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ABSTRACT 

Inflammation plays a dual role in the central nervous system (CNS), serving as a defence 

mechanism to protect and restore neural tissue following injuries or infections, but also 

driving degeneration and aggravating damage. This study examines the intricate relationship 

between inflammation and neural stem cells (NSCs) within the CNS. NSCs are highly versatile 

cells capable of self-renewal and differentiation into various brain cell types, such as neurons, 

oligodendrocytes, and astrocytes, which are crucial for maintaining brain homeostasis. In 

Paper I we investigated the impact of NSC transplantation into an inflammatory environment 

following a spinal cord injury (SCI). The transplanted NSCs differentiated into 

oligodendrocytes and modulated the inflammatory environment, resulting in accelerated 

functional recovery after SCI. In Paper II we focused on the effect of irradiation on NSCs in 

young mice and their subsequent response to brain injuries. Irradiation poses an 

inflammatory challenge to the irradiated areas initiating for example microglial activation. 

Irradiated mice demonstrated a reduction in new neuron production post-stroke and a 

decrease in microglia cell numbers, indicating the influence of radiation on NSC behaviour 

during inflammation. In Paper III we delved into the role of secreted factors during an 

inflammatory reaction. We created a region-specific model by generating brain-stem specific 

astrocytes from embryonic stem cells (ESC) which, when exposed to inflammatory cues, exert 

neurotoxic effects on motor neurons. These findings present possibilities to recapitulate 

inflammatory scenarios using ESC. Finally, the Manuscript examines the impact of hydrogen 

peroxide (H2O2), a free radical released during inflammation, on the proliferation and 

differentiation of NSCs in vitro and in vivo. The results show that H2O2 increased NSC division 

and prompted a higher proportion of these cells to differentiate into oligodendrocytes. 

Moreover, this NSC behaviour was accompanied by transcriptional changes as seen in bulk 

RNA sequencing. 

Collectively, this doctoral thesis provided new cell-molecular insights into NSC biology in 

disease models of inflammatory responses involved in stroke, spinal cord injury or to 

inflammatory mediators. This is essential knowledge when developing therapeutic strategies 

aimed at mitigating harmful outcomes and promoting neurological health. Such insights may 

pave the way for future advancements in treating neurological disorders and injuries by 

leveraging the interaction between inflammation and NSC.  



POPULAR SCIENTIFIC ABSTRACT 

Inflammation, the body's natural response to injuries or infections, can have a profound 

impact on neural stem cells (NSCs). NSC are cells in our brain that can self-renew and develop 

into various cells in the central nervous system (CNS) such as neurons - cells that generate 

electrical signals, oligodendrocytes - cells that support neuron signalling, and astrocytes - 

cells that regulate brain metabolism and modulate signal transmission. NSCs can also 

modulate their environment, and thereby influence the inflammatory and other processes 

in the brain. Inflammatory processes and programmed cell death in the CNS are necessary 

during development to optimize brain composition, as well as to serve as a complex defence 

mechanism aimed at protecting and restoring neural tissue in response to injuries, infections, 

or diseases, ultimately restoring brain homeostasis. However, the effect depends on the 

context and duration. Uncontrolled or prolonged inflammation can also contribute to 

neurological disorders and damage.  

In this thesis, I examined the influence of inflammation on NSC and vice versa. In Paper I, we 

transplanted NSCs into the inflammation centre following of the spinal cord following injury. 

We observed that transplanted NSC tend to become oligodendrocytes, that the 

transplantation changed the inflammatory environment in which these cells resided and that 

treated animals regained hind limb function faster. In Paper II, we investigated how radiation 

affects NSC in young mice. We observed that radiation affected how NSC could respond to 

brain injuries such as strokes. Irradiated mice produced fewer new neurons after a stroke 

and had fewer microglia cells. In Paper III, we generated brain stem region-specific astrocytes 

from embryonic stem cells and showed that factors secreted during an inflammatory 

reaction can cause these astrocytes to become toxic to neurons. Lastly, in my final 

Manuscript, we focused on hydrogen peroxide, a free radical released during inflammation, 

and its effects on the proliferation and differentiation of NSCs. Here, we found that hydrogen 

peroxide increased the division of NSC and led to a higher percentage of these cells 

differentiating into oligodendrocytes.  

The balance of the inflammatory response in the CNS is crucial to prevent excessive damage 

and promote healing and tissue regeneration Understanding the underlying mechanisms of 

inflammation in the CNS is critical for developing therapeutic strategies to mitigate harmful 

effects and promote neurological health. 

  



 

 

POPULÄRWISSENSCHAFTLICHE ZUSAMMENFASSUNG 

Entzündung, die natürliche Reaktion des Körpers auf Verletzungen oder Infektionen, kann 

einen tiefgreifenden Einfluss auf neuronale Stammzellen (NSZ) haben. Neuronale Stammzellen 

sind die Zellen in unserem Gehirn die sich selbst erneuern und sich in verschiedene Arten von 

Gehirnzellen wie Neuronen – Zellen die elektrischen Signale generieren, Oligodendrozyten – 

Zellen, die die Neuronen bei der Signalübertragung unterstützen und Astrozyten – Zellen die 

den Gehirnstoffwechsel regulieren und die Signalübertragung modulieren, umwandeln 

können. NSZ können auch ihre Umgebung modulieren und damit mögliche 

Entzündungsvorgänge im Gehirn. Entzündungen im zentralen Nervensystem (ZNS) sind 

während der Entwicklung erforderlich, um die Zusammensetzung des Gehirns zu optimieren, 

sowie als komplexer Abwehrmechanismus, der darauf abzielt, das neuronale Gewebe als 

Reaktion auf Verletzungen, Infektionen oder Krankheiten zu schützen und wiederherzustellen 

und letztendlich eine Homöostase im Gehirn wiederherzustellen. Die Wirkung hängt jedoch 

vom Kontext und der Dauer ab. Bei unkontrollierter oder langanhaltender Entzündung kann 

sie auch zu neurologischen Störungen und Schäden beitragen.   

In dieser Thesis habe ich den Einfluss von Entzündung auf neuronale Stammzellen und vice 

versa untersucht. In Studie I haben wir NSZ nach einer Rückenmarksverletzung (SCI) in das 

Entzündungszentrum transplantiert. Transplantierte NSZ entwickeln sich vermehrt zu 

Oligodendrozyten, sie veränderten die entzündlichen Umgebung in der sie sich befanden und 

die transplantation beschleinigte die Rückgewinnung der Funktion in den gelähmten hinteren 

Extremitäten der Ratten. In Studie II haben wir untersucht, wie Bestrahlung in jungen Mäusen 

NSZ beeinflusst. Bestrahlung zeigt einen Effekt darauf wie NSZ in erwachsenen Tieren auf 

Schlaganfälle reagierten. Bestrahlte Mäuse produzieren weniger neue Neuronen nach einem 

Schlaganfall und haben weniger Mikroglia Zellen. In Studie III betrachten wir, wie Faktoren die 

während einer Entzündungsreaktion sekretiert werden dazu führen können, dass aus 

Stammzellen entstandene Astrozyten für Neuronen toxisch werden. Schließlich betrachten wir 

in meinem letzten Manuskript Wasserstoffperoxid (H2O2), ein freies Radikal, das während 

Entzündungsreaktionen freigesetzt wird, und seine Auswirkungen auf die Proliferation und 

Differenzierung von NSZ. H2O2 führt zu einer erhöhten Teilungsrate sowie zu einem höheren 

Prozentsatz dieser Zellen, die zu Oligodendrozyten werden. Das Gleichgewicht der 

entzündlichen Reaktion im ZNS ist entscheidend, um übermäßige Schäden zu verhindern und 

Heilung und Geweberegeneration zu fördern. Das Verständnis der zugrunde liegenden 

Mechanismen von Entzündungen im ZNS ist entscheidend für die Entwicklung therapeutischer 

Strategien zur Minderung der schädlichen Auswirkungen und Förderung der neurologischen 

Gesundheit. 
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 LITERATURE REVIEW 

The central nervous system (CNS) serves as the body's control centre but is susceptible to 

various insults, making CNS pathologies a significant global health concern [6] and having an 

impact on society and families. While the causes of CNS disorders are wide-ranging and include 

e.g. autoimmune reactions, genetic factors, morphological changes, and mechanical injuries 

[7], the extent of disability and recovery heavily depends on correct functionality of CNS cell 

types: neurons, astrocytes, and oligodendrocytes. Unlike lower vertebrates which may have 

remarkable regenerative abilities [8], humans, rodents, and other mammals exhibit limited 

regeneration, particularly in the mature CNS where plasticity is scarce. Adult neurogenesis was 

discovered in mammals in 1962 by Josef Altman [9] and gained attention in the early 1980s 

when observed in various regions of the avian brain [10-13]. Since then, researchers and 

clinicians have investigated the regenerative potential of Neural Stem Cells (NSCs) due to the 

pressing need for new therapeutic interventions. However, stem cell therapy remains complex, 

and approaches such as integrating new-born cells into existing circuits pose challenges. 

Inflammation, commonly accompanying CNS pathologies and insults, plays a crucial role in 

removing foreign substances and damaged cells, actively orchestrating repair processes. Such 

insults also trigger a response in dormant NSCs, leading to their proliferation and migration. 

For instance, a positive correlation between focal cerebral ischemia extent and stem cell 

activity has been observed [14]. Inflammatory cues, such as cytokines, chemokines, and free 

radicals, play versatile roles such as contributing to the response to damage [15], influencing 

the aging process and cellular senescence [16, 17]. This thesis focuses on studying the 

interaction between transplanted NSCs and CNS injury (Paper I). It also explores the impact of 

irradiation [18] on the stem cell niche during brain development and its effects on regeneration 

and potential recovery (Paper II). The inflammatory environment's influence on CNS region 

specific neuronal survival, particularly the ramifications of astrocyte activity, has been 

examined in Paper III. Finally, the effect of inflammatory reactive oxygen species (H2O2) on NSC 

proliferation and differentiation was investigated in Manuscript. 
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1.1 NEUROINFLAMMATION  

Injuries to the CNS, such as SCI, stroke/ischemia, and traumatic brain injury (TBI), are among 

the leading causes of death and disability worldwide [19]. They can create inflammatory 

conditions similarly to some autoimmune diseases such as Multiple Sclerosis (MS) and overall 

disturbances in homeostasis (e.g., irradiation). Regeneration of damaged tissue depends on 

the extent of injury, area of damage and importantly the inflammatory processes during the 

aftermath of the incident [20]. Inflammatory processes assist in healing and repair, immune-

mediated clearance of damage and debris contributing significantly to the resolution of 

inflammation. Neuroinflammation is also part of, and necessary for, normal neural 

development [288, 289], as well as driving pathological neurodevelopmental mechanisms 

[290]. The brain has its own immune cell type called the microglia, but the view of the brain as 

an immune privileged organ due to the presence of the blood-brain barrier has changed over 

the years. The CNS is susceptible to peripheral immune factors and cells can infiltrate. The 

blood-brain barrier is more permeable than initially thought, with inflammation creating 

additional entrance points in the blood-brain barrier (BBB) [21, 22]. Furthermore, greater BBB 

permeability in areas adjacent to NSCs provides a platform for communication with the 

periphery [23, 24]. Acute neuroinflammation is often self-limiting and resolves naturally 

through debris clearance [25]. This process is aberrant in chronic inflammation, as evident in 

neurodegenerative diseases, in which the intended cycle of inflammation repair and resolution 

is broken [26]. Chemokines, cytokines, and the complement cascade play crucial roles in 

neuroinflammation. Cytokines are small proteins produced by immune cells, but also other 

cells such as oligodendrocytes and astrocytes, and are released in response to a plethora of 

stimuli and cell death. They can be either proinflammatory, e.g. TNF, IL-1, IL-6 interleukins, and 

IFNs, or anti-inflammatory, such as IL-4 and IL-10. They recruit leukocytes and stimulate their 

adhesion by inducting expression of adhesion molecules in the vascular endothelium [27] and 

extravasation [28]. Both chemokines and cytokines are upregulated following CNS injury and 

initiate inflammatory cascades, as well as participate in neural development and 

neuroprotection [29]. Tumor Necrosis Factor 1ɑ (TNF) and interleukin 1ɑ (IL-1ɑ), discussed in 

Paper I and Paper III, belong to this category. TNF induces glutamate release, leading to 

neurotoxicity [30]. Several studies have shown that inactivating TNF reduces neural death and 

neurodegeneration in Sandhoff's disease and West Nile virus models [31, 32]. However, 

TNF receptor-1 deficient mice exhibit a more severe course of disease in a model of 
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experimental autoimmune neuritis [33]. This bilateral role of TNF can be credited to cell-

specific receptor-related signalling pathways [34, 35]. Blockage of TNF has been unsuccessfully 

tried in MS treatment approaches, most likely failing due to the role of TNF in oligodendrocyte 

maturation [36] and the impact of TNF as a signal to regulate NSC activity during inflammation 

[37]. IL-1ɑ, another pro-inflammatory cytokine, is present in all cells and is released upon cell 

damage or by myeloid cells. It is particularly abundant in cells with a barrier function, such as 

vascular endothelial cells and brain astrocytes[38]. IL-1ɑ binds to IL-receptor family 1 [39] and 

activates transcription factors, for example nuclear factor-kB (NF-kB), activator protein-1 (AP-

1) and c-Jun N-terminal kinase (JNK) ultimately initiating an immune response through the 

synthesis of additional cytokines, supporting vasodilation and extravasation and adaptive 

immunity  [40]. The complement cascade, consisting of approximately 30 proteins, facilitates 

and amplifies immune responses. Under physiological conditions, complement cascade 

components cannot cross the BBB [41], further highlighting the role of resident cells of the CNS 

in neuroinflammation. Complement factors, especially C3, within the CNS can be produced by 

glial cells and neurons in response to inflammation [42, 43]. These factors are implicated in 

neurodegenerative diseases [44-47]. A CNS resident cell type surveilling the homeostasis are 

astrocytes. They support neural functions, while also influencing CNS immunity through 

cytokine receptor expression and recruitment of regulatory T cells (Tregs) via TGF-β and 

CXCL12 [48]. Oligodendrocytes were traditionally viewed as bystanders in CNS immune 

reactions and are often the target of the immunoinflammatory response in the CNS. But more 

recently oligodendrocytes are recognized as actively partaking in CNS immunity. They produce 

immune-mediators modulating microglia fate, express MHCII in MS [49] and  receptors to IL-

4, IL-6, IL-10, IL-12 [50]. Chemoattractants CXCL10, CCL2, CXCR2, and CCL3 amplify migration 

and proliferation of oligodendroglia [51]. Inflammatory processes assist healing and repair as 

the immune-mediated clearance of damaged tissue and debris significantly contributes to the 

resolution of inflammation. Neuroinflammation is required for normal neural development 

[52, 53] and it can drive pathological neurodevelopmental mechanisms [54]. Inflammation also 

exerts complex effects on NSCs within distinct niches of the adult CNS.  Inflammatory factors 

such as IL-6 and NO disrupt neurogenesis in the subventricular zone (SVZ) and subgranular 

zone (SGZ), inducing gliogenesis via NRSF/REST upregulation. NSCs possess non-canonical anti-

inflammatory roles, releasing trophic factors and modulating immune cells [55]. While the 

destructive features of inflammation have been studied with great interest, the field of 

reparative inflammation (Fig. 1) is still in its early stages. Our group studies how inflammation 
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affects the neural stem cells. We are interested in these processes in the context of CNS injury 

such as TBI and SCI as well as in autoimmune diseases such as Multiple sclerosis. We have 

previously assessed how NSC fate is impacted by oxidative stressors. This PhD study aims to 

contribute to the progression of this understudied field with our research on the impact of 

H2O2 on stem cell proliferation and differentiation in the Manuscript [26] as well as the various 

approaches used to examine different aspects of inflammation in Paper I-III. In the following 

sections I will discuss the approaches we used in this thesis to study the impact of 

neuroinflammation on NSC. 

