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Notation and symbols

Sets and numbers

N Set of all positive integers
N0 Set of all non-negative integers
N∗ N ∪ {∞}
Z Set of all integers
R Set of all real numbers
|A| Cardinality of the set A
[n] The set {1, . . . , n} for n ∈ N
1A Indicator function of the set A
f(x) = o(g(x)) Two functions f and g satisfy

limx→∞ f(x)/g(x) = 0
f(x) ∼ g(x) as x→ ∞ Two functions f and g satisfy

limx→∞ f(x)/g(x) = 1
δij Kronecker symbol
a ∧ b The minimum of a, b ∈ R

Partitions

PA Set of all partitions of the set A
P∞ Set of all partitions of N
Pn Set of all partitions of [n] for n ∈ N
|π| Number of blocks of the partition π ∈ PA
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Probability Theory

P(A) Probability of the event A
P(A |B) Conditional probability of A given B
E(X) Mean of the random variable X
Var(X) Variance of the random variable X
Cov(X, Y ) Covariance of the random variables X and Y
εa Dirac measure at a
N(µ, σ2) Normal distribution with mean µ ∈ R

and variance σ2 ≥ 0 (N(µ, 0) = εµ)
λ Lebesgue measure
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Zusammenfassung

In dieser Dissertation werden zwei bekannte Prozesse aus dem Gebiet
der mathematischen Populationsgenetik untersucht. Dabei handelt es
sich zum einen um eine Klasse von Verzweigungsprozessen und zum
anderen um partitionswertige, austauschbare Coalescents.

Die Dissertation basiert auf drei wissenschaftlichen Arbeiten, die
hier in zeitlicher Reihenfolge Article I, II und III genannt werden.
Article I behandelt die Verzweigungsprozesse und Article II und III
behandeln die Coalescents.

Coalescents beschreiben die Genealogie von Populationen und
lassen sich leicht am Beispiel des Kingman-Coalescent erklären, der
als erstes untersucht wurde. Man nehme eine Population bestehend
aus den Individuen 1, . . . , n und fasse jedes Individuum i als den
einelementigen Block {i} auf. Je zwei Blöcke {i}, {j} verschmelzen
nun nach einer exponentialverteilten Zeit zum Block {i, j}, un-
abhängig von anderen Paaren von Blöcken. Nach dem ersten Ver-
schmelzen befindet sich der Coalescent in einem Zustand bestehend
aus n− 1 Blöcken, nämlich einem zweielementigen Block und n− 2
einelementigen Blöcken. Erneut verschmelzen je zwei Blöcke nach
einer exponentialverteilten Zeit. Mit fortlaufender Zeit verschmelzen
jeweils zwei Blöcke bis der Prozess in der Partition endet, die nur aus
dem Block {1, . . . , n} besteht. Dieser Prozess lässt sich verallgemein-
ern, indem erlaubt wird, dass mehr als zwei Blöcke zu einem ver-
schmelzen und dass mehrere Verschmelzungen zeitgleich stattfinden
dürfen. Als Voraussetzung fordern wir nur ein Neutralität in der Form
der Annahme, dass der Prozess austauschbar ist.

Wir beweisen einen Grenzwertsatz für die Anzahl der Blöcke
im Coalescent, der aus der Literatur bekannte Resultate erweit-
ert. Sei N

(n)
t die Anzahl der Blöcke zur Zeit t ≥ 0 in einem Co-

alescent, der mit n Individuen startet. Wir nennen (N
(n)
t )t≥0 den

block counting process. In Article II und III suchen wir nach Be-
dingungen, welche die Existenz einer Folge (v(n, t))n∈N garantieren

für die N
(n)
t /v(n, t) für n → ∞ konvergiert. Die zentralen Resul-
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tate von Article II sind in Article III enthalten. Beide Arbeiten
zeigen die Konvergenz des skalierten block counting process im Sko-
rohod Raum der càdlàg Pfade. Article II liefert Resultate für eine
Klasse von Λ-Coalescents, deren wichtigster Vertreter als zugrunde
liegendes Maß die Beta-Verteilung β(1, b) mit Parametern 1 und
b > 0 besitzt. Article III befasst sich mit der größeren Klasse von
Ξ-Coalescents. Neben dieser Verallgemeinerung sind auch die Vo-
raussetzungen des zentralen Konvergenzsatzes schwächer. Die Be-
weise bestehen aus dem Nachweis der uniformen Konvergenz der
zugehörigen Generatoren. Der Grenzprozess ist ein verallgemeinerter
Ornstein-Uhlenbeck-Prozess. Für die sogenannte fixation line werden
analoge Ergebnisse gezeigt.

Der in Article I betrachtete Verzweigungsprozess ist ein Popula-
tionsmodell in dem jedes Individuum eine exponentialverteilte Zeit
lebt, unabhängig von anderen Individuen, und im Moment seines
Todes eine zufällige Zahl an Nachkommen bekommt, die wiederum
unabhängig von den Lebensdauern und den Nachkommenszahlen an-
derer Individuen ist. Die Verteilung der Nachkommenszahl ist für alle
Individuen identisch. Sei Z

(n)
t die Größe der Population zur Zeit t ≥ 0,

wenn die Population zu Beginn die Größe n hat. Wir untersuchen die
Frage wann es Folgen (a(n, t))n∈N und (b(n, t))n∈N derart gibt, dass

Z
(n)
t − b(n, t)

a(n, t)

für n→ ∞ konvergiert. Aufgrund der Verzweigungseigenschaft lässt
sich diese Frage unter Verwendung des zentralen Grenzwertsatzes
oder der Theorie über stabile Verteilungen beantworten. Darüber
hinaus beweisen wir die Konvergenz im Skorohod Raum und stellen
Zusammenhänge zwischen den notwendigen und hinreichenden Be-
dingungen für die Existenz der normalisierenden Folgen (a(n, t))n∈N
und (b(n, t))n∈N für alle t ≥ 0 und der Nachkommensverteilung des
Verzweigungsprozesses dar.

Die Ergebnisse für Coalescents und Verzweigungsprozesse haben
einen Schnittpunkt. Der Bolthausen-Sznitman-Coalescent wird von
den Resultaten aus Article II und III abgedeckt. Gleichzeitig ist
die fixation line im Bolthausen-Sznitman-Coalescent ein Verzwei-
gungsprozess, der den Voraussetzungen aus Article I genügt. The-
orem II.2.4 in Article II besagt in diesem Fall dasselbe wie Theo-
rem I.2.8 in Article I in logarithmischer Form. Diese Verbindung ist
bekannt, ebenso wie der zugehörige Konvergenzsatz [19]. Der Versuch
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diese Resultate zu verallgemeinern, einerseits auf der Seite der Co-
alescents, andererseits auf der Seite der Verzweigungsprozesse, war
der Ursprung der in dieser Dissertation behandelten Fragestellungen.
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Summary

In this dissertation two known processes from the field of mathemat-
ical population genetics are treated. The two processes are a class of
branching processes and partition-valued, exchangeable coalescents.

The dissertation is based on three scientific articles, which are
called Article I, II and III here. Article I treats the branching pro-
cesses and Article II and III treat the coalescents.

Coalescents describe the genealogy of populations. The Kingman
coalescent is the coalescent studied first and a fitting example that
can be used in order to explain more general coalescent processes.
Take a population that consists of the individuals 1, . . . , n and con-
sider each individual i as the singleton block {i}. Every pair of blocks
{i}, {j} merges to be the block {i, j} after an exponentially dis-
tributed time, independently of other pairs of blocks. After the first
merger, the coalescent is in a state that consists of one block of size 2
and n−2 singleton blocks. Again each pair of blocks merges into one
after an exponentially distributed time. This procedure repeats until
the coalescent reaches the absorbing state that consists only of the
block {1, . . . , n}. The process can be generalized by allowing multiple
blocks to merge into one and more than one merger to occur at the
same time. The only requirement is a neutrality assumption in the
form that the process needs to be exchangeable.

We provide scaling limits for the number of blocks in a coales-
cent, which extends known results from the literature. Let N

(n)
t be

the number of blocks after time t ≥ 0 in a coalescent that started
with n individuals. We call (N

(n)
t )t≥0 the block counting process. In

Article II and III, we search for conditions that guarantee the exis-
tence of a sequence (v(n, t))n∈N for which N

(n)
t /v(n, t) converges as

n → ∞ for all t ≥ 0. The main results of Article II are contained
in Article III. Both works show the convergence of the scaled block
counting process in the space of càdlàg paths endowed with the Sko-
rohod topology. Article II covers a class of Λ-coalescents, whose most
important member has the underlying measure Λ = β(1, b), the beta
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distribution with parameters 1 and b > 0. Article III treats the larger
class of Ξ-coalescents. Moreover, the assumptions of the main result
in Article III are less strict. The main results are proved by show-
ing the uniform convergence of the corresponding generators. The
limiting process is an Ornstein–Uhlenbeck type process. Analogous
results are stated for the so-called fixation line.

The branching process treated in Article I is a population model in
which each individual lives for an exponentially distributed time, in-
dependently of other individuals, and at the moment of its death the
individual produces a random number of offspring, which is indepen-
dent of the lifetimes and the offspring numbers of other individuals.
Let Z

(n)
t denote the size of the population after time t ≥ 0 if the pop-

ulation started from n individuals at time t = 0. We investigate the
question of the existence of sequences (a(n, t))n∈N and (b(n, t))n∈N for
which

Z
(n)
t − b(n, t)

a(n, t)

converges as n → ∞. Due to the branching property, the question
can be answered by utilizing the central limit theorem or the theory
about stable distributions. We additionally prove the convergence
in the Skorohod space und show relations between the necessary
and sufficient conditions for the existence of normalizing sequences
(a(n, t))n∈N and (b(n, t))n∈N for all t ≥ 0 and the offspring distribu-
tion of the branching process.

The results for branching and coalescent processes overlap in one
point. The Bolthausen–Sznitman coalescent is covered by the results
of Article II and III. The fixation line in the Bolthausen–Sznitman
coalescent is also a branching processes that satisfies the assumptions
of Article I. In this case Theorem II.2.4 in Article II states the same
as Theorem I.2.8 in Article I, although in logarithmic form. This
relation has been known, just as the respective convergence results
[19]. The attempt to generalize this convergence result, on the side
of branching processes on one hand and on the side of coalescents on
the other has been the origin of the questions pursued in this thesis.
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Article III Möhle, M. and Vetter, B. (2023) Scaling limits for a
class of regular Ξ-coalescents. Stochastic Process. Appl. 162,
387–422.

viii



Chapter 1

Introduction

In this chapter, the two stochastic models are introduced in whose
area of research the three articles on which this thesis is based lie.
First some standard vocabulary and notation on random partitions
is fixed. Then the definitions of exchangeable coalescents, the block
counting process and the properties “coming down from infinity”
and “dust” are given and fundamental results are listed. The known,
explicit construction of exchangeable coalescents by use of a Poisson
point process is included. The function γ that, roughly speaking,
describes the expected size of a jump of the block counting process is
assigned to its own section and is repeatedly remarked on throughout
this chapter due to its importance in Article III. The fixation line is
introduced as the Siegmund-dual of the block counting process. At
the end of this chapter, Markov branching processes are covered. We
try to be concise and focus on the definitions and notions that are
needed in order to understand the content of Chapter 2.

1.1 Exchangeable random partitions

Let A be a set. A partition π of A is an equivalence relation on
A. The set A is partitioned into non-empty disjoint subsets, namely
the equivalence classes of π, whose union equals A. The equivalence
classes of this relation, called blocks, are used to determine a partition
in the following. Let PA denote the set of partitions of A. We write |π|
for the number of blocks of π ∈ PA and |B| for the size of some block
B of π. A block B of size |B| = 1 is called singleton. We can generate
new partitions by exchanging elements of the blocks or by restricting
π ∈ PA to a subset A′ ⊆ A. For a permutation σ of A, the blocks of
σπ ∈ PA are defined to be all the sets σB := {σi : i ∈ B}, where B
is a block of π. The restriction π|A′ ∈ PA′ of π to A′ comprises all
non-empty intersections B ∩ A′ with blocks B of π.
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For the sets N := {1, 2, . . .} and [n] := {1, . . . , n} with n ∈ N we
use the notation P∞ := PN, Pn := P[n] and, in addition, [∞] := N.
For π ∈ Pm with m ∈ N∗ := N ∪ {∞} and n ∈ N∗ with n ≤ m
we also define π(n) := π|[n]. Listing the blocks in the increasing order
of their smallest element provides an unique representation of the
partition π ∈ Pn. We write π = {B1, B2, . . .} when π consists of the
blocks B1, B2, . . . and minBi ≤ minBj for all i ≤ j, where the set
stands for {B1, . . . , B|π|} if |π| <∞ and for the infinitely large set if
|π| = ∞.

The following definition is going to enable to compactly describe
the transition between states in coalescent processes. Let n ∈ N∗,
π = {B1, B2, . . .} ∈ Pn and π′ = {B′

1, B
′
2, . . .} ∈ P|π|. Then the

coagulation of π by π′ is defined as

coag(π, π′) :=

 ⋃
j∈B′

1

Bj,
⋃
j∈B′

2

Bj, . . .

 ∈ Pn.

The definition can be extended by admitting π′ ∈ Pm with
m > |π| and setting coag(π, π′) := coag(π, (π′)(|π|)). During the
coagulation the blocks of π merge. Thus, π is a refinement of
coag(π, π′), meaning that each block of π is a subset of some block
of coag(π, π′). On the other hand, if π is a refinement of some par-
tition π′′, then there exists π′ such that π′′ = coag(π, π′), and π′

becomes unique when the partition is restricted to [|π|]. For ex-
ample, if n = 10, π = {{1, 3, 5}, {2, 10}, {4}, {6}, {7}, {8}, {9}}
and π′ = {{1, 2}, {5, 6, 7}, {3}, {4}}, then coag(π, π′) =
{{1, 2, 3, 5, 10}, {4}, {6}, {7, 8, 9}}.

The space P∞, endowed with the metric

d(π, π′) :=
(
sup

{
k ∈ N : π(k) = (π′)(k)

})−1

, π, π′ ∈ P∞,

(and the convention ∞−1 = 0) is Polish. Due to the metric, we are
able to equip P∞ with the Borel-σ-algebra and can define a random
partition of N as a P∞-valued random variable. The σ-algebra is
generated by the countably many open balls {π ∈ P∞ : π(n) = π′}
with n ∈ N and π′ ∈ Pn. For n ∈ N a random partition of [n] is a Pn-
valued random variable, where the σ-algebra on the finite set Pn is
the power set of Pn. It is straightforward to verify that the σ-algebra
on P∞ is generated by the restriction maps P∞ → Pn, π 7→ π(n), with
n ∈ N.
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The class of random partitions introduced next are the ones whose
distributions do not change when elements are swapped between
blocks.

Definition 1.1.1. Let n ∈ N. A random partition Π of [n] is said
to be exchangeable if Π and σΠ have the same distribution for all
permutations σ of [n]. A random partition Π of N is said to be ex-
changeable if the restriction Π(n) is an exchangeable random partition
of [n] for all n ∈ N.

1.2 Exchangeable coalescents

Coalescents are partition-valued processes where blocks merge over
time. The below given, precise definition of the object with which we
work in Articles II and III goes back to Bertoin and Le Gall [5].

Definition 1.2.1. An exchangeable coalescent is a process Π =
(Πt)t≥0 with state space P∞ and càdlàg paths that satisfies the fol-
lowing properties:

(i) Π0 = {{1}, {2}, . . .}.

(ii) Π is a time-homogeneous Markov process and, for all t ≥ 0, there
exists an exchangeable random partition πt of N such that, for
all s ≥ 0, the law of Πs+t conditional on Πs is the law of the
coagulation of Πs by πt.

Remark. Coagulating the partition {{1}, {2}, . . .} ∈ P∞ by πt results
in πt itself. Choosing s = 0 in Definition 1.2.1 (ii) hence shows that
πt and Πt have the same distribution for all t ≥ 0. In particular, Πt

is exchangeable for all t ≥ 0.

Remark. Coalescents satisfying Definition 1.2.1 (i) are called standard
in the literature. We restrict our attention to standard exchangeable
coalescents and omit the additional term, since any non-standard
exchangeable coalescent can be easily deduced from a standard one.
For example, if Π = (Πt)t≥0 is a standard exchangeable coalescent
and π ∈ P∞, then (coag(π,Πt))t≥0 is a P∞-valued Markov process
with càdlàg paths, intial state π and the same transition probabilities
as Π.

Let Π = (Πt)t≥0 be an exchangeable coalescent. For n ∈ N the

restriction Π(n) := (Π
(n)
t )t≥0 to [n] has finite state space Pn. We

call Π(n) exchangeable coalescent too or restricted coalescent or n-
coalescent if we want to put emphasis on the “size”. Applying the

3



fact that the σ-algebra on P∞ is generated by the family of open
balls {π ∈ P∞ : π(n) = πn} with πn ∈ Pn and n ∈ N, which is also
closed upon intersecting, it can be shown that instead of Definition
1.2.1 (ii) it can equivalently be required that, for all n ∈ N, Π(n) is a
Markov chain with transition probabilities

P
(
Π

(n)
s+t = π′

∣∣Π(n)
s = π

)
= P

(
coag(π, πt) = π′

)
, (1.1)

s, t ≥ 0, π, π′ ∈ Pn, n ∈ N, where πt is the same random variable as
in Definition 1.2.1. The path property from Definition 1.2.1 transfers
too. As an immediate consequence of the definition of the metric d
on P∞, Π has càdlàg paths if and only if each restriction Π(n) has
càdlàg paths.

The class of exchangeable coalescents was independently intro-
duced by Schweinsberg [30] and by Möhle and Sagitov [23]. Möhle
and Sagitov obtained exchangeable coalescents as limits of ancestral
processes in a population model in discrete time with a constant,
finite size and an exchangeable reproduction law (Cannings model
[8, 9]). Schweinsberg labeled these processes “coalescents with si-
multaneous multiple collisions”, refering to the fact that multiple
blocks merge into a single one at certain times and that such merg-
ers are allowed to occur at the same time. For j, k1, . . . , kj ∈ N with
k1 ≥ k2 ≥ . . . ≥ kj and k1 ≥ 2 we call a merging event during
which the n-coalescent Π(n) moves from state π ∈ Pn to the state
coag(π, πt) a (k1, . . . , kj)-collision if |π| = k := k1 + . . . + kj and

π
(k)
t consists of j blocks of sizes k1, . . . , kj. Clearly, the assumption

that πt be exchangeable in (1.1) implies that the transition probabil-
ities from π to the outcome of a (k1, . . . , kj)-collision only depend on
k1, . . . , kj and the time that has passed, and not on the sizes of the
blocks of π or on the integers that are contained in the blocks. Thus,
the rate at which a (k1, . . . , kj)-collision occurs is equal to some fixed
value, denoted by ϕj(k1, . . . , kj), which also does not depend on n.
In [30], coalescents with simultaneous multiple collisions are defined
in the same way as exchangeable coalescents but Definition 1.2.1 (ii)
is replaced by

(ii)’ For all n ∈ N, Π(n) is a Markov chain for which any possible
(k1, . . . , kj)-collision occurs at a rate equal to some fixed value
ϕj(k1, . . . , kj).

In difference to [30] we do not treat singleton blocks of πt sepa-
rately and hence use a differing, adjusted notation. It is known that

4



Schweinsberg’s definition of coalescents with simultaneous multiple
collisions coincides with Definition 1.2.1. In fact, the argument just
sketched shows that Definition 1.2.1 implies (ii)’. It is straightforward
to prove that (ii)’ in turn implies (1.1) and, consequently, Definition
1.2.1 (ii), where the random variable πt has the same distribution as
Πt.

An advantage of Schweinsberg’s definition is the fact that explicit
formulas for the rates ϕj(k1, . . . , kj) are known. Schweinsberg proved
an one-to-one correspondence between exchangeable coalescents and
finite measures Ξ on the infinite simplex ∆ := {(u1, u2, . . .) : u1 ≥
u2 ≥ . . . ,

∑
i≥1 ui ≤ 1}, see [30, Theorem 2]. For this reason ex-

changeable coalescents are also referred to as Ξ-coalescents.
Let Ξ be a finite measure on ∆ and decompose Ξ in the form

Ξ = aε0+Ξ0, where ε0 denotes the Dirac measure at 0 := (0, 0, . . .) ∈
∆ and a := Ξ({0}). Moreover, we use the notation |u| :=

∑
i≥1 ui

and (u, u) :=
∑

i≥1 u
2
i for u ∈ ∆ and define the measure ν via

ν(du) := Ξ0(du)/(u, u). Then there exists an exchangeable coalescent
such that, for all j, k1, . . . , kj ∈ N with k1 ≥ 2, k1 ≥ k2 ≥ . . . ≥ kj,
the rate ϕj(k1, . . . , kj) equals

a1{r=1,k1=2}+

∫
∆

s∑
l=0

(
s

l

)
(1−|u|)s−l

∑
i1 ̸=... ̸=ir+l

uk1i1 · · ·u
kr+l

ir+l
ν(du), (1.2)

where s := |{i ∈ [j] : ki = 1}| and r := j−s. In Section 1.3, a possible
construction of an exchangeable coalescent whose rates are given by
(1.2) is presented for every finite measure Ξ on ∆. Conversely, for
every exchangeable coalescent there exists a finite measure Ξ on ∆
such that the rates are given by (1.2).

Shortly before the class of Ξ-coalescents was introduced, Pitman
[26] and Sagitov [27] independently defined a class of coalescents
whose merging events only allow for multiple blocks to merge into a
single one but not more than one merger to occur at the same time.
These processes, called “coalescent with multiple collisions”, entail
an one-to-one correspondence with finite measures Λ on [0, 1] and are
hence also called Λ-coalescents. We identify a Λ-coalescent with the
exchangeable coalescent whose underlying measure Ξ is defined via
Ξ(B ×{0}× {0}× . . .) := Λ(B) for Borel-measurable B ⊆ [0, 1] and
Ξ({u ∈ ∆ : u2 > 0}) := 0. In particular, Λ-coalescents constitute
a subclass of exchangeable coalescents. For Λ-coalescents the rates
(1.2) simplify notably. If the Λ-coalescent is in a state with k blocks,
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any j blocks merge at the rate

λk,j := ϕk−j+1(j, 1, . . . , 1) = a1{j=2} +

∫
[0,1]

uj−2(1− u)k−j Λ(du),

k ∈ N, 1 ≤ j < k.
In order to give a complete account of the development of ex-

changeable coalescents we want to remark that two famous Λ-
coalescents have been studied before the appearance of Pitman’s
and Sagitov’s works: the Kingman coalescent [18] whose underly-
ing measure Λ = ε0 is the Dirac measure at 0 ∈ [0, 1] with rates
λk,j = 1{j=k−1} and the Bolthausen–Sznitman coalescent [7] whose
underlying measure Λ = λ is Lebesgue measure on [0, 1] with rates
λk,j = (j − 2)!(k − j)!/(k − 1)! for 1 ≤ j < k.

To conclude this section, we want to clarify the terminology we use.
In the following we speak of exchangeable coalescents as coalescents.
If the underlying measure is important, we add it as prefix. We write
“Λ-coalescent” when statements concern only the class of coalescents
with multiple collisions, and we write “Ξ-coalescent” if we want to
stress that we are in the more general setting.

1.3 Poisson point process construction

In this section, we give an outline of the Poisson point process con-
struction of coalescents going back to Schweinsberg; for details we
refer the reader to [30]. The construction provides an explanatory,
probabilistic view on the rates ϕj(k1, . . . , kj), defined via (1.2), in
terms of an urn model.

Let Ξ be a finite, non-zero measure on ∆. For u = (u1, u2, . . .) ∈ ∆
define u0 := 1 − |u| and “urns” as the tilings J0 := [0, u0), J1 :=
[u0, u0 + u1), J2 := [u0 + u1, u1 + u2 + u3) of lengths u0, u1, u2, . . .
of the interval [0, 1). Let the “balls” be independent and identically
distributed (i.i.d.) random variables U1, U2, . . . that have an uniform
distribution on [0, 1). For i ∈ N and u ∈ ∆ define the random variable
Zi(u) by setting Zi(u) := j for j ≥ 1 if the i-th ball lands in the urn
Jj, i.e., Ui ∈ Jj and Zi(u) := −i if Ui ∈ J0. For every u ∈ ∆,
Z1(u), Z2(u), . . . are independent random variables with P(Zi(u) =
j) = uj and P(Zi(u) = −i) = u0 for j ≥ 1 and i ∈ N. We equip
Z∞ with the product topology and denote the distribution of the
Z∞-valued random variable (Z1(u), Z2(u), . . .) by Pu. Let zij be the
sequence (z1, z2, . . .) ∈ Z∞ such that zi = zj = 1 and zk = −k for
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k ̸∈ {i, j}. Define the measure L on Z∞ via

L(A) := a
∑
1≤i<j

1{zij∈A} +

∫
∆

Pu(A) ν(du) (1.3)

for all measurable A ⊆ Z∞. Define An := {(z1, z2, . . .) ∈ Z∞ :
z1, . . . , zn not all distinct} for n ≥ 2 and A∞ := ∪n≥2An =
{(z1, z2, . . .) ∈ Z∞ : zi = zj for some i ̸= j}. Then L(Ac

∞) =∫
∆ P(Zi(u) ̸= Zj(u) ∀ i ̸= j) ν(du) = 0 and it can be shown that
L(An) < ∞ for n ≥ 2. As the union of An for all n ≥ 2 and Ac

∞
equals Z∞, L is σ-finite and, hence, a proper Poisson point process ξ
on [0,∞)× Z∞ with intensity measure λ⊗ L exists, i.e., there exist
([0,∞)×Z∞)-valued random variables (T1, ξ1), (T2, ξ2), . . . and a N∗-
valued random variableK such that ξ =

∑K
i=1 ε(Ti,ξi). In the following

we refer to any pair (Ti, ξi) as a point of the Poisson point process ξ
and denote a generic point by (t, z).

Now we define a family of processes Πn := (Πn,t)t≥0 with state
spaces Pn and rates ϕj(k1, . . . , kj), given by (1.2). Fix n ∈ N. Let
Πn,0 be the partition of [n] into singletons. For any T > 0 the Poisson
point process ξ has only finitely many points (t, z) with z ∈ An and
0 ≤ t ≤ T and none of them share the same first entry almost surely.
In particular, we can order all points (t, z) with z ∈ An by their
first entry. Let Πn have càdlàg paths in the finite state space Pn

with jumps only at times t ∈ [0,∞), where t is the first entry in
a point (t, z) of ξ with z ∈ An. The second entry z determines the
outcome of the jump corresponding to (t, z). Regard z ∈ Z∞ as the
function i 7→ zi, i ∈ N. Ignoring the empty sets, the inverse images
z−1(j) := {i ∈ N : zi = j}, j ∈ Z, define a partition of N, say π(z).
During the jump corresponding to (t, z), let Πn move from its current
state Πn,t− to Πn,t := coag(Πn,t−, π(z)). Given Πn,t− = {B1, . . . , Bk},
each block of the resulting partition Πn,t is an union of blocks of Πn,t−
such that Bi and Bj are contained in the same block of Πn,t if and
only if zi = zj. Note that if zi < 0, then Bi does not merge with any
other block.

From the definition of Poisson point processes it follows that Πn is a
time-homogeneous Markov chain that jumps from π ∈ Pn to π′ ∈ Pn

at the rate L(Aπ,π′), where Aπ,π′ := {z ∈ Z∞ : coag(π, π(z)) = π′}.
Suppose that π = {B1, . . . , Bk}. As seen above, Aπ,π′ is the set of
z ∈ Z∞ for which zi = zj if and only if Bi and Bj are contained in
the same block of π′ for all i, j ∈ [k]. We can describe the probability
Pu(Aπ,π′) appearing in (1.3) in terms of the urn model: Pu(Aπ,π′) is
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the probability of the event that if 1 ≤ i ̸= j ≤ k, then the balls
Ui and Uj are in the same urn but not in urn J0, i.e., Ui, Uj ∈ Jm
for some m ≥ 1 if and only if Bi and Bj are contained in the same
block of π′. Bearing that in mind, it is straightforward to see that
Pu(Aπ,π′) is equal to the integrand in (1.2), provided that π′ is the
result of a coagulation of π by a partition of [k], whose blocks have
sizes k1, . . . , kj. If only two blocks of π merge into one, i.e., k1 = 2
and j = k − 1, then the value a is added to the integral in (1.3).
Consequently, the rates of Πn are given by (1.2).

The family of processes Πn, n ∈ N, is consistent in the sense that
if n < m, then Πn and the restriction Π

(n)
m := (Π

(n)
m,t)t≥0 of Πm to [n]

are the same process. In order to see this note that every jump of
Πn, which corresponds to some point (t, z) with z ∈ An, results in a
jump of Πm, since An ⊆ Am, and the coagulating mechanism is the
same when only the integers from [n] are taken into account. Also, a
jump of Πm corresponding to a point (t, z) with z ∈ Am \ An, i.e., a
point which is not involved in the construction of Πn does not inflict
the integers from [n], which implies that Π

(n)
m does not change during

this jump.
Thus, the P∞-valued process Π = (Πt)t≥0 is well-defined by saying

that, for all t ≥ 0, Πt is the partition π ∈ P∞ such that π(n) = Πn,t for

all n ∈ N. Clearly, Π(n)
t = Πn,t for all n ∈ N and t ≥ 0. The rates of

Π(n) := (Π
(n)
t )t≥0 are also given by (1.2). In particular, Π(n) satisfies

Condition (ii)’ from Section 1.2. By construction, Π0 only consists
of singletons. Moreover, Π has càdlàg paths, since it is equivalent to
demand that Π(n) has càdlàg paths for all n ∈ N. Thus, as shown in
the previous section, Π is an exchangeable coalescent according to
Definition 1.2.1.

If Λ is a finite measure on [0, 1], which we identify with a certain
measure Ξ on ∆, we only have the two urns J0 and J1. For a point
(t, z) of ξ it holds that zi = −i or zi = 1 for all i ∈ N. During a
jump of the restricted Λ-coalescent Π(n) corresponding to the point
(t, z), the blocks Bi of Π

(n)
t− for which zi = 1 merge into a single

block and all other blocks remain unchanged. Hence, collisions of
multiple blocks are allowed but cannot occur simultaneously. Given
that Π(n) contains the blocks B1, . . . , Bk at time t ≥ 0, any fixed
choice Bi1, . . . , Bij of blocks merges into a single one at the rate
ϕk−j+1(j, 1, . . . , 1). The integrand in (1.2) is the probability of the
event that, for all 1 ≤ i ≤ k, the i-th ball lands in urn J1 if i ∈
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{i1, . . . , ij} and in the other urn if i ̸∈ {i1, . . . , ij}. This event can
also be described as follows: consider a coin that shows heads with
probabiltiy u ∈ (0, 1], flip the coin for each block and merge all blocks
for which the coin toss shows heads. Then the integrand in (1.2) is
the probability of the event that exactly the coins flipped for the
blocks Bi1, . . . , Bij show heads.

1.4 The block counting process

Let Nt := |Πt| and N (n)
t := |Π(n)

t | denote the number of blocks in a
coalescent (Πt)t≥0 and in its restriction to [n] for n ∈ N after time
t ≥ 0, respectively.

Definition 1.4.1. In an abuse of notation, we call the processes
N := (Nt)t≥0 and N

(n) := (N
(n)
t )t≥0 block counting process.

The block counting process has non-increasing càdlàg paths and
state space N∗ or [n]. Of course, one might ask if Nt is even finite.
First we set this question aside and answer it in Section 1.6 as good
as it is known in the literature. In this section, we only consider the
processN (n) for n ∈ N. We will see thatN (n) is a Markov process. The
distribution is uniquely determined by the rates. We aim to represent
the rates in a way that makes them accessible to computation. We
are especially interested in the limiting behavior of the rates as the
values of the states tend to infinity. To this end, we return to the
Poisson point process construction.

Fix n ∈ N. The coalescent Π(n) jumps at times t ≥ 0, where t is the
first entry in a point (t, z) of the Poisson point process with intensity
measure λ ⊗ L and z = (z1, z2, . . .) ∈ An. The measure L on Z∞ is
defined via (1.3). During the jump at time t, blocks are coagulated
by the partition π(z), which is induced by the sets z−1(j) = {i ∈ N :

zi = j}, j ∈ Z. More precisely, Π(n) moves from state Π
(n)
t− to the

state Π
(n)
t = coag(Π

(n)
t− , π(z)). Moreover, if N

(n)
t− = |Π(n)

t− | = k, then

N
(n)
t =

∣∣Π(n)
t

∣∣ =
∣∣π(z)(k)∣∣ = |{z1, . . . , zk}|,

i.e., given that the block counting process N (n) is in the state k before
the jump corresponding to (t, z), the state of N (n) after the jump is
the number of distinct values assumed by the numbers z1, . . . , zk.

Suppose that Π(n) is in state π ∈ Pn and k := |π|. The set of
states that consist of exactly j < k blocks to which Π(n) can jump to
is given by {coag(π, π′) : π′ ∈ Pk, |π′| = j}. Recall that Aπ,coag(π,π′) =
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{z ∈ Z∞ : π(z)(k) = π′} and define

Ak,j :=
⋃

π′∈Pk,|π′|=j

Aπ,coag(π,π′) =
{
z ∈ Z∞ : |{z1, . . . , zk}| = j

}
as the set of z ∈ Z∞ leading to a transition from π to a partition that
consists of j blocks for 1 ≤ j ≤ k. The notation “Ak,j” is justified,
since the set depends on π only via k = |π|. The rate at which Π(n)

moves from state π to a partition that consists of j blocks is given by
L(Ak,j). By using the fact that this term only depends on k, it can
be shown that N (n) is a Markov chain which, for 1 ≤ j < k, jumps
from state k to state j at the rate qk,j := L(Ak,j).

Note that Pu(Ak,j) is the probability of the event that the en-
tries of (Z1(u), . . . , Zk(u)) assume j distinct values. Any ball in urn
J0 leads to a negative, new value. The number of distinct, positive
values is the number of urns other than J0 to which at least one
of the first k balls has been allocated. Thus, it makes sense to de-
fine Xi(k, u) :=

∑k
j=1 1Ji(Uj) as the number of balls in urn Ji after

k ∈ N0 := {0, 1, . . .} throws and

Y (k, u) := X0(k, u) +
∑
i≥1

1{Xi(k,u)≥1}, k ∈ N0, u ∈ ∆, (1.4)

as the sum of the number of balls in urn J0 and the number of all
other occupied urns. Finally, we obtain Pu(Ak,j) = P(Y (k, u) = j)
for u ∈ ∆ and, by (1.3),

qk,j = a

(
k

2

)
1{j=k−1} +

∫
∆

P(Y (k, u) = j) ν(du), (1.5)

1 ≤ j < k, k ≥ 2. The representation (1.5) for the rates of the
block counting process plays a major role in the proofs of the main
convergence results in Article III. A comparable representation for
the rates for Λ-coalescents is defined in Article II.

The asymptotics of Y (k, u) as k → ∞ is of special interest.
First observe that, for i ∈ N0, the random variable Xi(k, u) has
a binomial distribution with parameters k and ui. In particular,
X0(k, u)/k → 1 − |u| almost surely as k → ∞. For u ∈ ∆ let
K(k, u) :=

∑
i≥1 1{Xi(k,u)≥1} denote the number of occupied urns

other than J0 after k ∈ N throws with mean ϕ(k, u) := E(K(k, u)).
Then Y (k, u) = X0(k, u)+K(k, u) and ϕ(k, u) =

∑
i≥1(1−(1−ui)k).

Lemma III.5.1 shows that K(k, u)/ϕ(k, u) → 1 almost surely as
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k → ∞. From ϕ(k, u)/k → 0 it follows that (see Lemma III.5.2)

Y (k, u)

k
→ 1− |u|, k → ∞,

almost surely for each u ∈ ∆.
Explicit formulas for the rates of the block counting process are

known, but notationally complicated. It holds that (see [13, Eq. (1.3)]
or [14, Proposition 2.1])

qk,j = a

(
k

2

)
1{j=k−1} +

∫
∆

∑
1≤i≤j

fkji(u) ν(du),

1 ≤ j < k, k ≥ 2, where

fkji(u) :=
∑

k1,...,ki∈N
k1+···+ki=k−j+i

k!

(j − i)!k1! · · · ki!
(1−|u|)j−i

∑
l1,...,li∈N
l1<···<li

uk1l1 · · ·u
ki
li

for i ∈ {1, . . . , j} and u ∈ ∆.

1.5 The function γ

Now we introduce a function known from the literature. See, for ex-
ample, [17, 20] for Ξ-coalescents and [4, 10, 11, 21] for Λ-coalescents.
The relevance first became apparent in Schweinsberg’s work [29],
where the function is used in the formulation of a necessary and
sufficient condition for the Λ-coalescent to come down from infinity.

Recall that a = Ξ({0}) and ν(du) = (u, u)−1Ξ0(du), where Ξ0 is
defined via Ξ = aε0 + Ξ0. Define γ : [0,∞) → R via

γ(x) := a

(
x

2

)
+

∫
∆

∑
i≥1

(
(1− ui)

x − 1 + xui
)
ν(du), (1.6)

x ∈ [0,∞). Some properties of γ are collected in Lemma III.2.1. In
particular, the function γ is continuous and asymptotically grows at
least of order x but not faster than of order x2 as x→ ∞. On [1,∞),
the functions γ and x 7→ γ(x)/x are strictly increasing. Moreover, by
(1.5),

k−1∑
j=1

(k − j)qk,j = a

(
k

2

)
+

∫
∆

E(k − Y (k, u)) ν(du)

= a

(
k

2

)
+

∫
∆

(
k − k(1− |u|)−

∑
i≥1

(1− (1− ui)
k)
)
ν(du)

= γ(k), k ∈ N,
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yielding the interpretation of the quantity γ as the expected change
of the block counting process: if the block counting process is in state
k ∈ [n] at time t, then after dt units of time

E
(
N

(n)
t+dt

∣∣N (n)
t = k

)
= k − γ(k)dt.

Besides Schweinsberg’s condition for the coalescent to come down
from infinity the function γ can be used to formulate a necessary and
sufficient condition for the coalescent to have dust, see (1.13) below.

1.6 Coming down from infinity

In this section we give the definition of “coming down from infinity”
and one important condition for this characteristic. We also sum-
marize results of Berestycki, Berestycki and Limic’ work [4, 20, 21]
concerning the small-time behavior of the block counting process of
coalescents that come down from infinity, because there are parallels
to the results of Article III.

The first coalescent studied was the Kingman coalescent, the Λ-
coalescent with underlying measure Λ = ε0. One remarkable result
Kingman proved states that the number of blocks is finite for all times
t > 0 almost surely. For the Bolthausen–Sznitman coalescent, the Λ-
coalescent whose underlying measure is the uniform distribution on
[0, 1], the number of blocks is infinite for all times t > 0 almost surely.
Later Pitman showed that all Λ-coalescents either satisfy

P(Nt <∞ ∀ t > 0) = 1 (1.7)

or
P(Nt = ∞ ∀ t ≥ 0) = 1, (1.8)

provided that Λ({1}) = 0 [26, Proposition 23]. The same dichotomy
is true for the larger class of Ξ-coalescents. Define ∆f := {u ∈ ∆ :
u1+. . .+un = 1 for some n ∈ N} and suppose that Ξ(∆f) = 0. Again,
either (1.7) or (1.8) holds true [30, Lemma 31]. In the first case the
coalescent is said to come down from infinity or, abbreviating, to be
cdi and in the second to stay infinite.

Naturally, the question about conditions to decide between the two
properties arises. Schweinsberg proved that the Λ-coalescent comes
down from infinity if and only if Λ({1}) = 0 and∫ ∞

c

du

γ(u)
(1.9)
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is finite for some (and hence all) c > 1 [29, Theorem 1]. Clearly, if
Λ({1}) = 0 and the integral (1.9) is infinite for some c > 1, then
the Λ-coalescent stays infinite. One of the two implications holds
true for Ξ-coalescents but additional assumptions are needed for the
inversion. If Ξ(∆f) = 0 and the integral (1.9) is finite for some c > 1,
then the Ξ-coalescent comes down from infinity [30, Proposition 32].
Now define ∆ε := {u ∈ ∆ : |u| ≤ 1 − ε} for ε > 0. If Ξ(∆f) = 0,
ν(∆ \ ∆ε) < ∞ for each ε > 0 and the integral (1.9) is infinite for
some c > 1, then the Ξ-coalescent stays infinite [30, Proposition 33].
Schweinsberg’s criteria in fact use

∑∞
k=2(γ(k))

−1 instead of (1.9), but
in the original version the sum can be replaced by (1.9), since, as a
consequence of γ being positive and monotonous, one is finite if and
only if the other is finite. Further work on the topic “coming down
from infinity” has been done in [17].

The case Ξ(∆f) > 0 is described with the use of the Poisson point
process construction, e.g., in [30, Section 5.5]. Let Ξ be a finite mea-
sure on ∆ and decompose Ξ into Ξ = Ξ1 + Ξ2, where Ξ1 is the
restriction of Ξ to ∆f and Ξ2 := Ξ−Ξ1. Replacing Ξ by Ξ1 and Ξ2 in
(1.3) yields two measures LΞ1

and LΞ2
on Z∞. Suppose that ξ1 and

ξ2 are two independent proper Poisson point processes with intensity
measures λ ⊗ LΞ1

and λ ⊗ LΞ2
. As in Section 1.3, we can construct

a Ξi-coalescent by merging blocks according to the points of ξi for
i ∈ {1, 2}. Of course, ξ := ξ1 + ξ2 is a Poisson point process with in-
tensity measure λ⊗L. We say that a point (t, z) of ξ comes from ∆f

if (t, z) is a point of ξ1. Note that the set {z1, z2, . . .} is finite for every
point (t, z) of ξ that comes from ∆f , since the urn J0 is not present
and there are only finitely many other urns for u ∈ ∆f . Thus, only
finitely many blocks remain after a coagulation of the Ξ-coalescent
corresponding to a point (t, z) of ξ that comes from ∆f . In particu-
lar, the Ξ-coalescent does not stay infinite when Ξ1(∆) = Ξ(∆f) > 0.
It can be shown that the Ξ-coalescent comes down from infinity if
ν(∆f) = ∞, so LΞ1

(Z∞) = ∞, or if the Ξ2-coalescent comes down
from infinity. If the Ξ2-coalescent stays infinite and ν(∆f) <∞, then
the Ξ-coalescent neither comes down from infinity nor stays infinite.
For Λ-coalescents the atom at 1 is the rate at which the Λ-coalescent
jumps to the absorbing partition consisting only of the block N.

The coalescents in this work start with an infinite number of
blocks. If the coalescent comes down from infinity, then the number of
blocks Nt after time t > 0 is finite but tends to infinity as t→ 0+. In
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[4], Berestycki et al. determine a rate of divergence for Λ-coalescents,
which they call “speed” of coming down from infinity. Almost at the
same time, Limic showed similar results for Ξ-coalescents [20]. Sup-
pose that the integral (1.9) is finite for c > 1. Then the function
v : (0,∞) → (0,∞), determined as the solution to

t =

∫ ∞

v(t)

du

γ(u)
, t > 0, (1.10)

is well-defined. Further assume that Ξ(∆f) = 0 and that the regu-
larity condition ∫

∆

|u|2 ν(du) < ∞ (1.11)

is given. Then
Nt

v(t)
→ 1, t→ 0+, (1.12)

almost surely [4, 20]. For Λ-coalescents the convergence (1.12) also
holds true in Lp spaces for p ≥ 1 [4, Theorem 2]. Observe that, given
the regularity condition (1.11), the assumption of the finiteness of the
integral (1.9) and Ξ(∆f) = 0 pose no actual restriction, since both
conditions are necessary for the coalescent to come down from in-
finity. As every Λ-coalescent satisfies the regularity condition (1.11),
the prerequisites of [4, Theorems 1 and 2] reduce to the simple fact
that the Λ-coalescent comes down from infinity.

Note that a slightly different variant of γ is used in [4, 20]. But as
shown in [21, Lemma 2.2], the speed v(t) is asymptotically equivalent
if γ is replaced by the different variant in (1.10). Thus, (1.12) still
holds true.

1.7 Coalescents with dust

Let Π = (Πt)t≥0 be a coalescent and, for t ≥ 0, let B1(t), B2(t), . . .
denote the blocks of Πt. A variant of de Finetti’s Theorem (see,
e.g., [18, Theorem 2] or [30, Lemma 40]) implies that the asymptotic
frequencies

fj(t) := lim
n→∞

|Bj(t) ∩ [n]|
n

exist for each j ≥ 1 and t ≥ 0 almost surely. As a consequence of
Kingman’s correspondence between exchangeable random partitions
of N and finite measures on ∆ (see [18] or [30, Appendix A]), the
blocks of Πt are either singletons or infinitely large. In fact, the in-
finitely large blocks have positive asymptotic frequency. Moreover,
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the number of singletons is either infinite or there are none. Define
St := 1−

∑
j≥1 fj(t), t ≥ 0, to be the frequency of singletons. In the

literature, a coalescent is said to have proper frequencies if St = 0
for all t ≥ 0 almost surely. Coalescents are said to have dust, if they
do not have proper frequencies, i.e., if there exist singletons at some
time t > 0. Given Ξ(∆f) = 0, the presence of singletons in a coa-
lescent does not depend on the time, meaning that the number of
singletons is either infinite for all times t > 0 almost surely or Πt

has no singletons for all t > 0 almost surely. If Ξ(∆f) > 0, then the
coalescent jumps to a state with only finitely many, infinitely large
blocks after a finite random time and no singletons remain.

It was first shown for Λ-coalescents by Pitman [26, Proposition 26]
and later for the larger class of Ξ-coalescents by Schweinsberg [30,
Proposition 30] that the coalescent has dust if and only if

a = 0 and µ :=

∫
∆

|u| ν(du) < ∞.

