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ABSTRACT 
 

        Understanding the relationship between signaling and its corresponding cellular response is 

critical to combating stress responses, especially responses related antibiotic resistance and non-

genetic phenotypic transitions to antibiotic tolerance. However, bacterial signal responses are 

notoriously noisy and difficult to predict. This work first develops a multiscale cell cycle-aware 

signal modeling framework to explore the energetics and dynamics of the phosphate starvation 

stress response two-component system, PhoBR, to better understand the relationship between 

stress response proteins and the bounds of cellular memory in stress response. I found that the 

transcription factor responsible for stress response remains nominally “active” for 2-4 generations 

after the stress response is relieved due to sequestration effects, with differential memory in 

offspring cells dictated by stochastic protein inheritance. Next, I studied a novel antibiotic persister 

phenotype that arises in non-canonical conditions. This phenotype exhibited a previously unknown 

stress response that resulted in growth arrest, granting it antibiotic tolerance. The tolerance seems 

to be imparted by a global stress response arising from toxic excessive lactose import, seemingly 

opposite of the starvation response that induces canonical persister cell formation. Finally, I 

improved the PhoBR stress response model to measure stochastic fluctuations of proteins within 

the two-component system to identify the principles of signal fluctuations and how they drive 

variability in the bacterial cell cycle (i.e., growth rate). The downstream regulon of the PhoB 

response regulator is the main driver of the growth rate, but the transcriptionally active dimerized 

PhoB acts as the link between fast molecular fluctuations and slower gene expression fluctuations 

within the system. Finally, I present a vision for future developments of this style of modeling to 

include spatial information. 
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Chapter 1 
 

Introduction 

 

Understanding how bacteria sense and respond to stress is a long-standing goal in biology 

for therapeutics and synthetic biology. However, stochastic variability in cell to cell gene 

expression makes it difficult to predict how cells en masse will respond to a given amount of 

stimulus [1, 2]. Further work has been done to quantify the effect that noise has on the highly 

variable bacterial signal-response networks [2-5], but even the most basic all-or-nothing cellular 

response schemas are capable of wide distributions of population-scale responses. This dissertation 

shows the progress made in understanding how E. coli responds to various stressors and reveals 

novel ways to investigate future cellular phenomena.  

The first work in this dissertation focuses on understanding signal transference in the E. 

coli PhoBR phosphate starvation response network. PhoBR belongs to a class of signal 

transduction pathways named two-component system (TCS) in which a typically integral 

membrane sensor histidine kinase (PhoR) autophosphorylates in response to a stimulus and 

performs a phosphotransfer to activate a response regulator (PhoB) that acts as a transcription 

factor for genes that will respond to the stimulus. We investigated and modeled PhoBR because 

of its role in sensing a critical component of central metabolism, its historical characterization [6-

10], and the availability of experiments capturing PhoBR sensory and response behavior [11, 12].  

The primary challenge in modeling a biochemical network that is connected to central 

metabolism is the inherent feedback between the larger cellular scale phenomenon (e.g. gene 

expression, growth rate, cell division times) and the smaller scale molecular fluctuations (Fig. 2.1). 
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To achieve the multiple scales necessary to model the mesoscale feedback, we use the Doob-

Gillespie algorithm [13-16] to simulate the biochemical reaction network of PhoBR and its 

regulatory role in binding to DNA. The reaction network is iteratively simulated (Δt = 1 second) 

and the cellular growth rate is calculated based on resource allocation [12, 17]. This approach 

allows for a cell to grow until it achieves double its initial size and divide by binomially distributing 

the molecular species between the daughter cells, which will continue growing.  

The second work in this dissertation tackles a non-intuitive antibiotic tolerance in E. coli. 

Understanding bacterial stress responses, and particularly antibiotic tolerance and resistance, are 

critical to the development of proper infection treatment plans. However, the stochasticity involved 

in those stress responses makes it difficult to predict how bacteria will react. Antibiotic tolerance 

in E. coli has traditionally been linked to nutrient limitation via the stringent response [18], but our 

lab discovered an enrichment in tolerant cells in excessive nutrient concentrations [19]. In order to 

discover the cause of the enriched tolerance, we performed RNA-seq on replicates of cells grown 

in three concentrations of lactose (0.1 mg/mL, 2.5 mg/mL, and 50 mg/mL) respectively 

representing starvation, satiety, and toxicity. However, significant growth rate heterogeneity was 

observed in populations grown in the highest lactose concentration consisting of a large, fast 

growing subpopulation and a smaller, slower growing subpopulation.  

In the third part, I revisited our multiscale cell model with deeper analysis of the timing of 

molecular fluctuations, how they drive gene expression fluctuations, and how the entire multiscale 

system alters fluctuations in the cell cycle. The results of this analysis demonstrate that the 

transcriptionally active gene regulator is the key point linking molecular fluctuations and cell 

growth-driven fluctuations.  
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1.1 Sensing and growth in E. coli  

1.1.1 Two component systems 

The TCS is a common sensory motif in bacteria; E. coli has evolved several that respond 

to different stimuli and modulate diverse responses.  A canonical TCS is composed of a typically 

integral membrane sensor histidine kinase that undergoes a conformational change in order to 

autophosphorylate in response to a stimulus and perform a phosphotransfer to activate a cognate 

response regulator. The majority are bifunctional, containing phosphatase activity that deactivates 

the response regulator as well. The response regulator acts as a transcription factor for genes that 

will respond to the stimulus. Once the stimulus is removed and the sensor histidine kinase returns 

to its inactive conformation, the sensor histidine kinase deactivates the response regulator; 

sometimes it is deactivated by a separate phosphatase protein (as in the bacterial chemotaxis TCS 

CheAY [20]).  

Input-output robustness is a significant feature of the TCS. As previously discussed, 

bacterial responses in dose-response curves have wide distributions [1, 2], and ATP variation can 

be as high as a factor of 10 [21] between cells. However, TCSs with a bifunctional sensor histidine 

kinase can be nearly independent from concentrations of the proteins involved [7, 22]. This input-

output robustness has limitations when the response regulator protein is at small concentrations 

compared to the signal, in which case the response is ATP dependent. This limitation is mitigated 

by the downstream regulon of a TCS having on the order of 10 binding sites, meaning that the 

active response regulator quickly achieves regulatory concentrations.  

1.1.2 The PhoBR two component system  



4 

 

PhoB and PhoR make up the phosphate stress response starvation two-component system. 

PhoBR is a typical autoregulated TCS, wherein PhoR is a bifunctional sensor histidine kinase that 

phosphorylates and dephosphorylates PhoB, which dimerizes in its activated form and acts as a 

transcription factor for the phosphate response regulon. The regulon consists of phosphate 

assimilation proteins, such as phosphate channels and alkaline phosphatase. 

We chose this system for the multiscale model for several compelling reasons. Because the 

majority of energetics in the cell depend on maintaining a high level of phosphate for ATP, GTP, 

etc, the system is critically important for bacterial survival in changing environments. As a result, 

it has been extensively characterized, including quantitation of each biochemical step, gene 

regulation studies, and physiological growth studies in E. coli [9, 11, 12, 23, 24]. Transcriptional 

autoregulation in this system creates a multigenerational memory – multiple timescales of effects 

have already been measured experimentally. Finally, virtually all of these studies have been done 

at the bulk population level: the effects of single-cell fluctuations in PhoBR were almost 

completely uncharacterized before the work I present here (Figs. 2.3, 4.4 – 4.9). 

