an
application of [22, Theorems 4.1 and 4.2] to this article’s coalescent
setting.

Lemma I1.3.2. Suppose that A satisfies Assumption A with b > 0
and let X = (Xi)>o be as in Theorem I1.2.3. If f(&l) loglog(1 —
u) P A(du) < oo for some 1 — et < e < 1, then X; converges in
distribution as t — oo to the unique stationary distribution p of X.
The distribution p 1s self-decomposable with characteristic function

¢ given by

d(v) = exp ( /O ooz/J(e_bSv) ds), v €R.

The characteristic function ¢; of X; satisfies ¢:(v) = ¢(v)/p(e ),
v e R.
[ff  log log(1 —u)™t A(du) = oo for 0 < e < 1, then, for every
L,
lim supsupP(|e "z 4+ X, —y| < 1) = 0.

t—=00 2eR yeR

The process has no stationary distribution.

Shiga’s criterion [25, Theorem 1.1] for transience and recurrence
complements Lemma I1.3.2.

82



Lemma I1.3.3. Suppose that A satisfies Assumption A with b > 0
and let X = (Xi)>0 be as in Theorem I1.2.3. Then X is irre-
ducible in R. Let ¢ € [1 — e 1) and define ga(y) = f(g’l)(l —
evlos1=u) =2 A(du), y € [0, 1]. If the integral

/01 2 Lexp ( — /21 gAb;y) dy) dz (I1.16)

is finite, then X s transient, i.e., it holds that P(lim; . | X:| =
| Xy = x) = 1 for every x € R. If the integral (11.16) is in-
finite, then X 1is recurrent, i.e., there exists a € R such that
P(lim inf; o0 | Xt — a| = 0| Xy = a) = 1.

Note that the limiting process X or, more precisely, its semigroup
(T})t>0 belongs to the class of Mehler semigroups [4], as is true
for all generalized Ornstein—Uhlenbeck processes, since ¢y s(v) =

di(e P s(v), v € R, for s,t > 0.

I1.4 Beta coalescents

The beta distribution B(a,b) with parameters
a,b > 0 has density uw +— (e + b)/(I'(a)l(D))
w1 — w)*, u € (0,1), with respect to Lebesgue measure
on (0,1). Beta coalescents, for which A = §(a,b) for some a,b > 0,
have been extensively studied in the literature due to the easy
computability of the jump rates

 Tla+0)k+1D)I(G -1+b0)I(k—j5—1+a) (1117)
- T(@IB)T(k=24+a+b(GT(k—5+2) '
jeA{l,....k—1},k > 2. The S(a,b)-coalescent comes down from
infinity if and only if 0 < a < 1 [23, Example 15], and has dust if
and only if a > 1.

For a = 1, the beta coalescent is dust-free and does not come down
from infinity. From the observation stated below Assumption A we
conclude that Assumption A is satisfied with the same constant b.
The “dust part” A — b\ has possibly negative density u — b((1 —
u)’™1—1), u € (0,1), with respect to Lebesgue measure on (0, 1). The
computations of a and v in the proof of the following proposition are
based on Gaufl’ representation (see e.g. [28, p. 247])

W(z) = /OOO <€_u— ¢ )du, Re(z) > 0,

Qk.j

U 1 —e v

of the digamma function.
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Proposition I1.4.1. Suppose that A = §(1,b) with b > 0. Let a,
Y and o be given by (I1.5), (I1.6) and (11.7), respectively. Then o

has density [ with respect to Lebesgue measure on (—o0,0) given by
f(u) == be"(1 —e")™2, u <0,

a = b(1+ (b)) (11.18)
and
Y(v) = b((1=b)T(b) — (1 —b—iv)¥(b+iv)), veR. (IL.19)

Proof. It can be easily verified that p has density as stated in the
proposition. Eq. (I1.18) follows from

u? — u) = lu_l — ) — U
/M (A=wd) = b [ (- =1

00 —bu —u
_ b/ ( c ¢ )du
0 l—ev 1—e

= b(W(1) — T(b)).

Next, note that

l—e
= (lvu+e " —1) i
I—e™|, 0
00 ' B _be—bu e—bu B
—/0 (tou + e 1)(1 = —e—“)Qe u)du
e—bu
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for v € R. Hence,
(1=0)¥(b) — (1 —b—iv)¥(b+ iv)
= W)+ (1 =b)(¥(b) — V(b+iv)) + w(V(b+iv) — ¥(b))

= wV¥()+ (1 —0b) /Ooo(e_i”“ —1)

—bu

1] —e v
—bu

+ /Ooo(e—ivu — 1+ “}u)(liw(l — (1 — b)(l _ e—u))du

00 , ‘ e—bu
= wW(b) + /0 (e —bl + ’wu)m du
—iv(l—b)/o ul—e—“du
= iv(¥(b) — (1 =)W' (b)) + b /R\{O}(ei”“ — 1 —ivu) o(du)

- w(qf(b)—(l—b)qﬂ(b)mlfR (€' —1— ) g(du))

\{0}
+ b7t / (e — 14 iv(1 —e")) o(du).
R\{0}

The calculation

— (1 =0)V'(b) + bl/ (" —1—u) o(du)

R\{0}
00 —u u e—bu
—bu U=00
- u =1
1 —e % lu=0
and multiplication with b complete the proof of (I1.19). O

Ezxample 11.4.2. Suppose that A = 5(1,b) with b > 0. Then Assump-
tion A is satisfied with the same constant b. According to Theorem
I1.2.3 the process (log Nt(") — e " logn);so converges in Dg|0, 00) as
n — oo to a Markov process X = (X});>0 with initial value Xy = 0
and semigroup (7})s>0 given by

Tif(a) == E(f(Xud) X, =2) = E(f(c "z + X)),

r € R, f € B(R),s,t > 0, where X; has characteristic function ¢,
given by (I1.9).
Since [, .1, loglog(l—u)~! A(du) = JL . loglog(1—u)'b(1—

u)?~!du < oo, the logarithmic moment condition of Lemma I1.3.2 is
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satisfied and X; converges in distribution as ¢t — oo to the unique sta-
tionary distribution p of X. The distribution p is self-decomposable
with characteristic function ¢ given by

o(v) = exp (/Om¢(e_bsv) ds) (I1.21)
— exp ((1 — D) / ) - i(b *iu) du> r(%;”), vER.
In the last step Eq. (I1.19) and the fact that ¥(z) = (logI'(2))’,

Re(z) > 0, have been used. The characteristic function ¢; of X; is
hence given by

_ o)
T
B Yw(b) — U(b+ iu) I'(b+iv)
= exp <(1 - ) /e_btv u du) (b +ie Vo)’

v € R,t > 0. Similarly to the convergence above, (Nt(n)/ne_bt)tzo
converges in Djy [0, 00) to (exp(Xy))i=0 as n — oo.

The following is an attempt to describe p and the distribution of
X;. If Z has a gamma distribution with parameters b and 1, i.e., Z has
density u — u’"te *(I'(b))~!, u > 0, with respect to Lebesgue mea-
sure on (0,00), then log Z has the self-decomposable characteristic
function v — I'(b+iv)/T'(b), v € R, see [27, V, Example 9.18], which
implies that the map v + I'(b+iv)/T'(b+ie "), v € R, is the char-
acteristic function of a real-valued random variable for every ¢ > 0.
As long as b < 1, the function u +— (1 —b)(¥(b) — W(b+iu)), u € R,
which appears in the first factor on the right-hand side of (II.21), is
the characteristic exponent of the negative of a drift-free subordina-
tor whose Lévy measure has density u +— (1—b)e **(1—e~*)"!, u > 0,
with respect to Lebesgue measure on (0, 00), cf. (I1.20). In particular,
it is the characteristic exponent of an infinitely divisible distribution,
and if Z has characteristic function v — exp((1—0)(¥(b) — ¥ (b+iv)),
v € R, then E(log(1 + |Z])) < co. By [27, V, Theorem 6.7], the first
factor on the right-hand side of (II.21) is a self-decomposable char-
acteristic function as well, and

v o exp((l—b)/: @(b)_\lI(ber)du), vER,

—bty, u

is the characteristic function of a real-valued random variable for
each t > 0. The arguments that allow the decomposition of ¢; into
the product of two characteristic functions fail for b > 1.
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We shortly return to the Bolthausen—Sznitman coalescent. Recall
that the Bolthausen—Sznitman coalescent is the particular beta co-
alescent with driving measure A = (1, 1). Proposition 11.4.1 with
b = 1 states that ¢(v) = w¥(1 + iv), v € R. Example 11.4.2 with
b = 1 entails the convergence of the limiting process’s marginal dis-
tributions as t — oo to a self-decomposable distribution with charac-
teristic function ¢(v) =I'(1 +iv), v € R. Let Z have an exponential
distribution with parameter 1. Then log Z is the negative of a Gum-
bel distributed random variable and has characteristic function ¢,
see e.g. [27, V, Example 9.15]. Hence, —X; converges in distribution
as t — oo to the Gumbel distribution. Moreover,

< (1 + i)
o (V) exp (/0 P(e *v) s) T +ic0) veRt>0,
which connects Proposition I1.2.2 and Theorem II.2.3.

II.5 Proof of Proposition 11.2.1

In this section A satisfies the dust condition f[o’” u ' A(du) < oo in
addition to the general assumption A({0}) = A({1}) = 0. Let E,, :
{x € R: e"n € [n]} denote the state space of X = (Xt(n))tzo =
(log Nt(n) — logn)i>o for each n € N. By defining k := k(z,n) :
e’n € [n] for x € E, and n € N, we can represent the generator A
of X ag

k-1
AN f() = Y (Fl@+logd) = f(@)ans

j=1
z € E,, f € C(R),n € N. The process X = (X;);>o defined by (IL.3)
and (IL.4) is a Feller process in C(R). Let A denote the generator.
From [21, Theorem 31.5] it follows that the space C»(R) of twice
differentiable functions f € Co(R) with f, f', f” € C(R) is a core for
A and

Af(z) = /[ (e log(1 =) — £ A

r e R, f e 52(R). The idea to prove the uniform convergence of
the generators is the following: write the jump rates as values of a
distribution depending on k (with some minor adjustments) whose
limiting behavior as k — oo can be determined. The generators A(™
and A can then be written as the mean of random variables and
classical weak convergence results can be applied.
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Proof. (of Proposition 11.2.1) Let f € C(R). Define h : [0, 1] xR — R
via h(u,x) == v (f(z + log(l — u)) — f(x)), u € (0,1), h(0,z) :=
im0 h(u, z) = —f'(x) and h(1,z) = lim, ~ h(u,x) = —f(x) for
x € R. Differentiating s — f(z + log(1 — us)), s (O 1), leads to

f (x 4+ log(1 — us))
1 —us

ds,

f(z+log(1 —u)) —
u € [0,1),z € R. Thus,
B / f(x + log(1l — us))

1 —wus

ds, uel0,1),x €R,

and h stays bounded even as u tends to 0. Define

Bl

-1

S(k,z) = (f(z+1logd) — f(x))ak, (I1.22)

and

I(z) = /[0” h(u, z)ut A(du) (11.23)

for k € N,z € R. Obviously, A" f(z) = S(k,z) for + € E, and
n € Nand I(x) = Af(x) for x € R. Substituting k — j for j and the
definition of h yield

k—1

S(k) = S0+ log(1 — £) — F()aks
k— .
j J k j—1 —j—1
:E]%J@Q+JAWU(%Wﬁ Adu)

— jo(k—1
= h(L, 2)- < , )/ w1 — W) A(dw),
Sonthartg () [ A

ke N,z eR. Set c:= f[O,l] u~t A(du) € (0, oo) and define the prob-
ability measure Q on ([0, 1], BN [0,1]) via Q(A) := ¢! [, ut A(duw),
A € BNJ0,1]. Let the random variables Z, k E N have dlstrlbutlon
given by

_a - (F1 (1= O(du). _
P(Z) — j) — (j )A;]<1 1T Qdu), g€ {0, k—1),

i.e., Z; has a mixed binomial distribution with sample size k£ — 1
and random success probability Q. Let the random variable Z have
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distribution Q. Then
S(k,x) = cE((1—(Z,+1)"Y(Zy/k,x)), keNzeR,

and I(z) = cE(h(Z,x)), x € R. It is straightforward to check that
Zy/k — Z in distribution as k — oo, e.g., by verifying the con-
vergence of the cumulative distribution functions (cdf) on the set of
continuity points of the cdf of Z. In particular, limy_,., P(Z; < C) =
Q(0) = 0 for every C' > 0 and, hence, lim;_ . E((Z;+1)~1) = 0. Since
h is bounded and f, f' € C (R) are uniformly continuous, the family
of functions {h(-,z) : x € R} is equicontinuous on [d, 1 — ] for every
0 < 0 < 1/2 and uniformly bounded on [0,1]. From Lemma I1.9.4
it follows that E(h(Z;/k,x)) — E(h(Z,x)) uniformly in x € R as
k — oo, thus

lim sup |S(k,z) — I(z)] = 0. (I1.24)

From lim, , . h(Z,x) = 0 a.s., the fact that h is bounded and the
dominated convergence theorem it follows that

lim |I(z)] = ngrfloo E(h(Z,x))] = 0. (I1.25)

T——00

Since f € a(R), lim, , - S(k,z) =0 for any k& € N. Due to (I1.24)
and (I1.25),
lim sup |S(k,z)| = 0. (I1.26)
T—>—00 keN
Asn — oo, k = k(x,n) = e*n — oo or  — —oo. For example, for
n € N and z € E,, either k > n'/? or v < —3logn. Distinguishing
the two cases leads to
lim sup |A™ f(z) — Af(z)| < lim sup|S(k,z) — I(x)]
n—o0 pcF, k=00 zeR
+ lim sup|S(k,z)| + lim [I(z)] = 0. (I1.27)
T——00 keN T——00
By [8, I, Theorem 6.1 and IV, Theorem 2.5], X — X in Dg[0, co)
as n — o0. ]

Remark 11.5.1. The generator A™ converges even if A({1}) > 0. In
this case the atom at 1 can be split off from A such that ¢ ; =

(]fl) f[(),l) uk_j_l(l - u)j_l A‘[O,l) (dU) +A({1})1{1}(])? ] € {17 R k—
1}, k > 2, where the first summand are the jump rates of the block
counting process corresponding to the restriction Al 1y of A to [0, 1),
i.e., a measure with no atom at 1. Thus,

AW f(z) = S(k,x) + (f(logn™") — f(2)A({1})
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re kb, e a(R), n € N, where the jump rates in S(k, x) correspond
to A‘[O,l)) and

Af(x) = 1($)+h(1793)/\({1}) = I(z)=f(x)A({1}), @€ (-00,0],

where I(z) = [h(u,z)Aljp1)(du), z € R. The additional term
corresponds to the killing of the subordinator —X at the rate
A({1}). Since f € C(R), limy, 00 SUp,ep, |(flogn™)—f(z))A({1})+
f(@)A{1}D)] = A{1}) lim,, o0 | f(logn™t)| = 0, i.e., the additional
term converges, and again (I1.27) holds true.

Remark 11.5.2. The approach to the convergence of the generators is
related to Bernstein polynomials. The (k — 1)-th Bernstein polyno-

mial
k—1

1\ . .
hzL, @ < , )uj(l — )1
0 J

of h(-,z) converges uniformly in v € [0,1] to h(u,z) as k — oo, if
xr € R is fixed.

J

I1.6 Proofs concerning the Bolthausen—Sznitman coales-
cent

In this section A = A\ is the Lebesgue measure on [0, 1]. Define « :=
a(t) == e~t, t > 0. The process X™ = (X")2g = (log N —
alogn)i>g is a time-inhomogeneous Markov process. In order to prove
the convergence in Dg[0,00) to X we want to show the uniform
convergence of the generators. Typical convergence results are stated
for time-homogeneous Markov processes and in order to use these we
are going to introduce the time-space process.

