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There is no escape: It seems that everything people do to earn a livelihood, to 
subsist, or to enjoy life turns out to be illegal, immoral, or fattening, or - most 
disturbing - possibly carcinogenic. 

- Robbins Pathology - the concluding remarks of the chapter on cancer 

epidemiology 

 

  



 

 

 

 

 

 

 

 

 

To my family, friends, and patients.  



 

 

Popular science summary of the thesis 
Today, we understand that cancers can only form and spread through a complex 
interaction with their surrounding normal tissue. This process involves multiple 

components like the different cells of the immune system, fibroblasts that build 

and maintain the connective tissue, the extracellular matrix, and blood and 

lymphatic vessels. Replicating such complexity in a laboratory setting poses 
considerable challenges. Consequently, there exists a need to investigate these 

interactions in human tissue samples, where the full spectrum of tissue 

complexity is preserved. 

We developed a method to analyze an online image database, the Human Protein 

Atlas (HPA), that contains information on what proteins are expressed in normal 
tissues and how they differ in the tissues surrounding tumors. With this method, 

we identified several proteins not previously known to be expressed in fibroblast 

surrounding tumors. Many of these were connected to the protein RhoA. To study 

its importance, we engineered fibroblasts that lacked this protein and measured 
how this affected cancer cell growth. We found that when fibroblasts can’t 

express this protein, the cancer cells grow faster and form tumors more easily in 

mice, meaning that this protein most likely functions to help suppress cancers.  

The molecule Decorin is typically found deposited in the stroma of normal tissues 

and has been described as having an inhibitory role. With the help of our method, 
we demonstrated its absence in the tissues surrounding tumors, thereby 

reinforcing its potential protective role in cancer. 

Previously, research conducted on cell cultures has demonstrated that cancer 

cells can be influenced by their microenvironment and, to some extent, revert to 

a non-cancerous phenotype. However, the extent of this phenomenon in human 

tumors has not been thoroughly studied. To investigate this, we analyzed several 
cases of pancreatic cancer in which cancer cells infiltrate the small intestine. In 

this context, our findings revealed that depending on their specific location, 

cancer cells underwent a transition from a more aggressive form of pancreatic 

cancer to a more indolent one. They adopted characteristics resembling those of 
normal intestinal cells and exhibited altered rates of cell division. This highlights 

their plasticity to change due to influences from the tissue environment in which 

they reside.  



Our method allowed us to analyze the HPA database; however, it still demanded 

substantial researcher input, rendering it time-consuming. To facilitate a more 

efficient exploration of the entire database, we developed an additional method 

based on artificial intelligence. Using this approach, we successfully demonstrated 

that a limited set of images of prostate basal cells enabled us to comprehensively 
search the database and identify similar ones. Employing this method, we 

identified 44 new markers associated with this cell type. 

In summary, our methods have enabled the exploration of the alterations 

occurring around cancers and have improved our understanding of changes in the 

tumor microenvironment and its profound impact on cancer cell behavior and 
progression. 

 

 

 

  



 

 

Abstract  
The tumor microenvironment (TME) comprises a complex milieu of different cell 
types, including cancer associated fibroblasts (CAFs) and immune cells, blood 

vessels, and the extracellular matrix. Through its interaction with cancer cells, it 
plays an essential role in cancer invasion and metastasis. The inherent complexity 

of the TME presents a challenge to study it within experimental model systems. It 

underscores the importance of complementing such research with observation 

from human tumor tissues, wherein this intricate complexity is preserved.  

In Paper IV, we introduce a new software designed to explore the Human Protein 

Atlas, an online database that includes image data on the protein expression 
across normal and cancerous tissues from immunohistochemically (IHC) stained 

tissues.  

In Paper I, we use this software to identify 12 novel proteins expressed in cancer-

associated fibroblasts, four revealing connections to Rho-kinase signaling. We 

contrast their expression across various tumors and against normal tissue 
fibroblasts, uncovering expression variability among cancer types and confirm 

their similarities with the myofibroblastic phenotype. 

In Paper II, we explore the expression of the proteoglycan Decorin, abundantly 

present in normal connective tissue and having tumor inhibitory properties, 

showing its downregulation in the connective tissue surrounding tumors. 

In Paper III, based on our observations in Paper I of the connection of Rho-

signaling in CAFs, we study the effects of knocking out the related RhoA in 
fibroblasts both in vitro and in vivo models. We demonstrate that the knockout 

fibroblasts compromise their tumor inhibitory capacity, enhancing cancer cell 

growth, migration, and metastasis. 

In Paper VI, we develop a new method for analyzing the extensive data within the 

Human Protein Atlas by developing a deep-learning-based image classifier. 
Utilizing a limited training image set, we classify all images available for the 

prostate, identifying 44 new markers of prostate basal cells. 

In Paper IV, we explore the influence of the TME on cancer cells by systematically 

analyzing 20 pancreatic cancer patient samples utilizing an IHC panel. We define 

shifts in cancer cell phenotype relative to tissue localization, including a transition 



to a more indolent cancer phenotype, an effect on cancer cell proliferation, and a 

tendency to normalize the cancer cell phenotype. 

In conclusion, we developed two new methods that enable us to study protein 

expression in normal and cancerous tissues by enhancing the capabilities of the 

HPA. We identified new markers of CAFs and revealed a connection to Rho-

signaling. Knocking out the related RhoA in experimental systems resulted in the 
fibroblasts losing their cancer inhibitory capacity. Finally, we show the remarkable 

plasticity of cancer cells, demonstrating that their phenotype undergoes 

significant alterations based on their spatial localization within normal tissue.  
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Introduction 
Cancer is the second leading cause of death globally, and it is estimated that 1 in 
2 men and 1 in 3 women will develop cancer during their lifetime in the United 

States [1]. Meanwhile, as populations in emerging countries adopt cancer 

associated lifestyles and changing demographics with increased age, the number 

of cases is expected to increase by 70% over the next two decades. The economic 
costs are already high, estimated to cost over 50 billion Euros per year in Europe, 

taking the cost of care, treatment, and loss of productivity into account [2, 3].  

One of the reasons for the difficulty of treating cancer is the enormous diversity 

that cancer covers. There exist hundreds of types and subtypes. They are diverse 

in the various cells and tissues of origin, their different stages, molecular and 
genetic subclasses, and patient-to-patient variations. It is now also recognized 

that surrounding and distant normal cells are recruited to the tumor, making up 

the tumor microenvironment, further adding to the complexity [4].   

Several hallmarks were proposed as an organizing principle to characterize cancer 

cells to make sense of decades of research and to find commonality in the vast 
diversity of cancer[2, 5]. As new research emerged, it was later revised[6, 7] and 

now encompasses ten hallmarks: (1) resistance to cell death, (2) sustained 

proliferative signaling, (3) evasion of growth suppression, (4) activation of invasion 

and metastasis, (5) genome instability and mutation,(6) induction of angiogenesis, 
(7) deregulation of cellular metabolism, (8) tumor-promoting inflammation, (9) 

replicative immortality, and (10) avoidance of immune destruction.  

As these traits are common to all cancers, they make a helpful basis for new 

cancer targets. Their understanding has led to some remarkable success as 

immune therapies against melanomas [8, 9] but most have failed to live up to 

expectations. Most are transiently efficient and work only in a subset of patients 
[10–12].  

For increased effectiveness, it has been proposed that a logical combination of 

multiple targeted therapies against the hallmarks could work together and disrupt 

several characteristics, acting synergistically and complementary. The more 

hallmarks that can be disabled, the higher the chance of killing all the cancer cells, 
not allowing it to recur or develop resistance [2, 13]. One could, for instance, target 

angiogenesis and block invasion and metastasis at the same time. Such targeting 

of multiple hallmarks could be further enhanced by targeting individual hallmarks 
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with multiple drugs. For example, inhibition of proliferative signaling by targeting 

both the BRAF and its downstream MEK is used in melanoma to inhibit the EGFR 

pathway [14–16].   

Many of the hallmarks are well understood and targeted therapies already exist 

for several of these characteristics [4, 6]. For others, more understanding and new 

targets are needed. One exciting field of research constitutes the normal cells 
recruited to the tumor microenvironment, which, like cancers, are highly 

heterogeneous and diverse, but their understanding could offer new potential 

therapeutic targets [2, 4].  
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1 Literature review 

1.1 The tumor microenvironment 

The importance of the tumor microenvironment (TME) (Figure 1) in cancer 
formation and progression is now well accepted. In the past, there was a 

substantial focus on studying cancer cells alone and how the loss or gain of 

oncogenes and tumor suppressor genes leads to transformation. It is now 

understood that cancer cells do not act alone, but they recruit and corrupt 
resident and distant normal cell types in their surroundings. It is accepted as a 

fundamental part of cancer biology, and understanding it is crucial for exploiting 

it for diagnostic and therapeutic purposes [4].   

 

Figure 1. A simplified schematic representation of the tumor microenvironment. Its complexity is represented 
by the multiple components: cancer associated fibroblasts, immune cells, blood vessels, proteoglycans and 
blood vessels, and extracellular vesicles. Created with BioRender.com 

One of the earlier evidences of the importance of the TME comes from 
observations where cancers develop due to chronic inflammation in which the 

normal tissue architecture is disrupted. Examples of this include cirrhosis of the 

liver from alcoholic liver disease and hepatitis that leads to an increased risk of 

hepatocellular cancer, gastric H. Pylori infection that can lead to gastric cancer, 
and inflammatory bowel disorders that result in an increased risk for colon cancer. 

Common in these is the chronic inflammation that results in a deranged 

environment and abnormal tissue environment [17].  

It is also becoming apparent that most cancer hallmarks are maintained and aided 

by the contribution of stromal cells [4]. As we learn to understand it better, it can 



 

4 

provide treatment options, particularly in the context of the hallmarks as 

described above.   

How the different components contribute to the hallmarks, what their functions 

are, and understating their diversity remain largely open questions yet to be 

answered [4]. Already, they have been implicated with proposed roles in 

resistance to therapy (radio, chemo, and targeted) where stromal cells protect 
cancer cells or subpopulations of them [4, 18].  

1.2 Cancer-associated fibroblasts 

Fibroblasts are one of the principal cells of the normal connective tissues with 
diverse, multifunctional roles. They deposit components of the extracellular matrix 

(ECM) and the basement membrane (BM), and take part in regulating cell 

differentiation, immune system modulation, and maintaining the homeostasis of 
tissues [19, 20].  

