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Popular science summary of the thesis 

Aging affects people differently. Some become sick and disabled early on, while others 

remain healthy well into their golden years. This variability in the rate of aging underlies 

the concept of “frailty” – a state of increased vulnerability resulting from the depletion of 

our body’s in-built physiological reserves during aging. Compared to robust older adults, 

frail individuals are more prone to negative health events like falls, hospitalizations, and 

early death. To pave the way for more personalized patient care, it is imperative to un-

derstand the mechanisms behind frailty and create standardized tools for early detection. 

 

Quantitative genetics: estimating the heritability of frailty 

Quantitative genetic analysis is a powerful statistical method that leverages the varying 

genetic relatedness between individuals, such as identical twins (sharing 100% of genes) 

and non-identical twins (sharing roughly 50% of genes), to study the contributions of ge-

netic and environmental factors to individual differences observed in a trait. This method 

is especially useful when exploring the “heritability” of complex traits – the proportion of 

variation in the trait explained by genetic differences between individuals. Through ad-

vanced statistical models, we can also evaluate how factors like sex, age, and environment 

affect genetic influences on frailty.  

In Study I, we worked with data from 42,994 Swedish twins and found that around half of 

the variation in frailty is influenced by genetic factors, and the other half is attributable to 

unique environmental factors specific to each individual. We also discovered a higher her-

itability of frailty in women compared to men, as well as in underweight and obese groups. 

In our subsequent investigation in Study II, which involved 2,496 Swedish twins monitored 

over 27 years, we found that while genetic influences on frailty remained relatively stable 

as individuals aged, unique environmental influences notably increased, indicating that 

factors like lifestyle behaviors, injuries, and diseases gain importance over genes in shap-

ing frailty during late life. These findings shed light on the interplay between genes and 

the environment in influencing frailty throughout a person’s lifespan and provide the foun-

dation for further research into the specific genetic markers associated with frailty. 

 

Epigenetic & metabolic biomarkers: uncovering frailty mechanisms 

Biomarkers are measurable indicators of biological processes and can range from simple 

measurements like blood pressure to complex molecules detected in laboratory tests. 

Identifying novel biomarkers of frailty, such as epigenetic and metabolic biomarkers, can 

provide valuable insights into the biological mechanisms driving frailty.  



In Study III, we focused on a type of epigenetic biomarker called DNA methylation, which 

refers to the addition of chemical tags at specific DNA locations (known as CpG sites) 

that can switch genes “on” and “off” without changing the DNA sequence. In two datasets 

comprising Swedish and Danish participants, we found that frailty correlates with DNA 

methylation of several CpG sites that may involve in cancer and neuronal pathways. In 

Study IV, we analyzed 200 metabolic biomarkers across large population datasets from 

the UK, Sweden, and Finland. We observed strong links between frailty and 34 of these 

biomarkers, such as amino acids and cholesterols. By leveraging genetic data to study 

causal relationships, we further demonstrated that higher levels of glycoprotein acetyls, 

an inflammation marker, could potentially cause a higher risk of frailty. This suggests 

chronic inflammation, a long-lasting state of immune system reaction, may play an im-

portant role in frailty development. 

 

Electronic frailty index: a promising tool for frailty screening 

Despite the impact of frailty on individuals’ health, routine assessment and standardized 

measurement of frailty are currently lacking in clinical settings, particularly in Sweden.  

Some geriatric clinics in Stockholm have started using the Clinical Frailty Scale, but this 

method demands additional time and resources, which may not always be feasible in 

time-pressed clinical environments. An alternative is to generate an automated frailty 

score from routinely collected electronic health records, eliminating the need for extra 

data collection.  

In Study V, we developed an “electronic frailty index” using disease, functioning, and la-

boratory data from the electronic health records of 13,188 geriatric patients in Stockholm. 

Our results showed that this index predicts mortality outcomes more accurately than 

existing frailty measures. By potentially integrating it into the Swedish health system, the 

electronic frailty index holds great promise for risk stratification and informing clinical de-

cisions. 

 



 

 

論⽂科普摘要 Popular science summary (in Chinese) 

每個⼈的衰老過程都不盡相同，有些⼈可能在中年就患上慢性病或出現殘疾，有些⼈則可能

在晚年仍能保持健康。「衰弱」（frailty）是⼀個反映我們在衰老過程中整體⽣理功能下降

的概念，與健康⼈⼠相比，衰弱⼈⼠⼀般有較⾼的健康風險，例如更加容易跌倒、⽣病住院、

甚⾄死亡等等。⾯對⽇漸加劇的⼈⼝老化問題，預防或延緩長者出現衰弱狀況變得尤為重要。

為此，我們需要進⼀步了解衰弱的機制和病理，以期能在社區中實⾏早期篩檢和預防措施。 

  

定量遺傳學：計算衰弱的遺傳度 

定量遺傳分析（quantitative genetics）是統計學中利⽤親緣關係來計算遺傳度（heritability）

的⽅法，⽽遺傳度是指某⼀特徵在⼈與⼈之間的差異有多⼤比例是由遺傳因素所決定。由於

同卵雙胞胎的基因完全相同，⽽異卵雙胞胎的基因則只有 50% 相同，我們可以透過比較衰弱

在兩者之間的相似度，計算出衰弱有多⼤程度是分別由遺傳和環境因素所影響。此外，我們

更可以利⽤統計模型來估算性別、年齡及其他環境因素如何改變遺傳因素對衰弱的影響。我

們在研究⼀利⽤了來⾃42,994 名瑞典雙胞胎的數據，計算出衰弱在⼈群中的差異⼤約有⼀半

是由遺傳因素所決定的，⽽另⼀半則由個⼈環境因素所影響。此外，衰弱在女性、體重過輕

及肥胖⼈⼠中都有較⾼的遺傳度。在隨後的研究⼆中，我們對 2,496 名瑞典雙胞胎進⾏了長

達 27 年的追蹤研究，發現隨著年齡增長，遺傳因素對衰弱的影響沒有太⼤改變，⽽環境因素

的影響則顯著增加。該研究揭⽰出衰弱在老年時有較⼤程度是由⽣活習慣、傷患等環境因素

所影響，這些結果更為進⼀步研究衰弱的基因分⼦奠定了基礎。 

 

表觀遺傳及代謝⽣物標記：了解衰弱的機制 

「⽣物標記」（biomarker）⼀般是指可⽤作測量和反映⽣物過程的指標，例如⾎壓或⾎液

內的化學物質。⽽研究衰弱的⽣物標記，例如表觀遺傳（epigenetic）和代謝（metabolic）

標記，有助於我們了解它的病理⽣理機制。表觀遺傳是指在不改變 DNA 序列的情況下影響基

因表達的途徑，例如「DNA甲基化」（DNA methylation），即細胞在 DNA 特定位置上（名

為 CpG 位點）添加或刪除化學標記來控制基因表達的抑制或激活。在研究三中，我們利⽤了

來⾃北歐的兩個研究數據，分析了「DNA 甲基化」與衰弱的關聯。結果發現，衰弱與涉及癌

症和神經系統的 CpG 位點相關。在研究四中，我們分析了英國、瑞典和芬蘭三個⼤型研究數

據中的 200 個代謝⽣物標記，發現衰弱與其中 34 個標記物（例如氨基酸和膽固醇）具有很



強的關聯。此外，我們利⽤基因數據估算了代謝⽣物標記與衰弱之間的因果關係，發現⼀種

炎症標記 ——「⼄酰基糖蛋⽩」（glycoprotein acetyls），能導致較⾼的衰弱風險。該研究

結果反映出慢性炎症（即⼀種持續的免疫系統反應）可能是導致衰弱發⽣的重要機制。 

 

電⼦衰弱指數：⾃動化的衰弱檢測⼯具 

儘管衰弱會對老年⼈的健康造成極⼤的危害，但⽬前瑞典的臨床醫療中仍缺乏對衰弱的統⼀

評估標準。近年，斯德哥爾摩⼀些老年護理醫院已經開始使⽤「臨床衰弱量表」（Clinical 

Frailty Scale）作為檢測衰弱的⼯具，但由於醫護⼈員需要花額外時間為病⼈進⾏評估，導致

只有⼀部分醫院有⾜夠資源開展衰弱檢測。另⼀種可⾏的替代⽅法是從已有的電⼦健康記錄

中⽣成衰弱評分，從⽽無需收集額外數據也能為病⼈進⾏實時的衰弱評估。我們在研究五利

⽤了 13,188 名斯德哥爾摩老年病⼈的醫療記錄，在結合病⼈的疾病、⾝體機能和⾎液檢查數

據後，開發了⼀個「電⼦衰弱指數」，並發現該指數比現有的衰弱測量⼯具能更加準確地預

測未來的死亡風險。如果將來能把「電⼦衰弱指數」成功整合到瑞典的醫療系統，通過該指

數反映老年病⼈的衰弱程度，便可更有效地為病⼈進⾏風險分層，以助醫護⼈員及早為病⼈

提供適切的治療。



 

 

Abstract 

Frailty is an age-related, dynamic state of multisystem physiological decline and is a 

strong predictor of disability and mortality. To move towards an individualized manage-

ment of frailty, a better understanding of its biological underpinnings and an early 

identification of frail older adults are necessary. The overarching aim of this thesis was to 

unravel the genetic, epigenetic, and metabolic determinants of frailty and to develop an 

automated frailty assessment tool for the Swedish health system. 

In Study I, we calculated a frailty index (FI) for 42,994 Swedish twins and assessed sex 

differences in the genetic and environmental contributions to the FI. Overall, we observed 

a higher heritability of the FI in women (52%) than in men (45%). Moreover, the correlations 

between FI and its two main risk factors, body mass index and education, were mainly 

attributable to genetic factors and environmental factors shared within twin pairs, re-

spectively, suggesting that different mechanisms may underlie these associations. 

In Study II, we examined genetic and environmental influences on the FI trajectories in 

2,496 twins followed up to 27 years. A bilinear latent growth curve model best fit the data, 

indicating a four-to-five times faster FI increase after age 75. While genetic influences 

were relatively stable across age, individual-specific environmental influences increased 

substantially after age 75 especially in men, amplifying the overall FI variance in late life.  

In Study III, we performed an epigenome-wide analysis in 526 Swedish twins and identi-

fied 171 CpG sites associated with the FI at a false discovery rate of <0.05. Many of the 

identified sites have previously been associated with chronological age and age-related 

diseases. We further validated five of these sites in an independent sample of 304 Danish 

twins, which are mapped to genes that may involve in cancer and neurological pathways. 

In Study IV, we explored the associations of 168 metabolomic and 32 clinical biomarkers 

with two measures of frailty using observational and Mendelian randomization analyses. 

In three population-based studies comprising >100,000 individuals, we identified 34 bi-

omarkers independently and robustly associated with the FI. Specifically, we highlighted 

a putative causal effect of glycoprotein acetyls, an inflammatory biomarker, on frailty. 

In Study V, we developed an electronic frailty index (eFI) using electronic health records 

from 18,225 patients admitted to nine geriatric clinics in Stockholm. Among the assessed 

frailty and comorbidity measures, the eFI had the best discriminative ability for mortality. 

In summary, this thesis provides novel insights into the biological mechanisms of frailty, 

suggesting that both genetic and environmental factors play important roles in frailty de-

velopment, with chronic inflammation as the key underlying mechanism. Moreover, our 

developed Swedish eFI is a promising tool that can potentially be incorporated in the 

Swedish health system to guide clinical decisions.
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 1 

1 Introduction 

As life expectancy rises and fertility rates drop globally, the world is witnessing a rapid 

growth of the older population. This demographic shift presents substantial challenges for 

healthcare and social systems.1 Among these challenges, frailty stands out as a particu-

larly problematic aspect of population aging,2 affecting around 20% of older adults.3 

Research has consistently shown a strong association between frailty and a variety of 

adverse outcomes beyond chronological age, such as premature mortality, loss of activ-

ities of daily living, hospitalization, physical limitations, and falls.4 Over the past two 

decades, a range of frailty scales have been developed and proven to be valuable tools in 

understanding the heterogeneity in aging and guiding clinical decisions for care of older 

adults.5 As frailty is potentially reversible until reaching a critical point of no return,6 early 

identification and intervention are crucial to delaying, and even preventing disability and 

morbidity in old age. 

Due to the complex and multifactorial nature of frailty, unraveling its underlying causes 

has been challenging.7 However, by employing twin and longitudinal study designs, we can 

gain new insights into how genes and the environment influence frailty across the 

lifespan.8 Additionally, the recent advancements in high-throughput “omics” analysis, in-

cluding epigenomics and metabolomics, coupled with machine learning and causal 

inference methods, present new opportunities to explore the biomarkers and molecular 

mechanisms of frailty.9 On the other hand, how frailty can be used and integrated in clin-

ical practice remains unclear. The currently available frailty assessments often require 

additional time and resources; therefore, there is a need to develop an automated, effi-

cient frailty screening tool, which is tailored to each country and with good predictive 

performance for adverse outcomes, to facilitate the clinical application of frailty. 

This thesis consists of five studies. The first four studies focus on the biological mecha-

nisms contributing to frailty, where we investigated the heritability, and the epigenetic 

and metabolic biomarkers of frailty using data from several population-based cohorts. In 

the fifth study, we developed a frailty screening tool that could help physicians identify 

high-risk older adults within the Swedish health system. Throughout the thesis, we also 

highlight potential sex differences and longitudinal changes in frailty. 
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2 Literature review 

2.1 Biological aging 

As we age, our bodies experience a gradual decline across various biological levels, from 

molecular and cellular processes (e.g., telomere attrition, epigenetic alterations, cellular 

senescence)10 to physiological changes in different organ systems.11  This cumulative deg-

radation ultimately leads to an increased susceptibility to diseases, disability, and 

mortality.12 However, it is important to note that individuals of the same age can exhibit 

different health statuses and levels of vulnerability to adverse outcomes.13,14 This hetero-

geneity in aging has led to the development of biological age measures, including telomere 

length, epigenetic ages, clinical biomarker-based algorithms, and frailty, which aim to 

quantify the impact of biological aging on health.15,16 These measures usually capture age-

related changes at different biological scales.17 Specifically, frailty can be considered as a 

system-level measure of aging that reflects an overall functional decline and can be used 

as a clinical tool to identify individuals at risk of adverse outcomes.5 

 

2.2 Definition of frailty 

Frailty is commonly defined as a syndrome, or more generally, as a clinical state of re-

duced physiological reserve and increased vulnerability to stressors, caused by an age-

related decline in functioning across multiple organ systems.2,18 Taking a holistic view in 

terms of a complex dynamical system, frailty can be conceptualized as a phenomenon 

that emerges when various interconnecting and interacting physiological systems fail to 

maintain homeostasis.19 As illustrated in Figure 1, when facing minor stressors (e.g., infec-

tion, surgery), robust individuals often experience a small decline in functioning and are 

able to return to homeostasis within a relatively short period of time.2 In contrast, frail 

individuals whose physiological reserves have already been depleted are more vulnerable 

to adverse outcomes when facing minor stressors, and are unable to return to their base-

line homeostasis.2 Frailty has been described as one of the best predictors of mortality 

among the existing biological age measures.17,20 Its association with all-cause and cause-

specific mortality has been demonstrated in different populations and settings,21–24 and 

this association appears to be independent of shared familial factors such as genetic and 

childhood environmental factors.22 Other than mortality, frailty has also been shown to 

predict a wide range of negative health outcomes such as falls,25 fractures,26 disabilities,27 

cardiovascular diseases,28,29 cognitive impairment and dementia,30,31 psychiatric ill-

nesses,32 worse quality of life,33 hospitalizations,34 severe COVID-19 infection,35 and 

increased healthcare costs.36,37 
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Figure 1. Transition from robustness through frailty to disability. This figure is adapted from Dent et 

al. The Journal of Nutrition, Health & Aging 2019,18 under the Creative Commons Attribution 4.0 

International License (http://creativecommons.org/licenses/by/4.0/). 