Note that the function x 7→ γ(x)/x, x ≥ 1, is non-decreasing, con-
verges to µ, and γ(x)/x ≥ a(x−1)/2 for x ≥ 1. Hence, the coalescent
has dust if and only if

lim
x→∞

γ(x)/x < ∞. (1.13)

Of course, a coalescent Π = (Πt)t≥0 with dust does not come down
from infinity, and if Ξ(∆f) = 0, then Π even stays infinite. An illus-
trative picture is provided in Article III.

1.8 The fixation line

The fixation line was introduced first by Pfaffelhuber und Wakol-
binger [25] in order to study the genealogy back to the most re-
cent common ancestor of the population in a continuous-time Moran
model, whose backwards genealogy is the Kingman coalescent. A
construction of the fixation line based on the Lookdown-model is
feasible for the full class of Ξ-coalescents, see Gaiser and Möhle [14].
Earlier Hénard [16] properly defined and studied the fixation line
of Λ-coalescents. Here it suffices to define the fixation line as the
Siegmund-dual [31] of the block counting process: the fixation line
L = (Lt)t≥0 is a Markov process that satisfies (see [14])

P
(
L
(m)
t ≥ n

)
= P

(
N

(n)
t ≤ m

)
, m, n ∈ N, t ≥ 0, (1.14)
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where the upper index “(m)” denotes the initial state L
(m)
0 = m at

time t = 0. For a thorough definition of the fixation line see [14] or
[16] and the references therein.

From (1.14) we can conclude that the fixation line has non-
decreasing paths. The fixation line explodes if and only if the block
counting process becomes finite, so if and only if the coalescent comes
down from infinity. We also obtain the following formula for the rates
γk,j := limt→0+ t

−1(P(L(k)
t = j)− δkj). By (1.5),

γk,j =
∑
1≤i≤k

(qj,i − qj+1,i)

= a

(
j

2

)
1{j=k+1} +

∫
∆

P
(
Y (j, u) ≤ k, Y (j + 1, u) > k

)
ν(du)

for j, k ∈ N with j > k, and note that only upward jumps are
possible. For Λ-coalescents we have

γk,j =

(
j

j − k + 1

)∫
[0,1]

uj−k−1(1− u)k Λ(du)

for j, k ∈ N with j > k.

1.9 Markov branching processes

The Bienaymé–Galton–Watson process is a process Z = (Zn)n∈N0

that satisfies the recursion

Zn+1 =

Zn∑
i=1

ξi,n, n ∈ N0, (1.15)

where ξi,n, i ∈ N, n ∈ N0, are i.i.d. N0-valued random variables. The
process is usually interpreted as the size of an evolving population.
Start with a number Z0 ∈ N of individuals. Each individual lives
for one unit of time and at the moment of its death the individual
produces a random number of children, independently of the others.
The children also live for one unit of time and at the moment of
their death each of them produces new children, which again live for
one unit of time before they reproduce, and so on. The number of
children of an individual is independent of the offspring sizes of all
previously living individuals and the distribution of the number of
children is the same for all individuals. Label the individuals that
are alive at the same time by 1, 2, . . . and suppose that the offspring
size of individual i that lives after n units of time is given by ξi,n. In
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this case Zn, defined via (1.15), is equal to the size of the population
after n units of time.

The classical model has been adapted in various ways. We will
focus on the modification in which the lifetime of each individual
has an exponential distribution with parameter a ∈ (0,∞), indepen-
dently of the lifetimes of other individuals and the offspring sizes,
and the number of children which are born at the end of a lifetime
are still i.i.d. N0-valued random variables. Let Z

(n)
t denote the num-

ber of individuals that are alive at time t ≥ 0 in a population that
started from n ∈ N individuals at time t = 0. The assumptions about
the lifetime guarantee that Z(n) := (Z

(n)
t )t≥0 is a time-homogeneous

Markov chain. The class of processes Z(n) we have just constructed
are the well known continuous-time Markov branching processes with
discrete state space N0∪{∞}. In the remainder of this section and in
Article I, Z(n) denotes a continuous-time Markov branching process
and is shortly referred to as branching process. We exemplary refer
the reader to the book by Athreya and Ney [2, Ch. 3] for results
about such branching processes.

From the construction it follows that the branching property holds,
stating that Z(n) has the same distribution as the sum of n indepen-
dent copies of Z := (Zt)t≥0 := Z(1). In order to understand the
behavior of the branching process it therefore suffices to analyze Z,
like it is done in most of the literature.

Let ξ be the size of the offspring of an arbitrary individual from the
population with meanm := E(ξ) and probability generating function
(pgf) f , given by f(s) := E(sξ), s ∈ [0, 1]. Also, let u(s) := a(f(s)−s),
s ∈ [0, 1], and λ := u′(1) = a(m− 1).

From now on we exclude the uninteresting case P(ξ = 1) = 1. Then
the process almost surely either ends up in the absorbing state 0 or
Zt → ∞ as t → ∞. The event that the process eventually reaches
the state 0 is called extinction. The probability of extinction, denoted
by q, is the smallest solution to the equation f(s) = s in [0, 1]. The
branching process is said to be critical (subcritical, supercritical) if
m = 1 (m < 1,m > 1). In the subcritical and critical case it holds
that q = 1 and in the supercritical case q < 1. The branching process
does not explode, meaning that P(Zt < ∞) = 1 for all t ≥ 0 if and
only if ∫ 1

1−ε

ds

s− f(s)
= ∞
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for some 1 − q > ε > 0. Note that the process does not explode if
m <∞.

Of course, the distribution of Z is fully determined by the ex-
pected lifetime a−1 and the offspring pgf f . The one-dimensional
distributions are accessible through the pgf F (., t) of Zt, defined via
F (s, t) := E(sZt), s ∈ [0, 1], t ≥ 0, and uniquely determined by the
boundary condition F (s, 0) = s and the forward and backward equa-
tion

∂

∂t
F (s, t) = u(s)

∂

∂s
F (s, t) and

∂

∂t
F (s, t) = u(F (s, t)), (1.16)

t ≥ 0, s ∈ [0, 1]. By the definition of u, the backward equation is
equivalent to

at =

∫ F (s,t)

s

du

f(u)− u
(1.17)

for t ≥ 0 as long as s ̸= q. Moreover, let m(t) := E(Zt) denote the
expected size of the population after time t ≥ 0. Then m(t) = eλt

for t ≥ 0 and, as a consequence of the branching property, we obtain
that the process (Zt/m(t))t≥0 is a martingale, which is used in some
of the proofs of Article I.
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Chapter 2

Discussion of the results

Articles II and III provide scaling limits for the block counting pro-
cess of coalescents that stay infinite when the initial sample size n
tends to infinity. Analogous results can be stated for the fixation
line. The main results are presented in Section 2.1. Article I provides
scaling limits for branching processes, which are presented in Section
2.2. The connection between the two problems is explained at the
end of Subsection 2.2.3.

2.1 Scaling limits for the block counting process

The key assumption of the results for the block counting process and
the fixation line is formulated in terms of the function γ introduced
in Section 1.5. A subsequent discussion provides a list of conditions
that are equivalent to the key assumption. In the second subsection,
the results are stated.

2.1.1 The key assumption

Define
κ := lim

x→∞
xγ′′(x) ∈ [0,∞] (2.1)

whenever this limit exists. Given that the limit in (2.1) exists, we call
κ asymptotic curvature or curvature parameter. Note that the limit
does not exist for all coalescents. The key assumption of Article III
is the following.

The limit κ in (2.1) exists and is finite. (2.2)

The following comments should help to put the key assumption into
perspective. For coalescents with dust the limit exists and κ = 0,
though there exist dust-free coalescents for which κ = 0, see Example
III.3.3. Given that the regularity condition (1.11) is satisfied, the key
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assumption implies that the coalescent does not come down from
infinity. If additionally ν(∆f) = 0, then the coalescent stays infinite.

The existence of the limit κ can be linked to the behavior of Ξ
near zero with the use of a Tauberian theorem. Define the function
G : [0, 1] → [0,∞) via

G(t) :=

∫
∆

∑
i≥1

1[0,t](ui)u
2
i ν(du), t ∈ [0, 1].

Proposition III.2.3 states that (2.2) is equivalent to

κ = lim
t→0+

t−1G(t). (2.3)

For Λ-coalescents (2.3) simplifies to

κ = lim
t→0+

t−1Λ([0, t]). (2.4)

Eq. (2.4) essentially means that Λ behaves like Lebesgue measure
near 0. From (2.4) it can easily be seen that the Bolthausen–Sznitman
coalescent satisfies the key assumption with κ = 1. As a generaliza-
tion, the β(1, b)-coalescent, the particular Λ-coalescent whose under-
lying measure Λ = β(1, b) has density function u 7→ b(1 − u)b−1,

u ∈ [0, 1], satisfies the key assumption with κ = b for all b > 0. The
β(1, b)-coalescent is treated in detail in Article II (Example II.4.2).

The assumptions of the main results of Article II are more re-
strictive. First of all we only consider Λ-coalescents. The main result
(Theorem II.2.3) states the convergence of the scaled block counting
process under the assumption that (see Assumption A in Article II)∫

[0,1]

u−1 (Λ− κλ)(du) < ∞ (2.5)

for some κ ≥ 0, where λ denotes Lebesgue measure on [0, 1]. Addi-
tionally it is assumed that Λ({1}) = 0. In Article II, the constant κ
is denoted by b but we use κ here, since the two constants in (2.2)
and (2.5) coincide. As shown in Lemma II.9.1, (2.5) in fact implies
(2.4) and, hence, (2.2). The converse implication is not true. Article
III provides an example of a Λ-coalescent that satisfies the key as-
sumption although not being covered in Article II (Example III.3.3).

The main results in Articles II and III are proved by verifying
that the generator of the transformed block counting process con-
verges uniformly. At the time of writing Article II, it wasn’t fully
understood that (2.2) is the suitable assumption under which the
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uniform convergence can be shown. By Proposition III.2.2, the key
assumption (2.2) holds true if and only if

γ(x)

x
= κ log x + log ℓ(x), x ≥ 0, (2.6)

for some slowly varying function ℓ : [0,∞) → (0,∞). By the defini-
tion of slowly varying functions, it is equivalent to require that the
limit

lim
x→∞

(
γ(xy)

xy
− γ(x)

x

)
exists for each y > 0. This condition is used in the proof of the main
result (cf. (2.9)).

2.1.2 Results

Recall that N (n) = (N
(n)
t )t≥0 denotes the block counting process with

initial state n. In Articles II and III, we investigate the existence of
scaling constants v(n, t) for which the process X(n) := (X

(n)
t )t≥0,

defined via

X
(n)
t := logN

(n)
t − log v(n, t), t ≥ 0, n ∈ N, (2.7)

converges to a non-degenerate limiting process as n → ∞ in the
space DR[0,∞) of càdlàg paths endowed with the Skorohod topology.
We consider the logarithmic form for technical reasons only. The
convergence results are presented in non-logarithmic form in Section
III.2.5.

We are primarily interested in coalescents that do not come down
from infinity. In the literature, the problem is solved for coalescents
with dust and for the Bolthausen–Sznitman coalescent. In [14], it is
shown that for coalescents with dust the scaling v(n, t) := n, t ≥
0, n ∈ N, can be chosen; also see [22]. In [19], it is shown that for
the Bolthausen–Sznitman coalescent the scaling v(n, t) := ne

−t

, t ≥
0, n ∈ N, can be chosen. Earlier Goldschmidt and Martin [15] and
Baur and Bertoin [3] even showed the almost sure convergence of

N
(n)
t /ne

−t

as n→ ∞ for all t ≥ 0. Both convergence results, the dust
case and the Bolthausen–Sznitman case, are reshown in Articles II
and III, although our methods differ and the convergence result in
[14] for coalescents with dust is slightly more general.

The scaling function for the block counting process can be de-
fined without any assumptions on γ (or Ξ). One might compare the
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definition to (1.10). Define v : [1,∞)× [0,∞) → [1,∞) via

v(1, t) := 1 and

∫ x

v(x,t)

du

γ(u)
= t, x > 1, t ≥ 0. (2.8)

Proposition III.2.4 shows that the scaling function is well-defined.
The proposition also states that v(x, .) is the solution to the initial
value problem

d

dt
v(x, t) = −γ(v(x, t)), t ≥ 0, v(x, 0) = x,

for all x ≥ 1. The definition of the scaling function thus makes sense,
since γ(k) is the expected rate of decrease of the block counting
process if the coalescent currently is in a state with k blocks.

Now assume that the key assumption (2.2) is satisfied with κ ≥ 0.
Then there exist slowly varying functions ℓt : [1,∞) → (0,∞) such
that (see Proposition III.2.5)

v(x, t) = xe
−κt

ℓt(x), x ≥ 1, t ≥ 0.

Put ∆∗ := {u ∈ ∆ : |u| = 1} and further assume that ν(∆∗) = 0
and that the regularity condition (1.11) holds true. The main result
(Theorem III.2.7) states that the process X(n), defined via (2.7), con-
verges in DR[0,∞) as n → ∞ for the particular scaling function v,
defined via (2.8). The limiting process, denoted byX, is an Ornstein–
Uhlenbeck type process that can be characterized as follows. Define
ψ : R → C via

ψ(x) :=

∫
∆

(
(1− |u|)ix − 1 + ix|u|

)
ν(du), x ∈ R.

The assumptions ν(∆∗) = 0 and (1.11) imply that ψ is the charac-
teristic exponent of an infinitely divisible distribution. The limiting
process X = (Xt)t≥0 is a real-valued Markov process with initial
value X0 = 0 and semigroup

E(f(Xs+t) |Xs = x) = E(f(e−κtx+Xt)),

x ∈ R, f ∈ B(R), s, t ≥ 0, where the marginal distributions are
determined by the characteristic functions

E(eixXt) = exp

(∫ t

0

ψ(e−κsx) ds

)
, x ∈ R, t ≥ 0.

The Markov processX is alternatively determined by the correspond-
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ing generator A, given by

Af(x) = −κxf ′(x)

+

∫
∆

(
f(x+ log(1− |u|))− f(x) + |u|f ′(x)

)
ν(du),

x ∈ R, for suitable functions f (see Lemma III.4.1 or [28, The-
orem 3.1]). We are able to write the generator corresponding to

X(n) in a comparable way. The generators (A
(n)
s )s≥0 of the (time-

inhomogeneous) Markov process X(n) are defined via A
(n)
s f(x) :=

limt→0+(E(f(X(n)
s+t) |X

(n)
s = x) − f(x)) for s ≥ 0. Write k :=

k(s, x, n) := exv(n, s) for (s, x) ∈ Ẽn and n ∈ N. Then, by (1.5),

A(n)
s f(x) = f ′(x)

(
γ(e−xk)
e−xk − γ(k)

k

)
(2.9)

+

∫
∆

E
(
f
(
x+ log Y (k,u)

k

)
− f(x) +

(
1− Y (k,u)

k

)
f ′(x)

)
ν(du),

where the random variables Y (k, u) are defined in Section 1.4. By
using the fact that Y (k, u)/k → 1 − |u| almost surely as k → ∞,

it can be shown that A
(n)
s uniformly converges to A, implying the

desired convergence of X(n) to X as n→ ∞.
An analogous convergence result can be stated for the fixation line

(L
(n)
t )t≥0 with initial state L

(n)
0 = n; see [14] for coalescents with dust

and [19] for the Bolthausen–Sznitman coalescent. The scaling w(x, t)
for the fixation line is defined as the inverse of v, in the sense that
w(., t) is the inverse of v(., t) for all t ≥ 0. In order for w(x, t) to be
defined for all x ≥ 1 the assumption

∫∞
c (γ(u))−1 du = ∞ for some

c > 1 is necessary. Given the key assumption (2.2), the map w(., t) is
regularly varying with index eκt for each t ≥ 0, since the property of
regular variation transfers to the inverse function. There exist slowly
varying functions ℓ#t : [1,∞) → (0,∞) such that

w(x, t) = xe
κt

ℓ#t (x), x ≥ 1, t ≥ 0.

Assume that ν(∆∗) = 0 and that the regularity condition (1.11)
is given. Under these additional assumptions, the requirement∫∞
c (γ(u))−1 du = ∞ simply means that the fixation line be non-

exploding. Theorem III.2.10 states that the process Y (n) := (Y
(n)
t )t≥0,

defined via
Y

(n)
t := logL

(n)
t − logw(n, t)

converges in DR[0,∞) as n→ ∞.
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2.2 Scaling limits for Markov branching processes

Recall that Z(n) = (Z
(n)
t )t≥0 denotes a branching process with initial

state Z
(n)
0 = n, offspring distribution ξ and expected lifetime a−1.

Moreover, define Z := (Zt)t≥0 := (Z
(1)
t )t≥0, f as the offspring pgf,

given by f(s) := E(sξ), s ∈ [0, 1], and F (s, t) as the pgf of Zt, given by
F (s, t) = E(sZt), s ∈ [0, 1], t ≥ 0. We also use the notation m := E(ξ)
and m(t) := E(Zt) for the mean of ξ and Zt for t ≥ 0.

In Article I, we pursue the question of the existence of constants
a(n, t) and b(n, t) for n ∈ N and t ≥ 0 for which the process X(n) :=

(X
(n)
t )t≥0, defined via

X
(n)
t :=

Z
(n)
t − b(n, t)

a(n, t)
, t ≥ 0, n ∈ N, (2.10)

converges in DR[0,∞) to a non-degenerate limiting process as n →
∞. The branching property states that Z(n) has the same distribution
as n independent copies of Z. The problem of the convergence of one-
dimensional distributions of X(n) can hence be solved by utilizing the
theory of stable distributions and their domains of attraction. The
necessary and sufficient conditions for convergence are well known
and are here expressed in terms of the pgf F (., t).

We distinguish three cases, whose prerequisites differ in the finite-
ness of the offspring distribution’s first and second moment. Article I
contains three convergence results for the processes X(n), one in each
case, and results that relate particular asymptotics of F (., t) to the
offspring pgf f . Examples for all three regimes are given in Article I.
A short discussion of scaling limits for explosive Markov branching
processes is included too.

2.2.1 The finite variance case

Assume that E(ξ2) < ∞. Then E(Z2
t ) < ∞ for all t ≥ 0. Accord-

ing to the central limit theorem we can choose a(n, t) :=
√
n and

b(n, t) := nm(t) in (2.10) in order for the one-dimensional distribu-
tions of X(n) to converge. In fact, we apply a multivariate version
of the central limit theorem in order to obtain the convergence of
the finite-dimensional distributions. Afterwards the convergence in
DR[0,∞) is established by using a criterion by Aldous for martin-

gales [1]. Theorem I.2.1 states that the process X(n) := (X
(n)
t )t≥0,
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defined via

X
(n)
t :=

Z
(n)
t − nm(t)√

n
, n ∈ N, t ≥ 0,

converges in DR[0,∞) as n → ∞ to a continuous Gaussian Markov
process.

2.2.2 The finite mean infinite variance case

Assume that m := E(ξ) < ∞ and E(ξ2) = ∞. In order for the one-
dimensional distributions of the process X(n), defined via (2.10), to
converge we need Zt to belong to the domain of attraction of an α-
stable law with α ∈ [1, 2] for all t ≥ 0. Moreover, the parameter α
cannot depend on t. Indeed, if Zt belongs to the domain of attraction
of an α-stable law, then E(Zβ

t ) <∞ for all β < α and if in addition
α < 2, then E(Zβ

t ) = ∞ for all β > α. But the finiteness of moments
of Zt does not depend on the time, meaning that, for each r ≥ 1,
E(Zr

t ) <∞ for all t ≥ 0 if and only if E(ξr) <∞. Therefore, α does
not depend on t.

Article I does not cover the case α = 1. Combining results by
Feller [12, Ch. XVII.5] and by Bingham and Doney [6, Theorem A]
shows that a necessary and sufficient condition for Zt to belong to
the domain of attraction of an α-stable law with α ∈ (1, 2] is given
by

1− F (s, t) = m(t)(1− s)− (1− s)αℓt((1− s)−1), (2.11)

s ∈ [0, 1), t ≥ 0, where the function ℓt : [1,∞) → R varies slowly for
each t ≥ 0.

In the finite mean infinite variance case we assume that there exist
α ∈ (1, 2] and a slowly varying function ℓ : [1,∞) → (0,∞) such that

1− f(s) = m(1− s) − (1− s)αℓ((1− s)−1), s ∈ [0, 1).

Then we can derive from the forward and backward equation, see
(1.16) and (1.17), that (2.11) holds true with the slowly varying func-
tion satisfying ℓt(x) = c(t)ℓ(x)(1 + o(1)) as x→ ∞, where

c(t) :=

at if m = 1 (critical case),
m(αt)−m(t)

(α− 1)(m− 1)
if m ̸= 1 (non-critical case).

Theorem I.2.3 states that the process X(n) := (X
(n)
t )t≥0, defined via

X
(n)
t :=

Z
(n)
t − nm(t)

an
, n ∈ N, t ≥ 0,
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converges in DR[0,∞) as n→ ∞ to a time-inhomogeneous Ornstein–
Uhlenbeck type process for a suitably chosen scaling sequence
(an)n∈N. As we have seen, the convergence of the one-dimensional
distribution follows from the theory about stable distributions and
their domains of attraction. The convergence in DR[0,∞) is obtained
by showing that the semigroups converge uniformly on a sufficiently
large set.

2.2.3 The infinite mean case with non-explosion

Assume that m = ∞ and that the branching process still does not
explode. The distribution of Zt belongs to the domain of attraction
of an α(t)-stable law if and only if

P(Zt > x) ∼ x−α(t)Γ(1− α(t))−1ℓt(x), x→ ∞, (2.12)

for some slowly varying functions ℓt : [0,∞) → (0,∞). Here the
gamma function only has a corrective meaning. The assumption m =
∞ implies that necessarily α(t) ∈ (0, 1]. In difference to the previous
section, α(t) depends on t ≥ 0. Again, the case α(t) = 1 is excluded.
For α(t) < 1 it follows from Bingham and Doney [6, Theorem A]
that the tail behavior (2.12) is equivalent to

1− F (s, t) = (1− s)α(t)ℓt((1− s)−1), s ∈ [0, 1). (2.13)

Define the function ℓ : [1,∞) → (0,∞) via

1− f(s) = (1− s)ℓ((1− s)−1), s ∈ [0, 1).

Lemma I.2.6 shows that (2.13) is satisfied for every t > 0 with α(t) ∈
(0, 1) and slowly varying functions ℓt : [1,∞) → (0,∞) if and only if
there exists A ∈ (0,∞) such that

ℓ(x) ∼ A log x, x→ ∞. (2.14)

In this case α(t) = e−aAt for all t ≥ 0. The proof utilizes the backward
equation. If in addition the limit

B := lim
x→∞

(ℓ(x)− A log x) ∈ R (2.15)

exists, then

lim
x→∞

ℓt(x) = exp

(
B − 1

A
(1− α(t))

)
, t ≥ 0.

Under the assumption that (2.14) and (2.15) hold true, Theorem

I.2.8 states that the process X(n) := (X
(n)
t )t≥0, defined via

X
(n)
t := n−1/α(t)Z

(n)
t , t ≥ 0, n ∈ N,

26



converges in D[0,∞)[0,∞) as n→ ∞ to a continuous-state branching
process.

We are now able to describe the connection between Article I on
one hand and Articles II and III on the other. The three articles
state the same result for one particular example. The Bolthausen–
Sznitman coalescent satisfies the assumptions of Articles II and III.
The fixation line of the Bolthausen–Sznitman coalescent is also a
branching process with expected lifetime a−1 = 1 and offspring pgf
f(s) = s+(1−s) log(1−s), s ∈ [0, 1]. Hence, Eq. (2.14) and Eq. (2.15)
hold true with ℓ(x) = log x + 1, x ≥ 1, A = 1 and B = 1, and the
results of Article I in the infinite mean case are applicable. In this
case Theorem II.2.4 and Theorem I.2.8 both state that

Z
(n)
t /ne

−t

converges in DR[0,∞) as n → ∞. The limiting process is Neveu’s
continuous-state branching process [24]. Also see Example I.2.9 or
Theorem III.2.11 (although with a scaling that differs by a constant
not depending on n) and [19, Theorem 3.1 b)] for a more detailed
analysis of the fixation line of the Bolthausen–Sznitman coalescent.
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Article I

Asymptotics of continuous-time
discrete state space branching
processes for large initial state

Möhle, M. and Vetter, B. (2021) Markov Process. Related
Fields 27, no. 1, 1–42.

Abstract.
Scaling limits for continuous-time branching processes with discrete state space are
provided as the initial state tends to infinity. Depending on the finiteness or non-
finiteness of the mean and/or the variance of the offspring distribution, the limits
are in general time-inhomogeneous Gaussian processes, time-inhomogeneous gener-
alized Ornstein–Uhlenbeck type processes or continuous-state branching processes.
We also provide transfer results showing how specific asymptotic relations for the
probability generating function of the offspring distribution carry over to those of the
one-dimensional distributions of the branching process.

Keywords: Branching process; generalized Mehler semigroup; Neveu’s continuous-
state branching process; Ornstein–Uhlenbeck type process; self-decomposability; sta-
ble law; time-inhomogeneous process; weak convergence

2020 Mathematics Subject Classification: Primary 60J80; 60F05 Secondary 60F17;
60G50; 60J27

I.1 Introduction

Suppose that the lifetime of each individual in some population is ex-
ponentially distributed with a given parameter a ∈ (0,∞) and that
at the end of its life each individual gives birth to k ∈ N0 := {0, 1, . . .}
individuals with probability pk, independently of the rest of the pop-
ulation. Assuming that the population consists of n ∈ N := {1, 2, . . .}
individuals at time t = 0 we denote with Z

(n)
t the random number

of individuals alive at time t ≥ 0. The process Z(n) := (Z
(n)
t )t≥0 is a

classical continuous-time branching process with discrete state space
N0∪{∞} and initial state Z

(n)
0 = n. These processes have been stud-

ied extensively in the literature. For fundamental properties of these
processes we refer the reader to the classical books of Harris [18,
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Chapter V], Athreya and Ney [3, Chapter III] and Sewastjanow [39].

Define Zt := Z
(1)
t and Z := Z(1) for convenience. By the branching

property, Z(n) is distributed as the sum of n independent copies of
Z. The literature thus mainly focuses on the situation n = 1 and
most results focus on the asymptotic behavior of these processes as
the time t tends to infinity.

In contrast we are interested in the asymptotic behavior of Z(n) as
the initial state n tends to infinity. To the best of the authors knowl-
edge this question has not been discussed rigorously in the literature
for continuous-time discrete state space branching processes. Related
questions for discrete-time Bienaymé–Galton–Watson processes have
been studied extensively in the literature (see, for example, Lamperti
[25, 26] or Green [17]), however in this situation time is usually scaled
as well, so these approaches differ from the continuous-time case. The
article of Sagitov [38] contains related results, however the critical
case is considered and again an additional time scaling is used.

The asymptotics as the initial state n tends to infinity may in
some sense be viewed as a non-natural question in branching pro-
cess theory, however this question has fundamental applications, for
example in coalescent theory. It is well known that the block count-
ing process of any exchangeable coalescent, restricted to a sample of
size n, has a Siegmund dual process, called the fixation line. For the
Bolthausen–Sznitman coalescent the fixation line is (see, for exam-
ple, [23]) a continuous-time discrete state space branching process
Z(n) with offspring distribution pk = 1/(k(k − 1)), k ∈ {2, 3 . . .}. In
this context, the parameter n is the sample size and hence the ques-
tion about its asymptotic behavior when the sample size n becomes
large is natural and important. In fact, this example was the starting
point to become interested in the asymptotical behavior of branching
processes for large initial value.

The convergence results are provided in Section I.2. We provide a
convergence result for the finite variance case (Theorem I.2.1), an-
other result for the situation when the process has still finite mean
but infinite variance (Theorem I.2.3) and for the situation when even
the mean is infinite but the process still does not explode in finite
time (Theorem I.2.8). The limiting processes arising in Theorem I.2.1
are (time-inhomogeneous) Gaussian processes whereas those in The-
orem I.2.3 are (time-inhomogeneous) Ornstein–Uhlenbeck type pro-
cesses. In Theorem I.2.8 continuous-state branching processes arise
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in the limit as n → ∞. For all three regimes typical examples are
provided. The basic idea to obtain convergence results of this form
is relatively obvious. For fixed time t, since Z

(n)
t is a sum of n inde-

pendent copies of Zt, we can apply central limit theorems, leading
to the convergence of the one-dimensional distributions. We refer the
reader exemplary to the books of Petrov [31, 32] and Ibragimov and
Linnik [20] and the article of Geluk and De Haan [15] for classical
limiting results on sums of independent and identically distributed
random variables. However, we prove not only convergence of the
marginals or the finite-dimensional distributions. We provide func-
tional limiting results for the sequence of processes (Z(n))n∈N. Their
proofs require some additional efforts. We think that the arising lim-
iting processes are quite interesting. For example, since the centering
or scaling of the space in Theorem I.2.1 and Theorem I.2.3 in general
explicitly depends on the time t, the limiting processes are in general
time-inhomogeneous.

The convergence results are as well based on crucial transfer re-
sults showing how particular asymptotic relations for the probabil-
ity generating function (pgf) of the offspring distribution carry over
to the pgf of Zt. Results of this form are for example provided in
Lemma I.2.2, Lemma I.2.6 and Lemma I.2.7 and are of its own inter-
est. Despite the fact that there is a vast literature on continuous-time
branching processes, we have not been able to trace these results.

Throughout the article ξ denotes a random variable taking values
in N0 with probability pk := P(ξ = k), k ∈ N0. For a space E
equipped with a σ-algebra we denote with B(E) the space of all
bounded measurable functions g : E → R. For a topological space
X and K ∈ {R,C} we denote by Ĉ(X,K) the space of continuous
functions g : X → K vanishing at infinity and also write Ĉ(X) for
Ĉ(X,R).

I.2 Results

Let f denote the pgf of ξ, i.e., f(s) := E(sξ) =
∑

k≥0 pks
k and define

u(s) := a(f(s) − s) for s ∈ [0, 1]. Let r ≥ 1. It is well known (see,
for example, Athreya and Ney [3, p. 111, Corollary 1]) that mr(t) :=
E(Zr

t ) < ∞ for all t > 0 if and only if E(ξr) =
∑

k≥0 k
rpk < ∞.

Moreover m(t) := m1(t) = eλt with λ := u′(1−) = a(E(ξ)− 1) and

m2(t) =

{
τ 2λ−1eλt(eλt − 1) + eλt if λ ̸= 0,

τ 2t+ 1 if λ = 0,
(I.1)
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with τ 2 := u′′(1−) = af ′′(1−) = aE(ξ(ξ−1)). Note that (I.1) slightly
corrects Eq. (5) on p. 109 in [3], which accidently provides the formula
for the second descending factorial moment E(Zt(Zt − 1)) instead of
the second moment E(Z2

t ). In particular, if m2(t) <∞, then

σ2(t) := Var(Zt) =

{
(τ 2 − λ)eλt(eλt − 1)/λ if λ ̸= 0,

τ 2t if λ = 0.

I.2.1 The finite variance case

Assume that the second moment E(ξ2) =
∑

k≥0 k
2pk of the offspring

distribution is finite or, equivalently, that Var(Zt) <∞ for all t ≥ 0.
In the following a∧ b := min{a, b} denotes the minimum of a, b ∈ R.
We furthermore use for µ ∈ R and σ2 ≥ 0 the notation N(µ, σ2)
for the normal distribution with mean µ and variance σ2 with the
convention that N(µ, 0) is the Dirac measure at µ. Our first fluctua-

tion result (Theorem I.2.1) clarifies the asymptotic behavior of Z
(n)
t

as the initial state n tends to infinity. The proof of Theorem I.2.1 is
provided in Section I.3.

Theorem I.2.1. If E(ξ2) <∞ or, equivalently, if σ2(t) := Var(Zt) <

∞ for all t ≥ 0, then, as n → ∞, the process X(n) := (X
(n)
t )t≥0,

defined via

X
(n)
t :=

Z
(n)
t − nm(t)√

n
=

Z
(n)
t − neλt√

n
, n ∈ N, t ≥ 0, (I.2)

converges in DR[0,∞) to a continuous Gaussian Markov process X =
(Xt)t≥0 with X0 = 0 and covariance function (s, t) 7→ Cov(Xs, Xt) =
E(XsXt) = m(|s− t|)σ2(s ∧ t), s, t ≥ 0.

Remarks.

1. (Continuity of X) Let s, t ≥ 0 and x ∈ R. Conditional on
Xs = x the random variable Xs+t − Xs has a normal distri-
bution with mean µ := xm(t) − x = x(m(t) − 1) and variance
v2 := m(s)σ2(t). Thus, E((Xs+t−Xs)

4 |Xs = x) = 3v4+6µ2v2+
µ4 = 3m2(s)σ4(t) + 6x2(m(t)− 1)2m(s)σ2(t) + x4(m(t)− 1)4 or,
equivalently,

E((Xs+t −Xs)
4 |Xs) = 3m2(s)σ4(t) + 6X2

s (m(t)− 1)2m(s)σ2(t)

+X4
s (m(t)− 1)4.

32



Taking expectation yields

E((Xs+t −Xs)
4) = 3m2(s)σ4(t) + 6E(X2

s )(m(t)− 1)2m(s)σ2(t)

+ E(X4
s )(m(t)− 1)4

= 3m2(s)σ4(t) + 6σ2(s)(m(t)− 1)2m(s)σ2(t)

+ 3σ4(s)(m(t)− 1)4.

From this formula it follows that for every T > 0 there exists a
constantK = K(T ) ∈ (0,∞) such that E((Xs−Xt)

4) ≤ K(s−t)2
for all s, t ∈ [0, T ]. By Kolmogorov’s continuity theorem (see, for
example, Kallenberg [22, p. 57, Theorem 3.23]) we can therefore
assume that X has continuous paths.

2. (Generator) For λ ̸= 0 the Gaussian process X is time-
inhomogeneous. Note that Ts,tg(x) := E(g(Xs+t) |Xs = x) =
E(g(xm(t) +

√
m(s)Xt)), s, t ≥ 0, g ∈ B(R), x ∈ R. Let C2(R)

denote the space of real-valued twice continuously differentiable
functions on R. For s ≥ 0, g ∈ C2(R) and x ∈ R it follows that

Asg(x) := lim
t→0

Ts,tg(x)− g(x)

t
= λxg′(x) +

σ2

2
m(s)g′′(x),

where σ2 := limt→0 σ
2(t)/t = τ 2 − λ = aE((ξ − 1)2). For λ = 0

(critical case) the process X is a time-homogeneous Brownian
motion with generator Ag(x) = (τ 2/2)g′′(x), g ∈ C2(R), x ∈ R,
where τ 2 = aVar(ξ).

3. (Doob–Meyer decomposition) Define the process C := (Ct)t≥0

via Ct := λ
∫ t
0 Xs ds, t ≥ 0. Let Ft := σ(Xs, s ≤ t), t ≥ 0. For all

0 ≤ s ≤ t,

E(Ct − Cs | Fs) = λE
(∫ t

s

Xu du

∣∣∣∣Fs

)
= λ

∫ t

s

E(Xu | Fs) du

= λ

∫ t

s

m(u− s)Xs du = Xs

∫ t

s

λeλ(u−s) du

= Xs(e
λ(t−s) − 1) = Xsm(t− s)−Xs

= E(Xt | Fs)−Xs = E(Xt −Xs | Fs).

Thus, the compensated process M := (Mt)t≥0 := (Xt − Ct)t≥0

is a martingale with respect to the filtration (Ft)t≥0. For λ = 0
the process X itself is hence a martingale. Clearly, X = M + C
is the Doob–Meyer decomposition of X. The process C is not
monotone, but decomposes into C = C+ − C−, where C+ :=
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(C+
t )t≥0 and C− := (C−

t )t≥0, defined via C+
t := λ

∫ t
0 X

+
s ds and

C−
t := λ

∫ t
0 X

−
s ds for all t ≥ 0, both have non-decreasing paths.

4. (Positive semi-definiteness) The limiting process X in Theorem
I.2.1 is Gaussian. For any finite number k of time points 0 ≤ t1 <
· · · < tk < ∞ it follows that (Xt1, . . . , Xtk) has a multivariate
normal distribution with positive semi-definite covariance matrix
Σ := (σi,j)i,j∈{1,...,k} having entries σi,j = Cov(Xti, Xtj) = m(|ti −
tj|)σ2(ti∧ tj), i, j ∈ {1, . . . , k}. For λ = 0 (critical case) it follows
that the matrix (ti ∧ tj)i,j∈{1,...,k} is positive semi-definite. For
further properties of such min and max matrices and related meet
and join matrices we refer the reader exemplary to Bhatia [4, 5]
and Mattila and Haukkanen [27, 28]. For λ ̸= 0 (non-critical case)
it follows that the matrix (eλ|ti−tj |eλ(ti∧tj)(eλ(ti∧tj)−1)/λ)i,j∈{1,...,k}
is positive semi-definite.

Examples. (i) Let ξ be geometrically distributed with parameter
p ∈ (0, 1). Define q := 1− p. Then all descending factorial moments
E((ξ)j) = j!(q/p)j, j ∈ N0, are finite. Theorem I.2.1 is hence applica-
ble with λ = a(E(ξ)−1) = a(q/p−1) and τ 2 = aE((ξ)2) = 2a(q/p)2.
For p = 1/2 (critical case) the process X is a Brownian motion with
generator Af(x) = af ′′(x), f ∈ C2(R), x ∈ R.

(ii) If ξ is Poisson distributed with parameter µ ∈ (0,∞), then
again all descending factorial moments E((ξ)j) = µj, j ∈ N0, are
finite. Theorem I.2.1 is applicable with λ = a(E(ξ) − 1) = a(µ − 1)
and τ 2 = aE((ξ)2) = aµ2. For µ = 1 (critical case) the process X is
a Brownian motion with generator Af(x) = (a/2)f ′′(x), f ∈ C2(R),
x ∈ R.

(iii) Let a1, a2 ≥ 0 with a1 + a2 > 0. Theorem I.2.1 is applicable
for birth and death processes with rates na1 and na2 for birth and
death respectively if the process is in state n. In this case we have
a = a1 + a2, f(s) = (a2 + a1s

2)/a, u(s) = a2 + a1s
2 − as, λ = a1 − a2

and τ 2 = 2a1. For a1 = a2 (critical case) the process X is a Brownian
motion with generator Af(x) = a1f

′′(x), f ∈ C2(R), x ∈ R.

I.2.2 The finite mean infinite variance case

In this subsection it is assumed that m := E(ξ) < ∞. Since f is
convex on [0, 1], the inequality 1 − f(s) ≤ m(1 − s) holds for all
s ∈ [0, 1]. In order to state appropriate limiting results it is usual
to control the difference between m(1 − s) and 1 − f(s). A typical
assumption of this form is the following.
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Assumption A. There exists a constant α ∈ (1, 2] and a function
L : [1,∞) → (0,∞) slowly varying (at infinity) such that

1− f(s) = m(1− s) − (1− s)αL((1− s)−1), s ∈ [0, 1). (I.3)

Since f is differentiable, Assumption A in particular implies that L
is differentiable. Define F (s, t) := E(sZt) for s ∈ [0, 1] and t ≥ 0. The
following lemma clarifies the structure of F (s, t) under Assumption
A. Recall that m(t) := E(Zt) = eλt <∞.

Lemma I.2.2. If the offspring pgf f satisfies Assumption A, then,
for every t ≥ 0,

1−F (s, t) = m(t)(1−s) − c(t)(1−s)αL((1−s)−1)(1+o(1)), (I.4)

s→ 1−,where

c(t) :=


at if λ = 0,

m(αt)−m(t)

(α− 1)(m− 1)
= aeλt

eλ(α−1)t − 1

(α− 1)λ
if λ ̸= 0.

(I.5)

Remark. Although we are in this subsection mainly interested in the
infinite variance case, Lemma I.2.2 holds in particular for the finite
variance case. In this case expansion of f for s→ 1− shows that (I.3)
holds with α = 2 and L((1 − s)−1) ∼ f ′′(1−)/2 = E(ξ(ξ − 1))/2 as
s → 1−. Moreover, c(t)f ′′(1−) = E(Zt(Zt − 1)) = F ′′(1−, t), where
F ′′(s, t) denotes the second derivative of F (s, t) with respect to s.

In the following we are however interested in the infinite variance
situation, so we assume that E(ξ2) = ∞. We are now able to state
our second main convergence result.

Theorem I.2.3. Assume that m := E(ξ) < ∞ and E(ξ2) = ∞.
Suppose that Assumption A holds. Let (an)n∈N be a sequence of pos-
itive real numbers satisfying an ≥ 1 for all sufficiently large n and
L(an) ∼ aαn/(αn) as n → ∞. Then the process X(n) := (X

(n)
t )t≥0,

defined via

X
(n)
t :=

Z
(n)
t − nm(t)

an
, n ∈ N, t ≥ 0,

converges in DR[0,∞) as n → ∞ to a limiting process X = (Xt)t≥0

with state space R and initial state X0 = 0, whose distribution is
characterized as follows. Conditional on Xs = x the random variable
Xs+t is distributed as xm(t)+(m(s))1/αXt, where Xt is α-stable with
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characteristic function u 7→ E(eiuXt) = exp(c(t)(−iu)α/α), s, t ≥ 0,
u ∈ R, and Laplace transform η 7→ E(e−ηXt) = exp(c(t)ηα/α), η, t ≥
0. Note that E(Xt) = 0, t ≥ 0. The variance of Xt is equal to c(t)
for α = 2 whereas Var(Xt) = ∞ for t > 0 and α ∈ (1, 2).

Remark. As in Theorem I.2.1 the limiting process X in Theorem
I.2.3 is time-homogeneous if and only if λ = 0. We have Ts,tg(x) :=
E(g(Xs+t) |Xs = x) = E(g(xm(t) + (m(s))1/αXt)) for s, t ≥ 0, g ∈
B(R) and x ∈ R. Note that Ts,tg(x) is well-defined even for some
functions g which are not bounded. For example, for Laplace test
functions of the form g = gη, defined via gη(x) := e−ηx for all x ∈ R
and η ≥ 0, we obtain the explicit formula

Asgη(x) := lim
t→0

Ts,tgη(x)− gη(x)

t
= lim

t→0

e−m(t)ηx+c(t)m(s)ηα/α − e−ηx

t

= lim
t→0

(
−m′(t)ηx+ c′(t)m(s)

ηα

α

)
e−m(t)ηx+c(t)m(s)ηα/α

=
(
−m′(0+)ηx+ c′(0+)m(s)

ηα

α

)
e−ηx

=
(
− ληx+ am(s)

ηα

α

)
e−ηx, s, η ≥ 0, x ∈ R. (I.6)

For α = 2 and g ∈ C2(R) it follows from (I.6) that

Asg(x) := lim
t→0

Ts,tg(x)− g(x)

t
= λxg′(x) +

a

2
m(s)g′′(x),

s ≥ 0, x ∈ R showing that for α = 2 the process X has the same
structure as in Theorem I.2.1 with σ2 replaced by the constant a.

Now assume that α ∈ (1, 2). Then, from (I.6), a straightforward
calculation based on the formula∫ ∞

0

e−ηh − 1 + ηh

hα+1
dh =

Γ(2− α)

α(α− 1)
ηα = Γ(−α)ηα,

η ≥ 0, α ∈ (1, 2), yields

Asg(x) = λxg′(x)+am(s)
α− 1

Γ(2− α)

∫ ∞

0

g(x+ h)− g(x)− hg′(x)

hα+1
dh,

s ≥ 0, x ∈ R, first for g = gη and, hence, for other classes of func-
tions g, for example for g ∈ C2

c (R). These formulas for the semigroup
and the generator show that X is a time-inhomogeneous Ornstein–
Uhlenbeck type process [40]. For fundamental results on such pro-
cesses and related generalized Mehler semigroups we refer the reader
to [8].
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For α = 2 we have aαn/n ∼ αL(an) → ∞ as n→ ∞, in contrast to
the situation in Theorem I.2.1, where an =

√
n and, hence, a2n/n = 1.

For α = 2 the limiting random variable Xt has a normal distribution
with mean 0 and variance c(t) given via (I.5) with α = 2.

Two examples are provided, one with α = 2 and the other with
α ∈ (1, 2). In the first example the underlying branching process
is supercritical whereas in the second example it is critical. In the
first example F (s, t) can be expressed in terms of the Lambert W
function. In the second example F (s, t) is known explicitly.

Example I.2.4. Suppose that pk = 4/((k − 1)k(k + 1)) for k ∈
{2, 3, . . .}, i.e., f(s) =

∑∞
k=2 pks

k = 2s−1(1−s)2(− log(1−s))−2+3s,
s ∈ (0, 1). Note that (I.3) holds with α = 2, m := E(ξ) = 3,
L(1) := 2 and L(x) := 2(log x)/(1 − 1/x) for x > 1. Clearly,
L(x) ∼ 2 log x as x → ∞. Moreover, λ = 2a, m(t) := E(Zt) = e2at

and Var(Zt) = ∞ for t > 0. The sequence (an)n∈N, defined via
a1 := 1 and an :=

√
2n log n for n ∈ N \ {1}, satisfies L(an) ∼

2 log an ∼ log n = a2n/(2n) as n → ∞. By Theorem I.2.3, the pro-

cess ((Z
(n)
t − ne2at)/

√
2n log n)t≥0 converges in DR[0,∞) as n → ∞

to a time-inhomogeneous process X = (Xt)t≥0 with distribution as
described in Theorem I.2.3. In particular, for every t > 0, the ran-
dom variable Xt has a normal distribution with mean 0 and variance
c(t) = 1

2e
2at(e2at − 1). The pgf F (., t) of Zt is computed as follows.