I1.6.1 Time-space process: semigroup and generator

Define the time-space processes X = (t, X¢)e>0 and XM =
(t, Xt( ))t>0 for n € N. It is known (see, e.g., [19, p. 85, Exercise (1.10)]
or [6]) that X™ and X are time-homogeneous Markov processes (and
exist on a new probability space). In the followmg the tilde symbol
indicates the time-space setting. Let E {(s,x) € [0,00) x R :
e™n®) ¢ [n]} denote the state space of X , £/ :=10,00) xR denote
the state space of X and define k = k:(s z,n) = e*n*) € N for
(s,z) € B, and n € N. Given f € B(F) and s > 0, denote the func-
tion z +— f(s,z), z € R, by wf(s,x). The limiting process X already
is time-homogeneous. Recall that D, the space of twice differentiable
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functions f : R — R such that f, f’, f” and the map z — zf'(x),
z € R, belong to C(R), is a core for the generator A of the semigroup
(T3)+>0 corresponding to X. The semigroup (7}):>o of X, given by

Tif(s,z) = B(f(s+t, Xert)|Xs =2) = E(f(s+t,a(t)z+ X;))

for (s,z) € E, f € B(E) and t > 0, is a Feller semigroup. Let
D denote the space of functions f € C( E) of the form f(s,x) =
S gi(s)hi(z) with [ € N,h; € D and g; € C1([0,00)) such that
gi g, € 6([0, o0)) for i = 1,...,1. Proposition 11.9.6 states that D is
a core for the generator A of (T})>0 and

Af(s,z) = gf(s,x) + Amf(s,x), (s,x) € E, f € D. (11.28)

The “semigroup” (TS(QL )s.=0 of X is given by
(f

T f(x) = E(f(XI)]XW = x)
Eqmgwu—a@+wbymmm=m

S

= E(f(log Nt(k) —a(s+1t)logn)),

(s,z) € E,, f € B(R),t>. The “generator” (Ai”))s>o of (T (7 ))St>0 is
given by
AP () = Tt (T f () = ()

t—0

= lim¢ ™! (E(f(log Nt(k) —a(s+1)log n)) — f(x))

t—0

=

-1

= —f'(z)d/(s)logn+ Y (f(z+1logi) — f(z))qr,;, (IL29)
j=1
(s,x) € E, Here f € C1(R) such that f, f" € C(R). The semigroup
(T;™)i=0 of X", given by

~

TV (s,2) = B(f(s + 1 Xo)| X" = 1)
= E(f(s+t, logN(k) — a(s+t)logn)),
(s,z) € E,, f € B(E n),t > 0,n €N, is a Feller semigroup on C(E n)

for every n € N. On D, or more precisely, for the restriction of f € D
to E,, the generator A( n) of T is given by

~

A f(s ) = %f(s,x) + AMrf(s, x), (I1.30)

(s,x) € E,,n eN.
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11.6.2 Proof of Proposition 11.2.2

Proof. (of Proposition 11.2.2) Recall that A = A. Let f € D. The
approach to the proof is the same as in Section I1.5, but the function
u > f(z+log(l—u)), u € [0, 1], demands second order approximation
like in the integral part of the limiting generator (I1.12). Define h :
0,1] x R — R via h(u,z) == u2(f(z +log(1 —u)) — f(z) +uf'(x)),

€ (0,1), h(0,z) := lim, o h(u,z) = 271 (f"(x) — f'(x)) and, since
feCR), h(1,z) :=lim, ~ h(u, ) = f/(x)—f(z) for & € R. Taylor’s
theorem applied to u — f(z + log(l — u)), u < 1, with evaluation
point u = 0 and exact integral remainder yields

ba) = [* S o gl = 9) = 7o+ log(1 = )

- @+ log(1 = us)) = (& -+ log(1 — us)))ds

1 — us)?

u € [0,1),x € R. The latter formula of h(u,x) shows that h is
bounded even as u tends to 0. Putting & = k(s,z,n) = e"n®® in
(I1.29) yields

AW f(z) = f(2)R(k,z) + S(k,z),  (s,z) € E,,neN,

where
k—1
R(k,x) = logk — %qkﬁ- — ke NzxeR, (IL.31)
j=1
and
k-1
S(h2) = S (o +logd) — f(&) + L gy, (132)
j=1
k € N,z € R. Further define I(x) := f[ i h(u, 2) A(du), = € R, and
observe that Af(z) = f'(x)(1 + ¥(1) — ) + I(x) for z € R.
ByEq (Hl7)WIthCL:b:1,Tq’ (k—j+1)71 5 €
{1,...,k — 1}, k > 2. Hence, Z 1179 Qe = 2522]’_1 for k > 2.

Recall that a(s) = e® for s > 0 and k = k(s,x,n) = e*n®®) for
(s,z) € E, and n € N. As n — 00, k — oo or z — —oo. Fix
T > 0. E.g., if s € [0,7), then either k > n®T*) or 2 < —a(T)(1 —
a(6))logn, where 6 > 0 is a constant. The well known asymptotics of
the harmonic numbers states that sup,.p |[R(k,z) — (1+ V¥ (1) —x)| =
[logk—>20 571 = W(1)| = 0 as k — oo. Clearly, lim,—,_ | f/(z)| =
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0. Dividing the state space as above therefore implies

lim sup |f(2)]|R(k,z) — (1+¥(1) —z)] = 0. (IL.33)

nee (s,x)€Ey,s€[0,T

In the next step the uniform convergence of S(k,z) to I(z) is
shown. Substituting k£ — j — 1 for j in (I1.32) yields

k—2
Flo+1og(1 = £4)) = £(2) + L)) g

k-2 3:0
= ) h(Hl 2 —u)" I A(d
> it (HQ) = A

k=2

k—1 k—2 , .
= h(L2 2) ( , )/ w (1 — )27 A(dw),
ko 2N J+2 J 0.1] (1=u) (du)

7=0

ke N,z € R. Set ¢ := A([0,1]) € (0,00) and define the probability
measure Q on ([0, 1], BN[0,1]) as Q := ¢ ' A. Let the random variables
Zi, k € N, have distribution given by

k—2 , ‘

P(Zy = j) = ( , ) / W (1—u)*277 Q(du), j€{0,...,k-2},
J [0,1]

i.e., Z; has a mixed binomial distribution with sample size £k — 2 and
random success probability Q. Let Z have distribution Q. Then

S(k,z) = c(1 =k HE(1—(Z,+2)"H(Zk + 1) [k, ),

ke Nz eR, and I(z) = cE(h(Z,x)), z € R. It is easy to check that
(Zr +1)/k — Z in distribution as k — oo. The family of functions
{h(-,x) : x € R} is equicontinuous on [), 1 — 4] for every 0 < § < 1/2
and uniformly bounded on [0,1]. Due to Q({0}) = ¢ 'A({0}) = 0,
Z — 00 a.s. as k — oo, thus limg_,o E(1/(Z; + 2)) = 0 and the
additional factor 1 — (Z;, + 2)~! in the mean above can be omitted
when considering the limit of S(k,z) as k — oco. From Lemma 11.9.4
it follows that

lim sup |S(k,z) — I(x)] = 0. (I1.34)

k—o0 reR

From lim, , . h(Z,z) = 0 a.s., the fact that the functions h(-,z), z €
R, are uniformly bounded and the dominated convergence theorem
it follows that

lim |I(z)] = ¢ lim |E(h(Z,2))| = 0. (I1.35)

T——00 T——00
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Since f, [’ € 6(1@), lim, , o S(k,2) =0 for any k € N and, in view
of (I1.34) and (I1.35),
lim sup|S(k,z)| = 0. (I1.36)

T——00 keN

As seen in the proof of Proposition I1.2.1, Eqs. (I1.34)-(I11.36) imply
lim sup |S(k,x) — I(x)| = 0. (I1.37)

nree (s,2)€Ey,5€[0,T]

By (IL33), limy oo SUD(, 5. cior AL f(z) — Af(x)] = 0. Due to
(I1.28) and (I1.30),

lim sup (AW f(s, ) — zzlvf(s,x)| =0

neo (s,z)€E,,s€[0,T]

for every function f belonging to the core D and each T' > 0. From
8, IV, Corollary 8.7] it follows that X" — X in Dz[0,00), hence
X® — X in Dg|0,00) as n — oo. O

Remark 11.6.1. Note that Z; has a discrete uniform distribution on
{0,...,k—2} and Z has a continuous uniform distribution on (0, 1),
since A = \.

Remark 11.6.2. Put v(k) := Ztll(k:—j)qm = Z?zz(j — 1)(];.))%’]- for
k > 2. Among dust-free A-coalescents that do not come down from
infinity the proof works for the Bolthausen—Sznitman coalescent due
to the asymptotics y(k)/k = logk — ¥(1) — 1+ O(k™!) as k — oo.
For other measures A the asymptotics of (k) /k might be difficult to
determine. In the proof of Proposition I1.2.2 the fact that A = X is
only used to verify (I1.33). Eq. (I1.37) holds true more generally for
finite measures A on [0, 1] with A({0}) = A({1}) = 0 and therefore
we wrote A and () instead of the Bolthausen—Sznitman coalescent’s
driving measure \.

I1.7 Proof of Theorem 11.2.3

In this section A satisfies Assumption A. We continue to use the
time-space setting and the notation of Subsection I1.6.1 with « re-
placed by a := a(t) := e t > 0. Define Ap := A — b\ and let
A7, A7 denote the nonnegative measures constituting the Jordan de-
composition Ap = A} — Aj of Ap. The decomposition of A into a
“Bolthausen—Sznitman part” b\ and a “dust part” Ap is transferred
to the jump rates and the generator. Proving Theorem I1.2.3 now
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only requires to suitable arrange equations already obtained in Sec-
tions I1.5 and I1.6. To be precise, the results of Section I1.5 are applied
to the summands A5 of Ap, but we omit this detail in the following.

Proof. (of Theorem I1.2.3) Let q,i‘, i q{jﬁ and q]gj’f denote the rates of
the block counting process corresponding to A\, A}, and A7, respec-
tively, and define q,fj = q,ﬁf — q,ﬁf for j € {1,...,k} and k € N.
Obviously, g ; = bq,ij + q,gj. Recall that k = k(s,z,n) = ¢*n®®) € N
for (s,z) € E, and n € N. From (I1.29) it follows that the “gener-
ator” A" of X = (Xt(m)tzo = (log Nt(n) — a(t)logn)ig is given
by
A f(z) = bR(k,x)f'(x) + bSps(k,x) + Sp(k,x),

(s,x) € E,,n € N, where

kE—1
R(k,x) := logk — %q,ﬁ’j —
j=1
k_l . .
Sps(k,x) = Y (flx+logi) — f(x) + 5L (2)ar,.
=1
B |
Sp(k,z) =Y (f(z+1log?) — f(2))at),
j=1

are defined as in (I1.31), (I1.32), (I1.22) and (I1.23) for £ € N and
r € R, and f € C1(R) such that f, f' € C(R). By Lemma II.3.1 and
Eq. (I.5), the generator A of X = (X})¢>¢ can be written as

Af(z) = b(1+0(1) = 2)f(x)

Fl@ +log(1 — w) — £(z) + uf'(z)
0.1 u

f(z +1og(1 —w)) — f(=)
0.1] u?
From (I1.33), (II.37) and (I1.24)-(I1.26) it follows that
WMy o0 SUD 1B sefo] \A(gn)f(x) — Af(z)] = 0 for f € D. Due
to (I1.28) and (I1.30),

lim  sup  |AWf(s,z) — Af(s,z)] = 0

nreo (s,z)€Ey,s€]0,T]

+ b

A(du)

_|_

Ap(du), zeR,feD.

for every f € Dand T > 0. By Proposition 11.9.6, the space D is a
core for A. Thus, it follows from [8, IV, Corollary 8.7] that X — X
in Dz[0,00), hence X™ — X in Dg[0,00) as n — oco. O
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I1.8 Proof of Theorem 11.2.4

In this section A satisfies Assumption A. The process YW =
(Y;(n))tzo = (log L§") — e logn)ssp is a possibly time-inhomogeneous
Markov process, depending on whether b > 0 or not, hence we set
up the time-space framework. We provide two proofs. Using Theo-
rem [1.2.3 and Siegmund-duality, in the first proof the convergence
of the one-dimensional distributions and subsequently the uniform
convergence of the semigroups is shown. The second proof, in which
the uniform convergence of generators is shown, resembles previous
ones.

Proof. (First proof of Theorem H 2 4) For x € R and ¢t > 0 define
m = [e?n®] € N. If g((—00 = f01 2 A(du) = oo, then
X; has a continuous distribution for every t > 0. Eq. (I[.2) and
Theorem I1.2.3 imply that

P > y) = P(L{" > m)
— ( m) < n) = P(X,; M) < logn — e log m)
— P(X; < —ey) = P(—"X, > y), (I1.38)

y € Rt >0, asn — oo. If «[[071] u 2 A(du) < oo, then the dust
condition is satisfied. Hence, b = 0 and (I1.38) holds true for —y in
the set C'x, of continuity points of X;. Since Y; 4 —eP X, with b =0,
lim,, 0 P(—Yt(n) < —y) =P(=Y; < —y) for every —y € Cx, = C_y,.
Thus, Yt(n) converges in distribution to Y; as n — oo for every ¢ > 0.

Define the time-space processes ym = (t,Yt(n))tZO, n € N, and
Y = (t,Y})=0. The processes Y™ and Y are time-homogeneous
Markov processes with state spaces E, = {(s,y) : s > 0,e¥n®" €
{n,n+1,...}} and E = [0,00) x R and semigroups (i(n))tzo and
(T})e=0. Define k := k(s,y,n) := e'n®" € {n,n+1,...} for (s,y) € E,
and n € N. Then

~

TV f(s.9) = BUf (s + 1Y) Y =)
= E(f(s+t,log Lgk) !+ Jogn))
= E(f(s+ ¢y +Y,)),
(s,y) € E, [ € B(E) € N. Fix ¢ > 0 and first let [ €

> 0,n
B(E) be of the form f(s,y) = g(s )h(y), (s,y) € E, where g €
B([0,00)) and h € C( ). Clearly, Tt f(s,y) = g(s + t)E(h(y +
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V"), (s.9) € Enn € N, and Tif(s.y) = E(f(s + £, Yo |Ve =
y) = g(s +)Tih(y) = g(s + t)E(h(e’y + Y;)), (s,y) € E, where the
distribution of Y; is defined by its characteristic function y;, given by
(IT.11). Note that A is uniformly continuous and bounded. For y € R
define the function h, : R — R via h,(x) := h(e’'y + z), € R. The
family of functions {h, : y € R} is equicontinuous and uniformly
bounded. From the weak convergence of Y;(k) to Y; as k — oo and
18, Theorem 3.1] it follows that limj . sup,cg |E(h(e"y + Y;(k))) —
E(h(ey + Y;))| = 0. Since k = e¥n®" > n for (s,y) € E, and n € N,
lim,, o0 5P, 5. [E(A(e"y + Y"™)) — E(h(e"y + ¥;))| = 0. Thus,

lim sup [T\ f(s,9) = Tif(s,9)] = 0. (I139)

T (s,y)eEn,

By linearity, Eq. (I1.39) holds for the algebra of functions f € B (E)
of the form f(s,y) = Zézlgi(s)hi(y), (s,y) € E, where | € N, g; €
B([0,00)) and h; € 6(R) for ¢ = 1,...,1. This algebra of func-
tions separates points and vanishes nowhere. According to the Stone—
Weierstrass theorem for locally compact spaces (see, e.g., [7]) it is a
dense subset of B(E). Hence, (I1.39) holds true for f € B(E). [8, IV,
Theorem 2.11] states that Y — VY in D3[0,00), hence YW — Y

in Dg[0,00) as n — 0. O

The process Y defined by (I1.10) and (II.11) is a generalized
Ornstein—Uhlenbeck process (with non-negative linear drift) as in
[22]. The underlying infinitely divisible distribution has characteris-
tic exponent v — ¥ (—v), v € R. According to [22, Theorem 3.1], D
is a core for the corresponding generator A and

Afly) = fy)(—a+by) (11.40)
" /[ (o= 1os(1 —) = f(3) ()" A

for y € R and f € D; comparatively see Lemma II.3.1 and its proof.
Proof. (Second proof of Theorem 11.2.4) The “generator” (AFS”)) s>0
of Y™ is given by
AP f(y) = —F'(y)be" logn
+ Y (flogj — e logn) — f(y) Vot
b

j>eyne’’
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for (s,y) € E, and n € N. Here f € Ci(R) such that f, f' € C( ).
Putting k := k(s,y,n) := e¥n” for (s,y) € E, and n € N yields

AP F(y) = bf'(y )(—logk+y>

+ Z (y +1og(1+ 1)) = fF(¥) ks

for (s,y) € E, and n € N. Define Ap := A—bX and let A}, A7, denote
the non-negative measures constituting the Jordan decomposition
Ap = A}, — Aj of Ap. Let 727 i fy,ffr and 7]?)]’._ denote the jump rates
of the fixation line corresponding to A\, A} and Ap, respectively, and
define %fj = ’y,ff — fy,g}_ for j € {k,k+1,...} and &k € N. Then
Vit = b%ﬁ,kﬂ- + 7£k+j7 kEeN,je Ny, and

A fy) = bf (y)R(k,y) + bSps(k.y) + Splk,y),  (IL41)

(s,y) € E,.n € N, where
k

R(k,y) := —logk + y + Z%%ﬁkﬂ,
j=1
Sps(k,y) = Y (fly+log(1+£) = F(u) = £y (D F W) ks
j=1
Sp(kyy) = > (fly+log(1+ ) = FW) ke

1

for k € Ny € R and f € Ci(R) such that f, f’ € 6(R) Using the
decomposition of A on Eq. (I1.40) yields

Af(y) = bf (y)(=1=¥(1) +y) + blps(y) + In(y),
y € R, f € D, where

Ins(y) = /[ (o= Tos(1 1) = 7(3) ~ ()~ N,
Iny) = /[ (= log(1 =) = f(6)u” Ap(aw

for y € R. Let f € D. In the Bolthausen-Sznitman coalescent,
’Vl/c\,kﬂ' = k/(j(j + 1)) for k,7 € N and hence Z?Zl %yéﬁﬂ. =
Z?:l(j + 1) = Hpqg — 1 =1logk —1—9(1) + o(1) as k — oo.
Here H; denotes the k-th harmonic number for k£ € N. Thus,

hm 8161%{3 |R(k,y) — (=1 —=V(1)+y)| = 0. (I1.42)

.
I
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The function hpg : [0,1] x R — R, defined via hps(u,y) =

u(fly —log(1 — ) = f(y) — 25112 f(y), w € 0,1,y € R,
is bounded. Let the random variables Z;, £ € N, have distribution
given by

P(Z = j) = (k”_Q

g—1

)/ W1 — W Adw), Gk EN,
0.1

, Zr — 1 has a mixed negative binomial distributi_on. Observe
that hes(L = (1+0)7hy) = (7)) (fly +log(1 + §) = f(y) -

jl[o N @), y € Ry and iy = (5) (1= (k+5) 7)1 = (G +
1)"YP(Z;, = j) for j,k € N. Hence,

Sps(k,y) = E(th(l—(lJer/k)_l,y)(l—k +1Zk> (I_Zkl—l— 1))

Let Z have uniform distribution on (0,1). Then Ips(y) =
E(hps(Z,y)) for y € R due to f[O,l] u(u — 21101/ (w)) A(du) =
f01/2 —(1—u)™? du+f11/2 u~tdu = 0. The function g : (0,00) — (0, 1),
defined via g(u) :=1— (14+u)™!, u € (0,00), is bounded and contin-
uous. Since Zy/k — Z/(1 — Z) in distribution as k — oo, 1 — (1 +
Zp k)t = g(Zy/k) — g(Z/(1 — Z)) = Z in distribution as k — oo.
In particular, the random variables have values in [0, 1]. When con-
sidering the limit k& — oo, the factor (1 — (k+ Zy) ™) (1 —(Z,+1)71)
has no influence on Sgg(k,y). From Lemma 11.9.4 it follows that

lim sup [Sps(k,y) — Ips(y)| = 0. (I1.43)
k=00 yeRr

The measure Ap is real-valued. Eq. (I1.44) below can be proven
when Ap is replaced by A} and A7 in this paragraph, and then
holds for Ap by linearity. The function hp : [0,1] x R — R, defined
via hp(u,y) = u™ (f(y —log(l — u)) — f(y)), u € [0,1],y € R, is
bounded. By assumption, ¢ := [, ju™ Ap(du) < co. As long as ¢ >
0, define the probability measure @ on ([0, 1], BN[0,1]) via Q(A) :=
_1 [iu P Ap(du), A € BN0,1], and let the random variables Zj,

k € N, have dlstrlbution given by

k — 1 .
P(Zs — j) ( " )Al]uf<1—u>k@<du>, JeNkEN,

e., Z has a mixed negative binomial distribution. Observe that
ho(1 = (1+4)7"y) = (fly +1og(1 + 1)) — f(v))* L, y € R, and
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Vs = (1= (1+ ) )P(Z; = j) for j, k € N. Hence,

Sp(k,y) = Z (y + log(1 + ) f(y))7£k+j

= E(hp(1— (1+ Z/W ) (- 1+ Z)7),

k € N,y € R. Let the random variable Z have distribution (). In
particular, Ip(y) = cE(hp(Z,y)), y € R. According to Lemma 11.9.4
and since 1 — (14 Z;/k)~! converges in distribution to Z as k — oo,

lim sup [E(hp(1 — (1+ Ze/k) ", y)) ~ E(hp(Z,9))| = 0.