 

Although there is now a widespread agreement on the theoretical definition of frailty,38 

there is still no consensus on how to best measure frailty due to the independent work 

performed by different frailty researchers, the complex etiology of frailty, and the difficul-

ties in distinguishing frailty from other similar concepts.39 Depending on the operational 

approach, frailty can be viewed as a syndrome40 or an age-related state,41,42 and can be 

either a distinct or overlapping concept with disability and multimorbidity.43 Other 

closely-related concepts such as resilience (which emphasizes on coping and recovery 

to return to the basal state) and intrinsic capacity (which emphasizes on functional re-

serves) may also be complementary with the concept of frailty (which emphasizes on 

failure to maintain homeostasis).44 In recent years, there has also been increasing research 

on the subtypes of frailty, such as cognitive frailty (i.e., the coexistence of physical frailty 

and cognitive impairment),45 social frailty (i.e., the continuum of being at risk of losing re-

sources to fulfill basic social needs),46 and oral frailty (i.e., the decline in oral function 

together with physical and cognitive impairments).47 Nevertheless, more work is still 

needed to elucidate how these additional constructs can be applied for clinical use.48 

To date, the two most widely adopted and validated operational approaches to frailty are 

the syndrome of phenotypic frailty proposed by Fried et al. in 2001 (commonly referred 

to as the physical frailty phenotype [FP]),40 and the accumulation of deficit model pro-

posed by Rockwood et al. in the same year (i.e., the frailty index [FI]).41 Despite carrying 

the same name of “frailty”, these two models have notable conceptual differences. The FP 

sees frailty as a clinical syndrome with distinct pathophysiology from multimorbidity and 

disability and is defined based on the presence of three or more out of five components: 

exhaustion, slow walking speed, weak grip strength, unintentional weight loss, and low 

physical activity (Table 1).40 The FI, on the other hand, considers frailty as a more general 
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age-related state of increased vulnerability proportional to the number of health deficits 

accumulated in an individual, with a score ranging from 0–1 (Table 1).41,42 The deficits can 

be any age-associated diseases, signs, symptoms, disabilities, and abnormal laboratory 

test values; and when at least 30 items from a range of physiological systems are in-

cluded, the FI often shows good predictive accuracy for adverse outcomes.42 Compared 

to the FP, the FI does not differentiate frailty with multimorbidity and disability since these 

items can be included in the FI calculation. Meanwhile, the FI captures better the multidi-

mensional nature of frailty. Since it is often used as a continuous score, it also has better 

discrimination at the lower and middle ends of the frailty continuum and is more suitable 

for younger adults.49  

 

Table 1. Comparison of the commonly used frailty measures.39,50 

Measure No. of 

items 

Components Setting Requirement 

Com-

munity 

Clinical Time 

(min) 

Equip

ment 

Personnel 

training 

FP40 5 Exhaustion, slowness, weak-

ness, weight loss, low activity 

levels 

Yes Yes <10 Yes Yes 

FI41 ≥30 Deficits such as diseases, 

signs, symptoms, disabilities 

Yes Yes <20 No Yes 

eFI51 ≥30 Same as FI, with variables de-

rived from EHRs 

Yes Yes 0a No No 

CFS52 1 Clinical evaluation, graded 

from 1–9 

No Yes <5 No Yes 

HFRS53 109 Frailty-related ICD-10 codes No Yes 0a No No 

EFS54 9 Cognition, health, hospitaliza-

tion, social support, nutrition, 

mood, function, continence, 

medication 

No Yes <10 No Yes 

FRAIL55 5 Fatigue, resistance, ambula-

tion, illness, weight loss 

Yes Yes <5 No No 

TFI56 15 Self-reported Items related to 

physical, psychological, and 

social domains 

Yes No <10 No No 

GFI57 15 Self-reported items related to 

physical, cognitive, polyphar-

macy, and psychosocial health 

Yes No <10 No No 

PRIMSA-758 7 Self-reported items related to 

age, sex, social support, activi-

ties of daily living 

Yes No <10 No No 

CFS, Clinical Frailty Scale; eFI, electronic frailty index; EFS, Edmonton Frailty Scale; EHR, electronic health rec-

ords; FI, frailty index; FP, frailty phenotype; GFI, Groningen Frailty Indicator; HFRS, Hospital Frailty Risk Score; 

ICD, International Classification of Diseases; TFI, Tilburg Frailty Indicator 
a The eFI and HFRS were derived from routinely collected electronic health records and therefore do not 

require additional time for data collection 
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Other than the FP and FI, many other frailty measures have been developed in attempt to 

simplify frailty measurement or for use in specific settings. Examples include the elec-

tronic frailty index (eFI),51 Clinical Frailty Scale (CFS),52 Hospital Frailty Risk Score (HFRS)53, 

Edmonton Frailty Scale54, FRAIL (Fatigue, Resistance, Ambulation, Illness, Loss of Weight) 

scale,55 Tilburg Frailty Indicator,56 Groningen Frailty Indicator,57 and PRISMA-7.58 Table 1 

summarizes the use of the common frailty measures. There are several important differ-

ences between these measures. Firstly, while most tools are suitable for population-level 

screening in community-dwelling adults, some of them are developed specifically for clin-

ical practice (e.g., CFS, HFRS).39 Secondly, these measures vary from short screening tools 

(e.g., CFS, FRAIL) to more sophisticated and comprehensive clinical assessment (e.g., FI).39 

Thirdly, these measures usually identify related but distinct groups of frail individuals due 

to the different domains of frailty being captured (e.g., FP captures physical aspects, while 

FI is more multidimensional).59,60 Therefore, the choice of the instrument often depends 

on the purpose of performing frailty assessment, the target population, and the data avail-

ability.39,50,61 Notwithstanding these differences, most of the frailty measures are proven to 

be useful tools in predicting adverse outcomes, with the greatest predictive accuracy 

usually observed for the FI59 or the FP.60 They also exhibit similar characteristics, such as 

a higher prevalence with advancing age62, a generally higher frailty score in women than in 

men,63 and a dynamic nature with the possibility to be reversed.64,65 

 

2.3 Epidemiology of frailty 

The prevalence of frailty varies largely by the study population and the frailty measure 

used, making it difficult to obtain an accurate global estimate.3,62,66,67 For community-

dwelling adults, a meta-analysis in 2012 revealed an overall frailty prevalence of 11% in 21 

high-income countries.62 Later studies suggested a prevalence of 17% in low- and middle-

income countries,66 and 20% in countries in Latin America and the Caribbean.67 Likewise, 

a recent study by O’Caoimh et al. reported a large variation of frailty prevalence across 

geographic locations, from the lowest of 8% in Europe to the highest of 22% in Africa; there 

was also a higher prevalence of frailty measured by the FI (24%) than the FP (12%) or the 

CFS (17%).3 Furthermore, the prevalence of frailty is generally higher outside community 

settings, which was ~50% in nursing homes,68,69 and 10–37% in general surgical patients.70 

Age and female sex are often considered as risk factors for frailty. Although frailty can also 

affect younger adults, the prevalence of frailty as defined by the FI increases dramatically 

with advancing age, from 2% among those aged <30 years to ~20% among those ≥65 

years and over 40% among those ≥85 years.3,49 However, the existing evidence is mainly 

from cross-sectional studies; knowledge on the longitudinal progression and trajectories 

of frailty with age is still limited.71 While some studies observed an accelerated increase in 

frailty at older compared to younger ages,72,73 others found a similar rate of increase in 

frailty over age.74 The causes of the sex differences in frailty are also largely unknown. 



 

 7 

Previous studies have reported a “sex-frailty paradox”, in which women usually have 

higher levels of frailty but men are more vulnerable to death at any given level of frailty.75 

Some possible reasons for this apparent sex difference could be (i) a lower physiological 

reserve in men than in women; (ii) differences in the nature of deficits accumulated in 

men and women; and (iii) differences in psychosocial factors such as health-seeking be-

havior and social support.75,76 Besides, compared to a self-reported frailty measure, the 

sex difference seems to be less obvious or even appears in opposite direction (i.e., higher 

frailty level in men) when using performance-based77 or laboratory item-based frailty 

measures.78 All these uncertainties highlight the importance of taking longitudinal changes 

and sex differences into consideration when performing frailty research. 

Apart from age and sex, several sociodemographic (e.g., ethnic background, low educa-

tion), physical (e.g., underweight, obesity), psychosocial (e.g., poor social support, 

depressive symptoms), and lifestyle factors (e.g., smoking, unhealthy diet) have been 

considered as environmental risk factors for frailty.72,79 In particular, a recent Mendelian 

randomization (MR) study suggested that genetic predispositions to higher body mass 

index (BMI) and lower educational attainment had the strongest association with frailty 

among various modifiable risk factors.80 However, more studies are needed to understand 

the mechanisms underlying these associations. Moreover, the biological risk factors of 

frailty (e.g., genetics and biomarkers) are still largely unexplored; an improved knowledge 

on its biological mechanisms would be fundamental in the development of preventive 

strategies for frailty.81 

 

2.4 Biology of frailty 

2.4.1 Heritability of frailty 

Genetic and environmental factors, in combination with epigenetic changes, determine 

the complex physiological manifestations during aging and frailty development.2,7 Many 

age-related traits, including frailty, show large variability in the population especially at 

older ages.82 Twin studies provide a valuable framework for dissecting this variability into 

genetic (i.e., heritability) and environmental components, given that monozygotic (MZ) 

twins share 100% of their segregating alleles, while dizygotic (DZ) twins share on average 

50%.8 Since most aging traits are highly polygenic and genome-wide association studies 

(GWASs) can primarily detect common variants with moderate effect sizes, calculating 

the heritability of frailty using a twin study design is particularly informative for studying 

the complete range of genetic influences, including dominant genetic influences that may 

not be captured by GWAS.83,84 Extended twin models also enable the exploration of gene-

environment interaction,85 longitudinal changes in genetic and environmental influences 

over time,86 as well as quantitative and qualitative sex differences.87 Quantitative sex dif-

ferences refer to the same genetic factors affecting the trait in men and women to 
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different degrees, while qualitative sex differences involve different sources of genetic 

factors influencing the trait in men and women.87 Although twin studies may be subject to 

violations of the equal environment (i.e., MZ and DZ cotwins are treated similarly) and ran-

dom mating assumptions, previous research has indicated that these violations have 

minimal impacts on heritability estimates.88 

Only a few prior studies have assessed the heritability of frailty. Using data from 3,719 

Danish twins, Dato et al. estimated a heritability of 43%, although frailty in this study was 

defined using a “cluster analysis approach” which may not be generalizable to other set-

tings.89 Two other studies including the same cohort of ~3,700 UK female twins found a 

heritability of 30–45% for the FI and 25% for the FP.90,91 Also, the FI and the FP showed 

strong genetic (r=0.57) and environmental correlations (r=0.44),91 suggesting that these 

two measures share their genetic and environmental etiologies to a large extent and thus 

capture a largely similar construct.91 Nevertheless, since these two studies included only 

women and were cross-sectional,90,91 it is unclear whether the heritability of frailty may 

differ in men and women and may change across age. 

 

2.4.2 Biomarkers of frailty 

Dysregulation in various physiological systems, such as the endocrine system, immune 

system, brain, and skeletal muscles, have been linked to frailty.2 Many of the physiological 

systems are often interconnected, and these interacting systems can jointly increase the 

risk of frailty.92 With the complex pathophysiology of frailty, studying biomarkers of frailty 

would be important for understanding mechanisms and improving diagnosis.93 Bi-

omarkers are generally defined as any objective medical signs or indications that can be 

measured accurately and reproducibly, and can range from genetic/metabolic data to 

clinical markers measured in laboratory tests, as well as functional/physiological meas-

urements.94 Several clinical biomarkers have consistently been shown to be associated 

with frailty, such as those related to inflammation (e.g., C-reactive protein [CRP], tumor 

necrosis factor alpha, interleukin 6), hormones (e.g., insulin-like growth factor 1, vitamin D), 

metabolism (e.g., albumin, glucose), and immune system (e.g., white blood cell count, 

CD4+/CD8+ cell ratio).93,95,96 Incorporating biomarkers into frailty measures may also help 

in identifying pre-clinical frailty. Several studies have suggested that an FI including labor-

atory test measures/clinical biomarkers (e.g., CRP, fasting blood glucose, cholesterol, 

hemoglobin, blood pressure) can be used to identify older adults at risk of mortality.78,97,98 

Similarly, Mitnitski et al. created an FI by combining circulating biomarkers, including those 

related to inflammation (e.g., tumor necrosis factor alpha, interleukin 6), immune system 

(e.g., CD4+ and CD8+ T cells), cellular aging (e.g., telomere length, DNA damage), genetics 

(e.g., APOE genotype), and epigenetics (e.g., DNA methylation).99 Importantly, all these 

studies suggested that a biomarker-based FI could complement a clinical deficit-based 

FI in predicting mortality, especially in those individuals who were not yet clinically frail.97,99  
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With the recent advances in statistical methods and computational tools for analyzing 

“omics” data, personalized medicine is emerging as an approach that uses the individual’s 

genetic and biomarker information for prevention and management of diseases.9 Some of 

the most common omics data types include genomics, epigenomics, transcriptomics, 

proteomics, and metabolomics.9 However, the omics biomarkers of frailty is still a rela-

tively new area of research, and the current knowledge is mainly limited to the genomics, 

epigenomics, and metabolomics of frailty (Table 2).100,101 

 

Table 2. Potential omics biomarkers of frailty. 

Omics Technology Frailty 

measure 

Biomarkers Refs. 