1.1.1 Microglia 

Microglia, the CNS-resident immune cells, maintain CNS homeostasis [56] and play a role in 

development during which microglia express high levels of complement receptor and 

participate in inflammation through cytokine production. As such, they tag synapses releasing 

Figure 1 Molecules produced at the site of brain injury and during CNS degeneration have several cellular targets 

and mode of action. They act in a synergistic or antagonistic way. Inflammation can lead to degeneration and vice 

versa.  In reparative inflammatory stages plasticity can be initiated and damaged tissue can recover, this can 

happen via the recapitulation of developmental programs or due to protective immune-mediate mechanisms. [4] 

License number: 5581390003574 
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complement proteins, by which they contribute to synaptic pruning during neurodevelopment 

[57]. As previously mentioned, when faced with tissue damage or inflammation, microglia 

undergo phenotypical and functional changes and express various surface receptors such as 

pattern recognition receptors (PRRs), toll-like receptors (TLR), phagocytic receptors (CR3 and 

CR4), and triggering receptor expressed on myeloid cells (TREM) [48].  Microglia can shift 

between pro-inflammatory (M1) and anti-inflammatory (M2) profiles, aiding in restricting 

neuroinflammation [58, 59]. Microglia, originally noted by Franz Nissl, were officially identified 

as a distinct cell type responding to brain injury by Pio Del Rio Hortega in 1919 [60]. They 

constitute 10-15% of the cells in the brain and spinal cord parenchyma [61]. Derived from 

hematopoietic mesoderm, microglia migrate towards the CNS during early development, 

before BBB closure (before embryonic day 8 in mice) [62-65]. They retain self-renewal 

capacities to replenish the microglia population. However, recent research indicates that 

peripheral monocytes can also repopulate depleted microglia, adopting microglia-specific DNA 

methylation signatures and upregulating microglia gene expression [39]. Microglia 

continuously interact with neurons, astrocytes, and the vascular system, contributing to brain 

development [66], hippocampal neurogenesis [67] and CNS network establishment [68]. 

Functioning as CNS macrophages, resting or "ramified" microglia constantly survey the CNS 

through dynamic cytoplasmic extensions that sense changes in homeostasis such as plaque 

formation, apoptotic or necrotic cells, and pathogens [69, 70] [71-73]. Special potassium 

channels in microglia enhance their sensitivity to minute differences in extracellular potassium 

levels [74]. Upon detecting disturbances in homeostasis, microglia become activated, assume 

a pro-inflammatory state, adopt an amoeboid morphology, and attempt to restore 

physiological conditions through phagocytosis [75]. Depending on the context, microglia can 

also assume anti-inflammatory roles. They are the main producers of extracellular reactive 

oxygen species (ROS) in the CNS [76] and present an important component of the innate 

immune response in the CNS. Their activation is a common feature of CNS diseases modulating 

the immune response by secretion of essential mediators.  

1.1.2 Spinal Cord Injury 

SCI is globally prevalent in young adults (20-29 years) and leads to severe disabilities [77]. It is 

defined as an insult to the spinal cord or cauda equina causing permanent changes in body 

functions below the site of injury. Statistics vary among countries. In Sweden, 19 per 1 million 

individuals experience SCI annually, with 60% being male and a mean incidence age of 55 years 
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old. The USA has the highest incidence at 40-50 cases per million individuals [19, 78]. 

Approximately 80% of SCI patients worldwide are males under the age of 30 [79]. Statistics 

from developmental countries are lacking. The leading cause of SCI is falling, followed by 

transport related injuries [80].  

The disruption/compromise of tissue due to mechanical impact is called the ‘primary injury’ 

and the affected area will usually form the SCI epicentre. This is followed by inflammation, 

release of reactive species, glial scarring, and cyst formation, collectively termed the 

`secondary injury`. This usually represents a more detrimental period of SCI. The process of SCI 

can be categorized into four phases: immediate, acute, intermediate, and chronic (Fig. 2).  The 

immediate phase comprises the direct effects of the primary injury. Within minutes after 

impact, the often macroscopically normal-appearing SC experiences microglia activation, 

increased pro-inflammatory cytokine levels, cellular disruption, and necrosis, often 

Figure 2 Time-course of a spinal cord injury depicting the different phases and ongoing changes, adapted from 

[309] License Number 5604180032972 
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accompanied by oedema and haemorrhage leading to spinal shock1. The acute phase typically 

lasts between 2h up to 2 weeks after insult, and it involves further immune cell infiltration due 

to a disrupted blood-spinal cord barrier [82, 83]. Destroyed cell bodies cause Ca2+ dysregulation 

leading to neuronal loss [84, 85]. Moreover, increased ROS levels might potentially cause 

damage to lipids, DNA and proteins, thus contributing to injury aggravation. ROS levels can be 

increased for up to two weeks after injury [86-88]. Inflammatory cues initiate astrocyte 

differentiation and activation from ependymal stem cells, and formation of reactive astrocytes 

from pericytes located in blood vessels. Morphological alterations indicating reactivity in 

astrocytes are upregulation of GFAP [395, 396] and other intermediary filament proteins [397], 

as well as cell soma/process hypertrophy [395-398]. Similarly to astrocytes in the healthy state, 

reactive astrocytes exhibit heterogeneity based on the severity and location of injury and are 

influenced by the type of neuroinflammatory stimuli [395, 399-401]. Depending on CNS 

location, reactive astrocytes may become neuroprotective or neurotoxic [402-404]. The role 

of reactive astrocytes also changes longitudinally during injury progression. Astrocytes 

eventually contribute to glial scar formation, separating healthy from injured tissue, which aids 

ionic homeostasis and angiogenesis, and hence decreases oedema and BBB porosity [89]. Over 

time this scar becomes compact and impermeable [405], hampering axonal regrowth and 

thereby preventing recovery [395, 406].  Ablation of astrocytic activity in the injury area 

negatively impacts recovery, increasing peripheral immune cell infiltration and impairing BBB 

repair [407] [408]. The intermediate phase of SCI encompasses the manifestation and 

maturation of the glial scar through activity of astrocytes and pericytes and lasts up to 6 months 

after injury. Restoration processes such as axonal sprouting can be observed from 3 weeks 

after injury. These are insufficient to regenerate the full functionality of the injured areas. 

Affected axons degenerate, and the cell death and inflammation due to the secondary injury 

often leads to the formation of a CSF-filled cyst at the injury site. These processes also persist 

into the chronic phase with receding inflammatory activity. Although there is no cure for SCI 

yet, some compensating mechanisms have been described. The partial recovery observed in 

animal and human models is established through compensatory mechanisms and plasticity in 

the form of reorganization of circuits or by neurogenesis [90]. For example, the formation of 

corticospinal circuits below the injury site has been demonstrated in humans and monkeys in 

 

1 Loss of sensation, paralysis with gradual recovery following SCI described in 1750 by Whytt 81. Ditunno, 
J.F., et al., Spinal shock revisited: a four-phase model. Spinal Cord, 2004. 42(7): p. 383-395. 
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lateralized SCI, contributing to functional recovery, whereas this concept is less present in rats 

[91]. In contrast, symmetrical SCI in rats show greater recovery than in humans and primates. 

This reorganization and recovery are very variable and can be enhanced by physical training 

[92] and the contribution of transplanted NSCs [93, 94].  

1.1.2.1 SCI scoring 

Historically a vast array of mammals such as rats, cats, dogs and even monkeys have been 

used to study SCI. Rats are commonly used for studying SCI due to their similarity to human 

pathology, exhibiting cyst formation and poor motoric and sensory recovery [89, 92-95] 

Mechanistically, various methods have been employed to study SCI. Our group used a 

contusion model [96], with different impactor systems and parameters like weight and drop-

height allowing for modulation of injury severity [94]. Other techniques include dislocation, 

transection, dissection, and chemical-induced SCI, yielding different tissue lesions with varied 

responses [97]. To assess SCI severity and recovery, we utilized the Basso, Beattie, and 

Bresnahan-locomotor rating scale (BBB-scale) [98], a well-established tool for hindlimb 

motility scoring. The BBB-scale is widely used to compare SCI severity across studies, with 

high reproducibility in mild to moderate SCI [99]. Additionally, we implemented a novel 

kinematic evaluation approach to assess hindlimb functionality during locomotion. This 

method is more sensitive in detecting functional changes, and hence allowed us to reduce 

the number of animals used. 

1.1.3 Stroke 

Stroke is a leading cause of adult disability and the second leading cause of death globally 

Stroke patients not only experience high mortality rates but also significant disability, affecting 

physical and mental health, quality of life and daily activities [100]. Stroke can be categorized 

into ischemic and haemorrhagic types. Ischemic stroke represents approximately 87% of all 

stroke cases [101] and occurs when blood vessels supplying oxygen-rich blood to the brain are 

blocked. Haemorrhagic stroke, on the other hand, results from a ruptured blood vessel in the 

brain causing bleeding. Both forms lead to insufficient oxygen and glucose supply, disrupting 

metabolic processes and causing cell death. This cascade of events involves excitotoxicity, ion 

imbalance, oxidative and nitric stress, and inflammation, exacerbating the injury [102]. 

Microglial activation, a key component of this nonspecific innate immune response is 

characterized by the release of reactive oxygen species, cytokines, and proteases, potentially 
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worsening the damage [103, 104]. The damaged area forms two distinct regions: the ischemic 

core and the penumbra. The ischemic core has experienced irreparable cellular damage and 

lacks electrical activity, making it impossible to be repaired through therapeutic interventions. 

The penumbra is the hypoperfused area surrounding the infarct core, where the tissue is at 

risk but can be salvaged through therapeutic interventions [105]. After stroke, NSCs located in 

the SVZ and SGZ exhibit increased proliferation, typically reaching a peak around 1-2 weeks 

after the initial injury [106, 107, 108] Subsequent NSC migration towards the site of injury, 

caused by inflammatory chemokines such as chemokine (C-C motif) ligand 2 (CCL2)  and 

stromal cell-derived factor 1 α (SDF-1α) can be observed [109, 110]. Although the migratory 

response can last up to a year [111], the majority of these migrating progenitors will not 

functionally integrate into e.g. the striatum, and will subsequently die [106, 107, 112].  

1.1.3.1 Models and applicability  

Studying stroke in mice helps to understand the underlying mechanisms and to develop 

potential therapies. Several model systems are utilized in stroke research, each offering unique 

advantages and disadvantages. Commonly used model systems include transient middle 

cerebral artery occlusion (tMCAO) and photothrombotic stroke. tMCAO involves temporarily 

blocking the middle cerebral artery through a surgical procedure, mimicking the reperfusion 

seen in stroke patients, and allowing investigation of therapeutic interventions during this 

critical period. 

However, variability 

in extent and 

position of the 

induced stroke and 

additional damage 

and inflammation 

during reperfusion 

are limitations to this 

[113]. In Paper II, we 

Figure 3 Infarct Area A Illustration depicts areas of histological quantification. Ctx: Periinfarct cortex: Str1: 

Striatum 1 (closest to the SVZ); Str2: Striatum 2 (in 300 μm distance from the SVZ); CC: Corpus callosum; LV: 

lateral ventricle. B translation to a section of tissue representing the accuracy of infarct size. 
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applied the photothrombotic stroke model that uses injection of a photosensitive dye 

systemically and using focal illumination to create blood clots and localized ischemia. This 

technique enables precise control over the location and size of the induced stroke, allowing for 

standardized experiments (Fig. 3). Of note, the stroke is limited to the illuminated area, making 

it less suitable for studying global brain ischemia [114]. In addition, while animal models 

provide valuable insights into stroke mechanisms, they have limitations in replicating the full 

complexity of human stroke. Therefore, findings from these models need to be carefully 

interpreted and validated in clinical studies [115].  

1.1.4 Irradiation treatment 

Radiotherapy is a primary treatment for tumours in challenging-to-reach areas or specific 

cancer types2 [116-118]. The cytotoxic effects of radiation on tumour cells are attributed to 

double-strand DNA breaks or the formation of free radicals. In proliferating cells, frequent DNA 

integrity checks, and DNA damage triggers apoptotic pathways if not repaired during 

replication [119-121]. Photons exciting atoms generate free radicals, leading to the formation 

of ROS in the presence of water, causing secondary DNA, lipid and protein damage, ER stress 

which compromise cellular integrity [122, 123], [124, 125]. Importantly, radiation-induced 

damage affects neurogenic niches due to the presence of mitotically active cells. Microglial 

activation and autophagic activation accompany tissue repair and inflammation during 

irradiation [126, 127].  Beside the actual cell loss, stem cell and progenitor cell survival is also 

affected by irradiation, leading to complications in terms of regeneration [128]. This is often 

attributed to the neuroinflammatory aspects of irradiation [129]. Brain and spinal cord cancers 

are the second most common cancer in children and young adolescents (26%), with a rising 

survival rate due to irradiation treatment [130-133]. However, cognitive deficits and structural 

changes are observed in irradiated children [134, 135]. Various debilitating effects are already 

known such as impaired neural progenitor differentiation, cognitive late effects, and social 

impairments [136, 137]. This is caused by a plethora of irradiation-induced structural changes3 

[138-140], as well as changes in the contribution of new-born neurons during learning and 

memory formation [141].  Ionizing radiation is measured in grays (Gy), representing the 

absorbed dose of one joule of energy per kilogram of matter. It has three defined stages of 

 

2 Considered the appropriate treatment in more than 50% of cases. 
3 Such as abnormalities in vasculature, demyelination, and white matter necrosis. 
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effects: the physical phase (I), where charged particles interact with tissue; the chemical phase 

(II), leading to the formation of free radicals from damaged molecules; and the biological 

phase, which involves enzyme reactions, repair processes, cell death, and inflammation, 

ultimately leading to late radiation effects [107]. Fukuda et al. 2005 reported that a dose of 8 

Gy leads to growth retardation within the stem cell niches of the dentate gyrus (DG) and the 

SVZ [142]. While the DG does not seem to recover with time, the SVZ appears to recover to 

some extent [143]. Hence, ablation of neurogenesis by irradiation as well as changes in the 

niche microenvironment due to irradiation-induced neuroinflammation could contribute to 

the cognitive changes after treatment [144-148]. To evaluate the effect of irradiation on cell 

survival in living tissue, the biological effective dose (BED) is used. To illustrate BED: a single 

physical dose of 10 Gy is a biological effective dose (BED) of approximately 47 Gy. To put this 

in context: a dose of 8 Gy causes growth retardation of DG and SVZ and exacerbates hypoxia-

induced injury in mice [143, 149]. Malignant brain tumors are treated with up to 55 Gy, and 

children with leukemia may receive 18 Gy through whole-brain irradiation [150]. Modern 

radiation protocols employ multiple smaller doses, significantly reducing neurodegeneration. 

However, progressive memory and learning deficits may still occur in patients when specific 

brain regions, such as the temporal lobe and hippocampus, are irradiated [151, 152]. It is not 

clear in which way the response to CNS insults is affected post-irradiation and which cell types 

are afflicted. In this thesis we tried to further characterize the impact of irradiation in the 

developing brain on potential adult regeneration mechanisms and could show that formation 

of DCX+ neural precursor cells are decreased in irradiated animals [153]. The same is true for 

microglia cells. 

1.1.5 Traumatic brain injury (TBI) and traumatic axonal injury (TAI)  

TBI is characterized as an alteration in brain function caused by an external force. TBI 

encompasses a heterogeneous group of injuries with varying severity and outcomes depending 

on the societal possibilities to manage and treat the condition [154]. The initial impact on the 

brain results from the primary injury, followed by secondary pathological processes, often 

leading to secondary injury [155-157]. These processes induce oedema, vascular injury, 

mitochondrial dysfunction, excitotoxicity, and the formation of free radical species. The 

involvement of TAI lesions is a particularly negative prognostic marker, especially in brainstem 

areas [158, 159]. The Glasgow Coma Scale (GCS) is the gold standard for scoring TBI in clinical 

practice, assessing the consciousness level as well as eye, motor and verbal responses on a 
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scale from 3 (worst) to 15 (best). A GCS score ≤ 8 is classified as severe TBI [160]. Further 

evaluation of the injury during the acute phase is also facilitated by neuroradiology with 

computerized tomography being the gold standard [161].  

1.1.5.1 Neuroinflammation in TBI 

Inflammation accompanies TBI, with both detrimental and beneficial effects on recovery [162]. 