In the tumor microenvironment (TME), they are typically present in larger numbers, 
differ from normal fibroblasts, and are known as cancer-associated fibroblasts 

(CAF). One study showed that initiated prostate epithelial cells, when co-injected 

with CAFs into mice, gave rise to tumors. At the same time, this did not occur when 

they were co-injected with normal fibroblasts [21]. Another study found that CAFs 
increased the number of metastases while normal fibroblasts had the opposite 

effect [22].  

It is still unclear where these fibroblasts arise. The evidence points to the fact that 

they can originate from resident fibroblasts recruited from the BM [23] and studies 

indicate that they can originate from endothelial to mesenchymal transition [24] 
or from epithelial to mesenchymal transition in prostate and breast cancers [25, 

26].  

Several factors have also been proposed to play a role in the activation of CAFs. 

These include various growth factors and cytokines from the surrounding cells, in 

particular: TGF-beta (transforming growth factor beta), MCP1 (monocyte 
chemoattractant protein 1), PDGF (platelet derived growth factor), FGF (fibroblast 

growth factor), and different proteases [20, 27].    

In turn, the activated CAFs will become a source of growth factors supporting the 

tumor’s growth [28]. Other mechanisms have been proposed to help tumors, such 

as producing pro-inflammatory factors activating NF-kB signaling [29].  
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1.3 The extracellular matrix 

The extracellular matrix (ECM) is a network of various molecules constituting the 
acellular environment. It has both biophysical and biochemical properties [30, 31] 

that are tissue-specific and made up of various proteins, glycoproteins, and 
proteoglycans. These often undergo complex transcriptional, translational, and 

post-translational modifications [32]. The components are often modular in that 

different rearrangements, and alternative splicing can combine a limited number 

of modules into many more functionally different molecules [33]. 

Abnormal ECM has been associated with diseases, including fibrosis [34], chronic 

inflammation [35] and cancer [36–38]. Genetic mutations of ECM components 
can result in severe illness, as in chondrodysplasias, osteogenesis imperfecta, and 

epidermolysis bullosa [39, 40].  

In the tumor microenvironment, its composition has already been shown to 

contribute to clinical prognosis. One study looked at breast cancers and used 

ECM composition alone to stratify it into subclasses correlated with clinical 
prognosis. High expression of integrins and MMPs have been associated with poor 

prognosis, while high expression of protease inhibitors indicated good prognosis 

[41].  

Critical steps to understanding the ECM's role in diseases will be the quantification 

and identification of its components in different diseases and normal states. Due 
to its essential functions and association with cancer prognosis, it is an attractive 

part of the TME to be studied.  

1.4 Decorin  

Decorin is an example of a molecule of the ECM that is believed to have an 
important role in cancer. It belongs to the small leucine-rich proteoglycan (SLRP) 

gene family and is predominantly made and deposited to the ECM by fibroblasts. 

It received its name from its attachment to collagen I fibers, which it “decorates” 
[42–44].  

The core domain of decorin, termed decoron, spans 396 amino acids and features 

multiple leucine-rich repeats. A single decoron can bind up to six collagen fibers 

and is believed to have a key role in fibrillogenesis [45–48].  

It has been described to have a multitude of functions in the ECM. It is believed to 

have a role in inflammation by binding toll-like receptors [49]. In addition, it can 
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directly antagonize receptor tyrosine kinases (RTK), for example, the hepatocyte 

growth factor receptor (HGFR), the insulin-like growth factor receptor I (IGF1R), 

and the epidermal growth factor receptor [50–53].  

Its role in cancer has been termed the “guardian from the matrix” in a review due 

to its believed tumor suppressive role [54]. Studies have, for instance, shown that 

disrupting decorin expression can accelerate the formation of lymphomas and 
increase the formation of intestinal tumors in mouse models [55, 56]. While in vitro 

co-culture studies have shown that fibroblasts decrease their decorin expression 

when grown with cancer cells [57].  

Studies on Decorin expression in the tumor microenvironment are contradictory, 

showing that its expression is decreased in lung cancer [58] and at various stages 
in breast cancer, with decreasing expression in more advanced cancer [59].  Other 

studies have, however, shown that its expression is increased in other cancers, 

such as Kaposi sarcomas or pancreatic cancers [60–62].  

Various methods have been proposed to explain its observed tumor-suppressive 

nature, like the binding and downregulating RTKs like EGFR [63], suppressing β 

catenin levels [53] and thereby inhibiting cell growth and migration, and inhibiting 
angiogenesis [64]. An alternative method could be explained by the observation 

that naked collagen aids tumor growth, as seen in in vitro studies, and its absence 

from collagen could enable this in the tumor microenvironment [65–68].  

1.5 Phenotype switching and cancer cell plasticity  

For cancer cells to gain a migratory and invasive trait, they are suggested to 

undergo switches in their phenotype. An epithelial to mesenchymal transition 
(EMT) occurs when they lose their epithelial markers and gain mesenchymal traits, 

allowing them to migrate to distant tissues [69]. The secondary metastatic lesions 

will typically exhibit an epithelial-like phenotype, indicating transition back, a 

mesenchymal to epithelial transition (MET) of equal importance [70–72]. Both 
these transitions are proposed to arise partly from environmental cues; for 

example, increased TGF-beta signaling has been shown to induce EMT [73].   

It is also known that cancer cells in the right context can be induced to 

differentiate and revert to resemble a normal phenotype. The earliest indication 

for this came from the work by Leo Sachs, who showed that malignancy could be 
reversed by inducing leukemic cells to differentiate [74]. Today, differentiation 

therapy is successfully used to treat acute promyelocytic leukemia [75, 76]. 
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The influence of the tissue context was highlighted by co-culture experiments 

revealing that normal stromal cells can inhibit the progression of malignancy [77]. 

It was shown that when epithelial cells were grown in 3D gels containing 

extracellular matrix proteins, they regained their polarity, formed acinar structures, 

and suppressed oncogenes' transforming and proliferative features [78, 79].  

Similarly, when human breast cancer cells were co-cultured in 3D laminin-rich 
gels, they reverted to a near normal phenotype [80] and additional in vitro 

experiments showed that certain tumors could differentiate and their growth can 

be suppressed by placing them in direct contact with an intact basement 

membrane [81–83]. These and similar observations indicate that the environment 
in which cells reside can significantly influence that cancer cell’s phenotype, 

overriding their cancer genotype [84, 85]. 

Even early animal studies could show that the highly oncogenic Rous sarcoma 

virus is not carcinogenic in the early chicken embryo [86] But if the cells were 

taken from their normal environment and cultured on a dish, they transformed 
[87].  

It is evident that cancer cells do not exist in isolation but interact closely with their 
surrounding tumor microenvironment. They take part in modifying it, often to their 

advantage, but in turn, they also receive cues from it that can profoundly influence 

their behavior.  

Many interactions described above are thought to occur at a tumor's invasive 

edge, elsewhere described as the tumor margin or leading edge. It is the meeting 
place where cancer cells come in physical contact with the stromal, the ECM, and 

first contact with immune cells. This is where the CAFs provide the pro-invasive 

factors such as TGF-beta and PDGF signaling to promote EMT [88], and immune 

cells like macrophages are recruited by tumor-derived chemoattractants [89] 
and, in turn, supply migratory factors like EGF, take part in proteolytic remodeling 

of the ECM and regulate fibrillary collagen production, all to help promote tumor 

invasion [90–92].  

The tumor microenvironment is highly diverse and complex. Many different cells 

and extracellular components exist in an interplay between them and the cancer 
cells. Studying this complex network poses challenges but could offer many 

potential benefits by revealing new targets for cancer treatment.  
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Most of today’s cancer therapeutics focus on cancer cells. The stromal elements 

offer attractive alternatives as it is genetically stable and, therefore, less 

susceptible to developing therapeutic resistance. Only a few current oncological 

treatments have targeted the tumor microenvironment, but with some success, 

as in the angiogenesis inhibition [93]. Nevertheless, therapies aimed not at the 
destruction or depletion of specific components, but their modification has fared 

better. Immunotherapies are an example of re-education of the TME that is gaining 

ground with better and better results [13, 84]. 

Much of the evidence of the functions of stromal cells in a tumor context 

originates from experiments from model systems. These are typically either (1) 
genetically modified mouse models of cancers, (2) human xenotransplant mice, or 

(3) cell and organ co-culture assays [4]. These are limited in that they can only 

model the complexity of human tumors to a certain degree. They are, for instance, 

limited in studying the diverse spectrum of malignancies that exist in different 
stages, originate from different cells, are heterogeneous in their genetic and 

epigenetic derangements, and differ from patient to patient.  

The path toward clarification is a challenge, but one proposed method, described 

in a review by D. Hanahan [4], is to attempt to integrate the model systems with 

biopsies or surgically resected specimens from human cancer patients. He 
proposes that these could be done by (1) advanced histochemical methods such 

as multicolor immunostaining and in situ hybridizations, (2) precise laser capture 

microdissection of cell types and subtypes from the tumor stroma, and (3) 

selective antibody capture by flow cytometry.  

By combining different specific therapies, one can hope to develop better 

responses to cancer treatments. The hallmarks and underlying components 
should be well understood to exploit this fully. Much research is focused on 

studying the tumor microenvironment, and there are already attempts to target 

it. One of the limitations, however, comes from the model systems that are used 

to examine it. Current research can be aided by studying human tumors, with, for 
example, in situ hybridizations or immunohistochemistry. These studies have the 

potential to bridge knowledge from the model systems to human cancers and 

offer insights into questions that the model systems cannot hope to resolve.    
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1.6 Immunohistochemistry 

1.6.1 Background and methodology 

Immunohistochemistry (IHC) is a technique that originates from the combination 
of immunology and pathology. It is based on the antibodies binding to specific 

antigens in tissues and visualized by either an enzymatic reaction (chromogenic 
IHC) or immunofluorescence (IF). The technique was pioneered by the work of 

Albert Coons in 1941, who first showed how labeled antibodies could be used to 

identify specific antigens in tissues with immunofluorescence [94]. In this, the 

antibodies were labeled with a fluorescent dye that produces a light when excited 
by a laser and could be detected by a fluorescence microscope [95]. Later, in 1967, 

the work by Nakane and Pierce introduced the chromogenic method to visualize 

antibodies[96]. This method was based on an enzymatic reaction, which catalyzes 

a color-forming reaction that can be visualized with a light microscope.  