From the backward equation

t =

∫ F (s,t)

s

1

u(x)
dx

=
1

a

∫ F (s,t)

s

x

2(1− x)((x− 1) log(1− x)− x)
dx =

1

2a
[v(x)]F (s,t)s

with v(x) := log(1 − x) − log(x + (1 − x) log(1 − x)), x ∈ (0, 1), we
conclude that

F (s, t) = v−1(2at+ v(s)), (I.7)

where v−1 : R → (0, 1) denotes the inverse of v, which turns out
to be of the form v−1(y) = 1 + 1/W (h), where h := − exp(−1 −
e−y) ∈ (−1/e, 0) and W = W−1 denotes the lower branch of the
LambertW function satisfyingW (h)eW (h) = h and being real-valued
on [−1/e, 0). Expansion of (I.7) shows that

F (s, t) = 1−e2at(1−s)+e2at(e2at−1)(1−s)2 log((1−s)−1)+O((1−s)2),
s → 1−, in agreement with (I.4), since c(t) = 1

2e
2at(e2at − 1) and

L(x) ∼ 2 log x as x→ ∞.
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Example I.2.5. Let α ∈ (1, 2) and b ∈ (0, 1/α]. Assume that
f(s) = s + b(1 − s)α, s ∈ [0, 1]. Note that p0 = b, p1 = 1 − bα and
pk = b(−1)k

(
α
k

)
for k ∈ {2, 3, . . .}. In particular, pk ∼ b/(Γ(−α)kα+1)

as k → ∞. Moreover, f ′(s) = 1 − bα(1 − s)α−1 and, therefore,
m := E(ξ) = f ′(1−) = 1. Thus, the underlying branching process
is critical, the extinction probability is q = 1 and (I.3) holds with
L ≡ b. Note that u(s) = ab(1− s)α. Theorem I.2.3 is applicable with

an := n1/α. It follows that (n−1/α(Z
(n)
t −n))t≥0 converges in DR[0,∞)

as n → ∞ to a process X with distribution as described in Theo-
rem I.2.3. In particular, for every t ≥ 0, the random variable Xt has
characteristic function u 7→ exp(−abt(−iu)α), u ∈ R. From

at =

∫ F (s,t)

s

1

f(x)− x
dx =

∫ F (s,t)

s

1

b(1− x)α
dx

=
(1− F (s, t))1−α − (1− s)1−α

b(α− 1)

it follows that F (s, t) = 1−((α−1)abt+(1−s)1−α)1/(1−α). Generating
functions of this form can be traced back at least to Zolotarev [47,
Section 5]. Note that

1−F (s, t) = (1−s)−abt(1−s)α+α
2
(abt)2(1−s)2α−1+O((1−s)3α−2),

s→ 1−, in agreement with (I.4), since c(t) = at and L ≡ b.

I.2.3 The infinite mean case with non-explosion

In this subsection it is assumed that m := E(ξ) = ∞ or, equivalently,
that m(t) := E(Zt) = ∞ for all t > 0. In order to state the result it
is convenient to define the function L : [1,∞) → (0,∞) via

L(x) := x(1− f(1− x−1)), x ≥ 1. (I.8)

The substitution s = 1− x−1 shows that this definition is equivalent
to

1− f(s) = (1− s)L((1− s)−1), s ∈ [0, 1). (I.9)

Non-explosion is assumed throughout this subsection, which is equiv-
alent to (see, for example, Harris [18, Chapter V, Section 9, p. 106,
Theorem 9.1])∫ 1

ε

1

s− f(s)
ds =

∫ ∞

(1−ε)−1

1

x(L(x)− 1)
dx = ∞

for all ε ∈ (q, 1), where q denotes the extinction probability. For
the theory of stable distributions and their domains of attraction we
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refer the reader to Geluk and de Haan [15]. For the moment let t > 0

be fixed. Then Z
(n)
t , suitably normalized, converges in distribution

as n → ∞ to a non-degenerate limit, i.e., Zt is in the domain of
attraction of a stable law if and only if the following condition is
satisfied. There exists α(t) ∈ (0, 1] and a slowly varying function
Lt : [1,∞) → (0,∞) such that

P(Zt > x) ∼ x−α(t)Lt(x), x→ ∞. (I.10)

And, if α(t) = 1, then Lt(x) → ∞ as x → ∞. In this subsection
only the case α(t) < 1 is investigated. Recall that F (s, t) = E(sZt)
for s ∈ [0, 1] and t ≥ 0. It follows from Bingham and Doney [6] that
(I.10) is then equivalent to

1− F (s, t) = (1− s)α(t)Lt((1− s)−1), s ∈ [0, 1), (I.11)

where, to be precise, the function Lt of (I.11) replaces Γ(1−α(t))Lt.
Then,

α(t) =
log 1−F (s,t)

Lt((1−s)−1)

log(1− s)
, t ≥ 0, s ∈ [0, 1). (I.12)

Since Lt is slowly varying and hence satisfies logLt(x)/ log x→ 0 as
x→ ∞, it follows from (I.12) that

α(t) = lim
s→1−

log(1− F (s, t))

log(1− s)
, t ≥ 0. (I.13)

In particular, α(t) is uniquely determined by the pgf F (., t). Note that
(I.11) always holds for t = 0 with α(0) = 1 and c(0) = 1 because of
the boundary condition F (s, 0) = s.

Suppose (I.11) holds for all t ≥ 0. From the iteration formula
F (s, t+ u) = F (F (s, t), u) it follows that

(1− s)α(t+u)Lt+u((1− s)−1)

= 1− F (s, t+ u) = 1− F (F (s, t), u)

= (1− F (s, t))α(u)Lu((1− F (s, t))−1)

= (1− s)α(t)α(u)L
α(u)
t ((1− s)−1)Lu((1− s)−α(t)L−1

t ((1− s)−1)),

s ∈ [0, 1). Since all terms depending on L. are slowly varying, α(.)
has to be multiplicative, i.e., α(t+u) = α(t)α(u) for all t, u ≥ 0. The
map k : [0,∞) → [0,∞), defined via k(t) := − logα(t) for all t ≥ 0,
is hence additive, so it satisfies the Cauchy functional equation. By
Aczel [1, p. 34, Theorem 1], k(t) = Ct and, hence, α(t) = e−Ct for
all t ≥ 0, where C := k(1) = − logα(1) ∈ [0,∞). Clearly, either
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α(t) = 1 for all t ≥ 0 or α(t) < 1 for all t > 0, depending on whether
C = 0 or C > 0. Also, the map t 7→ Lt(x), t ≥ 0, is continuously
differentiable and satisfies

Lt+u((1− s)−1) = L
α(u)
t ((1− s)−1)Lu((1− s)−α(t)L−1

t ((1− s)−1)),

t, u ≥ 0, s ∈ [0, 1), or Lt+u(x) = L
α(u)
t (x)Lu(x

α(t)L−1
t (x)) for all t, u ≥

0 and all x ≥ 1. The following result (Lemma I.2.6) relates (I.11) to

the offspring pgf f . The map s 7→ L((1−s)−1) = 1−f(s)
1−s , s ∈ [0, 1], has

derivative s 7→ 1
1−s(

1−f(s)
1−s − f ′(s)), which is strictly positive on [0, 1),

since f is strictly convex. Thus, L is strictly increasing on [1,∞). We
also have L(x) → ∞ as x→ ∞, since m = ∞. The proof of Lemma
I.2.6 is provided in Section I.5.

Lemma I.2.6. If m := f ′(1−) = ∞, then the following conditions
are equivalent.

(i) For every t > 0 there exists α(t) ∈ (0, 1) and a slowly varying
function Lt : [1,∞) → (0,∞) such that (I.11) holds.

(ii) For every t > 0 the limit

α(t) := lim
s→1−

α(s, t) ∈ (0, 1)

exists, where α(s, t) := (1 − s)( ∂∂sF (s, t))/(1 − F (s, t)) for all
s ∈ [0, 1).

(iii) The limit

A := lim
x→∞

L(x)

log x
= lim

s→1−

1− f(s)

(1− s) log((1− s)−1)
(I.14)

exists in (0,∞).

In this case α(t) = e−aAt for all t ≥ 0.

Remark. Note that

aA = a lim
s→1+

f(s)− 1

(1− s) log(1− s)
= lim

s→1−

u(s)− a(1− s)

(1− s) log(1− s)

= lim
s→1−

u(s)

(1− s) log(1− s)
.

Thus, α(t) = e−aAt can be alternatively computed from the function
u.
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Suppose thatm = ∞ and that the limit A := limx→∞ L(x)/ log x ∈
(0,∞) in Lemma I.2.6 exists. Recall that, by Lemma I.2.6, the ex-
istence of the limit A is equivalent to the existence of constants
α(t) ∈ (0, 1) and of slowly varying functions Lt such that (I.11)
holds, i.e., 1− F (s, t) = (1− s)α(t)Lt((1− s)−1). In the following we
focus on the particular situation that the limit

β(t) := lim
x→∞

Lt(x) = lim
s→1−

Lt((1− s)−1) = lim
s→1−

1− F (s, t)

(1− s)α(t)
(I.15)

exists in (0,∞) for each t ≥ 0. We already know that α(t) = e−aAt.
If (I.15) holds, then we must have A > 0, since otherwise α(t) = 1
and hence β(t) = m(t) = ∞, in contradiction to (I.15). The following
result relates (I.15) to the offspring pgf f and provides an explicit
formula for β(t). The proof of Lemma I.2.7 is provided in Section I.5.

Lemma I.2.7. Suppose that m = ∞ and that (I.14) holds. If the
limit B := limx→∞(L(x) − A log x) ∈ R exists, then (I.15) holds for
all t ≥ 0. In this case

β(t) = exp

(
B − 1

A
(1− α(t))

)
, t ≥ 0. (I.16)

We are now able to provide the third main convergence result. In
the following the notation E := [0,∞) is used.

Theorem I.2.8. Suppose that m = ∞ and let L be defined via (I.8)
such that (see (I.9)) the relation 1− f(s) = (1− s)L((1− s)−1) holds
for all s ∈ [0, 1). Assume that both limits

A := lim
x→∞

L(x)

log x
∈ (0,∞) and B := lim

x→∞
(L(x)− A log x) ∈ R

exist. For t ≥ 0 define

α(t) := e−aAt and β(t) := exp

(
B − 1

A
(1− α(t))

)
. (I.17)

Then, as n→ ∞, the scaled process X(n) := (X
(n)
t )t≥0, defined via

X
(n)
t := n−1/α(t)Z

(n)
t , t ≥ 0,

converges in DE[0,∞) to a limiting continuous-state branching pro-
cess X = (Xt)t≥0, whose distribution is characterized as follows.

(i) For every t ≥ 0 the marginal random variable Xt is α(t)-stable
with Laplace transform λ 7→ exp(−β(t)λα(t)), λ ≥ 0.
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(ii) The semigroup (Tt)t≥0 of X satisfies Ttg(x) = E(g(x1/α(t)Xt)),
x, t ≥ 0, g ∈ B(E), i.e., conditional on Xs = x the random
variable Xs+t has the same distribution as x1/α(t)Xt.

The proof of Theorem I.2.8 is provided in Section I.5. We now
provide three examples. In the first two examples the distribution of
Zt is known explicitly.

Example I.2.9. Assume that ξ has distribution pk := P(ξ = k) :=
1/(k(k−1)), k ∈ {2, 3, . . .}. Note that ξ = ⌊X⌋, where X has density
x 7→ 1/(x − 1)2, x ≥ 2, so X has a shifted Pareto distribution with
parameter 1. Then, f(s) = s+(1−s) log(1−s) = 1−(1−s)L((1−s)−1)
with L(x) := 1 + log x and u(s) := a(f(s)− s) = a(1− s) log(1− s).
Note that A := limx→∞ L(x)/ log x = 1 and B := limx→∞(L(x) −
log x) = 1. From the backward equation (∂/∂t)F (s, t) = u(F (s, t)) it
follows that

t =

∫ F (s,t)

s

1

u(x)
dx =

1

a
[− log(− log(1− x))]F (s,t)s

=
1

a
log

( log(1− s)

log(1− F (s, t))

)
.

Thus, F (s, t) = 1− (1− s)e
−at

showing that Zt is Sibuya distributed
(see, for example, Christoph and Schreiber [10, Eq. (2)]) with param-
eter e−at. The Sibuya distribution and similar distributions occur for
example in Gnedin [16, p. 84, Eq. (9)], Huillet and Möhle [19, p. 9],
Iksanov and Möhle [21, p. 225] and Pitman [33, p. 84, Eq. (18)], [34,
p. 70, Eq. (3.38)]. We conclude that (I.15) holds with α(t) := e−at

and β(t) := 1. By Theorem I.2.8, as n → ∞, the scaled process

X(n) := (Z
(n)
t /ne

at

)t≥0 converges in DE[0,∞) to a limiting process
X = (Xt)t≥0 such that Xt has Laplace transform λ 7→ exp(−λe−at

),
λ ≥ 0, and the semigroup (Tt)t≥0 ofX satisfies Ttg(x) = E(g(xeatXt)),
x, t ≥ 0, g ∈ B(E). We identify (Xt/a)t≥0 as Neveu’s continuous-state
branching process [29]. For a = 1 this example coincides with [23,
Theorem 2.1 b)] stating that the fixation line of the Bolthausen–
Sznitman n-coalescent, properly scaled, converges as n → ∞ to
Neveu’s continuous-state branching process.

Example I.2.10. Example I.2.9 is easily generalized as follows. Fix
two constants b > 0 and c ≥ 0 with b + c ≤ 1 and assume that
p0 := c, p1 := 1 − b − c and pk := b/(k(k − 1)) for k ≥ 2. Then,
f(s) = s+(1− s)(c+ b log(1− s)) = 1− (1− s)(1− c− b log(1− s)),
u(s) = a(f(s) − s) = a(1 − s)(c + b log(1 − s)) and L(x) = 1 − c +
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b log x. For b = 1 and c = 0 we are back in Example I.2.9. Note
that A := limx→∞ L(x)/ log x = b > 0 and B := limx→∞(L(x) −
b log x) = 1−c ∈ (0, 1]. The same argument as in Example I.2.9 leads
to F (s, t) = 1−(1−s)e−abt

exp(cb−1(e−abt−1)). Thus, Theorem I.2.8 is
applicable with α(t) := e−abt and β(t) := exp(cb−1(e−abt − 1)), t ≥ 0.
Clearly, these formulas for α(t) and β(t) are in agreement with those
from Lemma I.2.6 and Lemma I.2.7, namely α(t) = e−aAt = e−abt

and β(t) = exp((B − 1)A−1(1− α(t))) = exp(cb−1(e−abt − 1)), t ≥ 0.

Example I.2.11. (Discrete Luria–Delbrück distribution) Assume that
ξ has a discrete Luria–Delbrück distribution with parameter b ∈
(0,∞), i.e., f(s) = (1 − s)b(1−s)/s, s ∈ (0, 1). Note that f(0) = e−b

and f(s) = 1 − (1 − s)L((1 − s)−1) for s ∈ [0, 1), where L(1) :=
1 − e−b and L(x) := x(1 − xb/(1−x)) for x ∈ (1,∞). Note that A :=
limx→∞ L(x)/ log x = b and B := limx→∞(L(x) − b log x) = 0. Let
q = q(b) denote the extinction probability, i.e., the smallest fixed
point of f in the interval [0, 1]. For all ε ∈ (q, 1),∫ 1

ε

1

s− f(s)
ds =

∫ ∞

(1−ε)−1

1

x(L(x)− 1)
dx = ∞,

since L(x) ∼ b log x as x → ∞. By the explosion criterion, the
associated branching process Z = (Zt)t≥0 does not explode. The
functions α(.) and β(.) are obtained as follows. By Lemma I.2.6,
α(t) = e−aAt = e−abt, t ≥ 0. Furthermore,

β(t) = exp

(
B − 1

A
(1− α(t))

)
= exp

(
e−abt − 1

b

)
, t ≥ 0.

By Theorem I.2.8, as n → ∞, the scaled process X(n) :=
(Z

(n)
t /ne

abt

)t≥0 converges in DE[0,∞) to a limiting process X =
(Xt)t≥0 such that Xt has Laplace transform λ 7→ exp(−β(t)λe−abt

),
λ ≥ 0, and the semigroup (Tt)t≥0 of X satisfies Ttg(x) =
E(g(xeabtXt)), x, t ≥ 0, g ∈ B(E).

The previous three examples are summarized in the following ta-
ble.

Example Example I.2.9 Example I.2.10 Example I.2.11

Parameters — b > 0, c ≥ 0, b+ c ≤ 1 0 < b <∞
pgf f(s) s+ (1− s) log(1− s) s+ (1− s)(c+ b log(1− s)) (1− s)b(1−s)/s

L(x) 1 + log x 1− c+ b log x x(1− x)b/(1−x)

α(t) e−at e−abt e−abt

β(t) 1 exp(cb−1(e−abt − 1)) exp((e−abt − 1)/b)

Remark. Theorem I.2.8 does not cover the situation when the limit
A := limx→∞ L(x)/ log x is either 0 or∞. We leave the analysis of the
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two boundary cases A = 0 and A = ∞ for future work, but provide
two concrete examples.

Example I.2.12. An example satisfying A = 0 (and E(ξ) = ∞) is
obtained as follows. Define L(1) := 1, L(x) := 1+ log log x− log(1−
1/x) for x > 1 and f(s) := 1−(1−s)L((1−s)−1) for s ∈ [0, 1). Clearly,
L(x) ∼ log log x as x → ∞. Hence, A := limx→∞ L(x)/ log x = 0. In
the following it is clarified that f is a pgf. It is not hard to check
that the function g : [0, 1) → R, defined via g(0) := 0 and g(s) :=
log(− log(1−s))−log s for s ∈ (0, 1), has the Taylor expansion g(s) =∑

n≥1 gns
n with coefficients gn := (n!n)−1

∫ 1

0 [x]n dx, n ∈ N, where
[x]n := x(x+1) · · · (x+n−1), i.e., g1 = 1/2, g2 = 5/24, g3 = 1/8, and
so on. Thus, f(s) = 1−(1−s)(1+g(s)) = s−(1−s)g(s) has the Taylor
expansion f(s) =

∑
n≥1 pns

n with coefficients p1 = 1− g1 = 1/2 and

pn = gn−1 − gn =
1

(n− 1)(n− 1)!

∫ 1

0

[x]n−1 dx − 1

nn!

∫ 1

0

[x]n dx

=
1

n!

∫ 1

0

[x]n−1

(
1− x

n
+

1

n− 1

)
dx, n ∈ N \ {1}.

In particular, pn > 0 for all n ∈ N. Thus, f is the pgf of some
(offspring) random variable ξ taking values in N. Note that E(ξ) =
∞, since limx→∞ L(x) = ∞. From L(x) ∼ log log x as x → ∞ it
follows that the associated continuous-time branching process Z =
(Zt)t≥0 does not explode.

The asymptotics of pn as n → ∞ is obtained as follows. It is
easily seen that f ′′(s) ∼ (1 − s)−1ℓ((1 − s)−1) as s → 1−, where
ℓ(u) := 1/ log u. Moreover, the sequence

an := [sn]f ′′(s) = (n+ 1)(n+ 2)pn+2

=
1

n!

∫ 1

0

[x]n+1

(
1− x

n+ 2
+

1

n+ 1

)
dx, n ∈ N0,

is strictly decreasing, since, by straightforward calculations,

an−1 − an =
1

n!(n+ 2)

∫ 1

0

[x]n(1− x)(2− x) dx > 0, n ∈ N.

From Karamata’s Tauberian theorem for power series (apply, for ex-
ample, Bingham, Goldie and Teugels [7, p. 40, Corollary 1.7.3] with
A := f ′′, c := 1 and ρ := 1) it follows that an = [sn]f ′′(s) ∼ ℓ(n) =
1/ log n as n→ ∞. Thus, pn ∼ 1/(n2 log n) as n→ ∞.

Example I.2.13. A fruitful example satisfying A = ∞ is the following.
Define L(x) := 1 + (1 + log x) log(1 + log x) for x ≥ 1 and f(s) :=
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1− (1− s)L((1− s)−1), i.e.,

f(s) = s − (1− s)(1− log(1− s)) log(1− log(1− s)), s ∈ [0, 1).

Clearly, f(1−) = 1 =: f(1) and f ′(s) = (− log(1− s)) log(1− log(1−
s)), s ∈ [0, 1). By Lemma I.6.5 provided in the appendix, f ′ is ab-
solutely monotone and f(0) = f ′(0) = f ′′(0) = 0, which implies
that f is the pgf of some (offspring) random variable ξ taking values
in {3, 4, . . .}. Note that A = ∞ implies limx→∞ L(x) = ∞, which
is equivalent to E(ξ) = ∞. Nevertheless, the associated continuous-
time branching process Z = (Zt)t≥0 does not explode. The pgf F (., t)
of Zt is even explicitly known. More precisely, solving the backward
equation

at =

∫ s

F (s,t)

1

u− f(u)
du

=

∫ s

F (s,t)

1

(1− u)(1− log(1− u)) log(1− log(1− u))
du

= [log(log(1− log(1− u)))]sF (s,t) = log
log(1− log(1− s))

log(1− log(1− F (s, t)))

yields the solution F (s, t) = 1−exp(1−(1−log(1−s))e−at

), s ∈ [0, 1),
t ≥ 0. In particular, for each α ∈ (0, 1), the map s 7→ 1 − exp(1 −
(1 − log(1 − s))α), s ∈ [0, 1), is a pgf, which does not seem to be
straightforward to verify directly.

I.2.4 The explosive case

We briefly comment on the situation when the branching process
may explode in finite time. Note that explosion implies that A :=
limx→∞ L(x)/ log x = ∞. Thus, Theorem I.2.8 is not applicable. We
have F (1, t) < 1 for all t > 0. For t ≥ 0 let G(., t) denote the pgf of
Zt conditioned on Zt <∞, i.e.,

G(s, t) :=
F (s, t)

F (1, t)
, s ∈ [0, 1], t ≥ 0,

In this situation a convergence result in the spirit of the previous
theorems, but with F replaced by G, is obtained as follows. For t > 0
we have E(Zt |Zt < ∞) = G′(1−, t) = F ′(1−, t)/F (1, t) = ∞. Thus,
it is natural to assume that 1−G(s, t) = (1− s)α(t)Lt((1− s)−1) for
some α(t) ∈ (0, 1] and some slowly varying function Lt. Now assume
furthermore that the limits

β(t) := lim
x→∞

Lt(x) ∈ (0,∞), t ≥ 0,
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exist. Then α(t) < 1 for all t > 0. Now, for t ≥ 0 and n ∈ N, choose
an(t) such that Lt(an(t)) ∼ (an(t))

α(t)/(nα(t)) as n → ∞. Then

Z
(n)
t /an(t), conditioned on Zt < ∞, converges to Xt in distribution

as n → ∞, where Xt has Laplace transform λ 7→ exp(−β(t)λα(t)),
λ ≥ 0. Example I.2.14 below, going back at least to Sewastjanow [39,
Chapter 1, Section 8, Example 6], turns out to be in that regime.

Example I.2.14. Suppose that ξ is Sibuya distributed with parameter
α ∈ (0, 1), i.e., f(s) = 1 − (1 − s)α, s ∈ [0, 1]. Note that f has the
Taylor expansion f(s) =

∑
n≥1 pns

n with coefficients

pn :=

(
α

n

)
(−1)n−1 =

α

Γ(1− α)

Γ(n− α)

Γ(1− α)
, n ∈ N.

In particular, pn ∼ (α/Γ(1− α))n−α−1 as n→ ∞. Moreover, f(s) =
1 − (1 − s)R((1 − s)−1), where R(x) := x1−α is regularly varying of
index 1− α. The backward equation

at =

∫ F (s,t)

s

1

f(x)− x
dx =

∫ F (s,t)

s

1

1− x− (1− x)α
dx

=

[
− log(1− (1− x)1−α)

1− α

]F (s,t)
s

=
1

1− α
log

1− (1− s)1−α

1− (1− F (s, t))1−α
, t ≥ 0,

yields the explicit solution (see [39, p. 26, Eq. (19)])

F (s, t) = 1 −
(
1− e−(1−α)at(1− (1− s)1−α)

) 1
1−α

, (I.18)

s ∈ [0, 1], t ≥ 0. We have P(Zt = ∞) = 1−F (1, t) = (1−e−(1−α)at)
1

1−α

for t ≥ 0, so 0 < P(Zt = ∞) < 1 for all t > 0. The time T := inf{t >
0 : Zt = ∞} of explosion satisfies P(T <∞) = limt→∞ P(Zt = ∞) =
1, so Z explodes in finite time almost surely. Note that T has mean

E(T ) =

∫ ∞

0

P(T > t) dt =

∫ ∞

0

P(Zt <∞) dt

=

∫ ∞

0

(1− (1− e−(1−α)at)
1

1−α ) dt.

The substitution x = 1− e−(1−α)at yields

E(T ) =
1

a(1− α)

∫ 1

0

1− x
1

1−α

1− x
dx =

1

a(1− α)

(
Ψ

(
2− α

1− α

)
+ γ

)
,
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where Ψ = Γ′/Γ denotes the logarithmic derivative of the gamma
function and γ is the Euler–Mascheroni constant.

Let t > 0 in the following. Expansion of (I.18) yields

F (s, t) = F (1, t) − 1

1− α
(1− e−(1−α)at)

α
1−αe−(1−α)at(1− s)1−α

+ O((1− s)2(1−α)), s→ 1− . (I.19)

Rewriting (I.19) in the form

1−G(s, t) = 1 − F (s, t)

F (1, t)

=
(1− e−(1−α)at)

α
1−αe−(1−α)at

(1− α)(1− (1− e−(1−α)at)
1

1−α )
(1− s)1−α

+ O((1− s)2(1−α)), s→ 1−,

yields α(t) = 1− α for all t > 0 and

β(t) := lim
x→∞

Lt(x) =
(1− e−(1−α)at)

α
1−αe−(1−α)at

(1− α)(1− (1− e−(1−α)at)
1

1−α )
, t > 0.

Thus, the sequence an(t) := (nα(t)β(t))1/α(t) satisfies Lt(an(t)) ∼
(an(t))

α(t)/(nα(t)) as n → ∞ and it follows that X
(n)
t := Z

(n)
t /an(t),

conditioned on Zt < ∞, converges to Xt in distribution as n → ∞,
where Xt has Laplace transform λ 7→ exp(−β(t)λα(t)), λ ≥ 0.

We leave the study of further examples of branching processes with
explosion similar to those of Example I.2.14 to the interested reader.
One may for instance study the pgf f(s) := 2

π arcsin s, s ∈ [0, 1],
occurring in Pakes [30, p. 276, Example 4.5]. A further example is

the offspring distribution pk =
√
π
4 Γ(k)/Γ(k + 3/2), k ∈ N, in which

case the offspring pgf has the form f(s) = 1−
√

(1− s)/s arcsin
√
s.

Let us finally discuss the situation when

1−G(s, t) = (1− s)Lt((1− s)−1), t ≥ 0, (I.20)

for some slowly varying function Lt. Note that (see, for exam-
ple, Bingham and Doney [6, Theorem A]) (I.20) is equivalent to∑n

k=0 P(Zt > k |Zt < ∞) ∼ Lt(n) as n → ∞, which is Condition
(ii) in Rogozin’s relative stability theorem (see, for example, Bing-
ham, Goldie and Teugels [7, Theorem 8.8.1]). Let (an(t))n∈N be a
sequence such that Lt(an(t)) ∼ an(t)/n as n → ∞. Then, by The-

orem 8.8.1 of [7], Z
(n)
t /an(t)|Zt<∞ → 1 in probability as n → ∞.
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Thus, in this situation we cannot have a non-degenerate limit. The
following example fits into this regime. In this example the limits

γ(t) := lim
x→∞

Lt(x)

log x
∈ (0,∞), t ≥ 0,

exist.

Example I.2.15. Define f(0) := 0, f(1) := 1 and

f(s) := 1 +
s

log(1− s)
, s ∈ (0, 1).

It is easily seen that f has the Taylor expansion f(s) =
∑

n≥1 pns
n

with positive coefficients

pn := (−1)n−1

∫ 1

0

(
x

n

)
dx =

1

n!

∫ 1

0

x
Γ(n− x)

Γ(1− x)
dx > 0, n ∈ N.

Thus, f is the pgf of some random variable ξ taking values in N. Note
that pn = (−1)n−1bn/n! for all n ∈ N, where bn :=

∫ 1

0 (x)n dx denotes
the n-th Bernoulli number of the second kind (see, e.g., Roman [37,
p. 114]). Here (x)n := x(x − 1) · · · (x − n + 1), n ∈ N, denotes the
n-th descending factorial of x ∈ R. From p0 = 0 it follows that
the associated continuous-time branching process Z = (Zt)t≥0 has
extinction probability q = 0. Note that f(s) = 1−(1−s)R((1−s)−1),
where R(x) := (x − 1)/ log x, x > 1, is regularly varying of index 1.
For all ε ∈ (q, 1) = (0, 1),∫ 1

ε

1

s− f(s)
ds =

∫ 1

ε

1

s− 1− s
log(1−s)

ds

= [log(s+ (1− s) log(1− s))]1ε
= − log(ε+ (1− ε) log(1− ε)) < ∞,

which shows that Z explodes. It is also known (see, for example,
Flajolet and Sedgewick [14, p. 387]) that pn ∼ 1/(n log2 n) as n→ ∞.
Thus, pn tends slower to 0 than in Example I.2.14. In this sense Z is
strongly explosive. The backward equation is

at =

∫ F (s,t)

s

1

f(u)− u
du =

∫ F (s,t)

s

1

1− u+ u
log(1−u)

du

= [− log(u+ (1− u) log(1− u))]F (s,t)s

= log
s+ (1− s) log(1− s)

F (s, t) + (1− F (s, t)) log(1− F (s, t))
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or, equivalently,

F (s, t) + (1− F (s, t)) log(1− F (s, t))

= e−at(s+ (1− s) log(1− s)) =: h(s, t).

It is straightforward to check that this equation has the solution

F (s, t) = 1 − exp

(
1 +W

(
h(s, t)− 1

e

))
, s ∈ [0, 1), t ≥ 0,

whereW = W−1 denotes the lower branch of the LambertW function
satisfying W (h)eW (h) = h and being real-valued on [−1/e, 0). Note
that P(Zt = ∞) = 1− F (1, t) = exp(1 +W ((e−at − 1)/e)) for t ≥ 0,
so 0 < P(Zt = ∞) < 1 for t > 0. The time T := inf{t > 0 : Zt = ∞}
of explosion satisfies P(T < ∞) = limt→∞ P(Zt = ∞) = exp(1 +
W (−1/e)) = exp(0) = 1, so Z explodes in finite time almost surely.
Note that T has mean

E(T ) =
∫ ∞

0

P(Zt <∞) dt =

∫ ∞

0

(
1−exp

(
1+W

(
e−at − 1

e

)))
dt.

The substitution x = 1− e−at (⇒ t = −1
a log(1− x) and dt

dx = 1
a(1−x))

leads to

E(T ) =
1

a

∫ 1

0

1− exp(1 +W (−x/e))
1− x

dx.

The function below the integral has a singularity at x = 1. From
1+W (−x/e) ∼

√
2(1− x) as x→ 1 it follows that the function below

the integral behaves asymptotically as
√

2/(1− x) as x→ 1−, which
yields E(T ) <∞. Numerical computations show that E(T ) ≈ 2.45/a.

Let G(s, t) := F (s, t)/F (1, t) denote the pgf of Zt conditioned on
Zt < ∞. A somewhat tedious but straightforward calculation shows
that 1 − G(s, t) = (1 − s)Lt((1 − s)−1), where Lt is slowly varying
with

γ(t) := lim
x→∞

Lt(x)

log x
=

w

(w + 1)(1− (w + 1)eat)

with w := W (e
−at−1
e ). For t ≥ 0 let (an(t))n∈N be a sequence such

that Lt(an(t)) ∼ an(t)/n as n → ∞. Then, as explained before, for

every t ≥ 0, conditional on Zt < ∞, Z
(n)
t /an(t) → 1 in probability

as n → ∞. A concrete sequence (an(t))n∈N is an(t) := γ(t)n log n,
since, in this case, Lt(an(t)) = Lt(γ(t)n log n) ∼ Lt(n log n) ∼
γ(t) log(n log n) ∼ γ(t) log n = an(t)/n as n→ ∞.
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I.3 Proof of Theorem I.2.1

The proof of Theorem I.2.1 is quite natural and can be summarized
as follows. An application of the multivariate central limit theorem
yields the convergence of the finite-dimensional distributions. The
convergence in DR[0,∞) is then established using a criterion of Al-
dous [2]. The following proof is relatively short and elegant.

Proof. (of Theorem I.2.1) Let us compute for s, t ≥ 0 the covariance
of Zs and Zs+t. For k ∈ N0,

E((Zs −m(s))(Zs+t −m(s+ t)) |Zs = k)

= (k −m(s))E(Z(k)
t −m(s+ t))

= (k −m(s))(km(t)−m(s)m(t)) = m(t)(k −m(s))2.

Thus, E((Zs−m(s))(Zs+t−m(s+t)) |Zs) = m(t)(Zs−m(s))2 almost
surely. Taking expectation yields Cov(Zs, Zs+t) = m(t)Var(Zs) =
m(t)σ2(s).

In order to verify the convergence X(n) fd→ X of the finite-
dimensional distributions fix k ∈ N and 0 ≤ t1 < · · · < tk < ∞, de-
fine the Rk-valued random variable Y := (Zt1−m(t1), . . . , Ztk−m(tk))
and let Y1, Y2, . . . be independent copies of Y . By the branch-
ing property, (X

(n)
t1 , . . . , X

(n)
tk ) = ((Z

(n)
t1 − nm(t1))/

√
n, . . . , (Z

(n)
tk −

nm(tk))/
√
n) has the same distribution as (Y1+ · · ·+Yn)/

√
n, which

by the multivariate central limit theorem (see, for example, [44, p. 16,
Example 2.18]) converges in distribution as n → ∞ to a centered
normal distribution N(0,Σ) with covariance matrix Σ = (σi,j)1≤i,j≤k
having entries σi,j := E((Zti −m(ti))(Ztj −m(tj))) = Cov(Zti, Ztj) =

m(|ti − tj|)σ2(ti ∧ tj). Thus, the convergence X(n) fd→ X holds.
The convergence X(n) → X in DR[0,∞) is achieved as follows.

Define the processes M (n) := (M
(n)
t )t≥0, n ∈ N, and M := (Mt)t≥0

via

M
(n)
t :=

X
(n)
t

m(t)
=

√
n

(
Z

(n)
t

nm(t)
− 1

)
and Mt :=

Xt

m(t)
,

n ∈ N, t ≥ 0 Then, M,M (1),M (2), . . . are martingales and M is con-
tinuous, since the Gaussian process X is continuous and m(.) is con-

tinuous. Since E((M (n)
t )2) = Var(M

(n)
t ) = Var(Z

(n)
t )/(n(m(t))2) =

σ2(t)/(m(t))2 <∞ does not depend on n ∈ N, we conclude that, for

each t ≥ 0, the family {M (n)
t : n ∈ N} is uniformly integrable. The
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convergence M (n) → M in DR[0,∞) therefore follows from Aldous’
criterion [2, Proposition 1.2]. Since the map t 7→ m(t) is contin-
uous and deterministic it follows by multiplication with m(t) that
X(n) → X in DR[0,∞).

I.4 Proofs concerning Theorem I.2.3

This section contains the proofs of Lemma I.2.2 and Theorem I.2.3.

Proof. (of Lemma I.2.2) The proof distinguishes the critical and non-
critical case. Both cases are handled with different techniques. The
representation in the critical case (for age-dependent branching pro-
cesses) follows via an equivalence for the extinction probability from
a combination of the results of Slack [41, Theorem 1] and Vatutin
[45, Theorem 1]. The following more elementary proof (see Case 1)
is based on the backward equation and does not use extinction prob-
abilities.

Case 1. (λ = 0) Let t ≥ 0. In the critical case the backward equation
is

at =

∫ F (s,t)

s

1

f(x)− x
dx =

∫ F (s,t)

s

1

(1− x)αL((1− x)−1)
dx,

s ∈ [0, 1]. Since the map x 7→ f(x) − x is non-negative and non-
increasing on [0, 1] it follows that

F (s, t)− s

(1− s)αL((1− s)−1)
≤ at ≤ F (s, t)− s

(1− F (s, t))αL((1− F (s, t))−1)

and, hence,

lim sup
s→1−

F (s, t)− s

(1− s)αL((1− s)−1)
≤ at

≤ lim inf
s→1−

F (s, t)− s

(1− F (s, t))αL((1− F (s, t))−1)

= lim inf
s→1−

F (s, t)− s

(1− s)αL((1− s)−1)
,

where the last equality holds, since 1 − F (s, t) ∼ 1 − s as s → 1−.
Thus, lims→1−(F (s, t)− s)/((1− s)αL((1− s)−1)) = at.

Case 2. (λ ̸= 0) Fix t ≥ 0. Set h1(s) := (1 − s)m(t) − (1 − F (s, t))
and h2(s) := (1 − s)αL((1 − s)−1) for s ∈ [0, 1). We have to verify
that lims→1− h1(s)/h2(s) = c(t), where c(t) is defined in (I.5). By
the forward and backward equation, h′1(s) = −m(t) + ∂

∂sF (s, t) =
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−m(t) + (f(F (s, t)) − F (s, t))/(f(s) − s). Moreover, h′2(s) = (1 −
s)α−1L((1 − s)−1)(L′((1 − s)−1)(1 − s)−1/L((1 − s)−1) − α). From
Assumption (I.3), the asymptotic relation 1− F (s, t) ∼ m(t)(1− s)
as s→ 1− and (m(t))α = m(αt) it follows that

m(αt)−m(t) = lim
s→1−

(
(1− F (s, t))m− (1− f(F (s, t)))

(1− s)αL((1− s)−1)

−m(t)
(1− s)m− (1− f(s))

(1− s)αL((1− s)−1)

)
= lim

s→1−

(
(1−m)

(1− s)m(t)− (1− F (s, t))

(1− s)αL((1− s)−1)

+
m(t)(1− f(s)− (1− s))− (1− f(F (s, t))) + (1− F (s, t))

(1− s)αL((1− s)−1)

)
= lim

s→1−

(
(1−m)

(1− s)m(t)− (1− F (s, t))

(1− s)αL((1− s)−1)

+
−m(t)(f(s)− s) + f(F (s, t))− F (s, t)

(1− s)αL((1− s)−1)

)
= (m− 1) lim

s→1−

(
α
−m(t)(f(s)− s) + (f(F (s, t))− F (s, t))

α(m− 1)(1− s)αL((1− s)−1)

− (1− s)m(t)− (1− F (s, t))

(1− s)αL((1− s)−1)

)
=: (m− 1) lim

s→1−

(
α

h′1(s)

h′2(s) +R(s)
− h1(s)

h2(s)

)
. (I.21)

Using

(1−m)(1− s)

f(s)− s
=

1−m

1−m+ (1− s)α−1L((1− s)−1)
,

we see that R(s) is given by

R(s) = −α(1− s)α−1L((1− s)−1)
1−m

1−m+ (1− s)α−1L((1− s)−1)

− (1− s)α−1L((1− s)−1)

(
L′((1− s)−1)(1− s)−1

L((1− s)−1)
− α

)
= α(1− s)α−1L((1− s)−1)

(
1− 1−m

1−m+ (1− s)α−1L((1− s)−1)

− L′((1− s)−1)(1− s)−1

αL((1− s)−1)

)
.

In order to see that limx→∞ xL′(x)/L(x) = 0 we proceed as follows.
Define U : [1,∞) → (0,∞) via U(x) := m − x(1 − f(1 − 1/x)) =
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x1−αL(x) for x ≥ 1, where the last equality holds by (I.3). Note
that U(x) =

∫∞
x u(y) dy, where u : [1,∞) → (0,∞) is defined via

u(x) := −U ′(x) = 1 − f(1 − 1/x) − f ′(1 − 1/x)/x. The function
u is non-increasing, since u′(x) = −f ′′(1 − 1/x)/x3 ≤ 0 by the
convexity of f . From a variant of the monotone density theorem
(see, for example, Bingham, Goldie and Teugels [7, p. 39, Theo-
rem 1.7.2] and the comments thereafter) for integrals of the form
U(x) =

∫∞
x u(y) dy it follows that u(x) ∼ (α− 1)x−αL(x) as x→ ∞.

Thus, limx→∞ xU ′(x)/U(x) = 1 − α. Noting that xU ′(x)/U(x) =
1− α+ xL′(x)/L(x) we conclude that limx→∞ xL′(x)/L(x) = 0. Ap-
plying this relation with x := (1− s)−1 yields

lim
s→1−

R(s)

h′2(s)
= lim

s→1−

α
(
1− 1−m

1−m+(1−s)α−1L((1−s)−1) −
L′((1−s)−1)(1−s)−1

αL((1−s)−1)

)
L′((1−s)−1)(1−s)−1

L((1−s)−1) − α

= 0. (I.22)

The three quantities h1(s), h2(s) and (m(αt)−m(t))/(m−1) are non-
negative, so, by (I.21), necessarily lim infs→1− h

′
1(s)/(h

′
2(s)+R(s)) ≥

0, leading to the boundary h′1(s)/(h
′
2(s)+R(s)) ≥ (1− δ)h′1(s)/h′2(s)

for any 0 < δ < (α− 1)/α and sufficiently large s. Then

m(αt)−m(t)

m− 1
≥ lim sup

s→1−

(
α(1− δ)

h′1(s)

h′2(s)
− h1(s)

h2(s)

)
,

and the second part of Lemma I.6.2 provides

lim sup
s→1−

h1(s)

h2(s)
≤ m(αt)−m(t)

m− 1
. (I.23)

Now (I.21), (I.22) and (I.23) yield

m(αt)−m(t)

m− 1
= lim

s→1−

((
α
h′1(s)

h′2(s)
− h1(s)

h2(s)

)
h′2(s)

h′2(s) +R(s)

− h1(s)

h2(s)

R(s)

h′2(s) +R(s)

)
= lim

s→1−

(
α
h′1(s)

h′2(s)
− h1(s)

h2(s)

)
.

The claim follows again from Lemma I.6.2 in the appendix. Note that
Lemma I.6.2 is applicable in both cases due to Lemma I.6.1.

Proof. (of Theorem I.2.3) The proof is divided into four parts. The
first part establishes the convergence of the one-dimensional distri-
butions. The second and third part give two auxiliary results, one is
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about the normalizing sequence (an)n∈N and the other is a kind of
upper bound for the process, used in the final part to conclude the
convergence in DR[0,∞).

Part 1. (Convergence of the one-dimensional distributions) Fix
t ∈ [0,∞), define Y := Zt for convenience and let Y1, Y2, . . . be inde-
pendent copies of Y . By Lemma I.2.2, Eq. (I.4) holds.

First assume that α ∈ (1, 2). Then, by Bingham and Doney
[6, Theorem A], applied with n = 1, Eq. (I.4) is equivalent to
P(Y > x) ∼ c(t)(−Γ(1 − α))−1L(x)x−α, x → ∞. In particular, the
map x 7→ P(Y > x) is regularly varying (at infinity) of index −α.
By Theorem 1 (ii) ⇒ (i) of Geluk and de Haan [15] (note that p = 1
since Y ≥ 0), it follows that the cumulative distribution function
of Y is in the domain of attraction of an α-stable distribution. The
results on p. 174 in [15] on the choice of the normalizing sequences
(an)n∈N and (bn)n∈N furthermore show that, if we choose (an)n∈N such
that L(an) ∼ aαn/(αn) as n → ∞ and bn := nE(Y )/an = nm(t)/an,

then (Z
(n)
t − nm(t))/an

d
= (Y1 + · · · + Yn)/an − bn → Xt in distri-

bution as n → ∞, where Xt is α-stable with characteristic function
u 7→ exp(c(t)(−iu)α/α), u ∈ R. Thus, the convergence of the one-
dimensional distributions holds.

The case α = 2 is handled similarly by noting that (I.4) is then
equivalent (see [6]) to E(1{Y≤x}Y

2) ∼ 2c(t)L(x) as x→ ∞ such that
we can apply Theorem 2 of [15].

Part 2. (Asymptotic relation for (an)n∈N) Let (εn)n∈N be an arbitrary
sequence of positive real numbers converging to zero as n → ∞.
For n ∈ N and T > 0 define Sn,T := [−εnn/an, εnn/an] × [0, T ],
where (an)n∈N is the normalizing sequence satisfying an/(L(an))

1/α ∼
(αn)1/α as n → ∞. Bojanić and Seneta [9, p. 308] provide the
existence of another slowly varying function L∗ such that an ∼
(αn)1/αL∗(n1/α) as n→ ∞. Set h(n) := (αn)1/αL∗(n1/α)/an for n ∈ N
and h(r) := h(⌊r⌋) for r ∈ R, r ≥ 1. Then the asymptotic relation
simply means limr→∞ h(r) = 1. From

lim
n→∞

inf
(x,s)∈Sn,T

(nm(s) + xan) = ∞ (I.24)

it follows that sup(x,s)∈Sn,T
|h(nm(s) + xan) − 1| → 0 as n → ∞.

Furthermore, limn→∞ sup(x,s)∈Sn,T
|xan/n| ≤ limn→∞ εn = 0 implies

limn→∞ sup(x,s)∈Sn,T
|(m(s) + xan/n)

1/α − (m(s))1/α| = 0 as well as,
using the uniform convergence theorem for slowly varying functions
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(see, for example, Bingham, Goldie and Teugels [7, Theorem 1.2.1]
or Bojanić and Seneta [9])

lim
n→∞

sup
(x,s)∈Sn,T

∣∣∣∣L∗(n1/α(m(s) + xan/n)
1/α)

L∗(n1/α)
− 1

∣∣∣∣ = 0.