Genomics Genome-wide 

genotyping 

FI Genetic loci associated with BMI, cardiovascu-

lar diseases, smoking, HLA proteins, depression, 

neuroticism 

80,102 

FP Genetic loci associated with BMI, lipids, coro-

nary artery disease, hypertension, diabetes, 

cancer 

102,103 

Epigenomics DNA methylation 

microarrays 

FI CpGs associated with multiple diseases such 

as amyotrophic lateral sclerosis, Huntington’s 

disease, cancers, neurodegenerative disorders 

104 

  FP A CpG (cg18314882) associated with oncogen-

esis and regulation of intracellular lipids 

105 

Metabolomics Liquid chroma-

tography-mass 

spectrometry 

FI Metabolites related to the carnitine shuttle and 

vitamin E pathways 

106 

FP Metabolites involved in glycolysis and tricar-

boxylic cycle, and neurotransmitters 

107 

 

The first GWAS of frailty was conducted in 2018, which utilized two cohorts from the US 

and the UK with relatively small sample sizes and identified two FI-associated single nu-

cleotide polymorphisms (SNPs) in the KBTBD12 and GRIN2B genes.108 Later, a large GWAS 

meta-analysis incorporating data from the UK Biobank and the Swedish TwinGene study 

revealed 14 genetic loci associated with the FI, of which 13 have previously been linked to 

various disease risk factors (e.g., BMI and smoking initiation) and mental health conditions 

(e.g., depression and neuroticism).80 Another recent GWAS focusing on the FP within the 

UK Biobank identified 37 loci that were previously linked to BMI, lipids, cardiovascular dis-

eases, and cancers.103 Notably, these studies estimated the SNP-based heritability of 

frailty to be only around 6-11%,80,103 which is considerably lower than the 25-45% observed 

in twin studies.90,91 This discrepancy could be due to the rare and non-additive genetic 

influences that were not detected in the GWAS analyses.83 
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DNA methylation, mostly occurs in cytosine-phosphate-guanine (CpG) sites, is the most 

common epigenetic mechanism involving in the regulation of gene expression.109 It is af-

fected by both genetic and environmental factors and can change across the life 

course.109 As changes in methylation levels are linked to both aging10 and age-onset pa-

thologies (e.g., cancer, Alzheimer’s disease),109 they could similarly be associated with 

frailty. With a 7-year follow-up, Bellizzi et al. found a significantly decreased global DNA 

methylation level in individuals with a worsening frailty status defined using cluster anal-

ysis,110 although no significant association was observed in another cross-sectional study 

which used the FP to define frailty.111 There have also been a few epigenome-wide associ-

ation studies (EWAS) of frailty that have identified several frailty-associated CpG 

sites.104,105,112,113 However, these studies were mostly cross-sectional in nature and did not 

assess whether the identified CpGs may be associated with frailty longitudinally over age. 

There has also been no CpG that is consistently associated with frailty across different 

populations. On the other hand, some studies have shown an association between DNA 

methylation-based epigenetic ages and frailty,114 although these correlations seem to be 

primarily explained by chronological age.17 Another recent study also showed that epige-

netic age measures was associated with the FI cross-sectionally, but not with changes in 

frailty longitudinally, highlighting the importance of using longitudinal data to examine the 

relationship between epigenetic factors and frailty.115 

Metabolomics is the study of small molecules involving in biochemical reactions in the 

body (e.g., amino acids, carbohydrates, fatty acids, vitamins). It is the downstream output 

of gene-environment interactions and is often indicative of one’s current health status.9 

Associated technologies, such as nuclear magnetic resonance (NMR) and liquid chroma-

tography–mass spectrometry, allow quantification of a large variety of metabolites, and 

abnormal metabolite levels often represent presence of diseases.9 Metabolomics has 

been increasingly used in recent years to study mechanisms and identify novel drug tar-

gets for several diseases such as cancer, diabetes, and Alzheimer’s disease.116 In the few 

metabolomics analyses of frailty to date, metabolites involving in energy producing path-

ways seemed to have the strongest association with frailty.100,101,117 For instance, a study by 

Westbrook et al. showed that glycolytic and tricarboxylic cycle intermediates, as well as 

neurotransmitters (e.g., N-acetyl-aspartyl-glutamate, glutamate, γ-aminobutyric acid) 

were elevated in frail individuals defined by the FP.107 Using non-targeted metabolomics 

in combination with MR analysis, Rattray et al. revealed that metabolites related to the 

carnitine shuttle and vitamin E pathways were significantly associated with the FI.106 An-

other study using the Edmonton Frailty Scale also identified several metabolites related 

to muscle and nitrogen metabolism (e.g., tryptophan, isoleucine, leucine, arginine, hippu-

rate), as well as antioxidation (e.g., ergothioneine, acetyl-carnosine, urate).118 However, 

most of these studies had relatively small sample sizes and were mostly unable to estab-

lish causal relationships between metabolites and frailty due to potential confounding by 
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genetic and environmental factors. More large-scale metabolomics studies, in combina-

tion with other omics-based technologies (e.g., MR analysis119) and methods to deal with 

the high-dimensional data,120 are necessary to identify metabolites that can be applied in 

clinical practice and used as the potential targets for frailty prevention and treatment.106 

 

2.5 Frailty in clinical practice 

2.5.1 Frailty assessment 

With the aging population and the adverse clinical outcomes associated with frailty,121,122 a 

routine frailty assessment could be beneficial for both the patient (e.g., guiding clinical 

decisions) and the health system (e.g., allocation of resources).123 Frailty screening can 

also serve as an entry point for identifying older adults who would benefit most from a 

detailed assessment of their underlying causes of heightened vulnerability, i.e., the com-

prehensive geriatric assessment (CGA).124 The CGA is known as the gold standard for 

caring of hospitalized frail older adults.124 It is a geriatrician-led, multidisciplinary, and mul-

tidimensional assessment of the overall health of older adults, including medical, cognitive, 

psychological, functional, and social aspects, subsequently leading to a more individual-

ized plan for treatment and follow-up.125 Performing CGA has been shown to increase the 

likelihood of being alive and discharged to home following a hospital admission.126,127 How-

ever, due to the high demand of time and expertise for performing CGA, a simple, quick, 

and validated frailty screening tool would be valuable for resource allocation. 

The CFS is one of the most frequently used frailty measures in clinical settings. It is a quick 

screening tool based on clinical evaluation on several domains such as diseases, func-

tioning, and cognition,52 and often has a high accuracy and feasibility.128 Nevertheless, as 

it requires in-person evaluation by physicians or trained nurses, the CFS could potentially 

lead to interrater bias and may not be always feasible in settings that are lacking time and 

resources for frailty assessment.129–131 

To reduce the burden of performing a bedside frailty assessment, several automated 

frailty scores based on healthcare databases (e.g., electronic health records [EHRs] or ad-

ministrative claims data) have been proposed in recent years for population-level frailty 

screening.132 One example is the HFRS developed by Gilbert et al. in 2018, which is calcu-

lated based on the International Classification of Diseases, Tenth Revision (ICD-10) codes 

and can identify frail older patients in hospital settings.53 As it is easy to be calculated and 

implemented, there has been a growing interest in adopting the HFRS in different patient 

groups.133–135 However, a limitation of the HFRS is that it is more similar to a comorbidity 

measure and could miss out some aspects of the frailty concept such as weakness, ac-

tivities of daily living, and polypharmacy.53  
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Another example is the eFI developed by Clegg et al. in 2016, which comprised 36 items 

derived from the UK primary care Read codes and was one of the first eFI models that has 

adopted the Rockwood FI model into clinical practice.51 This eFI has been incorporated in 

the frailty management guidelines by the National Health Service in England.136 Other than 

the UK eFI, similar models have been created in other countries such as the US,137,138 Can-

ada,139 Australia,140 the Netherlands,141 and China.142 Items included in these frailty scores 

are usually clinical knowledge-driven (e.g., combining information on diagnoses, functional 

abilities, and laboratory measures138) or data-driven using machine learning methods (e.g., 

using the FI137,139 or the FP143,144 as the reference standard). Although these tools were mostly 

developed for primary care settings, accumulating evidence has also shown their utility in 

predicting adverse outcomes in hospital settings.142,145–147 Meanwhile, there has been no 

such eFI tool developed in Sweden or other Nordic countries thus far. To aid in resource 

allocation and risk stratification, there is an increasing need to test whether an eFI model 

can be adopted to the Swedish context. Importantly, an ideal frailty assessment tool 

should be available in real time, require minimal time and resources for data collection, 

capture the multidimensional concept of frailty rather than merely reflect a proxy of re-

lated entity (e.g., multimorbidity, disability), and could be applicable in different settings 

and patient groups.123,148 Such a tool would have a great potential of paving the way to-

wards a unified frailty assessment and improving patients care in clinical settings. 

 

2.5.2 Frailty management 

The ultimate goal of performing frailty assessment is to prevent progression and reduce 

severity of frailty. To date, most randomized controlled trials (RCTs) use resistance exer-

cise training in combination with protein supplementation to improve physical 

performance of frail older adults.149–151 Although these interventions are generally effective 

and are easy to implement, they focus mainly on physical frailty and sarcopenia.149–151 It is 

also essential to consider the multidimensionality of frailty and apply a more proactive, 

person-centered approach for frailty prevention and treatment.152 The “Sarcopenia and 

Physical Frailty in Older People: Multicomponent Treatment Strategies” project was the 

first long-term, multi-center RCT that aimed at preventing mobility disability in commu-

nity-dwelling frail older adults.153 Compared to previous RCTs, this study used a more 

person-tailored approach of structured physical activity and nutritional counselling, al-

lowing more flexibility in meeting diverse needs of the participants.153 During a mean 

follow-up of 26.4 months, those assigned to the multicomponent intervention group had 

a significantly reduced incidence of mobility disability compared to the control group who 

received a healthy aging lifestyle education program.154 On the other hand, other individ-

ually-tailored interventions, such as those based on CGAs, showed inconclusive evidence 

on their effectiveness in reducing frailty.155 For future development of personalized med-

icine, understanding the molecular mechanisms of frailty would be of great importance.50 
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3 Research aims 

The overarching aim of this thesis is to pave the way towards an individualized manage-

ment of frailty, through enhancing our understanding of the heritability and the omics 

biomarkers of frailty, and developing an eFI to identify high-risk older patients in Sweden 

(Figure 2). Specifically, the five included studies aim to: 

I. Investigate sex differences in the genetic and environmental influences on frailty, 

and the gene-environment interplay of frailty with BMI and education. 

II. Examine genetic and environmental influences on the longitudinal trajectories of 

frailty from adulthood to late-life. 

III. Explore the associations between frailty and genome-wide DNA methylation levels 

of CpG sites. 

IV. Identify metabolic biomarkers that are strongly and independently associated with 

frailty and examine their potential causal relationships. 

V. Develop an eFI for hospitalized older adults in Sweden and assess its associations 

with mortality, readmission, and length of hospital stay. 

 

  

 

Figure 2. Overview of the study aims in relation to the potential mechanisms of frailty.
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4 Materials and methods 

4.1 Data sources 

This thesis used several population-based data sources, as outlined in Figure 3. These 

sources include four sub-studies from the Swedish Twin Registry: (i) the Screening Across 

the Lifespan Twin Study (SALT; used in the heritability analysis in Study I),156 (ii) the Swe-

dish Adoption/Twin Study on Aging (SATSA; used in the longitudinal twin modeling in 

Study II & EWAS analysis Study III),157 (iii) the Origins of Variance in the Oldest-Old: Oc-

togenarian Twins (OCTO-Twin; used in the longitudinal twin modeling in Study II),158 and 

(iv) TwinGene (used as a replication cohort in the observational analysis in Study IV).159 A 

sub-study from the Danish Twin Registry, the Longitudinal Study of Aging Danish Twins 

(LSADT),160,161 was used as a replication cohort in Study III. The UK Biobank (as a discovery 

cohort)162 and the Finnish Health 2000 Survey (as a replication cohort)163 were used in the 

observational analysis in Study IV. Finally, EHR data from geriatric clinics in Stockholm 

were used for creating the eFI in Study V. 

 

 

Figure 3. Timeline of the included cohorts 

 

4.1.1 Screening Across the Lifespan Twin Study (SALT) 

SALT is a cross-sectional study conducted between 1998 and 2002, including 44,919 

same-sex and opposite-sex twins born in 1958 or earlier from the Swedish Twin Regis-

try.156 The response rate was 65% for those born in 1886–1925 and 74% for those born in 

1926–1958.164 Participants completed a comprehensive telephone interview survey and 

provided information on demographics, health conditions, medication use, and lifestyle 

factors.156 Zygosity was determined primarily through questions about intra-pair similari-

ties during childhood, which has shown to be >95% accurate when validated against DNA 

testing.165 In Study I, after excluding those with missing data on frailty and zygosity, 42,994 

participants remained for the analysis, including 4,788 MZ males (1,820 complete pairs), 

5,997 MZ females (2,438 complete pairs), 7,640 DZ same-sex males (2,633 complete 
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pairs), 8,808 DZ same-sex females (3,279 complete pairs), and 15,761 DZ opposite-sex 

twins (5,791 complete pairs). 

 

4.1.2 Swedish Adoption/Twin Study on Aging (SATSA) 

SATSA is a longitudinal study that has collected data from reared together and reared 

apart same-sex twins over nine mailed questionnaire (Q) and 10 in-person testing (IPT) 

waves between 1984 and 2014.157 The questionnaires covered demographics, health sta-

tus, and lifestyle behaviors, while the IPTs included cognitive tests, physical and functional 

health examinations, and blood sampling. All SATSA twins were invited to the Q waves, 

while the IPT waves utilized a cohort-sequential design wherein individuals aged older 

than 50 years were invited to the IPTs.157 The Q waves preceded the IPT waves by ~18 

months, and the assessment types (Q or IPT) were generally conducted at 3-year inter-

vals, with a break after Q4 due to a lapse in funding.157 While both members of twin pairs 

were invited to participate in SATSA, individual participation was also welcomed even if a 

co-twin was unable or chose not to participate. Study II used data from 1,842 SATSA par-

ticipants (9,534 repeated measurements over 15 waves) who had information on 

frailty.72,166 For the EWAS analysis in Study III, we additionally excluded individuals with 

missing data on whole blood DNA methylation, resulting in a sample size of 526 individuals 

(1,331 repeated measurements). 

 

4.1.3 Origins of Variance in the Oldest-Old: Octogenarian Twins (OCTO-Twin) 

OCTO-Twin is a longitudinal study of oldest-old twins that has recruited 351 complete 

twin pairs aged over 79 years at baseline, with 5 IPT waves at 2-year intervals from 1991 

to 2001.158,166 The IPTs included cognitive tests and physical and functional health exami-

nations. Study II included 654 OCTO-Twin participants (2,063 repeated measurements) 

with data on frailty. 