Thus,
lim sup |Sp(k,y) — Ip(y)] = 0. (I1.44)

Note that Eq. (II.44) holds true for ¢ = 0 as well. N
Taking into account that k = eVn®” > n for (s,y) € E, and n € N,
Egs. (I1.41)-(I1.44) imply

lim sup |A{f(y) — Af(y)| = 0.
n—oo ~
(s,y)EE,

The time-space variant of [8, IV, Corollary 8.7] as implemented in
the proof of Theorem I1.2.3 yields the desired convergence of Y™ to
Y in Dg[0,00) as n — oo. O

I1.9 Appendix

Lemma I1.9.1. Suppose that A satisfies Assumption A. Then the
following statements hold.

(a) b =lim. o, e 1A((0,€)).
(b) The A-coalescent does not come down from infinity.

Proof. a) If the condition f[o 1 u~! A(du) < oo for dust is given, then
Assumption A is satisfied with b = 0 and, by dominated convergence,
A((0,¢))

g/ uw P A(du) — 0, e—0+.
< (0,¢)

Hence, a) holds for coalescents with dust. Now suppose that A satis-
fies Assumption A. Define Ap := A — b\ and let A} and Aj denote
the nonnegative measures constituting the Jordan decomposition
Ap = A5 — Ap of Ap. By assumption and the first part of the proof,
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lim. 04 e A5 ((0,€)) = 0. From the decomposition A = bA+A},—A},

it follows that
A((0 A5 ((0 A5 ((0
(02D _ 4, A(O0.9) Ap(©2)
5 £ £
b) Let |Ap| = A} + A, denote the total variation of Ap. Define
nh =k Z?;g 0 1](1 — u)? A(du) and n?* and n' ol similarly with bA

and |Ap| in place of A for £ > 2. By assumption,

lim &~lpt?l — / vV Ap|(du) < oo.
0.

k—o0

From

k—2 1
(klogk)™'nt = b(logk)—lz/ (1 —u) du
j=0 "0

k—2
= b(logh)' > (j+1)7" = b, k— oo,
j=0

it follows that nbun,‘ﬂAD' ~ bklogk as k — oo. Due to A < bA+|Ap],
it holds that 7 < n* + 17;{ ol for k> 2. Hence,

ST =Y M) =
k=2 k=2

The claim b) then follows from Schweinsberg’s criterion [23, Corollary
2]. O]

Remark 11.9.2. Any converse statements of Lemma I1.9.1 do not hold:
neither a) nor b) nor a) and b) together imply that Assumption A
holds, which can be seen by looking at the measure A having density
f with respect to Lebesgue measure given by f(u) := (—logu)~! for
0 <u<1/2and f(u):= 0 otherwise.

The following lemma is a generalization of the integral criterion
of convergence in distribution and is applied in Sections II.5-11.8 to
prove the uniform convergence of generators. In the statement the
notion of equicontinuity is used, whose definition is first recalled.

Definition I1.9.3. A family F' of functions f : F — R on a metric
space E with metric d is called equicontinuous if for every ¢ > 0
there exists § > 0 such that |f(z) — f(y)| < € for all f € F and
x,y € E with d(z,y) < §. The family F is called equicontinuous on
a subset V' C F if the family {f|, : f € F'} is equicontinuous. Here
f|v denotes the restriction of f to V.
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Lemma I1.9.4. Let X, Xy, Xo,... be random variables on a prob-
ability space (0, F,P) with values in [0,1] such that P(X = 0) =
P(X =1) =0 and X,, — X in distribution as n — 0o. Suppose
that the family F of functions f :[0,1] — R is uniformly bounded on
[0,1], d.e., M 1= supepsup,epq | f(7)] < 00, and equicontinuous on
[0, 1 = 0] for every 0 < 6 < 1/2. In particular, f € F is bounded and
continuous on (0,1). Then

lim sup [E(f(Xn)) — E(f(X))] = 0.
Proof. Let ¢ > 0 be arbitrary. The assumption P(X = 0) = P(X =
1) = 0 and the convergence of X,, to X in distribution as n — oo
provide the existence of 0 < § < 1/2 and ny € N such that P(X,, ¢
(0,1 —6]) <e/(4M) for n > ny and P(X & [§,1 —0]) < e/(4M). For
f € Fdefine f : [0,1] = Rvia f(u) :== £(6),0 < u <8, f(u) == f(u),
§<u<1-¢ and f(u) = f(1—6),1—6 <u<1. Then {f: f e F}
is bounded (by M) and equicontinuous on [0, 1]. [18, Theorem 3.1]
yields ) 3

lim sup [E(f(X,.)) — B(F(X))| = 0.

n—oo fEF

From

E(£(X,) = BUCO) < E(f(X) - FOX))
+ [E(f(Xn) —E(f(X)] + E(f(X) = F(X)])
< 2MP(X, € [6,1 —6]) + 2MP(X & [5,1— 6])
+ [E(f(Xa) —E(f(X))l,  neNfeF,

it follows that lim,, o supep [E(f(Xn)) —E(f(X))| < e. Since e > 0
is arbitrary, the proof is complete. ]

Remark 11.9.5. In [18, Theorem 3.1] the state space is more generally
a separable metric space, but equicontinuity of F' is required to hold
on the whole state space.

Let E be a complete separable metric space and equip E =
[0, 00) x E with the product metric. The following proposition treats
the generator of time-space processes of time-homogeneous Feller
processes.

Proposition I1.9.6. Suppose that (T)¢>0 is a Feller Semigroup on
C(F) with generator A and that D is a core for A. For f € C(E)
and s € [0,00) let wf(s,x) denote the function x — f(s,x), x € E.
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The semigroup (iﬁ)tzo, defined via
T,f(s,z) = Tyrf(s+t,x), (s,z) € E,f € B(E),t >0,

is a Feller semigroup on 6( E). Let D denote the space of functions
f e C(E) of the form f(s,z) = S gi(s)hi(z), (s,z) € E, where
l € Nh; € D and g; € C1(]0,00)) such that g;, g, € 6([0,00)) for
i=1,...,1. Then D is a core for the generator A of (Tt)tzo and

Af(s,z) = %f(s,a:) + Anf(s,z), (s,z) € E, f € D. (11.45)

Proof. Observe that all functions involved in the proof are bounded
and uniformly continuous. Clearly, the right-hand side of (I1.45) lies
in C(E). The core D is a dense subset of C(FE 7). Hence D is a
dense subset of the space Dy of functions f € C(E) of the form
fls,z) = S0 gi(s)hi(x), (s, z) € E, where | € N, h; € C(E) and
gi € C([0,00)) for i = 1,...,1. The algebra Dy separates points and
vanishes nowhere. The Stone-Weierstrass theorem for locally com-
pact spaces (e.g. [7]) ensures that Dy is a dense subset of C (E). In
[7] the theorem is stated for complex-valued functions, but it remains
true for real-valued functions. To see this, let f € C(E) C C(F,C) be
arbitrary. By the theorem, there exist a sequence (ky)pen € C(E, C)
such that lim,_« ||k, — f|| = 0. Then f, := Re(k,) € C(E), n € N,
and || f,— f|| < llkn— f|| = 0 as n — oo. Thus, D is a dense subset of
C(E)aswell. Ifh € D and g € Cy([0, 00)) such that g, ¢’ € C([0, 00)),
then

Tig(s)h(x) = g(s)h(@)) = 7 (g(s +1) = g(s))h(x)
+ g(s + )t (Tih(x) — h(z))

converges uniformly in (s, ) € E to ¢'(s)h(z)+g(s)Ah(z) as t — 0+,
thus D lies in the domain of A and (I1.45) holds true. By the same
argument as above, the space D; of functions f € C(F) of the form
F(5,2) = Sy gi()hi(z), (5,2) € E, where gi(s) = c;exp(—ais),
€ [0,00) with ¢; € R and a; > 0 and h; € D for i = 1,...,1,
is a dense subset of G(E) By Hille-Yosida theory (see, e.g., [8, I,
Proposition 3.1]) it now suffices to show that the image of AI — A 5
is a dense subspace of C( ) for some A > 0 in order to prove that
D is a core for A. Here I denotes the identity map on C(E) o
5( E). Let ¢ > 0 and f € C( ) be arbitrary. By density of D; in
C(E), there exists f; € D; of the form fi(s,z) = S gi(s)hi(),
(s,x) € E, such that ||fi — f|| < /2. Since D is a core for A, the
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image of A\I — A|p is a dense subset of a(E) for every A > 0, in
particular for A\ + a; in place of A\. Hence, there exists r; € D such
that ||(A+a;)r; — Ar; — h|| < e/(21]]g;||) for i = 1,...,1. Clearly, the
function (s, x) — Zi:l gi(s)ri(z), (s,z) € E, belongs to D and, by
(I1.45),

l
(AT = 4) Zgi(S)Tz(SU) — f(s,2)|

l l

< N =A) Y gils)ra@) = Y gl + 11/ = £

i=1 =1
l

< Ngi((A+ai)ri — Ari — b)) +€/2 < e

i=1
In the second last step it is used that ¢i(s) = —a;gi(s), s € [0, 00),
forv=1,...,l. Since € > 0 is arbitrary, the proof is complete. H

Remark 11.9.7. The last part of the proof of Proposition 11.9.6 can be
simplified under the additional assumption that T;D C D for every
t > 0. Then T,D C D for every t > 0 and the claim follows by
applying the core theorem [8, I, Proposition 3.3].
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Article 111

Scaling limits for a class of
regular =-coalescents

Mohle, M. and Vetter, B. (2023) Stochastic Process. Appl.
162, 387-422.

Abstract.

Let Nt(n) denote the number of blocks in a Z-coalescent restricted to a sample of
size n € N after time ¢ > 0. Under the assumption of a certain curvature condition
on a function well known from the literature, we prove the existence of sequences
(v(n,t))nen for which (log Nt(") —logwv(n,t))i>0 converges to an Ornstein—Uhlenbeck
type process as n — oo. The curvature condition is intrinsically related to the behavior
of = near the origin. The method of proof is to show the uniform convergence of the
associated generators. Via Siegmund duality an analogous result for the fixation line
is proven. Several examples are studied.

Keywords: Block counting process; fixation line; Ornstein—Uhlenbeck type process;
regular coalescent; simultaneous multiple collisions; time-inhomogeneous process;
weak convergence

2020 Mathematics Subject Classification: Primary 60J90 Secondary 60J27

II1.1 Introduction

Exchangeable coalescents are continuous-time Markov processes tak-
ing values in the space P of partitions of N := {1,2,...}, where
blocks merge over time. Their distribution is determined by a finite
measure = on the infinite simplex A := {(uj,us,...) : uy > ugy >
oo >0,> 5w < 1}, Coalescents can be constructed from appro-
priate Poisson point processes (Schweinsberg [31]), which allows to
identify the class of exchangeable coalescents with the class of finite
measures = on A. In the Cannings model [6, 7], a discrete-time hap-
loid population model with non-overlapping generations and finite,
constant population size, individuals of the same generation follow
an exchangeable reproduction law, independently of the other gener-
ations. Start with a sample of individuals in one generation and put
members into the same block when they have a common parent one
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generation in the past. We obtain a discrete-time partition-valued
ancestral process by merging individuals who share a common an-
cestor when going backwards further in time, and the coagulation
of ancestral lineages corresponds to the merging of blocks. Under
suitable conditions exchangeable coalescents then arise as the weak
limit of these ancestral processes, properly time-scaled, as the total
population size tends to infinity, since a certain form of consistency
relation holds for Cannings models, see [26].

Most coalescents treated in the literature belong to one of the
following subclasses. The coalescent (I1;);>¢, starting from an infinite
number of blocks, is said to come down from infinity if the number of
blocks is finite at all times ¢ > 0 almost surely, and it is said to stay
infinite if the number of blocks is infinite at all times ¢ > 0 almost
surely. For coalescents with dust the number of original blocks that
have not been involved in any merger up to time ¢ > 0 is infinite
with positive probability. Schweinsberg [31] determined conditions
to decide on the schemes.

Let A be a finite measure on the unit interval [0,1]. The A-
coalescent, which allows only for multiple but not for simultaneous
multiple mergers of ancestral lineages, is the particular =-coalescent,
where the measure = on A is concentrated on [0, 1] x {0} x {0}---
with Z(B x {0} x {0} x ---) := A(B) for all Borel sets B C [0, 1].

Suppose that (I1;);>¢ is standard, i.e., Iy is the partition of N into
singletons. For ¢ > 0 and n € N the restriction H ={BN[n]: B €
II;, BN[n| # 0} of II; to [n] :={1,...,n} has Values in the space P, of
partitions of [n]. Suppose that I1(") := (Hin))tzo is in a state with k €
[n] blocks. For j > 1, k; > --- > k; with ky +---+k; = k and k) > 2

we speak of a (ki,...,k;)-collision when I jumps to a state with
J blocks and ki, ..., k; blocks merge into single blocks, respectively.
Next we introduce some standard notation. Define |u| := .., u; and

(u,u) == > .o u? foru € A, 0:= (0,0,...) € A, a := =({0}), and
the measures = and v via Z = agg + Zo and v(du) := Zg(du)/(u, u).
A (ki,...,kj)-collision, j € N, k; > --- > k; with k; > 2, occurs at
the rate (Schweinsberg [31])

Gj(k1, ... ki) = alf—yp—2

/ ZOH“\ > v(du),

i i
where s :=[{i € [j] : k; = 1}| and r := j — 5.
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The aim of this work is to analyze the block counting process
N = (N")29 := (]I |);0 for large initial state, more precisely,
to determine scaling functions v(n, t) for which Nt<n) /v(n,t) converges
in distribution as n — oo. For coalescents with dust it is proven in
[14] and [25] with different methods that (Nt(n) /n)i>p converges in
the space Dy 1)[0,00) of cadlag paths endowed with the Skorohod
topology to the so-called frequency of singletons process as n — oc.
The Bolthausen—Sznitman coalescent in which the driving measure
A is the uniform distribution on [0, 1] has been thoroughly studied
in the literature and is an example of a dust-free A-coalescent that
stays infinite. Goldschmidt and Martin [16] and Baur and Bertoin [1]
proved for every ¢ > 0 the almost sure convergence of Nt(n) /nf " as
n — oo. This almost sure convergence follows from the construction
of the Bolthausen—Sznitman coalescent as clusters of path-connected
vertices in a random recursive tree by removing edges at random
as time evolves. In [24], it is shown via exact moment calculations
that (an)/ne*t)tzo converges in Djy [0, 00) as n — oo. In [27], the
authors obtain the convergence of the scaled block counting process
in the Skorohod space for a more general class of A-coalescents, where
A is essentially a beta distribution with parameters 1 and b > 0.

We extend the results of [27] not only to a larger class of A-
coalescents but even to a large class of =-coalescents. Our key as-
sumption (IIL.5) covers the class of A-coalescents treated in [27], as
shown in Section I1.4. The coalescents treated in this paper stay in-
finite, most coalescents with dust are included but many dust-free
coalescents are covered as well. The key assumption (II1.5) involves
a certain rate function v known from the literature, which roughly
speaking describes the expected size of a jump of the block count-
ing process. The main result (Theorem II1.2.7) states that, for a
properly chosen scaling v(n,t), the process (log Nt(n) —logwv(n,t))o
converges in Dg[0,00) as n — oo to an Ornstein—Uhlenbeck type
process. For information on Ornstein—Uhlenbeck type processes we
refer the reader exemplary to [30].

The work of Limic [21] is concerned with the small-time behavior
of the block counting process (IVi);>o := (|I¢])i>0 of Z-coalescents
(I;);>0 that come down from infinity. See also [2] and [22] for A-
coalescents. Under the regularity condition (cf. [21, Eq. (R)])

/|u|2u(du) < 00, (ITL.1)
A
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a speed v(t) of coming down of infinity is defined for which N;/v(t)
converges almost surely as ¢ — 0+. The scaling v(n,t) in our main
convergence result (Theorem I11.2.7) is defined similarly to the speed
v(t).