Neuroinflammation following TBI is elicited by the damaged tissue [162] and BBB disruption 

after trauma [157], allowing molecules of the periphery, such as albumin, fibrinogen [163] and 

complement factors [164] from the periphery to enter the CNS. Conversely, factors released 

from the damaged tissue, commonly known as Damage associated molecular patterns 

(DAMPs), enter the bloodstream [162, 165]. This initiates a cascade of early immune system 

responses. DAMPs additionally activate microglia and astrocytes [162]. Astrocytes can be 

further activated by microglia. Astrocytes release IL-6 and matrix metalloproteinase (MMP-) 9 

which increases BBB permeability [166, 167]. Furthermore, they produce additional cytokines 

and chemokines, which attract peripheral immune cells, with neutrophils arriving first followed 

by monocytes [168, 169]. The released immune mediators can have neurotoxic effects, 

stimulate ROS production, and support microglial-mediated MMP production [170-173]. At the 

same time, infiltrating macrophages are reported to be neuroprotective [162].   

Astrocytes possess great heterogeneity. More than 10 subtypes have been described in the 

healthy CNS, based on their function, expression profile, location, and morphology. They are 

involved in synapse formation and maintenance, neurotransmitter homeostasis, and 

contribute to BBB functionality. Astrocytes can also contribute to BBB disruption [174] and 

their activation is clear in e.g. TAI [175] even without the presence of peripheral immune cells. 

After TBI or other CNS insults astrocytes change function as described previously in the section 

on SCI. The brain stem is a region especially vulnerable to TBI/TAI, nevertheless the effect of 

region-specific astrocyte reactivity on neural survival has not been assessed. Moreover, most 

of the secondary pathological processes can be targets for prognosis, treatment, and injury 

management. Having access to a suitable model system is important to improve these 

approaches. In Paper III we assess the response of brainstem and spinal cord motor neurons 

to astrocytes activated by inflammatory stimuli trying to discern a potential secondary 

mechanism aggravating secondary axotomy in TAI. There we aimed to model region-specific 

effects of TBI-associated neuroinflammation astrocyte reactivity and neuronal survival. 
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1.1.6 Oxidative Stress 

Oxidative stress (OS) is a term to describe a flawed mechanistic interplay of pro- and 

antioxidants and their signalling roles in biological systems. OS is the result of excessive ROS 

and/or a failure in ROS scavenging systems. ROS scavenging is tightly controlled and mostly 

mediated by various combinations of reduction and oxidation reactions, so-called “redox” 

reactions, creating a “intracellular redox equilibrium”. Imbalances in this tightly regulated 

process result in disturbed cellular homeostasis and damage or structural changes of proteins, 

nucleic acids, and lipids in a biological system, leading to fragmentation of these 

macromolecules [176]. OS is traditionally used to describe detrimental effects in a system, such 

as DNA damage and lipid oxidisation. This has also led to a negative view of chemical 

compounds mediating OS: reactive oxygen species. This view of ROS has changed in recent 

years, with studies reporting that a redox imbalance in favour of oxidants can have positive 

effects on biological systems. For example, in Caenorhabditis elegans, where the deletion of 

mitochondrial superoxide dismutase (sod-2, antioxidant) leads to an increased lifespan [177].  

1.1.6.1 Reactive Oxygen Species  

Reactive Oxygen Species (ROS) are highly reactive molecules derived from molecular oxygen 

(O2) reduction/partial reduction, and they are central to oxidative stress. While oxygen is vital 

for aerobic life, its derivatives, including unstable free radicals with unpaired electrons in their 

outer molecular orbitals and potent oxidizing agents like hydrogen peroxide (H2O2) (Table 2), 

have a destructive potential. Initially, ROS were believed to only originate from the 

mitochondrial electron transport chain, releasing superoxide anions (O-2) as an unwanted 

Figure 4 depiction of ROS formation from oxygen. Horizontal layers indicate sub location of process: top layer: 

mitochondria, second layer: cell membranes, third layer: present in ubiquitous fashion, fourth layer: peroxisome. 
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byproduct [178]. Superoxide dismutase subsequently converts major parts of O2 to H2O2 that 

will be further processed to other ROS [179], for example superoxide anions, hydrogen 

peroxide and hydroxyl (OH-) (Fig. 4, Table 1). ROS readily engage in reversible or irreversible 

redox modifications when interacting with other molecules [180] in the form of reversible or 

irreversible redox modifications. The oxidant is thus reduced, and the reductant is oxidized, 

thereby compromising its identity. The redox reaction is not just the chemical activity of ROS 

that determines their impact; their biological response also plays a critical role. For instance, 

cell-cycle exit and entry into G0 or cell-cycle arrest is a typical response to ROS exposure. While 

high ROS levels can induce apoptosis, phagocytic cells (e.g. macrophages and microglia) 

produce ROS as part of the "oxidative burst" to eliminate invading microorganisms. 

Oxidoreductase enzymes, metal-catalysed oxidation, Fenton Reaction [181] and several other 

processes also lead to ROS production in a biological system (Fig 4). ROS play a role as intra- 

and intercellular signalling molecules and regulate the activity of transcription factors like p53, 

AP1, Nrf2, and NF-ĸB [182, 183].  

1.1.7 Hydrogen peroxide  

H2O2 is a chemical compound consisting of two hydrogen and two oxygen molecules that is 

weakly acidic (pH 4.2-5.1) and unstable, as it readily decomposes to oxygen and water under 

the liberation of heat. It can be stabilized by addition of acetanilide or similar organic materials 

[184]. H2O2 is used to clean wounds and as bleaching agent. Several reports indicate its 

protective and signalling functions within the cell – providing for example axon pathfinding 

cues [185-189]. Hydrogen Peroxide is a so-called ‘unfree radical’ and in chemical terms is 

poorly reactive due the lack of unpaired electrons. However, it is the main source of hydroxyl 

radicals when it decomposes in the presence of transition metal ions that are available in 

Table 1 Reactive species and their degradation products. 

REACTIVE SPECIES  ACTIVITY 

Superoxide anion ·O2
- free radical, t1/2= 1 x 10^-6 sec, generates H2O2 

Hydrogen Peroxide H2O2 oxidative agent, generates HO·, t1/2= h, depending on environment [109] 

Hydroxyl Radical HO· high reactivity, t1/2= 1 x 10^-9 sec 

Peroxynitrite ONOO- can generate HO· 

Ferrous iron Fe2+ Reacts with H2O2, generates ·O2
- 
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biological systems (in the human body mostly iron in the Fenton Reaction). The hydroxyl 

radicals are in turn one of the most reactive chemical species known [181] and have the 

potential to compromise the integrity of other molecules (Table 2). Their half-life is dependent 

on several factors such as temperature and composition of the solution [190]. Transmission 

distances of 1µm-10µm of signals via H2O2 in cells have been reported [191]. H2O2can diffuse 

up to 1.5 mm within tissue since it crosses cell membranes [192]. It is produced in every cell as 

a waste product during mitochondrial respiration, by the Nox1/2 complex, mediating redox 

reactions in the endothelium [193] or in phagocytes as a host defence mechanism [194]. 

1.1.7.1.1 ROS in the central nervous system  

The brain, despite being a small fraction of the body's weight, consumes a significant amount 

of oxygen in order to generate ATP (20% total body O2 consumption on 2% of the total body’s 

weight) [196], leading to increased production of free radicals [197]. Importantly, the brain is 

sensitive to oxidative stress due to low catalase levels, high iron content, and limited 

antioxidants, of which some being unable to cross the BBB [198, 199], among other factors 

[200-202]. High glutamate levels in the CNS can affect the glutamate/cysteine antiporter Xc-

transporter, interrupting cysteine transport into the cell and as such the de novo synthesis of 

glutathione (GSH), leading to increased oxidative stress [201, 202]. Another source of ROS is 

the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 2 (NOX2) with various 

isoforms (e.g. NOX4 in the Endoplasmic Reticulum (ER)), which generates H2O2 during protein 

folding [203]. While those ROS sources are common to multiple cells/organs, the CNS also 

possesses some additional and unique ROS derived from excitatory amino acids and 

REACTIVE SPECIES RELATIVE OXIDATION NUMBER 

Fluorine 2.23 

Hydroxyl radical 2.06 

Atomic oxygen 
(singlet) 

1.78 

Hydrogen peroxide 1.31 

Perhydroxyl radical 1.25 

Permanganate 1.24 

Hypobromous acid 1.17 

Chlorine dioxide 1.15 

Table 2 Reactive species and their relative oxidation number, indicating the tendency to gain electrons from 

another source [195]. 
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neurotransmitters. For instance, ROS are formed following the auto-oxidation of e.g., 

norepinephrine and dopamine [204]. Calcium is needed for signal transduction but can also 

activate neuronal nitric oxide synthase (nNOS) and increase nitric oxide (NO) levels. The latter 

can form peroxynitrite (ONOO-; Table 2). It is well known that especially the developing brain, 

which is rich in unsaturated fatty acids and redox-active iron and poor in antioxidants, is in 

great need of oxygen and thus vulnerable for OS [205]. Physiological levels of ROS affect the 

maintenance and viability of cells. Nrf2-Keap1 pathway plays a fundamental role in these 

processes by promoting an antioxidant transcription program [206]. Damage in microglia leads 

to elevated ROS production, which has been proposed as a driver of multiple sclerosis 

pathology, exerting OS and injury to tissue surrounding the MS lesions [207, 208]. OS can 

furthermore affect the endoplasmatic reticulum (ER) and increase cellular stress levels [209, 

210]. ROS-induced functional and mitochondrial loss as well as apoptosis contribute to ageing 

and neurodegenerative pathologies including MS, Parkinson’s disease, Alzheimer’s disease 

[211] and amyotrophic lateral sclerosis. The aged brain especially accumulates redox metals, 

and an abnormal metal metabolism accounts for a large portion of the generated ROS 

accredited to these pathologies [212]. Therefore, ROS research used to primarily focus on ROS 

in ageing and disease [17, 213-215], however, ROS levels can change in a biological context 

without causing oxidative damage per se. Chang et al. reported that PI3K/Akt signalling 

involved in hippocampal progenitor cell growth is governed by NOX2-derived H2O2 and O2 

[216]. The PI3K/Akt pathway is generally involved selecting growth and proliferation over 

differentiation in adult neural stem cells  [217] this has shown to be affected by endogenous 

ROS levels [554]. Indeed, hippocampal long-term potentiation (LTP) and axonal outgrowth and 

regeneration is regulated by NOX2, while H2O2 seems to act as an endogenous 

chemoattractant (e.g., for microglia) [185, 188]. H2O2 in specific has been shown to affect 

neural differentiation in an embryonic stem cell line through AKT and p38 pathways [218]. 

Cognitive impairments have been reported in mice lacking H2O2, as H2O2 from the electron 

transport chain (ETC) is involved in the regulation of dopamine release [219]. H2O2 also affects 

cell migration by modulating actin and cytoskeleton organization through cofilin [220]. 

Additionally, when transplanted, H2O2-treated mesenchymal stem cells increase BDNF and 

enhance therapeutic efficacy in SCI [186]. Furthermore, exposure to specific ROS types can 

lead to increased proliferation of NSCs [221]. One can conclude that ROS in the CNS can have 

contradictory effects. It is highly important to consider context, duration, and concentration, 
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but also the state (developmental, healthy, inflammatory and more) of the tissue and cells in 

contact with ROS. 

1.1.7.2 Defence line of antioxidants – Redox regulation 

With the appearance of aerobic metabolism, the need for antioxidants regulating oxidative 

radicals emerged (Table 3) [180]. The body produces and takes up antioxidants, which can be 

enzymatic or non-enzymatic. Non-enzymatic antioxidants include direct-acting molecules such 

as carotenoids, lipoic acid, and ascorbic acid, as well as indirect-acting molecules that bind 

metals to inhibit ROS generation. Transcription factors such as Nrf2 are also involved in OS 

defence. Nrf2 physiologically resides in the cytoplasm and is bound to the Kelch-like ECH-

associated protein 1 (Keap1)-Cul3 E3 ligase complex. In the absence of OS, Nrf2 is 

continuously recycled by the proteasome. Keap1 contains thiol (-SH) which makes it prone 

to oxidization. Once Keap1 is oxidized, Nrf2 is liberated and can translocate into the nucleus 

where it dimerizes with proteins from the MAF family [223, 224]. The Nrf2-MAF heterodimer 

regulates the expression of approximately 200 different transcripts of antioxidant response 

elements (ARE). The Nrf2-MAP complex plays an important role in sensing the redox balance  

in concert with thioredoxin (thioredoxin and thioredoxin reductase) and the glutathione 

system (thiol glutathione (GSH)) to contribute to the restoration of the redox homeostasis 

[225, 226]. Both pathways overlap and compensate for each other during OS defence. The 

key molecule in many redox reactions is cysteine, specifically its sulfuric atom which converts  

ENZYMATIC ANTIOXIDANT CELLULAR LOCATION SUBSTRATE REACTION 

Superoxide dismutase 

(Mn/Cu/ZnSOD) 

Mitochondrial matrix 

(MnSOD) Superoxide (O2·−) O2·− → H2O2 

Cytosol (Cu/ZnSOD) 

Catalase 
Peroxisomes Hydrogen peroxide 

(H2O2) 
2H2O2 → O2 + H2O 

Cytosol 

Glutathione peroxidase (GPX) Cytosol 
Hydrogen peroxide 

(H2O2) 

H2O2 + GSH → GSSG + 

H2O 

Peroxiredoxin I → VI (Prx) Cytosol 
Hydrogen peroxide 

(H2O2) 

H2O2 + TrxS2 → Trx(SH)2 

+ H2O 

Table 3 Antioxidants/oxidant scavengers and their mechanisms of action. Taken from [222] under the Creative 

Commons Attribution-Non-commercial-No Derivative Works 3.0 Unported License 
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peroxides and free radicals into less destructive compounds such as water. There are several 

cells within the CNS that facilitate the OS defence: glial cells (especially astrocytes) provide a 

source of GSH, by releasing it into the extracellular matrix, and subsequently supporting 

neurons that have a high metabolic activity but a low antioxidant defence system [227, 228]. 

The cell type with the highest GSH content in the brain is microglia, which are the major source 

of ROS [229, 230].    

Our group has reported that H2O2 exposure can led to downregulation of Gpx2,Gpx4, Sod1 and 

peroxiredoxin 1,2,5 expression [221]. Furthermore, OS-mediated modulation of occludin 

affects the function of tight junctions in the BBB [231]. ROS can thus also compromise the 

integrity of the BBB, making it more permeable for inflammatory components but also for 

antioxidants. 

Figure 5 Stem Cell Differentiation - hierarchical presentation of stem cells in respect to their differentiation potential. 

Ectodermal tissue gives rise to multipotent NSCs which generate cells from the neural lineage, such as neurons, 

astrocytes, and oligodendrocytes. The mesodermal lineage gives rise to e.g., microglia. All these cells contribute to 

proper CNS function. With increased cellular specification, the potential stemness decreases. ESC = embryonic stem 

cells, IPSC = inducible pluripotent stem cells. 
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1.2 STEM CELLS  

tem cells play a vital role in development, cellular differentiation, and tissue repair within an 

organism. The term ‘stem cell’ encompasses a diverse group of cells capable of self-renewal 

and differentiation [232, 233]. These contribute to development, cellular differentiation and 

repair processes within an organism. The archetypical stem cell, known as totipotent stem cell, 

originates from the fusion of a spermatocyte and an oocyte during early embryonic divisions 

(morula) [234], while all derived stem cells possess a restricted lineage (Fig. 5). NSCs arise from 

the ectoderm and are located along the ventricular neuroaxis, which serves as the starting 

point for brain development during embryogenesis [235]. NSCs demonstrate stem cell-like 

properties, including self-renewal and differentiation into specialized cell types such as 

neurons, oligodendrocytes, and astrocytes. While NSCs have been considered mostly dormant 

after the age of 25 [236], adult neurogenesis is nowadays well-established in mice, where the 

addition of e.g. newborn cells in the olfactory bulb through the rostral migratory stream (RMS) 

is most prominent [237]. In humans, adult neurogenesis is mostly associated with learning and 

memory, and occurs in the subgranular zone (SGZ) of the hippocampus. A few studies 

documented that these newborn neurons survive, integrate, and function in SGZ. However, 

whether and how these processes take place in other regions of the human CNS, for example 

the subventricular zone, remains to be proven [238, 239]. Reports on physiological adult 

neurogenesis in the human SVZ are limited, but NSCs from the SVZ can be reactivated in 

response to CNS injury, potentially replenishing lost cells [240]. However, the overall capacity 

Figure 6 Overview of intrinsic and extrinsic 

factors within the stem cell niche. We are 

interested in the interplay of inflammation 

(ellipse dotted line) and redox balance (grey 

ellipse) with neural stem cells. [Adapted from 

Y. Reinwald, J. Bratt and A. El Haj [1] under the 

creative commons license attribution 3.0, we 

rendered the image black and white and added 

the ellipses] 
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of NSCs to produce new cells declines with age [241, 242]. This has been proposed to be due 

to factors such as impaired lysozyme function leading to protein accumulation [243, 244], 

which can also be compromised by reactive oxygen species (ROS) [245]. 