 

4.1.4 TwinGene 

TwinGene is a follow-up study of SALT conducted between 2004 and 2008, which has 

collected blood samples and information on chronic diseases and mediation use from 

12,648 older twins who had previously participated in SALT.159 The replication analysis in 

Study IV included 11,025 TwinGene participants who had complete data on frailty and 

metabolic biomarkers. 

 

4.1.5 Longitudinal Study of Aging Danish Twins (LSADT) 

LSADT is part of the Danish Twin Registry and is a longitudinal study of same-sex twins 

aged ≥70 years initiated in 1995.160,161 Participants provided information on demographics, 

health status, and lifestyle factors in six waves at 2-year intervals up to 2005.160,161 Whole 
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blood samples were collected from 689 same-sex twins in 1997.161 The replication analysis 

in Study III included 304 participants with complete data on frailty and DNA methylation 

measured in 1997. 

 
4.1.6 UK Biobank 

The UK Biobank served as the discovery cohort for investigating the metabolomic and 

clinical biomarkers associated with frailty in the observational analysis in Study IV. It is a 

cross-sectional, population-based study that has recruited over 500,000 adults aged 

37–73 years between 2006 and 2010.162 During baseline assessment, participants com-

pleted a touch-screen questionnaire, provided biological samples, and underwent 

physical measurements in one of the 22 centers throughout England, Wales, and Scot-

land.162 After excluding those who had withdrawn from the UK Biobank, were self-reported 

as non-white ethnicity, and had missing data on frailty and biomarkers, the observational 

analysis included 90,573 and 67,488 participants who had complete data on the 168 

metabolomic biomarkers and 32 clinical biomarkers, respectively. We also used genetic 

data from the UK Biobank in the MR analyses in Study IV (described below in § 4.3.4). 

 

4.1.7 Health 2000 Survey 

The Finnish Health 2000 Survey is a cross-sectional, nationally representative survey 

conducted between 2000 and 2001, including 8,028 Finns aged 30 years of older.163 The 

survey incorporated self-administered questionnaires, interviews, health examinations, 

and laboratory measurements, and the participation rate in the health examination was 

85%.163 The replication analysis in Study IV included 6,073 individuals after excluding 

those with missing data on frailty and biomarkers. 

 

4.1.8 Electronic health records from geriatric clinics 

In Study V, we conducted a retrospective cohort study using EHR data from nine geriatric 

clinics in the Stockholm area. The data included patients with unplanned admissions be-

tween March 1, 2020, and June 17, 2021, for any causes except COVID-19. The geriatric 

clinics specialize in inpatient geriatric care and are either standalone geriatric hospitals or 

part of larger emergency hospitals. They typically admit older patients who have reduced 

physical and/or cognitive function, have multimorbidity, and require geriatric medical care 

and/or rehabilitation. Patients without discharge information or with a length of stay <24 

hours were excluded. Most patients had only one admission during the study period 

(73.0%), and for those with multiple admissions, we used only data from their first available 

admission. In total, we included 13,188 patients who had sufficient data for calculation of 

the eFI in the analysis. 
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4.2 Measurements 

4.2.1 Frailty 

Frailty was defined using the FI in Studies I–IV. We used a 44-item FI in SALT,22 a 42-item 

FI in SATSA,167 a 41-item FI in OCTO-Twin,166 a 43-item FI in LSADT, a 49-item FI in the UK 

Biobank,168 and a 38-item FI in the Health 2000 Survey. The FIs in all cohorts were con-

structed using similar deficit items based on the deficit accumulation model,42 where a 

wide range of self-reported items, such as diseases, signs, symptoms, and disabilities, that 

were available within the cohort were incorporated in the corresponding FI. Each partici-

pant’s frailty items were then summed up and divided by the total number of items 

considered.42 For example, an individual who has nine deficit points out of 45 items would 

receive an FI of 9/45 = 0.2. For all cohorts, participants who had over 20% missing data 

across the deficit items were excluded. Imputation was used in SALT,22 SATSA,167 and 

OCTO-Twin166 to replace missing values of deficit items. A “total-varying” FI was used in 

the other cohorts, such that each individual could have a different denominator when cal-

culating the FI, depending on the number of non-missing items per person. The FI was 

primarily used as a continuous score (ranging from 0–1) in the analyses. In Study III, we 

also considered the FI as a categorical variable based on the previously used cut-off 

points: non-frail (FI ≤0.1), prefrail (0.1< FI ≤0.21), and frail (FI >0.21).49 

In Study IV, we calculated the FP in the UK Biobank as a secondary outcome. Based on 

the five frailty criteria proposed by Fried et al.,40 a modified FP was previously constructed 

in the UK Biobank,169,170 where exhaustion, slowness, weight loss, and low physical activity 

were assessed by self-reported questionnaire items, and weakness was determined by 

the grip strength measured at baseline. The number of frailty criteria present in an indi-

vidual was summed up to create the FP score (ranging from 0–5). 

In Study V, we developed an eFI using routinely collected EHR data, and compared it 

against the CFS, HFRS, and the Charlson Comorbidity Index (CCI; as a measure of comor-

bidity). Our eFI was constructed based on a US eFI model,138 and it comprised 48 items in 

three categories (Box 1): (i) disease diagnoses based on ICD-10 codes; (ii) functioning and 

other health indicators; and (iii) laboratory/anthropometric measures. Following the defi-

cit accumulation model,42 we calculated the eFI as the sum of deficit items divided by the 

total number of non-missing items in each patient. We considered a patient as having 

sufficient data for calculation of the eFI if she/he had data on ≥30 deficit items and had 

at least half of the functioning and/or lab measures available. The eFI was categorized into 

four groups: fit (eFI ≤0.15), mild frailty (0.15< eFI ≤0.2), moderate frailty (0.2< eFI ≤0.25), and 

severe frailty (eFI >0.25). The CFS was scored by a physician or trained nurse at admission 

(ranging from 1–9) and categorized into three groups (1–3, 4–5, and 6–9). The HFRS was 

calculated based on 109 weighted ICD-10 code items and was categorized into low-risk 

(<5), intermediate-risk (5–15), and high-risk (>15) groups.53 The CCI was computed based 

on ICD-10 codes using an algorithm adapted for the Swedish context.171 
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Box 1. List of the 48 items included in the Swedish eFI. 

Disease diagnoses based on ICD-10 codes 

Anemia 
Asthma 
Atrial fibrillation 
Cancer 
Chronic pain 
Congestive heart failure 
Coronary atherosclerosis and other heart disease 
Dementia 
Depression 
Diabetes 
Dizziness or vertigo 
Dyspnea 
Fragility fracture 
Hypertension 
Hypotension/syncope 
Liver disease 
Myocardial infarction 
Osteoporosis 
Parkinsonism and tremor 
Peptic ulcer 
Peripheral vascular disease 
Pulmonary disease 
Renal disease 
Rheumatoid arthritis or osteoarthritis 
Skin ulcer 
Stroke or transient ischemic attack 
Thyroid disease 
Urinary system disease 
Valvular disease 

Functioning and other health indicators 

Activity limitation 
Cognitive impairment 
Falls 
Food intake status 
General condition 
Incontinence 
Mobility 
Oral health 
Sensory impairment 
Weight loss 

 
Laboratory/anthropometric measures 

C-reactive protein 
Creatinine 
Glucose 
Hemoglobin 
Obesity 
Potassium 
Pulse 
Sodium 
Underweight 

 

4.2.2 DNA methylation 

In SATSA, whole blood DNA methylation was measured either by the Illumina’s Infinium 

HumanMethylation450K or MethylationEPIC array,172,173 where methylation levels of CpGs 

were quantified as β values (ranging from 0–1, representing percentage of methylation).174 

During data pre-processing, samples were excluded if they showed poor correlation with 

genetic controls or if the predicted sex based on signal ratio from sex chromosomes was 

incorrect. Probes were excluded if they overlapped with a SNP, had a detection p-value 

over 0.05, or resided on sex chromosomes. The methylation data were normalized using 

the “dasen” method from the wateRmelon R package,175 corrected for batch effects using 

the “ComBat” method from the sva R package,176 and adjusted for cellular compositions 

using the Houseman method177 based on a blood cell reference panel.178 In LSADT, DNA 

methylation was measured by the Infinium HumanMethylation450K array, and similar data 

pre-processing steps had been performed as previously described.161,179 In Study III, for 

the EWAS analysis in SATSA, we included 245,545 CpGs that passed quality control on 

both DNA methylation arrays and had <15% difference in the mean β values between the 

two arrays; the CpGs identified from the EWAS were then selected for replication in 

LSADT. 
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4.2.3 Metabolic biomarkers 

In the UK Biobank, TwinGene, and Health 2000 Survey, circulating metabolomic bi-

omarkers were measured using the Nightingale’s high-throughput NMR metabolomics 

platform. During the initial release of the NMR metabolomics data in the UK Biobank,180,181 

data on 168 metabolomic biomarkers were available for a random subset of 118,461 non-

fasting baseline EDTA plasma samples. The metabolomic biomarkers include clinically val-

idated biomarkers such as cholesterols, fatty acids, amino acids, inflammation markers, 

as well as emerging biomarkers like lipoprotein subclasses. The same 168 biomarkers were 

available and measured from fasting serum samples in TwinGene and the Health 2000 

Survey. Samples that failed quality control (i.e., labeled as “high lactate”, “high pyruvate”, 

“low glucose”, or “low protein”) were excluded from the analysis. We additionally investi-

gated 32 clinical biomarkers obtained from serum and urine samples, including risk factors 

for diseases (e.g., low-density lipoprotein [LDL] cholesterol and triglyceride for cardiovas-

cular diseases), diagnostic measures (e.g., glycated hemoglobin [HbA1c] for diabetes), and 

other markers (e.g., creatinine for renal function). To facilitate the comparison of effect 

sizes, all the 200 biomarkers were standardized to mean=0 and standard deviation (SD)=1 

before the analysis in Study IV. 

 

4.2.4 Other health outcomes 

In Study I, we assessed BMI and education for their bivariate associations with the FI in 

SALT. BMI was calculated based on self-reported weight and height at baseline, and ed-

ucation was defined as the self-reported number of years of education completed. 

In Study V, we analyzed the associations of frailty and comorbidity measures with in-

hospital mortality, 30-day mortality, and 6-month mortality as the primary outcomes, 

where the dates of death were obtained from the Swedish Population Register. Addition-

ally, 30-day readmission to any of the nine included geriatric clinics, as well as the length 

of stay were used as the secondary outcomes. 

 

4.3 Statistical analysis 

A summary of the methods used in each study is provided in Table 3. All the analyses 

were performed using R (R Foundation for Statistical Computing, Vienna, Austria).  
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4.3.1 Quantitative genetic analysis 

Quantitative genetics is the study of the relative contributions of genetic (heritability) and 

environmental factors to the variation of a trait in a population. In the classical twin design, 

this can be achieved by contrasting the observed phenotypic similarity with the genetic 

similarity between MZ and DZ twins, who share 100% and ~50% of their segregating genes, 

respectively.182 If the trait is heritable, MZ twins would show a larger intraclass (within-

twin-pair) correlation for the trait compared to DZ twins. In Studies I & II, by fitting twin-

based structural equation models (using the full information maximum-likelihood model-

ing in the R package OpenMx), we decomposed variances and covariances of traits into 

their genetic and environmental components: 

• Additive genetic factors (A), which represent the sum of allelic effects at multiple 

loci that influence the trait, and is referred to as the “narrow-sense heritability”. It 

correlates 100% in MZ twins and 50% in DZ twins. 

• Dominance genetic factors (D), which represent interactions between alleles within 

the same locus. It correlates 100% in MZ twins and 25% in DZ twins. The combined 

influences of A and D are referred to as the “broad-sense heritability” (H). 

• Common/shared environmental factors (C), which represent environment shared 

by twins within a pair (e.g., family environment). It correlates 100% in both MZ twins 

and DZ twins. 

• Unique/non-shared environmental factors (E), which represent environmental 

influences unique to each individual and include measurement error as well. It is 

uncorrelated in both MZ twins and DZ twins. 

Of note, C increases the similarity of DZ twins, but D decreases their similarity relative to 

MZ twins. In the classical twin model that includes only two pairs of relatives, there is in-

sufficient information to estimate both C and D simultaneously, along with A and E. 

Therefore, either an ACE or ADE model was fitted at one time, and these two models were 

compared against the AE model to assess if the C or D parameters could be removed 

from the models without a significant loss in model fit. Goodness of fit of the models were 

compared using likelihood ratio tests, where p<0.05 indicate a worse fit of the observed 

data. The models with the lowest Akaike information criterion (AIC) were considered as 

the best-fitting (most parsimonious) models.183 

In Study I, we first fitted univariate twin models (which focus on one trait at a time) in 

SALT to estimate the variance components of the FI, while allowing for quantitative (dif-

ferent magnitude of heritability in men and women) and qualitative sex differences 

(different genetic sources in men and women, modeled by multiplying a genetic correla-

tion parameter to the expected genetic covariance of opposite-sex twin pairs). Extending 

the univariate model, we fitted bivariate twin models (which focus on two traits at a time) 

using the Cholesky decomposition method with a “correlated factor model” solution,182 to 

estimate the genetic and environmental contributions to the variances and covariances 
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of the FI with BMI and education (Figure 4). From the bivariate models, we calculated the 

proportions of the phenotypic correlation explained by genetic (“bivariate heritability”) 

and environmental factors. Lastly, moderation models were fitted to test if genetic and 

environmental influences on the FI are moderated by different levels of BMI and educa-

tion. Moderation may occur on the variance that is unique to the FI or on the covariance 

between FI and the moderator. Thus, we fitted a series of full bivariate moderation mod-

els85 and extended univariate moderation models184 to examine these possible 

moderating effects. All the univariate, bivariate, and moderation models were adjusted for 

age by regressing it out of the means of the FI, BMI, and education. 

 

 

Figure 4. Path diagram of a bivariate ACE model for FI and BMI. Squares represent measured traits (FI 

and BMI), and circles represent latent variance components (A, C, and E). Path coefficients (a, c, and e) are 

estimated in the model. Double-headed arrows represent correlations between variance components. A sim-

ilar model was fitted for FI and education. The bivariate ACE model was then compared with the ADE and AE 

models to determine the best-fitting model. Quantitative sex differences were allowed in the models, where 

variance components and etiological correlations were estimated separately in men and women. 