1.1.3 Allocation of cellular resources in E. coli 

Amino acid expenditure in E. coli can be partitioned into metabolic proteins, synthesizing 

ribosomes, increasing biomass, and essential housekeeping proteins [17]. Thus, responding to a 

stress (i.e. expressing specialized genes in order to perform a niche function) comes at a direct cost 

to one of those partitions. Generally, the resource allocation spent on expressing stress response 

proteins comes at a cost to the growth rate of the cell as ribosome concentration and the amount 

of ribosomal proteins are correlated with growth rate [25] and large changes in cellular regulation 

are inversely correlated with growth rate [26].  
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1.1.4 Adders, timers, and sizers 

E. coli growth rate and division size varies based on growth conditions. Under ideal 

conditions, E. coli will usually double its initial volume, regardless of size, and then divide. These 

cells are considered “adders” [27]. However, there are alternative growth strategies which have 

been observed in stressful conditions and other species [28, 29]. Timers are cells that seem to 

divide on a temporal periodicity and have a linear dependence between birth and division sizes. 

The last category, sizers, have an inverse linear dependence on birth size in which the population 

divides at an optimal size, where initially small cells divide later than cells already near the optimal 

size. At the beginning of these studies, it was unknown if phosphate-starved E. coli cells are still 

adders, or if a different stress-responsive growth strategy is present. Working with colleagues, I 

analyzed growth trajectories of single cells grown in a microfluidic device in a microscope with 

an environmental control chamber (Fig 4.1). 

Chromosomal replication in different E. coli division regimes varies as well, but primarily 

due to growth rate. In fast growing adder-type cells, the chromosome is likely undergoing multiple 

replications at once, since the division time of the cells is shorter than the initiation and duplication 

speed of the chromosome [30]. 

1.1.5 Bet hedging and population heterogeneity  

Bet hedging is a common feature of bacterial populations where a subpopulation of cells 

phenotypically differs from other genetically identical cells, often through a stochastic switch [31]. 

In E. coli, this behavior can be seen in temporarily growth arrested cells, where the local fitness 

cost of arresting a few cells can provide resilience against β-lactam antibiotics, granting a global 

fitness advantage. Bet hedging is related to bistability in the phenotypic landscape. 
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1.2 Multiscale modeling methodologies  

Modeling signaling pathways in E. coli is intrinsically difficult. Approaches have been 

made that seek to simulate biomolecular reactions [2, 32-35] but constricting a model to 

biomolecular timescales specifically prevents a model from studying a core bacterial signaling 

paradigm: the varied dose-response distributions in bacterial populations caused by highly noisy 

cellular environments and low signal fidelity [36-38]. The biochemical models used to study such 

networks are frequently limited to the molecular scale [2, 32-35, 39], yet bacterial protein 

degradation is primarily dependent on dilution via cellular growth and division and thus on the 

cellular scale. To address this, we developed a mesoscale model [40] of the PhoB-PhoR two 

component system that would provide insights at the molecular, cellular, and population scales 

that are otherwise unable to be simulated with current computational resources.  

1.2.1 Small scale modeling 

In order to model the smallest scale of bacterial stress response, biochemical reactions, we 

created a mean-field/stochastic schema. Our mean field model represents cellular species as a set 

of ordinary differential equations and allows us to calibrate for experimentally unknown values at 

a higher scale, where we can fit modeled population growth rates to experimental values. Then, to 

observe stress responses and potential lineage dependence, we use the calibrated mean-field model 

parameters and the Doob-Gillespie algorithm [13, 14, 16] to create a stochastic version of the 

model. The stochastic version operates by simulating cellular reactions in one-second long quasi-

constant volume simulations. At the end of each simulation, the change in ATP consumptive 

species production is calculated and provided as input into a growth function [40, 41] to provide a 

predicted change in cellular volume and the next second is simulated.  
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1.2.2 Medium to large scale modeling 

Modeling processes that take on the order of seconds to minutes is less established, but 

they are still able to be modeled quantitatively. Gene transcription and translation are modeled 

within the Doob-Gillespie algorithm, but the rate constants are slow (10-2 – 10-5 slower) in 

comparison to the biomolecular reactions. Cellular division occurs via a binomial partitioning of 

non-chromosomal cellular species and then the two cells are simulated independent of each other. 

By simulating longer scale processes, we can predict the cellular costs of operating and expressing 

the stress response and the effect of inherited stress response protein in cellular lineages.   

1.3 Bacterial stress responses 

Bacteria have several ways to respond to stress including sporulation and biofilm 

formation, but an increasingly relevant phenotype is the antibiotic tolerant, or persister, cell. There 

is significant disagreement within the field for the criteria of a persister cell, but the basic 

characteristics are tolerance to antibiotics on the order of days, growth arrest, and the ability to 

recover from growth arrest and resume growing. The persister phenotype can arise from many 

stimuli, including diauxic shift [42], nutrient limitation [43-45], indole signaling [46], and 

antibiotic induced growth arrest that can lead to eventual resistance [47].  

1.3.1 Stringent Response 

The stringent response is a stress response in E. coli in which growth and division processes 

are inhibited in favor of preserving amino acid availability and survival [43-45].  The stringent 

response is mediated by the alarmone guanosine tetra/pentaphosphate, (p)ppGpp [48, 49]. The 

mechanisms behind (p)ppGpp’s role in the stringent response are still being studied, but (p)ppGpp 

acts as a modulator for RNA polymerase affinity [50-53] and regulates on the order of hundreds 
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of genes [44]. Linking generalized antibiotic persistence/tolerance to the stringent response has 

been controversial [54, 55] but there is evidence for β-lactam tolerance due to growth arrest [56].  

1.3.2 Novel antibiotic tolerant bacteria in non-stringent conditions 

β-lactam tolerance can be achieved in E. coli in excessive amounts of nutrients as well [19]. 

In the more antibiotic tolerant, high sugar cultures, population-level growth rate was bimodal, with 

one subpopulation growing and dividing quickly while the other subpopulation was growing much 

more slowly. This type of heterogeneity, or bet-hedging, [57, 58] is usually suggestive of a bi-

stability within the population, but the most closely linked mechanism of persistence (the stringent 

response) paradoxically occurs at nutrient limitation.  

We explored possible mechanisms for this novel antibiotic tolerance by analyzing RNA-

Seq data from cultures that were treated with antibiotics to select for the antibiotic tolerant cells. 

We compared these antibiotically tolerant cultures to each other to discover their differences, and 

we compared the tolerant cultures to their bulk culture in order to discover potential mechanisms 

for the transition to antibiotic tolerance in each condition.  

1.4 Living systems are not in equilibrium 

Finding the minimum amount of energy for cellular decision making is a long-standing 

goal of cellular and molecular biology. Frequently, inspired by Landauer’s principle [59], 

approaches to understanding cellular decision making assume that the minimum amount of energy 

required to perform a computation is the energy required to erase the effects of the previous 

computation. The extension to bacterial physiology is natural: growth-mediated dilution is the 

erasure of the computation (i.e. the expression of signal-response regulated genes), so it is 

reasonable that extremely efficient cellular processes may be close to Landauer’s limit.  We use 
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the bacterial two-component system (TCS) as a minimal model system, since the transmission of 

signal is comprised of a biologically simple steps:  a conformational change in a protein, the 

autophosphorylation of that protein, a single phosphotransfer reaction to the response regulator, 

and a dimerization of the active response regulator. In modeling the system, we discovered that 

the system is significantly out of equilibrium, so that even the resting steady state is well above 

Landauer’s limit. Our analysis of the energetics of signaling in an intact system suggests that a 

different scale of physiological limitations must be considered rather than the near-equilibrium 

limits identified previously by physicists. 
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Abstract 
 

 Cellular signaling serves as a means for cells to respond to external stimuli, but the 

stochasticity involved in the signal to response network questions exactly how sensitive the 

responses are. We investigate this question by modeling the phosphate stress response two-

component system (TCS), a common sensory motif in bacteria composed of a sensor histidine 

kinase (SHK) and a response regulator (RR), and using empirically based statistical models to 

allow feedback with larger scale phenomena (growth rate, gene expression, effect of stress 

response). We implemented this model as both a mean field and stochastic model to observe the 

bounds of cellular populations: many identical cells recovering from stress as a collective (mean 

field) and a single stressed cell growing under unstressed conditions to observe its transition into 

a small colony. From observing a stress shut-off response, we discovered that there were three 

important time scales for cellular memory of the stress. On the seconds to minutes scale, the SHK 

responsible for sensing the phosphate starvation was deactivated. However, the RR species took 

1-3 generations to cease transducing the signal due to sequestration in the active, dimerized form. 