The chromogenic IHC is widely used for both predictive and prognostic 

information in pathology, for example, testing for human epidermal growth factor 
receptor 2 (HER2) amplification [97], estrogen receptor (ER) and progesterone 

(PR) receptor detection in breast cancer [98, 99]. Another example is their use in 

subtyping cancers based on their tissue of origin. This is used in diagnosing 

cancers of unknown primary sites, where broad IHC panels are used to identify 
the tissue of origin so that appropriate treatments can be administered [100, 101].  

 

Figure 2. The process of IHC. 1) A primary antibody binds to the antigen of interest. 2) Typically, a secondary 
antibody is applied that binds the first antibody. 3) In the chromogenic method, an enzymatic reaction 
produces a color, here depicted using DAB, specific to the antigen sites, which can be visualized with light 
microscopy. Created with BioRender.com 

IHC is typically applied to surgical specimens or biopsies that are formalin-fixed 

paraffin-embedded (FFPE), although it can also be used on frozen sections. The 

steps of IHC involve tissue preparation, antigen retrieval, the addition of a primary 
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antibody, the addition of a secondary antibody and detection, and 

counterstaining (Figure 2).   

Proper tissue preparation is critical to ensure that the sample retains its tissue 

architecture, cell morphology, and the antigenicity of the target epitopes. It 

involves fixation, which chemically cross-links proteins to stop cellular processes, 

freezes the cellular components in place and in their current conformation, 
provides some structural support for the tissue, and prevents degradation. 

Commonly, FFPE formalin is used for this step [102–104]. However, this step can 

also be done using an alcohol solution or other aldehydes.  

In the also commonly used frozen tissue sections, the tissue is first embedded in 

a cryoprotective medium and then frozen. Fixation is carried out after the 
sectioning process. Cryostats are used to section frozen tissues, which have the 

advantage of shorter processing times and better preservation of sensitive 

epitopes. However, in terms of preserving histological morphology, FFPE tissues 

are often superior to frozen tissues. In the case of FFPE, after the fixation, the 
tissues are embedded in paraffin blocks, which is necessary for sectioning but 

also supports preserving the tissue architecture and integrity and further helps 

preserve the tissue.  

Antigen retrieval is necessary as the fixation method can mask epitopes and 

obstruct the detection of the target by the primary antibody. This process reverts 

the crosslinking of proteins. Commonly, this is done either by heat-induced 
epitope retrieval (HIER) or proteolytic-induced epitope retrieval (PIER), which is 

based on enzymatic digestion [105].  

The primary antibodies are selected to target the epitope in question. Therefore, 

it is important that they are highly specific and can be reliably reproduced to 

ensure that they do not produce off-target binding. These antibodies can be 
either monoclonal, which binds a single, specific epitope, or polyclonal, binding 

several epitopes on the target. They differ in their production and have inherent 

advantages and disadvantages.  

Monoclonal antibodies are specific for a single epitope and can be produced from 

immortalized B-cell lines [106, 107]. Because of this, they can be produced with 
higher consistency and a known specificity. This makes them more suitable for 

routine clinical pathology and for semi-quantitative analysis in the clinical setting. 

However, since they only recognize a single epitope, changes in the epitope from 
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protein isoforms or denaturation can limit their epitope binding. Selecting 

monoclonal antibodies is advantageous when high specificity, reproducibility, and 

consistency is necessary. Nevertheless, while monoclonal antibodies have a 

known epitope binding, their results can be challenging to interpret if their 

specificity is low or if the target epitope is not abundant enough or might be 
masked. 

Polyclonal antibodies are produced by immunizing animals with the target antigen. 

They will result in a mixture of antibodies that bind against multiple epitopes on 

the target, as in a normal adaptive immune response. The advantages over 

monoclonal antibodies are that they have a higher tolerance for variability in the 
target and are better at detecting antigens that could undergo conformational 

changes. In addition, they can have a higher affinity to the antigen and, therefore, 

give a stronger signal. However, due to its polyclonality, there is an increased risk 

of off-target binding due to an increased likelihood of cross-reactivity with other 
epitopes. Another disadvantage is that due to their production method, their 

different batches will vary in their polyclonal setup; thus, reproducibility is 

challenging [108].   

The detection can be done by either IF or enzymatic activity. An indirect detection 

method is typically used when an unlabeled (primary) antibody that binds the 
target epitope is targeted with a secondary antibody with a labeled enzyme [109]. 

This results in signal amplification due to the binding of several secondary 

antibodies to the primary one. Typically used enzyme substrates are alkaline 

phosphatase (AP) and horseradish peroxidase (HRP). Several different 
chromogenic substrates are also available, commonly (3,3’-Diaminobenzidine) 

DAB, 3-Amino-9-Ethylcarbazole (AEC), or 5-Bromo-4-Chloro-3-Indolyl-

Phosphate (BCIP) / Nitro Blue Tetrazolium (NBT). A final counterstaining step is 

then applied, usually with a Hematoxylin staining. This final step helps to visualize 
the tissue architecture and cells in the non-target areas [110].   

1.6.2 The interpretation of IHC stainings  

Immunohistochemistry will provide information on whether an antibody is present 

in tissues and is, therefore, mainly considered a qualitative technique. One of its 
limitations is that it cannot be considered a purely quantitative method, meaning 

that it cannot be used to measure the amount of target protein present.  

One reason for this is that antigen-antibody reactions are not considered 

stoichiometric, meaning that there is no defined proportional correlation 
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between the antibody binding to its target and, therefore, there is no clear 

correlation between staining strength and quantity of antigen present. The 

reason for this includes that the target antibodies can be accessible to different 

degrees in the tissue due to factors like antigen retrieval efficacy variations in 

epitope availability from, for example, post-translational modification and 
background binding of antibodies where they bind non-targets. In addition, IHC 

also involves a series of amplification steps, like using a secondary antibody to 

visualize the results, making it difficult to control the final intensity of the 

amplified signal in terms of the amount of antigen. In addition, the commonly 
used DAB staining does not adhere to the Beer-Lambert law, which describes 

the linear correlation between the concentration of a compound and its light 

absorbance. The reason is that the brown staining it produces does not absorb 

light but rather scatters it and has a broad light spectrum [111].  

The qualitative interpretation of IHC can, however, to some extent, involve a 
quantitative step, where the number of positive cells is counted, as is used in the 

number of cancer cells expressing the ER or PR receptors in breast cancer [99], 

or nowadays widely used for the quantification of PD1 and PDL1 expression to 

identify patients suitable for immunotherapy in certain cancers [112–114].  

Despite these limitations, IHC is still widely used as a semi-quantitative method 
in a clinical setting. In these steps, staining intensity is judged, as in HER2 

expression, where the staining intensity is scored in a range from 0 to 3+. Even 

though strict reference standards are used for these, they do not reflect a linear 

correlation between staining intensity and protein amount [115].  

1.7 The Human Protein Atlas  

The Human Protein Atlas (HPA) is an online, open-access database that contains 

over 10 million high-resolution images of immunohistochemistry (IHC) stainings 
from tissue microarrays [116]. It covers 44 different normal tissues and the 20 most 

common cancer forms and covers 87% of human genes. Each gene is typically 

targeted with an in-house generated and a commercial antibody [117–119]. 

In the past decade, abundant gene expression data has been generated from 

different high-throughput systems because most of it comes from homogenized 
tissues or cell lines; the information on which cell type, ECM proteins, and the 

overall localization of the expression pattern within a tissue will typically be 

missing from the data.  
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The advantage of the human protein atlas over other databases is that the images 

contain information on the spatial distribution and localization of protein 

expression in the different tissues. Thus, the HPA can be used for a more precise 

localization of protein expression than other databases can provide. For example, 

it can be used to analyze the expression of proteins in the extracellular matrix, 
single-cell types, and cell subtypes in tissues.  

Due to the importance of antibody specificity, validation scores for each antibody 

used are provided in the database [120]. Two types of validation scores can be 

assigned: a standard and a formally validated one. The formal validation follows 

stricter criteria by following the recommendations outlined by the International 
Working Group for Antibody Validation [121]. 

The standard validation score is given for every antibody. It is based on 

consistency with scientific literature and with RNA sequencing (RNAseq) data. The 

literature conformity can be supportive or not supportive and is based on whether 

the expression data conforms with the literature and bioinformatic predictions. 
Uniprot [122] is the primary source for the literature data, while more in-depth 

research is used when necessary. The RNAseq data is also either supportive or not 

and is based on internal and external RNAseq data [120].  

When both RNAseq and literature/bioinformatics data are supportive, the 

antibody receives an overall “supported” score. When one is supportive and the 

other uncertain or non-supportive, the overall score is approved, and if both are 
uncertain or non-supportive, the overall score is labeled uncertain.  

The stricter, “formal” validation score relies on two separate methods analyzed in 

both tissues and cell lines. It is only performed on antibodies with supportive 

tissue atlas data. The method is based on the correlation calculated between RNA 

expression and protein expression from either cell lines or tissues. In the case of 
the cell lines, imaging software evaluates the staining, while the tissues rely on 

annotated data. The “independent antibody” method uses the correlation 

between two in-house generated single target antibodies for validation [120].    

To target such a vast number of targets, the HPA developed their own polyclonal 

antibodies (Atlas Antibodies Advanced Polyclonals) for primary antibody 
detection. They employed several steps to ensure their specificity and 

reproducibility. To select the epitopes, they used an antigen design software that 

selects a Protein Epitope Signature Tag (PrEST) sequence, ranging between 50 to 
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150 amino acids, which reduces the possible cross specificity to other human 

proteins. While full-length recombinant proteins frequently augment the risk for 

off-target binding, the PrEST antigen minimizes unwanted specificity by evading 

regions with high regional or local sequences to other proteins. They further 

include a unique purification process by using the recombinant PrEST-antigen as 
an affinity ligand to increase the reproducibility [123].  

Since polyclonal antibodies may exhibit variation in immune responses between 

batches, they use a strict quality control procedure to ensure that both the 

specificity and functionality are retained between batch numbers. They are, 

therefore, produced through a standardized process to ensure consistency 
across batches. This involves analyzing each new lot in parallel with a reference 

lot, employing consecutive sample materials for all approved applications. 