Having bounded limits, the listed uniformly convergent sequences
are uniformly bounded and thus their product converges uniformly
again, yielding

lim
n→∞

sup
(x,s)∈Sn,T

∣∣∣∣anm(s)+xan

an
− (m(s))1/α

∣∣∣∣
= lim

n→∞
sup

(x,s)∈Sn,T

∣∣∣∣ h(n)

h(nm(s) + xan)

L∗((nm(s) + xan)
1/α)

L∗(n1/α)

·
(
m(s) +

xan
n

)1/α

− (m(s))1/α
∣∣∣∣

= 0. (I.25)

Part 3. (Kind of upper bound for X
(n)
t ) In this part it is shown

that for each T > 0 there exists a sequence (εn)n∈N of positive real
numbers with limn→∞ εn = 0 such that

lim
n→∞

P
(

sup
t∈[0,T ]

|X(n)
t | ≥ εnn

an

)
= 0. (I.26)

Let δ := 0 if m < 1 and δ := T if m ≥ 1. Then, for any sequence
(εn)n∈N of positive real numbers,

P
(

sup
t∈[0,T ]

|X(n)
t | ≥ εnn

an

)
≤ P

(
sup
t∈[0,T ]

∣∣∣∣anX(n)
t

m(t)

∣∣∣∣ ≥ εnn

m(δ)

)
.

Applying Doob’s submartingale inequality to the martingale
(anX

(n)
t /m(t))t≥0 = (Z

(n)
t /m(t)− n)t≥0 yields

P
(

sup
t∈[0,T ]

∣∣∣∣anX(n)
t

m(t)

∣∣∣∣ ≥ εnn

m(δ)

)
≤ m(δ)

εnn
E
(∣∣∣∣ Z(n)

T

m(T )
− n

∣∣∣∣)
=

m(δ)

m(T )

1

εn
E
(∣∣∣∣Z(n)

T

n
−m(T )

∣∣∣∣).
By the law of large numbers, the latter expectation converges to 0
as n → ∞. Thus, the sequence (εn)n∈N can be chosen such that
limn→∞ εn = 0 and such that the right-hand side still converges to 0,
which implies that (I.26) holds for the particular sequence (εn)n∈N.
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Part 4. (Convergence in DR[0,∞)) In general, the processes X(n)

and X are time-inhomogeneous. Let Y (n) := (X
(n)
t , t)t≥0 and Y :=

(Xt, t)t≥0 denote the space-time processes ofX(n) andX, respectively.
According to Revuz and Yor [36, p. 85, Exercise (1.10)], the processes
Y (n) and Y are time-homogeneous Markov processes with state space
S := R× [0,∞). Recall that Sn,T = [−εnn/an, εnn/an]× [0, T ], where
(εn)n∈N is the sequence used in Part 3. In terms of Y (n), (I.26) is
simply

lim
n→∞

P
(
Y

(n)
t ∈ Sn,T , 0 ≤ t ≤ T

)
= 1. (I.27)

Corollary 8.7 on p. 232 of Ethier and Kurtz [12] states that (I.27)
jointly with the uniform convergence of the semigroups on the re-
stricted area Sn,T implies the convergence of Y (n) to Y in DS[0,∞),
hence the desired convergence of X(n) to X in DR[0,∞). Thus, it
remains to show that for each f ∈ Ĉ(S), the space of real-valued
continuous functions on S vanishing at infinity, and t ∈ [0, T ]

lim
n→∞

sup
(x,s)∈Sn,T

|T̃ (n)
t f(x, s)− T̃tf(x, s)| = 0, (I.28)

where (T̃
(n)
t )t≥0 and (T̃t)t≥0 denote the semigroups of Y (n) and Y ,

respectively, i.e., T̃
(n)
t f(x, s) = E(f(X(n)

s+t, s + t) |X(n)
s = x) and

T̃tf(x, s) = E(f(Xs+t, s + t) |Xs = x) for all f ∈ Ĉ(S) and
(x, s) ∈ S. By Lemma I.6.4, the space of all maps of the form
(x, s) 7→

∑l
i=1 gi(x)hi(s) with l ∈ N, gi ∈ Ĉ(R) and hi ∈ Ĉ([0,∞))

is dense in Ĉ(S). Hence it suffices to show (I.28) for f = gh with
g ∈ Ĉ(R) and h ∈ Ĉ([0,∞)), in which case

T̃
(n)
t f(x, s) = h(s+ t)E(g(X(n)

s+t) |X(n)
s = x)

= h(s+ t)E
(
g

(
ak
an
X

(k)
t + xm(t)

))
for (x, s) ∈ S, where k := k(n, s, x) := nm(s) + xan, and

T̃tf(x, s) = h(s+ t)E(g(Xs+t), |Xs = x)

= h(s+ t)E(g(m(s)1/αXt + xm(t))), (x, s) ∈ S.

Let ε > 0. Choose C > 0 such that supn∈N P(|X
(n)
t | > C) < ε.
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Splitting the mean along the event Ak := {|X(k)
t | ≤ C} yields

sup
(x,s)∈Sn,T

|T̃ (n)
t f(x, s)− T̃tf(x, s)|

= sup
(x,s)∈Sn,T

h(s+ t)

∣∣∣∣E(g(akanX(k)
t + xm(t)

))
− E

(
g
(
(m(s))1/αXt + xm(t)

))∣∣∣∣
≤ ∥h∥

(
sup

(x,s)∈Sn,T

∣∣E(g((m(s))1/αX
(k)
t + xm(t))

)
− E

(
g
(
(m(s))1/αXt + xm(t)

))∣∣ + 2∥g∥ε

+ sup
(x,s)∈Sn,T

E
(
1Ak

∣∣∣∣g(akanX(k)
t + xm(t)

)
− g

(
(m(s))1/αX

(k)
t + xm(t)

)∣∣∣∣)).
The second last supremum converges to 0 as n→ ∞ due to Lemma
I.6.3 and since k → ∞ as n→ ∞ by (I.24). The last supremum also
converges to 0 due to (I.25) together with the uniform continuity of
g. Since ε > 0 can be chosen arbitrarily, (I.28) holds, which completes
the proof.

I.5 Proofs concerning Theorem I.2.8

This section contains the proofs of Lemma I.2.6, Lemma I.2.7 and
Theorem I.2.8.

Proof. (of Lemma I.2.6) Fix t ≥ 0. By Theorem 2 or Corollary 2.2
of Lamperti [24], applied with x := 1 − s to the function x 7→ 1 −
F (1− x, t), (I.11) holds if and only if

lim
s→1−

α(s, t) = α(t), (I.29)

where

α(s, t) :=
(1− s) ∂∂sF (s, t)

1− F (s, t)
=

f(F (s, t))− F (s, t)

1− F (s, t)

1− s

f(s)− s

=
L((1− F (s, t))−1)− 1

L((1− s)−1)− 1
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for all s ∈ (0, 1). Thus (i) and (ii) are equivalent. By the backward
equation,

at =

∫ F (s,t)

s

1

f(u)− u
du =

∫ (1−s)−1

(1−F (s,t))−1

1

x(L(x)− 1)
dx. (I.30)

Also, note that

log
1

α(s, t)
= log(L((1− s)−1)− 1)− log(L((1− F (s, t))−1)− 1)

=

∫ (1−s)−1

(1−F (s,t))−1

L′(x)

L(x)− 1
dx.

(iii) ⇒ (ii): Applying integration by parts to (I.30) yields

at =

[
log x

L(x)− 1

]x=(1−s)−1

x=(1−F (s,t))−1

+

∫ (1−s)−1

(1−F (s,t))−1

log x

L(x)− 1

L′(x)

L(x)− 1
dx. (I.31)

Let ε > 0 be arbitrary. Since L(x)/ log x → A > 0 as x → ∞, there
exists K > 0 such that 1 − ε ≤ A log x/(L(x) − 1) ≤ 1 + ε for all
x ≥ K. But, if s is sufficiently close to 1, both inequalities hold
on the interval where it is integrated above in (I.31), implying that
Aat = lims→1− log(α(s, t))−1, which is exactly (I.29).

(i) ⇒ (iii): Assume that (I.11) holds for all t ≥ 0. By (I.13),

α(t) = lim
s→1−

log(1− F (s, t))

log(1− s)
.

As already seen before Lemma I.2.6, there exists C ≥ 0 such that
α(t) = e−Ct. Thus,

Ct = − lim
s→1−

log
log(1− F (s, t))

log(1− s)

= lim
s→1−

∫ (1−s)−1

(1−F (s,t))−1

1

x log x
dx. (I.32)

Division of (I.32) by (I.30) leads to

A :=
C

a
= lim

s→1−

∫ (1−s)−1

(1−F (s,t))−1
1

x log x dx∫ (1−s)−1

(1−F (s,t))−1
1

x(L(x)−1) dx
.
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Now exploit the monotonicity of log x and L(x) to conclude that

A ≤ lim inf
s→1−

1
log((1−F (s,t))−1)

∫ (1−s)−1

(1−F (s,t))−1
1
x dx

1
L((1−s)−1)−1

∫ (1−s)−1

(1−F (s,t))−1
1
x dx

= lim inf
s→1−

L((1− s)−1)

log((1− F (s, t))−1)
=

1

α(t)
lim inf
s→1−

L((1− s)−1)

log((1− s)−1)
.

Similarly, A ≥ α(t) lim sups→1− L((1− s)−1)/ log((1− s)−1). Letting
t→ 0+ yields A = lims→1− L((1− s)−1)/ log((1− s)−1), which is (iii)
and completes the proof.

Proof. (of Lemma I.2.7) By assumption, the function H(x) := L(x)−
1 − A log x, x ≥ 1, satisfies limx→∞H(x) = B − 1. Moreover, β(t),
defined via (I.16), satisfies

log β(t) = a

∫ t

0

(B − 1− A log β(s)) ds, t ≥ 0. (I.33)

Computing the derivative of Lt(x) with respect to t provides a rep-
resentation for Lt(x) similar to (I.33), namely

∂

∂t
Lt(x) =

∂

∂t

(
xα(t)(1− F (1− x−1, t))

)
= xα(t)α′(t)(log x)(1− F (1− x−1, t))

− xα(t)a(f(F (1− x−1, t))− F (1− x−1, t))

= axα(t)(1− F (1− x−1, t))

(
1− f(F (1− x−1, t))

1− F (1− x−1, t)

− 1− F (1− x−1, t)

1− F (1− x−1, t)
− Aα(t) log x

)
= aLt(x)

(
L((1− F (1− x−1, t))−1)− 1− A log xα(t)

)
= aLt(x)

(
L(xα(t)L−1

t (x))− 1− A log xα(t)
)

= aLt(x)
(
H(xα(t)L−1

t (x))− A logLt(x)
)
, t ≥ 0, x ≥ 1.

Therefore,

logLt(x) =

∫ t

0

∂
∂sLs(x)

Ls(x)
ds

= a

∫ t

0

(
H(xα(s)L−1

s (x))− A logLs(x)
)
ds, (I.34)

t ≥ 0. Let t > 0 be fixed and ε > 0 be arbitrary. If 1−x−1 > q, where
q denotes the extinction probability, then the map s→ xα(s)L−1

s (x) =
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(1−F (1−x−1, s))−1 is non-increasing. Hence, |H(xα(s)L−1
s (x))−(B−

1)| < ε for all s ∈ [0, t] and sufficiently large x. By (I.33) and (I.34),

| logLt(x) − log β(t)| ≤ aεt + aA

∫ t

0

| logLs(x)− log β(s)| ds.

By Gronwall’s inequality,

| logLt(x)− log β(t)| ≤ aεt + aA

∫ t

0

aεs exp

(∫ t

s

aA dσ

)
ds

≤ aεt

(
1 +

∫ t

0

aA exp(aA(t− s)) ds

)
= aεt exp(aAt).

Since ε > 0 can be chosen arbitrarily small, the claim limx→∞ Lt(x) =
β(t) follows.

Proof. (of Theorem I.2.8) The proof is divided into two steps. First
the assumption (I.15) is used to establish the convergence of the one-
dimensional distributions. Afterwards it is shown with some general
weak convergence machinery for Markov processes that the conver-
gence of the one-dimensional distributions is already sufficient for
convergence in DE[0,∞), where E := [0,∞).

Step 1. (Convergence of the one-dimensional distributions) Fix
λ, t ≥ 0. Define sn := exp(−λn−1/α(t)), n ∈ N. Note that sn → 1

as n → ∞. We have E(exp(−λX(n)
t )) = E(exp(−λn−1/α(t)Z

(n)
t )) =

(E(exp(−λn−1/α(t)Zt)))
n = (F (sn, t))

n. Taking the logarithm yields

logE(exp(−λX(n)
t )) = n log(1− (1− F (sn, t)))

∼ −n(1− F (sn, t)) ∼ −nβ(t)(1− sn)
α(t)

as n → ∞ by (I.15). Since 1 − sn = 1 − exp(−λn−1/α(t)) ∼
λn−1/α(t) as n → ∞ it follows that the latter expression is asymp-
totically equal to −nβ(t)(λn−1/α(t))α(t) = −β(t)λα(t). Therefore,

limn→∞ E(exp(−λX(n)
t )) = exp(−β(t)λα(t)) = E(exp(−λXt)). This

pointwise convergence of the Laplace transforms implies the conver-
gence X

(n)
t → Xt in distribution as n→ ∞.

Step 2. (Convergence in DE[0,∞)) We proceed as in the proof of
[23, Theorem 2.1]. For n ∈ N and t ≥ 0 define En,t := {j/n1/α(t) :
j ∈ N0}. In general the process X(n) is time-inhomogeneous. Let

Y (n) := (X
(n)
t , t)t≥0 and Y := (Xt, t)t≥0 denote the space-time pro-

cesses of X(n) and X, respectively. Note that Y (n) has state space
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Sn := {(j/n1/α(t), t) : j ∈ N0, t ≥ 0} =
⋃
t≥0(En,t × {t}) and

Y has state space S := [0,∞)2. According to Revuz and Yor [36,
p. 85, Exercise (1.10)] the process Y (n) is time-homogeneous. De-
fine πn : B(S) → B(Sn) via πng(x, s) := g(x, s) for g ∈ B(S)
and (x, s) ∈ Sn. In the following it is shown that Y (n) converges
in DS[0,∞) to Y as n→ ∞. Note that this convergence implies the
desired convergence ofX(n) inDE[0,∞) toX as n→ ∞. For λ, µ > 0
define the test function gλ,µ via gλ,µ(x, s) := e−λx−µs, (x, s) ∈ S. By
[23, Proposition 5.4], it suffices to verify that for every t ≥ 0 and
λ, µ > 0,

lim
n→∞

sup
s≥0

sup
x∈En,s

|U (n)
t πngλ,µ(x, s)− πnUtgλ,µ(x, s)| = 0, (I.35)

where U
(n)
t : B(Sn) → B(Sn) is defined via U

(n)
t g(x, s) :=

E(g(X(n)
s+t, s + t) |X(n)

s = x), g ∈ B(Sn), s ≥ 0, x ∈ En,s. Note that

(U
(n)
t )t≥0 is the semigroup of Y (n).
Fix t ≥ 0 and λ, µ > 0. For all n ∈ N, s ≥ 0 and x ∈ En,s,

U
(n)
t πngλ,µ(x, s) = E(πngλ,µ(X(n)

s+t, s+ t) |X(n)
s = x)

= E(exp(−λX(n)
s+t − µ(s+ t)) |X(n)

s = x)

= e−µ(s+t)E(exp(−λn−1/α(s+t)Z
(n)
s+t) |Z(n)

s = xn1/α(s))

= e−µ(s+t)E(exp(−λn−1/α(s+t)Z
(xn1/α(s))
t ))

and

πnUtgλ,µ(x, s) = Utgλ,µ(x, s)

= E(exp(−λXs+t − µ(s+ t)) |Xs = x)

= e−µ(s+t)E(exp(−λXs+t) |Xs = x)

= e−µ(s+t)E(exp(−λx1/α(t)Xt)).

Thus, one has to verify that

lim
n→∞

sup
s≥0

sup
x∈En,s

e−µ(s+t)
∣∣E(exp(−λn−1/α(s+t)Z

(xn1/α(s))
t ))

− E(exp(−λx1/α(t)Xt))
∣∣ = 0.

We will even verify that

lim
n→∞

sup
s≥0

sup
x>0

∣∣E(exp(−λn−1/α(s+t)Z
(⌊xn1/α(s)⌋)
t ))

− E(exp(−λx1/α(t)Xt))
∣∣ = 0.
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Since α(s + t) = α(s)α(t), the quantity inside the absolute values
depends on n and s only via n1/α(s). Since n1/α(s) is non-decreasing
in s it follows that the convergence for fixed s ≥ 0 is slower as s is
smaller. So the slowest convergence holds for s = 0 (⇒ α(s) = 1).
Thus it suffices to verify that for every t ≥ 0 and λ > 0

lim
n→∞

sup
x>0

|E(exp(−λn−1/α(t)Z
(⌊xn⌋)
t ))− E(exp(−λx1/α(t)Xt))| = 0.

The map x 7→ E(exp(−λx1/α(t)Xt)) is bounded, continuous and non-

increasing. Since Z
(1)
t ≤ Z

(2)
t ≤ · · · almost surely it follows by Pólya’s

theorem [35, Satz I] that it suffices to verify the above convergence
pointwise for every x > 0. Defining k := ⌊xn⌋ it is readily seen
that this is equivalent to the convergence of the one-dimensional
distributions X

(k)
t = k−1/α(t)Z

(k)
t → Xt in distribution as k → ∞,

t ≥ 0. But the convergence of the one-dimensional distributions holds
by Step 1. The proof is complete.

I.6 Appendix

In this appendix five auxiliary results are provided. Lemma I.6.1 and
Lemma I.6.2 below are used in the proof of Lemma I.2.2. Lemma I.6.1
provides an asymptotic statement for Laplace transforms and gener-
ating functions, respectively. Lemma I.6.2 is a version of L’Hospital’s
rule, which is stated for completeness.

Lemma I.6.1. Let ξ be a non-negative real-valued random variable
with m := E(ξ) <∞. Suppose that the cumulative distribution func-
tion F of ξ satisfies 1−F (x) ≤ Cx−α for all x ≥ 0 for some C <∞
and α > 1. Then, for every ε ∈ [0,min(α− 1, 1)),

lim
λ→0+

1− φ(λ) + λm

λ1+ε
= 0, (I.36)

where φ denotes the Laplace transform of ξ. If ξ takes only values in
N0, then, for the same range of values of ε as above,

lim
s→1−

(1− s)m− (1− f(s))

(1− s)1+ε
= 0, (I.37)

where f denotes the pgf of ξ.

Remark. The tail condition is satisfied if E(ξα) < ∞, since, by
Markov’s inequality, 1− F (x) = P(ξα > xα) ≤ x−αE(ξα).
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Proof. (of Lemma I.6.1) Applying the well known formula E(g(ξ)) =
g(0)+

∫∞
0 g′(x)(1−F (x)) dx, g ∈ C1([0,∞)), to the function g(x) :=

e−λx − 1 + λx yields

φ(λ)− 1 + λm

λ1+ε
=

1

λε

∫ ∞

0

(1− F (x))(1− e−λx) dx

≤
∫ 1

0

1− e−λx

λε
dx + C

∫ ∞

1

1− e−λx

(λx)εxα−ε
dx.

Since ε < 1, limλ→0(1− e−λx)/λε = 0 and the first integral converges
to 0 by the dominated convergence theorem. Since (1− e−λx)/(λx)ε

is bounded uniformly in λ and x, and α − ε > 1, the dominated
convergence theorem is again applicable and the second integral con-
verges to 0. If ξ takes only values in N0, then (I.37) follows from
(I.36) via the substitution λ := − log s, s ∈ (0, 1), and the fact that
− log s = (1− s) +O((1− s)2) as s→ 1.

The situation in the following lemma is the one of L’Hospital’s
rule.

Lemma I.6.2. Let c, x0 ∈ [−∞,∞]. Let f, g : I → R be continuously
differentiable on an open interval I containing x0 or having x0 as a
limit point if the limit is one-sided. Assume further that g′(x) ̸= 0
for all x ∈ I \ {x0}. Let α ∈ R \ {1}. If either

lim
x→x0

g1−1/α(x) = lim
x→x0

f(x)/g1/α(x) = 0

or
lim
x→x0

g1−1/α(x) = lim
x→x0

f(x)/g1/α(x) = ∞,

and
lim
x→x0

(αf ′(x)/g′(x)− f(x)/g(x)) = c, (I.38)

then limx→x0 f(x)/g(x) = c(α−1)−1. If the limit (I.38) does not exist,
it still holds that

lim inf
x→x0

(
α
f ′(x)

g′(x)
− f(x)

g(x)

)
≤ lim inf

x→x0
(α− 1)

f(x)

g(x)

≤ lim sup
x→x0

(α− 1)
f(x)

g(x)

≤ lim sup
x→x0

(
α
f ′(x)

g′(x)
− f(x)

g(x)

)
.

63



Proof. A straightforward computation shows that

1

α− 1

(
α
f ′(x)

g′(x)
−f(x)
g(x)

)
=
f ′(x)g−1/α(x)− (1/α)g−1−1/α(x)g′(x)f(x)

(1− 1/α)g−1/αg′(x)
,

where the numerator and the denominator are the derivatives of
f(x)g−1/α(x) and g1−1/α(x), respectively. Thus the convergence of the
left-hand side to c(α− 1)−1 ∈ [−∞,∞] implies limx→x0 f(x)/g(x) =
limx→x0(f(x)/g

1/α(x))/g1−1/α(x) = c(α− 1)−1.

The following two results are needed in the proof of Theorem I.2.3.
Lemma I.6.3 contains a statement on uniform weak convergence. The
last result (Lemma I.6.4) provides a certain dense subset of Ĉ(R ×
[0,∞)).

Lemma I.6.3. Let (Xn)n∈N be a sequence of real-valued random vari-
ables converging weakly to a real-valued random variable X. Then, for
every bounded and continuous function f : R → R and A,B > 0,

lim
n→∞

sup
|a|≤A,|b|≤B

|E(f(aXn + b))− E(f(aX + b))| = 0. (I.39)

If f ∈ Ĉ(R), then (I.39) even holds if the supremum is taken over
[−A,A]× R instead of [−A,A]× [−B,B].

Proof. For n ∈ N define gn : R2 → R via gn(a, b) := E(f(aXn + b)),
a, b ∈ R, and g similarly with Xn replaced by X. Fix A,B > 0.
Obtaining pointwise convergence of gn to g from weak convergence,
(I.39) follows, in view of the Arzelà–Ascoli theorem, from the uniform
equicontinuity of {gn : n ∈ N} on K := [−A,A] × [−B,B], that is,
for every ε > 0 there exists δ > 0 such that max{|a−a′|, |b− b′|} < δ
implies |gn(a, b)−gn(a′, b′)| < ε for all n ∈ N and all (a, b), (a′, b′) ∈ K.

Let ε > 0. By Prohorov’s theorem, the family of distributions of
the weakly convergent sequence (Xn)n∈N is tight. Thus, there exists
C ∈ (0,∞) such that supn∈N P(|Xn| > C) < ε and P(|X| > C) < ε.
Using the uniform continuity of f on K, choose δ > 0 such that
|x− y| < δ(C + 1) implies |f(x)− f(y)| < ε. Consequently,

|gn(a, b)− gn(a
′, b′)| = |E(f(aXn + b))− E(f(a′Xn + b′))|

≤ 2ε∥f∥ + E(1{|Xn|≤C}|f(aXn + b)− f(a′Xn + b′)|)
≤ 2ε∥f∥ + ε

for (a, b), (a′, b′) ∈ K with max{|a−a′|, |b− b′|} < δ, proving the first
statement.

64



If f ∈ Ĉ(R), then there exists L > 0 such that |f(x)| < ε for
all |x| > L. In particular, (I.39) holds for B := AC + L. On the
remaining area [−A,A] × (R \ [−B,B]) all the functions gn and g
are sufficiently small. More precisely, if |a| ≤ A and |b| > B, then
|aXn + b| > L on the event {|Xn| ≤ C}, hence

|gn(a, b)| = |E(f(aXn + b))|
≤ ε∥f∥ + E(1{|Xn|≤C}|f(aXn + b)|) ≤ ε∥f∥ + ε

for all n ∈ N, and, similarly, |g(a, b)| ≤ ε∥f∥ + ε, which proves the
additional statement.

Lemma I.6.4. Let S := R×[0,∞). The space of functions f : S → R
of the form f(x, y) =

∑l
i=1 gi(x)hi(y) with l ∈ N, g1, . . . , gl ∈ Ĉ(R)

and h1, . . . , hl ∈ Ĉ([0,∞)) is dense in Ĉ(S).

Proof. Two proofs are provided. The first proof is elementary and
constructive. The second proof exploits the Stone–Weierstrass theo-
rem for locally compact spaces.

Proof 1. (elementary) Each f ∈ Ĉ(S) can be transformed (with
the additional definition f(±∞, y) := 0 for all y ∈ [0,∞) and
f(x,∞) := 0 for all x ∈ R) into a map f̃ ∈ C([0, 1]2) satisfying
f̃(0, y) = f̃(1, y) = f̃(x, 1) = 0 for all x, y ∈ [0, 1] via

f̃(x, y) := f

(
1

1− x
− 1

x
,

y

1− y

)
, x, y ∈ [0, 1]2.

Thus, it suffices to verify that the space D of functions f : [0, 1]2 → R
of the form f(x, y) =

∑l
i=1 gi(x)hi(y) with l ∈ N, g1, . . . , gl ∈ D1 :=

{g ∈ C([0, 1]) : g(0) = g(1) = 0} and h1, . . . , hl ∈ D2 := {h ∈
C([0, 1]) : h(1) = 0} is dense in {f ∈ C([0, 1]2) : f(0, y) = f(1, y) =
f(x, 1) = 0 for all x, y ∈ [0, 1]}. This is seen as follows. Let m ∈ N.
For i ∈ {0, . . . ,m} define xi := i/m and gi : [0, 1] → [0, 1] via

gi(x) := (1−m|x− xi|) 1{|x−xi|≤1/m}, x ∈ [0, 1].

Note that g0, . . . , gm form a partition of unity, i.e.,
∑m

i=0 gi(x) = 1
for all x ∈ [0, 1]. Moreover, g1, . . . , gm−1 ∈ D1. In the same man-
ner define yj := j/m and hj : [0, 1] → [0, 1] via hj(y) := (1 −
m|y − yj|)1{|y−yj |≤1/m} for all j ∈ {0, . . . ,m}. Again, h0, . . . , hm form
a partition of unity, i.e.,

∑m
j=0 hj(y) = 1 for all y ∈ [0, 1]. Moreover,

h0, . . . , hm−1 ∈ D2. Now define fm : [0, 1]2 → R via

fm(x, y) :=
m∑

i,j=0

f(xi, yj)gi(x)hj(y) =
m−1∑
i=1

m−1∑
j=0

f(xi, yj)gi(x)hj(y),
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x, y ∈ [0, 1], where the last equality holds, since f(0, y) = f(1, y) =
f(x, 1) = 0 for all x, y ∈ [0, 1]. From g1, . . . , gm−1 ∈ D1 and
h0, . . . , hm−1 ∈ D2 it follows that fm ∈ D. It remains to verify that
limm→∞ ∥fm − f∥ = 0. Let ε > 0. Since f is uniformly continuous
on [0, 1]2, there exists δ = δ(ε) > 0 such that |f(x′, y′)− f(x, y)| < ε
for all x, y, x′, y′ ∈ [0, 1] with |x − x′| < δ and |y − y′| < δ. For all
x, y ∈ [0, 1] it follows from

∑m
i,j=0 gi(x)hj(y) = 1 that

|fm(x, y)− f(x, y)| =

∣∣∣∣ m∑
i,j=0

(
f(xi, yj)− f(x, y)

)
gi(x)hj(y)

∣∣∣∣
≤

m∑
i,j=0

|f(xi, yj)− f(x, y)|gi(x)hj(y).

Now for each (x, y) ∈ [0, 1]2 there exist i0, j0 ∈ {0, . . . ,m − 1} (de-
pending on x and y) such that xi0 ≤ x ≤ xi0+1 and yj0 ≤ y ≤ yj0+1.
Since gi(x) = 0 for all i ∈ {0, . . . ,m} \ {i0, i0 + 1} and hj(y) = 0 for
all j ∈ {0, . . . ,m} \ {j0, j0 + 1}, we conclude that

|fm(x, y)− f(x, y)|
≤ |f(xi0, yi0)− f(x, y)| + |f(xi0, yj0+1)− f(x, y)|

+ |f(xi0+1, yj0)− f(x, y)| + |f(xi0+1, yj0+1)− f(x, y)| ≤ 4ε

for all m ∈ N with m > 1/δ. Thus, limm→∞ ∥fm − f∥ = 0. □

Proof 2. (using the Stone–Weierstrass theorem) The space of func-
tions f : S → R of the form f(x, y) =

∑l
i=1 gi(x)hi(y) with l ∈ N,

g1, . . . , gl ∈ Ĉ(R) and h1, . . . , hl ∈ Ĉ([0,∞)) is a subalgebra of Ĉ(S)
which separates points and vanishes nowhere, whence is dense in
Ĉ(S) by the Stone–Weierstrass theorem (see, for example, [11]). In
[11] the theorem is stated for complex-valued functions, but it re-
mains true for real-valued functions. To see this, let f ∈ Ĉ(S) ⊆
Ĉ(S,C) be arbitrary. By the theorem, there exist g1, g2, . . . ∈ Ĉ(S,C)
such that limn→∞ ∥gn − f∥ = 0. Then fn := Re(gn) ∈ Ĉ(S), n ∈ N,
and ∥fn − f∥ ≤ ∥gn − f∥ → 0 as n→ ∞.

The last result (Lemma I.6.5) states that a particular function is
absolutely monotone. This result is needed in Example I.2.13, but is
as well of its own interest. For general information on absolutely and
completely monotonic functions we refer the reader to (Appendix A,
§4 of) Steutel and van Harn [42] and Chapter IV of Widder [46].

Lemma I.6.5. The function g(z) := (− log(1−z)) log(1− log(1−z))
is absolutely monotone on [0, 1).
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Remark. The following proof of Lemma I.6.5 is based on a particular
integral representation (see (I.41)) for the coefficient gn := g(n)(0)/n!
in front of zn in the Taylor expansion of g(z) around 0. Concrete
calculations of the coefficients gn via the summation formula (I.40)
or the integral representation (I.41) yield

g(z) = z2+
1

2
z3+

1

2
z4+

3

8
z5+

247

720
z6+

7

24
z7+

535

2016
z8+

2051

8640
z9+O(z10).

Proof. (of Lemma I.6.5) We have to verify that gn ≥ 0 for all n ∈ N0.
Clearly, g0 = g(0) = 0 and g = u ◦ v, where u(x) := x log(x + 1) for
x ≥ 0 and v(z) := − log(1− z) for 0 ≤ z < 1. The functions u and v
have derivatives u′(x) = log(x+ 1) + x/(x+ 1), x ≥ 0,

u(k)(x) = (−1)k
(

(k − 2)!

(x+ 1)k−1
+

(k − 1)!

(x+ 1)k

)
, k ∈ N \ {1}, x ≥ 0,

and v(m)(z) = (m − 1)!/(1 − z)m, m ∈ N, 0 ≤ z < 1. Note that
v is absolutely monotone, but u is not absolutely monotone, which
explains why the statement of Lemma I.6.5 is less simple as it seems
at a first glance. By Faà di Bruno’s formula,

g(n)(z) =
∑

k1,...,kn∈N0
1k1+2k2+···+nkn=n

n!

k1! · · · kn!
u(k1+···+kn)(v(z))

n∏
m=1

(
v(m)(z)

m!

)km

=
1

(1− z)n

n∑
k=1

u(k)(v(z))
∑

1k1+2k2+···+nkn=n
k1+···+kn=k

n!

k1! · · · kn!1k1 · · ·nkn

=
1

(1− z)n

n∑
k=1

u(k)(v(z))|s(n, k)|, n ∈ N, 0 ≤ z < 1,

where s(., .) denote the Stirling numbers of the first kind. Thus,

gn :=
g(n)(0)

n!
=

1

n!

n∑
k=1

u(k)(0)|s(n, k)|

=
1

n!

n∑
k=2

(−1)k
k!

k − 1
|s(n, k)|, n ∈ N. (I.40)

Plugging in k!/(k− 1) = (k− 2)! + (k− 1)! =
∫∞
0 tk(1/t+1/t2)e−t dt

and interchanging the sum with the integral yields

gn =
1

n!

∫ ∞

0

n∑
k=2

(−t)k|s(n, k)|
(
1

t
+

1

t2

)
e−t dt, n ∈ N.
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Applying the relation
∑n

k=0 x
k|s(n, k)| = [x]n := x(x+1) · · · (x+n−1)

to the point x := −t and noting that s(n, 0) = 0 and s(n, 1) = (n−1)!
for n ∈ N yields

gn =
1

n!

∫ ∞

0

(
[−t]n + t(n− 1)!

)(1

t
+

1

t2

)
e−t dt, n ∈ N.

Noting that [−t]n/n! = (−1)n
(
t
n

)
shows that gn has the integral rep-

resentation

gn =

∫ ∞

0

(
(−1)n

(
t

n

)
+
t

n

)(
1

t
+

1

t2

)
e−t dt, n ∈ N. (I.41)

In particular, g1 = 0. For n ∈ {2, 4, . . .} the map t 7→ (−1)n
(
t
n

)
+ t

n =(
t
n

)
+ t

n is non-decreasing and hence non-negative on [0,∞) implying
that gn ≥ 0 for even n. Assume now that n ∈ {3, 5, . . .}. Then the
map t 7→ (−1)n

(
t
n

)
+ t

n = t
n −

(
t
n

)
, t > 0, has a single root at t = n

and is positive for t ∈ (0, n) and negative for t ∈ (n,∞). Decompose
gn = I1 − I2, where

I1 :=

∫ n

0

(
t

n
−

(
t

n

))(
1

t
+

1

t2

)
e−t dt

and

I2 :=

∫ ∞

n

((
t

n

)
− t

n

)(
1

t
+

1

t2

)
e−t dt.

The map t 7→ ( tn −
(
t
n

)
)(1t +

1
t2 ) takes on the interval (0, n − 1] its

minimum value 1/(n − 1) at the right most point n − 1. For n ∈
{3, 5, . . .} we hence obtain for I1 the lower bound

I1 ≥
∫ n−1

0

(
t

n
−
(
t

n

))(
1

t
+

1

t2

)
e−t dt

≥ 1

n− 1

∫ n−1

0

e−t dt =
1− e−(n−1)

n− 1
≥ 1

n
.

For I2 we obtain the upper bound

I2 ≤
∫ ∞

n

(
t

n

)(
1

t
+

1

t2

)
e−t dt

≤
∫ ∞

n

tn

n!

2

t
e−t dt =

2

n

∫ ∞

n

P(Nt = n− 1) dt,

where Nt is Poisson distributed with parameter t. Applying the for-
mula

∫∞
n P(Nt = k) dt = P(Nn ≤ k) with k = n − 1 leads to

I2 ≤ (2/n)P(Nn ≤ n − 1) ≤ 1/n, since P(Nn ≤ n − 1) is increas-
ing in n with limn→∞ P(Nn ≤ n− 1) = 1/2; see, for example, Teicher
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[43]. From I1 ≥ 1/n and I2 ≤ 1/n it follows that gn = I1− I2 ≥ 0 for
n ∈ {3, 5, . . .}. In summary, gn ≥ 0 for all n ∈ N0.

Remark. (Asymptotics of gn) It is easily seen that g′(z) ∼ (1 −
z)−1L((1 − z)−1) as z → 1− in ∆ \ {1}, where L(u) := log log u
and ∆ is defined as in Flajolet and Odlyzko [13, Eq. (2.5)]. By
Theorem 5 of [13], applied with α := −1 and f replaced by g′,
[zn]g′(z) ∼ L(n) = log log n as n→ ∞. From [zn]g′(z) = (n+ 1)gn+1

it follows that gn ∼ n−1 log log n as n→ ∞.
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Article II

Scaling limits for the block
counting process and the fixation
line for a class of Λ-coalescents

Möhle, M. and Vetter, B. (2021) ALEA Lat. Am. J. Probab.
Math. Stat. 19, no. 1, 641–664.

Abstract.
We provide scaling limits for the block counting process and the fixation line of Λ-
coalescents as the initial state n tends to infinity under the assumption that the
measure Λ on [0, 1] satisfies

∫
[0,1]

u−1 |Λ−bλ|(du) <∞ for some b ≥ 0. Here λ denotes

the Lebesgue measure on [0, 1]. The main result states that the block counting process,
properly transformed, converges in the Skorohod space to a generalized Ornstein–
Uhlenbeck process as n tends to infinity. The result is applied to beta coalescents
with parameters 1 and b > 0. We split the generators into two parts by additively
decomposing Λ into a “Bolthausen–Sznitman part” bλ and a “dust part” Λ− bλ and
then prove the uniform convergence of both parts separately.
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II.1 Introduction

The Λ-coalescent, independently introduced by Pitman [17] and Sag-
itov [20], is a Markov process Π = (Πt)t≥0 with càdlàg paths, values
in the space of partitions of N := {1, 2, . . .}, starting at time t = 0
from the partition {{1}, {2}, . . .} of N into singletons, whose behav-
ior is fully determined by a finite measure Λ on the Borel subsets of
[0, 1]. If the process is in a state with k ≥ 2 blocks, any particular
j ∈ {2, . . . , k} blocks merge at the rate

λk,j =

∫
[0,1]

uj−2(1− u)k−j Λ(du).

The reader is referred to [3] for a survey of Λ-coalescents. Unless
Λ({1}) > 0, Πt has either infinitely many blocks for all t > 0 almost
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surely or finitely many blocks for all t > 0 almost surely. The Λ-
coalescent is said to stay infinite in the first case and to come down
from infinity in the second. An atom of Λ at 1 corresponds to the
rate of jumping to the trivial and absorbing partition consisting only
of the block N. For t ≥ 0 let N

(n)
t denote the number of blocks

of the restriction Π
(n)
t := {B ∩ [n]|B ∈ Πt, B ∩ [n] ̸= ∅} of Πt to

[n] := {1, . . . , n}. The block counting process N (n) := (N
(n)
t )t≥0 is

a [n]-valued Markov process that jumps from state k ≥ 2 to state
j ∈ {1, . . . , k − 1} at the rate

qk,j =

(
k

j − 1

)∫
[0,1]

uk−j−1(1− u)j−1Λ(du).

Clearly, N (n) starts in n at time t = 0, has decreasing paths and
eventually reaches the absorbing state 1. This work’s main objective
is to analyze the limiting behavior of the block counting process of Λ-
coalescents that stay infinite as the initial state n tends to infinity by
determining suitable scaling constants. The question of the existence
of scaling constants for which non-trivial limits can be obtained is
answered in the literature for coalescents with dust, i.e., (see [17, 24])
for measures Λ that satisfy∫

[0,1]

u−1Λ(du) < ∞, Λ({0}) = Λ({1}) = 0, (II.1)

and for the Bolthausen–Sznitman coalescent [5], where Λ = λ is the
uniform distribution on [0, 1], an example of a dust-free coalescent
that stays infinite. The respective convergence results are recalled in
Section II.2, where they are stated as Propositions II.2.1 and II.2.2.
This work provides unified proofs of Propositions II.2.1 and II.2.2
and extends the convergence results by combining both proofs. The
main result (Theorem II.2.3) covers Λ-coalescents for which there
exists some b ≥ 0 such that∫

[0,1]

u−1 |Λ− bλ|(du) < ∞,

which can be understood that Λ is the sum of a “Bolthausen–
Sznitman part” bλ and a “dust part” Λ− bλ. Here |Λ− bλ| denotes
the total variation of the signed measure Λ− bλ. The assumption in-
cludes Λ-coalescents where Λ = β(1, b) is the beta distribution with
parameters 1 and b > 0. The main result states that

(logN
(n)
t − e−bt log n)t≥0
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converges in the Skorohod space DR[0,∞) as n tends to infinity.
The limiting process is influenced by both the “Bolthausen–Sznitman
part” and the “dust part”. The logarithmic version of the conver-
gence result has the advantage of putting the limiting process in
Theorem II.2.3 to the class of generalized Ornstein–Uhlenbeck pro-
cesses, which have been studied extensively in the literature. In [14],
a work concerning the small-time behavior of the block counting
process for a broad class of Λ-coalescents that come down from in-
finity, a generalized Ornstein–Uhlenbeck process also appears in a
limit theorem for the block counting process. Regarding generalized
Ornstein–Uhlenbeck processes, the interested reader is referred to
[22].

The fixation line L = (Lt)t≥0 is a N-valued Markov process that
jumps from state k ∈ N to state j ∈ {k + 1, k + 2, . . .} at the rate

γk,j =

(
j

j − k + 1

)∫
[0,1]

uj−k−1(1− u)k Λ(du).

The fixation line is the “time-reversal” of the block counting process
in the sense that the hitting times inf{t ≥ 0 : N

(n)
t ≤ m} and

inf{t ≥ 0 : L
(m)
t ≥ n} share the same distribution, see [12, Lemma

2.1]. Here the upper index “(m)” denotes the initial state L
(m)
0 = m

at time t = 0. Equivalently, the process L is Siegmund-dual [26] to
the block counting process, i.e., (see [13])

P(L(m)
t ≥ n) = P(N (n)

t ≤ m), m, n ∈ N, t ≥ 0. (II.2)

For a thorough definition of the fixation line see [12] and the ref-

erences therein. Theorem II.2.4 states that (logL
(n)
t − ebt log n)t≥0

converges in DR[0,∞) as the initial value n tends to infinity.
The article is organized as follows. In Section II.2 the two known

convergence results for the block counting process of coalescents with
dust (Proposition II.2.1) and the Bolthausen–Sznitman coalescent
(Proposition II.2.2) are recalled and the main result (Theorem II.2.3)
is stated. In Section II.3 well known results concerning generalized
Ornstein–Uhlenbeck processes are applied to our setting. In partic-
ular, the generator of the limiting process is determined. In Sec-
tion II.4 the main result is applied to beta coalescents with param-
eter 1 and b > 0. The line of proof is as follows. First, we prove
Propositions II.2.1 and II.2.2 in Sections II.5 and II.6 by showing the
uniform convergence of the generators of the logarithm of the scaled
block counting processes. The decomposition of Λ into the uniform
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distribution multiplied by a constant and a measure that corresponds
to a coalescent with dust is transferred to the generators. This en-
ables us to use relations obtained in Sections II.5 and II.6 to prove
Theorem II.2.3 in Section II.7. Two proofs of Theorem II.2.4 are
given in Section II.8.

Notation. Let E be a complete separable metric space. The Banach
space B(E) of bounded measurable functions f : E → R is equipped
with the usual supremum norm ∥f∥ := supx∈E |f(x)| and the Banach
subspace Ĉ(E) ⊂ B(E) consists of all continuous functions vanishing
at infinity. If E ⊆ Rd for some d ∈ N, then Ck(E) denotes the space
of k-times continuously differentiable functions. A Feller semigroup
(Tt)t≥0 is strongly continuous on Ĉ(E), i.e., limt→0 ||Ttf − f || = 0 for
each f ∈ Ĉ(E), and satisfies Tt(Ĉ(E)) ⊆ Ĉ(E) for each t ≥ 0. The
generators corresponding to Feller semigroups, usually denoted by
A, are understood to be defined on a dense subspace of Ĉ(E). The
Borel-σ-field on R is denoted by B and λ denotes Lebesgue measure
on ([0, 1],B ∩ [0, 1]). For a measure space (Ω,F , µ) and p > 0 the
space of measurable functions f : Ω → R with

∫
Ω |f |

p dµ < ∞ is
denoted by Lp(µ) or, in short, Lp.

II.2 Results

Throughout the article Λ is a finite non-zero measure on ([0, 1],B ∩
[0, 1]). Additionally, it is assumed that Λ({0}) = Λ({1}) = 0, because
coalescents in this article shall stay infinite and an atom at 0 would
imply that the coalescent comes down from infinity and an atom at
1 would imply that the block counting process N (n) is almost surely
in state 1 for all n ∈ N after a random finite time not depending on
n.

First, the two known results mentioned in the introduction are
presented. A block B ∈ Πt of size |B| = 1 is called a singleton. The
number of singletons in [n] divided by n converges to the frequency of
singletons as n tends to infinity, and if the frequency of singletons is
strictly positive, the coalescent is said to have dust. A necessary and
sufficient conditon for coalescents to have dust is given by Eq. (II.1).
For further results on Λ-coalescents with dust see [10] and [9]. Propo-
sition II.2.1 below has been established in [9] and [16]. In both articles
the processes have non-logarithmic form and the blocks of the coales-
cent are allowed to even merge simultaneously. The limiting process
is the logarithm of the frequency of singletons process as described in
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[17, Proposition 26]. In [16] the uniform convergence of the generators
has been proven and a rate of convergence has been determined. In
this article the uniform convergence of the generators is going to be
proven as well, but with different techniques. In [9] the convergence
of the corresponding semigroups has been shown, which is equivalent
to the convergence of the generators on a core. The proof is carried
out, since parts are needed in order to verify Theorem II.2.3.

Proposition II.2.1 (dust case). Suppose that
∫
[0,1] u

−1Λ(du) < ∞.

Then the time-homogeneous Markov process X(n) := (X
(n)
t )t≥0 :=

(logN
(n)
t − log n)t≥0 converges in DR[0,∞) as n → ∞ to a limiting

process X = (Xt)t≥0 with initial value X0 = 0 and semigroup (Tt)t≥0

given by

Ttf(x) := E(f(Xs+t)|Xs = x) = E(f(x+Xt)), (II.3)

x ∈ R, f ∈ B(R), s, t ≥ 0, where Xt has characteristic function
E(exp(ivXt)) = exp(tψ(v)), v ∈ R, t ≥ 0, with

ψ(v) =

∫
[0,1]

((1− u)iv − 1)u−2Λ(du), v ∈ R. (II.4)

Observe that −X is a pure-jump subordinator with characteristic ex-
ponent v 7→ ψ(−v), v ∈ R.