 

In Study II, after identifying the best-fitting phenotypic growth model of the FI in SATSA 

and OCTO-Twin (described below in § 4.3.2), we extended it to a biometric model185 fitted 

within the structural equation modeling framework to study genetic and environmental 

influences on the longitudinal FI trajectories over age (Figure 5). Similar to the bivariate 

models in Study I, we used the Cholesky decomposition method to decompose variances 

of the latent growth variables (i.e., an intercept at age 75 years and two slopes), as well as 

the covariances between these variables into genetic and environmental sources. Using 

this approach, we could not only estimate the heritability of the growth parameters them-

selves, but also the expected genetic and environmental variances of the FI at any given 

age, so that we can examine if the heritability of the FI may change across the lifespan.185,186 
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Figure 5. Path diagram of an AE bilinear growth model of the FI. This figure is adapted from Mak et 

al. The Journals of Gerontology: Series A 2023.187 For simplicity, only one twin is shown (path diagram for 

the co-twin is identical). The best-fitting growth model consists of three latent (circles) factors: intercept at 

75 years, slope <75 years (“slope 1”), and slope >75 years (“slope 2”). The upper half of the diagram shows the 

biometric decomposition of variation about the intercept, slope 1, and slope 2. Double-headed arrows indicate 

additive genetic and unique environmental correlations. The lower half of the diagram shows the phenotypic 

model. FI1 to FI15 represents the measured (squares) variables of FI from wave 1 to wave 15. BS1.1 to BS1.15 and BS2.1 

to BS2.15 represent the age-based coefficient of slope 1 and slope 2 respectively. 𝜀0 to 𝜀15 represent residual 

errors, and 𝜎res2 represents residual variance (i.e., variation not accounted for by the growth model). MI, MS1, and 

MS2 represent the mean intercept, mean slope 1, and mean slope 2, respectively. βstudy.I and βstudy.S1 represent 

the regression coefficients of study (i.e., OCTO-Twin vs. SATSA) on intercept and slope 2, respectively. 

 

4.3.2 Latent growth curve modeling 

In Study II, we fitted age-based latent growth curve models within the multilevel modeling 

framework in SATSA and OCTO-Twin to describe the longitudinal trajectories of the FI,188 

where chronological age (in years) was used as the underlying timescale. These models 

allowed for estimation of both fixed effects (representing the average trajectory of the FI 

in the sample) and random effects (representing the variation around the mean trajec-

tory). We considered random effects in three levels: FI measurements (level 1) within 

individuals (level 2), who were nested within twin pairs (level 3). 
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A series of unconditional models (without including any covariates) were first fitted to 

compare different functional forms, including linear, quadratic, and bilinear two-slope 

models. We found that a bilinear two-slope model with a knot point at age 75 best de-

scribed the longitudinal trajectories of the FI (which is illustrated in the lower half of Figure 

5). This model consisted of an intercept representing the mean FI at 75 years, a slope <75 

years (“slope 1”) representing the average annual change in FI before 75 years, and a slope 

>75 years (“slope 2”) representing the average annual change in FI after 75 years. The 

random effects of this model included variances and covariances of the intercept, slope 

1, and slope 2 at the individual and twin pair levels. A residual variance (constrained to be 

equal for each measurement occasion) was also included, indicating the unreliable vari-

ance not accounted for by the growth model. After identifying the best functional form, 

we extended the model to include time-invariant covariates, including study (OCTO-Twin 

vs. SATSA) and birth cohort (born ≥1926 vs. <1926), and examined if the inclusion of these 

covariates improved the model fit. For all the growth models, fixed and random effects 

parameters, except for the regression coefficients of the time-invariant covariates, were 

estimated separately for men and women. Also, the models were fitted separately in 

SATSA and in the full sample (i.e., SATSA and OCTO-Twin combined) to determine 

whether including a selected sample of oldest-old twins from OCTO-Twin would influence 

the results. 

Subsequently, the best-fitting latent growth curve model was extended to a biometric 

model to study genetic and environmental influences on the FI trajectories as described 

above in § 4.3.1. 

 

4.3.3 Regression analysis 

Regression models were used in Studies III–V to examine the associations between ex-

posure and outcome variables while adjusting for measured confounding factors. In 

general, we estimated β-coefficients for continuous outcomes using linear regression 

models, odds ratios (ORs) for binary outcomes using logistic regression models, and haz-

ard ratios (HRs) for time-to-event outcomes using Cox models. Additionally, generalized 

estimating equations, or mixed models that incorporated random effects were used when 

analyzing twin and longitudinal data to account for the correlated observations.189 

Specifically, in Study III, we conducted an EWAS to explore the cross-sectional associa-

tions between the FI (independent variable) and DNA methylation levels of 245,545 CpG 

sites (dependent variables) at baseline of SATSA, using generalized estimating equations 

with cluster-robust standard errors to account for twin relatedness. The FI was consid-

ered both as a continuous (per 10% increase) and as a categorical variable (frail vs. non-

frail; and prefrail vs. non-frail) in the models. The CpG sites associated with the FI at a false 

discovery rate (FDR)190 of <0.05 were considered as statistically significant and were then 
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analyzed for their longitudinal associations with the FI in SATSA and replicated in LSADT. 

The longitudinal analysis was performed using linear mixed-effects models with random 

effects at the individual and twin pair levels to account for the correlation between re-

peated measurements of DNA methylation and the FI. The replication analysis in LSADT 

was performed using generalized estimating equations with cluster-robust standard er-

rors. All the models were adjusted for age, sex, smoking, BMI, and DNA methylation array 

(450K vs. EPIC array). In addition to the EWAS analysis on individual CpG sites, we also 

conducted a differential methylated region (DMR) analysis using dmrff in R,191 which es-

sentially combines summary statistics of nearby CpGs.191,192 For the DMR analysis, a 

Bonferroni-adjusted p<0.05 was considered as statistically significant. 

In the first part of the analysis in Study IV (i.e., observational analysis), we investigated the 

associations between 200 metabolic biomarkers (including 168 metabolomic biomarkers 

and 32 clinical biomarkers as independent variables) and the FI (dependent variable) in 

the UK Biobank using linear regression models, adjusted for age, sex, baseline assessment 

center, BMI, smoking, alcohol, education, and deprivation. Biomarkers associated with the 

FI at a Bonferroni-corrected p-value threshold of 0.0025 (i.e., 0.05/200) were considered 

as statistically significant. We also performed a sensitivity analysis using the FP score as 

a secondary outcome, and conducted subgroups analyses stratified by age at baseline, 

sex, and ethnicity. Additionally, we employed a penalized linear regression model – the 

least absolute shrinkage and selection operator (LASSO)193 – to select the metabolites 

that were most strongly and independently associated with the FI while mutually adjusting 

for each other and also adjusting for age and sex. LASSO is a feature selection tool that is 

particularly useful when dealing with high-dimensional data such as NMR metabolomics.120 

It constrains the sum of the absolute values of the regression coefficients, resulting in a 

sparse model that contains only the most informative variables contributed to the vari-

ance of the FI.193 The biomarkers that were statistically significantly associated with the FI 

in the linear regression models and selected by the LASSO model were then replicated 

for their associations with the FI in TwinGene and the Health 2000 Survey. The replication 

analysis was performed using linear regression models adjusted for age, sex, BMI, smoking, 

education, and alcohol. The models in TwinGene additionally accounted for twin related-

ness using cluster-robust standard errors. The estimates from the replication cohorts 

were then meta-analyzed using a random-effects model;194 we considered those with 

p<0.05 as the “replicated biomarkers”, which were then brought forward to the MR anal-

yses to investigate potential causal relationships (described below in § 4.3.4). 

In Study V, we assessed the relationships between frailty and comorbidity measures (eFI, 

CFS, HFRS, CCI) and various outcomes in geriatric patients, including in-hospital mortality, 

30-day readmission, 30-day mortality, 6-month mortality, and the length of stay. We 

used logistic regression models for in-hospital mortality and 30-day readmission, Cox 

models for 30-day and 6-month mortality, and linear regression models for the length of 
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stay. All models were adjusted for age and sex, and additionally accounted for the clus-

tering of patients in geriatric clinics using stratified Cox models or conditional generalized 

estimating equations. The diagnostic performance of the logistic regression models was 

assessed using the area under the receiver operating characteristic curve (AUC), while 

the Harrell’s C-statistics were used for the Cox models.195 

 

4.3.4 Mendelian randomization (MR) analysis 

In the second part of the analysis in Study IV, we performed two-sample MR analyses to 

examine potential causal effects of the metabolic biomarkers identified from observa-

tional analyses on the FI and FP scores. MR is a causal inference method that uses genetic 

variants as instrumental variables (IVs) to assess the effect of an exposure on an outcome, 

which helps to overcome the limitations of confounding and reverse causation that are 

often encountered in observational studies (Figure 6).196 To provide valid causal inference, 

genetic variants used as IVs should fulfill three assumptions: (i) they should be robustly 

associated with the exposure (relevance assumption), (ii) they should be independent of 

any confounders (independence assumption), and (iii) they should only affect the out-

come through the exposure but not though other pathways (exclusion restriction 

assumption).196 

 

 

Figure 6. Design and the three main assumptions of the Mendelian randomization analyses for 
metabolic biomarkers and frailty. 

 

The SNPs associated with the exposures (biomarkers) were selected from the largest 

available GWASs conducted in European populations, including the UK Biobank (n=115,078, 

for NMR metabolomic biomarkers),197 the Meta-Analyses of Glucose and Insulin-related 

traits Consortium (n=123,665, for HbA1c),198 the Cohorts for Heart and Aging Research in 

Genomic Epidemiology Consortium (n=204,402, for CRP),199 and the Global Lipids Genet-

ics Consortium (n=187,365, for total cholesterol, LDL-cholesterol, and triglycerides).200 For 

other clinical biomarkers, we performed a GWAS in a randomly selected 50% of the UK 

Biobank sample. SNPs were selected as IVs if they were associated with the biomarker of 
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interest at a genome-wide significance level (p<5×10−8) and not in linkage disequilibrium 

with other SNPs (r2<0.001 within a clumping window of 10,000 kb). F-statistics were used 

to assess the instrument strength, where SNPs with an F-statistic of >10 are typically con-

sidered as strong instruments.196 To obtain summary statistics for SNP-outcome (frailty) 

associations, we performed GWAS analysis for the FI and FP in UK Biobank subsamples 

that did not overlap with the exposure GWASs, to avoid an overfitting bias and an inflated 

false positive rate in two-sample MR.201 

The primary approach used in the MR analysis was the multiplicative random-effects in-

verse variance weighted (IVW)-MR  method, which provides unbiased estimates if all the 

IVs are valid or if the overall pleiotropy is balanced to be zero.202 To correct for multiple 

testing, we considered an FDR-corrected p-value threshold of 0.011 as statistically signif-

icant. Other MR methods that relax assumptions on horizontal pleiotropy, including MR-

Egger,203 weighted median,204 weighted mode,205 and MR-pleiotropy residual sum and 

outlier (MR-PRESSO)206 were used as sensitivity analyses. Besides, as many of the IVs were 

associated with more than one metabolomic biomarker, we performed a sensitivity anal-

ysis by excluding these potentially pleiotropic SNPs (i.e., using only SNPs that were not 

associated with other metabolomic biomarkers at genome-wide significance as the IVs). 

Furthermore, to examine whether any observed association may be driven by the indi-

vidual deficit items included in the FI, we repeated the MR analysis using 11 modified FIs 

that were stripped of items from each category as the outcome variables (i.e., FIs remov-

ing cancers, cardiometabolic, cranial, gastrointestinal, immunological, infirmity, mental 

wellbeing, musculoskeletal, pain, respiratory, and sensory items). 

 

4.3.5 Co-twin control analysis 

In Study IV, we additionally conducted a co-twin control analysis in TwinGene to investi-

gate the associations of GlycA and creatinine (which were the biomarkers that showed 

putative causal effects from MR) with the FI while controlling for unmeasured family-con-

stant confounders such as genetic or shared environmental factors. The co-twin control 

method compares the population-level estimates with the within-pair estimates in MZ 

twins and DZ twins and can test whether an association is independent of familial influ-

ences (i.e., whether it is in line with a causal hypothesis).207 In cases where the association 

may be attributed to shared genetic factors (pleiotropy), we would expect an attenuation 

of the association within MZ twin pairs, whereas the estimated association in DZ twin pairs 

would be expected to lay between the population-level and MZ estimates. Conversely, in 

cases where the association may be attributed to shared environmental factors, a similar 

attenuation of the association would be expected in both MZ and DZ twins. The within-

twin-pair estimates were obtained using conditional generalized estimating equations, 

adjusted for age, sex, BMI, smoking, alcohol, and education. 
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4.4 Ethical considerations 

For the first four studies involving cohorts from the Swedish Twin Registry (SALT, SATSA, 

OCTO-Twin), the Danish Twin Registry (LSADT), the Finnish Health 2000 Survey, and the 

UK Biobank, informed consents were obtained from all the participants prior to data col-

lection. The participants were informed of the overall aims of the study, potential risks, 

contact person, and the procedures of the data collection. It was emphasized that par-

ticipation is voluntary, and they can withdraw from the study freely at any time without 

giving any reason. Specifically, participants who have requested to withdraw from the UK 

Biobank cohort were excluded from the analysis in Study IV. For Study V that involved 

retrospective data extracted from EHRs, informed consent is not required; however, eth-

ical approval is also needed and had been obtained before the start of the study. Studies 

I–IV were approved by the Regional Ethics Review Board in Stockholm (Dnr 2015/1729-

31/5 and 2016/1888-31/1), and Study V was approved by the Swedish Ethical Review Au-

thority (Dnr 2021-02096). 

Moreover, since we are working with sensitive data (e.g., health status, biomarker data), it 

is crucial to protect the integrity and privacy of the individuals and process the data in 

compliance with the General Data Protection Regulation (GDPR).208 All the data used in 

this thesis were pseudonymized and the researchers do not have access to the keys for 

linking to or identifying the individuals. Besides, the data are stored in secure depart-

mental servers and only the researchers involving in the studies have access to the data, 

thus with minimal chance of data breach. 

In accordance with the ethical principal of beneficence, this research will potentially ben-

efit to the general public through an increased knowledge on how we can provide 

improved care for frail older adults. There should also be minimal harm to the participants 

both physically and mentally. Nevertheless, one potential physical harm could be the pain 

induced during collection of blood samples. Another important ethical aspect regarding 

frailty research is stigmatization. Being labeled as “frail” may cause negative feelings by 

older adults.209 Therefore, when applying the results to clinical practice, it is crucial to un-

derstand the perspectives and feelings of older adults on the term “frailty” and avoid 

stereotyping.210,211  

Finally, when disseminating the results, it is necessary to maintain transparency and hon-

esty. For all studies, instead of focusing on significant p-values, we always attempted to 

use the most appropriate statistical methods and present all the observed results. The 

potential limitations of the studies are also discussed thoroughly in the papers and in 

section 6 of the thesis. 
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5 Results 

5.1 Study I 

5.1.1 Sex differences in heritability of frailty 

The study sample consisted of 23,054 women and 19,940 men from SALT, with an overall 

mean age of 58.8 years and a median FI of 0.108. Women had a higher median FI (0.119 vs. 