By analyzing the Human Protein Atlas, valuable information can be gained about 

the protein expression of molecules in the tumor stroma and the invasive edge of 

cancers. At the same time, careful interpretations are warranted due to the 
unreliability of some antibodies. The HPA provides an online website interface to 

explore the protein expression of various genes. However, this interface does not 

allow an easy method to compare images side by side, nor to do this on a large 

scale, for instance, to analyze a list of proteins of interest.  

1.8 Digital representation of images 

Digital images are made up of pixels, which can be understood as the most basic 

components of an image. It received its name from the combination of “pix” (short 
for pictures) and “el” short for element [124]. They are digitally represented as two-

dimensional matrices of intensities of each pixel. These will have a certain number 

of rows and columns based on the resolution of an image. For example, an image 

with a resolution of 1920 x 1080 will have an equal number of columns and rows of 
pixels. Each pixel is represented by a value determined by its intensity range. A 

binary image will only have two values (white or black), while grayscale images will 

have four values in its most basic 2-bit form (white, gray, gray, black), 256 values 

for 8-bit images, and 232 in 32-bit images.  

Color images are represented by each pixel having three separate values based 
on the intensities in Red, Green, and Blue (RGB) channels, and an additional 

transparency value can also be included (RGBA). These are based on the 

trichromatic vision of humans. However, other approaches exist to represent color 



 

 15 

images, such as with the HSB color spacer, in which Hue, Saturation, and Color are 

used [125]. 

The pixel values can be represented by a histogram, creating a graphical 

representation of the number of pixels in each intensity. The vertical axis 

represents the number of pixels for each intensity in the horizontal axis. For 

example, black pixels are on the far left of the histogram, while white is on the right. 
A color histogram can be made similarly by combining three histograms based on 

their three pixel values (RGB).  

These representations can be helpful for image processing, as they allow for the 

adjusting of the contrast of an image, for example, histogram equalization that 

modifies the histogram by creating a more uniform distribution and can be used 
to enhance the contrast of the image [126, 127]. Histograms are also valuable for 

thresholding and binarization of images by helping to identify optimal thresholding 

values.  

1.9 Image segmentation 

Image segmentation is the process of partitioning parts of an image into separate 

objects. This can be useful in detecting tumors in CT scans or cancer cells in 

histopathology. The most basic method for this is the thresholding method, which 
divides the pixel values into two categories, creating a binary image with only two 

values. Several methods have been developed for this, of which the simplest is to 

select a threshold value manually, and values below or above are assigned the 

maximum or minimum values. Other methods have been developed to 
automatically threshold images and identify the most optimal thresholding value. 

One commonly used method is Otsu’s thresholding [128], which systematically 

explores different thresholding values until it identifies the value that in a 

histogram would maximize that spread between the two groups. It divides and 
minimizes the variance inside the grouped values and maximizes them between 

the groups (Figure 3).   

Thresholding methods work only on images with pixels of a single value, like 

grayscale images, represented by a single histogram. Medical histological images 

are often color images, having three color channels. To threshold these images for 
image segmentation, the colors must be separated. One established method for 

this was described by Ruifrok and Johnston [129] and implemented in most image 

processing software like ImageJ, Scikit Learn, and QuPath [130–132].  
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Figure 3. Image segmentation with color deconvolution and thresholding. A) IHC tissue microarray showing 
CK5 expression with DAB and counterstaining with Hematoxylin. B) Color deconvolution was performed to 
select the DAB staining; however, some background noise remained. C) Otsu’s global thresholding [128] was 
applied to get a binary image. Image credit: Human Protein Atlas; analysis was performed with the Fiji software 
[133].   

While there are multiple methods for image segmentation, their approaches are 

limited by the complexities of images. It is challenging to define features in an 

image or to develop mathematical models that can be applied to images that 

inherently contain a lot of variation. Therefore, it is challenging to generalize the 
methods to a large set of images [134].  

1.10 Deep learning and neural networks 

Deep learning, a subfield of machine learning, has successfully met the challenge 
of autonomously identifying features in images. This approach is grounded in 

computational methods that vaguely emulate the connectivity of neurons. Its 

history traces back to 1943 when scientists first proposed a computational model 

of a neuron, known as the artificial neuron [135]. The perceptron was later 
introduced as the first model that could learn from data [136]. However, initial 

models faced a substantial hurdle: a limited ability to learn from data. This 

challenge was later mitigated using back-propagation, which employs gradient 

descent to enhance the learning of the network [137, 138]. Subsequently, neural 
networks were shown to be successful in image recognition tasks, imitating the 

human visual cortex [139]. Introducing a convolutional layer further enhanced 

image recognition capabilities [140]. This convolution layer consists of trainable 

filters that help extract and learn the images' features through convolution. A 
pivotal moment occurred during an image classification competition, where 

modifications of the convolutional layer outperformed all competitors. Following 

this, neural networks with feature learning became the standard for image 

recognition and classification [134, 141] 
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In a typical feedforward neural network (Figure 4), for example, when recognizing 

a handwritten number, input, in the form of number matrices representing each 

pixel, is passed through the network’s input layer during the training steps. With 

varying strengths, this layer connects to the next layer of nodes, and those nodes, 

in turn, connect to all nodes in the subsequent layer. Numbers are randomly 
passed through until they reach the output layer, where nodes correspond to 

expected outputs.  

 

Figure 4. Schematic of a simplified neural network used for image classification. The process begins with the 
introduction of a training image set. Each image from this set is digitized into a matrix of numbers, where each 
value signifies the intensity of a corresponding pixel. This matrix feeds into the input layer. Nodes within the 
network, represented by circles, are interconnected by weighted links to nodes in subsequent layers. Upon 
completing a training epoch, the error is determined by comparing the predicted output to the actual target 
in the output layer. The weights of the connections are then adjusted through a process called 
backpropagation to minimize this error. Created with BioRender.com 

Given that this is training data, the accuracy of the output layer is verifiable, 
enabling error calculation. This error is then backpropagated from the output layer 

to the input layer. The weights connecting the nodes are adjusted using gradient 

descent to minimize error [137, 138]. This step is reiterated for several passes 

through the network in "epochs." The capabilities of these basic feedforward 
neural networks were later amplified by appending a convolutional layer at the 

start of the process, thereby enhancing the extraction of image features [140]. 

Training these networks on large image datasets demands significant 

computational power. However, many of these models are openly accessible and 
can be retrained on alternative image sets in transfer learning, which decreases 

time and computational resources.  
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2 Research aims 
This thesis aims to investigate the composition and role of the tumor 
microenvironment and, in turn, the effect that it can have on cancer cells. As 

described in the introduction, the importance of the tumor microenvironment has 

emerged to have a significant role in carcinogenesis, its ability to invade normal 
tissues and to metastasize. However, much of our knowledge stems from studies 

of model systems, like cell co-culture studies or animal models. Even though 

valuable insights have been gained from these, the model systems might not be 

able to fully reproduce the complexity existing in the tumor microenvironment 
and its interaction with cancer cells.  

To complement the existing knowledge in human cancerous tissues, we set out to 
develop a method to analyze the composition of the TME and its function in 

human tissues and to investigate the presence and extent of influence it can have 

on cancer cells.  

The specific aims of this thesis were to:  

• To develop a software to enable us to analyze the Human Protein Atlas at a 
large scale (Paper IV).  

• To identify new proteins expressed in cancer associated fibroblasts in the 
tumor microenvironment, compare their expression in different tumor types, 

and infer a functional role from these protein expressions (Paper I) 

• To investigate the connection of RhoA expression in cancer associated 
fibroblasts in model systems by creating RhoA knockout fibroblasts and to 

study their effects on cancer cells in vitro in co-culture assays and in vivo 

animal models (Paper III).   

• To analyze the expression of the proteoglycan Decorin in the tumor 
microenvironment and compare its expression to other closely related 

proteoglycans (Paper II).  

• To analyze a set of pancreatic ductal carcinomas that invade the small 
intestine where phenotypic plasticity can be observed to explore the extent 

to which the ability of the normal microenvironment effects of cancer cells can 

be observed outside of model systems (Paper IV). 

• To develop a new method for the large-scale analysis of the HPA using deep 
learning to enable high throughput analysis of the HPA and to use the method 
to identify new markers of prostate basal cells (Paper VI). 
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3 Materials and methods 

3.1 Ethical considerations 

Our research involved analyzing tissue samples from healthy individuals and 
cancer patients. We also conducted animal experiments to analyze the effect of 

our findings in vivo. All necessary ethical approvals were obtained before 

beginning any of the studies.   

Our research relied heavily on the Human Protein Atlas online database (Papers I, 

II, V, and VI). All the used human tissue samples were collected and handled 
according to Swedish laws and regulations. The tissue samples were collected at 

the Pathology departments in Uppsala University Hospital as part of the Uppsala 

Biobank. Further, all the tissue samples were anonymized. The Uppsala Ethical 

Review Board approved the study.  

Because the database creators received the proper ethical permissions from their 
local review board, the sample collection followed Swedish law, and the data was 

anonymized, I feel confident that using the data obtained from the database is 

ethical. In addition, we also developed two methods that can improve the 

functionality and expand the use of this database (Papers V and VI). These tools 
can enable other researchers to take advantage of the database and make its use 

even more widespread.  

Paper IV used human pancreatic cancer tissues surgically excised during routine 

Whipple resections. In addition, we also acquired survival data for these patients 

from electronic health records. The research did not result in additional patient 

interventions, and the data was anonymized. Since the diagnostic and therapeutic 
procedures were standard of care, they did not require special patient permission. 

Written consent was also considered unfeasible as the retrospective study went 

back to 2002, and the diagnosis has a poor prognosis. The samples used for 

histopathology only included those where patients had consented to the inclusion 
and storage into the local biobank.  

In addition, we also analyzed the presence of the phenotype switch that we 

observed in human cancers in animal models. In total, we looked at six mice 

previously used in another research study, so no additional harm had come to 

these animals with our analysis. However, we could use their sacrifice for 
additional insight into cancer research.  
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In paper III, animal models we used animal models to delve deeper into our 

findings from paper I. Initially, we used cell culture studies to assess the 

implications of knocking out RhoA. Animal studies inherently lead to harming 

animals and, therefore, demand meticulous planning and strict ethical adherence. 