The last relevant time scale shows us that the dilution of the stress response regulon is lineage 

dependent with some lineages diluting the response faster than others but still occurs on the 

generational scale. Additionally, in this work we summarized the energy costs associated with 

TCS signaling. The potential difference Δ𝜇 ≈ 15𝑘𝑏𝑇 varies slightly depending on the level of 

stress, but the ATP hydrolysis performed by the TCS is very sensitive to the stress.  
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Biological substrates for computation have been considered since before the advent of 

modern deterministic computers [1, 2]. Technological advances in measuring cellular responses to 

molecular signals have again raised the question of how stochastic networks compute.  

Signaling pathways enable living cells to process responses to stimuli from the 

extracellular environment. The uncertainty of signal transmission in a single cell has prompted 

various research efforts to quantify how much a cell knows about its environment. Advances in 

nonequilibrium thermodynamics have arrived alongside analyses of biological signaling. Often, 

models of signaling that consider only the time scale of molecular fluctuations have been 

considered (see, among others, [3-8]), especially in relation to the bacterial chemotactic response 

[9].  

We suggest that an important time scale for biological signaling should be on the order of 

gene expression (in the case of bacteria, potentially multiple generations). Growing cells invest 

energy to grow and divide, thereby diluting the results of previous computations. Because the 

remnants of previous responses are reduced but not necessarily completely erased, gradual dilution 

imparts a memory effect: a daughter cell is predisposed to respond in a qualitatively similar manner 

to its mother cell. Quantifying thermodynamic costs of molecular receptor signaling on short time 

scales reveals much about the extreme limits of the biological cost of computation, but such energy 

use is ultimately minor compared to the massive costs of gene expression that can arise as a result 

of such a signal. Here we seek to explore the effects of those costs on cellular information 

processing.  

We analyze cellular memory in a broad class of bacterial information transfer systems: 

two-component system (TCS) modules. TCSs respond to information about modulation of the 

physicochemical environment in and around the cell. Our analysis places nongenetic 
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intergenerational information transfer in a computational context and raises the question of the 

appropriate scales for analyzing the thermodynamics of information in living systems.  

2.1 Signaling Dynamics on the Time Scale of Generations  

 

Two relevant time scales of cellular signaling responses are molecular kinetic fluctuations 

and gene expression programs. In a bacterial cell, the time scale of protein turnover (and thus shifts 

in gene expression) is set by the generation time for the majority of protein types. This is because 

most proteins are quite stable; the relevant quantity for protein kinetic activity is concentration, 

and growth of the cell is the fastest process that reduces the concentration. Considering a signal 

that activates a transcription factor, the loss of the signal depends on the elimination of the 

responding proteins. Thus, for the mean-field birth–death process with constant production α/τ and 

constant generation time τ , we have  dynamics of protein concentration x(t) as 

𝑥 = 𝑒−𝑡/𝜏(𝑥(0) + 𝛼(𝑒𝑡/𝜏 − 1) , 

and protein half-life after loss of signal is τ ln 2, or about 70 percent of a cell’s lifetime, 

due to growth-mediated dilution. Positive feedback on the activation signal can promote the 

transcriptionally activated state of the cell, further exaggerating the effect. Many studies have 

explored the implications of such phenotypic memory [10-16].  

To make the conditions underlying cost and benefit more concrete, we introduce a common 

signaling pathway in bacteria: the TCS. Our goal here is to create a biologically realistic model 

that allows numerical determination of thermodynamic and informational quantities.  
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2.2 Models of Bacterial Two-Component Signaling 

 TCSs are a common sensing mechanism in bacteria that have a notable level of 

conservation across phyla (for a review of TCS evolution, see [17]). Though many variations on 

the core motif exist, the canonical TCS has a dimeric sensor histidine kinase (SHK) and a cognate 

response regulator (RR). The sensor responds to stimuli by increasing phosphorylated RR [18]. 

Once phosphorylated, RR dimerization is stabilized, allowing it to become a transcription factor 

for genes that are typically relevant to the original stimulus. In many TCSs, one of the operons 

regulated by the RR is the TCS operon itself, providing feedback and potentially affecting the 

regulatory activity of the TCS [15, 19-22]. TCS operons have strong gene expression polarity, 

meaning the expression level of the gene closest to the transcription start site is higher than 

expression of the subsequent gene(s). Because of this effect, [RR] exceeds [SHK] by orders of 

magnitude to maintain a sensitive, yet reproducible, response to stimuli [23, 24]. There are multiple 

distinct TCSs in most characterized bacterial species, each responding to distinct stimuli and 

inducing distinct responses [25-27]. However, TCSs are integrated into global responses. For 

example, phosphate limitation depends on a complex between multiple sensors, including a TCS 

sensor called PhoR [28]. We developed coarse-grained models for the TCS core motif that were 

parameterized to represent a large class of them approximately, but with special reference to the 

PhoBR system in Escherichia coli, which has been extensively studied ([29-31], and references 

therein). 

2.3 Coarse-Grained Kinetic Model 

  The sensor of a TCS is a dimer composed of two inactive monomers. It matures into a 

dimeric form that is usually in the cell membrane and senses changes in environment. The mature 

sensor has two reaction pathways: one that favors creating the active regulator and one that favors 
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the inactivation of the regulator. The result is a dynamic balance between the competing processes 

of activation and deactivation. Which one dominates at a given time depends on how much stress 

signal is present. Figure 2.1a depicts this process. Conformational states in figure 2.1a represent 

ensembles of protein structure conformations that are functionally equivalent in terms of the 

reaction kinetics, which is why we refer to this as a coarsegrained kinetic model. All of the depicted 

reaction rates follow mass action kinetics at this scale.  

We have inferred that the SHK component of E. coli PhoBR switches between kinase-

active and kinase-inactive conformational ensembles because phosphatase activity is unaffected 

in mutants lacking kinase activity [32]. Because ATP or ADP is bound in close proximity to the 

phosphorylated site on the SHK, the kinase and phosphotransfer reactions are reversible. The step 

in a TCS that truly dissipates energy is phosphatase activity: effectively irreversible 

dephosphorylation of a phosphorylated RR monomer.  

The cytoplasm contains ATP at approximately one hundredfold excess over ADP [20]. Our 

model assumes that ATP quickly replaces ADP in the binding pocket of SHK molecules. SHK 

reversibly binds its cognate RR. SHK is then capable of reversibly transferring the phosphoryl 

group to the RR. 5 

In the limit of large numbers of molecules, the steady-state fraction of active SHK is 
𝑘2

𝑘2+𝑘−2
. 

In this model, we can say that the rate of kinase phosphorylation is 
𝑘3𝑘2

𝑘2+𝑘−2
. We can find the potential 

difference [33], ∆µ =  𝑘𝑏T ln
𝐽+

𝐽−   , where J + represents the flux toward transcriptionally active 

RRP2, J- represents the reverse flux toward the inactive state, and kbT is the Boltzmann constant 

times the temperature. In the equilibrium state, the two fluxes balance, and we have detailed 
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balance. Deviations of ∆µ from zero quantify how far out of equilibrium the system is being driven 

by mass and energy input from the rest of the cell.  