The fixation line (L;);>¢ has been introduced for A-coalescents by
Hénard [18] and further studied in [14] for =-coalescents. It can be
characterized as the Siegmund dual [32] of the block counting process
satisfying ([14, Theorem 2.9])

P(LI™ >n) = P(N™ <m),  m,neN,t>0, (I11.2)
where the upper indices denote the initial states L(()m) = m and

Né”) = n, respectively. Theorem III.2.10 states the convergence of
the fixation line in the Skorohod space after suitable scaling.

The paper is organized as follows. The results are presented in Sec-
tion II1.2. In Subsection III.2.1 the function v and the key assump-
tion (II1.5) are treated. The scaling v(n,t) is defined in Subsection
IT1.2.2 and certain properties of the scaling are collected. In Subsec-
tion II1.2.3 the block counting process is revisited and the main con-
vergence result is stated. Subsection II1.2.4 provides the analogous
convergence result for the fixation line. Subsection III.2.5 summarizes
the obtained convergence and duality results in non-logarithmic form.
Several illustrating examples are provided in Section II.4, including
an example which clarifies the relation to the results in [27] for a
class of A-coalescents and including examples of =-coalescents with
discrete measure =. The proofs are provided in Section III.4 in the
order of appearance of the respective results. The approach to prove
the main convergence result is to show the uniform convergence of
the associated infinitesimal generators.

II1.2 Results
I11.2.1 The rate function v

The following function v has been proven to be of great significance
to the study of coalescents, see [19] and, although in different form,
[21] for =-coalescents, and [2, 9, 10, 22] for A-coalescents. Define
v :[0,00) = R via

y(x) = a<§> + /AZ (1 —w)" =14 zu)v(du),  (1IL3)

1>1
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for x > 0. The main reason why the function v is so important to
the study of exchangeable coalescent processes is the fact that, if the
coalescent is in a state with k£ € N blocks, then (see the forthcoming
Eq. (II1.14)) ~(k) is the expected rate of decrease of the number
of blocks. The properties of v collected in the following lemma are
essentially known from the (above cited) literature.

Lemma II1.2.1. Let v be defined by (I111.3). Then v(0) = ~(1) = 0.
Moreover, y(z) > 0 for x > 1, y(z) < xz(z — 1)(a/2 + Zy(A)) for
x> 2, and v € C((0,00)) with derivative

v (z) = a(x—%) + /AZ((l—ui)xlog(l—ui)+ui)1/(du), x>0,

1>1

and higher derivatives

. k
F(z) = abps + / D (1= ;)" (log(1 — u;)) " v(du),
A >
x> 0,k € N\ {1}, where 6, denotes the Kronecker symbol. The mayp
x — y(x)/x is strictly increasing on [1,00). In particular, the map ~y
is strictly increasing on [1,00).

We now introduce a parameter which will turn out to be of fun-
damental interest for our purposes. Define

k= lim 279" (x) € [0,00] (I1.4)

T—00

whenever this limit exists in [0, oo]. In this case we call k the asymp-
totic curvature of v or simply the curvature parameter of the underly-
ing =-coalescent. Proposition 111.2.3 shows that (I11.4) is intrinsically
related to the behavior of the measure = near 0 € A. In Section III.3
the curvature parameter  is computed for several examples.

Let us briefly comment on the coming down from infinity (cdi)
property of the coalescent. Some important coalescents, for example
all beta coalescents (see Example II1.3.1) and all NLG-coalescents
(see Example I11.3.2), come down from infinity if and only if x =
oo. Note however that, in general, neither k = oo implies cdi (see
Example 111.3.5) nor cdi implies k = oo (see Example 6.1 b) of [19]).

Lemma II1.2.1 implies that, up to multiplicative constants, v(x)
lies for all sufficiently large x in between z and z(z — 1). The key
assumption (IIL.5) of our convergence theorem (Theorem II1.2.7) is
a more precise condition for the growth of v(z), see (II1.6), and can
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be compactly stated in terms of the curvature of v as follows.
The limit x in (II1.4) exists and is finite. (IIL.5)

Using Lemma II1.2.1 it is easily seen that (III.5) implies that a :=
=({0}) = 0. In particular, (IIL.5) excludes the Kingman coalescent.
We will see in Section I11.2.3 that the assumptions of Theorem II1.2.7
exclude all coalescents that come down from infinity and only covers
coalescents that stay infinite. If Assumption A of [27] holds with
r := b, then (II1.5) holds, showing that all convergence results of [27]
are covered by the following convergence theorems.

The following Proposition II1.2.2 provides several conditions, each
being equivalent to the key assumption (II1.5). The proof shows that
Proposition I11.2.2 holds for any function v € Cs((0,00)) such that
~" is non-negative and ultimately non-increasing.

Proposition 111.2.2. The following five conditions are equivalent.

(1) Assumption (IIL.5) holds, i.e., the limit k = lim, o 7" (z) ex-
i1sts and is finite.

(i) iy oo (7 (2) = 1(2) /) = 5.
(iii) There exists a function L : (0,00) — (0,00) being slowly varying

at oo such that

M = klogzx + log L(x), x > 0. (IT1.6)
x

(v) For all y > 0 the limit d(y) = lim,_o(v(yz)/(yx) — v(x)/x)
exists and d(y) = klogy.

(v) lim, o0 (7 (yz) — ' (x)) = Klogy for all y > 0.

Remarks.

1. Assume that the coalescent has dust. Equivalently,
lim, o0 y(x) /2 = [, |ulv(du) = p < oo. Thus, (III.6) and,
hence, all conditions of Proposition II1.2.2 hold with x = 0 and
a slowly varying function L satisfying lim, ., L(z) = e < oo.
Note however that there exist dust-free coalescents (even A-
coalescents) which satisfy x := lim,_,o 27" (x) = 0. We refer the
reader to Examples I11.3.2 and III.3.3 in Section III.3.

2. The characterization theorem for regularly varying functions [4,
Theorem 1.4.1] implies that the limit d(y) in Proposition I11.2.2
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(iv) is necessarily of the form d(y) = klogy, y > 0, for some Kk €
R, if it exists, and due to lim,_,o y(x)/2z = [, |u|v(du) € [0, c0],
only x > 0 can occur.

3. In the terminology of [4, Section 3], the function +' is a de Haan
function with 1-index k.

Proposition II1.2.2 provides conditions being equivalent to the key
assumption (IIL.5). However, all these conditions involve the rate
function ~y. Proposition II1.2.3 below provides two additional equiv-
alent conditions of assumption (II1.5), which do not involve the rate
function v anymore and are instead more directly stated in terms of
the measure = of the coalescent and hence more intuitive to under-
stand. Proposition II1.2.3 essentially shows how (II.5) is related to
the behavior of the measure = near the point 0 € A. In order to state
the result, let us introduce the functions F, Fy, Fy,...: [0,1) — [0, 00)
and G,G1, Gy, ... [0,1] — [0, 00) via

E(t) = / o) (ur)(log(1 —wi)? v(du), i€ N,t€0,1),

F(t) = /Zlot u;)(log(1 — u;))*v(du), t € [0,1),

z>1 1>1

Gi(t) = / Lo (wi)uf v(du), ieN,te|0,1],

G(t) = /Zlot wy)u? v(du), te0,1].

z>1 1>1

(I1L.7)
Note that F;(0) = G;(0) = 0 for all i € N and, hence, F'(0) = G(0) =
0. For every ¢t € (0,1) there exists a constant C; € (0,00) (choose,
for example, C; := (—log(1 —1t))/t) such that —log(1 —z) < Cyx for
all x € [0,t]. Applying this inequality with z := u; < t yields

Ey(t) /21(” u;)(—log(1 — u;))? v(du)

i>1
< CQ/Zlot ui)u? v(du)
1>1
< C /Zu v(du) = CIE(A) < oo.
1>1

Obviously, G;(t) < < [y > uiv(du) = E(A) < oo. From
u; < —log(l — u;) we conclude that G;(t) < Fj(t) for all i € N and
0,

t € [0,1) and, hence, G(t) < F(t) for all t € [0,1). Moreover, the
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functions F, G, F1, Gy, I3, Go, . .. are non-decreasing, hence Riemann
integrable.

Proposition I1I1.2.3. Let = be a finite measure on A and let k

be some constant in [0,00). Then the following three conditions are

equivalent.

(1) Assumption (I11.5) holds, i.e., the limit k = lim,_,o, 27" (x) exists
and 1is finite.

(ii) limy_yoy 7 F(t) = k. (ii) limy o+ t'G(t) = k.

In particular, for A-coalescents, (I11.5) is equivalent to

. A([0,1])
tl_l)IOIEFT = K. (IIL.8)

Relation (II1.8) already appears in Lemma 9.1 of [27], but its im-
portance was not (fully) discovered there.

I11.2.2 The scaling function

Define v : [1,00) x [0,00) — [1,00) (implicitly) via
“od

v(l,t) == 1 and / el

v(z,t) 7(“)

The following two propositions clarify the existence of v and provide

=t  x>1t>0  (1L9)

basic properties of v with an emphasis on coalescents with dust,
coalescents that come down from infinity and coalescents that satisfy
the key assumption (IIL.5).

Proposition 111.2.4. For each x > 1 and t > 0, the solution
v(x,t) € (1,x] to the integral equation in (111.9) exists and is unique.
Moreover, v € C1((1,00) X [0,00)) with

(I11.10)

G0 = @), o = 20

x > 1,t > 0. For every x > 1 the map t — v(x,t), t > 0, is
non-increasing and for every t > 0 the map x — v(x,t), x > 1, is
non-decreasing.

Remark. If the coalescent is in a state with & € N blocks, then (k)
is the expected rate of decrease of the block counting process. The
choice of the scaling v(z, t) then becomes plausible as, for each x > 1,
it is the solution to the initial value problem

Cowt) = @ n), 120 w@0) = @
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Proposition II1.2.5. Let v be defined by (I111.3) and let v be defined
by (I11.9).

(1) If the coalescent has dust, i.e., a := Z({0}) = 0 and p :=
[s lulv(du) < oo, then v(z,t) ~ ze ™ as @ — oo for every
t>0.

(it) Suppose that [ (y(u))™' du < oo for some (and hence all) ¢ > 1.
Then, for every t > 0, the solution v(t) € (1,00) to the equation

/ % — ¢ (II1.11)
NOMASY

exists and lim, o v(x,t) = v(t).

(111) Suppose that (II1.5) holds. Then, for every t > 0, there exists a
slowly varying function Ly : [1,00) — (0,00) such that v(z,t) =
x¢ " Ly(x) for all x> 1.

Remarks.

1. If the coalescent has dust, then, as n — oo, N™ /n converges in
Dip11[0, 00) to the so-called frequency of singletons process [14],
so (v(n,t))nen as in (i) is a reasonable scaling sequence for the
block counting process.

2. For regular :—coalescents that come down from infinity the in-
tegral [°( ~ldu is finite for all ¢ > 1. The function v(¢)
defined by (IH 11) is the “speed of coming down from infinity”
as defined in [21], although with a slightly different function ~.
See also [2] and [22].

3. The finiteness of the integral [ (y(u))~'du can be viewed as
a Grey’s condition for the Z-coalescent. Grey’s condition orig-
inally stems (see [17, 33, 34]) from the study of continuous-
state branching processes with the function v replaced by the
branching mechanism of the considered branching process. For
A-coalescents the rate function « itself is the branching mecha-
nism of a continuous-state branching process.

As seen in Lemma I11.2.1, the asymptotic growth as x — oo of ()
is at least of order z. Part (i) of the following proposition shows that
altering v additively by a function of asymptotic order smaller than x
asymptotically does essentially not change the scaling function v(., t).
In Part (ii), the slowly varying function L; of the scaling function is
asymptotically calculated for a special case.
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Proposition III.2.6. Let v and v(z,t) be defined by (I111.3) and
(I11.9), respectively, and suppose that (I111.5) holds.

(i) Assume that there exists a continuous function ~, : (1,00) —
(0,00) such that (y(z) — n(x))/zr — 0 as v — oo. Then, for
each t > 0, there exists xo(t) > 1 such that the scaling vi(x,t),
defined by the integral equation in (I11.9) with ~v1 in place of 7,
exists for all x > xo(t). Moreover, v(z,t) ~ vi(z,t) as x — 0.

(11) According to Proposition II1.2.2, ~ satisfies (I111.6) with k €
[0,00) and a slowly varying function L : (0,00) — (0,00). If
L(z) — C as x — oo for some constant C' > 0, then, for
each t > 0, v(z,t) ~ 2¢"C 0= g5 2 — oo if K > 0
and v(x,t) ~xC " asx — o0 if Kk = 0.

Remark. Assume that the coalescent has dust or, equivalently, that
po= lim, o y(x)/x < oo. Then v satisfies (II1.6) with x = 0.
Thus, L(z) = ¢'@/* and, hence, lim, ,o L(z) = e* € [1,00). By
Proposition II1.2.6 (ii), v(x,t) ~ xe " as & — oo for all ¢ > 0,
which also proves Proposition I11.2.5 (i). For dust-free coalescents,
lim, o v(z,t)/x =0 for all £ > 0.

II1.2.3 Results concerning the block counting process

Let n € N. The block counting process (Nt(n))tzo with initial state
Nén) = n jumps from state k € {2,...,n} tostate j € {1,...,k—1}
at the rate (see [13, Eq. (1.3)] or [14, Proposition 2.1])

L J
Akj = Q(Q) Lyjmp-1y + /Akaji(U)l/ du
i=1

where
k!
frji(u) = > —[uly" > W)
Y
Ky k€N (7 = )hal - loo ;€N
kit tki=k—j+i ll<"'<li

forie{l,...,j} and u € A.

From the Poisson point process construction of the coalescent it
follows that the jump rates of the block counting process can be de-
scribed in terms of an urn model as in [23] as follows. Fix u € A
and partition the interval [0,1) into “urns” Jy, Ji,... of lengths
uy = 1 — |ul|,uy,us, ..., e, Jy = [0,up), J1 := [ug,up + u1), Jo :=
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[ug + w1, up + ug +us) and so on. The “balls” 73, Zs, ... are i.i.d. ran-
dom variables, where Z; has an uniform distribution on [0,1). Let
Xi(k,u) := Zle 1{z,—i) denote the number of balls in urn ¢ € Ny :=
{0,1,...} after & € Ny throws. Note that

Y(ku) = Xo(k,u) + Z LeX, (ku)>0} (111.12)

i>1

k € Nyu € A, is the sum of the number of balls in urn J, and the
number of all other occupied urns. Then

G — a(§)1{j:k_1} + /A POY (h,u) = ) v(du),  (TTL13)

j,k € N, 5 < k. This representation of the jump rates will turn out
to be crucial to the proof of the main convergence result (Theorem
[11.2.7). Relation (I11.13) also provides further insight into the func-
tion . For example, by (II1.13), for all k£ € N,

k-1

Z(k — )k = a(é) + /AE(/C —Y(k,u))v(du) (III.14)
= a(lg) + /A (k—k(1—|u]) - ZZ;(l — (1= up)")v(du) = y(k).

Thus, if the block counting process is in state k € N, then (k) =

Zf;ll(k — J)qr; is the expected rate of decrease of the block count-

ing process. Lemma II[.5.2 provided in the appendix shows that
Y(k,u)/k = 1 — |u| =: up almost surely as k — oo for every u € A.

Define A* := {u € A : |u] = 1}. Assume that v(A*) = 0 and that
the regularity condition (II1.1) holds. Define the function ¢ : R — C

via
W(z) = / (1= [ul) — 1+ izju))(dw), xR (IIL15)

A
Note that (III.1) ensures that ¢(x) € C. Define the transformation

g: A\ A" — (—00,0) via g(u) :=log(1 — |u|) for all u € A\ A* and
let ¢ := v, denote the image measure of v under g. Then,

P(x) = /(oo,()) (™" —1+1dz(1 —€))o(dt)

, ¢
= z:z:/(_ooo) (1—€t+ 1+t2>@(dt)

: t
+/( ) (6””5—1—z'x1+t2)g(dt), r € R.
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Thus, v is the characteristic exponent of an infinitely divisible dis-
tribution. The regularity condition (III.1) is required for ¢ := v, to
be a Lévy measure. In the following, for ¢ > 0, S; denotes a random
variable with characteristic function ¢;, given by

() = exp (/ Ye ™ ), reR,t>0, (III.16)

where 1) is defined by (II1.15) and x € [0,00). Note that i) can be
recovered from the values ¢;(z), x € R, t > 0, namely, for any = € R,
Y(z) = tHogg(x) if Kk = 0 and Y(z) = —limt_m%log ot (x) if
0 <K < o0.

The limiting process X arising in the main convergence result
(Theorem II1.2.7 below), whose distribution is determined through
its semigroup (T7%);>0 via (I11.16) and (II1.17), belongs to the class
of Ornstein—Uhlenbeck type processes [30]. The semigroup (77%)i=o
belongs to the class of generalized Mehler semigroups (see [5]), since
Grys(x) = di(e"x)ps(x) for x € R and s,t > 0. Clearly, (T)i=o
is a Feller semigroup on 6(1@), the space of continuous functions
f : R — R vanishing at infinity.

Theorem I11.2.7. Suppose that = satisfies (I11.1) and Z(A*) =0
Let v be defined by (I11.3) and suppose that (IIL.5) holds, i.e., the
limit k = lim, o xv"(z) € [0,00) exists. Moreover, let the scal-
ing v(n,t) be defined by (111.9). Then the logarithmically scaled block
counting process (log Nt(n) — logwv(n,t))>o converges in Dg|0,00) to
X asn — oo, where X = (X})i>0 is an Ornstein—Uhlenbeck type pro-
cess with state space R, initial value Xg = 0 and Mehler semigroup
(T7)i=0 given by

T f(2) = E(f(Xad)|Xs = 2) = E(f(e ™™z +5y)),  (NL17)

ke Nyu € A, with the distribution of S; defined via its characteristic
function (111.16).

