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Popular science summary of the thesis 
Multiple sclerosis (MS) is a disease that leads to damage of the nerve fibers and their insulating myelin 
sheets in the brain and spinal cord through inflammatory activity. Previous research studies have 
revealed a complex interaction of many environmental, lifestyle and genetic factors that increase the 
risk of developing MS. However, factors influencing the severity of the disease and the disease 
trajectories have been less studied, and therefore largely remain unknown. In part this may be explained 
by the wide spectrum of disease symptoms, limitations in severity assessment tools, and the complex 
background impacting disease severity. In this doctoral thesis, I investigated how a wide range of genetic 
variants influence MS-related pathology in the brain using magnetic resonance imaging (MRI) and 
plasma levels of a biomarker for nerve damage called neurofilament light (NfL) in persons with MS. I 
also studied how NfL levels early in the disease course affected the rate of MS-related brain pathology 
using MRI and how these MRI measures affected the progression of the disease as measured by different 
clinical assessment scales. 

 

  



Abstract 
Multiple sclerosis is a chronic and progressive neuroinflammatory disease that leads to demyelination 
and neurodegeneration in the central nervous system (CNS). Previous research has identified a wide 
range of environmental, lifestyle and genetic factors which increase MS susceptibility. However, the 
pathomechanisms that influence the severity of MS are largely unknown, and adequate biomarkers of 
disease severity are consequently lacking. Therefore, the aim of my thesis was to; 1) assess associations 
between the nerve injury biomarker neurofilament light (NfL) and brain atrophy and lesion volumes; 2) 
assess which brain/lesion volume measures show the strongest longitudinal association with clinical MS 
disability measures and to what degree these associations were affected by age; and to 3) identify genetic 
variants associated with brain atrophy, lesion volumes and plasma NfL (pNfL) levels in persons with 
MS. 

In Study I, we assessed how cerebrospinal fluid (CSF) and pNfL levels were associated with T1- and 
T2-lesion volumes as well as whole-brain, cortical and subcortical grey matter, white matter and 
thalamic volume fractions of total intracranial volume based on magnetic resonance imaging (MRI). 
High baseline CSF and pNfL levels were associated with lower whole-brain, subcortical grey matter, 
thalamic, white matter and corpus callosal volume fractions over time. A further analysis showed that 
there was an association between baseline pNfL and baseline cortical grey matter fractions also in 
absence of radiological signs of inflammatory disease activity. A topographic analysis of cortical 
thickness showed that loss of cortical volume preferentially involved frontotemporal cortical regions. 
These findings indicate that NfL levels contribute information about MS severity not provided by 
traditional MRI lesion metrics. 

In Study II, we showed that associations between baseline MRI variables, and baseline physical 
disability and self-reported impact of MS rapidly increased in strength in individuals beyond 
approximately 40-50 years of age. In separate longitudinal analyses using linear mixed-effects models, 
we showed that among the recorded brain volume measures, cortical and subcortical grey matter and 
thalamic volume fractions at baseline were the strongest predictors of future worsening in clinical 
disability over a median of approximately ten years’ follow-up time. They were also stronger predictors 
than T1- and T2-lesion volumes. 

In Study III, we assessed if a weighted risk score comprising 12 known MS risk human leukocyte 
antigen (HLA) alleles was associated with baseline and longitudinal MRI measures as described in 
Studies I and II. While this risk score was not significantly associated with baseline MRI measures, we 
found that a high score was associated with lower cortical grey matter fractions longitudinally. A further 
analysis showed that this effect was primarily driven by the HLA-DRB1*15:01 allele. These results 
suggest that MS HLA risk variants not only affect inflammatory, but also neurodegenerative aspects of 
the disease. 

In Studies IV and V, we performed genome-wide association studies of pNfL levels and whole-brain 
volume fractions, respectively, in persons with MS (and controls in Study IV). While no genome-wide 
significant associations were found in Study IV, gene set analyses highlighted a neural crest and 
odontogenesis development pathway in the regulation of pNfL levels, and a weighted MS susceptibility 
polygenic risk score was associated with higher pNfL levels in MS with statistical significance. These 
findings suggest that there is some degree of genetic regulation of pNfL levels, which partially overlap 
with MS risk. In Study V, we identified a genome-wide significant locus upstream of the glycerol kinase 



 

 

2 (GK2) gene, previously implicated in the propensity for tobacco smoking, which is a known MS risk 
and severity factor. Gene set analyses in Study V also implicated Hypoxia Inducible Factor-1 (HIF1) in 
the regulation of whole-brain volume fractions, indicating that iron metabolism and response to hypoxia 
play a role in the neurodegenerative processes in MS.  
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1 Introduction 

1.1 Multiple sclerosis 
Multiple sclerosis (MS) is a heterogeneous chronic, inflammatory and demyelinating disease affecting 
the central nervous system (CNS)1. The disease onset is usually between 20 and 40 years of age, and 
females have a two-fold increased risk compared to males to develop MS2. Currently, there are 2.9 
million people in the world estimated to be living with MS, and among young adults in Europe and the 
United States, it is estimated to be the most common non-traumatic cause of neurological disability3-5. 
More than 22,000 people live with MS in Sweden where the incidence of the disease is approximately 
10/100,000 person-years and the prevalence is 215/100,000 inhabitants5, 6. MS can lead to impairment 
in motor, sensory, visual, bladder, sphincter and cognitive functions, largely depending on the location 
of the focal inflammatory lesions in the CNS7. These lesions can be located anywhere in the CNS, but 
typically in the periventricular, cortical/juxtacortical, infratentorial, or spinal regions of the brain8. In 
addition, MS leads to a substantially lower self-reported quality of life that deteriorates as the disease 
progresses9. Albeit the exact etiology of MS unknown, it is considered to be a multifactorial disease 
with environmental, lifestyle and genetic factors that interact with each other to confer risk of MS2. 

According to the diagnostic criteria for MS, the diagnosis is based on dissemination of typical symptoms 
and/or magnetic resonance imaging (MRI) lesions in space and time8. Cases without evidence of 
dissemination in both space and time are denoted as clinically isolated syndrome (CIS). As of the latest 
revision in 2017, the time criteria can be substituted with the presence of immunoglobulin gamma 
oligoclonal bands in the cerebrospinal fluid (CSF), as it is strongly linked with emergence of future CNS 
lesions8. In approximately 85 % of the cases, the disease follows an initial relapsing-remitting phase 
(relapsing-remitting MS, RRMS) characterized by a high degree of localized inflammation caused by 
peripheral autoreactive immune cells entering the CNS through the blood-brain barrier and the CSF 
(Fig. 1) 10, 11. The relapses can cause transient or permanent accrual of disability, commonly denoted as 
relapse-associated worsening (RAW). After 10-20 years, the initial relapsing-remitting phase is 
followed by a progressive phase (secondary progressive MS, SPMS) that is characterized by overall 
less inflammation and a higher degree of neurodegenerative processes1. This leads to a continuous and 
irreversible decline in neurological function, commonly referred to as progression independent of 
relapse activity (PIRA). The remaining 15 % of MS cases follow a progressive trajectory already from 
the onset of the disease, referred to as primary progressive MS (PPMS). However, the distinction 
between relapsing-remitting and progressive MS has been questioned in recent years as PIRA has been 
shown to be common also in relapsing-remitting MS, accounting for up 50% of sustained disability 
accrual12. This suggest that MS should rather be viewed as a continuum of disease processes and 
symptoms than clearly distinct phases. 

Increasingly potent disease-modifying treatments (DMTs) that mitigate the inflammatory activity in the 
CNS have been developed in recent decades13. These include drugs that induce immune tolerance (e.g. 
glatiramer acetate), modulators of inflammatory mediators (e.g. interferons), modulators of the immune 
response through intracellular mechanisms (e.g. teriflunomide and dimethyl fumarate) inhibitors of 
lymphocyte migration (e.g. natalizumab and fingolimod) and lymphocyte depleting therapies (e.g. 
cladribine, anti-CD20 and anti-CD52 antibodies). Autologous hematopoietic stem cell transplantation 
is an option for individuals with highly active relapsing MS who have not adequately responded to (or 
are not eligible for) highly potent DMTs. However, there is currently no definitive cure for the disease, 
and no effective treatment options for persons with a progressive disease phenotype1, 13. Due to the 
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heterogeneity between individuals regarding symptom presentation and disease progression, there is a 
need for sensitive and specific biomarkers to accurately diagnose the disease, and monitor and predict 
long-term clinical outcomes. 

 

Fig 1. The clinical course of multiple sclerosis. Abbreviations: CIS, clinically isolated syndrome; 
PPMS, primary progressive multiple sclerosis; RRMS, relapsing-remitting MS; SPMS, secondary 
progressive MS. Filippi, M., Bar-Or, A., Piehl, F. et al. Multiple sclerosis. Nat Rev Dis Primers 4, 43 
(2018). https://doi.org/10.1038/s41572-018-0041-4 

1.2 Pathophysiology of MS 
During the 20th century, two main pathophysiological hypotheses of MS based on neuropathological 
findings emerged. The tendency of lesions to accumulate in the periventricular region of the brain led 
researchers to hypothesize that the pathogenic factor of MS entered the CNS from the CSF14, 15. 
However, findings of perivenular lymphocyte infiltration indicated an origin from the blood circulation 
through the blood-brain barrier16. In recent years, it has been evident that these are two co-existing 
immunological disease mechanisms that have different relative importance during the course of the 
disease17, 18. Activated lymphocytes have been suggested to enter the CNS through the blood-CSF 
barrier of the choroid plexus, as well as through the endothelial blood-brain barrier by upregulating 
adhesion molecules that facilitate lymphocyte migration and barrier disruption13, 19, 20. The myelin-
reactive lymphocytes then cause focal demyelination identified as MS lesions on MRI and 
neuropathological examination, typically centred around veins in the white and grey matter21. The 
mechanisms by which lymphocytes become autoreactive in MS has remained elusive, although 
molecular mimicry between sequences of viral proteins – primarily from the Epstein-Barr Virus – and 
homologous sequences of CNS proteins in susceptible individuals have in recent years been proposed 
as one of the main mechanisms22. 
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MS has traditionally been regarded as a T-cell-related disease, involving both activated cytotoxic CD8+ 

and helper CD4+ T-cells1. More recently, CNS resident microglia, peripheral myeloid cells and 
particularly memory B-cells in peripheral lymphoid organs have also been implicated in the 
pathogenesis of the disease10, 23, 24. Memory B-cells have been reported to have a crucial role in the 
activation of brain-specific autoreactive CD4+ T-cells10. The importance of B-cells is also highlighted 
by the effectiveness of B-cells depleting therapies in substantially reducing clinical and radiological 
disease activity in the relapsing-remitting phase of the disease13.  