Our TCS model has the following mean-field fluxes: 

 𝐽+  =  𝑘1[SHKm]2 ×
𝑘2𝑘3

𝑘−2+𝑘2
 [SHK] × (𝑘−5  +  𝑘4)[SHK. RRP] × 𝑘6[RRP]2 

 𝐽− = 𝑘−1[SHK] × 𝑘−3[SHK. RRP] × (𝑘5 + 𝑘−4)[RRP] × 𝑘−6[RRP2],  

where [SHKm] represents SHK monomers, [SHK] is SHK dimers, [SHK.RRP] is the SHK + RR 

complex, [RRP] is phosphorylated RR monomer, and [RRP2] is transcriptionally active, 

phosphorylated RR dimer. We have identified specific parameter values for each rate constant that 

reflect the PhoBR system (table 1).  

In practice, living cells constantly produce ATP; the TCS has a constant source of energy 

in ATP and a sink in ADP + Pi. The gene regulatory activity of the TCS, including its 

autoregulation, also contributes to the total energy in the system. The steady state of a functional 

TCS is intrinsically out of equilibrium: ∆µ > 0.  

2.4 Connections to Cellular Physiology 

Activation of a TCS upregulates a regulon, the set of genes that are the target of the 

regulator. The cell pays a metabolic cost for the response, but also benefits from the ameliorative 

activities of the regulon. For example, in the case of phosphate starvation, the PhoBR TCS induces 

expression of alkaline phosphatase (phoA), recovering phosphorus from phosphate ester. 

However, the complete regulon of PhoBR consists of approximately forty upregulated genes; the 

metabolic cost of expressing it is significant. Lynch and Marinov [34] give a sense of the scale of 
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a regulon. They estimated the absolute cost per gene to be 103 − 108 hydrolyzed phosphate bonds 

in bacteria. This is likely to be the majority of the metabolic cost of TCS activation.  

We consider the fraction of the growth budget dedicated to the TCS to be 1 − ϕ(ρ) = 1 − χ 

ρ ρmax , where ρ represents the size of the total regulon, ρmax is the maximal hypothetical 

induction, and χ is the maximal fraction of the growth budget that the regulon can take. We have 

defined the “growth budget” somewhat amorphously so that we can use 1 − ϕ(ρ) as a multiplier to 

limit growth rate. Then we have a growth multiplier that determines the growth benefit from 

expressing the TCS regulon, f(ρ) + fb, where fb is the basal growth rate without the benefit of the 

TCS signal, while f(ρ) is the ameliorative contribution of the regulon. We take a linear benefit, 

f(ρ) = α ρ ρmax , where α + fb represents the maximal growth rate attainable in a given condition 

without accounting for TCS regulon cost. The net growth rate accounting for both cost and benefit 

is then  

𝛾 = (1 − 𝜙(𝜌))(𝑓(𝜌) + 𝑓𝑏) = (1 − 𝜒
𝜌

𝜌𝑚𝑎𝑥
)(𝛼

𝜌

𝜌𝑚𝑎𝑥
+ 𝑓𝑏) 

The trade-off effect naturally arises because this form is quadratic in ρ, with a predicted optimal 

regulon size at the point where  
𝜕𝛾

𝜕𝜌
|𝜒,𝛼,𝑓𝑏,𝜌𝑚𝑎𝑥

= 0, which gives 𝜌 =
𝜌𝑚𝑎𝑥(𝛼+𝑓𝑏𝜒)

2𝛼𝜒
.  

The situation is not that simple, however, because both α and fb depend on the same 

conditions that determine the activation state of the TCS: kinetic parameter k2. The relationship 

could take a variety of forms. We estimated the relationship empirically using biomass in a 

chemostat experiment in an E. coli strain that has had the phoB gene (response regulator) deleted 

[35]. This strain does not produce the TCS regulon. Its steady-state biomass in a chemostat at 

various levels of phosphate starvation therefore gives fb for the case of the PhoBR system. The 
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biomass data happen to fit an inverse logistic function with 𝑟2 > 0.999. Assuming that TCS 

activation rate, 𝑘2, is proportional to the degree of phosphate starvation in PhoBR, we have 𝑓𝑏  =

𝑎𝑓𝑖𝑡

𝑏𝑓𝑖𝑡+ 𝑒−𝑐𝑓𝑖𝑡+𝑘2  .  

In the preceding equation, 𝛼 +  𝑓𝑏 is the maximum possible recovery from the signal-

induced growth rate: with 𝛾𝑢 as the upper limit of the growth rate and ϵ (≤ 1) as the efficiency of 

the regulon to recover the growth rate, 

 𝛼 +  𝑓𝑏  =  𝜖 ( 𝛾𝑢 −
𝑎𝑓𝑖𝑡

𝑏𝑓𝑖𝑡 +  𝑒−𝑐𝑓𝑖𝑡+𝑘2 
 )  + 

𝑎𝑓𝑖𝑡

𝑏𝑓𝑖𝑡 +  𝑒−𝑐𝑓𝑖𝑡+𝑘2 
 .  

For the PhoBR system, we have a growth model with free parameters 𝜖, 𝛾𝑢, 𝜒, and 𝜌𝑚𝑎𝑥. 

The same study that gave data for the logistic fit of fb (Marzan and Shimizu 2011) also measured 

relative expression of selected PhoBR regulon genes in wildtype cultures. From this, we estimated 

χ ≈ 0.37. We assumed that the genes upregulated by the TCS were mostly capable of reducing 

phosphate stress (ϵ = 0.95) and that the growth medium without phosphate starvation is relatively 

favorable (𝛾𝑢 = 0.0004/s = 1.44/h). The hypothetical maximum induction of the regulon (𝜌𝑚𝑎𝑥 = 

150 µM) was set by calibration with the average regulon transcription and translation rates, 𝑘𝑡𝑥𝑛𝑅 

and 𝑘𝑡𝑠𝑛𝑅 (table 1).  

Using the growth model, we create two multiscale models of a TCS embedded in cellular 

physiology—one representing the average of many cells and a stochastic simulation that tracks the 

dynamics of signaling in single cells. We first describe the mean-field model TCS dynamics. We 

then use this to develop a stochastic model. We calibrate both models with the meanfield model, 

explore average responses with it, and then use the stochastic model to simulate the dynamics of 

signal transfer as the population recovers from signal loss.  
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2.5 Mean-Field Model 

We represent two types of processes: reversible chemical reactions and irreversible 

reactions that represent dissipative processes, such as transcription, translation, cellular growth, 

and, in the TCS, the irreversible step in hydrolysis of ATP—phosphatase activity of SHK. We 

allow transcription and translation to be governed by mass-action kinetics. The complete model is 

a set of differential equations with twelve variables: bicistronic messenger RNA (mRNA), 

monocistronic RR mRNA, downstream regulon mRNA, downstream regulon protein, and the 

species represented in figure 2.1a.  

The equations are omitted for brevity, but all interactions are assumed to be mass action, 

except for gene regulation processes, which take Michaelis–Menten form, with 𝑉𝑚𝑎𝑥 given by 𝑘𝑡𝑥𝑛 

(TCS operon) or 𝑘𝑡𝑥𝑛𝑅 (regulon operons) and 𝐾𝑚 given by 𝐾𝑚𝑡𝑥𝑛 (table 1). (We assume that most 

promoters of the TCS regulon are calibrated to typical concentrations of RRP2, and therefore we 

assign the same 𝐾𝑚 for the TCS and all regulon promoters.) mRNA is unstable and actively 

degraded by cells; degradation of mRNA is taken to be a massaction process. On the basis of the 

work of Aiso and Ohki [36], our model has an unstable bicistronic TCS mRNA species capable of 

initiating translation of both RR and SHK as well as a more stable monocistronic mRNA species 

that only initiates translation of RR. Dilution of molecules depends on the previously described 

growth model: loss of protein has a rate 𝛾[𝑃𝑟𝑜𝑡𝑒𝑖𝑛]  =  ( 1 −  𝜙(𝜌) )(𝑓(𝜌)  +  𝑓𝑏 )  ×

 [𝑃𝑟𝑜𝑡𝑒𝑖𝑛], and loss of mRNA has a rate (𝑘𝑑𝑒𝑔𝑅𝑁𝐴 +  𝛾)  × [𝑚𝑅𝑁𝐴] for degradation rate 

constants that depend on the specific mRNA species.  