1.2.1  Stem Cell Niche 

 The mammalian brain arises from several stem cell niches4: In this thesis, the main focus is on 

the SVZ, a cell layer adjacent to the lateral ventricles, known as the largest stem cell niche in 

the rodent brain [246, 247]. The stem cell niche refers to a specialized microenvironment 

surrounding stem cells, consisting of the stem cells themselves, the extracellular matrix (ECM), 

the vascular system, and supportive cells [248, 249]. Within the niche, various cell types 

mutually influence one another to regulate self-renewal and differentiation. Intrinsic 

processes, mechanical cues, and paracrine/autocrine signals (e.g., ROS, ions, Notch signalling) 

in combination with signal gradients play critical roles in keeping stem cells quiescent or 

proliferating, inducing migration, and ultimately govern differentiation or self-renewal 

(stemness) [250-253] (Fig. 6). High levels of canonical developmental signalling (Wnt, Notch, 

 

4 subgranular zone, the central canal in the spinal cord and the filum terminale 

CANONICAL SIGNALING PATHWAYS IN ADULT STEM CELLS AND THEIR NICHES 

Factor Tissue Stem cell Effect Reference 

Wnt/β-catenin 
Hematopoietic 
System 

  
Self-renewal/ 
proliferation 

[255] 

JAK-STAT &TGF-β  
Drosophila, support 
cells 

Cells surrounding 
support cells 

Self-renewal/ 
proliferation 

[256] 

Wnt/β-catenin Skin 
Hair follicle 
precursor 

Differentiation [257] 

Wnt/β-catenin Mammalian Brain Neural Stem Cell 
Expansion of 
population 

[258] 

BMPRIA signalling 
Haematopoietic 
System 

Haematopoietic 
stem cell 

Regulation of niche 
size [259] 

Table 4 Pathways/Factors and their effects on Stem Cells vary depending on the niche/tissue they are active in. 
Wnt/β-catenin can lead to self-renewal in certain cells while it promotes differentiation in others. 
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BMP) are commonly found in stem cell niches, underscoring their significance in maintaining 

the niche homeostasis [254]. Proper niche function is also essential for balancing proliferation 

and facilitating tissue regeneration. The importance of surrounding cells and released factors 

[260] was demonstrated in hematopoietic stem cells by e.g.  Zhang et al., who identified 

spindle-shaped N-cadherin+CD45− osteoblastic cells and BMPR1A (Bone Morphogenetic 

Protein Receptor Type 1A)  signalling as crucial in maintaining niche size and promoting stem 

cell features [259]. Although all stem cell niches share fundamental characteristics, the 

signalling pathways and factors that establish the niche environment vary between different 

niches (Table 4)[261]. In the CNS the SVZ is one of the main sites containing NSCs and lines the 

lateral ventricle wall. Additionally, reports indicate the existence of tissue-resident cells 

unrelated to any specific niche that exhibit stem cell-like behaviour. For instance, specialized 

tissue-resident astrocytes have been described as acting like NSCs, being capable of generating 

neurons under pathological conditions [3, 262].  

1.2.1.1 Neural stem cell niches: The subventricular zone  

The SVZ comprises four cell types: ependymal cells (E-type), stem cells (B1 type), transient 

amplifying intermediate progenitor cells (C type), and neuroblasts (A type cells) (Fig. 7). 

Ependymal cells exist in two morphologically distinct forms: Type-E1 cells are multiciliated, 

while Type-E2 cells are bi-ciliated. Both 

express S100B and CD24c and are post-mitotic. They are in direct contact with cerebrospinal 

Figure 7 NSC niche composition in the SVZ. 

Schematic overview on the SVZ in the murine 

brain. E = ependymal cells in direct contact with 

the CSF; Type-B cells in the subventricular zone 

(SVZ) are recognized as NSCs, and they give rise 

to intermediate transit-amplifying progenitors 

known as Type-C cells. Subsequently, Type-C cells 

generate migrating neuroblasts referred to as 

Type-A cells, which ultimately differentiate into 

mature interneurons within the olfactory bulb. 

Dashed arrows indicate the differentiation steps 

stem cells undergo starting from B Type Cells; V = 

Ventricle filled with cerebrospinal fluid (CSF), VZ 

= Ventricular zone, SVZ = Subventricular zone. 

[adapted after Bernstock [2] under the Creative 

Commons Attribution License (CC BY)] 
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fluid (CSF) [263], a crucial factor preserving stemness [264], and are connected to B-type cells 

through gap junctions [265], allowing them to modulate B-type cell proliferation.  B-type cells 

give rise to B1-type cells which are also in contact with the CSF and can directly generate 

oligodendrocytes to migrate towards the corpus callosum, contributing to myelination [266-

268]. Alternatively, they form B2-type cells which give also rise to oligodendrocytes and C-type 

cells through symmetrical division [269, 270]. Type-B2 cells are located in the brain 

parenchyma close to Type-A cells [271], and have contact with blood vessels but not the 

ventricle. These cells proliferate but their function is unclear [272, 273]. Type-C cells divide 

rapidly to generate A-Type cells when needed [274, 275].  In in vitro cultures, the average 

duration of a single cell cycle is 8h but it can vary [276, 277].  A-type cells, also regarded as 

neuroblasts, express doublecortin (DCX) and polysialylated neural cell adhesion molecule (PSA-

NCAM). In mice, A-type cells migrate through the rostral migratory stream (RMS) to the 

olfactory bulb, where they integrate into neural circuits, contributing to odour perception [277] 

[278, 279]. Their journey takes approximately two weeks during which they undergo one to 

two cell divisions [277]. A-type cells have the potential to give rise to neurons, 

oligodendrocytes, and astrocytes in the CNS. Differences in the expression and lineage of NSCs 

have been observed between in vitro and in vivo environments [3, 280-284]. Liu et al. reported 

that following stroke, only a fraction of upregulated genes overlap in vitro with in vivo samples 

[280]. Other reports indicate that there is a difference between the potential and the actual 

fate of NSCs in vivo vs in vitro [285], claiming that NSC in vivo can only differentiate into neurons 

[286] while in vitro neurons and oligodendrocytes could be observed [287] (Fig. 9). The specific 

cytoarchitecture of the niche plays a significant role in niche functions. During embryonic 

development, radial glia provide the 

scaffold for CNS formation. They will 

become a VCAM-expressing subset 

maintaining stemness [288, 289], and a 

GFAP expressing pre-B1-type subset [274, 

275]. Architectural changes in the niche 

have been associated with abnormal cell 

ratios [290, 291] and neurological 

conditions such as autism [292]. NSCs 

within the niche are regulated by extrinsic 

and intrinsic factors, including CSF and 

Figure 8 Neurospheres derived from mice SVZ NSC on day 

7 after plating. 
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epithelial cells [293, 294]. Some factors, such as epidermal growth factor (EGF), basic fibroblast 

growth factor (bFGF), and Sex Determining Region Y Box transcription factor (SOX1, 2, 3), 

maintain stemness, while others guide differentiation and fate decisions [295]. Differences in 

differentiation potential of NSCs have also been reported between various niches in the CNS. 

For instance, NSCs derived from the spinal cord exhibit more heterogeneity in function and 

regulation compared to those from the SVZ [296, 297]. The neurosphere assay, a commonly 

used method to identify NSCs in vitro, involves the generation of sphere-like structures from 

activated NSCs using EGF and bFGF (Fig. 8) [298]. These neurospheres can differentiate into 

neurons and glial cells when transferred to adherent plates without mitogens [13, 299, 300]. 

Additionally, the presence of NSC markers such as Sox2 can specify NSC populations within the 

CNS. Accordingly, we used this approach in Papers I, III and the Manuscript. 

1.2.1.1.1 Factors maintaining “Stemness” 

EGF is produced by neurons and glial cells [301], bFGF by glial cells [302]. These mitogens are 

used to keep NSCs in the culture in an undifferentiated, proliferating stem cell-like state [235, 

300]. bFGF is involved in early neural development, especially in neural plate formation and 

patterning [303]. During initiation of astrogliogenesis, a fraction of cells appears to respond to 

EGF [12, 13], which is a gliogenic transcription factor. These two factors were used in Papers I, 

III and IV to maintain the neurosphere cultures.   

1.2.1.1.2 Factors inducing cell cycle exit and differentiation 

NOTCH is a single-pass transmembrane protein involved in the transition from stem cell 

maintenance and expansion to differentiation [304, 305]. NOTCH signalling keeps stem cells in 

the undifferentiated state by repressing neurogenesis via controlling the activity of 

transcriptional regulators and bHLH family members Hes1 and Hes5 [306, 307]. It has been 

shown that the C-promoter binding factor 1 (CBF1/RBP-J), another NOTCH effector, is also 

required to keep NSCs from progressing to neural progenitor states [307]. NOTCH signalling 

itself is mediated by four different NOTCH receptors which can bind to five different ligands. 

Of these, only NOTCH-1 and Jagged-1 are expressed in the SVZ [308]. With the initiation of 

neurogenesis stem cells begin to express higher levels of another NOTCH ligand: Delta-like-1. 

Adjacent stem cells in the niche sense these signals too and remain undifferentiated or 

differentiate into astrocytes [309].  
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Figure 9 Stem cell lineage - The potential of stem cells may vary from in vivo to in vitro situations. Stem cells (upper 

panel) tend to give rise to one specific cell type in vivo (middle panel) while they can become different cell types in 

vitro (bottom panel). The first row presents different types of stem cells sources: Embryonic neuroepithelia cells 

(NEC), Radial glia cells (RGC), adult NSCs from the subventricular zone (SVZ) or subgranular zone (SGZ) as well as 

reactive astrocytes in the brain parenchyma. The second row represents what these cells predominantly 

differentiate into in vivo, and the third row shows which differentiation pattern is commonly observed in vitro. 

[Adapted from Götz et. al 2015 under the Attribution Creative Commons 4.0 International (CC BY 4.0) [3]] 
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1.2.1.2 Neural stem cell niches: Spinal Cord 

The spinal cord (SC) exhibits considerable activity-dependent plasticity, contributing to learning 

and motor skill maintenance [310, 311]. Adult stem cells in the mouse SC were identified using 

the neurosphere assay. Weiss et al. reported in the 1990s that 0.1% of isolated thoracic and 

0.6% lumbar SC cells in mice formed neurospheres [235], proving the existence of adult stem 

cells. These cells were ependymal cells primarily located in the central canal. Other 

proliferating cells with a more restricted lineage profile can be found in the parenchyma [312-

314]. Only 1-10 % of the cells inside the SC-derived neurospheres can give rise to new 

neurospheres [313-315]. Cells dissociated from these neurospheres are more inclined to 

differentiate into oligodendrocytes than neurons after SCI, both in vivo and in vitro. Even after 

clonal expansion in vitro these cells remain a heterogenous population expressing variable 

levels of markers indicating stem cell (CD133), astrocytic (GFAP, Adhl1l1), radial glia (CD15, 

Blbp, Glast, RC2) and oligodendrocytic-lineages (NG2, A2B5, PDGFR). Different areas5 of the SC 

give rise to varying ratios of neurons, astrocytes, oligodendrocytes, and radial glia. These cells 

retain their specific Hox-gene expression profile even after several passages in vitro [314, 316], 

which is a factor we consider in Paper III. In contrast to the subventricular zone (SVZ), the 

central canal lacks a distinct subependymal layer. Ependymal cells, neuronal-like cells, and 

tanycytes (radial ependymal cells) are dispersed around the central canal in ependymal and 

subependymal positions, with different functions related to CSF contact and blood vessel 

connections. Studies in rodents have indicated that GFAP+ cells, which have astrocytic 

features, may give rise to neurospheres, potentially originating from both the central canal and 

the parenchyma. Sabourin et al. explored the cell population giving rise to neurospheres in 

2009 [314]. They used a hGFAP-GFP transgenic line to examine the hypothesis that GFAP+ cells 

give rise to neurospheres. Indeed, they could show that >80% of the neurospheres contained 

at least one or several GFAP+/GFP+ cells. This concords with observations from the SVZ 

demonstrating stem cell properties in cells with astrocytic features [317]. These cells, however, 

could also originate from the parenchyma since GFP was not selective for cells in the central 

canal [314]. In 2008 Meletis et al. examined cells located only in the central canal using FoxJ16 

 

5 cervical vs lumbar vs brain NSC, lumbar gives rise to 30.8% less radial glia, and 6.9% less neurons compared 
with cervical NSC 

6 Selected by FoxJ1 expression. FoxJ1 is specifically expressed in epdendymal cells in the adult CNS 
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expression. They found that 0.2% of the extracted cells could form neurospheres, but they 

could not detect GFAP+ expression in these cells, concluding that stem cells in the SC are GFAP- 

ependymal cells [313]. Later transcriptional analyses were however able to show the 

expression of GFAP in FoxJ1+ cells in the SVZ [318]. The contradiction in these studies could be 

an indication for several different stem cells populations in the SC with an unclear importance 

for GFAP as indicator for the presence of stem cells. Most of our knowledge of niche 

architecture in the SC originates from rodent studies. However, human SC studies from organ-

donor patients revealed occluded, disorganized, and hypocellular central canal regions 

containing GFAP+ filaments and nerve fibres. Neurosphere formation from isolated human 

central canal cells was much less frequent, indicating differentiation into GFAP+ cells and 

neurons, but with limited proliferative potential [319]. In rodent studies, a variety of cell 

populations in the central canal region could be shown. GFAP+ cells are frequently in direct 

contact with CSF, and a fraction of the cells in contact with CSF expressed Nestin. Neurosphere 

formation from isolated central canal cells occurred to a much smaller extent (0.001-0.003%), 

and upon differentiation generated GFAP+ cells and neurons. While proliferation was evident 

using Ki67 expression, it was not possible to passage these spheres, indicating a lower 

proliferative potential. In our own hands, neurospheres could be generated from the human 

filum terminale and have been reported to form neurons [320]. However, the passage of 

neurospheres generated from human samples was difficult. 

1.2.2 Neurons, Oligodendrocytes and Astrocytes  

Neurons comprise soma, dendrites, synapses, and typically an axon. Neurons have the ability 

to transmit electrical impulses through ion channels (Na+ and K+) and the Na+/K+-ATPase 

pump, while voltage-gated Ca2+ channels enable neurotransmitter release for chemical 

communication [321]. Transcription factors influence neuronal differentiation from NSCs, 

regulating quiescence and activation.  We studied one example, the neuronal repressor hairy 

and enhancer of split-1 (Hes1) in the Manuscript.  Hes1 gene deletion promotes formation of 

neurons, while oscillatory Hes1 expression modulates NSC quiescence by inducing 

differentiation  [309, 322]. Oligodendrocytes play a crucial role in signal transmission by 

insulating neuronal axons with myelin for fast transmission of electrical signals and for 

providing trophic support [323]. Oligodendrocytes mature chronologically after astrocytic and 

neuronal maturation and establish the neural network together with astrocytes and neurons 

[324]. Oligodendrocyte development is also guided by transcription factors [325, 326], 
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epigenetic modulation [327-329], translational and post translational modifications [330-332]. 

Transcription factors (TF) such as Olig2, Sox10 and Nkx2.2 are key players in oligodendrocyte 

progenitor cell (OPC) differentiation. Olig2 and Sox10 are expressed by oligodendrocytes. 

OLIG2 induces Sox10 and a positive feedback loop maintains Olig2 expression. Sox10 is also 

modulated by the nuclear factor of activated T cells (NFAT) protein NFATC2. NFATC2 lifts the 

inhibitory effect of OLIG2 on SOX10 induced Nkx2.2 expression and vice versa [333]. Sox10 is 

additionally controlled by phosphorylation of the TF FOXO1 [334]. Importantly, Foxo1 can 

additionally be activated by ROS as will be discussed in later [335, 336]. Tcf7l2, restricted to the 

oligodendrocyte lineage, mediates crosstalk between HDAC1/2 and canonical Wnt signalling 

to regulate oligodendrocyte differentiation [337, 338].  In addition to its role in neuronal 

differentiation, Hes1 also plays a role in oligodendrocyte differentiation as an Ascl1 repressor. 