0.097) and were on average older than men (59.2 vs. 58.4 years). The FI correlated posi-

tively with BMI (r=0.13) and negatively with years of education (r=-0.09). For the FI, BMI, 

and education, the intraclass correlations for MZ twins were greater than that for DZ twins, 

suggesting genetic influences on all the three traits. We first fitted univariate sex-limita-

tion models to investigate quantitative and qualitative sex differences in the heritability 

of the FI. As shown in Table 4, the best-fitting univariate model for the FI was an ADE 

model with only quantitative sex differences, suggesting that the magnitude of heritability 

differed between men and women, but there was no evidence that different genetic fac-

tors influence frailty in men and women. Specifically, the broad-sense heritability of the 

FI was estimated to be 45% (95% confidence interval [CI]: 41–48%) in men and 52% (50–

55%) in women, with the rest of the variation explained by unique environmental factors.  

 

Table 4. Model fitting results and parameter estimates from univariate sex-limitation models of 

the FI. This table is adapted from Mak et al. Aging 2021.212 

Model Model fit statistics Parameter estimates for men and women 

AIC ΔLL Δdf p A D/C H E rfm 

Saturated 19953 - - - - - - - - 

ADE full sex-

limitation 

19940 19.1 16 0.264 M: 7% M: 38% M: 44% M: 56% 0.69 

    F: 41% F: 11% F: 52% F: 48%  

ADE quanti-

tative sex-

limitation 

19939 19.7 17 0.288 M: 0% M: 44% M: 45% M: 55% 1.00 

    F: 41% F: 11% F: 52% F: 48%  

ADE no sex 

difference 

19949 32.1 18 0.021 M: 0% M: 49% M: 49% M: 51% 1.00 

    F: 44% F: 4% F: 49% F: 51%  

ACE full sex-

limitation 

19961 40.4 16 0.001 M: 41% M: 0% M: 41% M: 59% 0.76 

    F: 51% F: 0% F: 51% F: 49%  

AE full sex-

limitation 

19957 40.4 18 0.002 M: 41% M: 0% M: 41% M: 59% 0.76 

    F: 51% F: 0% F: 51% F: 49%  

AIC, Akaike’s Information Criterion; LL, log-likelihood; df, degrees of freedom; A, additive genetic factors; D, 

dominance genetic factors; C, common environmental factors; H, total genetic factors/ broad-sense herita-

bility; E, unique environmental factors; rfm, genetic correlation between men and women, estimated using 

opposite-sex twins. M and F represents parameter estimates for men and women respectively. p-values were 

obtained from likelihood ratio tests comparing with the saturated model (i.e., a model that fully describes the 

observed data), where p<0.05 was considered as a significantly reduced model fit. All models were adjusted 

for age. Best-fitting model is shown in bold. 
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5.1.2 Genetic and environmental overlap with BMI and education 

Bivariate twin modeling was then applied to examine the overlap of genetic and environ-

mental variances of the FI with BMI and education. The best-fitting bivariate model for the 

FI and BMI was an ADE model, with an estimated “bivariate heritability” of 81% for men and 

87% for women, indicating that a substantial part of the correlation between these two 

traits could be explained by genetic factors in common to both (Figure 7). In contrast, the 

best-fitting bivariate model for FI and education was an ACE model, where common en-

vironmental factors contributed 65% and 74% to the correlation between these two traits 

in men and women, respectively (Figure 7).  

 

 

Figure 7. Proportion of correlations of FI with BMI and education explained by genetic and environ-

mental factors. This figure is adapted from Mak et al. Aging 2021.212 

 

5.1.3 Moderation by BMI and education 

We further fitted moderation models to examine if genetic and environmental influences 

on the FI vary by levels of BMI and education. Figure 8 illustrates the variance components 

of the FI over BMI and education estimated from the best-fitting moderation models (i.e., 

a full ADE bivariate moderation model for FI and BMI, and an extended ADE univariate 

moderation model for FI and education). Overall, we found that the heritability of the FI 

(as indicated by the red color in the lower panels of Figure 8) tended to be greater at low 

and high BMI levels, but it did not seem to vary across education years. These patterns of 

moderation were similar in men and women. 
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Figure 8. Moderation analysis of FI by (A) BMI and (B) education, stratified by sex. This figure is 

reproduced from Mak et al. Aging 2021.212 

 

5.2 Study II 

5.2.1 Frailty trajectories from adulthood into old age 

We examined longitudinal trajectories of the FI in 1,842 younger and older adults from 

SATSA (mean baseline age 62.1 years; 58.3% women) and 654 oldest-old adults from 

OCTO-Twin (mean baseline age 83.4; 66.2% women). The median FI at baseline was higher 

in OCTO-Twin than in SATSA (0.195 vs. 0.080). Participants contributed to a maximum of 

15 waves, with 71.9% of the participants in SATSA and 60.1% in OCTO-Twin having at least 

three FI measurements available. Age-based latent growth curve models were first fitted 

to characterize the sex-specific FI trajectories, separately in SATSA and in the full sample 

(i.e., SATSA and OCTO-Twin combined data). The best-fitting model was a bilinear growth 

model with an intercept at age 75, which indicated that in SATSA, the mean FI at age 75 

was higher in women than in men (0.1265 vs. 0.1046), and the slope rates increased 4–5 

times in both sexes after age 75 (Table 5). In the full sample of 2,496 twins, including 

“study” as a covariate in the model improved the model fit, indicating that OCTO-Twin 

participants had, on average, a 0.0817 higher FI at age 75 and a 0.0069 lower rate of FI 

increase compared to SATSA participants (Table 5). The variances of the intercept were 

larger than those of the slopes, suggesting that individual differences in the mean FI tra-

jectory were primarily carried by the intercept. In SATSA, intraclass correlations for the 

intercept were around 0.3 for both sexes, while slope 1 was much more correlated within 

twin pairs in women (0.29) than in men (0.04). These correlations were similar in the full 

sample. However, correlations for slope 2 were lower in the full sample than in SATSA, 

indicating less similarity in the rates of change in FI among older twins from OCTO-Twin. 
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Table 5. Parameter estimates from the best-fitting latent growth curve models of the FI. This table 

is reproduced from Mak et al. The Journals of Gerontology: Series A 2023.187  

  SATSA (n = 1,842) Full sample (n = 2,496) 

Men Women Men Women 

Fixed effects (means) 

Intercept at 75 years 10.46* 12.65* 10.38* 12.88* 

OCTO-Twin (ref. SATSA) - 8.17* 

Slope 1 (<75 years) 0.14* 0.21* 0.14* 0.22* 

Slope 2 (>75 years) 0.76* 0.85* 0.75* 0.78* 

OCTO-Twin (ref. SATSA) - -0.69* 

Random effects (variances and correlations) 

Level 1: observations 
    

Residual variance 13.46 16.07 15.11 17.57 

Level 2: individual level 
    

Variance of intercept 34.12 55.29 38.16 63.68 

Variance of slope 1 0.03 0.04 0.03 0.04 

Variance of slope 2 0.63 0.49 0.60 0.54 

Correlation between intercept and slope 1 0.70 0.86 0.67 0.86 

Correlation between intercept and slope 2 0.05 0.004 -0.57 -0.38 

Correlation between slope 1 and slope 2 0.08 0.17 -0.29 -0.03 

Level 3: twin pair level 
    

Variance of intercept 13.83 30.50 16.17 34.87 

Variance of slope 1 0.001 0.01 0.001 0.02 

Variance of slope 2 0.16 0.18 0.06 0.09 

Correlation between intercept and slope 1 0.32 0.83 0.76 0.90 

Correlation between intercept and slope 2 0.03 -0.21 -0.17 -0.38 

Correlation between slope 1 and slope 2 0.38 -0.18 -0.08 -0.22 

Intraclass (twin) correlations 

Intercept at 75 years 0.29 0.36 0.30 0.35 

Slope 1 (<75 years) 0.04 0.29 0.03 0.30 

Slope 2 (>75 years) 0.20 0.27 0.09 0.14 

The best-fitting model was a bilinear two-slope latent growth curve model with an inflection point (intercept) 

at age 75. Slope 1 represents change of the FI until age 75, and slope 2 represents change of the FI from age 

75 onwards. The FI used in the models was multiplied by 100 (as a percentage of deficit from 0–100%). The 

full sample represents the SATSA and OCTO-Twin combined data. Intraclass correlations indicate the extent 

to which the intercept, slope 1, and slope 2 correlate within twin pairs. * Fixed effects parameters with p<0.05. 

 

5.2.2 Genetic and environmental influences on frailty trajectories 

We then extended the phenotypic models to biometric models, which decomposed ran-

dom effects of the latent growth variables (i.e., variances and covariances of the intercept, 

slope 1, and slope 2) into their genetic and environmental etiologies. The best-fitting bio-

metric model was an AE model, which estimated the heritability of the intercept, slope 1, 

and slope 2 in the full sample to be 55%, 45%, and 18% in women, and 42%, 3%, and 26% 

in men, respectively. From this model, we also calculated the expected changes in the 
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variance components of the FI across age (Figure 9). Overall, there was a substantial in-

crease in the total FI variance after age 75. In men, A remained similar across age, while E 

increased sharply after 75 years. In women, both A and E increased with age, but the in-

crease was larger for the latter in late life. These results were largely similar when removing 

the OCTO-Twin participants from the analysis. 

 

Figure 9. Expected changes in FI variance with age in the full sample, stratified by sex. This figure is 

reproduced from Mak et al. The Journals of Gerontology: Series A 2023.187 

 

5.3 Study III 

5.3.1 Epigenome-wide analysis of frailty 

A total of 526 SATSA participants (mean age at baseline 68.3 years; 58.7% women) and 

304 LSADT participants (mean age at baseline 78.5 years; 69.4% women) were included 

in the discovery and replication cohort, respectively. The median FI was similar in SATSA 

(0.077) and in LSADT (0.081). A cross-sectional EWAS was first conducted using baseline 

data from SATSA to identify FI-associated CpGs. Of the 245,545 CpGs that passed qual-

ity control, 29 and 162 were statistically significantly (FDR <0.05) associated with the 

continuous FI and the categorical FI comparing frail vs. non-frail participants, respectively 

(Figure 10). None of the CpGs were associated with prefrailty at FDR <0.05. Table 6 lists 

the 20 CpGs that were significantly associated with both the continuous and categorical 

FI, where the top 5 were cg04309480 (LRRN2), cg00155846 (OLFM1), cg01369033 (-), 

cg20624041 (LIPT2), and cg27638713 (MCM3). Other than the individual CpG sites, we 
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also identified a DMR in the PACRG gene in chromosome 6 that was associated with both 

the continuous and categorical FI at a Bonferroni-adjusted p<0.05. 

 

 

Figure 10. Manhattan plot for the cross-sectional epigenome-wide associations with (a) continu-

ous FI score (per standard deviation increase) and (b) categorical FI (frail vs. non-frail) in SATSA. 

 

To characterize the significant CpG sites, we performed gene ontology and Kyoto Ency-

clopedia of Genes and Genomes pathway analysis,213 although we did not identify any 

significant terms after applying the FDR adjustment. In addition, we queried the EWAS 

Catalog (http://ewascatalog.org/) and the GWAS Catalog (https://www.ebi.ac.uk/gwas/; 

both accessed on June 9, 2023) to search for previously reported traits that were asso-

ciated with our identified CpG sites. Many of the CpGs have previously been shown to be 

associated with chronological age (135 sites), rheumatoid arthritis (18 sites), clear cell renal 

carcinoma (15 sites), and pancreatic ductal adenocarcinoma (7 sites). Also, many of the 

genes which our identified CpGs mapped to have been associated with BMI, educational 

attainment, and cognitive function.  

http://ewascatalog.org/
https://www.ebi.ac.uk/gwas/


 

 37 

Table 6. Top CpGs associated with the FI at baseline in SATSA. 

CpGs Gene Chr Position Continuous FI 

(per 10% increase) 

Categorical FI  

(frail vs. non-frail) 

β p FDR β p FDR 

cg04309480 LRRN2 1 204655678 0.010 2.1×10-8 0.005 0.022 2.1×10-5 0.040 

cg00155846 OLFM1 9 138011566 0.012 2.1×10-7 0.017 0.028 1.3×10-5 0.033 

cg01369033 - 4 3292386 0.007 2.5×10-7 0.017 0.016 6.0×10-7 0.007 

cg20624041 LIPT2 11 74204975 -0.004 2.7×10-7 0.017 -0.011 7.1×10-7 0.007 

cg27638713 MCM3 6 52149159 -0.004 3.4×10-7 0.017 -0.011 2.3×10-6 0.012 

cg00830850 - 1 26672649 0.011 4.3×10-7 0.017 0.025 1.2×10-5 0.031 

cg14458903 HRH1 3 11203475 0.005 4.9×10-7 0.017 0.013 3.9×10-8 0.004 

cg22810049 - 5 67953707 0.011 5.6×10-7 0.017 0.025 9.8×10-6 0.027 

cg20098420 SHANK3 22 51155589 0.012 7.6×10-7 0.019 0.030 2.7×10-7 0.006 

cg21936959 MRGPRF 11 68782049 0.006 8.3×10-7 0.019 0.016 3.4×10-7 0.006 

cg23595571 TOLLIP 11 1313100 0.012 1.0×10-6 0.021 0.035 1.1×10-6 0.009 

cg09867208 PRDM16 1 3351390 0.009 1.9×10-6 0.033 0.022 6.9×10-6 0.023 

cg16763089 LOC149837 20 5485284 -0.029 2.5×10-6 0.036 -0.076 2.0×10-6 0.012 

cg10369955 GALNT9 12 132865474 0.004 3.0×10-6 0.038 0.011 4.5×10-7 0.007 

cg03287299 LOC149837 20 5485245 -0.020 3.5×10-6 0.039 -0.051 1.8×10-5 0.037 

cg06173857 GNA12 7 2855704 0.003 3.8×10-6 0.040 0.007 1.5×10-6 0.011 

cg20295248 LOC149837 20 5485270 -0.029 5.3×10-6 0.049 -0.073 1.4×10-5 0.033 

cg06954658 SALL3 18 76740093 -0.005 5.5×10-6 0.049 -0.010 3.0×10-5 0.048 

cg08917022 CEP72 5 623259 0.012 5.5×10-6 0.049 0.033 8.3×10-8 0.004 

cg01256440 FLRT1 11 63886459 0.008 5.6×10-6 0.049 0.023 6.0×10-7 0.007 

Chr, chromosome; FDR, false discovery rate; FI, frailty index. Listed are the 20 CpGs significantly associated 

with both the continuous and categorical FI at FDR <0.05 from the cross-sectional EWAS in SATSA. 