2.6 Stochastic Model 
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The stochastic model is based on the mean-field model with the following additions. Reactions 

occur in individual cell agents that have a volume growing according to the growth model 

described earlier, based on Bandyopadhyay, Wang, and Ray [27]. Increments of stochastic 

simulation occur at approximately constant volume intervals, then the volume is updated based on 

the resulting growth rate. Increments in reaction volume affect any bimolecular interactions [27]. 

We chose a quasi-constant volume interval of 1 s, which is less than the expected time to add a 

single phospholipid in a cell that is growing relatively quickly.  

For the stochastic growth model, we assume that the mean-field growth model holds, with 

the exception of regulon fluctuations. The downstream regulon of a TCS potentially undergoes 

significant fluctuations that are entrained to RRP2 fluctuations. However, there is still an 

independent stochastic component: between the expression of multiple genes, upward fluctuations 

in expression in some genes may be counterbalanced by downward fluctuations in expression in 

other genes. We therefore represent gene expression from n = 40 independent loci, all assumed to 

have identical binding and gene expression kinetics, producing mRNA into a common pool that 

results in a common regulon.  

In the stochastic model, we represent explicit promoters for the regulated genes, with 

binding/unbinding and irreversible transcription initiation events. We set the binding constants and 

transcription initiation constants to be equal to the Michaelis–Menten form of the mean-field 

model (Table 1).  

Each cell agent grows at a rate set by the growth model (γ), and, when the initial volume 

has been doubled, it divides, partitioning all non-DNA species into two daughter cells with a 

binomial distribution. Jun et al. [37] (and references therein) suggest that the “adder” principle is 

an excellent phenomenological representation of cell volumes during the E. coli cell cycle: a 
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constant cell volume is added before division. In our model, each cell agent has a volume of 1 

femtoliter and doubles to 2 femtoliters before division. Promoters/DNA are all deterministically 

inherited into both daughter cells. The cellular simulation is implemented in Python, with the 

stochastic simulations run in StochKit and using GillesPy [28] to interface the Python cell script 

with the stochastic simulations.  

2.7 Results  

2.7.1 Average Cellular Growth and Signal Dynamics 

Simulations using the mean-field model reveal the effects of induction and shutoff of a 

TCS in E. coli (Fig. 2.2). The model suggests that intermediate levels of induction have a slightly 

lower growth rate than the fully induced system when the stress becomes more severe (Fig. 2.2c). 

The reason for the effect is clear looking at the model variants lacking transcriptional feedback 

with constant low and high TCS gene expression (shaded lines in figure 2.2). The system with 

transcriptional feedback switches from being nearly equivalent to the low-TCS expression 

feedbackless case to being nearly equivalent to the high-TCS-expression feedbackless case. It is 

the transcriptional feedback that allows the system to adapt to higher signal levels. Constant high 

TCS expression causes grossly more ATP hydrolysis (which is the same as the phosphatase flux, 

𝑘−3  ×  ([𝑆𝐻𝐾𝑎. 𝑅𝑅𝑃]  +  [𝑆𝐻𝐾. 𝑅𝑅𝑃])) than the case with low expression or transcriptional 

feedback (Fig. 2.2d). This demonstrates a trade-off between cost and benefit: in the autoregulated 

TCS, it is possible to sacrifice large investments in stress responses at the cost of a slightly lower 

growth rate, unless the stress becomes severe.  

Our model predicts that the TCS has a potential difference ∆µ ≈ 15 kbT, varying slightly 

depending on signal level (Fig. 2.2b). The same is not true for the ATP dissipation rate of the TCS, 

which increases dramatically at the largest induction levels (Fig. 2.2d).  
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We find that shutting off the signal (initial conditions at the 𝑘2  =  10 steady state, 

instantaneously switched to 𝑘2  =  10−3 ) reveals three relevant time scales (Figs. 2.2e–2.2f). On 

the generational time scale, ≫1000 s, the regulon is diluted, and normal growth resumes. Loss of 

TCS transcriptional activity (RRP2) occurs at a faster rate. At very short time scales, the sensor 

shuts off to an intermediate quasi–steady state before being driven even lower by the effects of 

growth dilution (Fig. 2.2f).  

2.7.2 Intergenerational Signal Transfer in A Two-Component System  

The stochastic cell growth framework captures the rate of signal loss and the interaction 

between cell division and dynamics of the signal (Fig. 2.3). We used the same switch from high to 

low signal as earlier. Figure 2.3a confirms the mean-field results that signal shutoff is faster than 

loss of the regulon. The half-life of RRP2 is less than half of a generation, the regulon half-life is 

more than one generation, and a purely growth-diluted molecule half-life would be ≈70 percent of 

a generation. Both species follow nearly deterministic trajectories. The same is not true for TCS 

total protein expression, where protein dilution is highly lineage dependent (Fig. 2.3b). The 

difference in time scales between the signal shutoff and the residual response illustrates an 

intergenerational memory effect.  

2.8 Discussion  

It is increasingly feasible to model time scales of cellular information processing that are 

relevant to fitness and evolution without them being oversimplified toy models. The disadvantage 

of this approach is the loss of generality: the necessary quantity of empirical information requires 

that they simulate a specific system. This is a small problem in the face of ever-increasing high-

resolution physiological data. The ability to capture interactions accurately between the short time 
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scales of molecular fluctuations and the global physiological shifts in a cell is an unmistakable 

advantage. Here we have demonstrated how such models can address questions of energetics and 

cellular information processing, setting up a framework for future, more thorough studies of 

information flow.  

Our model of TCS suggests that the vast majority of metabolic (ATP) cost lies in the 

production of the regulon, which has a higher ATP investment compared to the signaling system 

itself. Monte Carlo sampling of the TCS kinetic parameters shows that our empirical parameter set 

lies in the middle of possible responses (not shown). Though not precisely quantitative of any 

particular system, the numerical results are reliable.  

In the intact system, the constant source of ATP along with material influx of TCS proteins 

maintains the TCS out of thermodynamic equilibrium in all conditions (Fig. 2.2b). At the same 

time, the system is driven by global physiological variables coupled to stochasticity effects, which 

diversifies the level of memory in a lineage-dependent manner: some cells and all of their 

daughters undergo rapid loss of TCS proteins, while other cells maintain a longer-lived high 

expression level that may be metastable (Fig. 2.3).  
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Table 2.1. Calibrated parameters 

Parameter Estimated value Notes/reference 

𝑘1 10 (𝜇M s)−1 Fast SHK dimerization 

𝑘−1 0.00001 s−1 Rare SHK dedimerization 

𝑘2 Conditional, s−1 𝑘2 ∈ [0.001, 10] 
𝑘−2 0.1 s−1 Assumed fast 

𝑘3 0.0004 (𝜇M s)−1 Model calibration 

𝑘−3 0.0087 s−1 [38] 

𝑘4and 𝑘−5 1 s−1 Model calibration 

𝑘−4 and 𝑘5 0.036 (𝜇M s)−1 [20] 

𝑘6 1 (𝜇𝑀 s)−1 Model calibration 

𝑘−6 4 s−1 [20] 