Therefore, careful considerations are necessary on the value and necessity of the 
research.  Due to the intrinsic complexities of cancer biology, particularly the 

complex interactions between tumors and their microenvironment, we 

considered using in vivo models important to fully understand the effects in living 

organisms, thus justifying the use of animals. As it leads to the harm of animals, it 
is of great importance to adhere to high animal welfare standards, limit the 

animals’ suffering as much as possible, and use strict scientific rigor to ensure that 

the potential scientific gains are of good quality. I am confident that we could 

adhere to these principles.   

3.2 Paper V. AtlasGrabber: a software facilitating the high throughput 
analysis of the human protein atlas online database 

To allow us to perform a larger-scale analysis of the HPA database and exploit its 
extensive capacity, we developed a Windows desktop application, AtlasGrabber, 

to enable this.  

We wrote the code in C# coding language and released it on GitHub [142] under 

Gnu Public license v3 [143]. Its primary function is to streamline the analysis of 

IHC-stained tissue samples from the HPA, focusing on a specified gene list. Based 

on a provided gene list, it can systematically present images side-by-side, 
thereby facilitating the categorization and sorting of proteins of interest into 

different lists that can be saved and later retrieved. It, therefore, allows concurrent 

analysis of a predefined list of proteins across up to four distinct tissues in both 

tumor and normal tissue samples, thereby enabling comparisons between 
different tissue stainings for a single antibody. In addition, we added a feature to 

analyze the entire database from HPA, available only as a downloadable XML file 

[144]. This tool, the XML parser, can find the complete list of image links for a 

particular tissue and includes the names of genes and antibodies for any of the 
tissues included in the HPA. 

To use the AtlasGrabber, a text file (.txt) containing a list of Ensemble IDs for the 

intended gene analysis is required. These lists are generated by extracting the 

names with the XML parser for a complete list or via keyword searches within the 
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HPA search function, followed by file exportation. A comprehensive guide, with 

detailed video guides, can be located on the GitHub page’s Readme file [142]. 

The AtlasGrabber can be accessed on its GitHub page [142] in an executable file 

that can be directly run without the need for installation, or by using the source 

code, it is possible to compile it. It is tested to work on Windows 8, 10, and 11. 

Optimal usage is achieved with a large screen, high-definition display, as it will 
maximize the screen area usage by dynamically recalculating each window’s 

occupied area. 

Figure 5. The AtlasGrabber with the “Settings” open. A) Windows are selected at the top right corner. B) 
Displays the loaded protein list. C) Additional filters can be selected depending on antibody type and sample. 
D) Selected proteins are saved to these lists that can be named and saved. E) The XML parser feature extracts 
complete protein lists from normal or tumor tissues.  

The application has three windows: analysis, settings, and browser (Figure 5). On 

startup, it launches with the “Settings” window, wherein users upload their text file 
containing the gene list of interest. Here, added settings include viewing image 

slides of all antibodies or viewing only commercial or HPA-produced in-house 

ones. It can also filter the images to view only one image per patient sample (as 

typically, from each patient, two images are provided). In addition, the settings 
window is used to view the gene lists for storing selected genes. A keyboard 

shortcut is assigned to each list from 0 to 9. Pressing that key during the analysis 

will save the current protein to that list.  When saved, the list is stored in the same 

folder as the executable, and the newly analyzed gene names are appended to 
existing ones, allowing users to continue from a previous analysis.  
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To initiate the image loading and viewing process, the "Analysis" window is used. 

Here, images related to the protein from the initial list are shown, and one can 

scroll through each image for every antibody targeting the protein. We assigned 

designated keyboard shortcuts to navigate through images, antibodies, and 

proteins, though the mouse scrolling wheel can also serve this purpose. In the 
"Settings" window, one can view the protein under analysis and view gene IDs 

allocated to various lists. 

In the "Browser" window, users can view the HPA website related to a specific 

antibody in a web browser, facilitating access to summaries about the gene or 

antibody. If an antibody is of interest during analysis, rapid access to relevant 
information from the HPA, such as antibody type, antibody validation, and 

descriptive summaries of the protein can be viewed. A progress bar and the 

current protein analyzed can be viewed at the top of the application window. A 

“Help” link directs users to the GitHub page's Readme file, offering detailed 
instructions and tutorial videos. 

In the “Settings” window, the XML parser can be accessed. This enables the 

extraction of data subsets (both normal and tumor tissues) and is saved in a .csv 

file.  

To illustrate the application’s utility, we aimed to identify new biomarkers for basal 

cells of the prostate gland. These cells encircle the normal glands in the prostate 

but typically disappear in prostate cancer as the cancer cells invade and break 
through this cell layer. Pathologists commonly use three IHC markers—CK14, CK5, 

and P63—to identify prostate basal cells in diagnosing prostate cancer, as their 

absence indicates invasiveness  [145–148].  

With the XML parser function, we accessed the protein Ensemble IDs [149] for 

normal prostate tissue, selecting a subset from the gene list for analysis. The list 
was analyzed using the AtlasGrabber’s “Analysis” function in normal prostate 

tissue. The proteins that showed a positive staining for prostate basal cells were 

selected. In a comparison analysis, we then compared their expression in prostate 

cancer. 

3.3 Paper I. Novel signatures of cancer associated fibroblasts 

In a preceding study in our research group, we identified 1,033 genes from gene 
expression analysis of two pairs of isogenic, inhibitory, and non-inhibitory 

fibroblasts regarding their effect on cancer growth [150]. One pair comprised the 
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telomerase immortalized BjhTERT fibroblast cell line [151], while the other pair was 

from donor fibroblasts. Both pairs exhibited inhibitory and non-inhibitory 

characteristics established from fibroblast-cancer cell co-culture studies. 

Upregulated genes were selected from these inhibitory and non-inhibitory 

fibroblasts. 

From these 1,033 selected genes, 759 were selected that were identified in the 
UniProt Accession numbers [152]. To expand this protein list with relevant proteins, 

first neighbor interactors were selected from the BioGRID and Human Protein 

Reference Databases [153, 154], thus ending up with an additional 1,892 proteins 

identified as possible interactors with the original list of proteins. 

Since these differentially expressed genes were proposed to play a role in 
fibroblast function in the TME, we set out to analyze their expression in cancer 

associated fibroblasts by comparing normal and cancerous tissue stroma in the 

Human Protein Atlas online database. To enable this, we used an early version of 

the AtlasGrabber software [155]. We initially analyzed the protein expression of 
these genes in basal cell carcinoma compared to normal skin tissue. Skin and basal 

cell cancer were selected, as the skin fibroblasts can be easily visualized, and basal 

cell cancer typically forms clear cancer island nests with clear boundaries to the 

stroma. Proteins that expressed a clear and strong staining in the basal cell 
carcinoma stroma but not in the normal skin were selected. An additional 

selection was made by the number of samples that expressed CAFs.  

To investigate how these genes are expressed in CAFs in other cancers and to 

what extent, we analyzed their expression in the stroma of squamous cell 

carcinoma, breast cancer, colorectal cancer, and lung cancer. These cancers were 

also selected based on the ability to identify the tumor stroma clearly. As CAFs 
have a similar phenotype to myofibroblasts, we investigated how our newly found 

CAF markers compared to normal tissue fibroblasts that included fibroblasts with 

a myofibroblastic phenotype, including bone marrow fibroblasts, mesangial and 

peritubular fibroblasts of the kidney, subepithelial fibroblasts of the small 
intestine, and intra, and interlobar fibroblasts of the breast. 

3.4 Paper II. Decreased decorin expression in the tumor 
microenvironment 

Our study on CAFs revealed that an ECM protein, Decorin, was highly expressed 
in normal tissues but seemingly absent in the basal cell carcinoma tumor stroma, 

opposite to our CAF markers. It was striking that it seemed nearly absent in the 
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tumor stroma we had seen. The research on Decorin indicated a significant role in 

carcinogenesis and a clear tumor inhibitory role [54]. We were therefore 

interested in looking at its expression in a wide range of tumor types. For this, we 

could again take advantage of the HPA and our software tool, the AtlasGrabber 

[155]. The antibody for Decorin expression in the HPA had supportive validation.  

To improve the objectivity of this analysis, we developed an additional in-house 
tool, the Protein Expression Quantifier, to objectively quantify the protein 

expression in the IHC-stained images. It analyzes the DAB IHC signal from images 

by image inversion and automatic thresholding, after which the DAB expression is 

quantified and charted.  

The striking absence of Decorin in the tumor microenvironment led us to look at 
additional similar proteoglycans of Decorin: Asporin, Biglycan, and Osteoglycin. 

We analyzed the expression of these in skin and breast cancerous and normal 

tissues.  

3.5 Paper III. RhoA knockout fibroblasts lose tumor-inhibitory capacity 
in vitro and promote tumor growth in vivo 

In paper I, we identified 12 new markers of cancer associated fibroblasts. We found 

that four of the 12 identified markers were related to Rho-signaling. Therefore, we 

set out to investigate the closely related role of RhoA in fibroblasts and its effects 
on cancer cells in both in vitro and in vivo model systems.  

We established a RhoA knockout (KO) immortalized BjhTERT fibroblasts [151] line 

with the CRISPR/Cas9-lentivirus knockout method [156]. We used a mixture of 

three vectors, RhoA1, RhoA2, and RhoA3, to transduce the cells. The control group 

was made with fibroblasts infected with empty vector lentiviral particles. The 
protein level was evaluated using Western blotting. For cancer cells, the prostate 

cancer cell line PC3 was used [157].  

Using a tumor inhibitory assay, we studied the effect of the RhoA knockout 

fibroblast on tumor growth. For this, we plated the fibroblasts and cultured them 

for five days until a confluent monolayer was formed. We then plated 200 

fluorescently labeled PC3 cells on the monolayer. The control group was without 
the fibroblast monolayer. The analysis was performed with an earlier established 

automatic immunofluorescence microscope system, measuring at a single cell 

level [158].  
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We used the female SCID mice models to investigate the effect of the RhoA KO 

fibroblasts on cancer growth in vivo. We injected them with PC3 with a non-

tumorigenic dose of PC3 cells (20,000) alone, together with the control wild type 

(WT) RhoA fibroblasts, and finally with RhoA KO fibroblasts. The occurrence of 

tumors was analyzed up to 80 days post-injection. The tumors were measured 
with a caliper to mm3 size.  