The block counting process of the Bolthausen–Sznitman coales-
cent has been treated in [15] and [13]. Both works show that the

semigroup of (N
(n)
t /ne

−t

)t≥0 converges on a dense subset of B([0,∞))
to the semigroup of the Mittag–Leffler process as n tends to infinity,
hence the processes converge in D[0,∞)[0,∞). Taking logarithms does

not spoil the convergence. If f ∈ Ĉ(R), then f ◦ log ∈ Ĉ([0,∞)),
and the semigroup and hence the generator A(n) of the logarithm
of the scaled block counting process X(n) = (logN

(n)
t − e−t log n)t≥0

converge as well. We prove the convergence of A(n) in Section II.6
directly. Since the scaling depends on t, the process X(n) is time-
inhomogeneous, and in [13] the time-space process is used in order
to transfer the question of convergence to time-homogeneous Markov
processes. The time-space process is revisited in Section II.6. By con-
structing the Bolthausen–Sznitman coalescent from a random recur-
sive tree, it is shown in [11] and [2] that N

(n)
t /ne

−t

converges almost
surely as n tends to infinity for each t ≥ 0. Since λ is the particu-
lar beta distribution with both parameters equal to 1, the following
result is the case b = 1 of Example II.4.2 provided in Section II.4.
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Proposition II.2.2 (Bolthausen–Sznitman case). Suppose that
Λ = λ. Then the time-inhomogeneous Markov process X(n) :=
(X

(n)
t )t≥0 := (logN

(n)
t −e−t log n)t≥0 converges in DR[0,∞) as n→ ∞

to the time-homogeneous Markov process X = (Xt)t≥0 with initial
value X0 = 0 and semigroup (Tt)t≥0 given by

Ttf(x) := E(f(Xs+t)|Xs = x) = E(f(e−tx+Xt)),

x ∈ R, f ∈ B(R), s, t ≥ 0, where Xt has characteristic function
ϕt(v) := E(exp(ivXt)) = Γ(1 + iv)/Γ(1 + ie−tv), v ∈ R, t ≥ 0.

For b ≥ 0 define the possibly signed measure ΛD on B ∩ [0, 1]
via ΛD(B) := Λ(B) − bλ(B), B ∈ B ∩ [0, 1]. Hahn’s decomposition
theorem states the existence of some set A ∈ B ∩ [0, 1] such that
Λ+
D(B) := ΛD(B ∩ A), B ∈ B ∩ [0, 1], and Λ−

D(B) := −ΛD(B ∩ Ac),
B ∈ B ∩ [0, 1], define non-negative measures. The two non-negative
measures Λ+

D and Λ−
D constitute the Jordan decomposition of ΛD.

By using this decomposition, one can integrate with respect to the
signed measure ΛD by defining

∫
f dΛD :=

∫
f dΛ+

D −
∫
f dΛ−

D for
f ∈ L1(Λ+

D) ∩ L1(Λ−
D). The total variation |ΛD| of ΛD is given by

|ΛD| := Λ+
D + Λ−

D. The assumption of Theorem II.2.3 below is the
following.

Assumption A. There exists b ≥ 0 such that
∫
[0,1] u

−1 |ΛD|(du) <
∞, i.e.,

∫
[0,1] u

−1Λ+
D(du) <∞ and

∫
[0,1] u

−1Λ−
D(du) <∞.

Assumption A implies that b = limε→0 ε
−1Λ((0, ε)), see Lemma II.9.1

a) in the appendix. In particular, if Assumption A holds, then the
constant b is uniquely determined by the measure Λ. Schweinsberg’s
criterion [23] shows that the Λ-coalescent does not come down from
infinity under Assumption A, see Lemma II.9.1 b). Moreover, the
Λ-coalescent is dust-free if and only if b > 0. Assumption A is for
example satisfied, if Λ has density f ∈ C1([0, 1]) with respect to λ
for which limu↘0 f

′(u) exists and is finite. In this case, b = f(0).
Suppose that Λ satisfies Assumption A. Let Γ(z) :=∫∞

0 uz−1e−u du, Re(z) > 0, denote the gamma function and Ψ(z) :=
(log Γ)′(z) = Γ′(z)/Γ(z), Re(z) > 0, the digamma function. Define

a := b(1 + Ψ(1)) −
∫
[0,1]

u−1ΛD(du) (II.5)

and the infinitely divisible characteristic exponent ψ : R → C via

ψ(v) := iav +

∫
[0,1]

((1− u)iv − 1+ ivu)u−2Λ(du), v ∈ R. (II.6)
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Formally, the constant b of Assumption A only appears in the drift
part of ψ. Note however that b is uniquely determined by Λ. In this
sense b depends on Λ and therefore also influences (via Λ) the jump
part of ψ. Substituting g : (0, 1) → R, g(u) := log(1− u), u ∈ (0, 1),
shows that

ψ(v) = iav +

∫
(−∞,0)

(eivu − 1 + iv(1− eu)) ϱ(du), v ∈ R,

where the measure ϱ, defined via

ϱ(A) :=

∫
g−1(A)

u−2Λ(du), A ∈ B, (II.7)

satisfies
∫
R(u

2 ∧ 1) ϱ(du) < ∞ and ϱ({0}) = 0. Hence, ϱ is a Lévy
measure, eψ(v), v ∈ R, is the characteristic function of an infinitely di-
visible distribution and the process described by Eqs. (II.8) and (II.9)
below belongs to the class of generalized Ornstein–Uhlenbeck pro-
cesses. Due to ϱ((0,∞)) = 0, the limiting process in Theorem II.2.3
has only negative jumps. Compensation of small jumps occurs if and
only if b ̸= 0. Further properties of the limiting process are presented
in Section II.3.

Theorem II.2.3. Suppose that Λ satisfies Assumption A. Then the
possibly time-inhomogeneous Markov process X(n) := (X

(n)
t )t≥0 :=

(logN
(n)
t − e−bt log n)t≥0 converges in DR[0,∞) as n → ∞ to the

time-homogeneous Markov process X = (Xt)t≥0 with initial value
X0 = 0 and semigroup (Tt)t≥0 given by

Ttf(x) := E(f(Xs+t)|Xs = x) = E(f(e−btx+Xt)), (II.8)

x ∈ R, f ∈ B(R), s, t ≥ 0, where Xt has characteristic function ϕt
given by

ϕt(v) = exp

(∫ t

0

ψ(e−bsv) ds

)
, v ∈ R, t ≥ 0, (II.9)

and ψ is given by (II.6).

The dust case and the Bolthausen–Sznitman case arise from As-
sumption A as follows. If

∫
[0,1] u

−1Λ(du) < ∞, then Assumption A

holds with b = 0. Thus, a = −
∫
[0,1] u

−1Λ(du), the definitions (II.4)

and (II.6) for ψ coincide and Proposition II.2.1 and Theorem II.2.3
describe the same limiting result. For Λ = λ, Assumption A holds
with b = 1 and without a dust part. In this case, a = 1 + Ψ(1)
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and the underlying Lévy measure ϱ has density f with respect to
Lebesgue measure on R \ {0} given by f(u) := eu(1− eu)−2 for u < 0
and f(u) := 0 for u > 0. The connection between Proposition II.2.2
and Theorem II.2.3 in the Bolthausen–Sznitman case is clarified in
Section II.4.

A convergence result for the fixation line can be stated analogously
to Theorem II.2.3; see also [9, Theorem 2.13 b)] for the case b = 0.

Theorem II.2.4. Suppose that Λ satisfies Assumption A. Then the
possibly time-inhomogeneous Markov process Y (n) := (Y

(n)
t )t≥0 :=

(logL
(n)
t − ebt log n)t≥0 converges in DR[0,∞) as n→ ∞ to the time-

homogeneous Markov process Y = (Yt)t≥0 with initial value Y0 = 0
and semigroup (Tt)t≥0 given by

Ttf(y) := E(f(Ys+t)|Ys = y) = E(f(ebty + Yt)), (II.10)

y ∈ R, f ∈ B(R), s, t ≥ 0, where Yt has characteristic function χt
given by

χt(w) = exp

(∫ t

0

ψ(−ebsw) ds
)
, w ∈ R, t ≥ 0, (II.11)

and ψ is given by (II.6).

Remark II.2.5. The process defined by (II.10) and (II.11) is a gen-
eralized Ornstein–Uhlenbeck process with underlying characteristic
exponent v 7→ ψ(−v), v ∈ R, but with non-negative drift.

Remark II.2.6. Let the random variable St have characteristic func-
tion ϕt, given by (II.9), for t ≥ 0, and letX = (Xt)t≥0 and Y = (Yt)t≥0

denote the processes defined in Theorems II.2.3 and II.2.4, respec-
tively. Conditional on Xs = x, Xt+s is distributed as e−btx + St for

all x ∈ R. Note that Yt
d
= −ebtXt

d
= −ebtSt and that conditional on

Ys = y, Yt+s is distributed as ebty − ebtSt. Hence,

P(eYt+s ≥ x | eYs = y) = P(yebte−ebtSt ≥ x)

= P(xe−bt

eSt ≤ y) = P(eXt+s ≤ y | eXs = x)

for all x, y, s, t ≥ 0, i.e., eY is Siegmund-dual to eX (see [26]) par-
allel to the Siegmund-duality of the block counting process and the
fixation line.

Remark II.2.7. For the Bolthausen–Sznitman case, the convergence
result corresponding to Theorem II.2.4 is stated in [13, Theorem
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3.1 b)] in non-logarithmic form. The fixation line of the Bolthausen–
Sznitman coalescent is a continuous-time discrete state space branch-
ing process in which the offspring distribution has probability gen-
erating function f(s) = s + (1 − s) log(1 − s), s ∈ [0, 1]. The limit-
ing process described in Theorem II.2.4 is the logarithm of Neveu’s
continuous-state branching process. By Proposition II.2.2, the char-
acteristic functions χt of the marginal distributions are given by (see
[13, Eq. (19)])

χt(w) = ϕt(−etw) =
Γ(1− iebtw)

Γ(1− iw)
, w ∈ R, t ≥ 0.

II.3 The limiting process

Standard computations (see [21, Lemma 17.1]) show that ϕt, given by
(II.9), is the characteristic function of an infinitely divisible distribu-
tion for each t ≥ 0 without Gaussian component and Lévy measure
ϱt given by

ϱt(A) =

∫
(−∞,0)

∫ t

0

1A(e
−bsu) dsϱ(du), A ∈ B, t ≥ 0.

Sato and Yamazato [22, Theorem 3.1] provide a formula for the
generator corresponding to the semigroup (Tt)t≥0, given by (II.8).

Lemma II.3.1. Suppose that Λ satisfies Assumption A. Let ψ be
given by (II.6), ϕt be defined by (II.9) and let the random variable Xt

have characteristic function ϕt for each t ≥ 0. The family of operators
(Tt)t≥0 defined by (II.8) is a Feller semigroup. Let D denote the space
of twice differentiable functions f : R → R such that f, f ′, f ′′ ∈ Ĉ(R)
and such that the map x 7→ xf ′(x), x ∈ R, belongs to Ĉ(R). Then D
is a core for the generator A corresponding to (Tt)t≥0 and

Af(x) = f ′(x)(a− bx) (II.12)

+

∫
[0,1]

(f(x+ log(1− u))− f(x) + uf ′(x))u−2Λ(du)

for x ∈ R and f ∈ D, where a is given by (II.5).

Proof. Substituting g : (0, 1) → R, g(u) := log(1 − u), u ∈ (0, 1),
shows that (II.12) is an integro-differential operator of the form (1.1)
of [22] with dimension d = 1. In [22], operators of this form are
initially considered as acting on the space C2

c of twice differentiable
functions with compact support (see the explanations after Eq. (1.2)
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in [22]), but Step 3 of the proof of [22, Theorem 3.1] shows that
(II.12) even holds for functions f ∈ D (⊃ C2

c ). Note that the space
D is denoted by F1 in [22]. The fact that D is a core for A is only a
different phrasing of the claim in Step 5 of the proof of [22, Theorem
3.1].

The limiting process’s generator in the dust case (b = 0) is given
by

Af(x) =

∫
[0,1]

(f(x+ log(1− u))− f(x))u−2Λ(du), x ∈ R,

in agreement with Eq. (II.12).
The limiting process in Theorem II.2.3 arises as the solution to

a certain stochastic differential equation. For the remainder of this
section, b > 0 is fixed and ψ is allowed to be the characteristic
exponent of an arbitrary infinitely divisible distribution on R, ex-
cept for Lemmata II.3.2 and II.3.3, which are applications of results
known from the literature to the coalescent setting. Let the Lévy
process L = (Lt)t≥0 with characteristic functions E(eivLt) = etψ(v),

v ∈ R, t ≥ 0, be adapted to the filtration (Ft)t≥0 which satisfies the
usual hypotheses. In particular, Lt+s − Ls is independent of Fs for
all s, t ≥ 0. The Langevin equation with Lévy noise instead of a
Brownian motion

dXt = −bXtdt + dLt, t ≥ 0, (II.13)

with initial value X0 = x has an unique (Ft)t≥0-adapted solution
X = (Xt)t≥0 with càdlàg paths. The solution to (II.13) or the corre-
sponding semigroup are hence called generalized Ornstein–Uhlenbeck
or Ornstein–Uhlenbeck type process or semigroup. It holds that

Xt = e−btx +

∫ t

0

e−b(t−s) dLs, t ≥ 0. (II.14)

Various constructions for the stochastic integral in (II.14) are possi-
ble, e.g., in [1, Sections 6.3 and 6.2] the stochastic integral is the Itô-
integral with respect to semimartingales. The process X is a stochas-
tically continuous Markov process and the corresponding semigroup
is given by (II.8), where the characteristic functions ϕt ofXt are given
by (II.9) with underlying infinitely divisible characteristic exponent
ψ for t ≥ 0.

Generalized Ornstein–Uhlenbeck processes bear a close connection
to self-decomposable distributions. A real-valued random variable S
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is called self-decomposable if for every α ∈ [0, 1] there exists a ran-
dom variable Sα independent of S such that S has the same dis-
tribution as αS + Sα. If ϕ is the characteristic function of S, then
S is self-decomposable if and only if v 7→ ϕ(v)/ϕ(αv), v ∈ R, is
the characteristic function of a real-valued random variable for every
α ∈ [0, 1]. A distribution µ on R or its characteristic function ϕ is
said to be self-decomposable if there exists a self-decomposable ran-
dom variable with distribution µ. Suppose that the Lévy measure ϱ
of the characteristic exponent ψ satisfies∫

{|u|>1}
log(1 + |u|) ϱ(du) < ∞. (II.15)

According to [22, Theorems 4.1 and 4.2], Xt converges in distribution
as t → ∞ to the unique stationary distribution µ of X. The distri-
bution µ is self-decomposable. Conversely, every self-decomposable
distribution can be obtained as the stationary distribution of a gen-
eralized Ornstein–Uhlenbeck process. If (II.15) does not hold, then
there exists no stationary distribution. The following lemma is an
application of [22, Theorems 4.1 and 4.2] to this article’s coalescent
setting.

Lemma II.3.2. Suppose that Λ satisfies Assumption A with b > 0
and let X = (Xt)t≥0 be as in Theorem II.2.3. If

∫
(ε,1) log log(1 −

u)−1Λ(du) < ∞ for some 1 − e−1 < ε < 1, then Xt converges in
distribution as t → ∞ to the unique stationary distribution µ of X.
The distribution µ is self-decomposable with characteristic function
ϕ given by

ϕ(v) = exp

(∫ ∞

0

ψ(e−bsv) ds

)
, v ∈ R.

The characteristic function ϕt of Xt satisfies ϕt(v) = ϕ(v)/ϕ(e−btv),
v ∈ R.

If
∫
(ε,1) log log(1 − u)−1Λ(du) = ∞ for 0 < ε < 1, then, for every

l,
lim
t→∞

sup
x∈R

sup
y∈R

P(|e−btx+Xt − y| ≤ l) = 0.

The process has no stationary distribution.

Shiga’s criterion [25, Theorem 1.1] for transience and recurrence
complements Lemma II.3.2.
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Lemma II.3.3. Suppose that Λ satisfies Assumption A with b > 0
and let X = (Xt)t≥0 be as in Theorem II.2.3. Then X is irre-
ducible in R. Let ε ∈ [1 − e−1, 1) and define gΛ(y) :=

∫
(ε,1)(1 −

ey log(1−u))u−2Λ(du), y ∈ [0, 1]. If the integral∫ 1

0

z−1 exp

(
−

∫ 1

z

gΛ(y)

by
dy

)
dz (II.16)

is finite, then X is transient, i.e., it holds that P(limt→∞ |Xt| =
∞|X0 = x) = 1 for every x ∈ R. If the integral (II.16) is in-
finite, then X is recurrent, i.e., there exists a ∈ R such that
P(lim inft→∞ |Xt − a| = 0|X0 = a) = 1.

Note that the limiting process X or, more precisely, its semigroup
(Tt)t≥0 belongs to the class of Mehler semigroups [4], as is true
for all generalized Ornstein–Uhlenbeck processes, since ϕt+s(v) =
ϕt(e

−bsv)ϕs(v), v ∈ R, for s, t ≥ 0.

II.4 Beta coalescents

The beta distribution β(a, b) with parameters
a, b > 0 has density u 7→ Γ(a + b)/(Γ(a)Γ(b))
ua−1(1 − u)b−1, u ∈ (0, 1), with respect to Lebesgue measure
on (0, 1). Beta coalescents, for which Λ = β(a, b) for some a, b > 0,
have been extensively studied in the literature due to the easy
computability of the jump rates

qk,j =
Γ(a+ b)Γ(k + 1)Γ(j − 1 + b)Γ(k − j − 1 + a)

Γ(a)Γ(b)Γ(k − 2 + a+ b)Γ(j)Γ(k − j + 2)
, (II.17)

j ∈ {1, . . . , k − 1}, k ≥ 2. The β(a, b)-coalescent comes down from
infinity if and only if 0 < a < 1 [23, Example 15], and has dust if
and only if a > 1.

For a = 1, the beta coalescent is dust-free and does not come down
from infinity. From the observation stated below Assumption A we
conclude that Assumption A is satisfied with the same constant b.
The “dust part” Λ − bλ has possibly negative density u 7→ b((1 −
u)b−1−1), u ∈ (0, 1), with respect to Lebesgue measure on (0, 1). The
computations of a and ψ in the proof of the following proposition are
based on Gauß’ representation (see e.g. [28, p. 247])

Ψ(z) =

∫ ∞

0

(
e−u

u
− e−zu

1− e−u

)
du, Re(z) > 0,

of the digamma function.
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Proposition II.4.1. Suppose that Λ = β(1, b) with b > 0. Let a,
ψ and ϱ be given by (II.5), (II.6) and (II.7), respectively. Then ϱ
has density f with respect to Lebesgue measure on (−∞, 0) given by
f(u) := bebu(1− eu)−2, u < 0,

a = b(1 + Ψ(b)) (II.18)

and

ψ(v) = b
(
(1− b)Ψ(b)− (1− b− iv)Ψ(b+ iv)

)
, v ∈ R. (II.19)

Proof. It can be easily verified that ϱ has density as stated in the
proposition. Eq. (II.18) follows from∫

[0,1]

u−1 (Λ− bλ)(du) = b

∫ 1

0

u−1((1− u)b−1 − 1) du

= b

∫ ∞

0

(
e−bu

1− e−u
− e−u

1− e−u

)
du

= b(Ψ(1)−Ψ(b)).

Next, note that

Ψ(b)−Ψ(b+ iv) =

∫ ∞

0

(e−ivu − 1)
e−bu

1− e−u
du, v ∈ R. (II.20)

Integration by parts yields

iv(Ψ(b+ iv)−Ψ(b)) =

∫ ∞

0

(iv − ive−ivu)
e−bu

1− e−u
du

= (ivu+ e−ivu − 1)
e−bu

1− e−u

∣∣∣∣u=∞

u=0

−
∫ ∞

0

(ivu+ e−ivu − 1)

(
−be−bu

1− e−u
− e−bu

(1− e−u)2
e−u

)
du

=

∫ ∞

0

(e−ivu − 1 + ivu)
e−bu

(1− e−u)2
(
1− (1− b)(1− e−u)

)
du,
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for v ∈ R. Hence,

(1− b)Ψ(b)− (1− b− iv)Ψ(b+ iv)

= ivΨ(b) + (1− b)(Ψ(b)−Ψ(b+ iv)) + iv(Ψ(b+ iv)−Ψ(b))

= ivΨ(b) + (1− b)

∫ ∞

0

(e−ivu − 1)
e−bu

1− e−u
du

+

∫ ∞

0

(e−ivu − 1 + ivu)
e−bu

(1− e−u)2
(
1− (1− b)(1− e−u)

)
du

= ivΨ(b) +

∫ ∞

0

(e−ivu − 1 + ivu)
e−bu

(1− e−u)2
du

− iv(1− b)

∫ ∞

0

u
e−bu

1− e−u
du

= iv
(
Ψ(b)− (1− b)Ψ′(b)

)
+ b−1

∫
R\{0}

(eivu − 1− ivu) ϱ(du)

= iv

(
Ψ(b)− (1− b)Ψ′(b) + b−1

∫
R\{0}

(eu − 1− u) ϱ(du)

)
+ b−1

∫
R\{0}

(eivu − 1 + iv(1− eu)) ϱ(du).

The calculation

− (1− b)Ψ′(b) + b−1

∫
R\{0}

(eu − 1− u) ϱ(du)

=

∫ ∞

0

(
− (1− b)u(1− e−u) + e−u − 1 + u

) e−bu

(1− e−u)2
du

= − e−bu

1− e−u
u
∣∣∣u=∞

u=0
= 1

and multiplication with b complete the proof of (II.19).

Example II.4.2. Suppose that Λ = β(1, b) with b > 0. Then Assump-
tion A is satisfied with the same constant b. According to Theorem
II.2.3 the process (logN

(n)
t − e−bt log n)t≥0 converges in DR[0,∞) as

n → ∞ to a Markov process X = (Xt)t≥0 with initial value X0 = 0
and semigroup (Tt)t≥0 given by

Ttf(x) := E(f(Xs+t)|Xs = x) = E(f(e−btx+Xt)),

x ∈ R, f ∈ B(R), s, t ≥ 0, where Xt has characteristic function ϕt
given by (II.9).

Since
∫
(1−e−1,1) log log(1−u)

−1Λ(du) =
∫ 1

1−e−1 log log(1−u)−1b(1−
u)b−1 du <∞, the logarithmic moment condition of Lemma II.3.2 is
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satisfied andXt converges in distribution as t→ ∞ to the unique sta-
tionary distribution µ of X. The distribution µ is self-decomposable
with characteristic function ϕ given by

ϕ(v) = exp

(∫ ∞

0

ψ(e−bsv) ds

)
(II.21)

= exp

(
(1− b)

∫ v

0

Ψ(b)−Ψ(b+ iu)

u
du

)
Γ(b+ iv)

Γ(b)
, v ∈ R.

In the last step Eq. (II.19) and the fact that Ψ(z) = (log Γ(z))′,
Re(z) > 0, have been used. The characteristic function ϕt of Xt is
hence given by

ϕt(v) =
ϕ(v)

ϕ(e−btv)

= exp

(
(1− b)

∫ v

e−btv

Ψ(b)−Ψ(b+ iu)

u
du

)
Γ(b+ iv)

Γ(b+ ie−btv)
,

v ∈ R, t ≥ 0. Similarly to the convergence above, (N
(n)
t /ne

−bt

)t≥0

converges in D[0,∞)[0,∞) to (exp(Xt))t≥0 as n→ ∞.

The following is an attempt to describe µ and the distribution of
Xt. If Z has a gamma distribution with parameters b and 1, i.e., Z has
density u 7→ ub−1e−u(Γ(b))−1, u > 0, with respect to Lebesgue mea-
sure on (0,∞), then logZ has the self-decomposable characteristic
function v 7→ Γ(b+ iv)/Γ(b), v ∈ R, see [27, V, Example 9.18], which
implies that the map v 7→ Γ(b+ iv)/Γ(b+ ie−btv), v ∈ R, is the char-
acteristic function of a real-valued random variable for every t ≥ 0.
As long as b < 1, the function u 7→ (1− b)(Ψ(b)−Ψ(b+ iu)), u ∈ R,
which appears in the first factor on the right-hand side of (II.21), is
the characteristic exponent of the negative of a drift-free subordina-
tor whose Lévy measure has density u 7→ (1−b)e−bu(1−e−u)−1, u > 0,
with respect to Lebesgue measure on (0,∞), cf. (II.20). In particular,
it is the characteristic exponent of an infinitely divisible distribution,
and if Z has characteristic function v 7→ exp((1−b)(Ψ(b)−Ψ(b+iv)),
v ∈ R, then E(log(1 + |Z|)) < ∞. By [27, V, Theorem 6.7], the first
factor on the right-hand side of (II.21) is a self-decomposable char-
acteristic function as well, and

v 7→ exp

(
(1− b)

∫ v

e−btv

Ψ(b)−Ψ(b+ iu)

u
du

)
, v ∈ R,

is the characteristic function of a real-valued random variable for
each t ≥ 0. The arguments that allow the decomposition of ϕt into
the product of two characteristic functions fail for b > 1.
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We shortly return to the Bolthausen–Sznitman coalescent. Recall
that the Bolthausen–Sznitman coalescent is the particular beta co-
alescent with driving measure Λ = β(1, 1). Proposition II.4.1 with
b = 1 states that ψ(v) = ivΨ(1 + iv), v ∈ R. Example II.4.2 with
b = 1 entails the convergence of the limiting process’s marginal dis-
tributions as t→ ∞ to a self-decomposable distribution with charac-
teristic function ϕ(v) = Γ(1 + iv), v ∈ R. Let Z have an exponential
distribution with parameter 1. Then logZ is the negative of a Gum-
bel distributed random variable and has characteristic function ϕ,
see e.g. [27, V, Example 9.15]. Hence, −Xt converges in distribution
as t→ ∞ to the Gumbel distribution. Moreover,

ϕt(v) = exp

(∫ ∞

0

ψ(e−sv) ds

)
=

Γ(1 + iv)

Γ(1 + ie−tv)
, v ∈ R, t ≥ 0,

which connects Proposition II.2.2 and Theorem II.2.3.

II.5 Proof of Proposition II.2.1

In this section Λ satisfies the dust condition
∫
[0,1] u

−1Λ(du) < ∞ in

addition to the general assumption Λ({0}) = Λ({1}) = 0. Let En :=

{x ∈ R : exn ∈ [n]} denote the state space of X(n) = (X
(n)
t )t≥0 =

(logN
(n)
t − log n)t≥0 for each n ∈ N. By defining k := k(x, n) :=

exn ∈ [n] for x ∈ En and n ∈ N, we can represent the generator A(n)

of X(n) as

A(n)f(x) =
k−1∑
j=1

(f(x+ log j
k)− f(x))qk,j,

x ∈ En, f ∈ Ĉ(R), n ∈ N. The process X = (Xt)t≥0 defined by (II.3)
and (II.4) is a Feller process in Ĉ(R). Let A denote the generator.
From [21, Theorem 31.5] it follows that the space Ĉ2(R) of twice
differentiable functions f ∈ C2(R) with f, f ′, f ′′ ∈ Ĉ(R) is a core for
A and

Af(x) =

∫
[0,1]

(f(x+ log(1− u))− f(x))u−2Λ(du),

x ∈ R, f ∈ Ĉ2(R). The idea to prove the uniform convergence of
the generators is the following: write the jump rates as values of a
distribution depending on k (with some minor adjustments) whose
limiting behavior as k → ∞ can be determined. The generators A(n)

and A can then be written as the mean of random variables and
classical weak convergence results can be applied.

87



Proof. (of Proposition II.2.1) Let f ∈ Ĉ2(R). Define h : [0, 1]×R → R
via h(u, x) := u−1(f(x + log(1 − u)) − f(x)), u ∈ (0, 1), h(0, x) :=
limu↘0 h(u, x) = −f ′(x) and h(1, x) := limu↗1 h(u, x) = −f(x) for
x ∈ R. Differentiating s 7→ f(x+ log(1− us)), s ∈ (0, 1), leads to

f(x+ log(1− u))− f(x) = −u
∫ 1

0

f ′(x+ log(1− us))

1− us
ds,

u ∈ [0, 1), x ∈ R. Thus,

h(u, x) = −
∫ 1

0

f ′(x+ log(1− us))

1− us
ds, u ∈ [0, 1), x ∈ R,

and h stays bounded even as u tends to 0. Define

S(k, x) :=
k−1∑
j=1

(f(x+ log j
k)− f(x))qk,j (II.22)

and

I(x) :=

∫
[0,1]

h(u, x)u−1Λ(du) (II.23)

for k ∈ N, x ∈ R. Obviously, A(n)f(x) = S(k, x) for x ∈ En and
n ∈ N and I(x) = Af(x) for x ∈ R. Substituting k − j for j and the
definition of h yield

S(k, x) =
k−1∑
j=1

(f(x+ log(1− j
k))− f(x))qk,k−j

=
k−1∑
j=1

h( jk , x)
j

k

(
k

j + 1

)∫
[0,1]

uj−1(1− u)k−j−1Λ(du)

=
k−1∑
j=0

h( jk , x)
j

j + 1

(
k − 1

j

)∫
[0,1]

uj−1(1− u)k−j−1Λ(du),

k ∈ N, x ∈ R. Set c :=
∫
[0,1] u

−1Λ(du) ∈ (0,∞) and define the prob-

ability measure Q on ([0, 1],B ∩ [0, 1]) via Q(A) := c−1
∫
A u

−1Λ(du),
A ∈ B∩ [0, 1]. Let the random variables Zk, k ∈ N, have distribution
given by

P(Zk = j) =

(
k − 1

j

)∫
[0,1]

uj(1−u)k−1−j Q(du), j ∈ {0, . . . , k−1},

i.e., Zk has a mixed binomial distribution with sample size k − 1
and random success probability Q. Let the random variable Z have

88



distribution Q. Then

S(k, x) = cE
(
(1− (Zk + 1)−1)h(Zk/k, x)

)
, k ∈ N, x ∈ R,

and I(x) = cE(h(Z, x)), x ∈ R. It is straightforward to check that
Zk/k → Z in distribution as k → ∞, e.g., by verifying the con-
vergence of the cumulative distribution functions (cdf) on the set of
continuity points of the cdf of Z. In particular, limk→∞ P(Zk ≤ C) =
Q(0) = 0 for every C > 0 and, hence, limk→∞ E((Zk+1)−1) = 0. Since
h is bounded and f, f ′ ∈ Ĉ(R) are uniformly continuous, the family
of functions {h(·, x) : x ∈ R} is equicontinuous on [δ, 1− δ] for every
0 < δ < 1/2 and uniformly bounded on [0, 1]. From Lemma II.9.4
it follows that E(h(Zk/k, x)) → E(h(Z, x)) uniformly in x ∈ R as
k → ∞, thus

lim
k→∞

sup
x∈R

|S(k, x)− I(x)| = 0. (II.24)

From limx→−∞ h(Z, x) = 0 a.s., the fact that h is bounded and the
dominated convergence theorem it follows that

lim
x→−∞

|I(x)| = c lim
x→−∞

|E(h(Z, x))| = 0. (II.25)

Since f ∈ Ĉ(R), limx→−∞ S(k, x) = 0 for any k ∈ N. Due to (II.24)
and (II.25),

lim
x→−∞

sup
k∈N

|S(k, x)| = 0. (II.26)

As n → ∞, k = k(x, n) = exn → ∞ or x → −∞. For example, for
n ∈ N and x ∈ En, either k ≥ n1/2 or x < −1

2 log n. Distinguishing
the two cases leads to

lim
n→∞

sup
x∈En

|A(n)f(x)− Af(x)| ≤ lim
k→∞

sup
x∈R

|S(k, x)− I(x)|

+ lim
x→−∞

sup
k∈N

|S(k, x)| + lim
x→−∞

|I(x)| = 0. (II.27)

By [8, I, Theorem 6.1 and IV, Theorem 2.5], X(n) → X in DR[0,∞)
as n→ ∞.

Remark II.5.1. The generator A(n) converges even if Λ({1}) > 0. In
this case the atom at 1 can be split off from Λ such that qk,j =(
k
j−1

) ∫
[0,1) u

k−j−1(1−u)j−1Λ|[0,1)(du)+Λ({1})1{1}(j), j ∈ {1, . . . , k−
1}, k ≥ 2, where the first summand are the jump rates of the block
counting process corresponding to the restriction Λ|[0,1) of Λ to [0, 1),
i.e., a measure with no atom at 1. Thus,

A(n)f(x) = S(k, x) + (f(log n−1)− f(x))Λ({1})
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x ∈ En, f ∈ Ĉ(R), n ∈ N, where the jump rates in S(k, x) correspond
to Λ|[0,1), and

Af(x) = I(x)+h(1, x)Λ({1}) = I(x)−f(x)Λ({1}), x ∈ (−∞, 0],

where I(x) =
∫
h(u, x) Λ|[0,1)(du), x ∈ R. The additional term

corresponds to the killing of the subordinator −X at the rate
Λ({1}). Since f ∈ Ĉ(R), limn→∞ supx∈En

|(f(log n−1)−f(x))Λ({1})+
f(x)Λ({1})| = Λ({1}) limn→∞ |f(log n−1)| = 0, i.e., the additional
term converges, and again (II.27) holds true.

Remark II.5.2. The approach to the convergence of the generators is
related to Bernstein polynomials. The (k − 1)-th Bernstein polyno-
mial

k−1∑
j=0

h( j
k−1 , x)

(
k − 1

j

)
uj(1− u)k−1−j

of h(·, x) converges uniformly in u ∈ [0, 1] to h(u, x) as k → ∞, if
x ∈ R is fixed.

II.6 Proofs concerning the Bolthausen–Sznitman coales-
cent

In this section Λ = λ is the Lebesgue measure on [0, 1]. Define α :=

α(t) := e−t, t ≥ 0. The process X(n) = (X
(n)
t )t≥0 = (logN

(n)
t −

α log n)t≥0 is a time-inhomogeneous Markov process. In order to prove
the convergence in DR[0,∞) to X we want to show the uniform
convergence of the generators. Typical convergence results are stated
for time-homogeneous Markov processes and in order to use these we
are going to introduce the time-space process.

II.6.1 Time-space process: semigroup and generator

Define the time-space processes X̃ := (t,Xt)t≥0 and X̃(n) :=

(t,X
(n)
t )t≥0 for n ∈ N. It is known (see, e.g., [19, p. 85, Exercise (1.10)]

or [6]) that X̃(n) and X̃ are time-homogeneous Markov processes (and
exist on a new probability space). In the following the tilde symbol
indicates the time-space setting. Let Ẽn := {(s, x) ∈ [0,∞) × R :
exnα(s) ∈ [n]} denote the state space of X̃(n), Ẽ := [0,∞)×R denote
the state space of X̃ and define k := k(s, x, n) := exnα(s) ∈ N for
(s, x) ∈ Ẽn and n ∈ N. Given f ∈ B(Ẽ) and s ≥ 0, denote the func-
tion x 7→ f(s, x), x ∈ R, by πf(s, x). The limiting process X already
is time-homogeneous. Recall that D, the space of twice differentiable
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functions f : R → R such that f, f ′, f ′′ and the map x 7→ xf ′(x),
x ∈ R, belong to Ĉ(R), is a core for the generator A of the semigroup
(Tt)t≥0 corresponding to X. The semigroup (T̃t)t≥0 of X̃, given by

T̃tf(s, x) = E(f(s+ t,Xs+t)|Xs = x) = E(f(s+ t, α(t)x+Xt))

for (s, x) ∈ Ẽ, f ∈ B(Ẽ) and t ≥ 0, is a Feller semigroup. Let
D̃ denote the space of functions f ∈ Ĉ(Ẽ) of the form f(s, x) =∑l

i=1 gi(s)hi(x) with l ∈ N, hi ∈ D and gi ∈ C1([0,∞)) such that

gi, g
′
i ∈ Ĉ([0,∞)) for i = 1, . . . , l. Proposition II.9.6 states that D̃ is

a core for the generator Ã of (T̃t)t≥0 and

Ãf(s, x) =
∂

∂s
f(s, x) + Aπf(s, x), (s, x) ∈ Ẽ, f ∈ D̃. (II.28)

The “semigroup” (T
(n)
s,t )s,t≥0 of X

(n) is given by

T
(n)
s,t f(x) := E(f(X(n)

s+t)|X(n)
s = x)

= E(f(logN (n)
s+t − α(s+ t) log n)|N (n)

s = k)

= E(f(logN (k)
t − α(s+ t) log n)),

(s, x) ∈ Ẽn, f ∈ B(R), t ≥. The “generator” (A
(n)
s )s≥0 of (T

(n)
s,t )s,t≥0 is

given by

A(n)
s f(x) := lim

t→0
t−1(T

(n)
s,t f(x)− f(x))

= lim
t→0

t−1
(
E
(
f(logN

(k)
t − α(s+ t) log n)

)
− f(x)

)
= −f ′(x)α′(s) log n+

k−1∑
j=1

(f(x+ log j
k)− f(x))qk,j, (II.29)

(s, x) ∈ Ẽn Here f ∈ C1(R) such that f, f ′ ∈ Ĉ(R). The semigroup

(T̃
(n)
t )t≥0 of X̃

(n), given by

T̃
(n)
t (s, x) := E(f(s+ t,Xs+t)|X(n)

s = x)

= E(f(s+ t, logN
(k)
t − α(s+ t) log n)),

(s, x) ∈ Ẽn, f ∈ B(Ẽn), t ≥ 0, n ∈ N, is a Feller semigroup on Ĉ(Ẽn)
for every n ∈ N. On D̃, or more precisely, for the restriction of f ∈ D̃
to Ẽn, the generator Ã(n) of T̃ (n) is given by

Ã(n)f(s, x) =
∂

∂s
f(s, x) + A(n)

s πf(s, x), (II.30)

(s, x) ∈ Ẽn, n ∈ N.
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II.6.2 Proof of Proposition II.2.2

Proof. (of Proposition II.2.2) Recall that Λ = λ. Let f ∈ D. The
approach to the proof is the same as in Section II.5, but the function
u 7→ f(x+log(1−u)), u ∈ [0, 1], demands second order approximation
like in the integral part of the limiting generator (II.12). Define h :
[0, 1]×R → R via h(u, x) := u−2(f(x+ log(1− u))− f(x) + uf ′(x)),
u ∈ (0, 1), h(0, x) := limu↘0 h(u, x) = 2−1(f ′′(x) − f ′(x)) and, since

f ∈ Ĉ(R), h(1, x) := limu↗1 h(u, x) = f ′(x)−f(x) for x ∈ R. Taylor’s
theorem applied to u 7→ f(x + log(1 − u)), u < 1, with evaluation
point u = 0 and exact integral remainder yields

h(u, x) = u−2

∫ u

0

u− s

(1− s)2
(f ′′(x+ log(1− s))− f ′(x+ log(1− s)))ds

=

∫ 1

0

1− s

(1− us)2
(f ′′(x+ log(1− us))− f ′(x+ log(1− us)))ds,

u ∈ [0, 1), x ∈ R. The latter formula of h(u, x) shows that h is
bounded even as u tends to 0. Putting k = k(s, x, n) = exnα(s) in
(II.29) yields

A(n)
s f(x) = f ′(x)R(k, x) + S(k, x), (s, x) ∈ Ẽn, n ∈ N,

where

R(k, x) := log k −
k−1∑
j=1

k−j
k qk,j − x, k ∈ N, x ∈ R, (II.31)

and

S(k, x) :=
k−1∑
j=1

(f(x+ log j
k)− f(x) + k−j

k f
′(x))qk,j, (II.32)

k ∈ N, x ∈ R. Further define I(x) :=
∫
[0,1] h(u, x) Λ(du), x ∈ R, and

observe that Af(x) = f ′(x)(1 + Ψ(1)− x) + I(x) for x ∈ R.
By Eq. (II.17) with a = b = 1, k−j

k qk,j = (k − j + 1)−1, j ∈
{1, . . . , k − 1}, k ≥ 2. Hence,

∑k−1
j=1

k−j
k qk,j =

∑k
j=2 j

−1 for k ≥ 2.

Recall that α(s) = e−s for s ≥ 0 and k = k(s, x, n) = exnα(s) for
(s, x) ∈ Ẽn and n ∈ N. As n → ∞, k → ∞ or x → −∞. Fix
T > 0. E.g., if s ∈ [0, T ], then either k ≥ nα(T+δ) or x < −α(T )(1−
α(δ)) log n, where δ > 0 is a constant. The well known asymptotics of
the harmonic numbers states that supx∈R |R(k, x)− (1+Ψ(1)−x)| =
| log k−

∑k
j=1 j

−1−Ψ(1)| → 0 as k → ∞. Clearly, limx→−∞ |f ′(x)| =
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0. Dividing the state space as above therefore implies

lim
n→∞

sup
(s,x)∈Ẽn,s∈[0,T ]

|f ′(x)||R(k, x)− (1 + Ψ(1)− x)| = 0. (II.33)

In the next step the uniform convergence of S(k, x) to I(x) is
shown. Substituting k − j − 1 for j in (II.32) yields

S(k, x) =
k−2∑
j=0

(f(x+ log(1− j+1
k ))− f(x) + j+1

k f
′(x))qk,k−j−1

=
k−2∑
j=0

h(j+1
k , x)

(j + 1)2

k2

(
k

j + 2

)∫
[0,1]

uj(1− u)k−2−j Λ(du)

=
k − 1

k

k−2∑
j=0

h(j+1
k , x)

j + 1

j + 2

(
k − 2

j

)∫
[0,1]

uj(1− u)k−2−j Λ(du),

k ∈ N, x ∈ R. Set c := Λ([0, 1]) ∈ (0,∞) and define the probability
measure Q on ([0, 1],B∩[0, 1]) asQ := c−1Λ. Let the random variables
Zk, k ∈ N, have distribution given by

P(Zk = j) =

(
k − 2

j

)∫
[0,1]

uj(1−u)k−2−j Q(du), j ∈ {0, . . . , k−2},

i.e., Zk has a mixed binomial distribution with sample size k− 2 and
random success probability Q. Let Z have distribution Q. Then

S(k, x) = c(1− k−1)E
(
(1− (Zk + 2)−1)h((Zk + 1)/k, x)

)
,

k ∈ N, x ∈ R, and I(x) = cE(h(Z, x)), x ∈ R. It is easy to check that
(Zk + 1)/k → Z in distribution as k → ∞. The family of functions
{h(·, x) : x ∈ R} is equicontinuous on [δ, 1− δ] for every 0 < δ < 1/2
and uniformly bounded on [0, 1]. Due to Q({0}) = c−1Λ({0}) = 0,
Zk → ∞ a.s. as k → ∞, thus limk→∞ E(1/(Zk + 2)) = 0 and the
additional factor 1 − (Zk + 2)−1 in the mean above can be omitted
when considering the limit of S(k, x) as k → ∞. From Lemma II.9.4
it follows that

lim
k→∞

sup
x∈R

|S(k, x)− I(x)| = 0. (II.34)

From limx→−∞ h(Z, x) = 0 a.s., the fact that the functions h(·, x), x ∈
R, are uniformly bounded and the dominated convergence theorem
it follows that

lim
x→−∞

|I(x)| = c lim
x→−∞

|E(h(Z, x))| = 0. (II.35)
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Since f, f ′ ∈ Ĉ(R), limx→−∞ S(k, x) = 0 for any k ∈ N and, in view
of (II.34) and (II.35),

lim
x→−∞

sup
k∈N

|S(k, x)| = 0. (II.36)

As seen in the proof of Proposition II.2.1, Eqs. (II.34)-(II.36) imply

lim
n→∞

sup
(s,x)∈Ẽn,s∈[0,T ]

|S(k, x)− I(x)| = 0. (II.37)

By (II.33), limn→∞ sup(s,x)∈Ẽn,s∈[0,T ] |A
(n)
s f(x) − Af(x)| = 0. Due to

(II.28) and (II.30),

lim
n→∞

sup
(s,x)∈Ẽn,s∈[0,T ]

|Ã(n)f(s, x)− Ãf(s, x)| = 0

for every function f belonging to the core D̃ and each T > 0. From
[8, IV, Corollary 8.7] it follows that X̃(n) → X̃ in DẼ[0,∞), hence
X(n) → X in DR[0,∞) as n→ ∞.

Remark II.6.1. Note that Zk has a discrete uniform distribution on
{0, . . . , k− 2} and Z has a continuous uniform distribution on (0, 1),
since Λ = λ.

Remark II.6.2. Put γ(k) :=
∑k−1

j=1(k− j)qk,j =
∑k

j=2(j−1)
(
k
j

)
λk,j for

k ≥ 2. Among dust-free Λ-coalescents that do not come down from
infinity the proof works for the Bolthausen–Sznitman coalescent due
to the asymptotics γ(k)/k = log k − Ψ(1) − 1 + O(k−1) as k → ∞.
For other measures Λ the asymptotics of γ(k)/k might be difficult to
determine. In the proof of Proposition II.2.2 the fact that Λ = λ is
only used to verify (II.33). Eq. (II.37) holds true more generally for
finite measures Λ on [0, 1] with Λ({0}) = Λ({1}) = 0 and therefore
we wrote Λ and Q instead of the Bolthausen–Sznitman coalescent’s
driving measure λ.

II.7 Proof of Theorem II.2.3

In this section Λ satisfies Assumption A. We continue to use the
time-space setting and the notation of Subsection II.6.1 with α re-
placed by α := α(t) := e−bt, t ≥ 0. Define ΛD := Λ − bλ and let
Λ+
D,Λ

−
D denote the nonnegative measures constituting the Jordan de-

composition ΛD = Λ+
D − Λ−

D of ΛD. The decomposition of Λ into a
“Bolthausen–Sznitman part” bλ and a “dust part” ΛD is transferred
to the jump rates and the generator. Proving Theorem II.2.3 now
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only requires to suitable arrange equations already obtained in Sec-
tions II.5 and II.6. To be precise, the results of Section II.5 are applied
to the summands Λ±

D of ΛD, but we omit this detail in the following.