Low Ascl1 expression oscillates in response to Hes1 in OPCs and leads to OPC proliferation. 

Conversely, sustained overexpression of Ascl1 decreases oligodendrocyte formation [322]. In 

addition to the effect of transcription factors, regulatory RNAs such as the long non-coding 

RNAs lncOL1 and lnc158 promote oligodendrocyte differentiation [339, 340], often by 

interference with transcriptional inhibitors. In models of CNS demyelination, the differentiation 

and re-myelination of oligodendrocytes was induced by the micro-RNA miRNA-146 [341-343]. 

Complete maturation is reached with the formation of myelin and the establishment of 

interplay between neurons and oligodendrocytes. The process of oligodendrocyte maturation 

is mainly completed by the end of adolescence. It has been suggested that plasticity is mostly 

due to myelin exchange, the oligodendrocyte population being stable with an annual exchange 

rate of only 1/300 [344]. Non-developmental myelination is observed after demyelination 

[332] and seems to be crucial to motor skill learning [345, 346]. Thus myelin is a dynamic 

structure throughout life [347], and it responds to neuronal stimulation in particular [348].  

Astrocytes provide trophic support to cells in the CNS. They are the first cells arising from NSC 

during development as radial glia, also providing cues such as EDF and BMP to maintain 

quiescence in the stem cell niche [349]. Parenchymal astrocytes exhibit neurogenic properties 

in response to microenvironmental cues like NOTCH and BMP signalling [262]. Astrocytes are 

the most abundant cell type in the CNS. Their podocytes establish the BBB and fulfil a series of 
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essential functions maintaining tissue homeostasis7. In response to CNS insults, those 

astrocytes in close vicinity to the insult undergo reactive astrogliogenesis. They respond 

particularly to cytokines such as interleukins and TNF, which we worked with in Paper III, 

activate the immune response and interact with microglia. Furthermore, the reactive 

astrocytes near the site of insult undergo significant changes – such as hypertrophy, increased 

expression of intermediate filament proteins, enhanced proliferation, and secretion of 

cytokines, chemokines, growth factors, and neurotrophic factors –and contribute to glial scar 

formation [350]. This response can vary depending on the extent of the insult as well as the 

brain region affected. 

1.2.3 Neural Development versus Adult CNS plasticity  

Neural embryonic development is extremely tightly orchestrated and limited to a specific 

timeframe in which several processes proceed in an organized, partially parallel manner 

governed by internal and external cues [351]. Neural development is highly conserved 

between mammals [352]. The process of embryogenesis in the cerebral neocortex is visualized 

in Figure 10. Neurulation is the process of the neural plate8, composed of neural epithelia cells 

(NEC), bending and subsequently fusing to form the neural tube. This occurs in rodents around 

gestation day (gd) 10 (birth at gd 20-21), and in humans between gd 24-28 [353-355]. After 

forming the neural tube, NEC convert to radial glia cells (RGC), stretching out from the 

ventricular zone towards the pial surface, giving the framework for cortical construction. 

Regions with large neuronal output establish a SVZ-like structure during early embryogenesis 

[356]. This developmental process is not only governed by chronologically released cues but 

also by tissue patterning. While NEC can generate all CNS cell types in vitro [357, 358], NEC in 

vivo will generate different progeny depending on their position. Additionally, there are several 

highly conserved signalling pathways governing CNS development. Similarly to adult 

neurogenesis, the Wnt/β-catenin pathway plays a critical role in neural tube development 

[359]. Accordingly, disturbance in Wnt signalling has been implicated in several 

neurodevelopmental disorders such as schizophrenia and autism [360-362]. In the Manuscript 

we see NOTCH signalling being affected by H2O2 exposure. NOTCH controls proliferation, 

 

7 Production of trophic factors such as BDNF, EGF and NGF 321. Pöyhönen, S., et al., Effects of Neurotrophic 
Factors in Glial Cells in the Central Nervous System: Expression and Properties in Neurodegeneration and Injury. 
Frontiers in physiology, 2019. 10: p. 486-486. 
8 Derivate of the ectoderm, located directly above the notocord 
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differentiation, and apoptosis in the developing brain [308, 363-365]. The NOTCH receptor 

interacts with membrane-bound ligands Delta and Jagged on the neighbouring cells, leading to 

cleavage of intracellular domains which then translocate to the nucleus and act as 

transcriptional activator for example for Hes1 [365]. Sonic Hedgehog signalling is involved in 

neural tube patterning, ventral forebrain neuronal differentiation, cerebellar neuronal 

precursor proliferation and midbrain dopaminergic differentiation [366-369]. Neurotrophic 

factors such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are 

involved in neurogenesis too [370]. They bind to tyrosine protein kinase receptors (TrkA, TrkB, 

TrkC) and to the p75NTR receptor, and mediate various downstream signal transduction 

cascades [371, 372]. Moreover, increased BDNF levels leads to stimulation of NSC proliferation 

and formation of neurons in the olfactory bulb (OB) [373, 374]. Neurogenesis in most 

mammalian brain regions decreases shortly after birth while gliogenesis persists during 

adulthood [375, 376]. 

Figure 10 The CNS during embryogenesis - development in a time-dependent manner. A Representation of CNS 

cell genesis during development in humans. From neuroepithelial cells (NEC) located in the neuroepithelium (NE), 

a series of cell types are produced including radial glial cells which create a scaffold for cells to migrate along 

generating the different layers of the cortical plate (CP). Neurogenic intermediate progenitor cells (nipc) are 

formed earlier than oligogenic intermediate progenitor cells (oipc). Nipc subsequently give rise to neurons 

respective Oligodendrocytes and astrocytes.  B-D During different stages of development specific proteins are 

expressed and can be used to indicate celltype and developmental stage. Here the most common marker for 

oligodendrocyte differentiation is displayed. In this Thesis B SOX10, OLIG2 and GALC have been used to identify 

different maturation stages of Oligodendrocytes C GFAP to represent astrocytes and D DCX and Tuj1 to identify 

neurons. Cp - corticalplate; iz - intermediatezone; l1–6 - layers1–6; mz - marginal zone; Rgc - radial glial cells; SVZ 

- subventricular zone; VZ - ventricular zone. From (zhang and jiao 2015 under the Attribution Creative Commons   

3.0 Unported (CC BY 3.0)[5])  
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Hypothetically, adult neurogenesis is a process that can occur at any given time point and is 

triggered by external factors. Despite the implicated lack of plasticity in the CNS reported by 

Cajal [377, 378], Altman later observed the emergence of newly developed neurons in the 

adult brain of rodents and felines by administering 3H-thymidine and subsequently detecting 

its incorporation into neurons [9]. This seminal work introduced the concept of adult 

neurogenesis. Subsequent investigations validated the occurrence of adult neurogenesis in 

avian species, zebrafish, rodents, and non-human primates. It was only in 1998 that Eriksson 

et al. provided compelling evidence of adult neurogenesis in the human dentate gyrus through 

the use of BrdU labelling [379]. Notably, adult neurogenesis exhibits species-specific 

differences, with neurogenic regions in adult rodents being distinct from those in humans. 

While adult neurogenesis is robust in certain brain regions of rodents, such as the SVZ and SGZ, 

the process appears to be primarily an adaptive response in adult humans, activated in specific 

brain regions under exigent conditions or in response to injury. Human adult neurogenesis has 

been shown in forebrain samples from epileptic patients [380, 381].  Work from the Frisén Lab 

at Karolinska Institute using C14 carbon dating to reveal the age of individual cells supports this 

assumption [382, 383]. Age [384], stress [385], M1 microglial activation [386] and inflammation 

can inhibit adult neurogenesis or progenitor maturation, while exercise [387], activation of M2 

microglia9 [388] and antidepressant intake [389] seem to promote adult neurogenesis. 

Neurogenesis in the adult brain is regulated by an abundance of factors and pathways. It is 

more frequently studied in the SGZ, but the SVZ has also been assessed. It has been shown that 

in the SVZ the Wnt/β-catenin pathway stimulates NSC proliferation and self-renewal in vivo 

and in vitro [390] and so does NOTCH [391]. Sonic Hedgehog has been shown to be required 

for proper NSC maintenance and neuroblast migration [392]. Additional ways steering NSC 

activity in the SVZ include growth factors (IGF-1 and BDNF increase neurogenesis [393, 394]), 

Transcription factors (e.g. CREB is required in vivo for neuron al survival and dendritic 

arborization [395]) and epigenetic regulators (miR-124 promotes neuronal differentiation in 

vivo and in vitro [396]).  

In the Manuscript we especially focussed on adult oligodendrogenesis in the SVZ. Evidence for 

post-natal oligodendrogenesis (postnatal day two to three) in the SVZ was provided using 

retroviral lineage tracing [397, 398], and adult oligodendrogenesis was indirectly shown using 

 

9 M1 & M2 Microglia 
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BrdU injections and subsequent assessment of BrdU positive oligodendrocytes found in the 

corpus callosum [399, 400] after demyelination. As previously mentioned, demyelination is a 

driving factor for adult oligodendrogenesis as it increases the expression of pro-

oligodendrogenic transcription factors such as Olig2, Ascl1, and Nkx2.2 [401]. It also increases 

the NSC proliferation followed by a surge in oligodendrogenesis [402]. A similar pattern was 

evident in post-mortem brains of Multiple Sclerosis (MS) patients [403] together with a 

decrease in neurogenesis [404]. The NSC multipotency observed in vitro has been challenged 

by in vivo data. Live imaging of the SVZ revealed that a single NSC gives rise to either neurons 

or oligodendrocytes, but not to both, and that expression of Pax6 and Olig2 determines a 

neural vs an oligodendrocytic fate respectively [287, 405]. So far, it has not been possible to 

demonstrate cortical neurogenesis in humans [406, 407], neither by determining the isotope 

14C levels in individual cortical neurons [383] nor by using magnetic resonance spectroscopy 

[408, 409].  These studies demonstrated the complexity of NSC proliferation and differentiation 

during development and in adulthood. Our research presented here addressed how 

inflammatory stimuli can impact NSC biology, whether similar pathways are activated, and if 

their modulation during pathologic conditions could support regeneration.  

1.2.4 Stem cells in in regeneration 

While avid regeneration of tissue can be observed in invertebrates and other vertebrates, this 

process is more restricted in mammals [410]. Yet allogenic and autologous stem cell 

transplantations are a well-documented procedure in modern medicine and can contribute to 

alleviation of neurodegenerative diseases [411]. NSCs in adults respond to a wide range of 

physiological and pathological conditions including ageing, epilepsy, tumour development, 

drug addiction and infections, with e.g., cell replacement or senescence [412-414]. Cells of the 

immune system and factors released during inflammation have an impact on stem cell fate [20, 

415]. Improved functional recovery after transplantation of NSC has been reported in rodents 

[416, 417] as we also demonstrated in Paper I. To support, stimulate, or to improve the natural 

regeneration capacity in mammals, various approaches including epidural stimulation, physical 

exercise and transplantation of stem cells have been tested in rodent models [418, 419]. 

Transplantations have been explored using a variety of stem cell sources in animals [420], 

including co-transplantation with ectopic cell types to benefit from their functions [421]. NSCs 

transplanted into the spinal cord survive to varying degrees depending on the SCI phase during 

which the transplantation occurs [422-424]. Indeed, transplantations during the intermediate 
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phase of SCI presented with superior survival compared with the acute or chronic phase [425, 

426], but ultimately the best graft survival chances are in the uninjured or normal-appearing 

parenchyma [427, 428]. Reports of the differentiation potential of transplanted NSCs are 

diverse. Some studies suggest that NSCs can differentiate into all cell types derived from stem 

cells in the CNS [429, 430], others report only the formation of astrocytes [431, 432]. It has 

been unclear in which way the transplanted NSCs affect the inflammatory environment, and 

which cells are formed that could contribute to functional recovery. It is known that the 

microenvironment, such as the distance to the injury epicentre, can impact the fate of 

transplanted NSCs [433]. We demonstrated that transplanted NSCs ameliorated the 

inflammatory profile in vivo and that NSCs gave rise to oligodendrocytes, both processes that 

could improve hind limb functionality [96]. A few studies reported the formation of functional 

synapses between host and donor cells [433-435], while others have not observed such 

interactions [436, 437]. Studies also differ regarding the reported degree of improvement in 

hind limb function after transplantation, with some showing partial recovery [422, 436, 438] 

and others reporting no recovery [427, 431, 439]. To assess functional recovery post 

transplantation in a comprehensive way we applied, additionally to the Basso, Beattie, and 

Bresnahan-locomotor rating scale, a kinematic evaluation approach measuring several 

outcomes of hind limb functionality and sensory functions, enabling a more accurate and 

sensitive assessment of function. Transplanted NSCs can suppress the classical activation of 

macrophages [440, 441], influencing inflammatory processes and suppressing apoptosis [435, 

437]. Most studies show a modest clinical recovery in animal models, mainly resulting from 

secretion of trophic factors, enhanced remyelination, differentiation of NSCs into astrocytes, 

oligodendrocytes and neurons, axonal regrowth, and amelioration of inflammation [441-447]. 

Transplantation of cells in neurodegenerative diseases, such as intrastriatal co-grafts of 

autologous adrenal medulla and peripheral nerve cells in Parkinson's disease, has also yielded 

functional improvement in patients [448]. Studies with human fetal spinal cord-derived NSCs 

and human-induced pluripotent stem cell-derived NSCs have demonstrated the ability to grow 

across the injury border in rats [443, 449], and a study on human SCI supports the safety of 

using NSCs in transplantation [450], encouraging further potential in stem cell transplantation. 

In conclusion, understanding of target specific transplantation strategies and the impact of 

inflammatory processes on NSC is crucial for improving survival and integration in the 

pathological environment. 
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 AIMS 

The overall aim of this thesis is to characterize the effects of inflammatory signals on NSC 

proliferation, differentiation, and self-renewal, and to study this in the context of regeneration. 

We addressed these specific scientific questions in each study: 

Paper I: Does the transplantation of immune-compatible stem cells contribute to functional 

recovery? 

Paper II: To what extent does irradiation of the juvenile CNS affect the NSC response to a later 

injury?  

Paper III: Can we model the impact of neuroinflammatory astrocytes on motor neuron survival 

in vitro to understand an aspect of neuroinflammation in the brain stem region? 

Manuscript: How does H2O2, an inflammatory mediator seen in many CNS pathologies, affect 

NSC differentiation in vitro and in vivo? 
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 MATERIALS AND METHODS 

3.1 ETHICAL CONSIDERATIONS 

We used various animal models in this thesis to study NSCs in the context of inflammation. 

Using animal models is one of the biggest ethical issues in my research, but it is currently 

unavoidable. One big concern is the validity of results obtained from animal studies. An animal 

model is never identical to the human system the question of the insights gained from it and 

its applicability to the human situation remains open. Yet there is no good alternative available. 

Beside the data generation, part of the research strategy is addressing the suitability of the 

experimental approach and considering whether the use of particular models justifies the 

process. Hence, I include the section Ethical Considerations in this thesis: 

Methods affecting the well-being of the experimental animals in use are:  

- Sacrificing mice, dissecting the subventricular zone in the brain  

- Inducing SCI in rats; subsequently transplanting cells, assessing the outcome with 

immunohistochemically and physical performance-related methods  

- Injecting H2O2 into the cisterna magna of mice 

We do recognize the need to minimize suffering in experimental animals as they are beings 

worth protecting and considering ethically. I think it is essential to always assess how to make 

use of animals in the best way. The three Rs – Replacement, Reduction and Responsibility – 

can guide us. In vitro experiments should be preferred whenever possible. We work with 

primary cell cultures and embryonic stem cells, and thus the need to sacrifice mice arises. In 

this scenario, no animal experiments and additional suffering are involved, and the number of 

mice needed is rather low, which I consider a big advantage. We also have to inflict harm when 

inducing SCI as well as IC. In doing this we always tried to optimize experiments and minimize 

suffering to the best of our abilities. We additionally developed the kinematic assay as a new 

approach to score functional recovery with higher sensitivity, and hence minimizing the 

number of animals needed.  