In the progressive disease phenotypes, the localized inflammatory activity of the adaptive immune 
system seen in relapsing-remitting MS has largely subsided due to age-related immunosenescence while 
the innate immune system is sustaining a more chronic and wide-spread inflammatory activity23. 
Activated microglia in normal-appearing white matter in the vicinity of lesions and slowly-expanding 
smouldering (chronic active) lesions with a rim of activated microglia have been suggested to be 
important drivers of progressive MS25, 26. Oxidative stress caused by myeloid cells, microglia and 
excessive accumulation of iron in the CNS has been shown to negatively impact the function of neuronal 
mitochondria, contributing to axonal degeneration23. These factors are compounded by ageing 
processes, including increased susceptibility to neuronal damage and decreased compensatory 
mechanisms, in particular remyelination and neuroplasticity25. 

1.3 What is a useful biomarker? 
A biomarker is commonly defined as a measurable objective indication of a biological state and is 
usually measured using body fluids, soft tissues, clinical assessment scales or imaging techniques. The 
usefulness of a biomarker is determined by four different parameters: reliability, accuracy, assessability 
and accessibility.27 Its measurement should be consistent under similar conditions (reliability) and give 
predictions with high sensitivity and specificity (accuracy) while also being affordable and logistically 
feasible (assessability). It should also be as non-invasive as possible (accessibility) to reduce the health 
risks for the individual being assessed. It is common to categorize biomarkers depending on the purpose 
of their use, and these include susceptibility, diagnostic, monitoring, predictive and prognostic 
biomarkers.27 Some examples of both clinically established and more experimental biomarkers in each 
category are outlined in Table 1. It is important to note that no currently known susceptibility biomarkers 
have sufficient accuracy to be used for screening for MS in the general population. The current state of 
research regarding biomarkers for MS will be discussed in the coming sections of this work, mainly 
focusing on genetic, CSF and plasma protein as well as various MRI volumetric biomarkers of MS 
susceptibility and prognosis/severity. 
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Table 1. Types of biomarkers for MS 

Type of biomarker  Example  Clinical use in Sweden 

Susceptibility HLA-DRB1*15:01 allele (increases MS risk 
with OR ~3.9)28 

No 

High body-mass index29 No 

Low serum levels of vitamin D30 No 

Diagnostic CSF Oligoclonal bands and kappa free light 
chain index (confirm dissemination in time)8 

Yes 

Number of T2-lesions and contrast-enhancing 
T1-lesions on MRI (confirm dissemination in 
space and time)8 

Yes 

Monitoring Neurofilament light in CSF and plasma (effect 
of disease-modifying treatments and 
confirmation of clinical relapses)31 

Yes, in CSF 

Number of new T2-lesions and presence of 
contrast-enhancing T1-lesions on MRI (effect 
of disease-modifying treatments and 
confirmation of clinical relapses)32, 33 

Yes 

Predictive JC virus antibody levels  
(risk of progressive multifocal 
leukoencephalopathy upon treatment with 
natalizumab)34 

Yes 

Prognostic Age at onset, male sex, EDSS score, relapse 
rate and T2 lesion load on MRI at diagnosis 
(time to secondary progressive MS)35 

Yes 

SNP rs10191329A (reducing the time to 
require a walking aid)36 

No 

Abbreviations: CSF, cerebrospinal fluid; EDSS, expanded disability status scale; HLA, human 
leucocyte antigen; JC, John Cunningham; MRI, magnetic resonance imaging; OR, odds ratio; SNP, 
single nucleotide polymorphism. 
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1.4 Clinical outcome measures 
In clinical practice, the severity of MS is monitored over time with clinical scores based on objective 
neurological assessments or self-reported information, the number of inflammatory lesions on MRI of 
the brain and spinal cord, and more recently, CSF biomarkers of inflammation and neurodegeneration37. 
These assessments have become vital to select the appropriate type and timing of DMTs, given that a 
delay in treatment might cause further neurological disability13.  

Validated and widely used clinical measures of disease severity include the Expanded Disability Status 
Scale (EDSS), the Symbol Digit Modalities Test (SDMT) and the MS Impact Scale 29 (MSIS-29)38-40. 
The EDSS is the standard measure of physical disability. It is based on physical neurological 
examination of eight different functional systems of the CNS (e.g. motor, sensory, and cerebellar 
function) resulting in a score that ranges from 0 (no disability) to 10 (death). The SDMT is a test of 
information processing speed by measuring the number of symbols the person can pair with the right 
number using a key within 90 seconds. Each correct answer renders one point (range 0-110), and a high 
score thus indicates a high information processing speed. The MSIS-29 which is based on a self-report 
survey, includes 29 questions covering the psychological and physical impact of MS, and the results are 
converted into a score (range 0 – 100). A higher score indicates a more negative self-perceived impact 
of the disease. 

1.5 Imaging and body fluid biomarkers for MS 
MRI is currently the most pivotal method to objectively measure inflammatory activity and tissue 
damage in the CNS in persons with MS. It is a non-invasive imaging method that uses strong magnetic 
fields to align the rotational/spin axis of protons in the water of the tissues followed by pulses of radio 
waves to excite the protons changing their rotational axis. Antennas are then used to detect the 
radiofrequencies released from the protons as they return to equilibrium. The chemical composition of 
the tissues determines the amount of energy that is released and the time it takes for the protons to return 
to their equilibrium state, and this information is used to construct 2D or 3D images of the tissues. A 
major advantage over other imaging techniques such as computer tomography is that no ionizing 
radiation is used. While being relatively expensive and time-consuming, MRI does not confer any health 
hazards to the examined individual if safety procedures are followed correctly, and it can visualize MS-
related pathology with high resolution and sensitivity.  

The number and location of gadolinium-enhancing white matter lesions in the brain visualized on T1-
weighted sequences and hyperintense white matter lesions visualized on T2-weighted sequences are 
standard markers for establishing diagnosis and measuring disease progression and treatment response 
in trials as well as the clinical setting32, 33, 41. T2- and contrast-enhancing T1-lesions reflect focal tissue 
oedema and axonal demyelination. The latter representing more recently developed lesions – usually 
within two months – hence capturing ongoing MS-related inflammation33. On the other hand, T1-
hypointense lesions captured on native (without contrast) MRI sequences reflect the lipid and protein 
content of the tissue, and hence a permanent focal loss of white matter42. As a result, T1-lesions are 
more stable over time regarding their size than T2- and contrast-enhanced T1-lesions. Although not 
typically reported in clinical routine, T1-lesions have in clinical studies shown stronger correlations than 
T2-lesions with permanent physical disability in MS42. In older literature, T1-lesions were often referred 
to as “black holes” but this term is seldomly used today since this refers to the fact that only some lesions 
were detectable on 2D spin echo T1-weighted imaging. With modern MRI protocols, where T1-
weighted imaging is often performed with 3D gradient-recall echo sequences, all lesions detectable on 
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T2-weighted imaging are also typically delineated on T1-weighted imaging, reducing the usefulness of 
the term.  

While both the T1- and T2-lesion numbers are robust measures of white matter tissue damage in MS, 
they do not adequately measure the total lesion burden, since they do not account for the volumes of the 
individual lesions or their clinical impact based on location43. On the other hand, the total lesion volume 
is a metric that more exactly measures the lesion burden44. The lesion volume has, therefore, gained 
widespread use as an alternative or complementing outcome measure to total lesion number in MS 
studies. It should be noted that harmonization of MRI acquisition and processing protocols is of 
importance to reduce variability and increase comparability between study cohorts, albeit powerful 
statistical methods exist to account for such potential discrepancies45, 46. 

Traditionally, oligoclonal bands in the CSF have been the main routinely used MS body fluid biomarker 
in a clinical setting. However, it has only been shown to be informative in regards to establishing an MS 
diagnosis, while its correlation with clinical severity and progression has been notably weaker8, 47. A 
more recent alternative to oligoclonal bands is the CSF kappa free light chain index, which has a similar 
diagnostic accuracy while being less time- and labor-consuming and not relying on subjective 
interpretation.48 On the other hand, the Neurofilament Light (NfL) chain protein has gained interest as 
the potentially most clinically useful body fluid biomarker of MS severity and treatment response31. 
NfL is a subunit of the neurofilament, a pivotal structural protein of the neuronal axon. It is released 
into the CSF upon neuronal death, and has received recognition as a clinically useful marker of 
neurodegeneration in MS and other neurodegenerative conditions such as Alzheimer´s disease31. NfL 
concentrations can be measured in the CSF with traditional Enzyme-Linked Immunosorbent Assay 
(ELISA). Recently, single molecule array (Simoa) digital ELISA has been a further development 
allowing for high-throughput analysis of proteins with concentrations at the sub-femtomolar level 
(<10−15 M), including NfL in serum (sNfL) and plasma (pNfL), while conventional ELISA has a lower 
detection level at the picomolar level (10−12)49. It has been shown that CSF levels of NfL strongly 
correlate with s- and pNfL, providing a possibility for a simplified and safer measurement by a blood 
sample instead of spinal tap, although large body mass index (BMI)/blood volume have diluting effects 
on serum and plasma levels which needs to be adjusted for50-52. Studies have also shown that NfL levels 
in both CSF and plasma are reduced upon use of DMTs, with the most pronounced reduction for highly 
potent treatments including fingolimod, natalizumab, rituximab and alemtuzumab50, 53-57. Furthermore, 
s- and pNfL levels have been reported to associate with present and future brain and spinal cord atrophy 
and lesion accumulation, as well as relapses and permanent physical disability independently of other 
clinical or imaging variables31, 58-60. Additional studies in large cohorts are warranted to elucidate 
whether NfL can predict more long-term disability in MS, measured not only with clinical scales but 
also potentially more sensitive MRI outcomes, including brain atrophy metrics. The relationship 
between NfL levels and atrophy of different regions of the brain – such as white matter, cortical and 
subcortical grey matter – especially in the absence of lesion activity, also requires further investigation. 

1.6 Brain atrophy – a more sensitive severity marker 
It is evident that the clinical, imaging and body fluid markers outlined in this work do not account for 
the full extent of neurodegeneration and inflammation in MS. T2- and particularly T1-lesion count and 
volumes have in previous studies been reported to associate with progression of physical disability42, 61, 

62. However, clinical progression can occur in the absence of new lesions or elevation of body fluid 
biomarkers63. Therefore, additional objective and robust measures of disease severity are warranted. As 
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a supplement to these existing disease measures, brain atrophy has been proposed to be a more sensitive 
measure of both physical disability and cognitive decline in persons with MS, potentially capturing MS-
related neurodegeneration not evident by lesion volume/number or levels of body fluid biomarkers64-69. 
Its potential to predict future worsening of clinical symptoms, including the EDSS, has also been 
highlighted70.  