𝑘𝑡𝑥𝑛𝑏 0.00001 s−1 Model calibration 

𝑘𝑡𝑥𝑛 0.00025 s−1 Model calibration 

𝑘𝑡𝑥𝑛𝑖 0.15 s−1 TCS transcription initiation 

rate when RRP2 is bound 

𝐾𝑚𝑡𝑥𝑛 2.5 𝜇M PTCS half-sat;  

[32] 

𝑘𝑝𝑏 1.66 (𝜇M s)−1 PTCS binding rate;  

[32] 

𝑘𝑝𝑢 3.86 s−1 PTCS unbinding rate; 

inferred from 𝐾𝑚𝑡𝑥𝑛  and 𝑘𝑝𝑏 

𝑘𝑑𝑒𝑔𝑏 0.027 s−1 [32] 

𝑘𝑑𝑒𝑔𝑟 0.0044 s−1 [32] 

𝑘𝑡𝑠𝑛 0.05 s−1 Model calibration 

𝜒 0.37 [32] 

𝑎𝑓𝑖𝑡 ≈ 1.123 × 10−4 [39] 

𝑏𝑓𝑖𝑡 ≈ 1.77 [39] 

𝑐𝑓𝑖𝑡 ≈ 3.75 [40] 

Note. PTCS refers to the promoter of the two-component system 

operon 
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Figure 2.1: Coarse-grained multiscale model of a two-component system (TCS). (a) ATP 

associates with the sensor histidine kinase (SHK), , along with fast interchange between 

ADP and ATP. External signal stimulates the SHK conformational switch (𝑘2). Physical 

interaction between SHK and response regulator (RR) allows phosphotransfer to RR, 

stabilizing the dimeric RRP2, an active transcription factor. SHK phosphatase activity is an 

ATP dissipative step. (b) Nested feedback loops involved in signals from TCSs. Signal 

stimulates production of RRP2, which modulates a regulon (upregulation of several genes). 

Often, transcription of the TCS operon itself is induced: feedback that may affect the signal 

level. The regulon typically counteracts the signal, another feedback loop. Expression of 

the regulon entails a metabolic investment, reducing the fraction of resources devoted to 

growth. Growth dilutes the molecules, affecting bimolecular reaction propensities. The 

TCS maintains responsiveness by constantly dissipating ATP energy, but the major cost of 

the TCS during the signal is in the regulon. 
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Figure 2.2: Predicted steady-state and dynamical physiological outcomes of activating a 

TCS, with parameters calibrated to represent the E. coli PhoBR system having a regulon 

containing approximately forty genes. Line styles represent the intact system (black solid) 

and transcriptional feedbackless system with basal (shaded solid) or maximal (shaded 

dashed) expression. (a) The level of induction is related to the size of the signal—in this 

case, phosphate limitation. (b) Potential difference ∆µ in units of 𝑘𝑏𝑇. (c) TCS induction 

recovers a fraction of the growth rate lost to the stress condition. (d) Rates of ATP 

hydrolysis by the TCS (𝑘−3([𝑆𝐻𝐾𝑎. 𝑅𝑅𝑃]  +  [𝑆𝐻𝐾. 𝑅𝑅𝑃])) and TCS operon synthesis 

(𝑘𝑡𝑥𝑛𝑏  +
𝑘𝑡𝑥𝑛[𝑅𝑅𝑃2]

𝐾𝑚𝑡𝑥𝑛+[𝑅𝑅𝑃2]
 ). (e) Dynamics of growth rate and biomass on recovery from fully 

induced to uninduced conditions. The solid black line is growth rate; the shaded line is 

biomass; and the vertical line is the ʨrst generation of growth. Dots represent subsequent 

generations. (f) Dynamic loss of TCS activity. The solid black line is the regulon; the 

shaded solid line is SHKa; and the shaded dashed line is RRP2. 
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Figure 2.3: Stochastic dynamics of intergenerational signal loss. The simulation was started 

in a high activated steady state (𝑘2  =  10) and allowed to relax to an inactive state (𝑘2 =

 10−3 ). (a) Levels of the TCS regulon (black line) and transcriptionally active regulator 

RRP2 (shaded line) follow different time scales. Cell division times are evident. These 

results superimpose the levels in all of the cell agents in the simulation. The results closely 

follow the expected deterministic mean. (b) Levels of the TCS proteins display striking 

heterogeneity that arises at cell birth. Different individual cells are represented by different 

shades of gray or black. Some cells are nearly to basal levels of the protein, while others 

still have substantial residual protein several generations later 
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Abstract 

Responses to stress can cause a similar overall reduction in population growth rate in bacteria 

even if the stresses are different. Lactose as a sole carbon source for Escherichia coli is an 

established example: too little causes starvation, and too much causes toxicity. E. coli B strains are 

robust to osmotic and ionic differences in growth media. The resulting growth dynamic is 

heterogeneous in lactose-toxified conditions as compared to starving or non-toxified conditions. 

Both toxicity and starvation cause reduced population growth rates and enrichment for antibiotic-

tolerant persister cells in comparison to less stressful intermediate concentrations of lactose. 

Similarities between starvation and toxification raise the question of how the global stress response 

stimulon differs between opposite types of stress. We hypothesized that a core generalized stress 

response is conserved between the two conditions, but that the average cells in starvation 

conditions would have a key difference in gene expression indicative of the stringent response. To 

test this, we performed RNA-Seq in three representative conditions for differential expression 

analysis. In comparison to the non-starving, non-toxified cultures, both showed global shifts in 

gene expression, though the number of differentially regulated genes is higher in starving 

conditions. Together with emerging evidence from other studies, our results suggest that many 

possible pathways can contribute to stress responses and persistence. Therefore, we propose 

imagining phenomena such as persistence as a set of responses without a single unifying 

mechanism, but rather as a set of overlapping responses. Our approach provides a resource for 

identifying diverse mechanisms of stress tolerance from diverse stimuli. 
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3.1. Introduction 

Fitness and survival of single-celled organisms in diverse environments is a nuanced topic: 

a functional response in one environment may incur penalties in another. Mesophilic bacteria 

encounter this problem: if temperature is too high or too low, different stress responses can arise 

in opposite conditions. Similarly, osmotic pressure, chemical concentrations, and other conditions 

typically require a stress response if they get either too high or too low. The primary mechanism 

attributed to non-genetic antibiotic tolerance in the form of persister cells is starvation or loss of 

metabolic activity [1-5], but multiple mechanisms induce persister formation [6-10]. This is a chief 

concern for how to handle infectious disease during the rise of antibiotic resistance because 

persistence may allow resistance to evolve more quickly [11, 12]. 

We previously discovered that excessively high or low lactose concentrations (as a sole 

carbon source) can predispose Escherichia coli B REL606 populations to lowered death rates in 

antibiotics [13]. Varying the concentration of lactose as the sole carbon source in minimal media 

results in a non-monotonic population growth rate, from a slow uniform growth to a plateau at 

intermediate concentrations and drastically reduced growth rate at higher concentrations [13]. 

Lactose has established toxic effects on E. coli cultures, often attributed to membrane 

depolarization via excessive proton symport with lactose through the permease LacY of the major 

facilitator superfamily [14-16]. In B REL606, toxic lactose levels create a heterogeneous 

population dynamic with a chance of fast-growing cells to enter growth arrest [13, 17]. We believe 

that these growth-arrested cells represent a persister-prone subpopulation. This system provides a 

model for examining how cells respond to conflicting, or opposite, stresses: is the global 

transcriptional program overall the same, or fundamentally different? In this model system, both 
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starving and toxified cultures exhibit increased stress tolerance (Fig. 3.1). The mechanisms for 

these conflicting stresses to attain a similar phenotype are unknown. 