We used a live-cell motility assay to measure the effect on cancer motility. KO 

and WT RhoA fibroblasts were cultured in six-well plates. H2AmRFP-labeled PC3 

cells were then added and co-cultured. Total Infernal Reflection Fluorescence 

(TIRF) Microscopy recorded time laps of cancer cell motility for 65 hours.  

To study the effect on cancer cell growth, we co-cultured the RhoA KO and WT 
fibroblasts in a 3D collagen matrix growth assay with PC3 cells. A clustering Index 

was calculated to quantify the growth of the tumor spheres. 

To further investigate the effects of these knockout cells, we studied their 

secretory function when co-cultured with PC3 cells. We added labeled PC3 cells 

to fibroblast monolayers and sorted the cells with fluorescence-activated cell 

sorting (FACS), after which we isolated the RNA and analyzed it with the Affymetrix 
Microarray. Differential gene expressions of the RhoA KO and WT fibroblasts 

before and after PC3 confrontation were measured. PC3 cells were cultured with 

the RhoA KO fibroblasts, WT fibroblasts, and both with and without the PC3 cells. 

The results were validated with qPCR analysis.  

Finally, to investigate the cytoskeletal function of the RhoA knockout cells, we 
measured the stiffness and contractile force of these fibroblasts using atomic 

force and traction force microscopy.  

3.6 Paper VI. Identification of novel protein markers of prostate basal 
cells by application of deep learning to images from the Human 
Protein Atlas 

We developed a new method based on deep learning to enhance our ability to 
analyze protein expression in the HPA on an even larger scale. Using the 

AtlasGrabber’s [155] XML parser feature, we accessed all the available images for 

normal prostate tissue from the HPA database. Out of these, we manually 
identified 70 images that showed positive staining for the prostate basal cells. 

Additional images were selected that represented the non-basal cell staining. 

These formed our two training datasets.  



 

26 

As the TMA images vary in color intensity and their tissue architecture, we 

performed image segmentation to isolate the DAB staining of the images. We used 

those images for the training and classifier. This image processing was done using 

the Fiji software [133], a distribution of ImageJ2 [130].  

First, we applied background subtraction with color correction, followed by color 

deconvolution based on manually identified color vectors from regions of interest 
from representative images [129, 159]. Due to the varying color intensity, two 

separate color vectors were used. Once color deconvolution was applied, we used 

binarization of the images with the Otsu [128] and Minium methods [160] since we 

noticed that after using different color convolution methods, no uniform 
binarization fit all images uniformly. The image processing was applied to all 

images. Thus, we ended up with four new binarized images for each original image. 

We made an additional manual selection of the images for the training set that 

were selected based on which showed the clearest staining patterns. Finally, we 
ended up with 164 images for the training set that showed a basal-like staining 

pattern and 500 images that showed a non-basal-like staining, which formed our 

two classes. The discovery analysis was performed on a total of 185 850 images, 

of which 39 104 made up the testing sets used to evaluate the performance.  

We used GPU-accelerated TensorFlow for the classification and tested two neural 
networks: MobileNet [161] and Inception V3 [162]. Transfer learning was used to 

retrain the networks on our training image datasets. The images were classified, 

and a score of either basal-like or non-basal-like was assigned to each image. 

From the first training set results, we selected 53 misclassified images and 
retrained the network with these images (Figure 6).  

 

Figure 6. The method of image processing and classification. 1) Deconvolution and binarization were applied 
to all images. 2) The CNN was trained with transfer learning. 3) The trained classifier was used to classify all 
the images as either basal-like or not. 4) Additional manual selection was done on the classified images, and 
performance was measured using the testing set.  
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At the cutoff of 0,95 prediction for basal cell phenotype, the network identified 

3,053 images out of the original 185,850 images. Upon inspection of the results, 

the classifier had made some errors, like not being able to easily distinguish 

between basal cell type and glandular epithelial cells, as both showed a similar 

staining pattern after our image processing steps. We finally made a manual 
selection of the images and selected 53 proteins that showed the strongest and 

clearest staining.  

Out of those, several were based on the same original image. Each antibody could 

have several corresponding images that showed a similar staining pattern, and 

each protein might have several antibodies targeting it that also showed a similar 
staining pattern.   

To investigate whether our identified genes would overlap with RNA expression 

data, we compared our results to an existing gene expression dataset that we 

published in a previous study [163]. This dataset was based on single-cell RNA 

expression (scRNAseq).   

We also performed a network enrichment analysis (NEA) with FunCoup 3 [164] to 

see if we could infer a functional role from our found markers. For this, the 
functional gene sets were from Gene Ontology (GO) [165, 166], Disease Ontology 

(DO) [167] and Reactome Pathways, and the network was based on Pathway 

Commons v9 [168, 169].  

Finally, we investigated whether the basal cell markers we identified were present 

in prostate cancer. For this, we used the AtlasGrabber software [155] which allows 
for the easy comparison of protein expressions in different tissues in the Human 

Protein Atlas database. A staining score was assigned based on the low, medium, 

or high for all the antibodies for each protein, based on a subjective interpretation 

of the strength and quality of the stainings.  

3.7 Paper IV. Stabilization of the classical phenotype upon integration 
of pancreatic cancer cells into the duodenal epithelium 

In vitro model systems have indicated that cancerous cells can change their 

phenotype and even normalize depending on their tissue context [80] However, it 
is unclear to what extent this can occur in vivo. An observation had been made by 

pathologists at the pathology clinic at the Karolinska University Hospital, where 

they had examples of certain pancreatic cancers that are typically locally very 

invasive, where the pancreatic ductal adenocarcinoma (PDAC) cells invaded the 
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small intestine. Seen with multiplex immunohistochemical stainings, they 

integrated into the intestinal crypts and villi. Here, their immunostainings gradually 

changed, and they acquired an immuno-phenotype of more indolent, classical 

PDAC and that of the normal intestinal cells.  

To further study this and to quantify the extent to which this can be observed, we 

performed a retrospective search for cases that showed this phenomenon. Cases 
were identified between 2008 and 2020 where PDAC cells infiltrated the small 

intestine and showed a change in their IHC staining patterns.  

For these cases, serial multiplex immunohistochemistry [170] and quantification 

were performed separately in the mucosa and submucosa of the intestine to 

differentiate the IHC staining patterns.  

In addition, FFPE sections from a cohort of pancreatic cancer mouse models [171, 

172]  were analyzed, and one animal was found to have a similar intestinal invasion 
as described in our patient material. With IHC, we analyzed the expression of the 

high-motility group AT-hook 2 (HMGA2) protein by immunohistochemistry that 

was shown to be downregulated in classical PDAC [172].  
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4 Results and discussion 

4.1 The AtlasGrabber software enables the large-scale analysis of the 
Human Protein Atlas database (Paper V) 

To enable our research aims and to be able to analyze the HPA fast and on a large 
scale, we set out to develop the software AtlasGrabber. We had already used an 

earlier version in paper I, and the software went through several cycles of 
improvements until we made the final application. We made it available for other 

researchers using an open-source license [143], allowing unrestricted use and 

modification in research.    

Previously, another research group had identified a similar need for such an 

application, the HPASubC application [173]. However, we had tested it prior to 

designing our software. We found it challenging to use and run since it only runs 
on Linux kernel and requires several Python scripts and dependencies, many of 

which are outdated. Through our extensive use of the HPA, we were also able to 

identify several uses in our research that it did not enable but which we 

implemented. For instance, the AtlasGrabber allows us to compare up to four 
images side by side, allows us to sort the proteins of interest into different lists, 

and has options to filter which images for each protein one views. It also fetches 

the images directly from the HPA database and only loads them temporarily; thus, 

it does not need to download large image sets.  

We also made it user-friendly so that it is easy to run on Windows without any 
installation required and added easy tutorials online. In addition, we also added 

the XML parser functionality that allowed us to extract entire protein, antibody, 

and image addresses from the XML Human Protein Atlas database file, which no 

other software could easily do due to its large size. We used this function in paper 
VI to access all the images for normal prostate tissue.  

As proof of concept, we set out to identify protein markers of prostate basal cells. 

We could easily identify six new basal cell markers from a limited number of genes 

using the software (Figure 7), demonstrating its utility. We then used the 

comparison function of the AtlasGrabber to compare our findings to cancerous 
tissues. This showed that, as expected, most of the basal cell markers were absent 

from prostate cancer cells, except for EMC8.  
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Figure 7. Identification of Novel IHC Markers for Prostate Basal Cells using AtlasGrabber Software. Images A–
F depict markers with distinct and specific staining for basal cells in normal prostate tissue. Images G–L show 
their expression in corresponding prostate cancer, all absent apart from EMC8. The bottom section provides 
the name of each protein alongside its corresponding antibody ID. Image source: Human Protein Atlas.  

The software enabled us to speed up our analysis, which would not have been 

feasible without the software. Nevertheless, a limitation of this software is the 

need for the user to view each image one by one and make a subjective 
interpretation of each of them. The HPA contains over 46 thousand images for 

normal prostate tissue and can have over 200 thousand for each cancerous 

tissue. It is, therefore, not feasible to look through all these images, even with 

software like the AtlasGrabber that significantly speeds it up.  

This led us to explore various computer vision methods to automate this so that 

from selecting a few images, one could automatically identify similar images in the 
HPA. For this, we first explored using perceptual hash algorithms [174] that create 

a distinct fingerprint of an image that can be compared to each other for similarity 

using a Hamming distance, a technique used in image search engines to find 

copyrighted materials online. However, we could not get these to work well on the 
IHC tissue images from the HPA. However, at the time, a new technique emerged, 

the use of convolution neural networks that could be used to classify images. We 

turned to this technique and developed it in paper VI.  
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4.2 New markers of cancer associated fibroblasts (Paper I) 

In paper I, we used the AtlasGrabber to identify new proteins expressed in cancer 
associated fibroblasts of the tumor microenvironment. We started with a list of 

1,876 genes, and out of these, we identified twelve proteins expressed in the tumor 
stroma of basal cell cancer but not in normal skin fibroblasts.  