1.6.1 Brain and lesion segmentation methods 

There are several available software packages for MRI-based automatic segmentation of regional and 
whole-brain and lesion volumes. Automated methods are user-independent, do not require raters with 
in-depth knowledge of neuroanatomy and are less time-consuming than manual approaches. These 
automated segmentation tools can incorporate different methods to classify the brain voxels to the 
correct tissue, mainly using signal intensity information from the images and/or a priori information 
from brain tissue probability maps that are based on a large collection of brain images that have been 
registered to a common space71. There are also other common features such as correction for signal 
intensity nonuniformity in the images, which is an important source of bias in the intensity-based tissue 
classification.  

Structural Image Evaluation with Normalisation of Atrophy Cross-sectional (SIENAX), FreeSurfer and 
Statistical Parametric Mapping (SPM) are examples of widely used publicly available automated 
segmentation-based softwares for estimation of brain volumes using 3D T1-weighted images. SIENAX 
performs skull stripping after registration to a brain template and subsequently segmentation based on 
signal intensity.72 FreeSurfer is a tool that uses a more complex pipeline that performs a combination of 
brain surface- and volumetric segmentations using within-subject templates that are unbiased regarding 
the time point of the scan, thereby increasing the robustness of the segmentations and reducing inter-
individual variability.73 SPM performs the image processing steps in a unified model that includes non-
linear registration of the image onto a template and estimates voxel-wise tissue probabilities74. 
FreeSurfer has options for volumetric analysis of longitudinal MRI data, while SIENA is the 
corresponding longitudinal analysis software for SIENAX. 

The advantages of SIENAX and SPM are their relatively short computational times and that these tools 
are widely used and validated, while a major limitation is that the segmentations are affected by the 
presence of MS lesions in the brain, although this can be overcome by using lesion filling techniques75. 
FreeSurfer is also widely used and validated, and it has been shown to give more robust estimates than 
SIENA(X) and SPM, even without lesion filling techniques since it already accounts for white matter 
hypointensities75. A major downside of FreeSurfer is that it uses a more computationally expensive 
algorithm than the other tools. Furthermore, none of these four tools are yet certified for clinical use. It 
is recommended to normalize the segmented brain volumes by dividing it with the total intracranial 
volume when using FreeSurfer and SPM, but this is not necessary for SIENA(X) since it already 
includes normalization for head size from the template registration process72. Albeit this normalization 
produces more robust estimates, especially if different scanners models and field strengths are used, it 
is still recommended to adjust any statistical analysis for the scanner model75. A graphical representation 
of the volumetric output of the FreeSurfer, SIENAX and SPM is shown in Fig. 2. 

For segmentation of T2-hyperintense lesions, the Lesion Prediction Algorithm of the SPM Lesion 
Segmentation Tool (LST) and nicMSlesions are examples of robust commonly used publicly available 
softwares.76-79 The LPA uses the model fit parameters from a high-dimensional logistic regression model 
from a training dataset from persons with MS to segment lesions in new images. The advantages of the 
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LPA are that it only requires T2-weighted fluid-attenuated inversion recovery (FLAIR) images as input 
and no parameters are required to be specified by the user, while a limitation is that the image acquisition 
parameters need to be somewhat standardized to obtain reliable results. nicMSlesions require FLAIR 
and T1-weighted images and uses a supervised deep learning method with two 3D convoluted neural 
networks. While this method was shown to be highly accurate, it has to be trained for each tested dataset, 
which may require more time and expertise than other methods such as LST.77  

Major limitations of most of the available brain and lesion segmentation tools are the lack of clinical 
validation studies as well as the need for standardization of image acquisition (i.e., using the same pulse 
sequence, MRI system and acquisition parameters), although work is ongoing to develop tools that are 
less reliant on technical standardization.69, 78 

 

 

Fig 2. Volumetric brain volume segmentation of a person with MS using different segmentation 
softwares. Only FreeSurfer performs segmentation of white matter hypointensities (at the orange 
arrows) and incorporates these in the total brain volume, while FSL-SIENAX and SPM segment these 
hypointensities as cerebrospinal fluid and/or grey matter. Green colour: grey matter. Blue colour: white 
matter. Black/red colour; cerebrospinal fluid; Yellow colour: white matter hypointesities. 
Segmentations by the SPM-CAT software were cropped out from the original figure. Guo C et 
al. Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric 
measurements and the effect of lesion filling in multiple sclerosis. Eur Radiol 29, 1355–1364 (2019). 
https://doi.org/10.1007/s00330-018-5710-x. Creative Commons CC BY 
(http://creativecommons.org/licenses/by/4.0/) 

https://doi.org/10.1007/s00330-018-5710-x
http://creativecommons.org/licenses/by/4.0/
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1.6.2 Associations with clinical outcomes 

Neurodegeneration and subsequent loss of brain volume is part of normal aging, but it is well established 
that there is a faster decline in brain volume in persons with MS than in healthy controls80. Furthermore, 
grey matter – in particular subcortical – atrophy measured with MRI has been shown to correlate with 
physical disability measured with the EDSS to a higher degree than lesion volume or other regions of 
the brain64, 70, 81, 82. Certain cortical regions, such as the insula and sensorimotor cortex, appear to be 
particularly associated with the EDSS as shown in one cross-sectional study81. The SDMT and other 
measures of cognitive function have likewise been shown to correlate with brain atrophy83, 84. The 
literature indicates that particularly strong associations exist between cognitive function and the cortical 
and subcortical grey matter regions – including the thalamic volume – compared with other segments 
or lesion volumes, albeit studies specifically focusing on the SDMT or other measures of information 
processing speed are relatively few67, 85-87. The importance of assessing the affected individual’s 
subjective experience of the impact of the disease has also been highlighted in recent years. Indeed, the 
MSIS-29 has in a few studies been reported to correlate with objective disability metrics such as the 
EDSS, but its relationship with atrophy and lesion measures remains to be studied40, 88, 89.  

Large-scale, and in-depth longitudinal studies of the relationship of lesion and particularly regional 
atrophy metrics with physical and especially cognitive and self-reported disease severity are still 
lacking. Such studies are warranted in order for brain atrophy metrics to be adopted as informative and 
robust routine outcome measures in clinical practice in the future, although the complexity in processing 
and interpretation of the MRI images currently makes clinical implementation challenging33. Atrophy 
measures have the potential to add important information regarding, for instance, treatment response 
and sub-classification of the clinical trajectory of the disease.  

1.7 Environmental and lifestyle factors for MS risk and severity 
Several environmental and lifestyle factors have been reported to affect the risk of being diagnosed with 
MS. These include low serum levels of vitamin D, active and passive smoking, combustion-related air 
pollution, exposure to organic solvents, high BMI, shift work, sleep deprivation, head trauma, and 
Epstein Barr Virus, Human Herpes Virus 6, measles and influenza virus infections2, 90-93. The increased 
risk of MS conferred by high BMI, sleep deprivation and shift work has been reported to be age-
dependent, reaching its peak during adolescence2, 90, 91. A correlation between high latitude and increased 
MS risk has also been observed, and it has been suggested that this association is mediated via vitamin 
D levels or directly via exposure to ultraviolet radiation94. Interestingly, low sun exposure statistically 
interacts with high levels of antibodies against Epstein-Barr nuclear antigen 1 (EBNA-1), suggesting 
that low sun exposure to some extent modulates – potentially via low vitamin D levels – the effect of 
EBV infection on MS risk through common pathogenic mechanisms.95 Furthermore, most of these 
environmental and lifestyle factors have been shown to statistically interact with the HLA-DRB1*15:01 
and HLA-A*02:01 alleles, stressing the importance of a comprehensive view of environmental, lifestyle 
and genetic factors in regards to MS risk (Fig. 3)2. While the associations between various 
environmental/lifestyle factors and MS risk have been extensively studied, the relationship between 
these factors and severity of MS is less established. However, some studies have shown that tobacco 
smoking is linked to brain atrophy and disability progression as measured with the hazard of reaching 
EDSS milestones96, 97. High BMI has likewise been reported to associate with disability progression in 
MS98. 
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Fig. 3. Genetic, environmental and lifestyle factors affecting multiple sclerosis risk 

1.8 MS genetics 

1.8.1 Genome-Wide Association Studies 

Over the past two decades, genome-wide association studies (GWAS) have shown to be a useful method 
to elucidate the influence of genetic variants across the whole genome on complex, multifactorial 
diseases such as MS99. Importantly, these studies may facilitate the understanding of the causal 
pathways of the disease, and provide new potential treatment targets and biomarkers. Knowledge of 
associated genetic variants may also facilitate personalized medicine by improving therapeutic choices 
and risk prediction on the individual level99. The GWAS methodology include the extraction of DNA 
from blood samples from the individuals, followed by genotyping of hundreds of thousands of single 
nucleotide polymorphisms (SNPs) using high-throughput genotyping arrays. Mostly common genetic 
variants – with minor allele frequencies (MAF) typically > 1 % – are selected for genotyping, as more 
rare variants require very large sample sizes to gain enough statistical power for genome-wide analyses. 
Thereafter, quality control is performed which typically includes removing SNPs with low minor allele 
frequency, low genotyping success rate and deviation from Hardy-Weinberg equilibrium; as well as 
filtering out study subjects with low genotyping success rate, mismatch between genetic and reported 
sex, high inbreeding coefficients, high degree of relatedness with other study subjects, or who are of a 
different ethnic origin than for the majority in the study population (i.e. outliers in the genetic population 
cluster calculated by, for instance, principal component analysis)100. After the quality control, 
imputation of additional genotypes can be performed as an optional step. SNPs that have not been 
genotyped in the study population, are statistically inferred (imputed) using the linkage disequilibrium 
(LD) structure in a reference population with a similar ethnic origin, which has been sequenced101. The 
result is a higher SNP density in the study population, which allows for association analyses with a 
higher resolution, hence increasing the probability of pinpointing causal variants. 
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Table 2. Common terminology in genetic epidemiology 

Co‐heritability A measure of the overlap in genetic regulation of certain traits, i.e. the 
proportion of covariance between traits that is explained by genetics. 

Hardy-Weinberg 
equilibrium/law 

This law states that the allele and genotype frequencies will remain 
constant over generations assuming an infinitely large population and 
in the absence of mutation, migration, natural selection or genetic 
drift. Under this law, the genotype frequencies are a function of the 
allele frequencies at each locus. If the observed genotype frequencies 
in a population deviate greatly from the predicted frequencies, there is 
a high probability that the deviation is due to genotyping errors. 

Heritability The proportion of the total phenotypic variance that is explained by 
genetics. 

Linkage disequilibrium 
(LD) 

The estimated non-random correlation between genetic variants at 
different loci due to close positional proximity and co-inheritance 
within a chromosome. A higher the LD indicates a stronger 
correlation between variants than expected during random assortment. 