Remark. For results on the generator AX of the limiting process X
arising in Theorem I11.2.7 we refer the reader to (II1.33).

Remark. The limiting process X in Theorem III.2.7 determines the
distribution of .S} (i X;) and, hence, the values (I11.16) of its charac-
teristic function ¢, which in turn determines the function ¢ defined
via (II1.15). In general it is however impossible to recover from 1 the
original measure = of the underlying coalescent.
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Remark. (stationary distribution) Under the assumptions of Theorem
[11.2.7 an application of [4, Theorems 4.1 and 4.2] yields the following.
If

/ loglog(1 — |u|) "t v(du) < oo, (III.18)
{ueA:ju|>e}

for some ¢ € (1 — e 1, 1), then X; converges in distribution as
t — oo to the unique stationary distribution p of X, where pu is
self-decomposable with characteristic function ¢ given by ¢(x) :=
exp( [, ¥(e "z)ds), € R. If (IIL.18) does not hold, then the pro-
cess X has no stationary distribution. For A-coalescents, this remark
remains valid if in Eq. (II1.18) the measure v is replaced by A.

Remark. If (IIL5) and, hence, (IIL.6) holds, then [ (y(u)) ™ du = oo
for some (and hence all) ¢ € (1,00). For ¢ € (0, 1) define A® := {u €
A :|u] <1 —¢}. Further, define Ay :={u e A:uy +... +u, =
1 for some n € N}. Under the regularity condition (III.1) it holds
that (A\A®) < coforalle € (0,1) (see [21, p. 229]). Due to =(Ay) =
0, the coalescents covered by Theorem I11.2.7 hence stay infinite [31,
Proposition 33]. In other words the coalescents covered by Theorem
[11.2.7 either have dust or they have no dust and are not coming
down from infinity. A schematic representation of the space M(A)
of all finite measures = on (A, B(A)) is provided in Figure IIL.1.
In this representation, M(A) is equipped with the topology of weak
convergence, i.e., =, — = as n — oo if and only if lim,, fA fd=, =
) A J d= for all continuous functions f : A — R. Note that, since A
is compact, all continuous functions f : A — R are bounded and
uniformly continuous. The space M(A) is metrizable, for example

via the metric
/fidzl_/fi Eo

, 1
d(El,EQ) = 2_1—
; L+ | fill
where {f1, f2,...} is a dense set of real-valued continuous functions
on A. The results in Parthasarathy [28, Chapter 6] imply that, with
this metric, M(A) is a compact Polish (separable complete metric)
space.

Y

I11.2.4 Results concerning the fixation line

The fixation line has been introduced by Hénard [18] for A-
coalescents and further studied in [14] for general =-coalescents. The

fixation line (LE”))QO with initial state L(()n) = n is a Markov process
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cdi not cdi dust

(= no dust) noagist (= not cdi)

(Kingman coalescent) 50 51 (star-shaped coalescent)

Figure III.1: A schematic representation of the space of all exchangeable coalescents (Z-
coalescents). Each point in the oval region corresponds to a finite measure Z on (A, B(A)).
The compact Polish space M(A) is divided into three regions of exchangeable coalescents, those
coming down from infinity (cdi) to the left, the ones not coming down from infinity and having
no dust in the middle and those having dust to the right.

which moves from state i € {n,n+1,...} to state j € N with j > i
at the rate (see [14, Proposition 2.5])

Yij — a<;>5j,i+1 + /]P(Y(],U) :Z,Y(]—l—l,U) :Z—l—l)l/(dU),
A

where a := Z({0}) and Y(.,u) is defined via (III.12). The fixation
line does not explode if and only if the coalescents stays infinite [14,
Remark 2.11]. Recall that (see (II1.2)) the block counting process is
Siegmund dual to the fixation line. In this subsection we will see that
this duality property transfers the convergence result for the block
counting process (Theorem II1.2.7) into an analogous convergence
result (Theorem II1.2.10) for the fixation line. The arguments are
similar as for the fixation line. We start as follows. Assume that
J5" (v(u)) ! du = oo. Define the function w : [1, 00) x [0, 00) — [1, 00)

via
w(z,t) du

w(l,t) == 1 and / )

Proposition II1.2.8. Assume that [,°(y(u))™'du = co. Then, for
each v > 1 and t > 0, the solution w(x,t) € [x,00) to the in-
tegral equation in (I11.19) exists and is unique. Furthermore, w €

C1((1,00) x [0,00)) with

%w(x,t) = y(w(z, 1)), %w(x,t) _ %

x> 1,t > 0. The maps x — w(x,t), x > 1, and t — w(x,t), t > 0,
are strictly increasing.
It is readily seen from (I11.9) and (II1.19) that v(w(z,t),t) = x =

w(v(x,t),t) forallz > 1 and t > 0. Thus, for fixed t > 0, w(., t) is the
inverse of v(.,t). This aspect is utilized in the proof of Proposition

=t x>1,t>0 (IL19)

. (I11.20)
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I11.2.9 below, whose statements are variants of Propositions I11.2.5
and II1.2.6 for the scaling of the fixation line. Note that, under the
key assumption (II1.5), in particular when the coalescent has dust,
it holds that [ *(v(u)) ' du = oo for every ¢ > 1, so w(z,t) is well-
defined.

Proposition I11.2.9. Let v be defined by (I11.3) and w be defined
by (IIL.19).

(i) If a == Z({0}) = 0 and p := [, Julv(du) < oo, then w(x,t) ~
xet as x — oo for each t > 0.

(1i) Suppose that v satisfies (I11.5) with k > 0. Then, for everyt > 0,
there exists a slowly varying function L : [1,00) — (0,00) such
that w(z,t) =z LY () for all z > 1.

(111) Suppose that v satisfies (I111.5) with k > 0. Assume that there
exists a continuous function v; : (1,00) — (0,00) such that
(v(x) — n(x))/r — 0 as v — oo. Then the scaling wi(x,t),
defined by (111.19) with v1 in place of v, exists for allt > 0 and
x > 1. Moreover, assume that the map x — vy(x)/x, x > 1, is
non-decreasing if Kk = 0. Then w(x,t) ~ wi(x,t) as r — oo.

Remark. The regular variation of w(.,t) under the key assumption
(IIL.5) is a consequence of the regular variation of v(.,t) (see Propo-
sition II1.2.5) and the fact that w(.,t) and v(.,t) are inverse. The
slowly varying part Lfé can be retrieved from L; with the use of the
de Bruijn conjugate, see [4, Theorem 1.5.13 and Proposition 1.5.15]
and the proof of Proposition I11.2.9 in Section I1.8 for further details.

The following theorem is the analog of Theorem III.2.7 for the
fixation line.

Theorem II1.2.10. Suppose that = satisfies (I111.1) and Z(A*) =
0. Let v be defined by (I11.3) and suppose that (IIL.5) holds with
0 < Kk < 0. Let the scaling w(n,t) be defined by (111.19). Then
(log L,E”) — logw(n,t))>p converges in Dg|0,00) to Y as n — oo,
where Y = (Y;)i>0 is an Ornstein—Uhlenbeck type process with state
space R, initial value Yy = 0 and Mehler semigroup (TY )0 given by

TV fy) = E(f(Yeu)|Ye = y) = E(f(eMy — e'Sy),  (IIL21)

fory € R, f € B(R) and s,t > 0 with the distribution of S; defined
via its characteristic function (111.16).
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II1.2.5 Siegmund duality and summary of results

Let X = (Xy)>0 and Y = ()0 be the limiting processes aris-
ing in Theorems III.2.7 and [11.2.10, respectively. For ¢ > 0 de-
fine Xt = eXt and Yt = e¥. Consider the “exponential” Markov
processes X = (Xt)t>0 and Y = (Y;)t>o both having state space
E = (0, 00). From (IIL.17) and (IIL.21) it follows that the semigroups

(T7)20 and (TY )0 of X and Y are given by

TXf(z) = E(f(a® ")), t>0,fe B(E),ze€E, (I122)
and

T g(y) = E(g(y™e")),  t>0,9€ B(E).y€E, (123

where S; has characteristic function (I11.16).

Fix t > 0, define @« = e and let H : E x E —
{0,1} denote the Siegmund duality kernel, i.e., H(z,y) := 1 for
r < y and H(x,y) := 0 otherwise. For x,y € E, by (II1.22),
TXH(.,y)(x) = E(H(z",y)) = Pz < y). Similarly, by
(I1.23), T H(x, . )(y) = P(H(x,y"/*e /) = P(z < yMoe /) =
P(z% < y). Thus, TXH(.,y)(x) = TY H(x,.)(y) for all t > 0 and
x,y € E, showing that X is Siegmund dual to Y.

Since the map Dg[0,00) 3 = = (x¢)i>0 — (€™)i>0 € Dgl0,00) is
continuous, an application of the continuous mapping theorem shows
that Theorems II1.2.7 and II1.2.10 can be summarized as follows.

Theorem I11.2.11. Under the conditions of Theorem II1.2.7 the fol-
lowing two assertions hold.

(i) As n — oo, the scaled block counting process (Nt(n)/Nv(n,t))tzg
converges in Dg|0, 00) to the Markov process X with Xo =1 and
semigroup (111.22).

(11) Asn — oo, the scaled fization lmeN(Lgn)/ui(n, t))i>0 converges in
Dgl0,00) to the Markov process Y with Yy = 1 and semigroup
(I11.23).

Thus, under the assumptions of Theorem III.2.7, the commutative
diagram in Figure 2 holds.

We close the result section by providing formulas for the infinitesi-
mal generators of the processes X and Y. Applying the generator for-
mulas AX f(z) = A*(foexp)(logz) and AY g(y) = AY (goexp)(logy)
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scaled block counting process Markov process

(N [o(n, )20 X = (X)izo
I I
scaled fixation line N Markov process
(L™ fw(n, £))eo Y = (Mizo

Figure II1.2: Commutative diagram summarizing the convergence and duality results. In the
diagram, “=" stands for convergence in Dg[0,00) and “}” for Siegmund duality P(Nt(n) <m)=
]P’(Lgm) >n), n,m €N, and ]P’()N(,@ <y)= P(}Z(y) >x), 2,y € E, t >0, respectively, where the
upper indices indicate the initial states of the corresponding processes.

yield that the generators AX and AY of X and Y satisfy
Aif(x) = —ra(logz)f'(z) (I11.24)

+ [ G0 ) = 1) + ke )i
forz>0and f € D and
AVg(y) = ry(logy)g'(y) (I11.25)
[ (ot (1= 1) = 9(0) = [alug ()0

for y > 0 and g € 13, where D denotes the space of all functions
f+ E — R such that the maps f, z = 2f'(z), v — 2*f"(2) and
z = z(logz)f'(z) belong to C(E). Note that D is a core for both

generators, AX and AY.

I1I1.3 Examples

In this section several illustrating examples are provided. For most
of the examples Theorem II1.2.7 and Theorem II1.2.10 are applica-
ble. Example I11.3.1 treats the A-coalescent, where A = 3(a,b) is a
beta distribution with parameters a,b > 0. For the (1, b)-coalescent
scaling limits have already been obtained in [27], and we clarify be-
forehand the relation between [27] and this work. Example 111.3.2
studies the A-coalescent introduced in [25], where the measure A is
a negative logarithmic gamma distribution (NLG-coalescent). Exam-
ple IT1.3.3 provides a simple dust-free A-coalescent which nevertheless
satisfies k = 0. Example I11.3.4 presents a true =-coalescent for which
Theorem III1.2.7 and Theorem II1.2.10 are applicable.

We start with putting the results of [27] in the context of our

work. Let b > 0. In [27] it is shown that (log Nt(n) — e P logn)=g
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converges in Dg[0,00) as n — oo to an Ornstein—Uhlenbeck type
process provided that the coalescent’s driving measure A satisfies

A({0}) =A{1})=0 and c:= / u (A —bA)(du) < oo.

[0,1]

(IT1.26)
Here A denotes Lebesgue measure. Condition (II1.26) essentially
forces the coalescent to behave similarly to the Bolthausen—Sznitman
coalescent (BS-coalescent), which is the A-coalescent where A is
the uniform distribution on [0,1]. For x > 0 define ypg(z) :=
fol (1 —u)” =1+ uzr)u?du. Let ¥ := (logl')) = I/’ denote
the logarithmic derivative of the gamma function (digamma func-
tion). It is easily checked that yps(z) = z(V(z +1) — V(1) — 1) =
zlogz — (V(1) + 1)z + O(1) as x — oo. If (I11.26) holds, then

v(z) = bygs(x) + /[0 | (1 =w)® =1+ zu)(A—b\)(du)

= brlogz + x(—b(1 + V(1)) + c+ o(1))

for x > 0 such that (II1.6) and, hence, (III.5) are satisfied with
k = b and the slowly varying function L in (II1.6) satisfies L(z) —
exp(—b(1 4+ ¥(1)) +¢) as x — oo.

FEzample 111.3.1. (beta coalescent) Let A = f(a,b) be the beta distri-
bution with parameters a,b > 0. For the corresponding A-coalescent,
the function v, defined via (II1.3), can be calculated explicitly. For
a ¢ {1,2}, a technical but straightforward calculation shows that

_ (wHa+b-1)(r+a+b—2)B(a,x+0b)

(@) = (a—1)(a (— 2) ) B(a, b))
a+b—1 a+b—1)(a+b—2

for all x > 0, where B(.,.) denotes the beta function. The boundary
cases a = 1 and a = 2 need to be treated separately. For a = 1 one
obtains

Y(x) = bz +b—1)(V(x+b) — V() — bz, x>0, (II1.28)
where W denotes the digamma function. For a = 2 it follows that

Y(z) = (b+1)z — b(b+1)(¥(z+b)—TV(b), x>0 (I1.29)
Since ¥(x + b) = logz + O(z™1) as z — oo it follows from (I11.27),

123



(IT1.28) and (III1.29) that
( ['(a+0b)
- TO)(1-a)(2-a)
x 1
% { = blogz — b(T(b)+ 1)+ 0( Og“”) for a = 1,
T
a+b—-1
\ a—1
For all y € (0, 00) the limit d(y), defined in Proposition 111.2.2 (iv),
is thus given by

27"+ O(1) fora<1,

for a > 1.

—00lg1)(y) + 0l(100)(y) for a <1 (cdi),
d(y) = blogy for a = 1 (not cdi, no dust),
0 for a > 1 (dust),

and the curvature parameter k is given by

oo fora <1,
k = lim 27" (x) = b fora=1,
e 0 fora>1.

For beta coalescents the curvature parameter x thus characterizes
both, the dust property and the cdi property. Theorems III.2.7 and
[11.2.10 are hence applicable for the §(a,b)-coalescent with a > 1.
Let us distinguish two cases.

Case 1: If @ > 1 (dust case), then Kk = 0, v(z,t) ~ e "z and
w(z,t) ~ ez as x — oo with g := [w'A(du) = (a+b—1)/(a—1).
In this case, Theorems II1.2.7 and II1.2.10 are in essence logarithmic
versions of [14, Theorem 2.1].

Case 2: Now assume that a = 1, i.e., that A = [B(1,b) is the
beta distribution with parameters 1 and b > 0 having density u —
b(1 — u)*~t, u € (0,1), with respect to Lebesgue measure on (0, 1).
Then, kK = b > 0.

From the discussion above (see also [27, Example 2 or Proposition
11]) it follows that

v(z) = brlogz + z(logCy+ o(1)), x>0,
where Cy := exp(—b(¥(b) + 1)). Independently one can verify that

1 1 — T+b—1 1 1 — 2
y'(z) = ba:/ (=) (2og( w) du — b, T — 00.
0 u

Let the scaling sequence v(n,t) be defined by (II1.9) for n > 2. By

Proposition I11.2.6, v(x,t) ~ xe*btcg’l(e*bt—l) e W)
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& — oo. Similarly, w(z, t) ~ 2¢" e~ (YO0 a5 2 5 c0. By The-
orems 111.2.7 and II1.2.10, both processes (log N\ — logv(n, ))i=o
and (log L,ﬁ”) — logw(n,t));>o converge in Dg[0,00) as n — oco. As
n — oo, the process (log Nt(n) —e " logn);>o converges as well due to
the specifics of the scaling sequence, and the limiting processes gen-

erator A%, which can be determined using Lemma III.4.1, is given
by

AXf(z) = bf' () (1 + () — )
+ / (f(x+1og(l —u)) — flz) +uf(z))u? A(du)
[0,1]

for v € R and f belonging to a core D, in agreement with the results
of [27].

Further examples are now provided for which Theorems II1.2.7 and
I11.2.10 are applicable.

Ezxample 111.3.2. (NLG-coalescent) Fix a, 0 > 0. Assume that A is
the negative logarithmic gamma (NLG) distribution having density
u — afu®t(=logu)?t/T(0), u € (0,1), with respect to Lebesgue
measure on (0, 1). The corresponding A-coalescent was introduced in
25, Example 3.2]. The asymptotics of y(z) as x — 0o is obtained as
follows. For all n € N, v(n) = Z;:é aj, where

aj = / 1-(- u)JA(du)

u

4 0 F
FCE‘Q) 1 ia;jlo‘(logj)gl if0<a<l,
(log j)* -
< T(o+ 1) ra=a
0
a if 1 < a< oo,

L a—1

as j — oo by [25, Lemma 7.3], applied with a := a, b := j and ¢ := p.
Thus, as n — oo, the arithmetic mean y(n)/n = n™! Z?;& a; of the

sequence (a;);en, satisfies

([ af ['(a) 2— -1
n“ “(logn)?™ if0<a<1,
| T@TmaEe
v(n ogn .
n < Plo+1) A
( a ) if 1 < a < oo.
{ a—1
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The coalescent has dust if and only if v(n)/n is bounded, so if and
only if a > 1. This coalescent comes down from infinity if and only
if > ,1/v(n) < oo,soif and only if « <1lora=1and g > 1. It
is easily seen that

k = lim A(0.€))
e—0+ £
o if0<a<lorifa=1and 1< o< oo,
= 1 if « = o =1 (Bolthausen—Sznitman coalescent),
0 fl<a<ocworifa=land0<p<1.