Proof. (of Theorem II.2.3) Let qλk,j, q
D,+
k,j and qD,−k,j denote the rates of

the block counting process corresponding to λ,Λ+
D and Λ−

D, respec-
tively, and define qDk,j := qD,+k,j − qD,−k,j for j ∈ {1, . . . , k} and k ∈ N.
Obviously, qk,j = bqλk,j + qDk,j. Recall that k = k(s, x, n) = exnα(s) ∈ N
for (s, x) ∈ Ẽn and n ∈ N. From (II.29) it follows that the “gener-

ator” A
(n)
s of X(n) = (X

(n)
t )t≥0 = (logN

(n)
t − α(t) log n)t≥0 is given

by
A(n)
s f(x) = bR(k, x)f ′(x) + bSBS(k, x) + SD(k, x),

(s, x) ∈ Ẽn, n ∈ N, where

R(k, x) := log k −
k−1∑
j=1

k−j
k q

λ
k,j − x,

SBS(k, x) :=
k−1∑
j=1

(f(x+ log j
k)− f(x) + k−j

k f
′(x))qλk,j,

SD(k, x) :=
k−1∑
j=1

(f(x+ log j
k)− f(x))qDk,j,

are defined as in (II.31), (II.32), (II.22) and (II.23) for k ∈ N and
x ∈ R, and f ∈ C1(R) such that f, f ′ ∈ Ĉ(R). By Lemma II.3.1 and
Eq. (II.5), the generator A of X = (Xt)t≥0 can be written as

Af(x) = b(1 + Ψ(1)− x)f ′(x)

+ b

∫
[0,1]

f(x+ log(1− u))− f(x) + uf ′(x)

u2
λ(du)

+

∫
[0,1]

f(x+ log(1− u))− f(x)

u2
ΛD(du), x ∈ R, f ∈ D.

From (II.33), (II.37) and (II.24)-(II.26) it follows that

limn→∞ sup(s,x)∈Ẽn,s∈[0,T ] |A
(n)
s f(x) − Af(x)| = 0 for f ∈ D. Due

to (II.28) and (II.30),

lim
n→∞

sup
(s,x)∈Ẽn,s∈[0,T ]

|Ã(n)f(s, x)− Ãf(s, x)| = 0

for every f ∈ D̃ and T > 0. By Proposition II.9.6, the space D̃ is a
core for Ã. Thus, it follows from [8, IV, Corollary 8.7] that X̃(n) → X̃
in DẼ[0,∞), hence X(n) → X in DR[0,∞) as n→ ∞.
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II.8 Proof of Theorem II.2.4

In this section Λ satisfies Assumption A. The process Y (n) =
(Y

(n)
t )t≥0 = (logL

(n)
t − ebt log n)t≥0 is a possibly time-inhomogeneous

Markov process, depending on whether b > 0 or not, hence we set
up the time-space framework. We provide two proofs. Using Theo-
rem II.2.3 and Siegmund-duality, in the first proof the convergence
of the one-dimensional distributions and subsequently the uniform
convergence of the semigroups is shown. The second proof, in which
the uniform convergence of generators is shown, resembles previous
ones.

Proof. (First proof of Theorem II.2.4) For x ∈ R and t ≥ 0 define
m := ⌈eynebt⌉ ∈ N. If ϱt((−∞, 0)) =

∫
[0,1] u

−2Λ(du) = ∞, then

Xt has a continuous distribution for every t > 0. Eq. (II.2) and
Theorem II.2.3 imply that

P(Y (n)
t ≥ y) = P(L(n)

t ≥ m)

= P(N (m)
t ≤ n) = P(X(m)

t ≤ log n− e−bt logm)

−→ P(Xt ≤ −e−bty) = P(−ebtXt ≥ y), (II.38)

y ∈ R, t ≥ 0, as n → ∞. If
∫
[0,1] u

−2Λ(du) < ∞, then the dust

condition is satisfied. Hence, b = 0 and (II.38) holds true for −y in

the set CXt
of continuity points of Xt. Since Yt

d
= −ebtXt with b = 0,

limn→∞ P(−Y (n)
t ≤ −y) = P(−Yt ≤ −y) for every −y ∈ CXt

= C−Yt.

Thus, Y
(n)
t converges in distribution to Yt as n→ ∞ for every t ≥ 0.

Define the time-space processes Ỹ (n) := (t, Y
(n)
t )t≥0, n ∈ N, and

Ỹ := (t, Yt)t≥0. The processes Ỹ (n) and Ỹ are time-homogeneous
Markov processes with state spaces Ẽn = {(s, y) : s ≥ 0, eyne

bs ∈
{n, n + 1, . . .}} and Ẽ = [0,∞) × R and semigroups (T̃

(n)
t )t≥0 and

(T̃t)t≥0. Define k := k(s, y, n) := eyne
bs ∈ {n, n+1, . . .} for (s, y) ∈ Ẽn

and n ∈ N. Then

T̃
(n)
t f(s, y) = E(f(s+ t, Y

(n)
s+t) |Y (n)

s = y)

= E(f(s+ t, logL
(k)
t − eb(t+s) log n))

= E(f(s+ t, ebty + Y
(k)
t )),

(s, y) ∈ Ẽn, f ∈ B(Ẽ), t ≥ 0, n ∈ N. Fix t > 0 and first let f ∈
B(Ẽ) be of the form f(s, y) = g(s)h(y), (s, y) ∈ Ẽ, where g ∈
B([0,∞)) and h ∈ Ĉ(R). Clearly, T̃ (n)

t f(s, y) = g(s + t)E(h(ebty +
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Y
(k)
t )), (s, y) ∈ Ẽn, n ∈ N, and T̃tf(s, y) = E(f(s + t, Ys+t)|Ys =
y) = g(s + t)Tth(y) = g(s + t)E(h(ebty + Yt)), (s, y) ∈ Ẽ, where the
distribution of Yt is defined by its characteristic function χt, given by
(II.11). Note that h is uniformly continuous and bounded. For y ∈ R
define the function hy : R → R via hy(x) := h(ebty + x), x ∈ R. The
family of functions {hy : y ∈ R} is equicontinuous and uniformly

bounded. From the weak convergence of Y
(k)
t to Yt as k → ∞ and

[18, Theorem 3.1] it follows that limk→∞ supy∈R |E(h(ebty + Y
(k)
t ))−

E(h(ebty + Yt))| = 0. Since k = eyne
bs ≥ n for (s, y) ∈ Ẽn and n ∈ N,

limn→∞ sup(s,y)∈Ẽn
|E(h(ebty + Y

(k)
t ))− E(h(ebty + Yt))| = 0. Thus,

lim
n→∞

sup
(s,y)∈Ẽn

|T̃ (n)
t f(s, y)− T̃tf(s, y)| = 0. (II.39)

By linearity, Eq. (II.39) holds for the algebra of functions f ∈ B(Ẽ)
of the form f(s, y) =

∑l
i=1 gi(s)hi(y), (s, y) ∈ Ẽ, where l ∈ N, gi ∈

B([0,∞)) and hi ∈ Ĉ(R) for i = 1, . . . , l. This algebra of func-
tions separates points and vanishes nowhere. According to the Stone–
Weierstrass theorem for locally compact spaces (see, e.g., [7]) it is a
dense subset of B(Ẽ). Hence, (II.39) holds true for f ∈ B(Ẽ). [8, IV,
Theorem 2.11] states that Ỹ (n) → Ỹ in DẼ[0,∞), hence Y (n) → Y

in DR[0,∞) as n→ ∞.

The process Y defined by (II.10) and (II.11) is a generalized
Ornstein–Uhlenbeck process (with non-negative linear drift) as in
[22]. The underlying infinitely divisible distribution has characteris-
tic exponent v 7→ ψ(−v), v ∈ R. According to [22, Theorem 3.1], D
is a core for the corresponding generator A and

Af(y) = f ′(y)(−a+ by) (II.40)

+

∫
[0,1]

(f(y − log(1− u))− f(y)− uf ′(y))u−2Λ(du)

for y ∈ R and f ∈ D; comparatively see Lemma II.3.1 and its proof.

Proof. (Second proof of Theorem II.2.4) The “generator” (A
(n)
s )s≥0

of Y (n) is given by

A(n)
s f(y) = −f ′(y)bebs log n

+
∑

j>eynebs

(f(log j − ebs log n)− f(y))γeynebs ,j
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for (s, y) ∈ Ẽn and n ∈ N. Here f ∈ C1(R) such that f, f ′ ∈ Ĉ(R).
Putting k := k(s, y, n) := eyne

bs

for (s, y) ∈ Ẽn and n ∈ N yields

A(n)
s f(y) = bf ′(y)(− log k + y)

+
∞∑
j=1

(f(y + log(1 + j
k))− f(y))γk,k+j

for (s, y) ∈ Ẽn and n ∈ N. Define ΛD := Λ−bλ and let Λ+
D,Λ

−
D denote

the non-negative measures constituting the Jordan decomposition
ΛD = Λ+

D −Λ−
D of ΛD. Let γ

λ
k,j, γ

D,+
k,j and γD,−k,j denote the jump rates

of the fixation line corresponding to λ,Λ+
D and Λ−

D, respectively, and
define γDk,j := γD,+k,j − γD,−k,j for j ∈ {k, k + 1, . . .} and k ∈ N. Then
γk,k+j = bγλk,k+j + γDk,k+j, k ∈ N, j ∈ N0, and

A(n)
s f(y) = bf ′(y)R(k, y) + bSBS(k, y) + SD(k, y), (II.41)

(s, y) ∈ Ẽn, n ∈ N, where

R(k, y) := − log k + y +
k∑
j=1

j
kγ

λ
k,k+j,

SBS(k, y) :=
∞∑
j=1

(f(y + log(1 + j
k))− f(y)− j

k1[0,1](
j
k)f

′(y))γλk,k+j,

SD(k, y) :=
∞∑
j=1

(f(y + log(1 + j
k))− f(y))γDk,k+j,

for k ∈ N, y ∈ R and f ∈ C1(R) such that f, f ′ ∈ Ĉ(R). Using the
decomposition of Λ on Eq. (II.40) yields

Af(y) = bf ′(y)(−1−Ψ(1) + y) + bIBS(y) + ID(y),

y ∈ R, f ∈ D, where

IBS(y) :=

∫
[0,1]

(f(y − log(1− u))− f(y)− uf ′(y))u−2 λ(du),

ID(y) :=

∫
[0,1]

(f(y − log(1− u))− f(y))u−2ΛD(du)

for y ∈ R. Let f ∈ D. In the Bolthausen–Sznitman coalescent,
γλk,k+j = k/(j(j + 1)) for k, j ∈ N and hence

∑k
j=1

j
kγ

λ
k,k+j =∑k

j=1(j + 1)−1 = Hk+1 − 1 = log k − 1 − Ψ(1) + o(1) as k → ∞.
Here Hk denotes the k-th harmonic number for k ∈ N. Thus,

lim
k→∞

sup
y∈R

|R(k, y)− (−1−Ψ(1) + y)| = 0. (II.42)
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The function hBS : [0, 1] × R → R, defined via hBS(u, y) :=
u−2(f(y − log(1 − u)) − f(y) − u

1−u1[0,1/2](u)f
′(y)), u ∈ [0, 1], y ∈ R,

is bounded. Let the random variables Zk, k ∈ N, have distribution
given by

P(Zk = j) =

(
k + j − 2

j − 1

)∫
[0,1]

uj−1(1− u)k λ(du), j, k ∈ N,

i.e., Zk − 1 has a mixed negative binomial distribution. Observe
that hBS(1 − (1 + j

k)
−1, y) = ( j

k+j )
−2(f(y + log(1 + j

k)) − f(y) −
j
k1[0,1](

j
k)f

′(y)), y ∈ R, and γλk,k+j = ( j
k+j )

−2(1 − (k + j)−1)(1 − (j +

1)−1)P(Zk = j) for j, k ∈ N. Hence,

SBS(k, y) = E
(
hBS(1−(1+Zk/k)

−1, y)
(
1− 1

k + Zk

)(
1− 1

Zk + 1

))
.

Let Z have uniform distribution on (0, 1). Then IBS(y) =
E(hBS(Z, y)) for y ∈ R due to

∫
[0,1] u

−2(u − u
1−u1[0,1/2](u))λ(du) =∫ 1/2

0 −(1−u)−1 du+
∫ 1

1/2 u
−1 du = 0. The function g : (0,∞) → (0, 1),

defined via g(u) := 1− (1+u)−1, u ∈ (0,∞), is bounded and contin-
uous. Since Zk/k → Z/(1 − Z) in distribution as k → ∞, 1 − (1 +
Zk/k)

−1 = g(Zk/k) → g(Z/(1 − Z)) = Z in distribution as k → ∞.
In particular, the random variables have values in [0, 1]. When con-
sidering the limit k → ∞, the factor (1− (k+Zk)

−1)(1− (Zk+1)−1)
has no influence on SBS(k, y). From Lemma II.9.4 it follows that

lim
k→∞

sup
y∈R

|SBS(k, y)− IBS(y)| = 0. (II.43)

The measure ΛD is real-valued. Eq. (II.44) below can be proven
when ΛD is replaced by Λ+

D and Λ−
D in this paragraph, and then

holds for ΛD by linearity. The function hD : [0, 1] × R → R, defined
via hD(u, y) := u−1(f(y − log(1 − u)) − f(y)), u ∈ [0, 1], y ∈ R, is
bounded. By assumption, c :=

∫
[0,1] u

−1ΛD(du) <∞. As long as c >

0, define the probability measure Q on ([0, 1],B ∩ [0, 1]) via Q(A) :=
c−1

∫
A u

−1ΛD(du), A ∈ B ∩ [0, 1], and let the random variables Zk,
k ∈ N, have distribution given by

P(Zk = j) =

(
k + j − 1

j

)∫
[0,1]

uj(1− u)kQ(du), j ∈ N0, k ∈ N,

i.e., Zk has a mixed negative binomial distribution. Observe that
hD(1 − (1 + j

k)
−1, y) = (f(y + log(1 + j

k)) − f(y))k+jj , y ∈ R, and
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γDk,k+j = ck+jj (1− (1 + j)−1)P(Zk = j) for j, k ∈ N. Hence,

SD(k, y) =
∞∑
j=0

(f(y + log(1 + j
k)− f(y))γDk,k+j

= cE
(
hD(1− (1 + Zk/k)

−1, y)
(
1− (1 + Zk)

−1
))
,

k ∈ N, y ∈ R. Let the random variable Z have distribution Q. In
particular, ID(y) = cE(hD(Z, y)), y ∈ R. According to Lemma II.9.4
and since 1− (1+Zk/k)

−1 converges in distribution to Z as k → ∞,

lim
k→∞

sup
y∈R

|E(hD(1− (1 + Zk/k)
−1, y))− E(hD(Z, y))| = 0.

Thus,
lim
k→∞

sup
y∈R

|SD(k, y)− ID(y)| = 0. (II.44)

Note that Eq. (II.44) holds true for c = 0 as well.
Taking into account that k = eyne

bs ≥ n for (s, y) ∈ Ẽn and n ∈ N,
Eqs. (II.41)-(II.44) imply

lim
n→∞

sup
(s,y)∈Ẽn

|A(n)
s f(y)− Af(y)| = 0.

The time-space variant of [8, IV, Corollary 8.7] as implemented in
the proof of Theorem II.2.3 yields the desired convergence of Y (n) to
Y in DR[0,∞) as n→ ∞.

II.9 Appendix

Lemma II.9.1. Suppose that Λ satisfies Assumption A. Then the
following statements hold.

(a) b = limε→0+ ε
−1Λ((0, ε)).

(b) The Λ-coalescent does not come down from infinity.

Proof. a) If the condition
∫
[0,1] u

−1Λ(du) <∞ for dust is given, then
Assumption A is satisfied with b = 0 and, by dominated convergence,

Λ((0, ε))

ε
≤

∫
(0,ε)

u−1Λ(du) −→ 0, ε→ 0 + .

Hence, a) holds for coalescents with dust. Now suppose that Λ satis-
fies Assumption A. Define ΛD := Λ− bλ and let Λ+

D and Λ−
D denote

the nonnegative measures constituting the Jordan decomposition
ΛD = Λ+

D−Λ−
D of ΛD. By assumption and the first part of the proof,
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limε→0+ ε
−1Λ±

D((0, ε)) = 0. From the decomposition Λ = bλ+Λ+
D−Λ−

D

it follows that

Λ((0, ε))

ε
= b+

Λ+
D((0, ε))

ε
− Λ−

D((0, ε))

ε
−→ b, ε→ 0 + .

b) Let |ΛD| = Λ+
D + Λ−

D denote the total variation of ΛD. Define

ηΛk := k
∑k−2

j=0

∫
[0,1](1− u)j Λ(du) and ηbλk and η

|ΛD|
k similarly with bλ

and |ΛD| in place of Λ for k ≥ 2. By assumption,

lim
k→∞

k−1η
|ΛD|
k =

∫
[0,1]

u−1 |ΛD|(du) < ∞.

From

(k log k)−1ηbλk = b(log k)−1
k−2∑
j=0

∫ 1

0

(1− u)j du

= b(log k)−1
k−2∑
j=0

(j + 1)−1 → b, k → ∞,

it follows that ηbλk +η
|ΛD|
k ∼ bk log k as k → ∞. Due to Λ ≤ bλ+ |ΛD|,

it holds that ηΛk ≤ ηbλk + η
|ΛD|
k for k ≥ 2. Hence,

∞∑
k=2

(
ηΛk

)−1 ≥
∞∑
k=2

(
ηbλk + η

|ΛD|
k

)−1
= ∞.

The claim b) then follows from Schweinsberg’s criterion [23, Corollary
2].

Remark II.9.2. Any converse statements of Lemma II.9.1 do not hold:
neither a) nor b) nor a) and b) together imply that Assumption A
holds, which can be seen by looking at the measure Λ having density
f with respect to Lebesgue measure given by f(u) := (− log u)−1 for
0 < u < 1/2 and f(u) := 0 otherwise.

The following lemma is a generalization of the integral criterion
of convergence in distribution and is applied in Sections II.5-II.8 to
prove the uniform convergence of generators. In the statement the
notion of equicontinuity is used, whose definition is first recalled.

Definition II.9.3. A family F of functions f : E → R on a metric
space E with metric d is called equicontinuous if for every ε > 0
there exists δ > 0 such that |f(x) − f(y)| < ε for all f ∈ F and
x, y ∈ E with d(x, y) < δ. The family F is called equicontinuous on
a subset V ⊆ E if the family {f |V : f ∈ F} is equicontinuous. Here
f |V denotes the restriction of f to V .
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Lemma II.9.4. Let X,X1, X2, . . . be random variables on a prob-
ability space (Ω,F ,P) with values in [0, 1] such that P(X = 0) =
P(X = 1) = 0 and Xn → X in distribution as n → ∞. Suppose
that the family F of functions f : [0, 1] → R is uniformly bounded on
[0, 1], i.e., M := supf∈F supx∈[0,1] |f(x)| <∞, and equicontinuous on
[δ, 1− δ] for every 0 < δ < 1/2. In particular, f ∈ F is bounded and
continuous on (0, 1). Then

lim
n→∞

sup
f∈F

|E(f(Xn))− E(f(X))| = 0.

Proof. Let ε > 0 be arbitrary. The assumption P(X = 0) = P(X =
1) = 0 and the convergence of Xn to X in distribution as n → ∞
provide the existence of 0 < δ < 1/2 and n0 ∈ N such that P(Xn ̸∈
[δ, 1− δ]) < ε/(4M) for n ≥ n0 and P(X ̸∈ [δ, 1− δ]) < ε/(4M). For
f ∈ F define f̃ : [0, 1] → R via f̃(u) := f(δ), 0 ≤ u ≤ δ, f̃(u) := f(u),
δ ≤ u ≤ 1−δ, and f̃(u) := f(1−δ), 1−δ ≤ u ≤ 1. Then {f̃ : f ∈ F}
is bounded (by M) and equicontinuous on [0, 1]. [18, Theorem 3.1]
yields

lim
n→∞

sup
f∈F

|E(f̃(Xn))− E(f̃(X))| = 0.

From

|E(f(Xn))− E(f(X))| ≤ E(|f(Xn)− f̃(Xn)|)
+ |E(f̃(Xn))− E(f̃(X))| + E(|f̃(X)− f(X)|)

≤ 2MP(Xn ̸∈ [δ, 1− δ]) + 2MP(X ̸∈ [δ, 1− δ])

+ |E(f̃(Xn))− E(f̃(X))|, n ∈ N, f ∈ F,

it follows that limn→∞ supf∈F |E(f(Xn))−E(f(X))| ≤ ε. Since ε > 0
is arbitrary, the proof is complete.

Remark II.9.5. In [18, Theorem 3.1] the state space is more generally
a separable metric space, but equicontinuity of F is required to hold
on the whole state space.

Let E be a complete separable metric space and equip Ẽ :=
[0,∞)×E with the product metric. The following proposition treats
the generator of time-space processes of time-homogeneous Feller
processes.

Proposition II.9.6. Suppose that (Tt)t≥0 is a Feller semigroup on
Ĉ(E) with generator A and that D is a core for A. For f ∈ Ĉ(Ẽ)
and s ∈ [0,∞) let πf(s, x) denote the function x 7→ f(s, x), x ∈ E.
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The semigroup (T̃t)t≥0, defined via

T̃tf(s, x) := Ttπf(s+ t, x), (s, x) ∈ Ẽ, f ∈ B(Ẽ), t ≥ 0,

is a Feller semigroup on Ĉ(Ẽ). Let D̃ denote the space of functions
f ∈ Ĉ(Ẽ) of the form f(s, x) =

∑l
i=1 gi(s)hi(x), (s, x) ∈ Ẽ, where

l ∈ N, hi ∈ D and gi ∈ C1([0,∞)) such that gi, g
′
i ∈ Ĉ([0,∞)) for

i = 1, . . . , l. Then D̃ is a core for the generator Ã of (T̃t)t≥0 and

Ãf(s, x) =
∂

∂s
f(s, x) + Aπf(s, x), (s, x) ∈ Ẽ, f ∈ D̃. (II.45)

Proof. Observe that all functions involved in the proof are bounded
and uniformly continuous. Clearly, the right-hand side of (II.45) lies
in Ĉ(Ẽ). The core D is a dense subset of Ĉ(E). Hence D̃ is a
dense subset of the space D0 of functions f ∈ Ĉ(Ẽ) of the form
f(s, x) =

∑l
i=1 gi(s)hi(x), (s, x) ∈ Ẽ, where l ∈ N, hi ∈ Ĉ(E) and

gi ∈ Ĉ([0,∞)) for i = 1, . . . , l. The algebra D0 separates points and
vanishes nowhere. The Stone–Weierstrass theorem for locally com-
pact spaces (e.g. [7]) ensures that D0 is a dense subset of Ĉ(Ẽ). In
[7] the theorem is stated for complex-valued functions, but it remains
true for real-valued functions. To see this, let f ∈ Ĉ(E) ⊆ Ĉ(E,C) be
arbitrary. By the theorem, there exist a sequence (kn)n∈N ⊆ Ĉ(E,C)
such that limn→∞ ||kn − f∥ = 0. Then fn := Re(kn) ∈ Ĉ(E), n ∈ N,
and ∥fn−f∥ ≤ ∥kn−f∥ → 0 as n→ ∞. Thus, D̃ is a dense subset of
Ĉ(Ẽ) as well. If h ∈ D and g ∈ C1([0,∞)) such that g, g′ ∈ Ĉ([0,∞)),
then

t−1(T̃tg(s)h(x)− g(s)h(x)) = t−1(g(s+ t)− g(s))h(x)

+ g(s+ t)t−1(Tth(x)− h(x))

converges uniformly in (s, x) ∈ Ẽ to g′(s)h(x)+g(s)Ah(x) as t→ 0+,
thus D̃ lies in the domain of Ã and (II.45) holds true. By the same
argument as above, the space D1 of functions f ∈ Ĉ(Ẽ) of the form
f(s, x) =

∑l
i=1 gi(s)hi(x), (s, x) ∈ Ẽ, where gi(s) = ci exp(−ais),

s ∈ [0,∞) with ci ∈ R and ai > 0 and hi ∈ D for i = 1, . . . , l,
is a dense subset of Ĉ(Ẽ). By Hille–Yosida theory (see, e.g., [8, I,
Proposition 3.1]) it now suffices to show that the image of λI − Ã|D̃
is a dense subspace of Ĉ(Ẽ) for some λ > 0 in order to prove that
D̃ is a core for Ã. Here I denotes the identity map on Ĉ(E) or
Ĉ(Ẽ). Let ε > 0 and f ∈ Ĉ(Ẽ) be arbitrary. By density of D1 in
Ĉ(Ẽ), there exists f1 ∈ D1 of the form f1(s, x) =

∑l
i=1 gi(s)hi(x),

(s, x) ∈ Ẽ, such that ∥f1 − f∥ < ε/2. Since D is a core for A, the
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image of λI − A|D is a dense subset of Ĉ(E) for every λ > 0, in
particular for λ + ai in place of λ. Hence, there exists ri ∈ D such
that ∥(λ+ ai)ri−Ari− hi∥ < ε/(2l∥gi∥) for i = 1, . . . , l. Clearly, the
function (s, x) 7→

∑l
i=1 gi(s)ri(x), (s, x) ∈ Ẽ, belongs to D̃ and, by

(II.45),

∥(λI − Ã)
l∑

i=1

gi(s)ri(x)− f(s, x)∥

≤ ∥(λI − Ã)
l∑

i=1

gi(s)ri(x)−
l∑

i=1

gi(s)hi(x)∥+ ∥f1 − f∥

≤
l∑

i=1

∥gi((λ+ ai)ri − Ari − hi)∥+ ε/2 ≤ ε.

In the second last step it is used that g′i(s) = −aigi(s), s ∈ [0,∞),
for i = 1, . . . , l. Since ε > 0 is arbitrary, the proof is complete.

Remark II.9.7. The last part of the proof of Proposition II.9.6 can be
simplified under the additional assumption that TtD ⊆ D for every
t > 0. Then T̃tD̃ ⊆ D̃ for every t ≥ 0 and the claim follows by
applying the core theorem [8, I, Proposition 3.3].
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Article III

Scaling limits for a class of
regular Ξ-coalescents

Möhle, M. and Vetter, B. (2023) Stochastic Process. Appl.
162, 387–422.

Abstract.

Let N
(n)
t denote the number of blocks in a Ξ-coalescent restricted to a sample of

size n ∈ N after time t ≥ 0. Under the assumption of a certain curvature condition
on a function well known from the literature, we prove the existence of sequences

(v(n, t))n∈N for which (logN
(n)
t − log v(n, t))t≥0 converges to an Ornstein–Uhlenbeck

type process as n→ ∞. The curvature condition is intrinsically related to the behavior
of Ξ near the origin. The method of proof is to show the uniform convergence of the
associated generators. Via Siegmund duality an analogous result for the fixation line
is proven. Several examples are studied.

Keywords: Block counting process; fixation line; Ornstein–Uhlenbeck type process;
regular coalescent; simultaneous multiple collisions; time-inhomogeneous process;
weak convergence

2020 Mathematics Subject Classification: Primary 60J90 Secondary 60J27

III.1 Introduction

Exchangeable coalescents are continuous-time Markov processes tak-
ing values in the space P of partitions of N := {1, 2, . . .}, where
blocks merge over time. Their distribution is determined by a finite
measure Ξ on the infinite simplex ∆ := {(u1, u2, . . .) : u1 ≥ u2 ≥
· · · ≥ 0,

∑
i≥1 ui ≤ 1}. Coalescents can be constructed from appro-

priate Poisson point processes (Schweinsberg [31]), which allows to
identify the class of exchangeable coalescents with the class of finite
measures Ξ on ∆. In the Cannings model [6, 7], a discrete-time hap-
loid population model with non-overlapping generations and finite,
constant population size, individuals of the same generation follow
an exchangeable reproduction law, independently of the other gener-
ations. Start with a sample of individuals in one generation and put
members into the same block when they have a common parent one
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generation in the past. We obtain a discrete-time partition-valued
ancestral process by merging individuals who share a common an-
cestor when going backwards further in time, and the coagulation
of ancestral lineages corresponds to the merging of blocks. Under
suitable conditions exchangeable coalescents then arise as the weak
limit of these ancestral processes, properly time-scaled, as the total
population size tends to infinity, since a certain form of consistency
relation holds for Cannings models, see [26].

Most coalescents treated in the literature belong to one of the
following subclasses. The coalescent (Πt)t≥0, starting from an infinite
number of blocks, is said to come down from infinity if the number of
blocks is finite at all times t > 0 almost surely, and it is said to stay
infinite if the number of blocks is infinite at all times t > 0 almost
surely. For coalescents with dust the number of original blocks that
have not been involved in any merger up to time t > 0 is infinite
with positive probability. Schweinsberg [31] determined conditions
to decide on the schemes.

Let Λ be a finite measure on the unit interval [0, 1]. The Λ-
coalescent, which allows only for multiple but not for simultaneous
multiple mergers of ancestral lineages, is the particular Ξ-coalescent,
where the measure Ξ on ∆ is concentrated on [0, 1] × {0} × {0} · · ·
with Ξ(B × {0} × {0} × · · · ) := Λ(B) for all Borel sets B ⊆ [0, 1].

Suppose that (Πt)t≥0 is standard, i.e., Π0 is the partition of N into

singletons. For t ≥ 0 and n ∈ N the restriction Π
(n)
t := {B∩ [n] : B ∈

Πt, B∩[n] ̸= ∅} of Πt to [n] := {1, . . . , n} has values in the space Pn of

partitions of [n]. Suppose that Π(n) := (Π
(n)
t )t≥0 is in a state with k ∈

[n] blocks. For j ≥ 1, k1 ≥ · · · ≥ kj with k1+ · · ·+ kj = k and k1 ≥ 2
we speak of a (k1, . . . , kj)-collision when Π(n) jumps to a state with
j blocks and k1, . . . , kj blocks merge into single blocks, respectively.
Next we introduce some standard notation. Define |u| :=

∑
i≥1 ui and

(u, u) :=
∑

i≥1 u
2
i for u ∈ ∆, 0 := (0, 0, . . .) ∈ ∆, a := Ξ({0}), and

the measures Ξ0 and ν via Ξ = aε0+Ξ0 and ν(du) := Ξ0(du)/(u, u).
A (k1, . . . , kj)-collision, j ∈ N, k1 ≥ · · · ≥ kj with k1 ≥ 2, occurs at
the rate (Schweinsberg [31])

ϕj(k1, . . . , kj) = a1{r=1,k1=2}

+

∫
∆

s∑
l=0

(
s

l

)
(1− |u|)s−l

∑
i1 ̸=···≠ir+l

uk1i1 · · ·u
kr+l

ir+l
ν(du),

where s := |{i ∈ [j] : ki = 1}| and r := j − s.
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The aim of this work is to analyze the block counting process
N (n) := (N

(n)
t )t≥0 := (|Π(n)

t |)t≥0 for large initial state, more precisely,

to determine scaling functions v(n, t) for whichN
(n)
t /v(n, t) converges

in distribution as n → ∞. For coalescents with dust it is proven in
[14] and [25] with different methods that (N

(n)
t /n)t≥0 converges in

the space D[0,1][0,∞) of càdlàg paths endowed with the Skorohod
topology to the so-called frequency of singletons process as n → ∞.
The Bolthausen–Sznitman coalescent in which the driving measure
Λ is the uniform distribution on [0, 1] has been thoroughly studied
in the literature and is an example of a dust-free Λ-coalescent that
stays infinite. Goldschmidt and Martin [16] and Baur and Bertoin [1]

proved for every t ≥ 0 the almost sure convergence of N
(n)
t /ne

−t

as
n→ ∞. This almost sure convergence follows from the construction
of the Bolthausen–Sznitman coalescent as clusters of path-connected
vertices in a random recursive tree by removing edges at random
as time evolves. In [24], it is shown via exact moment calculations

that (N
(n)
t /ne

−t

)t≥0 converges in D[0,∞)[0,∞) as n → ∞. In [27], the
authors obtain the convergence of the scaled block counting process
in the Skorohod space for a more general class of Λ-coalescents, where
Λ is essentially a beta distribution with parameters 1 and b > 0.

We extend the results of [27] not only to a larger class of Λ-
coalescents but even to a large class of Ξ-coalescents. Our key as-
sumption (III.5) covers the class of Λ-coalescents treated in [27], as
shown in Section II.4. The coalescents treated in this paper stay in-
finite, most coalescents with dust are included but many dust-free
coalescents are covered as well. The key assumption (III.5) involves
a certain rate function γ known from the literature, which roughly
speaking describes the expected size of a jump of the block count-
ing process. The main result (Theorem III.2.7) states that, for a

properly chosen scaling v(n, t), the process (logN
(n)
t − log v(n, t))t≥0

converges in DR[0,∞) as n → ∞ to an Ornstein–Uhlenbeck type
process. For information on Ornstein–Uhlenbeck type processes we
refer the reader exemplary to [30].

The work of Limic [21] is concerned with the small-time behavior
of the block counting process (Nt)t≥0 := (|Πt|)t≥0 of Ξ-coalescents
(Πt)t≥0 that come down from infinity. See also [2] and [22] for Λ-
coalescents. Under the regularity condition (cf. [21, Eq. (R)])∫

∆

|u|2 ν(du) < ∞, (III.1)
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a speed v(t) of coming down of infinity is defined for which Nt/v(t)
converges almost surely as t → 0+. The scaling v(n, t) in our main
convergence result (Theorem III.2.7) is defined similarly to the speed
v(t).

The fixation line (Lt)t≥0 has been introduced for Λ-coalescents by
Hénard [18] and further studied in [14] for Ξ-coalescents. It can be
characterized as the Siegmund dual [32] of the block counting process
satisfying ([14, Theorem 2.9])

P(L(m)
t ≥ n) = P(N (n)

t ≤ m), m, n ∈ N, t ≥ 0, (III.2)

where the upper indices denote the initial states L
(m)
0 = m and

N
(n)
0 = n, respectively. Theorem III.2.10 states the convergence of

the fixation line in the Skorohod space after suitable scaling.
The paper is organized as follows. The results are presented in Sec-

tion III.2. In Subsection III.2.1 the function γ and the key assump-
tion (III.5) are treated. The scaling v(n, t) is defined in Subsection
III.2.2 and certain properties of the scaling are collected. In Subsec-
tion III.2.3 the block counting process is revisited and the main con-
vergence result is stated. Subsection III.2.4 provides the analogous
convergence result for the fixation line. Subsection III.2.5 summarizes
the obtained convergence and duality results in non-logarithmic form.
Several illustrating examples are provided in Section II.4, including
an example which clarifies the relation to the results in [27] for a
class of Λ-coalescents and including examples of Ξ-coalescents with
discrete measure Ξ. The proofs are provided in Section III.4 in the
order of appearance of the respective results. The approach to prove
the main convergence result is to show the uniform convergence of
the associated infinitesimal generators.

III.2 Results

III.2.1 The rate function γ

The following function γ has been proven to be of great significance
to the study of coalescents, see [19] and, although in different form,
[21] for Ξ-coalescents, and [2, 9, 10, 22] for Λ-coalescents. Define
γ : [0,∞) → R via

γ(x) := a

(
x

2

)
+

∫
∆

∑
i≥1

(
(1− ui)

x − 1 + xui
)
ν(du), (III.3)
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for x ≥ 0. The main reason why the function γ is so important to
the study of exchangeable coalescent processes is the fact that, if the
coalescent is in a state with k ∈ N blocks, then (see the forthcoming
Eq. (III.14)) γ(k) is the expected rate of decrease of the number
of blocks. The properties of γ collected in the following lemma are
essentially known from the (above cited) literature.

Lemma III.2.1. Let γ be defined by (III.3). Then γ(0) = γ(1) = 0.
Moreover, γ(x) > 0 for x > 1, γ(x) ≤ x(x − 1)(a/2 + Ξ0(∆)) for
x ≥ 2, and γ ∈ C∞((0,∞)) with derivative

γ′(x) = a

(
x−1

2

)
+

∫
∆

∑
i≥1

(
(1−ui)x log(1−ui)+ui

)
ν(du), x > 0,

and higher derivatives

γ(k)(x) = aδk2 +

∫
∆

∑
i≥1

(1− ui)
x
(
log(1− ui)

)k
ν(du),

x > 0, k ∈ N\{1}, where δkl denotes the Kronecker symbol. The map
x 7→ γ(x)/x is strictly increasing on [1,∞). In particular, the map γ
is strictly increasing on [1,∞).

We now introduce a parameter which will turn out to be of fun-
damental interest for our purposes. Define

κ := lim
x→∞

xγ′′(x) ∈ [0,∞] (III.4)

whenever this limit exists in [0,∞]. In this case we call κ the asymp-
totic curvature of γ or simply the curvature parameter of the underly-
ing Ξ-coalescent. Proposition III.2.3 shows that (III.4) is intrinsically
related to the behavior of the measure Ξ near 0 ∈ ∆. In Section III.3
the curvature parameter κ is computed for several examples.

Let us briefly comment on the coming down from infinity (cdi)
property of the coalescent. Some important coalescents, for example
all beta coalescents (see Example III.3.1) and all NLG-coalescents
(see Example III.3.2), come down from infinity if and only if κ =
∞. Note however that, in general, neither κ = ∞ implies cdi (see
Example III.3.5) nor cdi implies κ = ∞ (see Example 6.1 b) of [19]).

Lemma III.2.1 implies that, up to multiplicative constants, γ(x)
lies for all sufficiently large x in between x and x(x − 1). The key
assumption (III.5) of our convergence theorem (Theorem III.2.7) is
a more precise condition for the growth of γ(x), see (III.6), and can

110



be compactly stated in terms of the curvature of γ as follows.

The limit κ in (III.4) exists and is finite. (III.5)

Using Lemma III.2.1 it is easily seen that (III.5) implies that a :=
Ξ({0}) = 0. In particular, (III.5) excludes the Kingman coalescent.
We will see in Section III.2.3 that the assumptions of Theorem III.2.7
exclude all coalescents that come down from infinity and only covers
coalescents that stay infinite. If Assumption A of [27] holds with
κ := b, then (III.5) holds, showing that all convergence results of [27]
are covered by the following convergence theorems.

The following Proposition III.2.2 provides several conditions, each
being equivalent to the key assumption (III.5). The proof shows that
Proposition III.2.2 holds for any function γ ∈ C2((0,∞)) such that
γ′′ is non-negative and ultimately non-increasing.

Proposition III.2.2. The following five conditions are equivalent.

(i) Assumption (III.5) holds, i.e., the limit κ := limx→∞ xγ′′(x) ex-
ists and is finite.

(ii) limx→∞(γ′(x)− γ(x)/x) = κ.

(iii) There exists a function L : (0,∞) → (0,∞) being slowly varying
at ∞ such that

γ(x)

x
= κ log x + logL(x), x > 0. (III.6)

(iv) For all y > 0 the limit d(y) := limx→∞(γ(yx)/(yx) − γ(x)/x)
exists and d(y) = κ log y.

(v) limx→∞(γ′(yx)− γ′(x)) = κ log y for all y > 0.

Remarks.

1. Assume that the coalescent has dust. Equivalently,
limx→∞ γ(x)/x =

∫
∆ |u| ν(du) =: µ < ∞. Thus, (III.6) and,

hence, all conditions of Proposition III.2.2 hold with κ = 0 and
a slowly varying function L satisfying limx→∞ L(x) = eµ < ∞.
Note however that there exist dust-free coalescents (even Λ-
coalescents) which satisfy κ := limx→∞ xγ′′(x) = 0. We refer the
reader to Examples III.3.2 and III.3.3 in Section III.3.

2. The characterization theorem for regularly varying functions [4,
Theorem 1.4.1] implies that the limit d(y) in Proposition III.2.2
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(iv) is necessarily of the form d(y) = κ log y, y > 0, for some κ ∈
R, if it exists, and due to limx→∞ γ(x)/x =

∫
∆ |u| ν(du) ∈ [0,∞],

only κ ≥ 0 can occur.

3. In the terminology of [4, Section 3], the function γ′ is a de Haan
function with 1-index κ.

Proposition III.2.2 provides conditions being equivalent to the key
assumption (III.5). However, all these conditions involve the rate
function γ. Proposition III.2.3 below provides two additional equiv-
alent conditions of assumption (III.5), which do not involve the rate
function γ anymore and are instead more directly stated in terms of
the measure Ξ of the coalescent and hence more intuitive to under-
stand. Proposition III.2.3 essentially shows how (III.5) is related to
the behavior of the measure Ξ near the point 0 ∈ ∆. In order to state
the result, let us introduce the functions F, F1, F2, . . . : [0, 1) → [0,∞)
and G,G1, G2, . . . : [0, 1] → [0,∞) via

Fi(t) :=

∫
∆

1[0,t](ui)(log(1− ui))
2 ν(du), i ∈ N, t ∈ [0, 1),

F (t) :=
∑
i≥1

Fi(t) =

∫
∆

∑
i≥1

1[0,t](ui)(log(1− ui))
2 ν(du), t ∈ [0, 1),

Gi(t) :=

∫
∆

1[0,t](ui)u
2
i ν(du), i ∈ N, t ∈ [0, 1],

G(t) :=
∑
i≥1

Gi(t) =

∫
∆

∑
i≥1

1[0,t](ui)u
2
i ν(du), t ∈ [0, 1].

(III.7)
Note that Fi(0) = Gi(0) = 0 for all i ∈ N and, hence, F (0) = G(0) =
0. For every t ∈ (0, 1) there exists a constant Ct ∈ (0,∞) (choose,
for example, Ct := (− log(1− t))/t) such that − log(1− x) ≤ Ctx for
all x ∈ [0, t]. Applying this inequality with x := ui ≤ t yields

Fi(t) ≤ F (t) =

∫
∆

∑
i≥1

1[0,t](ui)(− log(1− ui))
2 ν(du)

≤ C2
t

∫
∆

∑
i≥1

1[0,t](ui)u
2
i ν(du)

≤ C2
t

∫
∆

∑
i≥1

u2i ν(du) = C2
t Ξ(∆) < ∞.

Obviously, Gi(t) ≤ G(t) ≤
∫
∆

∑
i≥1 u

2
i ν(du) = Ξ(∆) < ∞. From

ui ≤ − log(1 − ui) we conclude that Gi(t) ≤ Fi(t) for all i ∈ N and
t ∈ [0, 1) and, hence, G(t) ≤ F (t) for all t ∈ [0, 1). Moreover, the
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functions F,G, F1, G1, F2, G2, . . . are non-decreasing, hence Riemann
integrable.

Proposition III.2.3. Let Ξ be a finite measure on ∆ and let κ
be some constant in [0,∞). Then the following three conditions are
equivalent.

(i) Assumption (III.5) holds, i.e., the limit κ = limx→∞ xγ′′(x) exists
and is finite.

(ii) limt→0+ t
−1F (t) = κ. (iii) limt→0+ t

−1G(t) = κ.

In particular, for Λ-coalescents, (III.5) is equivalent to

lim
t→0+

Λ([0, t])

t
= κ. (III.8)

Relation (III.8) already appears in Lemma 9.1 of [27], but its im-
portance was not (fully) discovered there.

III.2.2 The scaling function

Define v : [1,∞)× [0,∞) → [1,∞) (implicitly) via

v(1, t) := 1 and

∫ x

v(x,t)

du

γ(u)
= t, x > 1, t ≥ 0. (III.9)

The following two propositions clarify the existence of v and provide
basic properties of v with an emphasis on coalescents with dust,
coalescents that come down from infinity and coalescents that satisfy
the key assumption (III.5).

Proposition III.2.4. For each x > 1 and t ≥ 0, the solution
v(x, t) ∈ (1, x] to the integral equation in (III.9) exists and is unique.
Moreover, v ∈ C1((1,∞)× [0,∞)) with

d

dt
v(x, t) = −γ(v(x, t)), d

dx
v(x, t) =

γ(v(x, t))

γ(x)
, (III.10)

x > 1, t ≥ 0. For every x ≥ 1 the map t 7→ v(x, t), t ≥ 0, is
non-increasing and for every t ≥ 0 the map x 7→ v(x, t), x ≥ 1, is
non-decreasing.

Remark. If the coalescent is in a state with k ∈ N blocks, then γ(k)
is the expected rate of decrease of the block counting process. The
choice of the scaling v(x, t) then becomes plausible as, for each x ≥ 1,
it is the solution to the initial value problem

d

dt
v(x, t) = −γ(v(x, t)), t ≥ 0, v(x, 0) = x.
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Proposition III.2.5. Let γ be defined by (III.3) and let v be defined
by (III.9).

(i) If the coalescent has dust, i.e., a := Ξ({0}) = 0 and µ :=∫
∆ |u|ν(du) < ∞, then v(x, t) ∼ xe−µt as x → ∞ for every
t ≥ 0.

(ii) Suppose that
∫∞
c (γ(u))−1 du <∞ for some (and hence all) c > 1.

Then, for every t > 0, the solution v(t) ∈ (1,∞) to the equation∫ ∞

v(t)

du

γ(u)
= t (III.11)

exists and limx→∞ v(x, t) = v(t).

(iii) Suppose that (III.5) holds. Then, for every t ≥ 0, there exists a
slowly varying function Lt : [1,∞) → (0,∞) such that v(x, t) =
xe

−κt

Lt(x) for all x ≥ 1.

Remarks.

1. If the coalescent has dust, then, as n→ ∞, N (n)/n converges in
D[0,1][0,∞) to the so-called frequency of singletons process [14],
so (v(n, t))n∈N as in (i) is a reasonable scaling sequence for the
block counting process.

2. For regular Ξ-coalescents that come down from infinity the in-
tegral

∫∞
c (γ(u))−1 du is finite for all c > 1. The function v(t)

defined by (III.11) is the “speed of coming down from infinity”
as defined in [21], although with a slightly different function γ.
See also [2] and [22].

3. The finiteness of the integral
∫∞
c (γ(u))−1 du can be viewed as

a Grey’s condition for the Ξ-coalescent. Grey’s condition orig-
inally stems (see [17, 33, 34]) from the study of continuous-
state branching processes with the function γ replaced by the
branching mechanism of the considered branching process. For
Λ-coalescents the rate function γ itself is the branching mecha-
nism of a continuous-state branching process.

As seen in Lemma III.2.1, the asymptotic growth as x→ ∞ of γ(x)
is at least of order x. Part (i) of the following proposition shows that
altering γ additively by a function of asymptotic order smaller than x
asymptotically does essentially not change the scaling function v(., t).
In Part (ii), the slowly varying function Lt of the scaling function is
asymptotically calculated for a special case.
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Proposition III.2.6. Let γ and v(x, t) be defined by (III.3) and
(III.9), respectively, and suppose that (III.5) holds.