The comparison in different tumor types revealed that the expression of these 
CAFs was not uniform in different tumor types but varied in their expression 

(Figure 8 and Figure 9). For example, ARHGAP26 was positive in most basal cell 

cancers but not equally in squamous cell cancers. 

 

Figure 8. Each newly identified CAF marker and its expression in different cancers. For each cancer, we looked 
at all the available patient samples for each tumor and calculated the percentage of positive stains. We also 
included Smooth muscle alpha-actin (ACTA2), the standard CAF marker for comparison. 

We further compared the expression of these CAFs to other normal tissue 

fibroblasts. This revealed that they were not expressed in most normal fibroblasts 

of the breast and of peritubular fibroblasts of the kidney but were expressed in 
the small intestinal subepithelial fibroblasts and somewhat expressed in bone 

marrow fibroblasts and the mesangial fibroblasts of the kidney. This could be 

explained by the more myofibroblastic phenotype of these normal tissue 

fibroblasts. A notable exception was ROCK2, which was only expressed in CAFs 
and absent in all the normal fibroblasts.    

Exploring the function of the 12 proteins, we found that four of the genes, 

ARHGAP26, ARHGAP31, DLG, and ROCK2, were linked to Rho kinase signaling. This 

pathway has been described to have a role in cell migration, cell adhesion, and 
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actin cytoskeleton regulation and could, therefore, be proposed to be connected 

to a myofibroblastic and CAF-like phenotype [175].  

 

Figure 9. The newly identified CAF marker ROCK2 with its expression compared in fibroblasts of normal skin 
and breast in which they are not expressed, compared to CAFs in basal cell cancer and breast cancer in which 
they are expressed.   

Performing a protein interaction network analysis, we identified a highly 

connected protein network, and functional analysis revealed that highlighted 
processes in the network included Rho- and GTPase-related processes and 

cytoskeleton and organelle organization.   

In summary, starting from the list of differentially expressed genes from subtypes 

of fibroblasts that had either an inhibitory or non-inhibitory effect on cancer cell 

growth, we were able to use our software to identify new CAF markers which 

showed a clear connection to Rho kinase signaling. Limitations include that we 
only analyzed a subset of all proteins available in the HPA, and that the 

interpretations of the stainings were subjective.  

4.3 Decorin expression is decreased in the tumor microenvironment 
(Paper II) 

In paper II, we explored the expression of the proteoglycan Decorin that we had 
observed during the analysis in paper I. We found it expressed in normal skin ECM 

but almost absent in skin cancer.  
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We analyzed Decorin expression in normal and cancerous tissues. We found that 

Decorin was expressed strongly in the stroma of all the normal tissues analyzed 

but was markedly decreased or absent in all the corresponding tumors, although 

there was some variation in the expression between patient samples (Figure 10). 

Using our quantification method, we could objectively measure the DAB 
expression in the images to confirm the observations.  

 

Figure 10. Decorin expression with IHC compared in normal bladder and urinary bladder cancer. A strong 
positivity can be seen in the normal connective tissue, while it is nearly absent in the corresponding cancer 
tissues.   

As decorin is deposited in the ECM, mainly by fibroblasts, we postulated that one 

reason for the reduced expression in tumors could be that a newly formed tumor 

stroma could generally have a lower proteoglycan expression as it has not had 
time to be deposited. Therefore, we also studied closely related proteoglycans to 

Decorin: Biglycan, Asporin, and Osteoglycin in breast and skin tissues, and their 

corresponding tumors, ductal breast cancer, squamous cell cancer, and basal cell 

cancer of the skin. We found that Osteoglycin showed a similar expression pattern 
to Decorin, upregulated in the normal tissues but downregulated in the 

corresponding cancers. In contrast, Biglycan and Asporin showed the opposite, 

upregulated in the corresponding tumors. Indicating that tumor stroma can have 

abundant proteoglycan expression, and the decreased Decorin expression we 
observed might not be explained by the delay in its deposition in a newly formed 

tumor stroma. 

The HPA, combined with the AtlasGrabber, proved to be a helpful tool for analyzing 

protein expression in normal and tumor tissues. It is especially valuable to analyze 

protein expression in the ECM as this would not be feasible by methods that look 
at cellular mRNA expression.  

Although previous studies had shown that Decorin is decreased in the stroma in 

some cancers [58, 59], we added to this observation by looking at more tissues. 

We showed that this analysis can be easily done using our method. Our findings 

align with the current understating of Decorin’s role in the tumor 
microenvironment as the “guardian from the matrix” [54] in which its absence 
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could promote tumor growth and invasion. The method can further analyze 

additional proteoglycan expression in the TME.  

4.4 RhoA knockout fibroblasts lose their tumor-inhibitory capacity 
(Paper III) 

We established RhoA knockout fibroblasts using the CRISP/Cas9 knockout model 
of the BjhTERT fibroblast cell line [151, 156]. Loss of RhoA was confirmed using 

quantitative real-time PCR and western blotting. 

In our co-culture assay, we measured the effect of the knockout fibroblasts on the 

proliferation of PC3 cancer cells. Co-culture assays with normal fibroblasts 

typically decrease cancer growth [150] and we observed this with our RhoA-
expressing fibroblasts. However, the RhoA knockout fibroblast had a significantly 

higher cancer cell growth than the control fibroblasts.   

To study the effect of the RhoA KO fibroblasts on tumor growth in vivo, we injected 

SCID mice with PC3 cancer cells alone and in combination with the WT RhoA (10 

mice) and KO fibroblasts (5 mice). Injecting the animals with PC3 cells alone 
resulted in no tumor formation, while infecting with WT fibroblast resulted in one 

small tumor-forming. However, our KO fibroblasts showed tumor growth in 5 out 

of 5 animals, with a very rapid expansion after six weeks (Figure 11).  

 

Figure 11. Tumor growth in the SCID mice injected with prostate cancer cells with either the RhoA KO or control 
WT fibroblasts. Cancer cells alone formed no tumors, the WT control fibroblasts only formed one small tumor, 
and the KO fibroblasts formed tumors in all mice.  

We used a motility and proliferation assay to study the effect on the motility of 
cancer cells of our RhoA KO fibroblasts. We found that the effect on cancer 

motility was increased when PC3 cancer was co-cultured with the RhoA KO 

fibroblasts and showed that the cancer cells formed larger colonies (Figure 12).  
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Figure 12. A) The motility assay comparing the RhoA KO fibroblasts to WT fibroblasts showed increased cancer 
motility with the KO fibroblasts at different time points. B) Max projection of all time points over the 65 hours. 
C) Kinetics of tumor-cell motility shown by calculating the areas of cell trajectories. D) Average (mean) 
number of cancer cells proliferating during each time interval.  

In studying the change in cytoskeletal architecture and its effects on cellular 

contractile forces and stiffness, we observed that the RhoA KO fibroblasts showed 

less regularly shaped cells compared to WT fibroblasts. They also showed fewer 
actin stress fibers, fewer focal adhesions, and reduced α-SMA expression.  

With traction force and atomic force microscopy, we measured the mechanical 
properties of the RhoA knockout fibroblasts. We showed that the KO fibroblasts 

had significantly reduced contractile forces. At the same time, the cell stiffness 

was more homogenous and evenly distributed in the KO fibroblasts compared to 

the control fibroblasts, which also appeared significantly stiffer.  

Using gene expression analysis of the fibroblasts KO and WT, co-cultured with PC3 
cells, we could further show that the KO fibroblasts showed an increase in 

proinflammatory gene signatures upon cancer cell contact.  

In a 3D coculture assay, we found that KO fibroblasts resulted in the PC3 cancer 

cell line having a higher clustering index, meaning they were more compact than 

in the control group, which showed that cancer cells were more dispersed. 
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In paper I, we identified several CAF markers connected to Rho signaling. In 

summary, in these studies, we found that knocking out RhoA showed that the 

fibroblasts decreased their inhibitory capacity on cancer cell growth in vitro and 

in vivo. This indicates a significant role in RhoA’s tumor inhibitory role.  

Our observations of its expression in the CAFs in the tumor microenvironment 

could infer a process to inhibit tumor progression as a tissue response to 
malignancy. This aligns with observations in the metastasis of colorectal cancer to 

the liver. These observations grouped liver metastasis into two distinct types: 

ones accompanied by a strong desmoplastic rim - a peri-metastatic capsule, and 

those without. Survival data from these patients indicated a better prognosis for 
patients with metastasis with a strong desmoplastic reaction, indicating that it 

had a potential inhibitory and protective role in those patients. In addition, they 

could also show that this rim originated from the liver as a response to injury 

caused by cancer metastasis [176–178].  

4.5 Deep learning enables the high throughput analysis of the HPA and 
identifies multiple new markers of prostate basal cells (Paper VI)  

We tested the MobileNet [161] and Inception [162] networks and found a slightly 

better performance with the MobiNet network. Both 250 and 4000 training steps 
were used, but we found only a slight improvement with less than 0.03 difference 

with the increased training steps measured by AUC.  

 

Figure 13. Examples of prostate basal markers in normal and cancerous tissues identified by a deep learning 
classifier. The bottom row shows the comparison to prostate cancer, where they are mostly absent. 

With a cutoff of 0.95, we could classify the 185 850 images, and after a retraining 

step, we ended up with 3053 images classified to the basal-like phenotype. With 
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a final manual curation, we selected 53 markers specific to basal cells. Amongst 

the identified proteins were the commonly used markers in routine pathology, 

CK14, CK5, and P63 [145–148]. Forty-four of these markers had not previously been 

described as IHC markers of prostate basal cells (Figure 13).  

Our gene enrichment analysis showed significant enrichment for biological 

functions like epithelial keratinization, development, and regulation.  

Comparing our data to existing scRNAseq data on prostate basal cells [163] 
revealed that only 9 of our identified markers overlapped. Comparison to prostate 

cancer showed that most of our markers were, as expected, absent in cancer, with 

a few exceptions to this (Figure 14).  

 

Figure 14. Venn diagram comparing our identified markers of prostate basal cells compared to results from 
scRNAseq data. While nine proteins overlapped and were identified by both methods, most did not.   

In summary, our method shows that based on a limited number of images, it is 

possible to identify similar images in the protein atlas and identify multiple new 
IHC markers for that specific cell type. Comparison to gene expression data 

showed we could identify similarly expressed genes; however, the majority 

differed. This shows that both methods are complementary to each other.  