LD pruning A method to filter for SNPs that are uncorrelated within a sliding 
window of SNPs across the genome. 

Minor allele frequency 
(MAF) 

The frequency of the least common allele at a specific genomic 
location in a given population. 

Population stratification/ 
substructure 

Persons with different ethnic origins forming multiple subpopulations 
within a cohort. Allele frequencies can be different between 
subpopulations, thus potentially confounding genetic association 
analyses. 

Principal component 
analysis 

A statistical technique to reduce the dimensionality/complexity of 
data while preserving as much information as possible. It is a 
commonly used method to visualize and correct for population 
substructure in genetic association studies. 

Single nucleotide 
polymorphism (SNP) 

A variation of a single nucleotide, including A, C, G or T, at a certain 
genomic location. There are usually two different alleles for each 
SNP, e.g. an individual could have either C or T at a certain location. 
A pair of alleles, one from each chromosome, make up a genotype, 
e.g. C/C, C/T or TT. 
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Imputation also increases the overlap of SNPs in cohorts genotyped on different arrays, enabling meta-
analysis of different cohorts. A schematic overview of the genotyping, quality control and imputation 
process is shown in Fig. 4. Finally, an association analysis is performed between the imputed genotypes 
and the phenotype of interest, while correcting for potential confounders. It is a requirement to correct 
for population substructure, by including, for instance, principal component vectors as covariates in the 
analysis100. Due to the high number of statistical tests in GWAS, it is necessary to perform conservative 
correction for multiple testing. It is now common practice to use Bonferroni correction for one million 
comparisons, corresponding to the number of independently inherited genetic “blocks” of the human 
genome102. Hence, the threshold for genome-wide significance is usually set to p < 5 x 10-8. 

 

 

Fig. 4. A flow chart with an example of the genotyping, quality control and imputation procedure for 
GWAS. Abbreviations: GWAS, genome-wide association study, LD, linkage disequilibrium, PCA, 
principal component analysis, SNP, single nucleotide polymorphism. 
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1.8.2 The genetics of MS risk 

The total heritability for MS has in a Swedish twin study been estimated to be 64 %, and an individual 
with a sibling or parent with MS is 6 times and 7 times, respectively, more likely to develop the disease 
compared with the general population103. A large number of genetic variants across the genome have in 
recent years been reported to affect MS risk. A recent GWAS by the International Multiple Sclerosis 
Genetics Consortium (IMSGC) showed that 232 genetic variants are independently associated with MS 
susceptibility with genome-wide significance24. These variants include ~30 human leukocyte antigen 
(HLA) alleles and ~200 non-HLA SNPs, including one variant on the X chromosome. The HLA alleles 
account for approximately 20 % of the estimated heritability of MS, while the non-HLA SNPs account 
for another 18 %. The primary MS risk variant is the HLA-DRB1*15:01 allele with an odds ratio (OR) 
of ~3.9, while the main protective variant, HLA-A*02:01 has an OR of ~0.7 (Fig. 5)28. In contrast, most 
non-HLA SNPs have a more modest OR of approximately 1.1-1.2. Albeit the exact mechanisms by 
which these genetic variants affect MS susceptibility are largely unknown, bioinformatical functional 
analyses of these GWAS hits have pointed to the involvement of peripheral T-, B- and myeloid cells as 
well as resident microglia in the CNS104. These results are corroborated by previous animal and in vitro 
studies suggesting that MS primarily is an immune-mediated disease, implicating both the innate and 
adaptive immune system10, 23.  

 

 

Fig. 5. The HLA region on the short arm of chromosome 6. A total of 12 class I and II HLA variants 
are shown with their respective odds ratios for MS risk as estimated in Moutsianas L et al. Class II HLA 
interactions modulate genetic risk for multiple sclerosis. Nat Genet. 2015; 47: 1107-13. Abbreviations: 
HLA, human leucocyte antigen; LTA, lymphotoxin alpha; MS, multiple sclerosis; OR, odds ratio. 

1.8.3 The genetics of MS severity 

In contrast to MS susceptibility, the potential genetic factors contributing to the severity and progression 
of the disease are still largely unknown. One recent large-scale severity GWAS included a discovery 
cohort of 12,584 persons with MS with a replication cohort of 9,805 individuals36. In this study, the 
SNP rs10191329 in the DYSF-ZNF638 gene was significantly associated with increased age-related 
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MS severity (ARMSS) scores, which is a ranked EDSS score within age-strata of persons with MS, and 
a median of 3.7 years of shorter time to require a walking aid.105 A heritability enrichment analysis of 
the GWAS summary statistics showed enrichment in CNS tissues. Further assessment of the significant 
hit using Mendelian randomization and a real-world MS cohort showed associations with educational 
attainment. Taken together, these results suggest that genetically determined neurocognitive reserve 
plays a role for the clinical severity of MS. Another GWAS with discovery and replication cohorts of 
506 and 485 persons with relapsing-onset MS, respectively, showed that the SNP rs11871306 within 
the WNT9B gene was significantly associated with a relapse hazard of 2.15106. A further gene set 
analysis showed an association between relapse hazard and a biological pathway related to response to 
vitamin D. However, to the best of our knowledge, no GWAS of CSF or pNfL levels, lesion 
number/volume or brain atrophy with a sufficient sample size to attain genome-wide significant results 
has yet been reported. 

One study including 127 individuals having a first demyelinating event showed that 7 previously 
reported non-HLA MS risk SNPs were associated with longitudinal EDSS progression107. In one GWAS 
of cortical thickness including 675 MS cases, a gene set enrichment analysis with a protein interaction 
network was subsequently performed using sub-significant SNPs from the GWAS108. It showed 
enrichment for neural development, glutamate signaling and intracellular calcium regulation. These 
results could provide insights into the pathophysiological mechanisms of cortical thinning in MS, 
although no controls were used to differentiate the findings from other conditions or the normal aging 
process. In another GWAS of T1-lesion topology including 284 persons with MS, a similar protein 
interaction network analysis was performed, showing associations with proteins related to neural 
development and immune cell function109. The known MS risk variants/genes rs669607, CYP27B1, 
IL12B, NFKB1, BATF, EVI5, PLEK, TAGAP and IL7 were in a cohort of 141 persons with MS reported 
to be associated with cervical atrophy110. Furthermore, the MS risk variant rs17066096 which encodes 
IL-22 binding protein (IL-22BP) was in a cohort of 84 persons with MS linked to higher CSF levels of 
IL-22111. High IL-22 levels were in turn associated with high MRI lesion numbers, but not with EDSS 
scores. Presence of the HLA-DRB1*15:01 allele has in some studies been linked to a higher incidence 
of female than male MS cases, an earlier age at onset of MS, and a more beneficial effect of glatiramer 
acetate, a platform DMT for MS112-116. Small cross-sectional studies have also shown that the HLA-
DRB1*15:01 allele is associated with low whole-brain volumes measured with MRI in progressive and 
relapsing-remitting MS117-119. However, other studies of similar size have not shown any significant 
associations between the HLA-DRB1*15:01 allele and whole-brain or T2-lesion volumes96, 120. One 
study assessed a genetic risk score comprising known MS risk HLA variants, and found it to be 
associated with low cross-sectional subcortical grey matter volumes in the relapsing-onset female sub-
group comprising 439 individuals.121 Another study showed that a combined HLA and non-HLA risk 
score was associated with thalamic atrophy in 467 persons with MS and that this association was 
replicated in a cohort of 132 MS cases.122 Genetic risk scores leverage the combined effect of many 
genetic variants with individually modest effects, thus rendering more statistical power to the 
analysis113. Presence of the HLA-B*44:01 allele, which previously has been linked to a reduced risk of 
MS, was shown to be associated with higher cross-sectional brain volumes, indicating a potentially 
protective effect regarding MS-related neurodegeneration123. However, these reports on HLA 
associations have not been consistent across studies, possibly due to differences in study design, the 
small sample sizes and the modest effect sizes that have been observed. Furthermore, large-scale 
longitudinal studies with adequate follow-up time addressing the genetic impact, including genetic risk 
scores, on brain atrophy in MS are currently lacking.  
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2 Research aims 
In this doctoral thesis, I investigated large MS cohorts with a deep level of genetic, clinical, imaging 
and body fluid biomarker data. The overall aim was to identify factors that associate with the severity 
of MS in order to improve the understanding of the pathomechanisms of the disease. This knowledge 
may guide future research regarding more individualized disease prognostication, treatment selection 
and identification of new therapy targets. 

Specifically, the aims of this research project were: 

In Study I, to investigate whether baseline CSF and pNfL levels are associated with cross-sectional and 
longitudinal MRI-based brain and lesion volumes in persons with MS; to determine whether NfL levels 
are differentially associated between these MRI measures; and whether there were any associations 
between NfL and brain volumes in the absence of radiological signs of disease activity. 

In Study II, to assess which MRI-based brain volume and brain lesion volume metric are most strongly 
associated with longitudinal physical disability, cognitive processing speed and self-reported impact of 
MS, respectively. I also aimed to investigate whether the strength of the cross-sectional associations 
between clinical and MRI measures differ with age. 

In Study III, to identify HLA gene variants that are associated with cross-sectional and longitudinal 
MRI-based brain and lesion volumes in persons with MS.  

In Study IV, to identify genetic variants and associated biological pathways affecting cross-sectional 
pNfL levels in persons with MS and whether these associations differ from healthy controls. 

In Study V, to identify genetic variants and associated biological pathways affecting baseline whole-
brain volume fractions in persons with MS. 
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3 Materials and methods 

3.1 Study cohorts 
I used the following real-world cohorts for the studies presented in this thesis: the Genes and 
Environment in MS (GEMS), Epidemiological Investigation of MS (EIMS), Immunomodulation and 
MS Epidemiology (IMSE) and Stockholm Prospective Assessment of MS (STOP-MS).124-127 STOP-
MS is a prospective cohort with ongoing recruitment since 2001 for which the aim is to assess how the 
timing of DMTs affects long-term disability in persons with MS. EIMS is an incidence-based cohort 
that includes persons with MS with ongoing recruitment since 2005 from neurological clinics across 
Sweden. GEMS is a cohort that included prevalent persons with MS recruited 2009-2010 identified 
through the Swedish national MS registry. IMSE 1 and 2 are post-marketing studies of DMTs for 
persons with MS. Study I-III and V comprised individuals from all four cohorts, predominantly the 
STOP-MS cohort, while Study IV comprised individuals from the EIMS and IMSE cohorts with partial 
overlap with the STOPMS and GEMS cohorts. Population-based controls from the EIMS study for 
Study IV were retrieved from the national population register and matched by age with five-year 
intervals, residential area and sex. MRI and clinical data including EDSS, MSIS-29 and SDMT scores 
were obtained on an approximately annual basis for all cohorts. Measurement of the clinical scores is 
ongoing while MRI data collection used for the current studies was collected up until 2015 (after which 
technical changes were made to the MRI scanners and protocols). 