In terms of “publication ethics”: the recommendations of the International Committee of 

Medical Journal Editors on handling authorship apply. 
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3.1.1 Ethical Approvals 

All experiments were conducted in accordance with the ethical permits granted by the Swedish 

Board of Agriculture´s regional Stockholm County ethics committee (Sweden) and with 

Swedish legislation and my best knowledge and capabilities. 

Ethical approval Paper Relevance Additional Information 

N38/16 I Cell harvesting  

N196/15 I SCI, cell transplantation  

N12317/17 I SCI, cell transplantation  

GBG 317-2012 II Irradiation, Photothrombotic Stroke  

N275/15 III Cell harvesting 
Amendment under #9182-
2018 

N104/14 III Embryonic Stem Cells  

N275/15 Manuscript  Cell harvesting 
Amendment under #9182-
2018 

17607-2021 Manuscript  Intra cisternal injections  

3.2 METHODS AND MATERIALS  

For all methodological approaches used to compile this thesis, I here refer to the material and 

methods sections in Papers I-III and the Manuscript.  

  

Table 5 Ethical Permissions presented by Paper. 
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 RESULTS AND DISCUSSION 

*All of the following overview images were created using BioRender.com and Inkscape. 

4.1 PAPER I  

 

In this study, we transplanted NSC into the epicentre of an SCI in its acute phase. This enabled 

us to analyse the impact of NSCs transplanted into SCI on motoric functionality and the 

inflammatory environment as well as the trajectory of the transplanted cells. These are the 

main findings: 

 

1.) Amelioration of the inflammatory environment by downregulation of genes related 

to  immune system response and decreased production of cytokines 

 

2.) NSCs differentiate predominantly into oligodendrocytes and contribute to 

myelination 

 

3.) We observed enhanced recovery of hindlimb function post-transplantation. 

 



RESULTS AND DISCUSSION 

Page | 45  

Amelioration of the inflammatory environment by downregulation of genes related to 

immune system response and decreased production of cytokines: 

Understanding the microenvironment, especially the immune profile, that transplanted NSC 

are surrounded by is important to interpret observed changes and processes. To do so we 

analysed global transcriptomic changes in NSCs sorted three- and four-weeks post-

transplantation into the SCI. This revealed downregulation of genes related to cytokine 

production, immune system response, and cell migration at three weeks, while synaptic 

signalling-associated genes were upregulated at both three and four weeks. These 

timepoints were chosen to capture the acute phase after SCI and thus affecting secondary 

injury mechanisms [451, 452]. In this study we used depletion of NSCs as control group since 

it was difficult to find a suitable control cell population to inject. The NSC depletion was 

initiated directly after transplantation to avoid loss of diphtheria-toxin susceptibility. 

Previous studies have reported that NSC transplantation can improve synaptic connectivity 

post-SCI, which aligns with our transcriptome findings showing an increase in synaptic 

signalling post transplantation [422, 434, 435, 438, 453, 454]. The downregulation we 

observe in the transcriptome of genes involved in cytokine production, immune system 

response, and cell migration at three weeks (Fig. 11 A). This returns to baseline at four weeks, 

can be closely followed when looking at the protein expression of cytokines in the CSF which 

we analysed three-, six- and twelve-weeks post-SCI. We observed significantly lower levels of 

pro-inflammatory cytokines (interleukin-1a (IL-1a), IL-1b, IL-2, tumour-necrosis-factor-a) in the 

CSF at three weeks in animals receiving NSCs. This effect was not evident at six- and 12-weeks 

post-SCI (Fig. 11 B). To our knowledge, a comprehensive assessment of cytokines/chemokines' 

protein concentration in the CSF after SCI is currently lacking. There are studies on the cytokine 

profile in the blood post-injury, and its diagnostic potential as an outcome predictor [455]. 

Some studies have measured cytokine levels in CSF in dogs post-SCI [456], but translating these 

results into the rat model is not straightforward. Despite the absence of a suitable reference 

point, accurately predicting outcomes during the acute phase of SCI is vital for effective care 

planning and rehabilitation strategies, and thus CSF measurements could provide increased 

diagnostic accuracy.   
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NSCs predominantly differentiate into oligodendrocytes and contribute to myelination.  

We were also interested in the differentiation trajectory of transplanted NSCs. We observed 

long-term survival (12 weeks) of transplanted NSCs, which coincided with downregulation of 

apoptosis-related genes and the absence of caspase-3-positive NPCs. We also captured 

upregulation of genes associated with myelination and oligodendrocytes at three- and four-

weeks post-SCI, indicating oligodendrocyte differentiation which was confirmed by histological 

stainings at 12 weeks post-SCI, indicating enhanced myelination (visualized using antibodies 

against CNPase, MBP) and oligodendrocyte differentiation (visualized using antibodies against 

CC1, OLIG2) compared to the control group (Fig. 11 C).  Long-term survival of transplanted cells 

was previously reported, thus validating the functionality of our experimental approach [429, 

457-460]. The successful long-term survival of transplanted cells and enhanced functional 

recovery may be attributed to using littermate NSC donors. This immune-compatible model 

promotes high NSC integration and filling of the cyst cavity. Transplanted NSCs also 

differentiated into low numbers of astrocytes and neurons, consistent with previous reports of 

their potential to differentiate into various cell types of neuroectodermal lineage [429, 430, 

435]. Glial cell differentiation was predominant in our study, a finding which is supported by 

others [460, 461]. It also agrees with the phenotypical changes we observed in the Manuscript 

after exposure to inflammatory stimulants. Differentiation preferences among NSCs vary based 

on the CNS site of origin [316]. During homeostasis, NSCs from the spinal cord tend to favour 

gliogenic differentiation, while those from the SVZ exhibit a higher inclination towards 

neurogenic differentiation. However, under inflammation-induced conditions, differentiation 

outcomes shift for NSCs from different sites. SC-derived NPCs showing an increased propensity 

for neurogenic differentiation [297] and SVZ-derived NPCs demonstrating a preference for 

gliogenic differentiation [404]. Glial scar formation, typically driven by astrocytes, was not 

assessed in our study. Future research could investigate whether inhibiting astrocyte-mediated 

glial scar formation enhances functional recovery. 

 

Enhanced recovery of hindlimb function: 

Understanding the impact of increased oligodendrocyte formation and myelin production as 

well as the NSC-modulated inflammatory responses to SCI is ultimately interesting when it 

improves functionality. Motor function improvement post-transplantation was not a surprise 

as it has been already reported in several studies [438, 440, 453, 461-463]. We additionally 

measured factors such as coordination, step cycle process and stepping pattern, and iliac crest 
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height to obtain a more comprehensive view of hindlimb function. All these factors showed 

degrees of improvement post-transplantation (Fig. 11 E-F). Additionally, we observe BBB-scale 

scores returning to saline/sham baseline if we ablated the transplanted NSC using 100 mg/kg 

diphtheria toxin (DT) via intraperitoneal (i.p.) injections targeting only transplanted cells. These 

results prove a causal relationship between transplantation of NPCs and enhanced recovery in 

hindlimb function (Fig. 11 D). Ablation of the transplanted NSCs has been studied previously 

[464, 465], but not during the acute/subacute phase of SCI using NSC from littermates. 

We did not assess the impact of NSC transplantation on autonomic functions in this project, 

but many others did look especially at bladder function post-SCI and stem cell transplantation 

with varying outcomes [466]. We noticed for example a lack of bladder control in our animals 

post-SCI, which ought to be assessed as it is an issue frequently reported by SCI patients [467]. 

In conclusion, the findings of this study provide evidence supporting the beneficial effects of 

NSC transplantation in improving motor function and enhancing hindlimb recovery in the 

acute/subacute phase of SCI, indicating a role for the inflammation modulating capacities of 

NSC as well as their pro-myelination properties.  

Overall, this study contributes to the understanding of the therapeutic potential of NSC 

transplantation in SCI and provides a platform for further studies to explore the long-term 

effects and to investigate the broader impact on sensory and autonomic functions. 

 

Figure 11 A Barcode plots for top functional categories presented with enrichment score (E) and FDR (p) following 

competitive gene set testing. B Level of pro-inflammation as log2(fold change) in relation to expression in healthy 

animals and time after SCI. Mean is surrounded by a 95%CI. Each diamond represents one animal. Each dot 

represents one cytokine/chemokine. p values for two-group comparison are presented at each time point. C (a) 

Quantification of co-localization of GFP and DAPI positive staining (A2–A4) Transversal section of a dorsal horn 

rostral to an SCI epicenter containing NPCs. (b-c) Gene expression reported using log2(counts per million) in sorted 

GFP+ NPCs. (B2–B5, C2–C5, D2–D6) Orthogonal projections of transversal sections rostral to SCI epicenter. D Iliac 

crest height over time. Presented as log2(fold change) to expression in healthy animals. Each dot represents one 

animal. p values for two-group comparison between SCI+NPC and SCI+NPC and DT are not presented 95% CIs are 

provided instead (*p <0.05; ns, not significant), Technical replicates are reported as diamonds, E Iliac crest height 

over time. Presented as mean surrounded by a 95% CI. Each dot represents one animal. Significance of post hoc 

test between SCI+NPC and SCI+saline is reported (*p < 0.05; ns, not significant). F Placement of the hindlimb paws 

(average x/y coordinate per treatment group). As the author of an Elsevier article, one retains the right to include 

it in a thesis or dissertation, provided it is not published commercially. Permission is not required. 
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4.2 PAPER II 

 

In this study we irradiated animals at postnatal day 9 and introduced a photothrombotic 

stroke at postnatal day 65. We here were interested in the impact of irradiation of the 

juvenile CNS on NSC function in response to injury. These are the main findings: 

 

1.) Photothrombotic stroke elicits production of DCX+ neurons in adult mice. This effect 

was diminished if preceded by irradiation. 

 

2.) Irradiation does not impact the ability of microglia to become activated, but it leads 

to a reduced number of microglia in the adult CNS. 

 

3.) Irradiation of the juvenile CNS does not impact the infarct area but does affect the 

relative infarct size after stroke in adult mice. 
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Photothrombotic stroke elicits production of DCX+ neuronal progenitor cells in adult mice. this 

effect was diminished if preceded by irradiation, presumably by depletion of the NSC pool.  

Understanding the long-term consequences of irradiation is beneficial for optimized 

subsequent therapy. Here we addressed how NSCs respond to injury after irradiation. We 

studied this in the adult murine brain using a photothrombotic stroke model to trigger 

proliferation and migration of neuronal progenitors [111, 468, 469]. We observed that cortical 

ischemia led to an increase in neuronal progenitors (DCX+ cells) in the peri-infarct cortex and 

two striatum regions: one near the SVZ and the other distal but adjacent to the first region. 

Non-ischemic animals displayed few DCX+ cells in the cortex. The number of DCX+ cells 

significantly increased in the peri-infarct cortex for both irradiated (IR) and non-irradiated (non-

IR) after cortical ischemia. When comparing the DCX+ cell count between IR and non-IR 

ischemic animals, IR animals exhibited a significantly lower number of DCX+ cells (Fig. 12 A, B, 

D-I), suggesting a compromised neuronal response to stroke after IR. There are reports 

showing that most cells cease to proliferate after irradiation because they start to differentiate 

instead [470]. This potentially depletes the pool of NSC early on. We hence assumed that 

irradiation disturbs the SVZ [148] and thereby affects NSC functionality. Irradiation, while 

effective against cancer cells, is not a targeted method and elicits a significant inflammatory 

response in the CNS [471] [472]. The impact of radiation on the NSC niche and the subsequent 

changes in neurogenesis may contribute, if not directly cause, radiation-induced cognitive 

impairments [473]. It is established in rodents that NSCs respond to damage, such as stroke, 

and contribute to the repair process that is critical for post-stroke functional recovery [474]. 

This is a phenomenon we also observed in our Manuscript where inflammatory signals led to 

an increase in proliferation. It has been shown previously that the response to postnatal 

irradiation is niche-dependent, i.e. with a lack of recovery in the hippocampus, while the SVZ 

showed not full, but substantial recovery of stem cell activity [475-477]. We could demonstrate 

here that even with potential recovery of stem cell activity in the SVZ after IR at an early 

developmental stage, the NSC response to cortical ischemia in adulthood remains 

compromised. DCX+ cells represent neuroblasts, late progenitors as well as young neurons. We 

did not determine if these observations are exclusively based on the depleted pool of stem 

cells or if IR also exerts an impact on maturation and/or migration of DCX+ cells. In this study, 

we have also not addressed if neural progenitors continue to develop into mature neurons, 

since we have previously shown that maturation of neurons in the stroke-lesioned cortex is 

extremely limited [478]. We did not examine the effect on oligodendrocytes, and we assessed 
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astrocyte response in only a rudimentary way by measuring GFAP intensity. Hence we could 

not evaluate the impact of IR on these cell types. However, it was important to observe that 

despite a compromised SVZ stem cell pool, a substantial response of neural progenitor cells to 

stroke was detectable even after brain irradiation at 10 Gy.  

Irradiation does not impact the ability of microglia to become activated, but it leads to a 

reduced number of microglia in the adult CNS.   

Since we hypothesized that the local microenvironment of the niche is partly responsible for 

the observed changes in neural progenitor formation, we were also interested in the function 

of the brain-resident immune cell. Following brain injury, activated microglia and macrophages 

(MG/MQ) accumulate at the injury site. We therefore examined the MG/MQ response in the 

neocortex by evaluating the expression of Iba1, a pan-microglial marker [479, 480]. Here a 

combination of several microglial markers would be needed to fully characterize the microglial 

phenotype [481, 482]. Ischemic animals, whether irradiated or non-irradiated, exhibited a 

significant increase in the number of Iba1+ cells compared to non-ischemic animals. Irradiation 

led to a significant decrease of Iba1+ cells in the injured cortex compared to the non-irradiated 

animals (Fig. 12 K). Ischemic animals also displayed a substantial increase in the percentage of 

Iba1+ cells expressing CD68 compared to non-ischemic animals. CD68 is a glycoprotein that is 

present on the cell membrane and is expressed by human monocytes and tissue macrophages, 

serving as an indicator of their phagocytic activity [481]. However, we did not detect a 

difference in the percentage of Iba1+/CD68+ cells between the irradiated and the non-

irradiated animals following ischemia (Fig. 12 L-M). The response of NSCs to injury is influenced 

by inflammatory signals released by microglia/macrophages [483-486]. Following a stroke, 

microglia/macrophages undergo proliferation and accumulate at the site of injury [487-489]. 

These cells release inflammatory molecules e.g. chemokines and cytokines, which promote 

NSC proliferation and guide their migration towards the injury site [490, 491]. Irradiation can 

decrease the numbers of microglia/macrophages, particularly during early postnatal stages 

[492], resulting in a modest inflammatory response to cortical ischemia. We could also show a 

decrease in microglia number post-inflammation in adult animals. One of our hypotheses was 

that the reduction in microglial stimulation may contribute to the observed decrease in neural 

progenitors [468]. A recent study challenged this, as co-cultures of injury/ischemia-induced 

NSPCs (iNSPC) and microglia/macrophages (MGs/MΦs) significantly decreased proliferation of 

iNSPCs and reduced differentiation of these cells into functional neurons in vitro [493]. The 

interaction of microglia and NSCs in the in vivo scenario might differ to some degree from these 
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in vitro observations. Nevertheless, decreased numbers of DCX+ and Iba1+ cells could be 

attributed  to other factors, including a direct reduction of the NSC pool in the SVZ due to IR 

[355, 494, 495], altered vascularization [496, 497] or a combination of the named factors. The 

age-dependent effect of irradiation can be attributed to the high proliferative capacity of 

microglia/macrophages during early postnatal stages (postnatal day 5 and postnatal day 14) 

[62, 468, 498, 499], making them vulnerable to radiation-induced damage. 

Irradiation of the juvenile CNS affects the relative infarct size after stroke in adult mice.  

The size of injury often correlates with the functional outcome [500]. We also determined the 

impact of irradiation (IR) on the stroke lesion size. This revealed no statistically significant 

difference in the infarct volume among the stroke groups (Fig. 12 C). However, animals 

subjected to irradiation showed a notable decrease in body weight compared to non-irradiated 

animals, a difference that was not evident prior to irradiation on P9 but persisted after stroke. 