 

5.3.2 Replication of the identified CpGs 

For the 171 CpGs that were significantly associated with either the continuous or categor-

ical FI in the cross-sectional EWAS, we performed a longitudinal analysis using all available 

measurements in SATSA and a replication analysis in an independent sample of LSADT 

participants. Consistent directions of associations were observed when comparing the 

cross-sectional and longitudinal estimates in SATSA. In LSADT, five out of the 171 CpG sites 

were associated with the FI at p<0.05 and were directionally consistent with the esti-

mates in SATSA, including cg04309480 (LRRN2), cg20624041 (LIPT2), cg21936959 

(MRGPRF), cg10850119 (FBXO4), and cg06897860 (-).  

Lastly, we performed a literature search and identified 80 CpGs that were previously re-

ported to be associated with frailty.104,105,113,214 We investigated their associations with the 

FI in SATSA and LSADT, and found only one of these CpGs (cg00252813 in the GAPDH 

gene) showed consistent associations with the FI in both SATSA and LSADT at p<0.05. 
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5.4 Study IV 

5.4.1 Identification of frailty-associated metabolic biomarkers 

In the observational analyses, two subsamples from the UK Biobank were used as the dis-

covery cohorts, which comprised 90,573 (mean age 56.8 years; 54.4% women; mean FI 

0.123) and 67,488 participants (mean age 57.5 years; 39.1% women; mean FI 0.130) who 

had complete data on the 168 NMR metabolomic biomarkers and 32 clinical biomarkers, 

respectively. Linear regression models were first used to assess associations between 

each of the 200 metabolic biomarkers and the FI, adjusting for age, sex, baseline assess-

ment center, BMI, smoking, alcohol, education, and deprivation. A total of 164 biomarkers 

were statistically significantly associated with the FI after the Bonferroni correction for 

multiple testing. Particularly, glycoprotein acetyls (GlycA) showed the strongest positive 

association among the metabolomic biomarkers, with each SD increase corresponding to 

a 0.56% higher FI (Figure 11). Meanwhile, many of the lipids and lipoproteins showed neg-

ative associations with the FI. Largely similar results were observed when using FP as the 

outcome and in subgroups by age, sex, and ethnicity. Further, due to the high intercorre-

lation between the metabolic biomarkers, we employed the LASSO procedure and 

identified 77 biomarkers that exhibited strong and independent associations with the FI.  

 

 

Figure 11. Observational and MR effect estimates of selected metabolic biomarkers on FI. This figure 

is reproduced from Mak et al. Aging Cell 2023.215 Effect sizes represent changes in FI (%) per SD increase 

in biomarker level, except the IVW-MR estimates for CRP and HbA1c, which are per log mg/L increase and per 

% increase, respectively. For IVW-MR estimates, filled triangles represent p<0.011 (FDR-corrected threshold). 
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Based on the results from the linear regression and LASSO models, 41 metabolomic and 

18 clinical biomarkers were selected for replication in 11,025 TwinGene (mean age 

58.3 years; 55% women; mean FI 0.121) and 6,073 Health 2000 participants (mean age 

52.5 years; 55% women; mean FI 0.177). Meta-analysis of the biomarker-FI associations in 

these two cohorts revealed that 34 out of the 49 available biomarkers had significant as-

sociations with the FI at p<0.05. These replicated biomarkers included metabolomic 

biomarkers from various domains, including amino acids (e.g., alanine), fluid balance (e.g., 

creatinine), inflammation (GlycA), fatty acids (e.g., linoleic acid, monounsaturated fatty 

acids), and lipoprotein subclasses. Additionally, clinical biomarkers such as LDL-

cholesterol, CRP, and HbA1c were also significantly associated with the FI (Figure 11). 

 

5.4.2 Causal inference using Mendelian randomization 

Two-sample MR analyses were then performed to investigate causal relationships be-

tween 44 selected biomarkers (34 replicated and 10 unavailable in TwinGene and Health 

2000) and the FI and FP scores. We selected IVs from the largest available GWASs, and 

all of them had an estimated F-statistics of >10. Using the IVW-MR method, we identified 

19 significant associations with the FI at an FDR-corrected threshold of p<0.011 (Figure 11). 

Specifically, several of these MR estimates were consistent with the observational esti-

mates. For example, each SD increase in the genetically predicted levels of GlycA and 

creatinine was associated with a 0.37% and 0.38% increase in the FI, respectively (Figure 

12). However, lipids traits such as apolipoprotein B, total cholesterol, LDL-cholesterol, and 

lipoprotein subclasses generally had a negative association with the FI in the observa-

tional analysis but a positive association in the IVW-MR analysis (Figure 11). None of the 

44 biomarkers were statistically significantly associated with the FP score. 

 

Figure 12. MR scatter plots for the effects of (a) glycoprotein acetyls and (b) creatinine on FI. This 

figure is reproduced from Mak et al. Aging Cell 2023.215 
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When using other MR methods including MR-Egger, weighted median, weighted mode, 

and MR-PRESSO, the estimates for most biomarkers remained consistent, although there 

was evidence of directional pleiotropy for GlycA, monounsaturated fatty acids, and total 

lipids in small LDL (p<0.05 for MR-Egger intercept). In the sensitivity analysis of removing 

potentially pleiotropic SNPs for each biomarker, the MR estimates for GlycA and creati-

nine remained robust, but estimates for most lipids and lipoproteins were attenuated. We 

further repeated the MR analysis using 11 stripped FIs as the outcomes. When cardiomet-

abolic items such as heart failure, stroke, and diabetes were removed from the FI, the MR 

estimates for monounsaturated fatty acids, omega-6, cholesterols, and lipoprotein sub-

classes were attenuated to null, indicating that their effects on the FI may be mediated 

by cardiometabolic diseases. The MR estimates for GlycA and creatinine remained sta-

tistically significant across all the stripped FIs. 

Finally, for creatinine and GlycA that exhibited potential causal effects on the FI, we addi-

tionally performed subgroup analysis in the UK Biobank and co-twin control analysis in 

TwinGene to examine if their observational associations are influenced by their related 

traits (kidney disease for creatinine;216 CRP & LDL-cholesterol for GlycA217) or confounded 

by shared familial factors. Interestingly, while the GlycA-FI association remained robust 

across all subgroups, the creatinine-FI association was attenuated to null in participants 

without chronic kidney disease, indicating that the association may be confounded/me-

diated by kidney disease. In the co-twin control analysis, we observed a slight attenuation 

of the GlycA-FI association within DZ pairs, and an even greater, but incomplete attenua-

tion within MZ pairs, indicating potential genetic confounding (Figure 13). The population-

level and within-pair estimates for the creatinine-FI association, however, were mostly 

statistically nonsignificant, limiting us to conclude the extent of familial confounding. 

 

 

Figure 13. Population-level and within-twin-pair estimates for the association between GlycA and 

FI in the full sample, DZ twins (2762 pairs), and MZ twins (1132 pairs) in TwinGene. This figure is 

adapted from Mak et al. Aging Cell 2023.215 
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5.5 Study V 

5.5.1 Swedish eFI for hospitalized older adults 

Among the 13,188 patients who had sufficient data for calculation of the eFI, the mean age 

was 83.1 years, and 60.2% were women. Fragility fracture, congestive heart failure, demen-

tia, stroke/transient ischemic attack, and urinary system disease were the most common 

causes of admission. The overall in-hospital mortality rate was 1.4% and the median length 

of stay was 6.7 days. The eFI had a median of 0.181 and an approximately normal distribu-

tion (Figure 14). The proportions of patients categorized as fit, mildly frail, moderately frail, 

and severely frail were 29.3%, 33.1%, 24.4%, and 13.2%, respectively. Men had significantly 

higher frailty scores than women based on the eFI and HFRS (p<0.05 from chi-squared 

tests), but not the CFS. The eFI showed moderate correlations with the CFS (Spearman’s 

correlation 0.420), and weaker correlations with the HFRS (0.289) and CCI (0.368). 

 
Figure 14. Distribution of the eFI stratified by sex (n=13,188). 

 

5.5.2 Associations between eFI and adverse health outcomes 

The eFI was strongly associated with in-hospital mortality (OR per 0.1 increase: 5.07, 95% 

CI: 4.23–6.09), 30-day mortality (HR: 3.26, 95% CI: 2.90–3.67), and 6-month mortality (HR: 

2.66, 95% CI: 2.47–2.85) after adjusting for age and sex and accounting for clustering by 

the geriatric clinics (Table 7). Similar positive associations were observed for the CFS, 

HFRS, and CCI (Table 7). Notably, among all the frailty and comorbidity measures, the eFI 

had the highest discriminative ability for in-hospital mortality (AUC: 0.813), 30-day mor-

tality (Harrell’s C: 0.733), and 6-month mortality (Harrell’s C: 0.707). We also found a 

statistically significant association between the eFI and a longer length of stay. However, 

the eFI, as well as the CFS, HFRS, and CCI, all had a relatively poor discrimination for 30-

day readmission (all AUCs <0.6).  
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6 Discussion 

6.1 Genetic and environmental influences on frailty 

In the first two studies, we employed a twin design to investigate the interplay between 

genetics and the environment in relation to frailty. Our results showed that variations in 

the FI are attributable to a combination of genetic factors, including additive and domi-

nance effects, as well as unique environmental factors. In Study I, adjusting for age, we 

estimated that the broad-sense heritability of the FI was 52% in women and 45% in men. 

Similar findings were seen in Study II, where the FI heritability at age 75 was 55% in women 

and 42% in men. These estimates are in line with previous twin studies on frailty, which 

reported heritabilities in the range of 25–45%.90,91 Intriguingly, the largest GWASs on frailty 

to date have only found a SNP-based heritability of 6–11%.80,103 Our Study I, with a large 

sample size and robust statistical power, demonstrated a significant contribution of dom-

inance genetic factors to the FI, particularly pronounced in men. Thus, it is conceivable 

that the “missing heritability” in frailty can in part be explained by the non-additive ge-

netic influences,219 as well as rare variants,220 that GWAS typically overlook. Since the 

results from twin studies imply that genetics may play a pivotal role in the development 

of frailty, it requires further research to identify the specific genetic factors involved. 

One novel aspect of Study I is its exploration of sex differences in the heritability of frailty. 

Prior research consistently highlighted a sex-specific pattern in frailty, where women of-

ten exhibit a higher FI but a lower mortality risk at any given FI score or age compared to 

men, and the underlying reasons for this discrepancy remain elusive.63 Our findings high-

light that the FI heritability was statistically significantly higher in women; however, there 

was no indication that distinct sets of genetic factors are at play between the sexes in 

influencing the FI. This pattern of higher heritability in women aligns with that found for 

psychological and neurological traits.221–223 Given the connection between frailty genetics 

and neurological pathways,80 the heightened heritability of the FI in women might suggest 

a greater genetic susceptibility to frailty among women. Alternatively, the lower heritabil-

ity in men could be attributable to their tendency to report health problems with less 

precision,224 leading to an increased unique environmental variance (that also captures 

measurement errors) relative to genetic variance in a questionnaire-based FI. 

Regarding environmental influences, both Studies I & II indicate a negligible impact of en-

vironmental influences shared within twin pairs, such as childhood experience or family 

environment, on frailty. Instead, a substantial portion of its variability can be explained by 

environmental factors unique to each individual. Study II further suggests that not only 

does frailty levels increase significantly in late life, but the unique environmental variance, 

particularly in men, also becomes more pronounced. It is challenging to pinpoint specific 

environmental factors as the primary drivers of frailty, due to the multidimensional nature 
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of the condition, which is associated with various physical, social, behavioral, and psycho-

logical factors.72,79 However, these results emphasize that frailty is not solely determined 

by genetics, but is also greatly influenced by the environment, especially in late life, which 

can possibly be delayed or even reversed through adopting a healthy lifestyle including 

exercise, nutrition supplementation, and social participation.149,225 

Since BMI and education are often regarded as the two most prominent modifiable risk 

factors for frailty,80 we delved deeper into the genetic and environmental influences on 

frailty in relation to these two factors to shed light on the underlying mechanisms. For 

frailty and BMI, we found that their association was primarily explained by shared genetic 

factors, probably stemming from common mechanisms related to energy metabolism, 

inflammation, and synaptic pathways.80,226,227 Furthermore, we observed that the FI herit-

ability increased at both low and high BMI levels, mirroring the U-shaped association 

between BMI and frailty reported in the literature.228–230 This suggests that underweight 

and obese individuals may face an elevated risk of frailty due to a more pronounced ex-

pression of genetic susceptibilities. In contrast, when examining the association between 

frailty and education, we found that it was primarily influenced by environmental factors 

shared within twin pairs. Moreover, the FI heritability did not seem to be modified by ed-

ucation levels. These results suggest a potential pathway that an improved family 

environment may contribute to higher educational attainment, subsequently reducing 

frailty by enhancing health literacy and promoting health-seeking behaviors.231–233 

 

6.2 DNA methylation and frailty 

Transitioning from our investigation of the genetic and environmental contributions to 

frailty, Study III studied the epigenetics of frailty as a possible mechanism for gene-envi-

ronment interactions. As an exploratory analysis, we first performed an EWAS in SATSA 

and unveiled 171 differentially methylated CpG sites significantly linked to the FI in a cross-

sectional context. Many of these associations were directionally consistent in the longi-

tudinal analysis across age. Upon look-up in the EWAS Catalog, we noticed a substantial 

number of these CpGs had prior associations with chronological age and age-related 

traits, such as rheumatoid arthritis and carcinoma. Among these, we highlighted five spe-

cific sites that were replicated in the LSADT cohort, including cg04309480, cg20624041, 

cg21936959, cg10850119, and cg06897860. These sites are mapped to several genes 

(LRRN2, LIPT2, MRGPRF, and FBXO4) that have been linked to cancer development234–237 

and neuronal function.238,239 Other than the individual CpG sites, we also revealed a DMR 

of the FI within the PACRG gene, which is known for its involvement in immune signaling.240  

In the literature, there have only been a few prior EWASs on frailty.104,105,113,214 Similar to our 

findings, a recent analysis in the German population also suggested a potential link be-

tween the FI and CpG sites implicated in cancer development, neurodegenerative 
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disorders, and other age-related diseases.104 Notably, within the list of the 80 frailty-as-

sociated CpGs previously reported in the literature,104,105,113,214 we were able to validate only 

one site in our Swedish and Danish samples at p<0.05. Similarly, among the 171 CpGs iden-

tified in SATSA, we successfully replicated only five sites in LSADT (5/171 ≈ 2.9%), which is 

somewhat lower than expected. While this could be due to our relatively modest sample 

sizes or differences in characteristics of SATSA and LSADT participants, recent research 

has shown similarly low replication rates (usually <5%) in the EWAS results for various 

frailty-related diseases, such as chronic obstructive pulmonary disease, ischemic heart 

disease, and stroke.241 The generally low replicability in EWASs may arise from differences 

in the statistical models and covariate strategies employed in different studies,241 or the 

inherent low reliability in the majority of CpG sites.242,243 Thus, it appears that the current 

evidence does not support a consistent and robust association between CpG sites and 

frailty across different populations. Nevertheless, these results, taken collectively, at least 

offer some hints that frailty may share common genetic and epigenetic pathways asso-

ciated with cancer and neurological disorders. This also aligns with our earlier research 

which suggested a potential link between frailty and cancers through shared genetic fac-

tors.244 To further advance our understanding in the epigenetics of frailty, it is important 

for more extensive studies with larger sample sizes to confirm our findings, and identify 

the potential epigenetic biomarkers of frailty. For instance, in an unpublished study, we 

have preliminary results indicating that epigenetic age measures combining information 

from age-related CpG sites,243 particularly the DunedinPACE clock,245 may be dynamically 

linked to an increased FI across age and could serve as a more robust epigenetic bi-

omarker of frailty. 