We proposed three possible hypotheses: one, that starving and toxified cultures exhibit 

overall similarities in gene expression response profiles; two, that transcriptional responses to 

conflicting stresses are fundamentally different; three, that there is a core conserved response 

alongside distinct responses in each condition. To put these hypotheses to the test, we cultured E. 

coli in low, intermediate, and high concentrations of lactose minimal medium, grew them to mid-

exponential phase, and harvested cells from each culture for RNA-Seq. 

The resulting transcriptional profiles were subjected to differential expression analysis with 

the intermediate lactose concentration as the reference condition. Our results showed decisively 

different gene expression profiles between the starving and toxified cultures. The response 

regulons were distinct but of similar size in toxified and starving conditions, the latter of which 

also showed signs of the stringent response. While there was a core conserved set of genes with 

similar responses in both conditions, toxified cultures showed a distinct gene expression pattern 

suggestive of a unique stress response. Our results show compelling evidence that persister-prone 

conditions can arise from many distinct pathways. We suggest that the persister phenotype as we 

have defined it here is a phenomenological property arising from multiple distinct pathways, and 

that many phenotypes may similarly arise from a combination of overlapping regulons. 
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Figure 3.1: The killing rate of E. coli B REL606 in ampicillin is lowest in starving and toxified 

culture conditions. a. Surviving fractions in low, intermediate, and high lactose conditions after 

ampicillin treatment (100 mg/ml) during mid-exponential phase (mean ± standard deviation, N = 

3; final point in 1.5 mg/ml, N = 1). Data from [13, 18] were fit to a mixed linear-exponential model 

𝑦 = 𝑎 𝑡 + 𝑏 𝑒−𝑔 𝑡 + 𝑐 with r2 as reported in the figure. b. Time derivative −
𝑑𝑦

𝑑𝑡
 of the statistical 

model parameterized for each fit in panel a shows a lowered killing rate for both starving and 

toxified cultures between approximately 7 and 40 hours post-treatment. 
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3.2. Results 

To analyze gene expression profiles, we purified total RNA from the cell culture from different 

lactose concentrations. We mapped sequencing reads to the reference genome E. coli B REL606 

NC_012967.1 [17] with kallisto [19] and subsequently analyzed the count data in Python and 

DESeq2[20]. Setting the moderate lactose concentration (2.5 mg/ml) condition as the reference, 

we defined genes that were differentially expressed (DEGs) in starvation (lactose conc. 0.1 mg/ml) 

and toxified (lactose conc. 50 mg/ml) conditions as genes with an adjusted p-value, i.e. false 

detection rate (FDR), of below 0.05 and a log2 fold change (LFC) greater than 1 (Fig. 3.S1). Out 

of 4490 genes in the genome, 913 DEGs were upregulated, and 1668 DEGs were downregulated 

in the starvation condition, while 1638 DEGs were upregulated, and 853 DEGs were done 

regulated in toxified condition. For further comparing our RNA sequence analysis results with the 

classic stringent response, we refer to RNA sequence analysis results from induced ppGpp 

expression  by Patricia et al. [21], where 638 DEGs were upregulated, and 682 DEGs were 

downregulated out of 4318 genes when cells were stressed. Gene differential expression clustering 

revealed that the phenotypes of starvation cells and toxified cells were quite different (Figs. 3.2 

and 3.S2). 

 

3.2.1. Slowed killing rate in starving and toxified E. coli cultures 

Re-analysis of our previous time course of exponential-phase E. coli treated with ampicillin 

demonstrates a lowered rate of death in starving and toxified cultures (Fig. 3.1). To show this, we 

fit the data to a mixed linear-exponential statistical model in logarithmic coordinates on the y axis: 

𝑦 = 𝑎 𝑡 + 𝑏 𝑒−𝑔 𝑡 + 𝑐. All three were fit with low error (𝑟2 > 0.99 in all three cases). Taking the 

time derivative revealed the estimated rate of killing for each culture condition (Fig. 3.1b), which 
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was highest in non-stressful conditions. Therefore, both the starving and toxified cultures are prone 

to produce higher levels of antibiotic tolerance than less stressful intermediate conditions. 

 

 

Figure 3.2: σ factor regulation differs responding to starvation and toxification. In both starvation 

and toxification, σ70, which is the proliferation sigma factor, is downregulated. a. Percentage of 

differentially expressed genes among all genes regulated by that σ factor. b. The log2 fold change 

(LFC2) of the σ factor with corresponding percentage of upregulated genes and down regulated 

genes among all differentially expressed genes. c. The number of genes that are regulated by the 

σ factor. 
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3.2.2. Divergent expression profiles with a core conserved transcriptional response  

The central metabolism of the high and low lactose cultures share a non-intuitive utilization 

of glucarate and galactarate (both oxidized derivatives of lactose [21]) as a carbon source and 

arginine degradation as a nitrogen source (Table S1). The utilization of these non-ideal metabolic 

staples could be the cause of the decreased growth rates of the high and low lactose cultures 

compared to the intermediate lactose condition [22]. Additionally, both cultures shift away from 

ammonia mediated nitrogen acquisition, tRNA charging, and general amino acid biosynthesis, 

potentially stemming from non-ideal carbon metabolism (Table 3.S2). 

However, the starved and toxified cultures are not identical in their transcriptional profile. 

Unique to the low (0.1 mg/mL) lactose condition, the culture upregulates fatty acid beta oxidation 

and down regulates galactose degradation (Table 3.S4). This suggests that the lactose-starved cells 

are catabolizing previously made fatty acids and relying less on the free sugar in the medium. The 

lactose-toxified cells have a confounding transcriptional profile, as the galactose derivative 

metabolism and alternative sugar metabolic pathways are upregulated, yet many fatty acid and 

membrane-associated lipid pathways are downregulated. A potential explanation of this result is 

that the cells are undergoing a diauxic shift from using glucose as their primary sugar to previously 

exported galactose derivatives (Table 3.S5, 3.S6). The downregulation of the TCA cycle in lactose-

toxified cultures could also be evidence of an overflow metabolism state [22], wherein sugar 

concentrations are in excess.  

3.2.3. Similarities and differences in global transcriptional regulation responding to opposing 

stresses 
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Cells deploy fast regulatory responses to cope with varying environmental changes. 

Genetic regulation is upstream of the central dogma, thus having a global impact on subsequent 

regulatory responses on protein expression, metabolism, and cell phenotype. To understand the 

genetic regulation for cells confronting different stresses, we looked into regulation of DEGs. We 

classify DEGs into genetically regulated genes and constitutively expressing genes. Regulated 

genes are further divided into auto-regulated and non-auto-regulated gene categories. The 

classified DEGs are shown in Figure 3.3. In general, we observe similar distributions for regulated 

DEGs and non-regulated DEGs for cells in both starved and toxified conditions. To quantify this 

similarity, we first encoded the DEG LFC2 data with -1, 0 and 1 representing indices of negative 

DE, non-DE, and positive DE, then calculated the Pearson correlation for the encoded index 

between starvation and toxification condition. Pearson correlation for non-regulated DEGs is 0.66, 

for regulated but not auto-regulated DEGs is 0.67, and for auto-regulated DEGs is 0.56. This 

similarity may due to biased expression based on the gene’s position on the genome, such as higher 

expression near the origin. Negative auto-regulation in gene circuits has been shown to decrease 

response times to stimuli and generally increase system stability [23, 24]. Auto-regulated genes 

showing lower correlations may be due to their functionality to maintain different steady states 

needed to respond to different stresses. The Hellinger distance between the regulated gene 

distribution and the non-regulated gene distribution for starvation is 0.22, and for toxicity is 0.21, 

meaning that there are still differences between the regulated gene and non-regulated gene 

distributions. Observing the distributions in Figure 3.3, we find that regulated genes have wider 

distributions in both conditions, confirming specified directional regulation as cells responding to 

stress. The LFC2 range for starvation is wider than that of toxification, implying more severe stress 

on starving cells compared to toxified cells. This result is consistent with our previous results [13] 
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and the model shown in Figure 3.1, where cells initially have a higher death rate under lactose 

starvation than when compared to cells grown in lactose toxicity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Differentially expressed gene LFC2 for starved cells and toxified cells. Histograms 

for non-regulated DEGs, regulated DEGs that are not autoregulated and autoregulated DEGs 

are show in blue, orange and green. 
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3.2.4. Stress responses regulated by sigma factors 

Transcription initiation for E. coli promoters requires subunits of RNA polymerase 

(RNAP) called sigma (σ) factors [25]. Six σ factors exist in the E. coli B REL606 strain. 