In this context we re-evaluated the infarct size and observed a significant difference in the 

relative infarct size compared to the contralateral hemisphere between the animals that 

experienced ischemic stroke (IS) and those that underwent irradiation followed by stroke (IR + 

IS) (Fig. 12 J). Moreover, Zhu et al. demonstrated increased injury size following irradiation in 

a hypoxia-ischemia brain injury model [128]. Our own data showed that induction of cortical 

ischemia, irrespective of irradiation or sham-irradiation, did not affect body weight. Previous 

reports have documented the negative impact of irradiation on weight gain in rodents [501], 

as well as in head and neck cancer patients, who experience significant weight loss over time 

[502]. Female mice were particularly susceptible to irradiation-induced reduction in brain size 

[503, 504]. The observed differences in body weight suggest a growth delay in both brain and 

body mass induced by irradiation during the juvenile phase. However, the growth trend after 

P50 was consistent across all groups, with only a lower starting point in the IR and IR + IS groups. 

A deeper understanding of the mechanisms underlying IR-induced impairment in the NSC 

response to the brain injury is crucial for developing interventions that can preserve 

endogenous regeneration potential or enhance regenerative capacity in brain injuries among 

cancer survivors [505]. In summary, we demonstrated compromised responses of NSCs to 

ischemic injury following IR. These results have important clinical implications, particularly for 

paediatric cancer survivors who are at risk of developing neurovascular diseases such as 

ischemic stroke [506-508] or who are experiencing cognitive impairments [145, 509, 510], 
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especially given the impaired endogenous repair capacity resulting from IR may further worsen 

the outcomes following secondary brain injuries [511].  

Figure 12 A Quantification of DCX+ neuronal progenitor cells in the cortex, B Striatum 1 adjacent to the SVZ, Ctrl = 

Control (n = 15); IR = Irradiation (n = 10); IS = Stroke (n = 11) and IR + IS = Irradiation + Stroke (n = 13), **p ≤ 0.01; 

***p ≤ 0.001; ****p ≤ 0.0001), C Measurement of the cortical infarct volume in mm^3 (n = 11 for IS and IR + IS), 

D–I Representative images of DCX+ cells in IS (D–F) and IR + IS (G–I) brain regions. Cortex (D, G), Striatum 1 (E, H), 

Striatum 2 (F, I), scale bars = 100 μm, J Measurement of the relative infarct size in percent of the contralateral 

hemisphere. (n = 11 for IS and IR + IS), K – M Irradiation reduced accumulation of microglia/macrophages in the 

ischemic cortex. K Bar graph shows quantification of Iba+ cells in the peri-infarct cortex (One-way ANOVA, multiple 

comparison, Ctrl, control; IR, Irradiation; IS, Stroke IR + IS = Irradiation + Stroke, all groups n = 8, **p ≤ 0.01; ***p 

≤ 0.001; ****p ≤ 0.0001). L, M analysis of MG/MQ activation as evaluated by co-expression of Iba1 and CD68 (Iba1 
+/CD68+). M Confocal image displays expression Iba1+ (red) and CD68+ (green). ToPro3 nuclear counterstain (blue), 

merged Scale bar 20 μm. (C) Bar graph shows the percentage of Iba1+/CD68+ of Iba1+ cells in the periinfarct cortex. 

(One-way ANOVA, multiple comparison, Ctrl = Control n = 15; IR = Irradiation n = 10; IS = Stroke n = 11 and IR + IS= 

Irradiation + Stroke n= 13, **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001). Creative Commons Attribution 4.0 

International License. 
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4.3 PAPER III 

In this study, we used embryonic stem (ES) cells and cytokines relevant to TBI to create an in 

vitro model system representing astrocytes and neurons from a specific environment. This 

provided us with a comprehensive and applicable model for future investigations into 

enhancing the survival of neurons in highly susceptible regions of the CNS after events such as 

traumatic axonal injury (TAI). These are the main findings: 

1.) Cytokine stimulation leads to increased c-Jun N-terminal kinase pathway activity, 

measured by its down-stream product phosphorylated c-Jun, and ES-astrocyte 

reactivity. 

 

2.) We generated ES culture derived astrocytes with brainstem/rostroventral region 

identity. 

 

3.) ES-astrocytes activated by disease relevant cytokines demonstrated neurotoxic effects 

upon co-culture with motor neurons.  
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Cytokine stimulation leads to increased c-Jun N-terminal kinase pathway activity, measured by 

its down-stream product phosphorylated c-Jun, and ES-astrocyte reactivity  

The neurotoxic astrogliosis subtype can be initiated through the cytokines IL-1α and TNF [512]. 

IL-1α and TNF activate the c-Jun N-terminal kinase (JNK) pathway [513-515], c-Jun will be 

phosphorylated, dimerizes and influences transcription [515-517]. The JNK-AP-1 pathway, 

known for its multifunctionality, has been extensively associated with glial cell response to 

inflammation [518], particularly in the context of astrogliosis. Two hours after cytokine 

stimulation we see a significant increase of P-c-Jun which co-localizes with the expression of 

the mature astrocytic marker GLT-1 (Fig. 13 A-C). To validate shared similarities of ES-

astrocytes with bona fide astrocytes we compared this result with astrocytes derived from SVZ-

derived astrocytes. SVZ-derived astrocytes provide a more representative model of the cells 

found in vivo and which were shown to exhibit glial features [519] and respond to inflammatory 

stimulus [297]. SVZ-astrocytes exhibited a response similar to ES-derived astrocytes (further 

referred to as ES-astrocytes). We observed the upregulation of phosphorylated–c-Jun (P-c-Jun) 

through the JNK pathway activation and the co-localization of P–c-Jun with GLT-1 in response 

to neuroinflammatory stimuli. Overall, these results indicate that the mouse ES-astrocytes 

exhibited similarities to astrocytes in vivo in terms of functionality. The activation of a 

neurotoxic phenotype in astrocytes possibly represents a secondary mechanism contribution 

to CNS trauma-induced neuronal loss. The JNK pathway was suggested earlier as a downstream 

mediator for astrogliosis in e.g. epilepsy [520], but it is possible that additional signalling 

pathways are involved in mediating the neurotoxic effects by astrocytes. We conducted 

hypothesis-generating RNA sequencing of ES-astrocytes and ES-motor neurons following co-

culture and stimulation with IL-1β and IL-610. We detected changes in genes associated to MYC-

regulation, cell cycle regulatory mechanisms, and endoplasmic reticulum stress (Fig. 13 D-F), 

as well as genes related to TBA [521] and TAI [522] via their protein products. These results 

show a comprehensive effect, involving a variety of pathways and processes, on astrocyte 

reactivity in our model system. It is however a correlation and does not give a mechanistic 

answer as to how neurotoxicity is generated. It is further important to realize the limitation of 

the ES approach as there are notable differences between the astrocytic genomes of mice and 

humans, particularly in terms of inflammatory responses. Employing hiPSCs in future studies 

 

10 These cytokines are disease relevant in the context of TBI as our group has shown earlier and where hence selected for 
stimulation. I will refer to them further in the next section.  
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would allow us to generate human-specific cell models. Moreover, we would obtain more 

accurate and relevant data regarding the mechanisms underlying astrogliosis and its 

involvement in inflammatory processes in humans. 

ES derived astrocytes display brainstem/rostroventral region identity.  

The patterning of the developing CNS is achieved through a complex interplay of spatial and 

temporal cues [523] starting with neurogenesis, which is subsequently followed by gliogenesis 

[524]. Creating astrocytes with a specific regional identity enables us to study regional effects 

in vitro. It has been shown that retinoic acid and Sonic hedgehog [525] generate brainstem and 

rostroventral spinal cord motor neurons. We applied this knowledge and generated region-

specific Hb9+ motor neurons from embryonic stem cells (Fig. 13 L). Hb9 is a TF that plays a vital 

role in the consolidation of spinal motor neuron (MN) fate throughout the developmental 

processes [526, 527]. Hence, we used Hb9 to verify motor neuron identity. Our neuronal 

cultures were heterogenous and contained different types of neurons as well as about 5% glial 

progenitors. This was an outcome previously reported [528]. Recapitulating the during 

physiological brain development occurring gliogenic switch [524] to generate glial cells, we 

continued the culture past motor neuron formation over multiple passages in an FBS-

containing medium that induces differentiation. We could differentiate these glia cells into 

mature astrocyte-like cells when exposed to Forskolin (FSK), these peptides having been 

demonstrated to be involved in astrocyte maturation [529-534] (Fig. 13 G).  To address the 

brain stem identity of the generated ES- astrocytes, we analysed the transcriptome of ES-

astrocytes and compared it to the generated ES-motor neurons and SVZ-derived astrocytes. 

The comparison of rostro-caudal positional identity genes (Hox) between the ES-astrocytes and 

motor neurons did not show any significant differences, suggesting a shared origin. Within 

these genes, all four paralogs of Hox 4 (Hoxa4-Hoxd4) were identified, thereby establishing the 

cells' identity in the brainstem and rostral spinal cord along the rostro-caudal axis [535-537]. 

The positional identity of ES-astrocytes in the ventral region of the brainstem and rostral spinal 

cord was additionally confirmed by the upregulation of Nkx6.1, a gene known to be specific to 

brainstem astrocytes [537, 538] (Fig. 13 H). Consistent with this, control astrocytes obtained 

from stem cells originating from the SVZ did not show any expression of Nkx6.1.  We also 

conducted a comparison between the differentially expressed genes and the essential 

microarray data of astrocyte-enriched genes from Cahoy et al. [539]. While these cells 

demonstrated many characteristic features of authentic astrocytes, it is important to consider 

that there may be differences between these cells which we did not analyse. We chose to 
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generate ventral brainstem/rostroventral spinal cord specific ES-astrocytes and ES-motor 

neurons as this area is particularly susceptible to trauma [158]. Within this specific region, the 

impairment of astrocytic function has been associated with the loss of motor neurons in 

amyotrophic lateral sclerosis [540]. This does not exclude the importance of our results for 

other CNS diseases. The interaction between reactive astrocytes and neurons is important in a 

variety of pathologies. IL-1α, TNF, complement, the cytokines we used, have been recently 

studied in the context of forebrain [512] astrocyte-mediated neurotoxicity and spinal hiPSC 

[541] astrocyte-mediated neurotoxicity. Reactive astrocytes exhibit profound regional 

differences [542, 543] and different types of injury elicit distinct genetic signatures of 

astrogliosis [544]. A recent single-cell study on cortical astrocytes post-stimulation revealed 

nine gene clusters that exhibit both regional and reactive characteristics [545], and it has 

previously been shown by analysing the secretome that regionality plays a substantial role in 

functionality [546]. We are to our knowledge the first to specifically address brainstem/spinal 

(motor) neurons and brainstem/spinal astrocytes. Here we here generated ES-astrocytes with 

positional identity in the ventral region of the caudal brainstem, strengthening the biological 

relevance of our findings. Their regional identity also limits their generalizability to other 

regions of the CNS and further applicability must be carefully tested.  

ES-astrocytes activated by other disease relevant cytokines conferred a neurotoxic effect upon 

co-culture with motor neurons.   

Reactive astrocytes have been implicated in various neurological disorders. Previous studies 

have demonstrated a neurotoxic “A1” effect of reactive astrocytes on cortical neurons when 

stimulated with cytokines [512], and similar observations were made in hiPSC-derived 

astrocytes with a spinal identity [541]. Additionally, deletion of A1-inducing cytokine genes in 

vivo has a positive impact on neuronal survival indicating causality [512]. However, it remains 

unclear whether this neurotoxic effect extends to motor neurons in the brainstem and spinal 

cord and if other disease relevant mediators can elicit neurotoxicity. To examine the neurotoxic 

effect of IL-1α and TNF in cells with brainstem and spinal cord regionality we exposed ES-

astrocytes and co-cultured them with ES-motor neurons we generated. ES-motor neurons 

exhibited cell death, whereas ES-interneurons remained unaffected by co-cultivation with 

reactive astrocytes. Moreover, we revealed crucial dissimilarities in the neurite characteristics 

of ES-motor neurons. Neurite outgrowth (Fig. 13 J) is one of the most commonly measured 

indications of neural cell health and function [547]. ES-motor neurons displayed aberrant 

features compared to unexposed ES-neurons in all measured features (Fig. 13 I-J). These 
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findings provide compelling evidence for the induction of neurotoxic phenotype in ES-

astrocytes by IL-1α and TNF, particularly affecting ES-motor neurons in our co-culture model. 

This suggests that brainstem and spinal cord specific ES-astrocytes have the capacity to 

undergo a neurotoxic transformation, leading to a decrease in the survival of neurons with 

corresponding regional identity. TBI prompts a plethora of cellular injury mechanisms [548] 

and is accompanied by neurotoxicity [549]. We hypothesized that factors found in TBI might 

play a role in inducing the neurotoxic effect of ES-astrocytes on ES-motor neurons. We based 

our choice of molecules to induce reactivity astrocytes on a recent study [521] investigating 

proteins associated with severe TBI in humans. We observed the highest upregulation of the 

JNK pathway, as indicated by P-c-Jun levels, in cells treated with IL-1β and IL-6 [Fig. 13 B, p= 

0.035]. IL-1β and IL-6 are considered key neuroinflammatory mediators in both experimental 

and clinical TBI contexts [550]. Given their potential interdependence [551], we chose to 

evaluate them together in our experimental setup. IL-1β and IL-6 activated ES-astrocytes also 

exhibited neurotoxic properties as assessed by decreased number of ES-motor neurons (Fig. 

13 K). This demonstrated that our ES-derived co-culture system effectively models astrocyte-

mediated neurotoxic effects using clinically relevant neuroinflammatory stimuli.   

Understanding the complex communication between astrocytes and motor neurons in the 

context of regional identity may offer potential targets for therapeutic interventions aimed at 

mitigating neuronal loss and preserving motor function in relevant neurological conditions. 

There have been approaches to modulate astrocyte responses to reduce their neurotoxic 

actions. One potential candidate for such modulation is transforming growth factor-beta (TGF-

β) [552], which is upregulated during severe TBI in humans [521]. In our hands, the induction 

of astrocyte reactivity using TGF-β did not induce astrocyte-mediated neurotoxicity (Fig. 13 K). 

Additionally, a recent study demonstrated that a combination of three cytokines, including 

TGF-β1, improved outcomes following TBI [157]. Paradoxically, the same study also showed 

that IL-6 was beneficial for TBI outcome [157]. This contrasts with our findings, where a 

combination of IL-1β and IL-6 resulted in astrocyte-induced neurotoxic effects. Also, previous 

research implicated IL-6 in neurological dysfunction following mild TBI [553]. Further 

investigation is required to determine whether these observations are attributed to a 

differential impact of IL-6 on peripheral and CNS immune cells.   

Modulating astrocytic neuroinflammation may represent a potential therapeutic approach 

prior to the replacement of damaged CNS neurons. We think that our results provide a valuable 

platform for studying the underlying mechanisms and potential therapeutic interventions for 
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region specific astrocyte-mediated neurotoxicity in the context of neuroinflammation.  

In conclusion, our findings suggest that region-specific ES-astrocytes have the capacity to 

undergo a neurotoxic transformation in response to the disease-relevant cytokines, leading to 

the loss of region-specific motor neurons.  This model could be used to elucidate the role of 

astrocytes in neurotoxicity and their potential as therapeutic targets in neurological disorders. 
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Figure 13 A At 2 h, P–c-Jun was increased in treated groups, B while GLT-1 expression was similar across treatment 

groups, C indicative that the maturity state of the cells was not altered, and that the astrocyte-like cells were 

afflicted by this stimulus E-F tentative pathways in data set of which some (F) are also implicated in the c-jun N 

terminal kinase pathway G Differentiation of embryonic stem cells into brainstem/spinal motor neurons and 

astrocytes. By mimicking neurogenesis in vivo, brainstem/spinal motor neurons followed by astrocyte-like cells 

from the same regional niche were generated H Hypothesis-generating polyA + bulk-RNA-sequencing of FACS-

sorted reactive astrocytes, red rectangle indicating Nkx6.1, a brainstem astrocyte specific gene I - J presentation 

of altered neurite morphology in surviving and dying motor neurons K astrocyte-mediated neurotoxic effect on 

motor neurons following astrogliosis induced by IL-1β and IL-6, L Hb9 expressing motor neurons, scale bare 25µm. 