In particular, kK = oo if and only if the coalescent comes down from
infinity. Theorems II1.2.7 and II1.2.10 are applicable if and only if
k < 00, so if and only if @« > 1 or @« = 1 and 0 < o < 1. In the
following three cases are distinguished.

Case 1: For 1 < a < oo the coalescent has dust. Hence,
k = 0, v(z,t) ~ e Mz and w(x,t) ~ eMxr as x — oo with
pi=[utA(du) = lim, 00 y(x) /2 = (o (a — 1))?. Theorems I11.2.7
and I11.2.10 are applicable and in essence logarithmic versions of [14,
Theorem 2.1].

Case 2: For o = p = 1 we obtain the Bolthausen—Sznitman coa-
lescent already studied in Example ITI1.3.1.

Case 3: Assume that « = 1 and 0 < o < 1. Then x = 0 but
nevertheless the coalescent is dust-free. Let x > 1. By the definition
(IIL.3) of the rate function ~,

1wt beu(Clogwet

i) = F(Q)/o u T
B 1 11—(1—u)”—a:u(1—u)“”_1_0 1 dug
_F(Q+1)/o w? (s

where the last equality holds by partial integration. The substitution
t = xu yields

o) _ (gl (10 o0m 97 st
v T(e+1) /)y t2 log x '

A careful analysis shows that, as * — oo, the latter integral is
asymptotically equal to [;°(1 —e™" — te")/t*dt + O(1/logz) =
[(e7" = 1)/t];° + O(1/log x) = 1 4+ O(1/log ), which implies that

@) (ogx)? oo
T+l O((logz)’") — 0, T — 00.
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Proposition I11.2.6 (i), applied with v (z) := z(log z)¢/I'(0+1), shows
that the scaling v(z,t) in Theorem I11.2.7 satisfies v(x,t) ~ vi(x,t)
as © — oo, where vy(z,1) is the solution to the equation

r du r du
t = / = T(o+1 / e
e @ et g a)e

— F(lgf_kgl)((log z)' "¢ — (log vy (z,1))'79),

whenever it exists and vi(z,t) := 1 otherwise. Define C, = (1 —
0)/T'(1 + p). Solving for vy(x,t) yields

vi(x,t) = exp <<(log r) e — Cgt> 12)), xr > exp ((Cgt)(lg)l).

By Theorem I11.2.7, the process (log Nt(n) — log v1(n, t))s>p converges

in Dg[0,00) as n — oo to an Ornstein—Uhlenbeck type process X,

whose generator A¥ satisfies (see (I11.33))
1

A (@) = s / (f(z-+log(1—w))— f(2) +uf(x))

f € D,x € R where D, the space of all twice differentiable functions
f R — Rsuch that f, ', f” and the map x — z f'(x), x € R, belong
to C (R), is a core for AX. Clearly, Theorem II1.2.10 is applicable as
well. Similar arguments as for the block counting process show that
w(z,t) ~wi(x,t) as © — 0o, where

wi(z,t) = exp ((% - (loga:)lQ)llg).

(—logu)

5 du,

U

Thus, the logarithmically scaled fixation line (log Lﬁ") —
logwy(n,t))>p converges in Dg[0,00) as n — oo to an Ornstein—
Uhlenbeck type process Y. The generator AY of the limiting process
Y satisfies

AVg(y) = ﬁ/{) (9(y—log(1—u))—g(y)—ug'(y))

g € D,y € R. Note that Assumption A of [27] is not satisfied in
the situation of Case 3, so both convergence results, for the block
counting process and the fixation line, cannot be derived from the
results provided in [27].

(—logu)™

5 du,

U

We provide another example of a dust-free A-coalescent which nev-
ertheless satisfies k = 0.
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Example 111.3.3. Assume that the measure A has density v — 1/(1—
logu), u € (0,1), with respect to Lebesgue measure on (0,1). Then
A([0,e]) = [ 1/(1 —logu) du ~ eg/(—loge) as e — 0+, and, hence,
k = lim. 0, e *A([0,¢]) = 0. Nevertheless, the corresponding A-
coalescent is dust-free, since [u~! A(du) = [—log(1 — logu)]} = oo.
The function L in Proposition I11.2.2 (iii) satisfies L(z) = ¢7®)/* and,
hence, L(z) ~ logx as © — oo. Theorem II1.2.7 is applicable. By
Proposition I11.2.6 (i), applied with v;(x) := xloglogx, the scaling
v(z,t) can be chosen as the solution to the integral equation

o 1
t = ———du = [—Ei(l, —logl -
/»U'(%t) uloglogu u [ 1( ) 0g Ogu)]v(x,t)
= Ei(1, —loglogv(x,t)) — Ei(1, — loglog z),
where Ei(z) := [~ ¢ 'e ™" d¢ denotes the exponential integral. By

Lemma I11.4.1, the generator AX of the limiting process X in Theo-
rem [I1.2.7 satisfies

f(x+1log(l —w)) — f(z) +uf'(x)
A% f (@) / u?(1 — log u) du,

r € R, f € D, where D denotes the space of twice differentiable
functions f : R — R such that f, f', f” and the map z — zf'(x),
x € R, belong to C (R). We leave the formulation of the analogous
results for the fixation line to the interested reader.

In the following an example with simultaneous multiple collisions
is provided. The basic idea is to choose the measure = such that the
corresponding =-coalescent is dust-free, regular and stays infinite. We
slightly modify the example studied in [19] as follows.

Ezample 111.3.4. Let p1,pa, ... € (0,1) with > | p, < oo and let
k1, ko, ... € N such that k,,p, <1 for all m € Nand Y >~ kypm <
o0o. Suppose that = assigns for each m € N mass p,, to the point
2™ ¢ A whose first k,, coordinates are equal to p,, and all other
coordinates are equal to 0. Note that Z(A) = >, p,, < 0o. More-
over, |2™| = k,p, < 1 for all m € N and, hence, Z(A;) = 0 and

=(A*) = 0. The corresponding =-coalescent is dust-free, since

N ) Pm_
/A\“\V(d“) = Z‘x | (0 2 (m))

- Z kb = D1 =

m=
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and regular, since [\ [ul?v(du) = Y0 (knpm)’pm/(knps,) =
> kmpm < 0o. Note that (see [19, Proposition 1]) all regular =-
coalescents are non-critical, i.e., v(A\ A%) < oo for some ¢ € (0,1).

For all z > 0,
v(x) = /AZ (1= w)" =1+ zu;)v(du)

Pm
]{: mD %n

[
NE

o (1= pm)™ — 14 apy,)
1

3
[

(1 _pm)x —1 + IPm
‘ Pm

[
NE

3
[

Note that v(x) does not depend on the sequence (k;,)men and is
hence solely determined by the sequence (py,)men-

For example, if p,, = p", m € N, for some p € (0,1/2], then [19,
Example 6.1 b)],

y(x) ~ Kprloge, T — 00,

with constant k, := —1/logp. Thus, Y °,1/v(n) = oo. By
Schweinsberg’s criterion [31, Proposition 33] for non-critical coales-
cents, the =-coalescent stays infinite.

We have hence constructed a class of dust-free and regular =-
coalescents that stay infinite. For all z > 0,

’y”(x) _ Z (1 B pm)x(log(l B pm))

m=1 pm
N /OO (1= p")"(og(1 —p")* .
0 P’
. / (1= w)(log1 —w)?
0 u?

! K
N/ip/(l—u)xdu: L
0 r+1
which shows that xv"(x) — kK, as * — 0o. Thus, Theorems II1.2.7

and II1.2.10 are applicable.
For other choices of the sequence (p;,)men one obtains further ex-

amples with different behavior. Intuitively, v(x)/x grows very slowly
if p,, tends to 0 extremely fast. One such choice is p,, := p°" in which
case we have y(z) ~ zloglog x as x — oo, see also [19, Example 6.1
c)]. In this case x := lim,_,~ 27"(z) = 0. Nevertheless the coalescent
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is dust-free. Theorems I11.2.7 and II1.2.10 are applicable with scal-
ings v(z,t) = 2Ly(z) and w(z,t) = zL¥(x), where L, and L} are
the slowly varying functions from Propositions II1.2.5 and III.2.9,
respectively.

We end this section by providing a simple example of a A-
coalescent that does not come down from infinity but nevertheless
has curvature parameter kK = oo.

Example 111.3.5. Let o« > 0. Consider a A-coalescent such that vy(x) ~
z(log z)(loglog x)®. Such a A-coalescent can be easily constructed. By
Cauchy’s condensation test, the series Y °,1/v(n) converges if and
only if a > 1. By Schweinsberg’s criterion, this coalescent therefore
comes down from infinity if and only if o > 1. However, kK = o0,
no matter how a > 0 is chosen. For v < 1, this coalescent does not
come down from infinity but nevertheless satisfies kK = oc.

I11.4 Proofs

I1I1.4.1 The function v

Proof. (of Lemma I11.2.1) First assume that a = 0. Clearly, v(0) =
v(1) = 0. From Bernoulli’s inequality (and v({(1,0,...)}) = 0) it
follows that vy(x) > 0 for x > 1. By the mean value theorem, there
exist fi(l) € (0,u;) and 52(2) e (0, 57;(1)) for x > 2,7 € Nand v € A such
that $y (r7(1 = )" = 1) + ) = oyl — (1= 7)) =
(- 1>zz>luzsl< — &7y < (v — 1)(u,u). Hence, y(z)/z =
Ja 2 @ (1 = u)® = 1) + ) v(du) < (2 — 1)Z(A).

Let u € A By 25, Lemma 4.1}, the map ®(z) := > (1 — (1 —
u;)"), > 0, is infinitely often differentiable on (0, c0) with deriva-

tives
?0(r) = — Z(l — ;)" (log(1 — uy))", z>0,keNueA.
1>1
Thus,
d T
a;((l_uz) — 1+ zu;)
d xr
= —(alul = ®(2)) = Ju] + S (1 — w)” log(1 — )
1>1
=) (1= )" log(1 — u;) + u;)

1>1
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— Y (1—w)"—1+azu) = —o®) ()

= > (1 —w)"(log(1 — u))",
i>1
k € N\{1}. Note that, for every k € N, the k-th derivative is bounded
by Ci(u,u) for some C) > 0. Hence, it is allowed to differentiate
(with respect to x) below the integral such that v € Cy((0,00))
with derivatives as stated in the lemma.

Since +/'(x) > 0 for x > 1, the function + is strictly increasing on
[1,00). Since x — 27 1((1 —w;)® — 1), x > 1, is strictly increasing for
every u € A and i € N, the map z — y(x)/z = [, > ;( (=
u;)* — 1) +u;) v(du), x > 1, is strictly increasing as well.

For a > 0 the value a(“') is added, which shows that the results

2
remain valid for a > 0 as stated in the lemma. []

Proof. (of Proposition I11.2.2) We prove this proposition by verify-
ing the implications “(i) = (ii) < (iii) & (iv) = (v)” and “(v)
= (i)”. Define the functions g, L : (0,00) — (0,00) via g(z) :=
exp(y(z)/z) = 2"L(x), x > 0. From ¢'(z) = g(z)(+'(z)/z — y(z)/2?)
and L (z7/(z) — v(z)) = 27"(x), z > 0, it follows that

rg'(x) _ 7/(:6)_@ _ l(/lxm"(u) du + 7’(1)), (T11.30)

9(x) z z
x > 0. Due to the second equality of (II1.30), (i) implies (ii). The
map x — 22¢'(r) = g(x)(2v'(x) — y(x)), > 0, is non-decreasing,
since

2 g(@)ar' () ~(2)) = g<x>((v'<x>—@)2 b ay'(@) 2 o

x > 0. Applying [20, Theorem 2] to the function z — g(z™1), z > 0,
hence shows that (ii) is equivalent to the regular variation of g of
index &, i.e., equivalent to the slow variation of L. Thus, (ii) and
(iii) are equivalent. Conditions (iii) and (iv) are equivalent by the
definition of slow variation. Suppose that (iv) holds. It is already
proven that (iv) implies (ii) such that

lim (v/(yr)—7(z)) = lim <7(‘W> x)> Y klogy, ¥ >0,

T—00 T—00 yxr X
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and (v) holds. Finally, it is shown that (v) implies (i). By the
mean value theorem, there exists & = £(z,y) between y and 1 such
that '(yz) — v/ (z) = 7" (x)x(y — 1) for all z,y > 0. Given (v),
lim, o 27"(2€) = (klogy)/(y — 1) for y > 0,y # 1. Since 7" is
non-negative and ultimately non-increasing, limsup,_ . xv"(z) <
lim, o 27" (z€(x,y)) = (klogy)/(y — 1) for all y € (0,1) and
liminf, . 27"(z) > lim, o 27" (2€(x,y)) = (klogy)/(y — 1) for all
y > 1. Letting y — 1 establishes (i), since lim, ,(logy)/(y — 1) =
1. [

Proof. (of Proposition I11.2.3) We prove the equivalence of (i) and
(ii) and afterwards the equivalence of (ii) and (iii).

(i) < (ii): Define U(t) :==0fort < 0and U(t) := F(1—e") for t > 0,
with F' defined as in (III.7). Let x > 0. By monotone convergence
and Fubini’s theorem,

V(@) = 3 / 1 — uy)*(log(1 — ui))? v(du)

1>1

-3/ / — )" A(dy) (log(1 — 7)) v(du)

i>1

=Y - / L) 1081~ ) v{du) Ay

i>1

- 3. / Y Fi(y) dy =x/01<1—y>x—1F<y>dy

1>1

A~

= x/o TRl —ehdt = :L‘/Oooe_xtU(t) dt =: U(x).

Thus, the map " = U is the Laplace-Stieltjes transform of U. By
Karamata’s Tauberian theorem [4, Theorem 1.7.1°], applied with ¢ =
1, c:=r € [0,00) and p := 1, the condition zU(z) = 27" (x) — & as
x — 0o is equivalent to t1U(t) — k as t — 0+, which shows that
(i) and (ii) are equivalent.

(ii) < (iii): Let € > 0. Choose § = d(¢) € (0,1) sufficiently small
such that (log(1 —x))? < (1+¢)z? for all 2 € [0,6]. For all i € N and
t € [0, 6] it follows that

Ft) = | tgu)1og(1 = u))? ()

< (1+2) [ gl vidw) = (1+9G0),
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Summation over all ¢ € N yields F(t) < (1 + ¢)G(t) for all
t € [0,0]. Thus, liminf; o, t71F(¢t) < (1 + €)liminf; 0, t 7 G(t)
and limsup,_,, t 'F(t) < (1 + ¢)limsup,_,q, t 'G(t). Since € > 0
can be chosen arbitrarily small it follows that liminf, o t 1 F(¢) <
liminf, o4 t7'G(¢) and limsup, o, t'F(t) < limsup, o, t'G(2).
The converse two inequalities are obviously satisfied, since G(t) <
F(t) for all t € [0,1). The equivalence of (ii) and (iii) now follows
immediately.

For A-coalescents it is easily seen that G(t) = A([0,t]), t € [0, 1],
showing that (iii) reduces to (II1.8). O

1I1.4.2 The normalizing function v

x

Recall that v(z,t) is the solution to [/ ,(v(v))™'du =t for x > 1
and t > 0.

Proof. (of Proposition I11.2.4) In order to see that v is well-defined
fix z > 1 and define F, : (1,z] — [0, 00) via F,(y) := fyx(y(u))*l du,
y € (1,z]. Then F,(y) > 0 for y € (1,z], since y(u) > 0 for u > 1,
and F, € C1((1,z]) with Fl(y) = —(v(y))™', y € (1,z], since 7 is
continuous. In particular, F), is strictly decreasing. Clearly, F(z) =
0. There exists C' € R such that v(u) < u(u — 1)C for u > 1. Then

1 [* du 1 1 -2t
Faly) =2 a/y =1 510g1_—y_1, y € (1,2,
such that lim, 14 F,(y) = oco. By the intermediate value theorem,
the solution v(z,t) € (1, z] to the equation Fj(v(z,t)) =t exists and
is unique for every ¢ > 0. Since F).(y) < 0 for y € (1, z], the function
F, is injective and the inverse function F; ! : [0,00) — (1,2] exists
and is differentiable with (F 1) (t) = —y(F,(t)), t > 0. Hence,

t—ov(x,t) = F1(t), t >0, is differentiable and

T

d

—ov(x,t) = —vy(v(z,t)), t>0.

dt

Differentiating both sides of the integral equation in (II1.9) with re-

spect to x leads to (y(2)) ' =L u(z, t)(y(v(z, 1))~ = 0. Equivalently,

dz
d y(v(z,t))
_ = 7 1.t > 0.
dxv(x,t) @) x> 1, 0

The two monotonicity statements follow from the formulas for the
derivatives (and can also be deduced directly from Eq. (IIL.9)). O
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Proof. (of Proposition I11.2.5) (i) Suppose that Z({0}) = 0 and p :=
Jalu|v(du) < oo. Fix t > 0 and let ¢ > 0 be arbitrary. Due to
lim, . v(x)/x = p, there exists xy > 1 such that (pu)/vy(u) € (1 —
e,1+¢) for all u € (v(x,t),z) as long as x > x(. Thus,

1—5/x du /z du 1+€/x du
- S S )
M v(z,t) U v(z,t) v(u) Ko Jo(at) W

such that, by Eq. (IIL9), exp(—ut/(1 — ¢)) < ov(x,t)/z <
exp(—put/(1+4¢)) for x > xg. It follows that v(z,t) ~ xe # as v — oo,
since € > 0 can be chosen arbitrarily small. Clearly, v(x,0) = z, so
the statement also holds for ¢ = 0.