Reasons for the differences could be explained by the known differences between 

gene and protein expression, which can be explained by post-transcriptional 

mechanisms, such as RNA splicing, editing, and mRNA stability, as well as variations 
in translation efficiency, protein degradation rates, and cell-specific factors [179–

183]. Limitations of antibody specificity intrinsic to affinity-based methods such 

as IHC could also explain the difference. We could observe this as different 

antibodies used the HPA did not always show the same stainings for the same 
protein.  
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4.6 The normal tissue environment can influence cancer cells to 
change their phenotype (Paper IV)   

We identified 20 patients between 2008 and 2020 who had undergone Whipple 
resection at the Karolinska University Hospital and had confirmed PDAC. At the 

time of data collection, median survival was 559 days after surgery, and only one 

patient was still alive at the time of data collection.  

In these cases, cancer cells had infiltrated the duodenal epithelium to varying 
degrees and had integrated into the epithelial layer of the normal small intestine. 

Notably, the normal mucosal architecture of the intestine remained intact in all 

cases, with only mild reactive atypia. To confirm the pancreatic origin of these 

cells, we utilized immunohistochemical markers such as SMAD4 loss and P53 
positivity [184]. 

Notably, the cancer cells that integrated into the intestinal mucosa underwent a 

phenotypic transformation. They exhibited well-differentiated features and, to 

some extent, regained their polarization, in contrast to the submucosal cancer 

cells. Typically, pancreatic cancer is associated with a strong desmoplastic 
reaction, detectable with Podoplanin (D2-40) [185]. While we observed a robust 

desmoplastic reaction in the submucosa, it was notably absent around the 

intramucosal cancer cells. The lamina propria also remained intact around these 

cells. 

To quantify these differences, we employed a panel of 12 IHC markers. This panel 

distinguished between the two main pancreatic cancer subtypes, the classical 
and basal-like [186], of which the basal-like have a worse prognosis [187–189]. 

Additionally, we included markers for proliferation, general PDAC markers and 

tumor markers. These markers revealed significant reductions in basal-like PDAC 

markers within the intramucosal cells compared to the submucosal cells (Figure 
15). Furthermore, the intestinal markers MUC2 and CK20 exhibited significant 

increases in the intramucosal cells. These changes indicated a remarkable shift in 

the PDAC cellular phenotype specific to their location. 
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Figure 15. Shift in cancer cell phenotype on integration into the duodenal mucosa. (A) Volcano plot displaying 
the significant differences, red: higher in the mucosa; blue: higher in the submucosa. (B) Differences in IHC in 
mucosal vs. submucosal tumor cells for MUC5AC, MUC2/MUC1, CK20/CK5, and WT1/CA125. Arrows show 
cancer cells integrated into the mucosa, while asterisks mark the submucosa.  

We also observed location-dependent changes in the proliferation of cancer cells. 
As the cancer cells infiltrated the intestinal crypts, we noted increased 

proliferation compared to the submucosal cancer cells. This increase paralleled 

the normally heightened proliferation of intestinal crypt cells, responsible for 

replacing cells in the villi. Additionally, we observed a gradual shift in the 
expression of normal intestinal markers CK20 and MUC2. CK20 is typically 

expressed in intestinal epithelial cells, while MUC2 is a marker for goblet cells. We 

demonstrated that as the cancer cells moved higher up the villi, they progressively 

increased their expression of these markers, even adopting a goblet cell 
phenotype (Figure 16). 
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Figure 16. Location-dependent changes in the intestinal villi infiltrated by PDAC cells. All images are serial 
sections of the same tissue sample. The bottom row corresponds to a magnified image of a specific location 
from the top row. A and B) CK7 identifies PDAC cancer cells in the villus. A gradual change in CK20 positivity 
can be observed, similar to its expression in normal intestinal cells. C) Goblet cell differentiation visualized 
with Muc2 staining in cancer cells and normal cells. D) Black arrows indicate non-cancerous cells, while red 
arrows indicate cancer cells and show the difference in morphology between the two. E) Ki67 nuclear staining 
marks cells under proliferation, with a Vimentin staining of the stroma. F) Magnified image of the intestinal 
crypt where increased proliferation can be observed in cancer cells, compared to below or above the crypt.  

In our animal model, the KPC mouse model, closely resembling human PDAC, 

driven by KRAS and Tp53 mutations [171], we observed a similar phenomenon as 
described in human tissues. In one of the six mice analyzed, PDAC cells infiltrated 

the intestinal mucosa. In this case, we analyzed HMGA2 expression, a marker for 

basal-like PDAC cells, and found it to be downregulated in the intra-mucosal 

cancer cells. These findings show the remarkable plasticity of cancer cells and to 
what extent they are influenced by the normal tissue environment, to the extent 

that even cellular proliferation can be changed depending on the localization of 

the cancer cells.   
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5 Conclusions 
This thesis aimed to study the tumor microenvironment observed in human 

cancers. Two methods were developed, exploiting the information contained 

within the Human Protein Atlas (HPA) database, which provides data on protein 
expression in both normal and malignant tissues. Our research findings were 

validated through a combination of in vivo and in vitro experiments. Finally, by 

systematically analyzing histopathological data from patients with pancreatic 

cancer, we investigated to what extent the normal tissue exerts its influence on 
cancer cells. 

The key findings from the studies included in this thesis are: 

- AtlasGrabber Software: The AtlasGrabber software facilitates the 
systematic comparative analysis of the HPA database, enabling the 

identification of new IHC markers for various cell types and components 

within the ECM. It is especially useful for contrasting protein expression 

between normal and cancerous tissues (paper V). 
- New CAF markers:  12 novel IHC markers of CAFs were identified, 4 of which 

were linked to Rho-kinase signaling pathways in cancer-associated 

fibroblasts. These provide new insights into cellular changes that occur in 

the cancer associated fibroblasts (Paper I). 
- Impact of RhoA in fibroblasts: Fibroblasts lacking RhoA exhibited a 

diminished capacity to inhibit tumor growth in vivo and in vitro, highlighting 

the functional relevance of this protein in cancer invasion and metastasis 

(Paper III). 
- Decorin in the TME: The proteoglycan Decorin of the ECM was found to be 

consistently downregulated in the tumor microenvironment and sheds light 

on the extensive matrix modulation and changes around cancers (Paper II). 

- Cell Plasticity in Pancreatic Ductal Carcinoma: Pancreatic ductal 
carcinoma cells showed remarkable plasticity under the influence of the 

normal tissue environment — taking on a more indolent phenotype, their 

capacity to assume characteristics of normal intestinal cells, like goblet cell 

differentiation and affecting their proliferation. These findings highlight the 
remarkable influence that normal tissue can have on cancer cell phenotype 

(Paper IV). 

- Deep Learning Image Classifier: Implementing a deep-learning-based 

image classifier, with image segmentation via color deconvolution and 
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binarization, enables the automatic, large-scale identification of analogous 

images in the HPA. This was shown by successfully identifying 44 previously 

undescribed markers for prostate basal cells (Paper VI). 

The insights derived from these findings enhance our understanding of the 

morphological and molecular alterations occurring within the TME of cancers. The 

developed methodologies offer valuable tools for leveraging the HPA database to 
uncover further details about alterations within the TME, and our observations 

pertaining to the remarkable plasticity of cancer cells offer a novel perspective, 

potentially exploitable for new cancer treatment strategies. 
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6 Points of perspective 
Expanding the HPA Analysis 

Our initial analysis was confined to a limited subset of proteins derived from 
differential gene expression data between inhibitory and non-inhibitory 

fibroblasts. The validity of the gene set as a foundation for analysis remains 

unverified since it was not an aspect explored in our study. Utilizing the HPA, we 

could expand a similar investigation, performing analysis across the entire 
database for new signatures of CAFs and modifications in the ECM. Though this 

proposes a substantial and time-intensive endeavor, the method we developed 

in paper VI could make such a task possible, as the training image data from paper 

I is already available. 

In paper VI, as a proof-of-concept, we examined prostate basal cells, chosen due 
to their distinct staining patterns, which form circular shapes around prostate 

glands. However, tumor tissues typically present more variation and complexity, 

mainly due to the variability in DAB staining in the images, sometimes staining the 

tumor and sometimes the stroma or both. This necessitates an initial 
segmentation into cancerous and non-cancerous tissues. This could be done by 

first performing a color deconvolution, then segmenting images to tumor and non-

tumor regions based on the Hematoxylin staining, and then superimposing the 

images from the DAB staining, which should allow the analysis separately in tumor 
or non-tumor regions.  

Using the HPA exclusively introduces an additional limitation as it encompasses 

only tissue microarrays, offering a restricted view of the tumor and tumor stroma. 

Analyzing the extent and uniformity of expression of identified proteins could be 

done by analyzing whole tissue slides.  

Enhancements and Usability of the Deep Learning Classifier 

Further exploration and enhancement, utilizing varied image processing 

techniques and newer deep learning models, are plausible future pursuits for our 
deep learning classifier. Alternatives such as excluding image binarization or 

incorporating deep learning for this step could be explored. Although we 

performed our analysis using Python code, user-friendly graphical interfaces, 

could expand its utility to researchers without coding expertise. Such apps could 
be designed to permit image uploads, enable CNN selection, and automatically 
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generate performance scores, thereby facilitating simpler and more efficient 

analyses. 

The Cellular Plasticity of Cancers 

The remarkable shift in cellular plasticity we observed in pancreatic cancers in 

paper IV raises the question of what factors in the normal tissues led to these 

changes. Presumably, these cues might mirror those directing stem cells in the 

intestinal crypts toward differentiation into various cells of the intestinal 
epithelium. Interestingly, the cues varied across different parts of the intestinal 

villi. Investigating potential differences in the normal microenvironment at 

different levels of the mucosal stroma and submucosa is feasible, with this 

information potentially being available in the HPA, and could, therefore, be 
explored with the methods we developed.  In addition, the extent to which this 

plasticity is dependent on the cancer cells also remains unclear. Exploring tumors 

across a broader range that invade different tissues to ascertain if similar changes 

are observable could be valuable. However, this would necessitate clinical 
preparations, and tissue microarrays in the HPA database might prove insufficient. 

As in paper III, any potential findings from these observations in the HPA would 

need to be experimentally verified and tested to help us understand the 

underlying biology of these changes.  
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