(i) Assume that there exists a continuous function γ1 : (1,∞) →
(0,∞) such that (γ(x) − γ1(x))/x → 0 as x → ∞. Then, for
each t ≥ 0, there exists x0(t) > 1 such that the scaling v1(x, t),
defined by the integral equation in (III.9) with γ1 in place of γ,
exists for all x ≥ x0(t). Moreover, v(x, t) ∼ v1(x, t) as x→ ∞.

(ii) According to Proposition III.2.2, γ satisfies (III.6) with κ ∈
[0,∞) and a slowly varying function L : (0,∞) → (0,∞). If
L(x) → C as x → ∞ for some constant C > 0, then, for
each t ≥ 0, v(x, t) ∼ xe

−κt

C−κ−1(1−e−κt) as x → ∞ if κ > 0
and v(x, t) ∼ xC−t as x→ ∞ if κ = 0.

Remark. Assume that the coalescent has dust or, equivalently, that
µ := limx→∞ γ(x)/x < ∞. Then γ satisfies (III.6) with κ = 0.
Thus, L(x) = eγ(x)/x and, hence, limx→∞ L(x) = eµ ∈ [1,∞). By
Proposition III.2.6 (ii), v(x, t) ∼ xe−µt as x → ∞ for all t ≥ 0,
which also proves Proposition III.2.5 (i). For dust-free coalescents,
limx→∞ v(x, t)/x = 0 for all t > 0.

III.2.3 Results concerning the block counting process

Let n ∈ N. The block counting process (N
(n)
t )t≥0 with initial state

N
(n)
0 = n jumps from state k ∈ {2, . . . , n} to state j ∈ {1, . . . , k− 1}

at the rate (see [13, Eq. (1.3)] or [14, Proposition 2.1])

qk,j = a

(
k

2

)
1{j=k−1} +

∫
∆

j∑
i=1

fkji(u) ν(du),

where

fkji(u) :=
∑

k1,...,ki∈N
k1+···+ki=k−j+i

k!

(j − i)!k1! · · · ki!
(1−|u|)j−i

∑
l1,...,li∈N
l1<···<li

uk1l1 · · ·u
ki
li

for i ∈ {1, . . . , j} and u ∈ ∆.
From the Poisson point process construction of the coalescent it

follows that the jump rates of the block counting process can be de-
scribed in terms of an urn model as in [23] as follows. Fix u ∈ ∆
and partition the interval [0, 1) into “urns” J0, J1, . . . of lengths
u0 := 1 − |u|, u1, u2, . . ., i.e., J0 := [0, u0), J1 := [u0, u0 + u1), J2 :=
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[u0+u1, u0+u1+u2) and so on. The “balls” Z1, Z2, . . . are i.i.d. ran-
dom variables, where Z1 has an uniform distribution on [0, 1). Let
Xi(k, u) :=

∑k
j=1 1{Zj=i} denote the number of balls in urn i ∈ N0 :=

{0, 1, . . .} after k ∈ N0 throws. Note that

Y (k, u) := X0(k, u) +
∑
i≥1

1{Xi(k,u)>0}, (III.12)

k ∈ N, u ∈ ∆, is the sum of the number of balls in urn J0 and the
number of all other occupied urns. Then

qk,j = a

(
k

2

)
1{j=k−1} +

∫
∆

P(Y (k, u) = j) ν(du), (III.13)

j, k ∈ N, j < k. This representation of the jump rates will turn out
to be crucial to the proof of the main convergence result (Theorem
III.2.7). Relation (III.13) also provides further insight into the func-
tion γ. For example, by (III.13), for all k ∈ N,
k−1∑
j=1

(k − j)qk,j = a

(
k

2

)
+

∫
∆

E(k − Y (k, u)) ν(du) (III.14)

= a

(
k

2

)
+

∫
∆

(
k − k(1− |u|)−

∑
i≥1

(1− (1− ui)
k)
)
ν(du) = γ(k).

Thus, if the block counting process is in state k ∈ N, then γ(k) =∑k−1
j=1(k − j)qk,j is the expected rate of decrease of the block count-

ing process. Lemma III.5.2 provided in the appendix shows that
Y (k, u)/k → 1− |u| =: u0 almost surely as k → ∞ for every u ∈ ∆.

Define ∆∗ := {u ∈ ∆ : |u| = 1}. Assume that ν(∆∗) = 0 and that
the regularity condition (III.1) holds. Define the function ψ : R → C
via

ψ(x) :=

∫
∆

(
(1− |u|)ix − 1 + ix|u|

)
ν(du), x ∈ R. (III.15)

Note that (III.1) ensures that ψ(x) ∈ C. Define the transformation
g : ∆ \∆∗ → (−∞, 0) via g(u) := log(1− |u|) for all u ∈ ∆ \∆∗ and
let ϱ := νg denote the image measure of ν under g. Then,

ψ(x) =

∫
(−∞,0)

(
eixt − 1 + ix(1− et)

)
ϱ(dt)

= ix

∫
(−∞,0)

(
1− et +

t

1 + t2

)
ϱ(dt)

+

∫
(−∞,0)

(
eixt − 1− ix

t

1 + t2

)
ϱ(dt), x ∈ R.

116



Thus, ψ is the characteristic exponent of an infinitely divisible dis-
tribution. The regularity condition (III.1) is required for ϱ := νg to
be a Lévy measure. In the following, for t ≥ 0, St denotes a random
variable with characteristic function ϕt, given by

ϕt(x) := exp

(∫ t

0

ψ(e−κsx) ds

)
, x ∈ R, t ≥ 0, (III.16)

where ψ is defined by (III.15) and κ ∈ [0,∞). Note that ψ can be
recovered from the values ϕt(x), x ∈ R, t ≥ 0, namely, for any x ∈ R,
ψ(x) = t−1 log ϕt(x) if κ = 0 and ψ(x) = − limt→∞

d
dt log ϕt(x) if

0 < κ <∞.
The limiting process X arising in the main convergence result

(Theorem III.2.7 below), whose distribution is determined through
its semigroup (TXt )t≥0 via (III.16) and (III.17), belongs to the class
of Ornstein–Uhlenbeck type processes [30]. The semigroup (TXt )t≥0

belongs to the class of generalized Mehler semigroups (see [5]), since
ϕt+s(x) = ϕt(e

−κsx)ϕs(x) for x ∈ R and s, t ≥ 0. Clearly, (TXt )t≥0

is a Feller semigroup on Ĉ(R), the space of continuous functions
f : R → R vanishing at infinity.

Theorem III.2.7. Suppose that Ξ satisfies (III.1) and Ξ(∆∗) = 0.
Let γ be defined by (III.3) and suppose that (III.5) holds, i.e., the
limit κ := limx→∞ xγ′′(x) ∈ [0,∞) exists. Moreover, let the scal-
ing v(n, t) be defined by (III.9). Then the logarithmically scaled block

counting process (logN
(n)
t − log v(n, t))t≥0 converges in DR[0,∞) to

X as n→ ∞, where X = (Xt)t≥0 is an Ornstein–Uhlenbeck type pro-
cess with state space R, initial value X0 = 0 and Mehler semigroup
(TXt )t≥0 given by

TXt f(x) := E(f(Xs+t)|Xs = x) = E(f(e−κtx+ St)), (III.17)

k ∈ N, u ∈ ∆, with the distribution of St defined via its characteristic
function (III.16).

Remark. For results on the generator AX of the limiting process X
arising in Theorem III.2.7 we refer the reader to (III.33).

Remark. The limiting process X in Theorem III.2.7 determines the

distribution of St (
d
= Xt) and, hence, the values (III.16) of its charac-

teristic function ϕt, which in turn determines the function ψ defined
via (III.15). In general it is however impossible to recover from ψ the
original measure Ξ of the underlying coalescent.
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Remark. (stationary distribution) Under the assumptions of Theorem
III.2.7 an application of [4, Theorems 4.1 and 4.2] yields the following.
If ∫

{u∈∆:|u|>ε}
log log(1− |u|)−1 ν(du) <∞, (III.18)

for some ε ∈ (1 − e−1, 1), then Xt converges in distribution as
t → ∞ to the unique stationary distribution µ of X, where µ is
self-decomposable with characteristic function ϕ given by ϕ(x) :=
exp(

∫∞
0 ψ(e−κsx) ds), x ∈ R. If (III.18) does not hold, then the pro-

cess X has no stationary distribution. For Λ-coalescents, this remark
remains valid if in Eq. (III.18) the measure ν is replaced by Λ.

Remark. If (III.5) and, hence, (III.6) holds, then
∫∞
c (γ(u))−1 du = ∞

for some (and hence all) c ∈ (1,∞). For ε ∈ (0, 1) define ∆ϵ := {u ∈
∆ : |u| ≤ 1 − ε}. Further, define ∆f := {u ∈ ∆ : u1 + . . . + un =
1 for some n ∈ N}. Under the regularity condition (III.1) it holds
that ν(∆\∆ε) <∞ for all ε ∈ (0, 1) (see [21, p. 229]). Due to Ξ(∆f) =
0, the coalescents covered by Theorem III.2.7 hence stay infinite [31,
Proposition 33]. In other words the coalescents covered by Theorem
III.2.7 either have dust or they have no dust and are not coming
down from infinity. A schematic representation of the space M(∆)
of all finite measures Ξ on (∆,B(∆)) is provided in Figure III.1.
In this representation, M(∆) is equipped with the topology of weak
convergence, i.e., Ξn → Ξ as n→ ∞ if and only if limn→∞

∫
∆ f dΞn =∫

∆ f dΞ for all continuous functions f : ∆ → R. Note that, since ∆
is compact, all continuous functions f : ∆ → R are bounded and
uniformly continuous. The space M(∆) is metrizable, for example
via the metric

d(Ξ1,Ξ2) :=
∑
i≥1

2−i
1

1 + ∥fi∥

∣∣∣∣ ∫ fi dΞ1 −
∫
fi dΞ2

∣∣∣∣,
where {f1, f2, . . .} is a dense set of real-valued continuous functions
on ∆. The results in Parthasarathy [28, Chapter 6] imply that, with
this metric, M(∆) is a compact Polish (separable complete metric)
space.

III.2.4 Results concerning the fixation line

The fixation line has been introduced by Hénard [18] for Λ-
coalescents and further studied in [14] for general Ξ-coalescents. The

fixation line (L
(n)
t )t≥0 with initial state L

(n)
0 = n is a Markov process
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rδ0(Kingman coalescent) r δ1 (star-shaped coalescent)

cdi
(⇒ no dust)

dust
(⇒ not cdi)

not cdi
and

no dust

Figure III.1: A schematic representation of the space of all exchangeable coalescents (Ξ-
coalescents). Each point in the oval region corresponds to a finite measure Ξ on (∆,B(∆)).
The compact Polish space M(∆) is divided into three regions of exchangeable coalescents, those
coming down from infinity (cdi) to the left, the ones not coming down from infinity and having
no dust in the middle and those having dust to the right.

which moves from state i ∈ {n, n + 1, . . .} to state j ∈ N with j > i
at the rate (see [14, Proposition 2.5])

γi,j = a

(
j

2

)
δj,i+1 +

∫
∆

P
(
Y (j, u) = i, Y (j + 1, u) = i+ 1

)
ν(du),

where a := Ξ({0}) and Y (., u) is defined via (III.12). The fixation
line does not explode if and only if the coalescents stays infinite [14,
Remark 2.11]. Recall that (see (III.2)) the block counting process is
Siegmund dual to the fixation line. In this subsection we will see that
this duality property transfers the convergence result for the block
counting process (Theorem III.2.7) into an analogous convergence
result (Theorem III.2.10) for the fixation line. The arguments are
similar as for the fixation line. We start as follows. Assume that∫∞
2 (γ(u))−1 du = ∞. Define the function w : [1,∞)×[0,∞) → [1,∞)
via

w(1, t) := 1 and

∫ w(x,t)

x

du

γ(u)
= t, x > 1, t ≥ 0. (III.19)

Proposition III.2.8. Assume that
∫∞
2 (γ(u))−1 du = ∞. Then, for

each x > 1 and t ≥ 0, the solution w(x, t) ∈ [x,∞) to the in-
tegral equation in (III.19) exists and is unique. Furthermore, w ∈
C1((1,∞)× [0,∞)) with

d

dt
w(x, t) = γ(w(x, t)),

d

dx
w(x, t) =

γ(w(x, t))

γ(x)
, (III.20)

x > 1, t ≥ 0. The maps x 7→ w(x, t), x ≥ 1, and t 7→ w(x, t), t ≥ 0,
are strictly increasing.

It is readily seen from (III.9) and (III.19) that v(w(x, t), t) = x =
w(v(x, t), t) for all x ≥ 1 and t ≥ 0. Thus, for fixed t ≥ 0, w(., t) is the
inverse of v(., t). This aspect is utilized in the proof of Proposition
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III.2.9 below, whose statements are variants of Propositions III.2.5
and III.2.6 for the scaling of the fixation line. Note that, under the
key assumption (III.5), in particular when the coalescent has dust,
it holds that

∫∞
c (γ(u))−1 du = ∞ for every c > 1, so w(x, t) is well-

defined.

Proposition III.2.9. Let γ be defined by (III.3) and w be defined
by (III.19).

(i) If a := Ξ({0}) = 0 and µ :=
∫
∆ |u| ν(du) < ∞, then w(x, t) ∼

xeµt as x→ ∞ for each t ≥ 0.

(ii) Suppose that γ satisfies (III.5) with κ ≥ 0. Then, for every t ≥ 0,
there exists a slowly varying function L#

t : [1,∞) → (0,∞) such
that w(x, t) = xe

κt

L#
t (x) for all x ≥ 1.

(iii) Suppose that γ satisfies (III.5) with κ ≥ 0. Assume that there
exists a continuous function γ1 : (1,∞) → (0,∞) such that
(γ(x) − γ1(x))/x → 0 as x → ∞. Then the scaling w1(x, t),
defined by (III.19) with γ1 in place of γ, exists for all t ≥ 0 and
x ≥ 1. Moreover, assume that the map x 7→ γ1(x)/x, x > 1, is
non-decreasing if κ = 0. Then w(x, t) ∼ w1(x, t) as x→ ∞.

Remark. The regular variation of w(., t) under the key assumption
(III.5) is a consequence of the regular variation of v(., t) (see Propo-
sition III.2.5) and the fact that w(., t) and v(., t) are inverse. The
slowly varying part L#

t can be retrieved from Lt with the use of the
de Bruijn conjugate, see [4, Theorem 1.5.13 and Proposition 1.5.15]
and the proof of Proposition III.2.9 in Section II.8 for further details.

The following theorem is the analog of Theorem III.2.7 for the
fixation line.

Theorem III.2.10. Suppose that Ξ satisfies (III.1) and Ξ(∆∗) =
0. Let γ be defined by (III.3) and suppose that (III.5) holds with
0 ≤ κ < ∞. Let the scaling w(n, t) be defined by (III.19). Then

(logL
(n)
t − logw(n, t))t≥0 converges in DR[0,∞) to Y as n → ∞,

where Y = (Yt)t≥0 is an Ornstein–Uhlenbeck type process with state
space R, initial value Y0 = 0 and Mehler semigroup (T Yt )t≥0 given by

T Yt f(y) := E(f(Ys+t)|Ys = y) = E(f(eκty − eκtSt)), (III.21)

for y ∈ R, f ∈ B(R) and s, t ≥ 0 with the distribution of St defined
via its characteristic function (III.16).
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III.2.5 Siegmund duality and summary of results

Let X = (Xt)t≥0 and Y = (Yt)t≥0 be the limiting processes aris-
ing in Theorems III.2.7 and III.2.10, respectively. For t ≥ 0 de-
fine X̃t := eXt and Ỹt := eYt. Consider the “exponential” Markov
processes X̃ := (X̃t)t≥0 and Ỹ := (Ỹt)t≥0 both having state space
E := (0,∞). From (III.17) and (III.21) it follows that the semigroups

(T X̃t )t≥0 and (T Ỹt )t≥0 of X̃ and Ỹ are given by

T X̃t f(x) = E(f(xe−κt

eSt)), t ≥ 0, f ∈ B(E), x ∈ E, (III.22)

and

T Ỹt g(y) = E(g(yeκte−eκtSt)), t ≥ 0, g ∈ B(E), y ∈ E, (III.23)

where St has characteristic function (III.16).
Fix t ≥ 0, define α := e−κt and let H : E × E →

{0, 1} denote the Siegmund duality kernel, i.e., H(x, y) := 1 for
x ≤ y and H(x, y) := 0 otherwise. For x, y ∈ E, by (III.22),

T X̃t H(., y)(x) = E(H(xαeSt, y)) = P(xαeSt ≤ y). Similarly, by

(III.23), T Ỹt H(x, .)(y) = P(H(x, y1/αe−St/α)) = P(x ≤ y1/αe−St/α) =

P(xαeSt ≤ y). Thus, T X̃t H(., y)(x) = T Ỹt H(x, .)(y) for all t ≥ 0 and
x, y ∈ E, showing that X̃ is Siegmund dual to Ỹ .

Since the map DR[0,∞) ∋ x = (xt)t≥0 7→ (ext)t≥0 ∈ DE[0,∞) is
continuous, an application of the continuous mapping theorem shows
that Theorems III.2.7 and III.2.10 can be summarized as follows.

Theorem III.2.11. Under the conditions of Theorem III.2.7 the fol-
lowing two assertions hold.

(i) As n → ∞, the scaled block counting process (N
(n)
t /v(n, t))t≥0

converges in DE[0,∞) to the Markov process X̃ with X̃0 = 1 and
semigroup (III.22).

(ii) As n→ ∞, the scaled fixation line (L
(n)
t /w(n, t))t≥0 converges in

DE[0,∞) to the Markov process Ỹ with Ỹ0 = 1 and semigroup
(III.23).

Thus, under the assumptions of Theorem III.2.7, the commutative
diagram in Figure 2 holds.

We close the result section by providing formulas for the infinitesi-
mal generators of the processes X̃ and Ỹ . Applying the generator for-
mulas AX̃f(x) = AX(f ◦exp)(log x) and AỸ g(y) = AY (g◦exp)(log y)
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scaled block counting process

(N
(n)
t /v(n, t))t≥0

⇒ Markov process

X̃ = (X̃t)t≥0

↕ ↕

scaled fixation line

(L
(n)
t /w(n, t))t≥0

⇒ Markov process

Ỹ = (Ỹt)t≥0

Figure III.2: Commutative diagram summarizing the convergence and duality results. In the

diagram, “⇒” stands for convergence in DE [0,∞) and “↕” for Siegmund duality P(N (n)
t ≤ m) =

P(L(m)
t ≥ n), n,m ∈ N, and P(X̃(x)

t ≤ y) = P(Ỹ (y)
t ≥ x), x, y ∈ E, t ≥ 0, respectively, where the

upper indices indicate the initial states of the corresponding processes.

yield that the generators AX̃ and AỸ of X̃ and Ỹ satisfy

AX̃f(x) = −κx(log x)f ′(x) (III.24)

+

∫
∆

(
f(x(1− |u|))− f(x) + |u|xf ′(x)

)
ν(du)

for x > 0 and f ∈ D̃ and

AỸ g(y) = κy(log y)g′(y) (III.25)

+

∫
∆

(
g(y/(1− |u|))− g(y)− |u|yg′(y)

)
ν(du)

for y > 0 and g ∈ D̃, where D̃ denotes the space of all functions
f : E → R such that the maps f , x 7→ xf ′(x), x 7→ x2f ′′(x) and
x 7→ x(log x)f ′(x) belong to Ĉ(E). Note that D̃ is a core for both

generators, AX̃ and AỸ .

III.3 Examples

In this section several illustrating examples are provided. For most
of the examples Theorem III.2.7 and Theorem III.2.10 are applica-
ble. Example III.3.1 treats the Λ-coalescent, where Λ = β(a, b) is a
beta distribution with parameters a, b > 0. For the β(1, b)-coalescent
scaling limits have already been obtained in [27], and we clarify be-
forehand the relation between [27] and this work. Example III.3.2
studies the Λ-coalescent introduced in [25], where the measure Λ is
a negative logarithmic gamma distribution (NLG-coalescent). Exam-
ple III.3.3 provides a simple dust-free Λ-coalescent which nevertheless
satisfies κ = 0. Example III.3.4 presents a true Ξ-coalescent for which
Theorem III.2.7 and Theorem III.2.10 are applicable.

We start with putting the results of [27] in the context of our

work. Let b > 0. In [27] it is shown that (logN
(n)
t − e−bt log n)t≥0
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converges in DR[0,∞) as n → ∞ to an Ornstein–Uhlenbeck type
process provided that the coalescent’s driving measure Λ satisfies

Λ({0}) = Λ({1}) = 0 and c :=

∫
[0,1]

u−1 (Λ− bλ)(du) <∞.

(III.26)
Here λ denotes Lebesgue measure. Condition (III.26) essentially
forces the coalescent to behave similarly to the Bolthausen–Sznitman
coalescent (BS-coalescent), which is the Λ-coalescent where Λ is
the uniform distribution on [0, 1]. For x ≥ 0 define γBS(x) :=∫ 1

0

(
(1 − u)x − 1 + ux

)
u−2 du. Let Ψ := (log Γ)′ = Γ′/Γ denote

the logarithmic derivative of the gamma function (digamma func-
tion). It is easily checked that γBS(x) = x(Ψ(x + 1) − Ψ(1) − 1) =
x log x− (Ψ(1) + 1)x+O(1) as x→ ∞. If (III.26) holds, then

γ(x) = bγBS(x) +

∫
[0,1]

(
(1− u)x − 1 + xu

)
(Λ− bλ)(du)

= bx log x+ x(−b(1 + Ψ(1)) + c+ o(1))

for x > 0 such that (III.6) and, hence, (III.5) are satisfied with
κ := b and the slowly varying function L in (III.6) satisfies L(x) →
exp(−b(1 + Ψ(1)) + c) as x→ ∞.

Example III.3.1. (beta coalescent) Let Λ = β(a, b) be the beta distri-
bution with parameters a, b > 0. For the corresponding Λ-coalescent,
the function γ, defined via (III.3), can be calculated explicitly. For
a /∈ {1, 2}, a technical but straightforward calculation shows that

γ(x) =
(x+ a+ b− 1)(x+ a+ b− 2)

(a− 1)(a− 2)

B(a, x+ b)

B(a, b)

+
a+ b− 1

a− 1
x − (a+ b− 1)(a+ b− 2)

(a− 1)(a− 2)
(III.27)

for all x ≥ 0, where B(., .) denotes the beta function. The boundary
cases a = 1 and a = 2 need to be treated separately. For a = 1 one
obtains

γ(x) = b(x+ b− 1)
(
Ψ(x+ b)−Ψ(b)

)
− bx, x ≥ 0, (III.28)

where Ψ denotes the digamma function. For a = 2 it follows that

γ(x) = (b+ 1)x − b(b+ 1)
(
Ψ(x+ b)−Ψ(b)

)
, x ≥ 0. (III.29)

Since Ψ(x + b) = log x + O(x−1) as x → ∞ it follows from (III.27),
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(III.28) and (III.29) that

γ(x)

x


=

Γ(a+ b)

Γ(b)(1− a)(2− a)
x1−a +O(1) for a < 1,

= b log x− b(Ψ(b) + 1) +O

(
log x

x

)
for a = 1,

→ a+ b− 1

a− 1
for a > 1.

For all y ∈ (0,∞) the limit d(y), defined in Proposition III.2.2 (iv),
is thus given by

d(y) =


−∞1(0,1)(y) +∞1(1,∞)(y) for a < 1 (cdi),

b log y for a = 1 (not cdi, no dust),
0 for a > 1 (dust),

and the curvature parameter κ is given by

κ := lim
x→∞

xγ′′(x) =


∞ for a < 1,
b for a = 1,
0 for a > 1.

For beta coalescents the curvature parameter κ thus characterizes
both, the dust property and the cdi property. Theorems III.2.7 and
III.2.10 are hence applicable for the β(a, b)-coalescent with a ≥ 1.
Let us distinguish two cases.

Case 1: If a > 1 (dust case), then κ = 0, v(x, t) ∼ e−µtx and
w(x, t) ∼ eµtx as x→ ∞ with µ :=

∫
u−1Λ(du) = (a+ b−1)/(a−1).

In this case, Theorems III.2.7 and III.2.10 are in essence logarithmic
versions of [14, Theorem 2.1].

Case 2: Now assume that a = 1, i.e., that Λ = β(1, b) is the
beta distribution with parameters 1 and b > 0 having density u 7→
b(1 − u)b−1, u ∈ (0, 1), with respect to Lebesgue measure on (0, 1).
Then, κ = b > 0.

From the discussion above (see also [27, Example 2 or Proposition
11]) it follows that

γ(x) = bx log x + x(logCb + o(1)), x > 0,

where Cb := exp(−b(Ψ(b) + 1)). Independently one can verify that

xγ′′(x) = bx

∫ 1

0

(1− u)x+b−1(log(1− u))2

u2
du → b, x→ ∞.

Let the scaling sequence v(n, t) be defined by (III.9) for n ≥ 2. By

Proposition III.2.6, v(x, t) ∼ xe
−bt

C
b−1(e−bt−1)
b = xe

−bt

e(Ψ(b)+1)(1−e−bt) as
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x → ∞. Similarly, w(x, t) ∼ xe
bt

e−(Ψ(b)+1)(1−e−bt) as x → ∞. By The-

orems III.2.7 and III.2.10, both processes (logN
(n)
t − log v(n, t))t≥0

and (logL
(n)
t − logw(n, t))t≥0 converge in DR[0,∞) as n → ∞. As

n→ ∞, the process (logN
(n)
t −e−bt log n)t≥0 converges as well due to

the specifics of the scaling sequence, and the limiting processes gen-
erator AX , which can be determined using Lemma III.4.1, is given
by

AXf(x) = bf ′(x)(1 + Ψ(b)− x)

+

∫
[0,1]

(
f(x+ log(1− u))− f(x) + uf ′(x)

)
u−2Λ(du)

for x ∈ R and f belonging to a core D, in agreement with the results
of [27].

Further examples are now provided for which Theorems III.2.7 and
III.2.10 are applicable.

Example III.3.2. (NLG-coalescent) Fix α, ϱ > 0. Assume that Λ is
the negative logarithmic gamma (NLG) distribution having density
u 7→ αϱuα−1(− log u)ϱ−1/Γ(ϱ), u ∈ (0, 1), with respect to Lebesgue
measure on (0, 1). The corresponding Λ-coalescent was introduced in
[25, Example 3.2]. The asymptotics of γ(x) as x→ ∞ is obtained as
follows. For all n ∈ N, γ(n) =

∑n−1
j=0 aj, where

aj :=

∫
1− (1− u)j

u
Λ(du)

∼



αϱ

Γ(ϱ)

Γ(α)

1− α
j1−α(log j)ϱ−1 if 0 < α < 1,

(log j)ϱ

Γ(ϱ+ 1)
if α = 1,(

α

α− 1

)ϱ

if 1 < α <∞,

as j → ∞ by [25, Lemma 7.3], applied with a := α, b := j and c := ϱ.
Thus, as n → ∞, the arithmetic mean γ(n)/n = n−1

∑n−1
j=0 aj of the

sequence (aj)j∈N0
satisfies

γ(n)

n
∼



αϱ

Γ(ϱ)

Γ(α)

(1− α)(2− α)
n2−α(log n)ϱ−1 if 0 < α < 1,

(log n)ϱ

Γ(ϱ+ 1)
if α = 1,(

α

α− 1

)ϱ

if 1 < α <∞.

125



The coalescent has dust if and only if γ(n)/n is bounded, so if and
only if α > 1. This coalescent comes down from infinity if and only
if
∑∞

n=2 1/γ(n) < ∞, so if and only if α < 1 or α = 1 and ϱ > 1. It
is easily seen that

κ := lim
ε→0+

Λ([0, ε])

ε

=


∞ if 0 < α < 1 or if α = 1 and 1 < ϱ <∞,
1 if α = ϱ = 1 (Bolthausen–Sznitman coalescent),
0 if 1 < α <∞ or if α = 1 and 0 < ϱ < 1.

In particular, κ = ∞ if and only if the coalescent comes down from
infinity. Theorems III.2.7 and III.2.10 are applicable if and only if
κ < ∞, so if and only if α > 1 or α = 1 and 0 < ϱ ≤ 1. In the
following three cases are distinguished.

Case 1: For 1 < α < ∞ the coalescent has dust. Hence,
κ = 0, v(x, t) ∼ e−µtx and w(x, t) ∼ eµtx as x → ∞ with
µ :=

∫
u−1Λ(du) = limx→∞ γ(x)/x = (α/(α− 1))ϱ. Theorems III.2.7

and III.2.10 are applicable and in essence logarithmic versions of [14,
Theorem 2.1].

Case 2: For α = ϱ = 1 we obtain the Bolthausen–Sznitman coa-
lescent already studied in Example III.3.1.

Case 3: Assume that α = 1 and 0 < ϱ < 1. Then κ = 0 but
nevertheless the coalescent is dust-free. Let x > 1. By the definition
(III.3) of the rate function γ,

γ(x) =
1

Γ(ϱ)

∫ 1

0

(1− u)x − 1 + xu

u

(− log u)ϱ−1

u
du

=
1

Γ(ϱ+ 1)

∫ 1

0

1− (1− u)x − xu(1− u)x−1

u2
(− log u)ϱ du,

where the last equality holds by partial integration. The substitution
t = xu yields

γ(x)

x
=

(log x)ϱ

Γ(ϱ+ 1)

∫ x

0

1− (1− t
x)
x − t(1− t

x)
x−1

t2

(
1− log t

log x

)ϱ

dt.

A careful analysis shows that, as x → ∞, the latter integral is
asymptotically equal to

∫∞
0 (1 − e−t − te−t)/t2 dt + O(1/ log x) =

[(e−t − 1)/t]∞0 +O(1/ log x) = 1 +O(1/ log x), which implies that

γ(x)

x
− (log x)ϱ

Γ(ϱ+ 1)
= O((log x)ρ−1) → 0, x→ ∞.
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Proposition III.2.6 (i), applied with γ1(x) := x(log x)ϱ/Γ(ϱ+1), shows
that the scaling v(x, t) in Theorem III.2.7 satisfies v(x, t) ∼ v1(x, t)
as x→ ∞, where v1(x, t) is the solution to the equation

t =

∫ x

v1(x,t)

du

γ1(u)
= Γ(ϱ+ 1)

∫ x

v1(x,t)

du

u(log u)ϱ

=
Γ(ϱ+ 1)

1− ϱ

(
(log x)1−ϱ − (log v1(x, t))

1−ϱ),
whenever it exists and v1(x, t) := 1 otherwise. Define Cϱ := (1 −
ϱ)/Γ(1 + ϱ). Solving for v1(x, t) yields

v1(x, t) = exp

((
(log x)1−ϱ−Cϱt

) 1
1−ϱ

)
, x > exp

(
(Cϱt)

(1−ϱ)−1
)
.

By Theorem III.2.7, the process (logN
(n)
t − log v1(n, t))t≥0 converges

in DR[0,∞) as n → ∞ to an Ornstein–Uhlenbeck type process X,
whose generator AX satisfies (see (III.33))

AXf(x) =
1

Γ(ϱ)

∫ 1

0

(
f(x+log(1−u))−f(x)+uf ′(x)

)(− log u)ϱ−1

u2
du,

f ∈ D, x ∈ R where D, the space of all twice differentiable functions
f : R → R such that f , f ′, f ′′ and the map x 7→ xf ′(x), x ∈ R, belong
to Ĉ(R), is a core for AX . Clearly, Theorem III.2.10 is applicable as
well. Similar arguments as for the block counting process show that
w(x, t) ∼ w1(x, t) as x→ ∞, where

w1(x, t) := exp

((
(1− ϱ)t

Γ(ϱ+ 1)
+ (log x)1−ϱ

) 1
1−ϱ

)
.

Thus, the logarithmically scaled fixation line (logL
(n)
t −

logw1(n, t))t≥0 converges in DR[0,∞) as n → ∞ to an Ornstein–
Uhlenbeck type process Y . The generator AY of the limiting process
Y satisfies

AY g(y) =
1

Γ(ϱ)

∫ 1

0

(
g(y−log(1−u))−g(y)−ug′(y)

)(− log u)ϱ−1

u2
du,

g ∈ D, y ∈ R. Note that Assumption A of [27] is not satisfied in
the situation of Case 3, so both convergence results, for the block
counting process and the fixation line, cannot be derived from the
results provided in [27].

We provide another example of a dust-free Λ-coalescent which nev-
ertheless satisfies κ = 0.
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Example III.3.3. Assume that the measure Λ has density u 7→ 1/(1−
log u), u ∈ (0, 1), with respect to Lebesgue measure on (0, 1). Then
Λ([0, ε]) =

∫ ε
0 1/(1− log u) du ∼ eε/(− log ε) as ε→ 0+, and, hence,

κ = limε→0+ ε
−1Λ([0, ε]) = 0. Nevertheless, the corresponding Λ-

coalescent is dust-free, since
∫
u−1Λ(du) = [− log(1 − log u)]10 = ∞.

The function L in Proposition III.2.2 (iii) satisfies L(x) = eγ(x)/x and,
hence, L(x) ∼ log x as x → ∞. Theorem III.2.7 is applicable. By
Proposition III.2.6 (i), applied with γ1(x) := x log log x, the scaling
v(x, t) can be chosen as the solution to the integral equation

t =

∫ x

v(x,t)

1

u log log u
du = [−Ei(1,− log log u)]xv(x,t)

= Ei(1,− log log v(x, t))− Ei(1,− log log x),

where Ei(x) :=
∫∞
1 t−1e−xt dt denotes the exponential integral. By

Lemma III.4.1, the generator AX of the limiting process X in Theo-
rem III.2.7 satisfies

AXf(x) =

∫ 1

0

f(x+ log(1− u))− f(x) + uf ′(x)

u2(1− log u)
du,

x ∈ R, f ∈ D, where D denotes the space of twice differentiable
functions f : R → R such that f , f ′, f ′′ and the map x 7→ xf ′(x),
x ∈ R, belong to Ĉ(R). We leave the formulation of the analogous
results for the fixation line to the interested reader.

In the following an example with simultaneous multiple collisions
is provided. The basic idea is to choose the measure Ξ such that the
corresponding Ξ-coalescent is dust-free, regular and stays infinite. We
slightly modify the example studied in [19] as follows.

Example III.3.4. Let p1, p2, . . . ∈ (0, 1) with
∑∞

m=1 pm < ∞ and let
k1, k2, . . . ∈ N such that kmpm < 1 for all m ∈ N and

∑∞
m=1 kmpm <

∞. Suppose that Ξ assigns for each m ∈ N mass pm to the point
x(m) ∈ ∆ whose first km coordinates are equal to pm and all other
coordinates are equal to 0. Note that Ξ(∆) =

∑∞
m=1 pm <∞. More-

over, |x(m)| = kmpm < 1 for all m ∈ N and, hence, Ξ(∆f) = 0 and
Ξ(∆∗) = 0. The corresponding Ξ-coalescent is dust-free, since∫

∆

|u| ν(du) =
∞∑
m=1

|x(m)| pm
(x(m), x(m))

=
∞∑
m=1

kmpm
pm
kmp2m

=
∞∑
m=1

1 = ∞,
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and regular, since
∫
∆ |u|2 ν(du) =

∑∞
m=1(kmpm)

2pm/(kmp
2
m) =∑∞

m=1 kmpm < ∞. Note that (see [19, Proposition 1]) all regular Ξ-
coalescents are non-critical, i.e., ν(∆ \∆ε) < ∞ for some ε ∈ (0, 1).
For all x ≥ 0,

γ(x) =

∫
∆

∑
i≥1

(
(1− ui)

x − 1 + xui
)
ν(du)

=
∞∑
m=1

km
(
(1− pm)

x − 1 + xpm
) pm
kmp2m

=
∞∑
m=1

(1− pm)
x − 1 + xpm
pm

.

Note that γ(x) does not depend on the sequence (km)m∈N and is
hence solely determined by the sequence (pm)m∈N.

For example, if pm = pm, m ∈ N, for some p ∈ (0, 1/2], then [19,
Example 6.1 b)],

γ(x) ∼ κpx log x, x→ ∞,

with constant κp := −1/ log p. Thus,
∑∞

n=2 1/γ(n) = ∞. By
Schweinsberg’s criterion [31, Proposition 33] for non-critical coales-
cents, the Ξ-coalescent stays infinite.

We have hence constructed a class of dust-free and regular Ξ-
coalescents that stay infinite. For all x > 0,

γ′′(x) =
∞∑
m=1

(1− pm)x(log(1− pm))2

pm

∼
∫ ∞

0

(1− pt)x(log(1− pt))2

pt
dt

= κp

∫ 1

0

(1− u)x(log(1− u))2

u2
du

∼ κp

∫ 1

0

(1− u)x du =
κp

x+ 1
,

which shows that xγ′′(x) → κp as x → ∞. Thus, Theorems III.2.7
and III.2.10 are applicable.

For other choices of the sequence (pm)m∈N one obtains further ex-
amples with different behavior. Intuitively, γ(x)/x grows very slowly
if pm tends to 0 extremely fast. One such choice is pm := pe

m

in which
case we have γ(x) ∼ x log log x as x→ ∞, see also [19, Example 6.1
c)]. In this case κ := limx→∞ xγ′′(x) = 0. Nevertheless the coalescent
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is dust-free. Theorems III.2.7 and III.2.10 are applicable with scal-
ings v(x, t) = xLt(x) and w(x, t) = xL#

t (x), where Lt and L#
t are

the slowly varying functions from Propositions III.2.5 and III.2.9,
respectively.

We end this section by providing a simple example of a Λ-
coalescent that does not come down from infinity but nevertheless
has curvature parameter κ = ∞.

Example III.3.5. Let α > 0. Consider a Λ-coalescent such that γ(x) ∼
x(log x)(log log x)α. Such a Λ-coalescent can be easily constructed. By
Cauchy’s condensation test, the series

∑∞
n=2 1/γ(n) converges if and

only if α > 1. By Schweinsberg’s criterion, this coalescent therefore
comes down from infinity if and only if α > 1. However, κ = ∞,
no matter how α > 0 is chosen. For α ≤ 1, this coalescent does not
come down from infinity but nevertheless satisfies κ = ∞.

III.4 Proofs

III.4.1 The function γ

Proof. (of Lemma III.2.1) First assume that a = 0. Clearly, γ(0) =
γ(1) = 0. From Bernoulli’s inequality (and ν({(1, 0, . . .)}) = 0) it
follows that γ(x) > 0 for x > 1. By the mean value theorem, there

exist ξ
(1)
i ∈ (0, ui) and ξ

(2)
i ∈ (0, ξ

(1)
i ) for x ≥ 2, i ∈ N and u ∈ ∆ such

that
∑

i≥1(x
−1((1 − ui)

x − 1) + ui) =
∑

i≥1 ui(1 − (1 − ξ
(1)
i )x−1) =

(x − 1)
∑

i≥1 uiξ
(1)
i (1 − ξ

(2)
i )x−2 ≤ (x − 1)(u, u). Hence, γ(x)/x =∫

∆

∑
i≥1(x

−1((1− ui)
x − 1) + ui) ν(du) ≤ (x− 1)Ξ0(∆).

Let u ∈ ∆. By [25, Lemma 4.1], the map Φ(x) :=
∑

i≥1(1 − (1 −
ui)

x), x ≥ 0, is infinitely often differentiable on (0,∞) with deriva-
tives

Φ(k)(x) = −
∑
i≥1

(1− ui)
x(log(1− ui))

k, x > 0, k ∈ N, u ∈ ∆.

Thus,

d

dx

∑
i≥1

(
(1− ui)

x − 1 + xui
)

=
d

dx

(
x|u| − Φ(x)

)
= |u| +

∑
i≥1

(1− ui)
x log(1− ui)

=
∑
i≥1

(
(1− ui)

x log(1− ui) + ui
)
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and

dk

dxk

∑
i≥1

(
(1− ui)

x − 1 + xui
)

= −Φ(k)(x)

=
∑
i≥1

(1− ui)
x(log(1− ui))

k,

k ∈ N\{1}. Note that, for every k ∈ N, the k-th derivative is bounded
by Ck(u, u) for some Ck > 0. Hence, it is allowed to differentiate
(with respect to x) below the integral such that γ ∈ C∞((0,∞))
with derivatives as stated in the lemma.

Since γ′(x) > 0 for x > 1, the function γ is strictly increasing on
[1,∞). Since x 7→ x−1((1− ui)

x − 1), x ≥ 1, is strictly increasing for
every u ∈ ∆ and i ∈ N, the map x 7→ γ(x)/x =

∫
∆

∑
i≥1(x

−1((1 −
ui)

x − 1) + ui) ν(du), x ≥ 1, is strictly increasing as well.
For a > 0 the value a

(
x
2

)
is added, which shows that the results

remain valid for a > 0 as stated in the lemma.

Proof. (of Proposition III.2.2) We prove this proposition by verify-
ing the implications “(i) ⇒ (ii) ⇔ (iii) ⇔ (iv) ⇒ (v)” and “(v)
⇒ (i)”. Define the functions g, L : (0,∞) → (0,∞) via g(x) :=
exp(γ(x)/x) = xκL(x), x > 0. From g′(x) = g(x)(γ′(x)/x− γ(x)/x2)
and d

dx(xγ
′(x)− γ(x)) = xγ′′(x), x > 0, it follows that

xg′(x)

g(x)
= γ′(x)− γ(x)

x
=

1

x

(∫ x

1

uγ′′(u) du + γ′(1)

)
, (III.30)

x > 0. Due to the second equality of (III.30), (i) implies (ii). The
map x 7→ x2g′(x) = g(x)(xγ′(x) − γ(x)), x > 0, is non-decreasing,
since

d

dx
g(x)(xγ′(x)− γ(x)) = g(x)

((
γ′(x)− γ(x)

x

)2

+ xγ′′(x)

)
≥ 0,

x > 0. Applying [20, Theorem 2] to the function x 7→ g(x−1), x > 0,
hence shows that (ii) is equivalent to the regular variation of g of
index κ, i.e., equivalent to the slow variation of L. Thus, (ii) and
(iii) are equivalent. Conditions (iii) and (iv) are equivalent by the
definition of slow variation. Suppose that (iv) holds. It is already
proven that (iv) implies (ii) such that

lim
x→∞

(
γ′(yx)−γ′(x)

) (ii)
= lim

x→∞

(
γ(yx)

yx
−γ(x)

x

)
(iv)
= κ log y, y > 0,
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and (v) holds. Finally, it is shown that (v) implies (i). By the
mean value theorem, there exists ξ = ξ(x, y) between y and 1 such
that γ′(yx) − γ′(x) = γ′′(xξ)x(y − 1) for all x, y > 0. Given (v),
limx→∞ xγ′′(xξ) = (κ log y)/(y − 1) for y > 0, y ̸= 1. Since γ′′ is
non-negative and ultimately non-increasing, lim supx→∞ xγ′′(x) ≤
limx→∞ xγ′′(xξ(x, y)) = (κ log y)/(y − 1) for all y ∈ (0, 1) and
lim infx→∞ xγ′′(x) ≥ limx→∞ xγ′′(xξ(x, y)) = (κ log y)/(y − 1) for all
y > 1. Letting y → 1 establishes (i), since limy→1(log y)/(y − 1) =
1.

Proof. (of Proposition III.2.3) We prove the equivalence of (i) and
(ii) and afterwards the equivalence of (ii) and (iii).
(i) ⇔ (ii): Define U(t) := 0 for t < 0 and U(t) := F (1−e−t) for t ≥ 0,
with F defined as in (III.7). Let x > 0. By monotone convergence
and Fubini’s theorem,

γ′′(x) =
∑
i≥1

∫
∆

(1− ui)
x(log(1− ui))

2 ν(du)

=
∑
i≥1

∫
∆

∫
[ui,1)

x(1− y)x−1 λ(dy)(log(1− ui))
2 ν(du)

=
∑
i≥1

x

∫
[0,1)

(1− y)x−1

∫
∆

1[0,y](ui)(log(1− ui))
2 ν(du)λ(dy)

=
∑
i≥1

x

∫ 1

0

(1− y)x−1Fi(y) dy = x

∫ 1

0

(1− y)x−1F (y) dy

= x

∫ ∞

0

e−xtF (1− e−t) dt = x

∫ ∞

0

e−xtU(t) dt =: Û(x).

Thus, the map γ′′ = Û is the Laplace–Stieltjes transform of U . By
Karamata’s Tauberian theorem [4, Theorem 1.7.1’], applied with ℓ ≡
1, c := κ ∈ [0,∞) and ρ := 1, the condition xÛ(x) = xγ′′(x) → κ as
x → ∞ is equivalent to t−1U(t) → κ as t → 0+, which shows that
(i) and (ii) are equivalent.
(ii) ⇔ (iii): Let ε > 0. Choose δ = δ(ε) ∈ (0, 1) sufficiently small
such that (log(1−x))2 ≤ (1+ ε)x2 for all x ∈ [0, δ]. For all i ∈ N and
t ∈ [0, δ] it follows that

Fi(t) =

∫
∆

1[0,t](ui)(log(1− ui))
2 ν(du)

≤ (1 + ε)

∫
∆

1[0,t](ui)u
2
i ν(du) = (1 + ε)Gi(t).

132



Summation over all i ∈ N yields F (t) ≤ (1 + ε)G(t) for all
t ∈ [0, δ]. Thus, lim inft→0+ t

−1F (t) ≤ (1 + ε) lim inft→0+ t
−1G(t)

and lim supt→0+ t
−1F (t) ≤ (1 + ε) lim supt→0+ t

−1G(t). Since ε > 0
can be chosen arbitrarily small it follows that lim inft→0+ t

−1F (t) ≤
lim inft→0+ t

−1G(t) and lim supt→0+ t
−1F (t) ≤ lim supt→0+ t

−1G(t).
The converse two inequalities are obviously satisfied, since G(t) ≤
F (t) for all t ∈ [0, 1). The equivalence of (ii) and (iii) now follows
immediately.