(i) Define F': (1,00) — (0,00) via F(y) = fyoo(fy(u))_ldu, y>1,
and suppose that F'(y) < oo for some (and hence all) y > 1. Similarly
to the proof of (i), it follows that lim, ;. F'(y) = oo, lim,_,~ F(y) =
0, F € C1((1,00)) and F'(y) = —(v(y))~, y > 1. Thus, the solution
v(t) to the equation F'(v(t)) =t exists and is unique for every ¢t > 0.
The limit ¢(t) := lim,, v(z,t) exists for every t > 0, since =
v(x,t), x > 1, is non-decreasing, and c(t) < oo due to lim,_,o, F(y) =
0. From

/”(t) du _/x du /OO du +/°° du _/OO du
v(x,t) ’Y(u) v(z,t) V(U) v(t) fy(u) x f)/(u) x ’Y<U>7
x > 1,t > 0, we obtain that F(c(t)) — F(v(t)) = lim,_o (F(v(x,t)) —
F(v(t))) = lim,_n F'(z) = 0. Since F is injective, c¢(t) = v(t) for each
t > 0. The proof of (ii) is complete.

(iii) Due to v(x,0) = z, the claim is true for t = 0 with Lo(z) =
1 for x > 1. Fix t > 0. By assumption and Proposition III.2.2,
there exists a slowly varying function L : (0,00) — (0, 00) such that
v(x) = krlogx + xlog L(x) for x > 0. The fact that L(x) = o(x®)
and L(x) = w(z™¢) for every € > 0 is repeatedly used in this proof.

First suppose that Kk > 0 and let 0 < € < k be arbitrary. Recall that
lim, o v(x,t) = 0o. There exists xy > 1 such that (k — ¢)ulogu <
v(u) < (k4 ¢)ulogu for every u € (v(x,t),z) and x > xy. Thus,

1/”“ du </x du  _ 1/”6 du
ke ”(xat)UIOgu B v(x,t) ’7(“) - K—E€ U(x,t)ulogu’

x > xg9. Computing the integrals on both sides and using Eq. (I11.9)

yields
1 1 1 1
log [ —25Y ) < ¢ < log [ —25%
K+e log v(z, ) K—¢ log v(z,t)
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—(k+e)t —(k—

or, equivalently, z¢ < v(z,t) < a¢ " 7" for all x > z. From

(II1.10) it follows that
Loz, t)z _ y((z,t)) . klogu(z,t)+log L(v(z,t))
v(z,t)  wv(x,t) ylx) klogx + log L(x)
x > 1, such that

Y

e~ < im inf 42

< limsup < etk (II1.31)

We are going to show similar inequalities for k = 0. Suppose that
v(x) = xlog L(x), x > 0, for some slowly varying function L. By
Proposition 111.2.2, (zL/(z))/L(z) = ~'(z) — v(z)/r — k = 0 as
x — oo. From (II1.10) it follows that
d —L'(v(z,t))v(x,t)log L(v(z,t))

—log L t) =
3 e L (= 1) E{o{, 1) |
x > 1. Note that L(z) = exp(y(z)/x) is non-decreasing on [1, 00)
and, by definition, v(x,t) < x for all x > 1. For € > 0 there exists
21 > 1 such that |<log L(v(z, s))| < elog L(z) for all s € [0,¢] and
x > 1. We hence obtain
t
/0 glog L(v(x,s))

< etlog L(z)

‘ log L(v(x,t)) — log L(m)‘ c

IA

ds

such that
d
LU(w, ) log L(v(x,t))
= e [1—et1 I11.32
v(x,t) log L(x) [1—et1+¢ ( )
for all * > ;. Letting ¢ — 0+ in (II1.31) and (II.32) yields

Loat)z

hmx—)oodv(Tt) = ¢ " for k > 0. A “variant at infinity” of [20,

Theorem 2] completes the proof. O

Proof. (of Proposition II1.2.6) (i) Define the function L; : (1,00) —
(0,00) via y1(x) = kxlogx + xlog Li(x), x > 1. By assumption,
— L
r(z) = (@) x%(x) = log (%) — 0, r — 00.

In particular, L(x) ~ Li(x) as * — oo. Hence, L; is slowly varying
and, as a consequence, ; satisfies (II1.6). Unfortunately, the scal-
ing vi(x,t), defined by the integral equation in (II.9) with 7 in
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place of ~, does not exist globally. The reason is that the condition
lim, 14 F;(y) = oo from the proof of Proposition III1.2.4 cannot be
guaranteed. However, 7 is continuous and positive on (1,00) and
[ (mi(u))"'du = oo for each ¢ > 1. Carefully reading the proof of
Proposition I11.2.4 shows that the statements of Proposition I11.2.4
remain true with the restriction that, for each t > 0, x > x((t) for
some xo(t) > 1. Moreover, we can choose z((t) in such a way that
xo(s) < zo(t) for s < t. In particular, the scaling vy (z,t) exists for
x > xo(t) and t > 0. Now fix ¢t > 0. From (II1.10) it follows that

logv(z,t) —logz = —/0 %ds

= — /Ot (klogv(z,s) + log L(v(z, s))ds

for > 1. The same equalities hold when = > xy(¢) and v(z,t) and
L are replaced by vy(z,t) and Ly, respectively. Then, for z > xy(t),

‘log :1(@,?)‘ = /

t
+ t sup |r(y)] +/
) 0

y>v(z,t

v(z,s)

vi(z, s)

ds

log

Li(v(z, s)) ‘

log ————%|ds.
®Li(vi(x, 5))

Let ¢1,co > 0 be arbitrary. The representation theorem for slowly

varying functions [4, Theorem 1.3.1] states the existence of functions
g, :(0,00) - R With limx_me( ) =0 and lim, ,,, 0(x) =d € R

such that log L;(x )+ fl u)/u) du, z > 0. Hence,
La(v(z, s)) ‘ / Y Je(u)]
log ————=| < |0(v(x,s)) —d(vi(x,8))| + du
| ng(vl(xv S)) ‘ ( ( )) ( 1( ))‘ v1(,s) u
< ¢+ c|log iz, 5)
Ul(ZU,S)

for sufficiently large x and s € [0,¢], where in the last inequality it
is used that inf,cpqv(z,s) = v(z,t) — oo and infycpqvi(2, 5) = 00
as xr — 00. Thus,

v(x,t) ' ( > /t
lo < t| sup |r +c | + (k+c
gl < o s rl)l ) + over) |

By Gronwall’s inequality,

v(z,t) < )
<t su r +co | exp(t(k +c1)).
o (z.1) yzmg’t)\ ()| + ca2 ) exp(t(k + 1))

v(zx, s)

log ds.

vi(x, s)

log
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We conclude that lim,_, |logv(z,t) — log vy (z,t)| = 0, which com-
pletes the proof of (i), because ¢ > 0 is arbitrarily small.

(ii) First assume that v : (0,00) — (0, 00) is a function of the form
(II1.6) with L = C for some constant C' > 0. Then the integral in
(II1.9) can be calculated explicitly and it is easily seen that v(z,t),
defined via v(z,t) = z¢ "C* €V if k > 0 and v(z,t) = zC*
if k = 0, solves (II1.9) for every x > 1 and t > 0. If L only satisfies
L(z) — C as x — oo, then the same formulas for v(z,t) hold, but

with equality replaced by asymptotic equality as z — oo, as shown
in (i). O

I111.4.3 Proof of Theorem II11.2.7

The scaled block counting process and the scaled fixation line are in
general time-inhomogeneous Markov processes. We therefore add a
further “time variable” and consider the associated time-space pro-
cesses, which are time-homogeneous. We want to show the uniform
convergence of the generators. First a well known result ([30, The-
orem 3.1]) concerning generators of Ornstein—Uhlenbeck type pro-
cesses on R? is applied. The short proof is an adaption of the proof
of [27, Lemma 6] to the =-coalescent setting.

Lemma II1.4.1. Suppose that = satisfies (II1.1) and Z(A*) = 0.
Fix k € [0,00) and let the family of operators (TLX)QO be defined by
(IIL.17). Then (T7%)>q is a Feller semigroup on C(R). Let D denote
the space of all twice differentiable functions f : R — R such that f,
', f" and the map z — xf'(z), v € R, belong to G(R) Then D is
a core for the generator A% corresponding to (T7X)io and

AXf(x) = —raf'(x) (I11.33)
b [ (ot g1 = ) = £() + Jul @)l
A

reR, feD.

Proof. (of Lemma I11.4.1) Substituting g : A\ A* — R, g(u) :=
log(1 — |u|), u € A\ A*, shows that (II1.33) is an integro-differential
operator of the form (1.1) of Sato and Yamazato [30] with dimension
d = 1. In [30], operators of this form are initially considered as acting
on the space C? of twice differentiable functions with compact sup-
port (see the explanations after Eq. (1.2) in [30]), but Step 3 of the
proof of [30, Theorem 3.1] shows that (I11.33) even holds for func-
tions f € D (D C?). Note that the space D is denoted by Fy in [30].
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The fact that D is a core for A% is only a different phrasing of the
claim in Step 5 of the proof of [30, Theorem 3.1]. ]

When writing semigroups or generators in the remainder of the
proof section, we mostly omit the upper index that identifies the
corresponding process. We only use the symbol tilde to indicate the
time-space process.

The time-space process X = (z, Xt)i>0 is a time-homogeneous

Markov process with state space E := [0,00) X R and semigroup
T := (T})¢>0, given by

Tif(s,w) = E(f(s +t,e "z +5)),

(s,z) € E,f € B(E),t > 0. For f € 6(@) and s > 0, let the map
x> f(s,x), x € R, bedenoted by wf(s, x). Let D denote the space of
functions f € C(E) of the form f(s,z) = S gi(s)hi(z), (s, x) € E,
with I € N, h; € D and g; € C1([0,00)) such that g;, g, € C([0, 0))
for i € {1,...,1}. By [27, Proposition 10], T is a Feller semigroup, D
is a core for the generator A corresponding to T and

Af(s,z) = %f(s,m) + A¥nf(s,x), (s,z) € E,f € D.

For n € N the logarithmically scaled block counting process X ™ :=
(Xt(n))tzo = (log Nt(n) — logwv(n,t))>p is a time-inhomogeneous
Markov process. The random variable X S(n) takes values in E, ¢ :=
{r € R:e"v(n,s) € [n]}. The “generator” (Aﬁ”))szo of X" is given
by

d
A(n) — / _ﬁv(nﬁ S)
zv(n,s)—1
+ (f(log] - logv(n, S)) - f(x))qxv(n,s),j
j=1
2w, 8)
- f(x) v(n,s)
zv(n,s)—1
+ (f(lOg] - lOgU(TL, 3)) - f(x))qmv(n,s)g'
j=1
for v € E,s and s > 0. Here f € Ci(R) such that f, f' € C(R).
The time-space process X := (t,{(t(n) )i>0 18 a time-homogeneous
Markov process with state space E, = {(s,z) € [0,00) x R :
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e"v(n, s) € [n]} and semigroup 7™ := (ﬁ(n))tzo, given by

TV f(s,2) == E(f(s+t,log N —logu(n, s + 1)),
(s,x) € By, f € B(E),t > 0. For f € D (restricted to E, C E) the
corresponding generator A™ is given by

~

A f(s x) = %f(s,a:) + AWxf(s,z), (s,x) € E,.

Proof. (of Theorem I11.2.7) Write k := k(s,z,n) := e"v(n,s) for
7 ke™*

(s,) € E, andn € N. Let h € D. Define R(k,z) := 250 (k) /k

and

o~

S(k,x) = . (h(x + log %) —h(x)+ (1 - %)h’(x))qk,j,

k € N,z € R, such that
An(z) = W(2)R(k,x) + S(k,x),  (s,x) € E,,neN.

S

Define the continuous function 7 : R x [0,1] — R via I(z,y) :=
h(a-+Hlog(1—y))—h(z)+yh/(z), y € [0,1), and I(z, 1) := —h(z)+k'(z)
for € R. From Eq. (I11.13) and the definition of I it follows that

am@::/EU@J—Y@mymwmm, keN,zeR.
A
Also,

AXh(z) = —kah(x) + /Al(x,]u])u(du), r € R.

Part 1 of the proof treats the convergence of R(k,z) and Part 2 the
convergence of S(k, ).

Part 1. By assumption and Proposition II1.2.2, there exist k > 0
and a slowly varying function L : (0,00) — (0, 00) such that y(z) =
krlogx + xlog L(x), > 0. Then R(k,x)+ rx = log(L(ke™™)/L(k))
for k € Nand x € R. Applying [4, Theorem 1.5.6 (ii)], a boundary for
the growth of slowly varying functions, yields the existence of C' > 0
such that |R(k,x) + kx)| < C + |z| for k € N and —oo < z < logk.
For ¢ > 0 there exist —o0o < K; < K9 < oo such that

\h (2)(R(k, z) + kz)| < CW (x)| + |zh!(x)] < c, (I11.34)

r € R\ [K1, Ks],x <logk,k € N, since h’ and the map z — xh'(x),
x € R, vanish as |x| — oo. The present restriction xz < logk(s, x,n)
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is met for (s,2) € E, and n € N. Let T > 0 be arbitrary. By
the uniform convergence theorem for slowly varying functions ([4,
Theorem 1.5.2]) and lim,, o infyejo 7y v(n, 5) = 00,

lim sup |R(k,x) + kx| (I11.35)
oo (s,2)€E,,s€[0,T),x€[K1,K>)
= lim sup |log(L(v(n,s))/L(e"v(n,s)))| = 0.
n—oo

(s,x)EEn,sE[O,T],me[Kl,Kg]
From (I11.34), (II1.35) and arbitrariness of ¢ it follows that
lim sup B (z)(R(k, z) + kz)| = 0. (I11.36)

oo (s,2)€Ey,5€[0,T]

Part 2. Note that, as n — oo, k = e*v(n,s) — 0o or  — —00.
For example, either k& > /v(n,T) or < —3logv(n,T) for each
(s,z) € E, with s € [0,7] and n € N. In order to prove that

lim sup  |E(I(z,1—Y(k,u)/k) — I(z,|u]))| = 0, (II1.37)
oo (s,2)€Ey,5€[0,T]
u € A\ (A" U {0}), it therefore suffices to show that
lim,, o I(z,|u]) =0, lim,,_ E({/(z,Y (k,u)/k)) =0 for any k € N
and limy_,o0 sup,er |E(I(2,1 — Y (k,u)/k) — I(z,|u]))| = 0 for each
ue A\ (A*U{0}).

Clearly, sup,cg yeoq1) [1(7,y)] < 2[|R|[ + [|[F]| < co. In particular,
the family of functions Z := {I(z,.) : x € R} is uniformly bounded.
The family Z is equicontinuous on any interval [0, ¢] with ¢ < 1, since
h is uniformly continuous and A’ is bounded. In view of [27, Lemma
9], the almost sure convergence of 1 — Y (k,u)/k to |u| as k — oo
implies that limy_o sup,er |E(L(z,1 — Y(k,u)/k)) — I(x,|ul)| = 0
for any w € A\ (A* U {0}). The cited lemma does not allow the
limiting “random” variable |u| to assume the values 0 and 1 with
positive probability, hence we impose the restriction of u to A\ (A*U
{0}). For any y € [0, 1], lim,—,_ I(x,y) = 0, since lim,|_,o h'(z) =
lim, o0 h(x) = 0. Thus, lim,,_ I(z,|u|) = 0 and, by dominated
convergence, lim, ., E([(z,1 — Y (k,u)/k)) for kK € N and u € A,
which completes the proof of (II1.37).

Taylor’s theorem applied to y — h(x+log(1—vy)), y < 1, evaluated
at y = 0 with mean value remainder states the existence of £ € (0, y)
such that

I(z,y) = (1—&) (" (x +log(1 = &)) — W'(z +log(1 — €)))(y — &)y,

140



r € R,y € (0,1). In particular, sup,.g |[I(z,y)| < (1 —¢)2(||n"|| —
|1W|])y? < oo for 0 <y < c and any ¢ < 1. Thus, there exists C' € R
such that sup,cg |1(x,y)] < Cy? for every y € [0,1]. From Lemma
I11.5.3 it follows that Sup,ensUp( e ccor) E(I(z,1-Y (k,u)/k))—
Iz, Jul)| < $upgenoer [EC (2, 1 — ¥ (s 10) /)| + 5up, e [Tz Ju])| <
(Dy + 1)Clul? for any u € A. Due to (II1.37) and (II1.1), the domi-
nated convergence theorem is applicable such that

/ E(I(x,1 — Y (k u)/k)) v(du)  (ITL.38)
A

lim sup
" (s.)e B, s€(0.T)

—/H%MW@O
A

< lim sup }E(I(x, 1 -Y(k,u)/k))

oo JA (s,2)€Ey,,5€[0,T]

— I(z, |u])|v(du) = 0.

Here we made use of v(A*U{0}) =0.
Egs. (I11.36) and (II1.38) imply

lim sup AW h(z) — AXh(z)| = 0.

oo (s,2)€E,,5€[0,T)

Hence,

lim sup AW f(s,2) — Af(s,x)|] = 0, feD.
oo (s,2)€Ey,s€[0,T)
From [11, IV, Corollary 8.7] it follows that X — X in D30, 00),
hence X — X in Dg[0, 00) as n — oo. O

Remark. Assumption (II1.5) is only used in Part 1 of the proof of
Theorem II1.2.7, whereas Part 2 remains correct for every measure
= satisfying Z(A* U {0}) =0 and [, (y(u)) ' du = oo.