3.2 Genotyping and imputation 

3.2.1 Study III 

In Study III, the study participants were genotyped on the MS replication Chip, which is a customized 
Illumina SNP genotyping chip that has a dense coverage in the HLA region. The variant quality control 
included the exclusion of SNPs with: missingness rate >= 0.1; deviation from Hardy-Weinberg 
equilibrium at p < 0.0001; and minor allele frequency < 0.02. The sample quality control included 
exclusion of individuals with: SNP missingness rate >= 0.02; mismatch between genetic and reported 
sex; inbreeding coefficient deviating >= 3 standard from the mean. After quality control, the SNP data 
was used to perform imputation of HLA alleles with four-digit resolution using the HLA*IMP:02 
software.128, 129 An extended reference panel for HLA class II alleles was used that included 400 Swedish 
control subjects from the EIMS study.130 After imputation, individuals related at the second degree or 
closer were removed. Principal component analysis was applied to account for population substructure. 
Specifically, samples that were > 6 standard deviations from the mean in any of the first 11 principal 
components were excluded. The first 11 principal components were also included as covariates in the 
statistical analyses to account for any remaining population substructure. None of the 12 established 
MS risk HLA alleles that were included in the study deviated significantly (p < 0.0001) from Hardy-
Weinberg equilibrium28. 

3.2.2 Studies IV and V 

In studies IV and V, the study participants were genotyped on the Infinium Human Omni Express Bead 
Chip (OE) and the Infinium Global Screening Array-24 (GSA) by deCode Genetics Inc (Iceland) 
following DNA extraction from blood samples. Genotype quality control, imputation and post-
imputation quality control were performed as described in the multi-center MS severity GWAS by 
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Baranzini et al.131 This is summarized in the following sub-sections about cohort-level quality control 
and stratum-level (all cohorts on the same genotyping arrays combined) quality control, respectively. 

3.2.2.1 Cohort-level quality control 

Indels as well as mitochondrial variants were excluded. Individuals with genotype missingness > 0.05 
and/or a mismatch between genetic and reported sex were removed. To avoid the effects of population 
stratification, variant quality control was performed in individuals from the largest ancestral group 
derived from each cohort. In order to identify this ancestral group, high-confidence autosomal variants 
were selected using the following filtering criteria: genotype missingness < 0.01; MAF > 0.05; Hardy 
Weinberg equilibrium p > 10-10; excluding palindromic variants (AT/CG); LD-pruning (PLINK2 --
indep-pairwise 1000 kb 1 0.01); removing genomic regions with large principal component loadings; 
only keeping markers present in 1000 Genomes phase 3 reference panel. These high-confidence variants 
were used to perform PCA on 2,534 individuals from the 1000 Genomes phase 3 reference panel that 
were unrelated to each other (PLINK2 --king-cutoff 0.1). Samples from our cohorts were projected onto 
that space and clustering was then performed on the principal components. For samples that fell into the 
largest ancestral group, which overlapped with the 1000 Genomes European population,  variants were 
filtered according to the following criteria: genotype missingness < 0.02 (< 0.05 in the replication sub-
cohort in Baranzini et al); Hardy Weinberg equilibrium p > 10-10 (> 10-6 for controls in the replication 
sub-cohort); MAF > 0.01; absolute difference in allele frequency < 0.1 and log2 fold-change < 5 
between cohorts in the discovery sub-cohort; difference in missingness between cases and controls with 
p > 10-4 in the replication sub-cohort. For the individual quality control, persons with an inbreeding 
coefficient > 0.05 were removed. PLINK2 --king-cutoff 0.0442 was used to remove individuals who 
were related at the third degree or closer. Finally, cohorts that were genotyped on the same genotyping 
array were merged together. 

3.2.2.2 Stratum-level quality control 

Sample quality control was performed on each stratum comprising all cohorts that have been genotyped 
on the same genotyping array. Duplicates across cohorts and related individuals were removed using 
the same approach as in the cohort-level quality control. To account for population stratification, PCA 
was used to remove samples that were > 6 standard deviations from the mean of each stratum on any of 
the first 10 principal components using 5 iterations. Then, principal components were calculated for the 
entire 1000 Genomes phase 3 reference cohort, onto which our participants were projected. Samples 
that were > 6 standard deviations from the mean of the 1000 Genomes European population on any of 
the first 10 principal components were excluded. Further variant filter criteria were then applied: 
genotype missingness < 0.05; deviation from Hardy Weinberg equilibrium p > 10-10; < 0.4 or > 0.6 
alternate allele frequency for palindromic variants; absolute difference in alternate allele frequency < 
0.2 relative to individuals of European ancestry in the Haplotype Reference Consortium panel (version 
1.1). 

3.2.2.3 Phasing and imputation 

Eagle2 (version 2.4.1) was used to perform phasing in 20 Mb segments with 5 Mb overlapping flanking 
regions132. To increase the imputation accuracy, each strata was merged with the Haplotype Reference 
Consortium. Minimac4 was then used to perform imputation on the phased genotypes.133 Several 
different analyses were performed to examine imputation quality, chromosome continuity, differences 
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in allele frequency relative to the reference panel. Finally, imputed variants with MAF < 0.01, deviation 
from Hardy Weinberg equilibrium at p > 10-6 or R2 < 0.8 were excluded. 

3.3 Body fluid biomarker measurement 
For Study I, CSF samples were collected during routine neurological diagnostic work-up, centrifuged 
immediately thereafter and then stored at −80°C before analysis. Measurement of NfL levels was 
performed with a commercially available ELISA kit according to the manufacturer’s instructions (Uman 
Diagnostics, Umeå, Sweden).  

For Studies I and IV, ethylenediaminetetraacetic acid (EDTA)-treated blood samples were posted by 
mail at room temperature before plasma separation by centrifugation and then stored at −80°C before 
analysis. pNfL concentrations were measured at the University Hospital Basel using the Simoa 
immunoassay with the commercially available NF-Light Advantage kit with antibodies from Uman 
Diagnostics (Quanterix, Lexington, MA) according to the manufacturer's instructions. Both storage and 
measurement were done on pseudonymized samples and in the same way for cases and controls. The 
samples were analyzed in two batches, each of which comprised both EIMS and IMSE participants as 
well as cases and controls. 

3.4 Image processing 
For Studies I-III and V, 3D T1-weighted MRI scans were performed on 1.5 and 3 Tesla MRI scanners 
(Vision Plus, Aera, Avanto, and Trio; Siemens Healthcare, Erlangen Germany). The protocol was 
consistent with a magnetization-prepared rapid gradient echo (MPRAGE) sequence and a spatial 
resolution of 1.5 x 1.0 x 1.0 mm. The T1-lesion volume (“WM hypointensities”) and volumes of the 
whole-brain (“BrainSegVol”), cortical (“CortexVol”) and subcortical grey matter (“SubCortGrayVol”), 
thalamus (“Right Thalamus Proper” and “Left Thalamus Proper”), white matter 
(“CerebralWhiteMatterVol”) and corpus callosum ("CC_Central", "CC_Posterior", 
"CC_Mid_Posterior", "CC_Anterior” and "CC_Mid_Anterior") were segmented using the longitudinal 
stream of the FreeSurfer 6.0.0 software (http://surfer.nmr.mgh.harvard.edu/), without any lesion filling 
techniques since white matter hypointensities are taken into account by FreeSurfer.73, 75 This image 
processing was performed through the HiveDB database system.134 We used the LPA of the SPM LST 
(https://www.statistical-modelling.de/lst.html) for segmentation of the T2-lesion volume using 2D or 
3D FLAIR sequences, whichever was available.79 Normalization of the brain volume measures was 
done by dividing the brain volumes by the estimated total intracranial volume, while no such 
normalization was performed for the T1- or T2-lesion volumes. All native and processed MRI images 
were quality controlled by a radiologist.  

3.5 Statistical analysis 
To assess the rate of change of the longitudinal outcome variables in Studies I-III, linear mixed effect 
models were used with adjustment for clinical and demographic fixed effect covariates and random 
effects.46 Linear mixed-effects models can leverage the information from multiple data points within 
each group (e.g. repeated measurement of clinical scores from a study participant) while accounting for 
nested correlation structure of subgroups within groups (e.g. study participants within different cohorts). 
Multivariable linear regression models were used to assess the associations between cross-sectional NfL 
levels and MRI outcome measures in Study I, while multivariable rolling regression models were 
applied to determine whether the strength of the cross-sectional MRI-clinical associations in Study II 

http://surfer.nmr.mgh.harvard.edu/
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differed for different ages among the study participants. In Study I, we also used general linear models 
in FreeSurfer to topographically compare the cortical thickness of different brain regions between 
subgroups of study participants in regards to pNfL levels and lesion load. In Studies IV and V, we 
performed GWAS and polygenic score analyses of pNfL levels and whole-brain volume fractions 
applying multivariable linear regression on the imputed genotype dosages, adjusting for various 
clinical/demographic factors and genetic principal components to account for population sub-structure. 
Polygenic scores were calculated by multiplying the allele dosages with the reported effect size of the 
same allele in the base data (i.e. the MS risk HLA analysis by Moutsianas et al28 as base data for Study 
III, the most recent IMSGC GWAS on MS susceptibility24 as base data for Study IV, and the pNfL 
GWAS in Study IV as base data for Study V), and then adding the scores of all variants into a single 
score. Significantly associated SNPs were mapped to protein-coding genes using the SNP2GENE 
algorithm in the Functional Mapping and Annotation (FUMA) software and/or the Open Targets 
Genetics algorithm.135, 136 In the same studies, gene set analyses were done using the GSA-SNP2 and 
MAGMA softwares in order to assess whether pNfL levels and whole-brain volume fractions were 
associated with specific biological pathways using the summary statistics from the GWA studies.137, 138 
Data curation and statistical analyses were performed in R, except for the GWAS which was performed 
in PLINK 1.9 and 2.0.139-141 In all-sub-studies, transformation procedures were performed in case the 
continuous variables were substantially deviating from normal distribution. 