For Λ-coalescents it is easily seen that G(t) = Λ([0, t]), t ∈ [0, 1],
showing that (iii) reduces to (III.8).

III.4.2 The normalizing function v

Recall that v(x, t) is the solution to
∫ x
v(x,t)(γ(u))

−1 du = t for x > 1
and t ≥ 0.

Proof. (of Proposition III.2.4) In order to see that v is well-defined
fix x > 1 and define Fx : (1, x] → [0,∞) via Fx(y) :=

∫ x
y (γ(u))

−1 du,
y ∈ (1, x]. Then Fx(y) > 0 for y ∈ (1, x], since γ(u) > 0 for u > 1,
and Fx ∈ C1((1, x]) with F ′

x(y) = −(γ(y))−1, y ∈ (1, x], since γ is
continuous. In particular, Fx is strictly decreasing. Clearly, Fx(x) =
0. There exists C ∈ R such that γ(u) ≤ u(u− 1)C for u > 1. Then

Fx(y) ≥ 1

C

∫ x

y

du

u(u− 1)
=

1

C
log

1− x−1

1− y−1
, y ∈ (1, x],

such that limy→1+ Fx(y) = ∞. By the intermediate value theorem,
the solution v(x, t) ∈ (1, x] to the equation Fx(v(x, t)) = t exists and
is unique for every t ≥ 0. Since F ′

x(y) < 0 for y ∈ (1, x], the function
Fx is injective and the inverse function F−1

x : [0,∞) → (1, x] exists
and is differentiable with (F−1

x )′(t) = −γ(F−1
x (t)), t ≥ 0. Hence,

t 7→ v(x, t) = F−1
x (t), t ≥ 0, is differentiable and

d

dt
v(x, t) = −γ(v(x, t)), t ≥ 0.

Differentiating both sides of the integral equation in (III.9) with re-
spect to x leads to (γ(x))−1− d

dxv(x, t)(γ(v(x, t)))
−1 = 0. Equivalently,

d

dx
v(x, t) =

γ(v(x, t))

γ(x)
, x > 1, t ≥ 0.

The two monotonicity statements follow from the formulas for the
derivatives (and can also be deduced directly from Eq. (III.9)).
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Proof. (of Proposition III.2.5) (i) Suppose that Ξ({0}) = 0 and µ :=∫
∆ |u| ν(du) < ∞. Fix t > 0 and let ε > 0 be arbitrary. Due to
limx→∞ γ(x)/x = µ, there exists x0 > 1 such that (µu)/γ(u) ∈ (1 −
ε, 1 + ε) for all u ∈ (v(x, t), x) as long as x ≥ x0. Thus,

1− ε

µ

∫ x

v(x,t)

du

u
≤

∫ x

v(x,t)

du

γ(u)
≤ 1 + ε

µ

∫ x

v(x,t)

du

u
,

such that, by Eq. (III.9), exp(−µt/(1 − ε)) ≤ v(x, t)/x ≤
exp(−µt/(1+ε)) for x ≥ x0. It follows that v(x, t) ∼ xe−µt as x→ ∞,
since ε > 0 can be chosen arbitrarily small. Clearly, v(x, 0) = x, so
the statement also holds for t = 0.

(ii) Define F : (1,∞) → (0,∞) via F (y) =
∫∞
y (γ(u))−1 du, y > 1,

and suppose that F (y) <∞ for some (and hence all) y > 1. Similarly
to the proof of (i), it follows that limy→1+ F (y) = ∞, limy→∞ F (y) =
0, F ∈ C1((1,∞)) and F ′(y) = −(γ(y))−1, y > 1. Thus, the solution
v(t) to the equation F (v(t)) = t exists and is unique for every t ≥ 0.
The limit c(t) := limx→∞ v(x, t) exists for every t > 0, since x 7→
v(x, t), x ≥ 1, is non-decreasing, and c(t) <∞ due to limy→∞ F (y) =
0. From∫ v(t)

v(x,t)

du

γ(u)
=

∫ x

v(x,t)

du

γ(u)
−

∫ ∞

v(t)

du

γ(u)
+

∫ ∞

x

du

γ(u)
=

∫ ∞

x

du

γ(u)
,

x ≥ 1, t ≥ 0, we obtain that F (c(t))−F (v(t)) = limx→∞(F (v(x, t))−
F (v(t))) = limx→∞ F (x) = 0. Since F is injective, c(t) = v(t) for each
t > 0. The proof of (ii) is complete.

(iii) Due to v(x, 0) = x, the claim is true for t = 0 with L0(x) =
1 for x ≥ 1. Fix t > 0. By assumption and Proposition III.2.2,
there exists a slowly varying function L : (0,∞) → (0,∞) such that
γ(x) = κx log x + x logL(x) for x > 0. The fact that L(x) = o(xε)
and L(x) = ω(x−ε) for every ε > 0 is repeatedly used in this proof.

First suppose that κ > 0 and let 0 < ε < κ be arbitrary. Recall that
limx→∞ v(x, t) = ∞. There exists x0 > 1 such that (κ − ε)u log u ≤
γ(u) ≤ (κ+ ε)u log u for every u ∈ (v(x, t), x) and x ≥ x0. Thus,

1

κ+ ε

∫ x

v(x,t)

du

u log u
≤

∫ x

v(x,t)

du

γ(u)
≤ 1

κ− ε

∫ x

v(x,t)

du

u log u
,

x ≥ x0. Computing the integrals on both sides and using Eq. (III.9)
yields

1

κ+ ε
log

(
log x

log v(x, t)

)
≤ t ≤ 1

κ− ε
log

(
log x

log v(x, t)

)
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or, equivalently, xe
−(κ+ε)t ≤ v(x, t) ≤ xe

−(κ−ε)t

for all x ≥ x0. From
(III.10) it follows that

d
dxv(x, t)x

v(x, t)
=

γ(v(x, t))

v(x, t)

x

γ(x)
=

κ log v(x, t) + logL(v(x, t))

κ log x+ logL(x)
,

x > 1, such that

e−(κ+ε)t ≤ lim inf
x→∞

d
dxv(x, t)x

v(x, t)

≤ lim sup
x→∞

d
dxv(x, t)x

v(x, t)
≤ e−(κ−ε)t. (III.31)

We are going to show similar inequalities for κ = 0. Suppose that
γ(x) = x logL(x), x > 0, for some slowly varying function L. By
Proposition III.2.2, (xL′(x))/L(x) = γ′(x) − γ(x)/x → κ = 0 as
x→ ∞. From (III.10) it follows that

d

dt
logL(v(x, t)) =

−L′(v(x, t))v(x, t) logL(v(x, t))

L(v(x, t))
,

x > 1. Note that L(x) = exp(γ(x)/x) is non-decreasing on [1,∞)
and, by definition, v(x, t) ≤ x for all x ≥ 1. For ε > 0 there exists
x1 > 1 such that | dds logL(v(x, s))| ≤ ε logL(x) for all s ∈ [0, t] and
x ≥ x1. We hence obtain∣∣ logL(v(x, t))− logL(x)

∣∣ ≤
∫ t

0

∣∣∣∣ dds logL(v(x, s))
∣∣∣∣ds

≤ εt logL(x)

such that
d
dxv(x, t)x

v(x, t)
=

logL(v(x, t))

logL(x)
∈ [1− εt, 1 + ε] (III.32)

for all x ≥ x1. Letting ε → 0+ in (III.31) and (III.32) yields

limx→∞
d
dxv(x,t)x

v(x,t) = e−κt for κ ≥ 0. A “variant at infinity” of [20,

Theorem 2] completes the proof.

Proof. (of Proposition III.2.6) (i) Define the function L1 : (1,∞) →
(0,∞) via γ1(x) = κx log x+ x logL1(x), x > 1. By assumption,

r(x) :=
γ(x)− γ1(x)

x
= log

(
L(x)

L1(x)

)
→ 0, x→ ∞.

In particular, L(x) ∼ L1(x) as x → ∞. Hence, L1 is slowly varying
and, as a consequence, γ1 satisfies (III.6). Unfortunately, the scal-
ing v1(x, t), defined by the integral equation in (III.9) with γ1 in
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place of γ, does not exist globally. The reason is that the condition
limy→1+ Fx(y) = ∞ from the proof of Proposition III.2.4 cannot be
guaranteed. However, γ1 is continuous and positive on (1,∞) and∫∞
c (γ1(u))

−1du = ∞ for each c > 1. Carefully reading the proof of
Proposition III.2.4 shows that the statements of Proposition III.2.4
remain true with the restriction that, for each t ≥ 0, x ≥ x0(t) for
some x0(t) > 1. Moreover, we can choose x0(t) in such a way that
x0(s) ≤ x0(t) for s ≤ t. In particular, the scaling v1(x, t) exists for
x ≥ x0(t) and t ≥ 0. Now fix t ≥ 0. From (III.10) it follows that

log v(x, t)− log x = −
∫ t

0

γ(v(x, s))

v(x, s)
ds

= −
∫ t

0

(
κ log v(x, s) + logL(v(x, s)

)
ds

for x > 1. The same equalities hold when x ≥ x0(t) and v(x, t) and
L are replaced by v1(x, t) and L1, respectively. Then, for x > x0(t),∣∣∣∣ log v(x, t)

v1(x, t)

∣∣∣∣ ≤ κ

∫ t

0

∣∣∣∣ log v(x, s)

v1(x, s)

∣∣∣∣ds
+ t sup

y≥v(x,t)
|r(y)| +

∫ t

0

∣∣∣∣ log L1(v(x, s))

L1(v1(x, s))

∣∣∣∣ds.
Let c1, c2 > 0 be arbitrary. The representation theorem for slowly
varying functions [4, Theorem 1.3.1] states the existence of functions
ε, δ : (0,∞) → R with limx→∞ ε(x) = 0 and limx→∞ δ(x) = d ∈ R
such that logL1(x) = δ(x) +

∫ x
1 (ε(u)/u) du, x > 0. Hence,∣∣∣∣ log L1(v(x, s))

L1(v1(x, s))

∣∣∣∣ ≤
∣∣δ(v(x, s))− δ(v1(x, s))

∣∣ +

∫ v(x,s)

v1(x,s)

|ε(u)|
u

du

≤ c2 + c1

∣∣∣∣ log v(x, s)

v1(x, s)

∣∣∣∣
for sufficiently large x and s ∈ [0, t], where in the last inequality it
is used that infs∈[0,t] v(x, s) = v(x, t) → ∞ and infs∈[0,t] v1(x, s) → ∞
as x→ ∞. Thus,∣∣∣∣ log v(x, t)

v1(x, t)

∣∣∣∣ ≤ t

(
sup

y≥v(x,t)
|r(y)|+c2

)
+ (κ+c1)

∫ t

0

∣∣∣∣ log v(x, s)

v1(x, s)

∣∣∣∣ds.
By Gronwall’s inequality,∣∣∣∣ log v(x, t)

v1(x, t)

∣∣∣∣ ≤ t

(
sup

y≥v1(x,t)
|r(y)|+ c2

)
exp(t(κ+ c1)).
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We conclude that limx→∞ | log v(x, t) − log v1(x, t)| = 0, which com-
pletes the proof of (i), because c2 > 0 is arbitrarily small.

(ii) First assume that γ : (0,∞) → (0,∞) is a function of the form
(III.6) with L ≡ C for some constant C > 0. Then the integral in
(III.9) can be calculated explicitly and it is easily seen that v(x, t),
defined via v(x, t) := xe

−κt

Cκ−1(e−κt−1) if κ > 0 and v(x, t) := xC−t

if κ = 0, solves (III.9) for every x > 1 and t ≥ 0. If L only satisfies
L(x) → C as x → ∞, then the same formulas for v(x, t) hold, but
with equality replaced by asymptotic equality as x → ∞, as shown
in (i).

III.4.3 Proof of Theorem III.2.7

The scaled block counting process and the scaled fixation line are in
general time-inhomogeneous Markov processes. We therefore add a
further “time variable” and consider the associated time-space pro-
cesses, which are time-homogeneous. We want to show the uniform
convergence of the generators. First a well known result ([30, The-
orem 3.1]) concerning generators of Ornstein–Uhlenbeck type pro-
cesses on Rd is applied. The short proof is an adaption of the proof
of [27, Lemma 6] to the Ξ-coalescent setting.

Lemma III.4.1. Suppose that Ξ satisfies (III.1) and Ξ(∆∗) = 0.
Fix κ ∈ [0,∞) and let the family of operators (TXt )t≥0 be defined by
(III.17). Then (TXt )t≥0 is a Feller semigroup on Ĉ(R). Let D denote
the space of all twice differentiable functions f : R → R such that f ,
f ′, f ′′ and the map x 7→ xf ′(x), x ∈ R, belong to Ĉ(R). Then D is
a core for the generator AX corresponding to (TXt )t≥0 and

AXf(x) = −κxf ′(x) (III.33)

+

∫
∆

(
f(x+ log(1− |u|))− f(x) + |u|f ′(x)

)
ν(du),

x ∈ R, f ∈ D.

Proof. (of Lemma III.4.1) Substituting g : ∆ \ ∆∗ → R, g(u) :=
log(1− |u|), u ∈ ∆ \∆∗, shows that (III.33) is an integro-differential
operator of the form (1.1) of Sato and Yamazato [30] with dimension
d = 1. In [30], operators of this form are initially considered as acting
on the space C2

c of twice differentiable functions with compact sup-
port (see the explanations after Eq. (1.2) in [30]), but Step 3 of the
proof of [30, Theorem 3.1] shows that (III.33) even holds for func-
tions f ∈ D (⊃ C2

c ). Note that the space D is denoted by F1 in [30].
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The fact that D is a core for AX is only a different phrasing of the
claim in Step 5 of the proof of [30, Theorem 3.1].

When writing semigroups or generators in the remainder of the
proof section, we mostly omit the upper index that identifies the
corresponding process. We only use the symbol tilde to indicate the
time-space process.

The time-space process X̃ := (t,Xt)t≥0 is a time-homogeneous
Markov process with state space Ẽ := [0,∞) × R and semigroup
T̃ := (T̃t)t≥0, given by

T̃tf(s, x) := E(f(s+ t, e−κtx+ St)),

(s, x) ∈ Ẽ, f ∈ B(Ẽ), t ≥ 0. For f ∈ Ĉ(Ẽ) and s ≥ 0, let the map
x 7→ f(s, x), x ∈ R, be denoted by πf(s, x). Let D̃ denote the space of
functions f ∈ Ĉ(Ẽ) of the form f(s, x) =

∑l
i=1 gi(s)hi(x), (s, x) ∈ Ẽ,

with l ∈ N, hi ∈ D and gi ∈ C1([0,∞)) such that gi, g
′
i ∈ Ĉ([0,∞))

for i ∈ {1, . . . , l}. By [27, Proposition 10], T̃ is a Feller semigroup, D̃
is a core for the generator Ã corresponding to T̃ and

Ãf(s, x) =
∂

∂s
f(s, x) + AXπf(s, x), (s, x) ∈ Ẽ, f ∈ D̃.

For n ∈ N the logarithmically scaled block counting process X(n) :=
(X

(n)
t )t≥0 := (logN

(n)
t − log v(n, t))t≥0 is a time-inhomogeneous

Markov process. The random variable X
(n)
s takes values in En,s :=

{x ∈ R : exv(n, s) ∈ [n]}. The “generator” (A
(n)
s )s≥0 of X(n) is given

by

A(n)
s f(x) = f ′(x)

− d
dsv(n, s)

v(n, s)

+

xv(n,s)−1∑
j=1

(
f(log j − log v(n, s))− f(x)

)
qxv(n,s),j

= f ′(x)
γ(v(n, s))

v(n, s)

+

xv(n,s)−1∑
j=1

(
f(log j − log v(n, s))− f(x)

)
qxv(n,s),j

for x ∈ En,s and s ≥ 0. Here f ∈ C1(R) such that f, f ′ ∈ Ĉ(R).
The time-space process X̃(n) := (t,X

(n)
t )t≥0 is a time-homogeneous

Markov process with state space Ẽn := {(s, x) ∈ [0,∞) × R :
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exv(n, s) ∈ [n]} and semigroup T̃ (n) := (T̃
(n)
t )t≥0, given by

T̃
(n)
t f(s, x) := E

(
f(s+ t, logN

(exv(n,s))
t − log v(n, s+ t))

)
,

(s, x) ∈ Ẽn, f ∈ B(Ẽ), t ≥ 0. For f ∈ D̃ (restricted to Ẽn ⊂ Ẽ) the
corresponding generator Ã(n) is given by

Ã(n)f(s, x) =
∂

∂s
f(s, x) + A(n)

s πf(s, x), (s, x) ∈ Ẽn.

Proof. (of Theorem III.2.7) Write k := k(s, x, n) := exv(n, s) for

(s, x) ∈ Ẽn and n ∈ N. Let h ∈ D. Define R(k, x) := γ(ke−x)
ke−x − γ(k)/k

and

S(k, x) :=
k−1∑
j=1

(
h(x+ log j

k)− h(x) + (1− j
k)h

′(x)
)
qk,j,

k ∈ N, x ∈ R, such that

A(n)
s h(x) = h′(x)R(k, x) + S(k, x), (s, x) ∈ Ẽn, n ∈ N.

Define the continuous function I : R × [0, 1] → R via I(x, y) :=
h(x+log(1−y))−h(x)+yh′(x), y ∈ [0, 1), and I(x, 1) := −h(x)+h′(x)
for x ∈ R. From Eq. (III.13) and the definition of I it follows that

S(k, x) =

∫
∆

E(I(x, 1− Y (k, u)/k)) ν(du), k ∈ N, x ∈ R.

Also,

AXh(x) = −κxh′(x) +

∫
∆

I(x, |u|) ν(du), x ∈ R.

Part 1 of the proof treats the convergence of R(k, x) and Part 2 the
convergence of S(k, x).

Part 1. By assumption and Proposition III.2.2, there exist κ ≥ 0
and a slowly varying function L : (0,∞) → (0,∞) such that γ(x) =
κx log x+ x logL(x), x > 0. Then R(k, x) + κx = log(L(ke−x)/L(k))
for k ∈ N and x ∈ R. Applying [4, Theorem 1.5.6 (ii)], a boundary for
the growth of slowly varying functions, yields the existence of C > 0
such that |R(k, x) + κx)| ≤ C + |x| for k ∈ N and −∞ < x ≤ log k.
For c > 0 there exist −∞ < K1 < K2 <∞ such that

|h′(x)(R(k, x) + κx)| ≤ C|h′(x)|+ |xh′(x)| ≤ c, (III.34)

x ∈ R \ [K1, K2], x ≤ log k, k ∈ N, since h′ and the map x 7→ xh′(x),
x ∈ R, vanish as |x| → ∞. The present restriction x ≤ log k(s, x, n)
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is met for (s, x) ∈ Ẽn and n ∈ N. Let T > 0 be arbitrary. By
the uniform convergence theorem for slowly varying functions ([4,
Theorem 1.5.2]) and limn→∞ infs∈[0,T ] v(n, s) = ∞,

lim
n→∞

sup
(s,x)∈Ẽn,s∈[0,T ],x∈[K1,K2]

|R(k, x) + κx| (III.35)

= lim
n→∞

sup
(s,x)∈Ẽn,s∈[0,T ],x∈[K1,K2]

| log(L(v(n, s))/L(exv(n, s)))| = 0.

From (III.34), (III.35) and arbitrariness of c it follows that

lim
n→∞

sup
(s,x)∈Ẽn,s∈[0,T ]

|h′(x)(R(k, x) + κx)| = 0. (III.36)

Part 2. Note that, as n → ∞, k = exv(n, s) → ∞ or x → −∞.
For example, either k ≥

√
v(n, T ) or x < −1

2 log v(n, T ) for each

(s, x) ∈ Ẽn with s ∈ [0, T ] and n ∈ N. In order to prove that

lim
n→∞

sup
(s,x)∈Ẽn,s∈[0,T ]

∣∣E(I(x, 1− Y (k, u)/k)− I(x, |u|)
)∣∣ = 0, (III.37)

u ∈ ∆ \ (∆∗ ∪ {0}), it therefore suffices to show that
limx→−∞ I(x, |u|) = 0, limx→−∞ E(I(x, Y (k, u)/k)) = 0 for any k ∈ N
and limk→∞ supx∈R |E(I(x, 1 − Y (k, u)/k) − I(x, |u|))| = 0 for each
u ∈ ∆ \ (∆∗ ∪ {0}).

Clearly, supx∈R,y∈[0,1] |I(x, y)| ≤ 2||h|| + ||h′|| < ∞. In particular,
the family of functions I := {I(x, .) : x ∈ R} is uniformly bounded.
The family I is equicontinuous on any interval [0, c] with c < 1, since
h is uniformly continuous and h′ is bounded. In view of [27, Lemma
9], the almost sure convergence of 1 − Y (k, u)/k to |u| as k → ∞
implies that limk→∞ supx∈R |E(I(x, 1 − Y (k, u)/k)) − I(x, |u|)| = 0
for any u ∈ ∆ \ (∆∗ ∪ {0}). The cited lemma does not allow the
limiting “random” variable |u| to assume the values 0 and 1 with
positive probability, hence we impose the restriction of u to ∆\(∆∗∪
{0}). For any y ∈ [0, 1], limx→−∞ I(x, y) = 0, since lim|x|→∞ h′(x) =
lim|x|→∞ h(x) = 0. Thus, limx→−∞ I(x, |u|) = 0 and, by dominated
convergence, limx→−∞ E(I(x, 1 − Y (k, u)/k)) for k ∈ N and u ∈ ∆,
which completes the proof of (III.37).

Taylor’s theorem applied to y 7→ h(x+log(1−y)), y < 1, evaluated
at y = 0 with mean value remainder states the existence of ξ ∈ (0, y)
such that

I(x, y) = (1− ξ)−2(h′′(x+ log(1− ξ))− h′(x+ log(1− ξ)))(y− ξ)y,
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x ∈ R, y ∈ (0, 1). In particular, supx∈R |I(x, y)| ≤ (1 − c)−2(||h′′|| −
||h′||)y2 < ∞ for 0 ≤ y ≤ c and any c < 1. Thus, there exists C ∈ R
such that supx∈R |I(x, y)| ≤ Cy2 for every y ∈ [0, 1]. From Lemma
III.5.3 it follows that supn∈N sup(s,x)∈Ẽn,s∈[0,T ]|E(I(x, 1−Y (k, u)/k))−
I(x, |u|)| ≤ supk∈N,x∈R |E(I(x, 1 − Y (k, u)/k))| + supx∈R |I(x, |u|)| ≤
(D2 + 1)C|u|2 for any u ∈ ∆. Due to (III.37) and (III.1), the domi-
nated convergence theorem is applicable such that

lim
n→∞

sup
(s,x)∈Ẽn,s∈[0,T ]

∣∣∣∣ ∫
∆

E(I(x, 1− Y (k, u)/k)) ν(du) (III.38)

−
∫
∆

I(x, |u|) ν(du)
∣∣∣∣

≤ lim
n→∞

∫
∆

sup
(s,x)∈Ẽn,s∈[0,T ]

∣∣E(I(x, 1− Y (k, u)/k))

− I(x, |u|)
∣∣ν(du) = 0.

Here we made use of ν(∆∗ ∪ {0}) = 0.
Eqs. (III.36) and (III.38) imply

lim
n→∞

sup
(s,x)∈Ẽn,s∈[0,T ]

|A(n)
s h(x)− AXh(x)| = 0.

Hence,

lim
n→∞

sup
(s,x)∈Ẽn,s∈[0,T ]

|Ã(n)f(s, x)− Ãf(s, x)| = 0, f ∈ D̃.

From [11, IV, Corollary 8.7] it follows that X̃(n) → X̃ in DẼ[0,∞),
hence X(n) → X in DR[0,∞) as n→ ∞.

Remark. Assumption (III.5) is only used in Part 1 of the proof of
Theorem III.2.7, whereas Part 2 remains correct for every measure
Ξ satisfying Ξ(∆∗ ∪ {0}) = 0 and

∫∞
2 (γ(u))−1 du = ∞.

III.4.4 Proofs concerning the fixation line

Propositions III.2.8 and III.2.9 treat the normalizing function w(x, t)

for the fixation line, implicitly defined via
∫ w(x,t)
x (γ(u))−1 du = t.

Proposition III.2.8 verifies the existence of w.

Proof. (of Proposition III.2.8) Suppose that
∫∞
2 (γ(u))−1 du = ∞.

Fix x > 1. The function Fx : [x,∞) → R, defined by Fx(y) :=∫ y
x (γ(u))

−1 du, y ∈ [x,∞), is continuous, strictly increasing and sat-
isfies Fx(x) = 0 and limy→∞ Fx(y) = ∞. Thus, the solution w(x, t)
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to the equation t = Fx(w(x, t)) =
∫ w(x,t)
x (γ(u))−1 du, exists, lies in

the interval [x,∞) and is unique for every t ≥ 0. The function Fx is
differentiable and F ′

x(y) = (γ(y))−1 > 0, y ∈ [x,∞), and, as a conse-
quence, the inverse F−1

x : [0,∞) → [x,∞) exists, is differentiable and
(F−1

x )′(t) = γ(F−1
x (t)), t ≥ 0. Clearly, w(x, t) = F−1

x (t) such that

d

dt
w(x, t) = γ(w(x, t)), t ≥ 0, x > 1.

The formula for d
dxw(x, t) follows from differentiation of both sides

of the integral equation in (III.19) with respect to x.

The proof of Proposition III.2.9 could be copied from the respective
one for the block counting process, the proof given instead uses the
fact that v(., t) and w(., t) are inverse.

Proof. (of Proposition III.2.9) We first prove (ii), and then (i) and
(iii). Note that the situation of (i) is a special case of (ii) with κ = 0.
Fix t ≥ 0. According to Proposition III.2.5 there exists a slowly
varying function Lt : [1,∞) → (0,∞) such that v(x, t) = xe

−κt

Lt(x),
x ≥ 1. As the function w(., t) is the inverse of v(., t), it is regularly
varying with index eκt. More precisely, it follows from [4, Proposi-
tion 1.5.15], applied with f(x) := v(x, t), a := e−κt, b := 1 and
l(x) := Lt(x), x ≥ 1, that w(x, t) ∼ xe

κt

L#,0
t (xe

κt

) as x → ∞,
where L#,0

t is the de Bruijn conjugate of the slowly varying func-
tion x 7→ (Lt(x))

eκt, x ≥ 1, i.e., a slowly varying function satisfying
limx→∞ L#,0

t (x(Lt(x))
eκt)(Lt(x))

eκt = 1. See, e.g., [4, Theorem 1.5.13]
for a definition of the de Bruijn conjugate of slowly varying func-
tions. The function L#

t , defined via w(x, t) = xe
κt

L#
t (x), x ≥ 1, is

asymptotically equal to the slowly varying function L#,0
t (xe

κt

), thus
slowly varying itself, which completes the proof of (ii).

(i) Assume that Ξ({0}) = 0 and µ =
∫
∆ |u| ν(du) <∞, and recall

that κ = 0. Proposition III.2.5 states that limx→∞ Lt(x) = e−µt. We
can thus choose L#,0

t (x) := eµt, x ≥ 1. From L#
t (x) ∼ L#,0

t (x) = eµt

it follows that w(x, t) ∼ xeµt as x→ ∞.
(iii) As seen in the proof of Proposition III.2.6, there exists a slowly

varying function L1 : (1,∞) → (0,∞) such that γ1(x) = κx log x +
x logL1(x), x > 1. The function γ1 is continuous and positive on
(1,∞) and

∫∞
2 (γ1(u))

−1 du = ∞. The proof of Proposition III.2.8
shows that the scaling w1(x, t), defined by (III.19) with γ1 in place
of γ, exists for x ≥ 1 and t ≥ 0. Fix t ≥ 0. According to Proposition
III.2.6 the scaling v1(x, t), defined by the integral equation in (III.9)
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with γ1 in place of γ, exists for x ≥ x0(t), where x0(t) > 1. The
proof of Proposition III.2.5 shows the existence of a slowly varying
function Lt,1 such that v1(x, t) = xe

−κt

Lt,1(x) for x ≥ x0(t). Here we
used that the map x 7→ γ1(x)/x, x > 1, and, hence, the function
L1 are non-decreasing if κ = 0. The scalings v1(., t) and w1(., t) are
obviously inverse (on suitable domains). From Part (ii) it follows
that there exists a slowly varying function L#

t,1 such that w1(x, t) =

xe
κt

L#
t,1(x). From v(x, t) ∼ v1(x, t) it follows that Lt(x) ∼ Lt,1(x) and

x = w(v(x, t)) ∼ w(v1(x, t)) = x(Lt(x))
eκtL#

t (v1(x, t)) as x→ ∞ and
x = w1(v1(x, t), t) = x(Lt,1(x))

eκtL#
t,1(v1(x, t)) for x ≥ x0(t). Hence,

L#
t,1(v2(x, t)) ∼ L#

t,2(v2(x, t)), consequently L
#
t,1(x) ∼ L#

t,2(x) and we
finally have w1(x, t) ∼ w2(x, t) as x→ ∞.

We proceed to prove the convergence of the scaled fixation line.
The involved state spaces and semigroups are denoted by the same
symbols as for the block counting process.

Proof. (of Theorem III.2.10) Define Y
(n)
t := logL

(n)
t − logw(n, t)

for n ∈ N and t ≥ 0. We start by proving the convergence of
the one-dimensional distributions. Fix t ≥ 0, x ∈ R and write

k := ⌈exw(n, t)⌉ ∈ N. Note that Yt
d
= −eκtSt. By duality (Eq. (III.2)),

P(Y (n)
t ≥ x) = P(L(n)

t ≥ k) = P(N (k)
t ≤ n)

= P
(
logN

(k)
t − log v(k, t) ≤ log(n/v(k, t))

)
.

By Proposition III.2.5, the function v(., t) varies regularly with index
e−κt. From limn→∞w(n, t) = ∞ it hence follows that n/v(k, t) =
v(w(n, t), t)/v(⌈exw(n, t)⌉, t) → e−xe

−κt

as n → ∞. Theorem III.2.7
implies that

lim
n→∞

P(Y (n)
t ≥ x) = P(St ≤ −xe−κt) = P(Yt ≥ x) (III.39)

for −xe−κt in the set CSt
of continuity points of St. From (III.39) we

obtain the weak convergence of Y
(n)
t to Yt as n → ∞ for each t ≥ 0,

since −xe−κt ∈ CSt
if and only if x ∈ CYt.

The time-space processes Ỹ (n) := (t, Y
(n)
t )t≥0, n ∈ N, and Ỹ :=

(t,Xt)t≥0 are time-homogeneous Markov processes with state spaces
Ẽn = {(s, x) : s ≥ 0, exw(n, s) ∈ {n, n+1, . . .}} and Ẽ = [0,∞)×R.
Set k := k(s, x, n) := exw(n, s) ∈ {n, n + 1, . . .} for (s, x) ∈ Ẽn and

n ∈ N. The semigroups (T̃
(n)
t )t≥0 and (T̃t)t≥0 of Ỹ

(n) and Ỹ are given
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by

T̃
(n)
t f(s, x) := E(f(s+ t, Y

(n)
s+t)|Y (n)

s = x)

= E(f(s+ t, logL
(k)
t − logw(n, s+ t))

= E(f(s+ t, log(w(k, t)/w(n, s+ t)) + Y
(k)
t )),

(s, y) ∈ Ẽn, and

T̃tf(s, x) := E(f(s+ t, Ys+t)|Ys = x) = E(f(s+ t, eκtx+ Yt)),

(s, x) ∈ Ẽ, for f ∈ B(Ẽ), t ≥ 0 and n ∈ N. Fix t > 0 and
first let f ∈ B(Ẽ) be of the form f(s, x) = g(s)h(x), (s, x) ∈ Ẽ,

where g ∈ B([0,∞)) and h ∈ Cc(R). Clearly, T̃ (n)
t f(s, x) = g(s +

t)E(h(log(w(k, t)/w(n, s + t)) + Y
(k)
t )), (s, x) ∈ Ẽn, n ∈ N, and

T̃tf(s, x) = g(s + t)E(h(eκtx + Yt)), (s, x) ∈ Ẽ. If we are able to
show that

lim
n→∞

sup
(s,x)∈Ẽn

∣∣E(h(log(w(k, t)/w(n, s+ t)) + Y
(k)
t )

)
− E(h(ebtx+ Yt))

∣∣ = 0, (III.40)

then
lim
n→∞

sup
(s,x)∈Ẽn

|T̃ (n)
t f(s, x)− T̃tf(s, x)| = 0. (III.41)

The algebra of functions f ∈ B(Ẽ) of the form f(s, x) =∑l
i=1 gi(s)hi(x), (s, x) ∈ Ẽ, where l ∈ N, gi ∈ B([0,∞)) and

hi ∈ Cc(R), separates points and vanishes nowhere. According to the
Stone–Weierstrass theorem for locally compact spaces (see e.g. [8])
it is a dense subset of B(Ẽ) such that (III.41) holds for f ∈ B(Ẽ).
[11, IV, Theorem 2.11] states that Ỹ (n) → Ỹ in DẼ[0,∞), hence
Y (n) → Y in DR[0,∞) as n→ ∞. It remains to verify (III.40).

From

s+ t =

∫ w(x,s)

x

du

γ(u)
+

∫ w(w(x,s),t)

w(x,s)

du

γ(u)
=

∫ w(w(x,s),t)

x

du

γ(u)

it follows that w(x, s + t) = w(w(x, s), t) for (s, x) ∈ Ẽ. By Propo-
sition III.2.8, there exists a slowly varying function L#

t : [1,∞) →
(0,∞) such that w(x, t) = xe

κt

L#
t (x) for x ≥ 1. Applying Proposition

III.5.4 to the right-hand side of

w(k, t)

w(n, s+ t)
=

w(exw(n, s), t)

w(w(n, s), t)
= ee

κtxL
#
t (e

xw(n, s))

L#
t (w(n, s))

, (s, x) ∈ Ẽn, n ∈ N,
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provides

lim
x→∞

inf
s:(s,x)∈Ẽn,n∈N

log
w(k, t)

w(n, s+ t)
= ∞

and

lim
x→−∞

sup
s:(s,x)∈Ẽn,n∈N

log
w(k, t)

w(n, s+ t)
= −∞.

The family {Y (k)
t : k ∈ N} is tight due to the convergence Y

(k)
t → Yt

in distribution as k → ∞ and Prokhorov’s theorem. By dominated
convergence and since h has compact support,

lim
x→∞

sup
s:(s,x)∈Ẽn,n∈N

∣∣E(h(log(w(k, t)/w(n, s+ t)) + Y
(k)
t )

)∣∣ (III.42)

= lim
x→−∞

sup
s:(s,x)∈Ẽn,n∈N

∣∣E(h(log(w(k, t)/w(n, s+ t)) + Y
(k)
t )

)∣∣ = 0,

such as

lim
x→∞

E(h(eκtx+ Yt)) = lim
x→−∞

E(h(eκtx+ Yt)) = 0. (III.43)

For any compact interval K ⊂ R we have that, by the uniform con-
vergence theorem for slowly varying functions [4, Theorem 1.5.2],

lim
n→∞

sup
(s,x)∈Ẽn,x∈K

∣∣∣∣ log w(k, t)

w(n, s+ t)
− eκtx

∣∣∣∣
= lim

n→∞
sup

(s,x)∈Ẽn,x∈K

∣∣∣∣ log L#
t (e

xw(n, s))

L#
t (w(n, s))

∣∣∣∣ = 0.

The function h is uniformly continuous. Note that
limn→∞ inf(s,x)∈Ẽn,x∈K k(s, x, n) = ∞. From the convergence

Y
(k)
t → Yt in distribution as k → ∞ it hence follows that

lim
n→∞

sup
(s,x)∈Ẽn,x∈K

∣∣E(h(log(w(k, t)/w(n, s+ t)) + Y
(k)
t )

)
− E(h(eκtx+ Yt))

∣∣ = 0. (III.44)

Finally, Eqs. (III.42), (III.43) and (III.44) imply (III.40). The proof
is complete.

III.5 Appendix

We collect some fundamental results concerning the model described
in Section III.2.3 involving an infinite number of urns. Let u ∈ ∆.
Recall that Xi(n, u) denotes the number of balls in urn Ji ∈ N0 after
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n balls have been allocated. Let K(n, u) :=
∑

i≥1 1{Xi(n,u)>0} denote
the number of occupied urns (disregarding urn J0). The following law
of large numbers result holds.

Lemma III.5.1. For all u ∈ ∆, K(n, u)/E(K(n, u)) → 1 almost
surely as n→ ∞.

Proof. We proceed as in the proof of [15, Theorem 1]. Fix u ∈ ∆
and write K(n) := K(n, u) for convenience. Define Φ : [0,∞) →
[0,∞) via Φ(x) :=

∑
i≥1(1 − (1 − ui)

x), x ≥ 0. Note that Φ(0) = 0,
Φ(1) = |u| ≤ 1 and E(K(n)) = Φ(n), n ∈ N. The function Φ is
non-decreasing, concave and differentiable on (0,∞) with derivative
Φ′(x) =

∑
i≥1(1 − ui)

x(− log(1 − ui)). In particular, for all x ≥ 1,
Φ′(x) ≤ Φ′(1) =

∑
i≥1(1 − ui)(− log(1 − ui)) ≤

∑
i≥1 ui ≤ 1. Thus,

for each m ∈ N, there exists nm ∈ N such that m2 ≤ Φ(nm) ≤ m2 +
1. Tschebyscheff’s inequality together with Var(K(n)) ≤ Φ(2n) −
Φ(n) ≤ Φ(n) yields

P
(∣∣∣∣K(nm)

Φ(nm)
− 1

∣∣∣∣ ≥ ε

)
≤ Var(K(nm))

ε2(Φ(nm))2
≤ 1

ε2Φ(nm)
≤ 1

ε2m2

for all m ∈ N and ε > 0. Thus,
∑

m≥1 P(|K(nm)/Φ(nm) − 1| ≥
ε) < ∞ for all ε > 0. By the Borel–Cantelli lemma it follows that
K(nm)/Φ(nm) → 1 almost surely as m→ ∞.

For n ∈ N with nm ≤ n ≤ nm+1 the monotonicity inequalities
K(nm) ≤ K(n) ≤ K(nm+1) and Φ(nm) ≤ Φ(n) ≤ Φ(nm+1) hold,
which allows to sandwich the fraction K(n)/Φ(n) via

K(nm)

Φ(nm+1)
≤ K(n)

Φ(n)
≤ K(nm+1)

Φ(nm)
,

where both sides converge to 1 almost surely, since
Φ(nm)/Φ(nm+1) → 1.

The following two results deal with the random variables
Y (n, u) := X0(n, u)+K(n, u) defined in (III.12). Lemma III.5.2 con-
cerns the limiting behavior of Y (n, u)/n as n→ ∞.

Lemma III.5.2. For all u = (u1, u2, . . .) ∈ ∆, Y (n, u)/n → u0
almost surely as n→ ∞, where u0 := 1− |u| := 1−

∑
i≥1 ui.

Proof. Fix u ∈ ∆. We have Y (n, u) = X0(n, u) + K(n, u), n ∈ N.
Clearly, X0(n, u)/n → u0 almost surely as n → ∞, since X0(n, u)
has a binomial distribution with parameters n and u0. By Lemma
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III.5.1, K(n, u)/E(K(n, u)) → 1 almost surely as n→ ∞. Moreover,

E(K(n, u))

n
=

∑
i≥1

1− (1− ui)
n

n
→ 0

as n→ ∞ by dominated convergence, since (1−(1−ui)n)/n ≤ 1/n→
0 and (1 − (1 − ui)

n)/n ≤ ui, where the dominating map i 7→ ui is
integrable with respect to the counting measure on N. Thus,

K(n, u)

n
=

K(n, u)

E(K(n, u))

E(K(n, u))

n
→ 1 · 0 = 0

almost surely as n → ∞. Therefore, Y (n, u)/n → u0 almost surely
as n→ ∞.

The following result (Lemma III.5.3) is used in the proof of the
main convergence theorem (Theorem III.2.7). It presents bounds
for particular moments of the random variable Y (n, u) defined in
(III.12). Lemma 18 of [21] provides similar bounds.

Lemma III.5.3. There exist constants D1, D2 ∈ R such that, for all
u ∈ ∆,

sup
n∈N

E
((

Y (n, u)

n
− (1− |u|)

)2)
≤ D1|u|2

and

sup
n∈N

E
((

Y (n, u)

n
− 1

)2)
≤ D2|u|2.

Proof. Fix n ∈ N and u ∈ ∆. Define u0 := 1−|u|. We omit the param-
eter (n, u) and write (III.12) as Y = X0+K, where K := K(n, u) :=∑

i≥1 1{Xi(n,u)>0} denotes the number of occupied urns (disregarding

urn J0). Furthermore, define Ỹ := Y/n − u0 = X0/n − u0 + K/n.
Calculations that are similar to the following (but come from a dif-
ferent motivation) are carried out in the proof of [25, Lemma 6.1].
The formulas for E(K) and E(X0K) can be found there. We have

Ỹ 2 =

(
X0

n
− u0 +

K

n

)2

=

(
X0

n
− u0

)2

+
2X0K

n2
− 2u0K

n
+
K2

n2
.

Recall that X0 has a binomial distribution with parameters n and
u0. In particular, E(X0) = nu0 and E((X0/n−u0)2) = n−2Var(X0) =
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|u|(1−|u|)/n. Together with K2 = K+
∑

i̸=j 1{XiXj>0} it follows that

E(Ỹ 2) =
u0(1− u0)

n
+

2E(X0K)

n2

− 2u0E(K)

n
+

E(K)

n2
+

1

n2

∑
i̸=j

P(XiXj > 0).

Adding and subtracting u0(1− u0)/n = |u|(1− |u|)/n leads to

E(Ỹ 2) = 2

(
E(X0K)

n2
− u0E(K)

n
+
u0(1− u0)

n

)
+

1

n

(
E(K)

n
− |u|

)
+

|u|2

n
+

1

n2

∑
i̸=j

P(XiXj > 0).

We have E(K) =
∑

i≥1(1−(1−ui)n) and E(X0K) = nu0
∑

i≥1(1−(1−
ui)

n−1). Moreover, by Bernoulli’s inequality, 1−(1−ui)n−1 ≤ (n−1)ui
for i ∈ N. We conclude that

E(X0K)

n2
− u0E(K)

n
+
u0(1− u0)

n
=

u0
n

∑
i≥1

ui(1− (1− ui)
n−1)

≤ (n− 1)u0
n

(u, u) ≤ |u|2.

Also, n−1E(K)− |u| = n−1
∑

i≥1(1− (1− ui)
n − nui) ≤ 0. From the

generalized Bernoulli inequality 1−(1−ui)n−(1−uj)n+(1−ui−uj)n ≤
n(n− 1)uiuj, i, j ∈ N, it follows that

1

n2

∑
i̸=j

P(XiXj > 0) =
1

n2

∑
i̸=j

(1− (1− ui)
n

− (1− uj)
n + (1− ui − uj)

n)

≤
∑
i,j≥1

uiuj = |u|2.

Collecting all bounds yields that E(Ỹ 2) is bounded by 4|u|2, which
shows that the first claim holds with D1 := 4. Concerning the second
claim, note that

0 ≤ E((Y/n− 1)2) = E((Ỹ − |u|)2)
= E(Ỹ 2) − 2|u|E(Ỹ ) + |u|2 ≤ E(Ỹ 2) + |u|2,

since E(Ỹ ) = n−1E(K) ≥ 0, showing that we can choose D2 :=
D1 + 1 = 5.

The following result is needed in the proof of Theorem III.2.10.
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Proposition III.5.4. Let α > 0 and the function L : [1,∞) →
(0,∞) be slowly varying with 0 < infy∈[1,K] L(y) ≤ supy∈[1,K] L(y) <
∞ for any K > 1. Then limx→∞ infy≥x−1∨1 x

αL(xy)/L(y) = ∞ and
limx→0 supy≥x−1∨1 x

αL(xy)/L(y) = 0.

Proof. By the representation theorem for slowly varying functions
[4, Theorem 1.3.1], there exist functions δ : [1,∞) → (0,∞) and
ε : [1,∞) → R with limx→∞ δ(x) =: d ∈ (0,∞) and limx→∞ ε(x) = 0

such that L(x) = δ(x) exp(
∫ x
1
ε(u)
u du), x ≥ 1. Furthermore we

can choose ε such that ∥ε∥ ≤ α/2, if δ is adapted accordingly.
By the additional boundary assumption for L and the convergence
of δ to d ∈ (0,∞), 0 < infy≥1 δ(y) ≤ supy≥1 δ(y) < ∞. Thus,
0 < infy≥x−1∨1 δ(xy)/δ(y) ≤ supy≥x−1∨1 δ(xy)/δ(y) <∞. From

xα
L(xy)

L(y)
=

δ(xy)

δ(y)
exp

(∫ x

1

α

u
du+

∫ xy

y

ε(u)

u
du

)
=

δ(xy)

δ(y)
exp

(∫ x

1

α + ε(uy)

u
du

)
it follows that

inf
y≥x−1∨1

xα
L(xy)

L(y)
≥ inf

y≥x−1∨1

δ(xy)

δ(y)
exp

(∫ x

1

α

2u
du

)
= xα/2 inf

y≥x−1∨1

δ(xy)

δ(y)
→ ∞

as x→ ∞ and

sup
y≥x−1∨1

xα
L(xy)

L(y)
≤ xα/2 sup

y≥x−1∨1

δ(xy)

δ(y)
→ 0

as x→ 0+.

Remark. The function L#
t : [1,∞) → (0,∞), defined via L#

t (x) :=
w(x, t)/xe

κt

, x ≥ 1, is slowly varying. Due to w(x, t) ≥ x, it holds
that L#

t (x) ≥ x1−e
κt

for x ≥ 1 and t ≥ 0, and since L#
t is continuous,

Proposition III.5.4 applies.
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