I11.4.4 Proofs concerning the fixation line

Propositions I11.2.8 and I11.2.9 treat the normalizing function w(z, t)
for the fixation line, implicitly defined via fxw(x’t) (y(uw) M du = t.
Proposition III1.2.8 verifies the existence of w.

Proof. (of Proposition I11.2.8) Suppose that [, (y(u)) ™' du = oo.
Fix z > 1. The function F, : [x,00) — R, defined by F,(y) :=
[Y(v(u)) ' du, y € [z,00), is continuous, strictly increasing and sat-
isfies F(x) = 0 and lim, ,o F3(y) = oo. Thus, the solution w(x,1)
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to the equation t = F,(w(z,t)) = fIU(J%t)(

N y(u)) "t du, exists, lies in
the interval [z, 00) and is unique for every ¢ > 0. The function F} is
differentiable and F'(y) = (y(y))™! > 0, y € [x,00), and, as a conse-
quence, the inverse F,; ! : [0,00) — [z, 00) exists, is differentiable and
(F-YY(t) = v(F71(t)), t > 0. Clearly, w(z, t) = F;1(t) such that

x x

d

@t = y(wt),  120z>1.
The formula for d%w(x, t) follows from differentiation of both sides
of the integral equation in (II1.19) with respect to z. []

The proof of Proposition I11.2.9 could be copied from the respective
one for the block counting process, the proof given instead uses the
fact that v(.,t) and w(.,t) are inverse.

Proof. (of Proposition I11.2.9) We first prove (ii), and then (i) and
(iii). Note that the situation of (i) is a special case of (ii) with x = 0.
Fix t > 0. According to Proposition II1.2.5 there exists a slowly
varying function L, : [1,00) — (0, 00) such that v(z,t) = 2¢ " L;(z),
x > 1. As the function w(.,t) is the inverse of v(.,t), it is regularly
varying with index e". More precisely, it follows from [4, Proposi-
tion 1.5.15], applied with f(z) := v(x,t), a := e, b := 1 and
l(z) = Li(z), = > 1, that w(z,t) ~ " LF%2") as 2 — oo,
where Lfé Y is the de Bruijn conjugate of the slowly varying func-
tion « — (Li(z))", > 1, i.e., a slowly varying function satisfying
limy oo LI (2(Le(2))e™ ) (Le(2))e" = 1. See, e.g., [4, Theorem 1.5.13]
for a definition of the de Bruijn conjugate of slowly varying func-
tions. The function LY, defined via w(z,t) = 2¢ L7 (), © > 1, is
asymptotically equal to the slowly varying function L7°(2¢™), thus
slowly varying itself, which completes the proof of (ii).

(i) Assume that =({0}) =0 and p = [, Ju|v(du) < oo, and recall
that x = 0. Proposition I11.2.5 states that lim, .., L;(z) = e #. We
can thus choose L7(z) := e, & > 1. From L (z) ~ LI*(z) = e
it follows that w(z,t) ~ we! as © — oo,

(iii) As seen in the proof of Proposition I11.2.6, there exists a slowly
varying function L; : (1,00) — (0,00) such that vi(x) = kxlogz +
xlog Li(x), x > 1. The function 7 is continuous and positive on
(1,00) and [, (71(u)) "t du = co. The proof of Proposition III.2.8
shows that the scaling w;(x,t), defined by (II1.19) with 7 in place
of v, exists for x > 1 and t > 0. Fix ¢t > 0. According to Proposition
I11.2.6 the scaling vy (x,t), defined by the integral equation in (II1.9)
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with v in place of 7, exists for x > xy(t), where zy(t) > 1. The
proof of Proposition II1.2.5 shows the existence of a slowly varying
function L;; such that vy(z,t) = xe_mLt,l(x) for > x((t). Here we
used that the map = +— ~i(x)/x, + > 1, and, hence, the function
L, are non-decreasing if k = 0. The scalings v1(.,t) and wy(.,t) are
obviously inverse (on suitable domains). From Part (ii) it follows

that there exists a slowly varying function Lff , such that wy(z,t) =
xemLfl(x). From v(z,t) ~ vi(x,t) it follows that L,(z) ~ L;1(z) and
z=w(z,t)) ~w(z,t)) = z(Li(2))" LF (v (z,t)) as 2 — oo and
r = wi(vi(x,t),t) = :U(Ltvl(x))‘fm[/fl(vl(x,t)) for x > xy(t). Hence,
Lfl(vg(a:,t)) ~ Lf;(vz(x,t)), consequently Lfl(x) ~ Lf;(a:) and we
finally have wy(x,t) ~ wy(x,t) as x — oo. O

We proceed to prove the convergence of the scaled fixation line.
The involved state spaces and semigroups are denoted by the same
symbols as for the block counting process.

Proof. (of Theorem I11.2.10) Define Yt(”) = log L§”> — logw(n,t)
for n € N and t > 0. We start by proving the convergence of
the one-dimensional distributions. Fix ¢t > 0, x € R and write

k := [e*w(n,t)] € N. Note that Y; 4 et By duality (Eq. (II1.2)),

P(Y,") > z) = B(L" > k) = P(N}" < n)
— P(log N —logv(k,t) < log(n/v(k,t))).

By Proposition I11.2.5, the function v(., t) varies regularly with index
e . From lim, ,, w(n,t) = oo it hence follows that n/v(k,t) =
v(w(n,t),t)/v([e*w(n,t)],t) = e " as n — co. Theorem I11.2.7
implies that

lim P(Y," > z) = P(S, < —ze ™) = P(Y,>z)  (IIL39)

n—oo

for —xe " in the set Cl, of continuity points of S;. From (II1.39) we

obtain the weak convergence of Yt(n) to Y; as m — oo for each ¢ > 0,
since —ze " € C, if and only if z € Cy,.

The time-space processes Yy = (t,Y;(n))tZO, n € N, and Y =
(t, X¢)¢>0 are time-homogeneous Markov processes with state spaces
E,={(s,2):s>0ewn,s)e{nn+1,. . }}and E = [0,00) x R.

~

Set k := k(s,z,n) = e"w(n,s) € {n,n+1,...} for (s,z) € E, and

n € N. The semigroups (Tt(n))tzo and (7})i=0 of Y™ and Y are given
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by

T f(s,z) = E(f(s+t, Y)Y = )
= E(f(s +t,log LI¥ —logw(n, s + 1))
= E(f(s+t,log(w(k,t)/w(n,s+1t))+ y;(k‘)))’
(s,y) € En, and
Tof(s,2) = B(f(s+1 V) |[Vo = ) = B(f(s +1, ez + 7)),

(s,z) € E, for f € B(E),t > 0and n € N. Fix t > 0 and
first let f € B(FE) be of the form f(s,z) = g(s)h(z), (s,x) € E,
where g € B([0,00)) and h € C.(R). Clearly, ﬁ(mf(s,x) = g(s +
t)E(h(log(w(k,t)/w(n,s + t)) + Yt(k))), (s,7) € E,.n € N, and
Tif(s,x) = g(s + )E(h(e™z + Y))), (s,z) € E. If we are able to
show that

lim sup |E(h(og(w(k, t)/w(n,s+ 1)) + Y;*))

n—0o0

(s,x)EE,
—E(h("z + V)| = 0, (I11.40)
then N N
lim sup |Tt(n)f(s,x) —Tif(s,z)] = 0. (II1.41)
noee (s,z)€E,

The algebra of functions f € B(E) of the form f(s,z) =
S gi(s)hi(z), (s,x) € E, where | € N,g; € B([0,00)) and
h; € C.(R), separates points and vanishes nowhere. According to the
Stone-Weierstrass theorem for locally compact spaces (see e.g. [8])
it is a dense subset of B(E) such that (I11.41) holds for f € B(E).
[11, IV, Theorem 2.11] states that Y — Y in D30, 00), hence
Y Y in Dg[0,00) as n — oo. It remains to verify (I11.40).
From

w(z,s) du w(w(z,s),t) du w(w(z,s),t) du
s+t = / v / o / v

it follows that w(z, s + t) = w(w(z, s),t) for (s,z) € E. By Propo-
sition II1.2.8, there exists a slowly varying function L : [1,00) —
(0, 00) such that w(x, t) = ¢ L (x) for > 1. Applying Proposition
II1.5.4 to the right-hand side of

w(k,t)  w(e"w(n,s),t) eemefé(e””w(n, s))
w(n, s +1t) w(w(n, s),1) L¥ (w(n, s))

, (s,x)EEn,nEN,
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provides

k,t
lim inf log M - 50
T—00 5;(5,$)€En’n€N w(n, S+ t)
and »
lim sup log M = —0
e s:(s,x)ef?n,neN ZU(TL, s+ t)

The family {Yt(k) : k € N} is tight due to the convergence Yt(k) — Y
in distribution as £ — oo and Prokhorov’s theorem. By dominated
convergence and since h has compact support,

lim  sup  [E(h(log(w(k, t)/win,s +1) + Y, "))  (IIL42)
o oos:(s,a:)eE,L,neN

= lim sup  |E(h(log(w(k,t)/w(n,s+1)) + Y;(k)))| =0,

%_ ~
I Oosz(s,m)eEn,neN

such as
lim E(h(e“tx +Y;) = lim E(h(e”tx +Y;) = 0. (I11.43)
Tr—0Q r——00

For any compact interval K C R we have that, by the uniform con-
vergence theorem for slowly varying functions [4, Theorem 1.5.2],

k,t
log—w( ) — ey
w(n,s+t)

Lf(efgw(n,s)) _ 0
LY (w(n, 5)) ‘

lim sup
nree (s,x)€F, z€K

log

= lim sup
oo (s,2)€E, K

The function A is uniformly continuous. Note that

lim,, o inf< k(s,x,n) = oo. From the convergence

s,x)GEn,xEK
Yt(k) — Y} in distribution as £ — oo it hence follows that
lim  sup  |E(h(log(w(k,t)/w(n, s + 1)) + ;"))

oo (s,x)eE, zeK

— E(h(e"z+Y}))| = 0. (I11.44)
Finally, Eqgs. (II1.42), (II1.43) and (III.44) imply (II1.40). The proof
is complete. [

II1.5 Appendix

We collect some fundamental results concerning the model described
in Section II1.2.3 involving an infinite number of urns. Let u € A.
Recall that X;(n,u) denotes the number of balls in urn J; € Ny after
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n balls have been allocated. Let K(n,u) := ;o 1(x,(n.u)>0y denote
the number of occupied urns (disregarding urn Jy). The following law
of large numbers result holds.

Lemma IIL.5.1. For all u € A, K(n,u)/E(K(n,u)) — 1 almost
surely as n — Q.

Proof. We proceed as in the proof of [15, Theorem 1]. Fix u € A
and write K(n) := K(n,u) for convenience. Define @ : [0,00) —
0,00) via ®(x) := > ,o(1 — (1 —u;)*), x > 0. Note that ®(0) = 0,
®(1) = |u| < 1 and E(K(n)) = ®(n), n € N. The function ® is
non-decreasing, concave and differentiable on (0, c0) with derivative
Q'(z) = > .o (1 —w)*(—log(l — w;)). In particular, for all z > 1,
¥(x) < V(1) = Xy (1 — w)(—log(1 — ) < Yoy s < 1. Thus,
for each m € N, there exists n,, € N such that m? < ®(n,,) < m? +
1. Tschebyscheff’s inequality together with Var(K(n)) < ®(2n) —
®(n) < &(n) yields

P<'g((gz)) _1‘ ZE) = Z?E((I)[&Z’)"))Q) = 52<I>znm) : 52;2

for all m € N and ¢ > 0. Thus, Y -, P(|K(nm)/®ny) — 1] >
£) < oo for all € > 0. By the Borel-Cantelli lemma it follows that
K(ny,)/®(n,) — 1 almost surely as m — oc.

For n € N with n,, < n < n,1 the monotonicity inequalities
K(n,) < K(n) < K(ng1) and ®(n,) < ®(n) < &(n,,41) hold,
which allows to sandwich the fraction K (n)/®(n) via

K(”m) < K(”) < K(nm+1>

C(nmyr) = B(n) T D(nm)
where both sides converge to 1 almost surely, since
O (n)/P(nmer) — 1. O

The following two results deal with the random variables
Y (n,u) := Xo(n,u)+ K(n,u) defined in (I11.12). Lemma II1.5.2 con-
cerns the limiting behavior of Y (n,u)/n as n — oo.

Lemma II1.5.2. For all u = (uj,us,...) € A, Y(n,u)/n — wuyg
almost surely as n — oo, where ug := 1 — [u :=1— 3 u;.

Proof. Fix v € A. We have Y(n,u) = Xo(n,u) + K(n,u), n € N.
Clearly, Xo(n,u)/n — uy almost surely as n — oo, since Xy(n,u)
has a binomial distribution with parameters n and uy. By Lemma
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I11.5.1, K(n,u)/E(K(n,u)) — 1 almost surely as n — co. Moreover,

E(K(n,u)) _ Zl—(l—ui)” =0

n -
i>1

as n — 0o by dominated convergence, since (1—(1—u;)")/n < 1/n —

0 and (1 — (1 —u;)")/n < w;, where the dominating map i +— u; is

integrable with respect to the counting measure on N. Thus,
Knu) _ K(nuw E(K(n,u))

n - E(K(n,u)) n - 0=0

almost surely as n — oo. Therefore, Y (n,u)/n — uy almost surely
as n — oo. []

The following result (Lemma II1.5.3) is used in the proof of the
main convergence theorem (Theorem II1.2.7). It presents bounds

for particular moments of the random variable Y (n,u) defined in
(II1.12). Lemma 18 of [21] provides similar bounds.

Lemma II1.5.3. There exist constants Dy, Dy € R such that, for all

u € A, ,
sop( (T (1= pu)) ) < Dil

neN n

v 2
supE(( (n,u) —1) ) < Dslul?.
neN n

Proof. Fixn € Nand u € A. Define uy := 1—|u|. We omit the param-
eter (n,u) and write (II1.12) as Y = X+ K, where K := K(n,u) :=
> i>1 X, (nu)>0p denotes the number of occupied urns (disregarding
urn Jy). Furthermore, define Y = Y/n —uy = Xo/n —uy + K/n.
Calculations that are similar to the following (but come from a dif-

ferent motivation) are carried out in the proof of [25, Lemma 6.1].
The formulas for E(K) and E(XK) can be found there. We have

- X K\? X, 29X, K 2uK K2
Y2:<—0—U0—|——> :<70—U0) + 0> 20 + .

and

n n n? n n?

Recall that X has a binomial distribution with parameters n and
ug. In particular, E(Xy) = nug and E((Xo/n—wug)?) = n~?Var(X) =
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[u (1 —Ju[)/n. Together with K* = K +37, ., 11x,x,>0} it follows that

Uo(l —’LLO) I QE(X()K)

ugE(K)  E(K)

1
- =5 +E;P(Xixj>0).
1#]

Adding and subtracting uy(1 — wug)/n = |u|(1 — |u|)/n leads to

E(Y?) =

+ %(@—IM) + % + %Z]P)(Xi)(j > 0).

i#]
We have E(K) = 3, (1—(1—u;)") and E(XoK) = nug ;- (1—(1—
u;)"~1). Moreover, by Bernoulli’s inequality, 1—(1—u;)"! < (n—1)u;
for : € N. We conclude that

E(X,K) B uE(K) n uo(1 — uo) _ Yo ui(1— (1 — ui)n—l)

1>1

(n — 1)ug

n? n n

< (u,u) < |u|2

Also, n7'E(K) — |u| =n~" 30,0 (1 = (1 — w;)" — nw;) < 0. From the
generalized Bernoulli inequality 1—(1—wu;)"—(1—u;)"+(1—u;—u;)" <
n(n — Duu,, 1,7 € N, it follows that

%ZIP’(XZ-XJ- >0) = %2(1—(1—1%-)”

i#j i#]

< Zuiuj = |ul?.

i,j>1

Collecting all bounds yields that E(Y?2) is bounded by 4|u|?, which
shows that the first claim holds with D; := 4. Concerning the second
claim, note that

0 < E((Y/n—1)) :NIE((?—IUI)Z) .
= E(Y?) - 2uEY) + [u]? < EY?) + |uf’,

~

since E(Y) = n lE(K) > 0, showing that we can choose Dy :=

The following result is needed in the proof of Theorem III.2.10.
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Proposition III.5.4. Let o > 0 and the function L : [1,00) —
(0,00) be slowly varying with 0 < inf,cpy gy L(y) < supyep gy L(y) <
oo for any K > 1. Then lim,_, inf,>,-1v1 2% L(zy)/L(y) = oo and
limg 0 supy>,-1y1 *L(zy)/L(y) = 0.

Proof. By the representation theorem for slowly varying functions
[4, Theorem 1.3.1], there exist functions § : [1,00) — (0,00) and
e:[1,00) = R with lim, . d(z) =: d € (0,00) and lim,_,, e(z) =0
such that L(z) = d(x) exp(ff%du), r > 1. Furthermore we
can choose ¢ such that ||e]| < «a/2, if § is adapted accordingly.
By the additional boundary assumption for L and the convergence
of 0 to d € (0,00), 0 < infy>;0(y) < sup,>;6(y) < oo. Thus,
0 <infy>,-1y16(zy)/0(y) < supys,-1y10(xy)/d(y) < oo. From

i = S ([ e [P0
- e ([ )

L T
inf ¢ (zy) > inf J exp / < du
y>z-vi L(y) y>z—v1 0(y) 1 2u

it follows that

as r — oo and
L )
sup 7% (l’y) < xa/? (:Ey)
y>x~1v1 L(y) y>x~1v1 5(3})
as r — 0+. []

Remark. The function L¥ : [1,00) — (0,00), defined via L} (z) :=
w(z,t)/z¢", x > 1, is slowly varying. Due to w(x,t) > z, it holds
that L7 (2) > 22¢" for 2 > 1 and t > 0, and since L} is continuous,

Proposition II1.5.4 applies.
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