3.6 Ethical considerations 
There are four fundamental principles in medical research ethics that all researchers are morally and 
legally responsible to follow: non-maleficence, beneficence, justice and respect for the autonomy of the 
study participants142. Non-maleficience means that harm to the study participant must be avoided. My 
doctoral thesis includes large datasets with a wide range of sensitive personal data, including genetics, 
clinical/demographic characteristics as well as other types clinical and and paraclinical biomarker data. 
Thus, there is a risk that non-secure handling of this data can do great harm to the study participants. It 
has been imperative for me to minimize this risk by ensuring that all data was pseudonymized, stored 
on safe servers and in all aspects handled in compliance with Swedish data protection law and the 
European General Data Protection Regulation (GDPR). Another aspect of non-maleficience relates to 
the study-specific procedures, where harm also must be avoided and the benefits of the research must 
outweigh any potential harm. Most of the study procedures in this thesis were non-invasive, part of 
clinical routine and the risk of harm was considered to be outweighed by the benefits of these procedures 
to the patient. Beneficence is closely related to non-maleficience and means that the research should be 
aimed at doing good. Although the research results in this doctoral thesis likely will have no immediate 
and direct beneficial implication for the study participants or other persons with MS – which is the case 
for most research that is conducted – it may have that in future by facilitating future research discoveries 
applicable to the treatment and management of MS. Justice means that the research should be fair and 
comply with legal requirements and the rights of the study participant. Participation in any of the study 
cohorts in this thesis did not entail any direct advantage or disadvantage compared to non-participants 
in terms of access or quality of the health care, largely due to the fact that most procedures were part of 
clinical routine. Furthermore, all studies underwent ethical review to ensure that all ethical and legal 
standards were met. Respect for autonomy means that the participation in the study and any procedures 
and treatment are voluntary and that the participant has received sufficient information to make a . For 
all studies in this thesis, participation was voluntary and written informed consent was obtained from 
all study participants. 
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Ethical approval for all study-specific procedures, including clinical data collection, blood/CSF 
sampling and MRI acquisition and processing was obtained from the Stockholm Regional Ethical 
Review Board for the EIMS (04-252/1-4, 2017/1349-32 and 2018/2714-32), GEMS (2008/1617-31/2, 
2017/1350-32 and 2018/2689-32), IMSE (2006/845-31/1, 2011/641-31/4, 2017/1426-32 and 
2018/2639-32) and STOPMS (02-548, 2009/2107-31/2, 2017/1347-32 and 2018/2711-32) cohorts. 
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4 Results 

4.1 Clinical characteristics 
The clinical characteristics of the cohorts in Studies I-V are shown in Table 3.  

Table 3. Clinical characteristics of the study cohorts at baseline 

Variables at baseline Study I Study II Study III 

Study IV 

Study V 

MS Controls 

N 534 989 731 3706 822 644 

Age, median (IQR) a 39 (11) 37 (17) 38 (18) 39 (16) 40 (17) 36 (16) 

Disease duration at MRI 
scan, median (IQR) 

2 (5) 1 (5) 3 (8) 4 (8) NA 1 (1) 

Sex, % females 70 71 75 71 72 75 

MS phenotype              
(% relapsing-onset/% 
progressive-onset/ % NA) 

97/2/1 93/7/0 93/7/0 97/3/0 NA 99.8/0.2/0 

Charlson comorbidity 
score with weights 
according to Quan et al., 
median (range) 

NA NA NA 0 (0 – 6) NA 0 (0 – 6) 

Whole-brain volume 
fractions (%), median 
(IQR) 

74.3 (3.3) 74.2 (3.6) 73.9 (3.7) NA NA 74.3 (3.5) 

T2-lesion volumes, 
median (IQR) b 

2.0 (1.9) 4.0 (12.8) 4.1 (14.3) NA NA NA 

pNfL levels (pg/mL), 
median (IQR) 

12.1 (10.1) NA NA 11.9 (10.2) 7.7 (4.1) NA 

CSF NfL levels (pg/mL), 
median, (IQR) 

665 (972) NA NA NA NA NA 

a mean (SD) is reported in study I. 

b T2-lesion volumes were only available from 3D FLAIR images for Study I, while both 2D and 3D 
images were used for segmentation in the other studies. 

Abbreviations: CSF, cerebrospinal fluid; FLAIR, fluid-attenuated inverse recovery; IQR, interquartile 
range; MRI, magnetic resonance imaging; MS, multiple sclerosis; (p)NfL, (plasma) neurofilament light. 
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4.2 Study I 
In Study I, a total of 534 persons with relapsing- (RR and SP) or progressive-onset (PP)MS were 
included in the final study cohort at baseline, and the median MRI scan follow-up time was 6.2 (IQR 
6.0 - 9.0) years. We assessed how baseline levels of NfL in CSF and plasma associated with baseline 
and longitudinal MRI T1- and T2-lesion volumes as well as whole-brain, cortical and subcortical grey 
matter, white matter, thalamic and corpus callosal fractions of total intracranial volume. The models 
were adjusted for age at the baseline MRI scan, sex, disease duration, time difference between the first 
and the last MRI (in the longitudinal analyses), MRI scanner and time difference between blood/CSF 
sample and MRI (maximum 6 months difference). The longitudinal mixed-effects models included both 
random intercepts and time slopes. We observed a strong correlation between baseline CSF and pNfL 
levels but this correlation decreased with increased time intervals between CSF and blood sampling 
(e.g. r ≈ 0.85 with 0.1 years’ and r ≈ 0.75 with 1 years’ interval). Both high baseline CSF and pNfL 
levels were linked with high T1- and T2-lesion volumes and low baseline thalamic volume fractions 
using multivariable linear models. Applying linear mixed-effects models, high baseline CSF and pNfL 
levels were also associated with lower whole-brain, subcortical grey matter, thalamic, white matter and 
corpus callosal volume fractions over time. A further analysis showed that there was an association 
between baseline pNfL and baseline cortical grey matter fractions in the absence of radiological disease 
activity in the form of increasing T1-lesion volumes (Table 4). A topographic cross-sectional analysis 
of the cortical thickness using general linear models showed that high pNfL levels were associated with 
low cortical thickness in the temporal and frontal lobes in individuals with stable T1-lesion volumes. 
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Table 4. Study I multiple regression models of baseline brain fraction measures and pNfL stratified 
according to T1-lesion volume accrual. 

T1+   Low vs. high pNfL  

 beta p-value (FDR) 

Whole Brain 0.209 0.61 

Cortical gray matter 0.009 0.97 

Subcortical gray matter -0.066 0.1 

Thalamus -0.029 0.039 

White matter 0.183 0.60 

 

T1-  Low vs. high pNfL 

 beta p-value (FDR) 

Whole Brain 1.441 0.05 

Cortical gray matter -0.247 0.001 

Subcortical gray matter -0.135 0.07 

Thalamus -0.036 0.18 

White matter 0.386 0.1 

T1+ denotes individuals with increasing T1-lesion volumes over time, while T1- denotes individuals 
with stable volumes. pNfL levels were stratified into two groups: values below the lower quartile  (≤ 
375 pg/mL) and values above the upper quartile (≥ 1335pg/mL) in the cohort. The models were adjusted 
for age at MRI scan, MRI scanner, sex, disease duration, the time difference between the first and last 
MRI, and the time difference between blood sampling and MRI. Abbreviations: FDR, false discovery 
rate, pNfL, plasma neurofilament light. 

4.3 Study II 
In Study II, we investigated the associations of baseline MRI T1- and T2-lesion volumes, whole-brain, 
cortical and subcortical grey matter, white matter and thalamic fractions with partially overlapping 
EDSS, MSIS-29 and SDMT data over time and across different ages of a total of 989 persons with 
relapsing- and progressive-onset MS. These individuals were followed in our study for a median of 9.3 
(IQR 6.2 – 13.7), 9.3 (IQR 5.4 – 13.8) and 10.1 (IQR 6.5 – 14.0) years for the EDSS, MSIS-29 and 
SDMT scores, respectively. As fixed effect covariates, we used baseline age at clinical examination, 
baseline age at MRI, sex, age at disease onset, clinical course (relapsing-onset vs. progressive-onset 
MS), total number of registered scores (in the SDMT analysis), type of FLAIR sequence (2D vs. 3D) in 
the T2 lesion volume analyses, platform DMT exposure and/or highly potent DMT exposure, depending 
on the parsimony of the models. Using multivariable rolling regressing analysis, we showed that the 
associations with the MRI variables increased rapidly in strength after approximately 40-50 years of age 
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for the EDSS as well as the physical and psychological MSIS-29 scores. The EDSS and T2-lesion 
volume rolling regression estimates are shown in Fig. 6 as an example of these age-varying associations. 
These findings remained in sensitivity analyses where persons with PPMS and/or recent relapses were 
removed. For SDMT, the associations across different ages did not show any obvious pattern. In 
separate longitudinal analyses using linear mixed-effects models, the baseline MRI volumetric predictor 
variables were dichotomized into below/equal to and above the median of the study cohort. We showed 
that low cortical/subcortical grey matter and thalamic volume fractions at baseline were associated with 
annual increases of 0.059, 0.047 and 0.053 EDSS scores, respectively. Low baseline whole-brain 
volume, cortical and subcortical grey matter and thalamic volume fractions were associated with annual 
decreases of 0.56, 0.47 and 0.53 SDMT scores, respectively (p < 0.01 for all). Furthermore, low 
subcortical grey matter volume fractions at baseline were associated with an annual increase of 0.021 
MSIS-29 physical z-scores. These brain volume fraction measures were overall stronger predictors of 
the clinical scores than the T1- and T2-lesion volumes.  

 

Fig. 6. Rolling regression analysis of EDSS and T2-lesion volumes across age. The red bars represent 
95 % confidence intervals. Abbreviations: EDSS, expanded disability status scale. 

4.4 Study III 
In Study III, we assessed whether a weighted risk score comprising 12 previously well-established MS 
susceptibility HLA alleles were associated with baseline and longitudinal volumetric MRI measures: 
T1- and T2-lesion volumes, whole-brain, white matter and cortical and subcortical grey matter volume 
fractions. The study comprised 731 persons with relapsing- and progressive-onset MS. These 
individuals were followed with MRI for a median of 4.1 (IQR 1.2 – 8.0) years and underwent a total of 
2546 scans. While this HLA risk score was not significantly associated with baseline MRI measures, 
we found that a high score was associated with lower cortical grey matter volume fractions 
longitudinally after adjustment for age at baseline, disease duration at baseline, clinical course (relapsing 
onset vs. progressive onset MS), sex, MRI scanner, type of FLAIR sequence (2D vs. 3D) for the T2-
lesion volumes, exposure to platform and highly potent DMTs, exposure to corticosteroids and the first 
11 genetic principal components. (Table 5). This association was robust for various sensitivity analyses, 
including MAF thresholding and adjustments for DMT exposure and potential confounding effects of 
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the values of the MRI measures at baseline. A further analysis showed that this effect was primarily 
driven by the HLA-DRB1*15:01 allele. 