 

6.3 Metabolic biomarkers of frailty 

Further down the “omics” layers, Study IV focused on the metabolomics of frailty, where 

we explored the relationships between 168 NMR-based metabolomic biomarkers and 32 

clinical biomarkers with frailty. These blood biomarkers reflect the downstream output of 

the interactions between various biological processes (e.g., genetics, epigenetics, tran-

scriptomics, and proteomics) and environmental factors, thereby providing important 

insights into the biological mechanisms underlying frailty development.117 By employing 

multivariable linear regression models in a large cohort of up to 90,573 UK Biobank par-

ticipants, we showed that 164 out of the 200 metabolic biomarkers were statistically 

significantly associated with the FI, even after adjusting for sociodemographic and life-

style factors and applying the stringent Bonferroni correction. Given the high collinearity 

among the biomarkers, we also applied the LASSO feature selection method, narrowing 

down the list to 59 biomarkers with the strongest associations with the FI. To validate our 

findings, we replicated the analysis on independent samples from TwinGene and Health 



 

46 

2000 participants, confirming 34 of the identified biomarkers. Our results align with pre-

vious studies, demonstrating, for instance, a positive association between CRP and 

frailty,246 and a negative association between LDL-cholesterol and frailty.247 The large 

number of significant associations observed across different cohorts also underscores 

the multifaceted nature of frailty, intertwined with numerous physiological systems.2 

To further mitigate confounding and reverse causation that may be present in the obser-

vational results,196 we performed a series of MR analyses and identified 19 biomarkers that 

exhibited significant associations with the FI. Among these potential causal biomarkers, 

16 were lipids and lipoproteins, including apolipoprotein B, total cholesterol, LDL-

cholesterol, lipoprotein subclasses, triglycerides, and omega-6. Interestingly, while our 

observational analyses predominantly revealed inverse associations between these lipid 

traits and frailty, the MR results suggested that they were generally associated with an 

increased FI. This seeming contradiction could be explained by uncontrolled confounding 

factors in the observational analyses, or potential nonlinear association between lipids 

and frailty that we did not examine.248 It could also be due to the different interpretations 

between the observational and MR estimates, where the former, especially in cross-sec-

tional studies, typically reflect associations over a shorter period of time, while the latter 

reflect effects over a lifetime.196 Notably, lipids and lipoproteins have consistently been 

implicated in the development of cardiovascular diseases and diabetes.249 In a sensitivity 

analysis where we removed cardiometabolic items from the FI, the causal estimates of 

these biomarkers attenuated, implying that their impact on the FI could be mediated by 

cardiometabolic diseases. Similarly, we also observed a potential causal effect of creati-

nine, a biomarker indicative of kidney function,250 on frailty. However, subgroup analysis 

revealed that this association was significant solely in individuals with chronic kidney dis-

ease, suggesting that the link between creatinine and the FI may be driven by kidney 

diseases, considering the association between frailty and kidney function.251 

Meanwhile, we identified a robust, positive association between GlycA and frailty in both 

observational and MR analyses, even after accounting for individual deficit items in the FI 

and other related traits such as CRP and LDL-cholesterol.217 GlycA is a novel inflammation 

marker that reflects the concentration and glycosylation of acute-phase proteins during 

inflammatory states, and is a more sensitive marker than CRP in capturing low-grade in-

flammation.217,252 Although the MR-Egger and co-twin control results suggested potential 

pleiotropic effects in the GlycA-FI association, possibly due to the overlapping signal of 

GlycA with lipoproteins and triglycerides,217 our findings suggest that GlycA may at least 

capture part of the inflammatory response that is causally linked to frailty. There has been 

a growing body of literature emphasizing chronic, low-grade inflammation as a key mech-

anism contributing to frailty and the aging process (i.e., “inflammaging”), which could arise 

from senescence in the immune system during aging.95,96,253–255 Compared to previous 

studies that have predominantly examined the association between inflammation and 

frailty in cross-sectional settings,255 our results provide additional evidence supporting a 
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causal relationship between chronic inflammation and frailty, and highlight the potential 

utility of GlycA as a biomarker for the identification and monitoring of frailty. 

 

6.4 Electronic frailty index for the Swedish health system 

To move towards an individualized management of frailty, the first and crucial step is to 

enhance the assessment of frailty. Traditional frailty assessments often require in-person 

evaluations, making them not always practical in clinical settings.39 In response to this 

challenge, there has been a growing interest in developing frailty measures based on the 

routinely collected EHR or health administrative data, such as the HFRS and the eFI which 

has already been adopted in some countries.132 Considering Sweden’s aging population, it 

is crucial to assess the potential of incorporating a similar measure into the Swedish EHR 

system to aid in identifying high-risk patients during routine clinical practice. In Study V, 

we calculated an eFI that adheres to the Rockwood deficit accumulation model42 and a 

US eFI model developed by Pajewski and colleagues.138 This approach is highly generaliza-

ble, which can theoretically incorporate any age-associated deficit items found in the 

EHRs and provide a good predictive ability for mortality when the deficit items cover a 

wide range of physiological systems.42,256 Specifically, our Swedish eFI includes disease 

items, functional assessments, and laboratory measures, thereby capturing not only mul-

timorbidity, but also other functional aspects of frailty. This was confirmed by its 

moderate correlation with the CFS, but weaker correlations with the ICD-code-based CCI 

and HFRS. 

Importantly, we found that our Swedish eFI outperformed the existing frailty and comor-

bidity scales (CFS, HFRS, and CCI) in predicting in-hospital mortality, achieving an AUC of 

0.813 when combined with age and sex. It also performed better in predicting 30-day and 

6-month mortality compared to the CFS and HFRS and was associated with a longer 

length of hospital stay. Hence, when this eFI is incorporated in the EHR system as an au-

tomated and standardized frailty screening tool, it could have substantial implications for 

frailty management within the Swedish healthcare system.256 For instance, it could com-

plement the CFS and assist clinicians in identifying individuals at risk of frailty at an earlier 

stage, facilitating timely interventions. It could also serve as a tool for monitoring patients’ 

health status over time and enable more efficient communications between different care 

providers. Furthermore, the eFI holds potential for use in research contexts, such as stud-

ying the time trends of frailty over time in the population. 

 

6.5 Methodological considerations 

The major strengths of this thesis include the rigorous study designs and analytical meth-

ods, applied across multiple large population-based cohorts to address the diverse 
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research questions related to genetics and biomarkers of frailty. In particular, Studies I & 

II incorporated advanced twin methods, including sex-limitation models and biometric 

latent growth curve models,86,87 to investigate, for the first time, the sex differences and 

longitudinal changes in the heritability of frailty. In Study III, apart from the EWAS analysis, 

we conducted both longitudinal and replication analyses to examine the robustness of 

the identified CpGs over time and across different populations. Study IV applied a com-

bination of observational, MR, and co-twin control methods to minimize confounding and 

enhance causal inference for the identified metabolite-frailty associations.196,207 Study V 

employed a retrospective cohort study design within the EHR data to develop an eFI for 

the older Swedish population. 

However, it is important to note that the validity of our findings, especially for the twin and 

MR results, relies on the underlying assumptions of these methods. For twin studies, the 

fundamental assumptions include an equal environmental similarity for MZ and DZ twins 

and a random mating in the population. Violations of these assumptions may occur, for 

instance, due to differential treatment of MZ and DZ twins88 or assortative mating,257 alt-

hough previous studies have shown that heritability estimates remain robust even when 

these assumptions are violated.88 For the MR analysis, we tested the relevance assump-

tion using the F-statistics as a test of instrument strength, with no violations found.196 As 

for the independence and exclusion restriction assumptions, which are generally untest-

able, we performed several sensitivity analyses to mitigate the impact of horizontal 

pleiotropy in our MR analysis.196 

As in any epidemiological study, several potential biases should also be considered.258 

Selection bias, which refers to the situation when the study sample does not represent 

the target population,258 is a primary concern. It can occur due to healthy selection, which 

may be present in most of our cohorts in Studies I–IV since participation is voluntary. For 

example, it has been shown that participants from the UK Biobank are less likely to smoke 

and have fewer health problems compared to the general population.259 Healthy selection 

is particularly relevant in aging research because older participants must have been 

healthy and survived to a certain age to participate in the study.260 In Study II, we inten-

tionally included a sample of oldest-old twins from OCTO-Twin to test whether the results 

are affected by potential selection bias. While OCTO-Twin participants demonstrated a 

significantly slower rate of FI increase compared to SATSA participants, potentially indi-

cating a lower mortality risk in late life,261 the overall results remained consistent even with 

the inclusion of these oldest-old twins. In longitudinal studies, selection bias can also arise 

if losses to follow-up are nonrandom, although we have tried to account for this in the 

models in Study II using a full-information maximum likelihood modeling approach. 

On the other hand, the FIs used in Studies I–IV were all based on self-reported data, which 

may have led to inaccurate reporting and measurement error,77 thereby inflating the 

unique environmental variance component in Studies I & II, especially in men.224 Similarly, 
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any measurement error in the FI and biomarker levels in Studies III & IV could have re-

sulted in non-differential misclassification bias, potentially underestimating their 

associations.258 In Study V, readmissions to hospitals other than the included geriatric 

clinics were not captured, likely leading to misclassification of the 30-day readmission 

outcome variable and contributing to the generally low AUCs observed when predicting 

readmission using frailty and comorbidity measures. 

Finally, regarding the generalizability of our results, although we always attempted to rep-

licate our findings in independent samples where data are available, our conclusions were 

based on samples of European ancestry and may not be applicable to other populations. 

In Studies I–III, our results were also based on twin samples and may not be fully gener-

alizable to the general population, although studies have shown that twins are highly 

comparable to singletons even at old ages.262 Additionally, due to data availability, most 

of our studies focused on the FI as the measure of frailty. While the FI has been widely 

validated and adopted, our findings may not be generalizable to other physical frailty 

measures, such as the FP, which differs from the FI in certain aspects.60 This was also 

evident in Study IV where we could not find any significant associations between the 

metabolic biomarkers and the FP in the MR analysis. Hence, it would be beneficial for fur-

ther research on the genetics and biomarkers of other measures of frailty to obtain a 

comprehensive understanding on the mechanisms underlying frailty and aging. 





 

 51 

7 Conclusions 

In summary, the present thesis investigated the interplay between biological and envi-

ronmental factors that influence frailty, and developed an eFI tailored for integration into 

the Swedish health system. In the five studies, we showed that: 

I. Both genetic and individual-specific environmental factors contribute to a large 

proportion of the variation in frailty. The heritability of frailty is higher in women 

(52%) than in men (45%), although it appears to be the same genetic factors 

influencing frailty in both sexes. Different mechanisms seem to underpin the 

associations of frailty with BMI and education, which are primarily explained by 

genetic factors and environmental factors shared within twin pairs, respectively. 

II. Frailty increases with age, and its rate of increase and variability become much 

higher after age 75 in both men and women. Most of the amplification in frailty 

variability in late-life is due to individual-specific environmental factors, while 

genetic influences on frailty remain relatively stable over age. 

III. Frailty is associated with DNA methylation in several CpG sites that may involve in 

cancer development and neurological pathways. Nonetheless, further studies are 

warranted to corroborate and expand upon these findings. 

IV. Frailty exhibits significant associations with a substantial portion of the blood 

metabolome. However, it is important to consider the potential influence of reverse 

causation, confounding, or mediation through other diseases in these associations. 

Notably, the inflammation marker GlycA appears to be causally linked to a higher 

degree of frailty, suggesting its potential utility as a biomarker of frailty. 

V. An eFI constructed based on routinely collected disease diagnoses, functioning 

items, and laboratory measures has good predictive performance for mortality 

outcomes, which can potentially be incorporated in the Swedish EHR system for 

frailty screening in the population. 
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8 Points of perspective 

The rapid expansion of the frailty literature over the past two decades, especially during 

the COVID-19 pandemic,35 has greatly improved our understanding of the utility and im-

portance of the frailty concept in studying the heterogeneity of aging and predicting 

adverse outcomes in older adults. Contributing to the literature, this thesis brings new 

knowledge into the biology of frailty and demonstrates the potential of leveraging routine 

EHR data to facilitate frailty screening. Despite these advancements, the exact mecha-

nisms underlying this complex syndrome are still far from fully understood. Moving 

forward, it is essential for future research to continue identifying specific molecular bi-

omarkers of frailty, which could potentially be applied in clinical practice for early 

detection and development of individualized treatment strategies for frail individuals. Be-

low are some suggested directions for future research based on our findings: 

• The largest GWAS of the FI to date has only reported a SNP-based heritability of 

11%,80 which is much lower than our estimated twin-based heritability of ~50%. To 

address the missing heritability of frailty,220 more large-scale studies based on 

whole-genome or whole-exome sequencing in collaborative efforts are warranted 

to identify the rare variants that may contribute to frailty development. 

• Our studies predominantly focused on white populations, underscoring the need for 

more multiethnic investigations to elucidate the biology of frailty and aging across 

different populations. 

• Given the complexity of frailty, it seems implausible for a single biomarker to capture 

the multifaceted mechanisms that occur across numerous physiological systems. 

As such, future research should prioritize multi-omics and longitudinal studies, 

incorporating both spatial and temporal scales in the analysis. This could enable a 

deeper understanding of the multiple interacting aging processes that likely 

underpin frailty development.12 

• Our research highlighted chronic inflammation as a pivotal mechanism underlying 

frailty. However, results remain inconclusive regarding the benefits of targeting 

inflammation to alleviate frailty.263,264 Hence, more longitudinal and interventional 

studies are required to develop the preventive strategies for frailty. The potential of 

GlycA as a biomarker for identifying and monitoring frail patients also warrants 

further investigation. 

• Although our eFI demonstrated good predictive performance for mortality 

outcomes, its efficacy in guiding clinical decisions and improving patient outcomes 

in real-world settings remains unknown and needs to be investigated in future 

studies.
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