Creative Commons Attribution 4.0 International License. 

  



RESULTS AND DISCUSSION 

Page | 61  

4.4 MANUSCRIPT  

 

Here we assessed the impact of H2O2 on NSCs, a molecule readily released during inflammation 

and implicated in various CNS pathologies. These are the main findings: 

1.) Exposure to H2O2 increased the proliferation of NSCs and the number of 

oligodendrocytes both in vitro and in vivo. 

 

2.) Transcriptomal analysis indicated that H2O2 induces a shift from neuronal development 

to differentiation with focus on the plasma membrane and cell projection organisation. 

 

3.) Preliminary data – screening for the candidate genes to engage in H2O2 signaling.  
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Exposure to H2O2 increased the proliferation of NSCs and the number of oligodendrocytes 

both in vitro and in vivo.  

Why did evolution provide the CNS with poor scavenging processes and high susceptibility to 

ROS? The brain is not only subjected to the adverse effects of ROS but also benefits from the 

role of ROS as a signalling molecule. Oxygen levels are crucial factors influencing brain 

development and neurogenesis during embryogenesis until adulthood, as well as during 

inflammation accompanying CNS pathologies [554]. Among the by-products generated during 

oxygen metabolism and during immunoreactions mainly released by microglia, H2O2 has 

emerged as a key factor. H2O2 signalling has been linked to NSC survival, proliferation, and 

differentiation. However, the downstream effects of H2O2 are complex since they are 

dependent on the context and H2O2 concentration. Low levels of H2O2 within the physiological 

range promote NSC proliferation and differentiation, suggesting its engagement in 

neurogenesis and brain development. Excessive or prolonged exposure to high levels of H2O2 

can induce oxidative stress and damage cellular components, leading to impaired NSC function 

and subsequent neurodegeneration.   

NSC niches within the CNS are characterized by a unique microenvironment that maintains low 

oxygen (O2) conditions [555]. This niche plays a crucial role in regulating NSC behaviour and 

fate determination. Interestingly, while being surrounded by low oxygen in the niche, 

proliferative NSCs exhibit high endogenous levels of ROS [556]. We wanted to explore the 

effect that pathological concentrations of H2O2 exert. We therefore exposed primary NSCs to 

100 µM of H2O2, a concentration reported in wound healing [557] and CNS pathologies [182]. 

Our undifferentiated cultures exhibited 17.7% proliferating cells 1h after the exposure (Fig. 14 

A). Using flow cytometry, a more sensitive quantification method, we also confirmed a 

significant increase in EdU+ cells 8h post-H2O2 exposure. Additionally, when compared to 

unexposed controls, we observed 4 % more SOX10+ cells in the H2O2-exposed cultures after 

1h, and up to an 8 % increase after 8 h exposure (Fig. 14 B). EDU is incorporated into newly 

synthesized DNA during the S phase of the cell cycle hence not capturing all proliferative cells 

but giving a good estimate of proliferative activity [558]. Sox10 has been reported to direct NSC 

to an oligodendrogenic fate [559]. SOX10+ NSCs predominantly differentiated into 

oligodendrocytes, but there is still a possibility for cells to differentiate into neurons and 

astrocytes, which is reported to be dependent on developmental stage and brain region [560-

562]. We therefore also assessed the phenotype profile of differentiated cells in the respective 

cultures 7 days after H2O2 removal. We detected a significant increase in GALC expressing cells 
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in the group exposed for 8h to H2O2 (Fig. 14 C, G). GALC is a lysosomal protein, part of myelin. 

GALC is abundant in differentiated, axon-myelinating oligodendrocytes [563]. This increase 

concords with previous research from our group conducted in rats [221]. Our new observations 

suggest the existence of a conserved mechanism across different species, thereby emphasizing 

the robustness of the obtained results. We furthermore assessed the effect of H2O2 on NSCs 

in vivo by injecting 10 mM of H2O2 into the cisterna magna. This is a way to access the 

cerebrospinal fluid to deliver ROS to the SVZ, which is steadily flushed with CSF. It is also a 

standard practice to measure inflammatory markers in the CSF due to its accessibility [521], 

and the CSF is a promising path for drug delivery to less accessible sites in the CNS [564]. We 

hence believed this to be a good route for delivery of H2O2. However, we were aware that, 

despite intra-cisternal injections (IC) being minimally invasive, we could not exclude 

inflammatory signals provoked by the injection itself. Therefore, the control animals also 

received an intra cisternal injection. We applied a much higher concentration in vivo than we 

used in vitro to account for more complex antioxidant defence line in a tissue context, and due 

to the fact that CSF in mice is turned over 12-13 times a day, thus limiting the exposure from a 

single injection  [565]. Despite these limitations we observed an increase in the number of 

OLIG2+ oligodendrocytes in the area surrounding the ventricles, as well as increased expression 

of Ki67 seven days after H2O2 injection (Fig. 14 D, E, F). This data shows that the effect of H2O2 

exposure in vitro is translatable into the in vivo situation. It will still be necessary to double-

stain the KI67+ cells with a NSC marker, e.g. SOX2, or birthdate these cells using EDU pulsing, 

to confirm the identity of the cells. In prior investigations, it was demonstrated that within MS 

lesions of human post-mortem brain samples, the SVZ exhibited an elevated level of 

proliferation. Notably, a subset of these neuroplastic cells expressed SOX10 and OLIG2, which 

were detectable in demyelinated MS lesions [403]. Similar findings were observed in murine 

models [399, 400]. Enhancing the production of OPCs and mature oligodendrocytes by 

amplifying mechanisms already in place holds potential for facilitating regeneration, as newly 

generated oligodendrocytes are known to produce myelin in greater quantities compared to 

old ones [344, 566]. There are, however, reports using human post-mortem tissue from MS 

patients contradicting the importance of newly formed oligodendrocytes in regeneration 

[567]. Gaining a comprehensive understanding of the connection between inflammation and 

the potential for regeneration is crucial for the development of therapeutic strategies aimed 

at promoting repair and recovery in neurological conditions. Hence, we need to assess the 

integration and functionality of the cells we observe. 
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Transcriptome analysis revealed that H2O2 induces a shift from neuronal development to 

differentiation with focus on plasma membrane and cell projection organisation.  

We extracted RNA from undifferentiated NSCs in culture directly after 1 hour and 8 hours of 

H2O2 exposure, respectively, along with corresponding control cultures to assess the direct 

effects of H2O2 exposure on global transcriptome changes. Using the DESeq2 Package in R-

Studio we analysed differential gene expression between these groups, identifying several 

hundred genes that surpassed the ± logFC expression (FC =2) cut-off. Five clusters were 

detected. When assessing expression patterns over time, two types of patterns emerged. 

Clusters 2,3 and 5 display similar expression patterns, as do clusters 1 and 4 (Fig. 14 H-I). We 

analysed these as functionally corresponding groups. Hence, we refer now to group 1 (clusters 

1 and 4) and group 2 (clusters 2,3 and 5). It was apparent that clusters contained in group 2 

seem to be in accordance with observed phenotypical changes, such as increased proliferation 

and formation of oligodendrocytesCluster 5 is overrepresented in the control and remains at 

control levels at 1h but decreases at 8h. It represents nervous system development and 

neurogenesis and scores highest in the biological regulation categories – indicative of a more 

stem cell like state as we expect in control samples. These categories decrease at 8h – a 

timepoint which we believe represents a shift towards a differentiation state. At the 8h 

timepoint cluster 2 and 3 show an overrepresentation of genes involved in metabolic processes 

and cellular components categories related to membranes. This could be indicative of a switch 

to more differentiated cells such as glia cells. When considering oligodendrocytes and 

especially membrane production in the form of myelin sheets, it is indicative for their 

differentiation [568, 569] and requires high metabolic effort [570].  In our hands, the exposure 

to H2O2 for 8h provided a more pronounced effect on oligodendrocyte differentiation (Fig. 14) 

which could be related to the changes represented by transcriptome analysis.  

Preliminary data – screening for the candidate genes to engage in H2O2 signalling.  

We furthermore tried to identify potential candidate genes guiding oligodendrocyte 

differentiation post-H2O2 exposure. We used Ingenuity Pathway Analysis (IPA) to aid with the 

interpretation and analysis of biological pathways, networks and molecular interactions (Fig. 

14 F). Mapping all significant genes from our Deseq2 transcriptome analysis to identify genes 

associated with oligodendrogenesis, oxidative stress, stem cell differentiation and their 

potential upstream regulators provided us with a list of candidates containing genes involved 

in oligodendrocyte lineage development such as NOTCH, TCF7L2 as well as ROS sensors Nrf2, 

HMOX1, FOXO1. Interestingly most of these genes are found in clusters 3 and 5 belonging to 
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group 1 (Fig. 14 I). As of now, Hmox1 presents the most suitable candidate gene as we could 

validate its expression using qPCR. Heme oxygenase–1 (Hmox1) is an enzyme involved in heme 

metabolism, known to be responsive to ROS. Hmox1 expression has been shown to act 

neuroprotective in stroke [571] and Hmox1–/– presents with increased levels of demyelination 

in a multiple sclerosis model (experimental autoimmune encephalomyelitis (EAE)) [572]. It is 

not yet known if there is a connection between Hmox1 expression, ROS and the induction of  

oligodendrogenesis. 



 

Page | 66 
 

Overall, our findings shed light on the intricate network of gene interactions involving 

oligodendrocyte lineage development and ROS sensors, but which of these genes are directly 

implicated in the changes we observe post-H2O2 exposure remains to be elucidated.  

  

Figure 14 A Quantification of the percentage of EdU+ cells (EdU+/DAPI+), B Quantification of the percentage of SOX10+ 

cells (SOX10+/DAPI+) yellow arrowheads point out SOX10 positive staining, A-B present undifferentiated cultures treated 

with 100 µM H2O2 for 1h respective 8h C Quantification of the percentage of GALC+ cells (GALC+/DAPI+), C presents 

differentiated cultures treated with 100 µM H2O2 for 1h respective 8h A-C control (white columns) and H2O2-exposed 

cultures (red columns). Bars represent mean±SEM. n=3, **p>0.01, ***p>0.001, D Quantification of the number of Ki67+ 

cells (Ki67+/DAPI+) per µm at 7d post ICJ (Ctrl n= 4, 5 mM H2O2 n= 4, 10 mM H2O2 n= 5 ),  E Quantification of the number 

of Olig2+ cells (Olig2+/DAPI+) per µm at 28d post ICJ (Ctrl n= 4, 5 mM H2O2 n= 4, 10 mM H2O2 n= 4 ),  F coronal section 

from animal injected with 10 mM H2O2 F are example images for tissue harvested 7 days post injection. KI67+ cells in 

green, OLIG2+ cells in red, nuclear counterstain using DAPI in blue and all channels merged. G Phenotypical representation 

of differentiated cells positive for GALC after exposure to H2O2 for 8h (left) compared to control (right image). GALC+ cells 

(red) and DAPI nuclear counterstaining (blue). H Heatmap presentation of RNAseq data, red represents overexpression, 

blue underexpression I Kinetic development of gene expression changes over time, clusters grouped together based on 

their expression dynamic J IPA derived network of genes involved in oligodendrogenesis and/or ROS response at 8h H2O2 

exposure vs Ctrl. 
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 SIGNIFICANCE AND FUTURE PERSPECTIVE 

Paper I:  We demonstrated that NSCs can modulate the inflammatory environment they have 

been introduced into, as well as generate differentiated cells, both of which improve tissue 

functionality. We analysed the effect of transplantation 8-10 days post-SCI targeting the acute 

phase of SCI. Access to greater numbers of NSCs generated from autologous as well as 

allogenous cells shortly after SCI is required but will be difficult in clinical practise. The NSC 

culture protocol we used spans approximately 2 weeks and receiving suitable NSCs to initiate 

a culture is improbable. It would be interesting to challenge the knowledge gained from paper 

I using other more practical cell types, as the extraction of NSCs is usually not an option. Co-

transplants with other cell types [448] or transplantations into the sub-acute phase of SCI, 

accommodating for culturing times, would be a future step to make a transition into therapy 

more feasible. Additionally, the assessment of glial-scar formation in our experiments would 

be essential. Transplanted NSCs also differentiated into astroglia, known to form glial scars post 

injury [350]. Understanding the extent of this process and attempting to modulate the 

astrocyte formation from NSCs could lead to further improvement of recovery. Eventually, the 

assessment of autonomic functions, such as bladder control, post-transplantation would be 

important. Losing autonomic functions is one of the burdens post SCI [573] and improving 

these deficits would contribute to higher quality of life [574].  

Paper II: We have also observed that the stem cell response to insults in the CNS is limited if 

animals were exposed to irradiation in juvenile stages of life, indicating potential long-term 

consequences of irradiation in terms of recovery after damage. This paper would benefit from 

a more in-depth analysis of the astroglia response to stroke post-IR as an unchanged GFAP 

response in the penumbra does not reflect all aspects of astrocyte functionality. Examining the 

trophic support that the astrocytes provide post irradiation could contribute to the 

understanding of the decreased proliferation we observed. Gene ontology analysis at different 

timepoints post irradiation and stroke would uncover the changes these cells undergo in a 

more comprehensive fashion. In paper II we did not assess oligodendrocytes. Oligodendrocytes 

contribute to signal conduction [323] as well as the immune environment [49]. In respect to 

my manuscript, I think it would be essential to also assess the impact of irradiation on 

oligodendrocyte formation and function. Furthermore, interventions managing irradiation-

induced inflammation [575] directly after IR should be tested to understand cognitive 

impairments and CNS pathologies post-IR.  
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Paper III:  We created a region-specific model for neuroinflammation, which might become a 

useful tool to study the effects of inflammatory mediators. Furthermore, it is novel to recreate 

an anatomical CNS niche in vitro, giving us the possibility to characterize processes in a setting 

closer to the in vivo situation.  This provides a possibility to study interactions between 

astrocytes and neurons in a specific region of the CNS.  The characterisation of the neurotoxic 

phenotype adopted by astrocytes is incomplete. Elucidating the exact mechanism that 

astrocytes exert on neurons and the potential intervention remains to uncovered [512, 576]. 

It would also be interesting to address if it is only the astrocytes near the inflammation which 

transition into a neurotoxic phenotype. What will be the consequences of inhibited neuronal 

death in vivo post injury? Is it beneficial to support survival of potentially damaged neurons? 

Manuscript: Here we assessed the impact of pathological concentrations of the inflammatory 

mediator H2O2 on NSC differentiation and demonstrated increased proliferation and formation 

of oligodendrocytes in vitro as well as in vivo. We identified transcriptional changes in treated 

cells supporting these observations. In the future, we plan to further elucidate the pathways 

involved in mediating these effects and to identify the key genes involved in driving the 

oligodendrocytic fate. This could be addressed by modifying gene expression through in vivo 

using transfections or transduction using viral vectors. We furthermore need to confirm that 

the formed oligodendrocytes we see in vivo arise from stem cells and not from e.g. OPCs using 

for example EdU labelling. It would be here also beneficial to know if long-term exposure of 

cells in vivo, e.g. with the help of a pump, elicits the same or different cellular responses. It 

would be interesting to see if it is possible to steer NSC development to e.g., replace cells 

needed or affected during a disease.   

Inflammation is a complex physiological response that plays a crucial role in tissue homeostasis, 

immune defence, and repair. More importantly, in neurodegenerative diseases, stroke, and 

traumatic brain injury, inflammation is a hallmark feature that has a significant impact on NSC 

function. Excessive and/or chronic inflammation can have detrimental effects on NSCs, which 

are responsible for neurogenesis and maintaining neural tissue integrity. Understanding the 

influence of inflammation on NSCs helps unravel the intricate mechanisms underlying 

neurodevelopment and adult neurogenesis as well as helping us to better understand the 

pathophysiological mechanisms involved in the CNS injury, repair, and regenerative processes.  

In this thesis, I have explored the interaction between NSCs and inflammatory processes and 

their mediators. I believe that our data have provided valuable and novel insights into the 

regulation of NSC proliferation, differentiation, and migration, thereby shedding light on brain 
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plasticity and cognitive function. This knowledge is critical for developing new strategies to 

modulate inflammation, to protect NSCs, and to enhance endogenous repair mechanisms in 

diseased or injured CNS.  
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