Table 5. Associations between HLA genetic burden and longitudinal MRI measures 

MRI metrics Time interaction 
standard beta 

CI (95%) p-value 

Whole-brain volume fractions -0.0049 -0.010 – 0.00039 0.07 

Subcortical grey matter volume fractions -0.0041 -0.0086 – 0.00052 0.08 

Cortical grey matter volume fractions -0.011 -0.017 – -0.0044 0.0009 

White matter volume factions 0.0059 -0.000023 – 0.012 0.05 

T1-lesion volumes 0.0047 -0.0014 – 0.011 0.13 

T2-lesion volumes -0.0071 -0.020 – 0.0053 0.26 

Linear mixed-effects models with random intercepts and slopes over time were used. Abbreviations: CI, 
confidence interval; HLA, human leukocyte antigen; MRI, magnetic resonance imaging; MS, multiple 
sclerosis.        

4.5 Study IV 
In Study IV, a GWAS was performed on pNfL levels separately in 3706 persons with MS (including 
both relapsing- and progressive-onset) and 829 population-based controls – and thereafter jointly in MS 
and controls using a case-control interaction term – to gauge the genetic regulation of this biomarker in 
a hypothesis-free manner. The analyses were adjusted for age, disease duration (for the MS analysis), 
sex, use of DMTs within 30 days before blood sampling (for the MS analysis), relapses recorded within 
120 days of blood sampling (for the MS analysis), a modified Charlson comorbidity score (for the MS 
analysis; using the latest score prior to blood sampling), BMI (for the control and combined MS-control 
analyses) cohort (EIMS vs. IMSE for the MS and combined MS-control analyses) and the first 10 
genetic principal components.143 While no genome-wide associations were found in either MS cases or 
controls after having meta-analyzed the GSA and OE genotyping cohorts, we identified a total of 52 
SNPs in 21 different loci that were suggestively significant in MS and 36 SNPs in 20 different loci in 
controls, which did not overlap with the SNPs associated in MS cases (Fig. 7). These SNPs were mapped 
to 16 and 20 non-overlapping protein-coding genes in cases and controls, respectively, using positional, 
3D chromatin interaction and expression quantitative trait loci (eQTL) mapping. These genes were 
related to a wide range of cellular processes, some of which were related to neuronal and immunological 
functions. There were no significant differences in the strength of the associations between cases and 
controls using a case-control interaction term. Gene set analyses utilizing the entire distribution of the 
GWAS summary statistics from the MS analysis showed an association with an odontogenesis pathway 
implicating several neural crest-related genes, while no significant associations were observed in the 
controls. An MS susceptibility polygenic risk score was found to be significantly associated with higher 
pNfL levels in MS cases (beta = 143, p = 0.0035) using the same covariates as in the GWAS, and this 
association was primarily driven by non-HLA variants. 
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Fig. 7. Manhattan plots of a genome-wide association study of plasma neurofilament light levels in 
multiple sclerosis (A) and population-based controls (B). Dashed red line = genome-wide significance 
(p < 5 x 10-8). Dashed blue line = suggestive significance (p < 1 x 10-5). The genomic position is shown 
on the x-axis while the negative log base 10 of the p-value is shown on the y-axis.   

4.6 Study V 
In Study V, we performed a GWAS on normalized baseline whole-brain volume fractions in 644 
persons with relapsing-onset MS, similar to the analysis in Study IV. The analysis were adjusted for age 
and disease duration at the MRI scan, sex, MRI scanner and the first eight genetic principal components. 
After having meta-analyzed the GSA and OE genotyping cohorts, we identified a genome-wide 
significant locus with six intergenic SNPs in high linkage that were located 46 kBP upstream of the 
glycerol kinase 2 (GK2) protein-coding gene on chromosome 4, with rs3920463A as the lead SNP (beta 
= -0.32, p = 1.23 x 10^-8 [Fig. 8 A and B]). Each copy of the rs3920463 A allele conferred a 1.2 
percentage unit decrease of non-transformed whole-brain volume fractions. The effect estimates were 
similar in the OE and GSA genotyping cohorts. A further 100 variants in 22 loci were suggestively 
significant. Gene set analyses applied to the GWAS summary statistics revealed significant associations 
with biological pathways pertaining to Hypoxia Inducible Factor-1 (HIF1), Fibroblast Growth Factor 
Receptor 2 (FGFR2) ligand binding and activation, and anatomical branching morphogenesis. Given 
the associations between NfL levels and brain volume fractions that we observed in Study I, we wanted 
to assess whether there was co-heritability between these traits using polygenic score analyses. A 
polygenic score with weights derived from the pNfL GWAS in Study IV was not significantly 
associated with the baseline whole-brain volume fractions (beta = -9.5, p = 0.66). Neither was there any 
overlap between variants that reached at least suggestive significance in the brain volume fraction 
GWAS and the pNfL GWAS. 
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A

 

B

 

Fig. 8 A) A Locus Zoom plot of an intergenic locus on chromosome 4 that is associated with whole-
brain volume fractions in MS with genome-wide significance (dashed grey line). The lead SNP is 
colored in purple, while the surrounding SNPs are color-coded with respect to their LD with the lead 
SNP. B) A boxplot of whole-brain volume fractions for different rs3920463 genotypes with overlaid 
jittered data points. For illustration purposes, subjects with an rs3920463A dosage of <0.3 were 
classified as non-carriers (G/G); subjects with a dosage between 0.7 and 1.3 were classified as 
heterozygous (A/G) while subjects with a dosage of > 1.7 were classified homozygous for the A allele. 
Abbreviations: LD, linkage disequilibrium; MS, multiple sclerosis; SNP, single nucleotide 
polymorphism.  
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5 Discussion 
While significant progress has been made in recent decades to elucidate the risk factors for developing 
MS, knowledge of the risk factors of severity and progression of the disease has been lacking.2 This has 
largely been due to a lack of sensitive and specific severity biomarkers and insufficient sample sizes. In 
the current research work, we have investigated how different genetic, body fluid and imaging 
biomarkers associate with both clinical and paraclinical severity outcomes in large real-world cohorts 
of persons with MS.  

It has become evident that lesion volumes only represent a fraction of all ongoing MS pathology, as 
disability can progress even in the absence of new or enlarging lesions, most notably in the primary and 
secondary progressive phenotypes of the disease.63 This has prompted the search for new biomarkers, 
which can provide additional information to the clinician regarding the severity and prognosis of the 
disease. In Study I, we were able to confirm previously reported associations of CSF and pNfL levels 
with whole/regional brain volumes and lesion volumes.31 In the longitudinal analysis, the associations 
were generally stronger for the brain volumes than the lesion volumes, which corroborates the growing 
body of evidence that brain volume loss is a better biomarker of MS disability than lesion volumes.66, 70 
To our knowledge, we were for the first time able to show that the association between high pNfL and 
low cortical grey matter fractions was independent of radiological disease activity as measured by 
increased T1-lesion volumes. A further topographical analysis of the cortex showed that the temporal 
and frontal lobes were primarily affected. This finding is corroborated by a recent longitudinal cohort 
study of relapsing-remitting MS showing that sNfL is associated with PIRA144. Taken together, our 
results suggest that NfL levels can be a complement to lesion metrics in the assessment of the severity 
and potentially treatment response for individuals with MS. 

In Study II, we showed that the associations of the EDSS and the physical/psychological MSIS-29 with 
the MRI variables rapidly increased in strength after approximately 40-50 years of age. Interestingly, 
this occurred at approximately the age that most study participants transitioned into a secondary 
progressive phase in our cohort. Since the plasticity and recovery potential of the CNS after structural 
damage is known to decrease with age, it can therefore be hypothesized that this increased strength of 
the association represents the transition to the secondary progressive phenotype, as it was independent 
of recent clinical relapses and other potential confounders.145 For SDMT, the associations across 
different ages did not show any obvious pattern, potentially indicating a more complex association with 
age. While many previous studies have investigated the associations between MRI-based brain 
volumetry/lesions and clinical disability, our results provide a more detailed understanding of these 
associations with regards to the dynamics across age and different brain regions.63, 66, 70 In the 
longitudinal analysis, we were able to confirm the notion that brain volumes – especially grey matter 
volumes – are stronger predictors of clinical disability than lesion volumes, as these brain volumes 
reflect the accumulated neurodegenerative processes to a higher degree than lesions. Interestingly, these 
results are in line with our finding from Study I that brain volumes are generally more strongly 
associated than lesion volumes with NfL, which has been shown to be associated with clinical disability 
measures in previous studies.31 The sample sizes, especially for the MSIS-29 and SDMT analyses, were 
among the largest to date, and our data confirm the results from previous smaller exploratory studies.40, 

67, 85-89 Interestingly, our reported association between low baseline subcortical grey matter volume 
fractions and worsening of physical MSIS-29 is, to the best of our knowledge, the first observation of 
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brain volume being associated with self-reported impact of MS, which is gaining increasing attention 
as a means to better gauge the impact of the disease on the individual level40, 88. 

In Study III, we showed that MS susceptibility HLA alleles, in particular the main risk allele HLA-
DRB1*15:01, are associated with a reduction of the cortical grey matter fraction longitudinally, which 
indicates that there is some co-heritability between MS risk and cortical atrophy. This finding is 
consistent with previous reports of HLA-DRB1*15:01 being associated with low age at onset, higher 
incidence of MS among females compared to males, treatment response, and low cross-sectional whole-
brain volume and subcortical grey matter fractions.112-117, 121 It is also consistent with the notion that MS 
affects the cortex already in the earliest phase of the disease, and with histopathological data showing 
that among persons with MS, carriers of the HLA-DRB1*15:01 allele exhibit a higher degree of 
demyelination and T-cell infiltration in the CNS than non-carriers.146, 147 This suggests that the 
pathomechanisms of brain atrophy in MS may involve inflammatory activity via the adaptive immune 
system leading to demyelination and neurodegeneration. As a result, this also indicates that the 
mechanisms behind MS severity and susceptibility are at least partially overlapping. However, it is 
unclear whether it would be the same type of immune activity in both instances, as the immunological 
profile in the CNS is known to change over the disease course.10, 23 

Interestingly, while an HLA-based MS risk risk score was associated with brain atrophy in Study III, 
we did not observe an association between an HLA-based MS risk risk score with high pNfL levels in 
Study IV, even though pNfL has been consistently shown to (moderately) correlate with both global 
and regional brain atrophy as shown in Study I and other cohorts.31 A genetic risk score comprising both 
HLA and non-HLA MS was associated with high pNfL levels in Study IV, but in fact, the non-HLA 
variants in the risk score were driving this association. Together, these findings suggest that there is 
some overlap in the genetic regulation of MS susceptibility and end-organ injury measured with pNfL 
levels, but that pNfL levels may reflect different neurodegenerative processes than the ones that MS 
susceptibility HLA variants modulate. This notion is corroborated by our post-GWAS bioinformatical 
functional analyses of pNfL in Study IV showing that the NfL levels may be regulated by a wide range 
of cellular processes, of which only some are immune-related and that previously have not been directly 
linked to MS susceptibility.  

In Study V, we identified a genome-wide significant locus associated with whole-brain volume fractions 
near the GK2 gene, which previously has not been known to be directly implicated in MS risk/severity 
or brain volumes of healthy individuals. However, in a previous large-scale GWAS, other SNPs 
(rs28459916A and rs17003752G) linked to this gene have been associated with propensity for tobacco 
smoking, which is known to increase MS risk, physical disability and brain atrophy.2, 96, 148, 149 
Interestingly, the associated variants in Study V were in positional proximity and LD with these 
smoking-associated variants. This suggests that the effect of the SNPs that were associated with whole-
brain volume fractions may be partially mediated by smoking, albeit the LD with the smoking-
associated variants was weak and adjustment for smoking in our analysis did not substantially change 
the results.  

Gene set analyses particularly implicated a HIF1-related pathway affecting the whole-brain volume 
fractions in Study V. Interestingly, the HIF complex (comprising an alpha and a beta subunit) is a 
transcription factor that is known to modulate both iron metabolism and response to hypoxia (Fig. 8), 
both of which can be implicated in neurodegenerative processes.150, 151 Previous reports of increased 
HIFA expression in MS lesions and emerging evidence that paramagnetic iron rim lesions – a type of 
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chronic active lesion with iron that has been accumulated in microglia at the lesion border – are a robust 
diagnostic and prognostic MS biomarker may provide a causal link for our reported association between 
the HIFA pathway and altered whole-brain volume fractions.26, 152 An additional causal pathway may 
be through hypoxia-related target genes of HIFA, in particular the vascular endothelial growth factor 
(VEGF), which in recent studies has been shown to play an important role in angiogenesis, 
neurogenesis, oligodendrocyte maturation and neuroinflammation in MS.151 The gene set analyses also 
showed that whole-brain volume fractions are associated with FGFR2 and branching morphogenesis 
pathways. FGFR2 is abundantly expressed in oligodendrocytes and has been shown to be pivotal for 
myelination and neuronal development/homeostasis. Interestingly, disruption in FGF2 signaling has 
been reported in both EAE and MS, but the effects are complex and may lead to inflammatory activity 
mediated by microglia and either increased or decreased myelination.153 The potential role of branching 
morphogenesis in MS less clear, although the Bone Morphogenic Proteins (BMPs) 4 and 7 – which are 
included in this gene set – have been associated with demyelination and lesion activity in MS.154, 155 
Overall, the results from study V suggest that genetic variants affect whole-brain volume fractions in 
early relapsing-onset MS through other mechanisms than acute inflammation by the adaptive immunity. 
This is consistent with the notion that PIRA is a substantial contributor of disability even in the early 
phase of MS. 

 

 

Fig. 8. Schematic overview of the HIF1 pathway regulating iron metabolism and oxygen transport with 
a feedback regulation. In multiple sclerosis, this pathway may be dysregulated by common single 
nucleotide polymorphisms affecting iron homeostasis as well as oxygen transport and neurogenesis in 
the central nervous system with subsequent effects on neurodegenerative processes and brain volume 
loss. Abbreviations: HIF1A/B, hypoxia-inducible factor 1-alpha/beta; HO-1, heme oxygenase-1; 
VEGF, vascular endothelial growth factor. 
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Polygenic scores weighted for the effect sizes from the pNfL GWAS in Study IV were not associated 
with baseline whole-brain volume fractions in Study V, suggesting that there is no substantial overlap 
regarding the genetic regulation of these traits. Moreover, there was no overlap in the associated SNPs 
or biological pathways between these studies, indicating that these severity measures at least partially 
reflect different neurodegenerative processes, as also suggested by results in Study I. This is further 
supported by the notion that NfL levels primarily reflect ongoing neurodegeneration as opposed to 
accumulated neurodegeneration manifested as brain atrophy.31, 64  

One of the main strengths of the sub-studies in this thesis is the relatively large sample sizes, which is 
especially important in genetic studies of polygenic traits such as MS where the effect sizes are expected 
to be small. One possible exception is Study V (N = 644), which could be one explanation for the lack 
of an association in the polygenic score analysis. Another strength is the longitudinal design of Studies 
I-III, which allowed us to investigate the effects of the various biomarkers over long time periods and 
added to the robustness of our results. A limitation of all studies in this thesis is the heterogeneity of the 
real-world study populations. This includes differences in treatment exposure and certain technical 
differences in the MRI acquisition, such as the use of different MRI scanners, although these differences 
were controlled for in the statistical analyses. However, it should be noted that real-world data often can 
facilitate the study of a wider range of phenotypes and increase the generalizability of the results 
compared to clinical trials. Furthermore, capturing the effect of genetics on neurodegenerative and 
inflammatory processes in the CNS using pNfL levels as a proxy measure might be complicated by 
peripheral neurodegeneration, diluting effects of large BMI/blood volume as well as temporal and inter-
individual differences in BBB permeability to NfL.31, 52 However, there is still a relatively strong 
correlation between pNfL and CSF NfL as we showed in Study I and BMI can be statistically adjusted 
for31. There is also a question of whether the associations that we observed in our studies partially reflect 
neurodegeneration by normal aging and certain comorbidities (e.g. cardiovascular), as these factors are 
known to affect NFL levels and brain atrophy.31, 60, 80, 156 We consider that it is unlikely that these factors 
substantially affected our results since the majority of study participants were relatively young, had 
overall low levels of comorbidity as measured with a modified Charlson comorbidity index and 
adjustment for these factors did not alter the results. 

5.1 Points of perspective 
Taking the findings from Studies I-V together, we have shown that different genetic, imaging and body 
fluid biomarkers of MS severity are associated with each other after correction for potential 
confounders, indicating that they at least partially reflecting the same underlying pathomechanisms in 
MS. However, the strength of these associations was at most moderate on the group level. One potential 
explanation for this is that these biomarkers to some degree also may reflect different pathomechanisms, 
which is exemplified by our finding in Study I that the associations between pNfL and cortical grey 
matter fractions were independent of radiological signs of disease activity in the form of increased T1-
lesion volumes. Another explanation – compatible with the first one – is that there is a high degree of 
imprecision and technical variability in the measurement of the biomarkers and severity measures.1 
Hence, in contrast to the current diagnostic MS biomarkers – e.g. MRI lesions, presence of oligoclonal 
bands in the CSF and neurological symptoms – which can discriminate MS from other neurological 
diseases and healthy individuals with a relatively high degree of certainty, the available severity 
biomarkers are not yet useful to predict disease severity on the individual level and in a clinical setting.8 
Clinical implementation may be especially challenging for the MRI-based volumetric measures, due to 
the requirement of standardization of image acquisition parameters and the complexity and 
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computational demand of the image processing, although promising methods that are not as sensitive to 
technical heterogeneity are under development.69, 78 Furthermore, since the differences in brain volumes 
– especially volumes of small subcortical regions – between different severity categories of MS 
oftentimes are smaller than the intra- and inter-scanner variability, these volumetric measures are 
generally not useful for individual-level predictions.69, 75 For these reasons, it is important to continue 
the research efforts not only to discover more robust MS severity markers, but also to integrate existing 
clinical and paraclinical markers into more predictive risk scoring systems. For instance, one recent 
study showed that the inclusion of an MS polygenic risk score into a clinical risk score model could 
substantially increase the MS risk discriminatory power of the model compared to only using the clinical 
risk score.122 Another recent study showed that serum levels of Glial fibrillary acidic protein (GFAP) – 
a structural intermediate filament protein expressed in many CNS cell types – is a predictor of PIRA  
and a stronger predictor of clinical progression than sNfL, This suggests that GFAP may be a superior 
marker of progressive MS than NfL, which mainly appear to reflect neurodegeneration by inflammatory 
processes in the early phases of the disease.157 

Due to the somewhat limited sample size of Study V, in particular regarding the GWAS and polygenic 
score analysis, replication studies would be beneficial to further strengthen the evidence for our findings 
in that study. Longitudinal studies are also warranted to elucidate the effect of these variants on both 
MRI-based and clinical disease progression. Furthermore, to strengthen the evidence for the role of 
HIF1 in iron accumulation in the brain in MS, MRI processing techniques such as quantitative 
susceptibility mapping could be used for quantification of the iron content in the brain, which 
subsequently could be assessed in the genetic and functional analyses.158 

It is important to note that even if the biomarkers assessed in our material may not have sufficient 
discriminatory effect to be clinically useful to predict clinical outcomes or guide the choice of treatment 
regimen on the individual level, they might give insights into the pathomechanisms of MS. The severity-
associated genetic variants and biological pathways in MS that were identified in this research wor – 
such as the MS risk HLA variants and the HIF1 pathway for MRI-based volumetric measures – could 
potentially guide further research into new treatment targets or the discovery of more sensitive and 
specific MS biomarkers.  
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6 Conclusions 
In this research work, I have shown that NfL, an emerging severity biomarker in MS, is generally more 
strongly associated with brain volumes than lesion volumes. Furthermore, NfL levels can provide 
information about MS severity that is not evident by the traditional lesion metrics. NfL may therefore 
be a complement to lesion metrics in the assessment of the severity and response to DMTs in MS. 
Likewise, our data show that brain volumes – in particular grey matter volumes – are stronger predictors 
of clinical disability than brain lesion volumes. Moreover, the strength of the associations between MRI-
based volume measures and disability in MS is age-dependent, with an increased strength coinciding 
with clinically assessed conversion to secondary progressive MS. Importantly, this may at least on a 
group level constitute a neuroimaging marker of transition to secondary progressive MS. MS 
susceptibility HLA variants are associated with long-term cortical brain atrophy in MS, supporting the 
notion that there is a certain overlap in the genetic regulation of MS susceptibility and severity. These 
results also suggest that the neurodegenerative processes are at least partially driven by the adaptive 
immune system through HLA variants in MS. We also found that pNfL levels may be regulated by a 
wide number of genes and cellular processes, including a neural crest-related biological pathway. The 
differential association of MS risk HLA and non-HLA variants with brain volumes and pNfL levels 
suggests that the genetic regulation of MS severity is complex and not entirely driven by MS 
susceptibility variants. Furthermore, we showed that genetic variants, potentially related to the 
propensity for tobacco smoking, iron metabolism and response to hypoxia, are associated with low 
cross-sectional whole-brain volume fractions in MS. Studies with longitudinal designs are warranted to 
elucidate the effect of these variants on disease progression. Although the biomarkers we have 
investigated in this research work may not be useful to predict severity on the individual level, they may 
provide important insights into the pathomechanisms of MS.
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