Comparing to K-12 MG1655, σ28 (RpoF/FliA) is missing in REL606 strain, which is the flagellar 

synthesis sigma factor. σ19 (FecI), the ferric citrate sigma factor regulating iron transport and 

metabolism, is present in the REL606 strain, but does not interact with any genes according to 

RegulonDB [26]. To understand how a σ factor regulates cellular response to environmental 

stimuli, we looked at the differential expression for σ factors and their regulated genes (Fig. 3.2).  

Distinct promoter classes depend on different σ factors to recruit RNAP for gene 

expression. Figure 3.2 shows that σ factor regulation corresponds with LFC2 above the differential 

expression cutoff. A hypothesis for this effect is that the competitive binding between different σ 

factors can switch RNAP binding regimes and subsequently result in growth phase changes, where 

ppGpp upregulates σ38 to activate stringent response gene expression [27]. In our data, compared 

to the stationary phase of the moderate lactose condition, there is a significant decrease of σ70 

expression (rpoD) for both toxification and starvation conditions. This σ factor initiates by far the 

largest gene set of the sigma factors: 1723 genes, involving cell proliferation related behavior such 

as substrate update, DNA replication, membrane synthesis, and ribosome production. Consistent 

with the σ70 LFC2 values, most genes initiated by σ70 were downregulated in both toxified and 

starved conditions. Interestingly, σ38 (rpoS) is not differentially expressed in starving cells and is 

downregulated in toxified cells. This result is consistent with the relA and spoT expression level, 

where downregulated relA and spot expression can lead to lower ppGpp concentrations, and thus 

lower σ38 expression. The ppGpp stringent response may have been attenuated due to a strong σ70 

presence in the moderate lactose condition. On the contrary, σ70 presence is downregulated in 
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starvation and toxification. Thus, even with relatively similar or lower σ38 expression, cells in 

starvation and toxification appear to undergo a stress response. This view is confirmed by the 

observation that the majority of DEGs initiated by σ38 are downregulated for starvation and 

toxification conditions.  

σ54 (rpoN) is the only σ factor sharing little sequence homology to σ70 and it regulates 136 

genes involving nutrient limitation such as nitrogen assimilation, substrate-specific transport 

systems, and utilization of alternative carbon and energy sources. σ54 has similar behavior to σ38: 

the majority genes initiated by σ54 are downregulated, while σ54 itself is down- or un-regulated in 

starvation and toxification conditions compared to the reference. Toxified conditions have 

downregulated σ38 expression, but upregulated σ54 expression, which is opposite of the starvation 

condition.  

3.3. Discussion 

3.3.1. Excess lactose-induced persistence via diauxic shift toxicity due to a combination of 

overflow metabolism and Leloir pathway intermediates 

One hypothesis for non-stringent persistence is metabolic toxicity induced by critical 

proteomic concentrations. In high glucose, E. coli undergoes a metabolic shift from primarily 

aerobic metabolism to incomplete oxidation of metabolites, including ATP synthesis [28]. The 

cause seems to be linked to a proteomic optimization, as anaerobic ATP synthesis requires a 

smaller fraction of the proteome to synthesize an equivalent amount of ATP at the cost of more 

sugar [22]. The smaller proteome allows for higher growth rates due to the reduced size of the 

necessary metabolome, allowing more transcriptional/translational machinery to be devoted to 

ribosome synthesis [22, 29]. 
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We performed preliminary metabolic transcriptomic data analysis and found that the non-

persistent bulk culture of cells utilize the Entner-Doudoroff shunt, which shifts pyruvate into 

phosphoenolpyruvate and downregulates the enzymes responsible for oxoalacetate and acetyl-

CoA entering the citric acid cycle, which is consistent with cells undergoing overflow metabolism. 

The only sugar present in the media is lactose so proteomic stress could induce a state where GalE 

fluctuation leads to UDP-Galactose toxicity [20], and indeed, galE is downregulated in high 

lactose antibiotic tolerant cells, but not significantly differentially expressed in untreated cultures. 

3.3.2. Different phenotypes could be due to sigma factor competition 

Regulation of stress responses in bacteria is generally considered to be robust. Despite 

being exposed to opposite stress, we show that differential expression of genes in starvation and 

toxification have similar distributions. This may due to leaky expression of genes in the different 

locus on the genome. As expected, the regulated differentially expressed genes have wider log2 

fold change distributions compared to constitutively expressed genes. With differential expression 

analysis, we find the global proliferation regulator σ70 is downregulated in both starvation and 

toxification conditions. As σ38 is not downregulated in starved cells, the sigma factor competition 

balance leans toward σ38, and the starved cells are more stressed than that of toxified cells. The 

nutrient limitation-responsive sigma factor σ54 is downregulated, aiding glutamate-dependent acid 

resistance (GDAR). In toxified conditions, downregulation of σ70 is more drastic than that of σ38, 

moving the sigma factor competition balance towards σ38. Though σ54 is not downregulated, 

GDAR is again upregulated in toxified cells. Thus, nutrient-poor and nutrient-rich conditions both 

stress the cells with clear regulatory responses. 
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3.4. Methods 

Our model system uses the E. coli strain B REL606, which has a unique enriched survival 

profile in toxic lactose concentrations compared to the K-12 strain [13]. This difference may arise 

from a more robust cell wall and has been shown to increase survival of this strain compared to 

others in ionically and osmotically suboptimal media [13, 30, 31]. 

3.4.1. Persister Enriched RNA-Seq 

An E. coli REL606 lacI- strain transformed with Tn7::PlacO1GFP(KanR) used in previous 

experiments in the lab[32]  [19] was inoculated in LB medium from a -80ᴼC bacterial stock and 

grown for 16 hours in a 37ᴼC shaking incubator. The LB culture was then resuspended (1:1000) 

into 5mL of Davis Minimal medium (DM; Difco) supplemented with thiamine and one of three 

lactose concentrations (0.1 mg/mL, 2.5 mg/mL, and 50 mg/mL). The cultures were allowed to 

acclimatize for 24 hours before being resuspended (1:1000) into 5mL of the same Davis Minimal 

medium and lactose concentration. Cultures were grown long enough (8 hours in 2.5 mg/mL 

lactose, 10 hours in 50 mg/mL lactose, and 12 hours in 0.1 mg/mL lactose) to provide enough 

biomass for RNA-Seq after antibiotic treatment. After the initial growth phase, 1.5 mL of untreated 

(no antibiotic) cell culture was RNA isolated according to the RNA isolation procedure below, 

dosed to 50 μg/mL concentration of ampicillin, and incubated for 24 hours in a 37 ᴼC shaking 

incubator for persister cell enrichment. 3.0 mL of persister-enriched culture was then RNA isolated 

(procedure below) for lactose concentrations 0.1 mg/mL and 50 mg/mL. Lactose concentration 2.5 

mg/mL required large experimental deviations to achieve enough post-ampicillin biomass 

requirements and was omitted.  
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3.4.2. RNA Sequencing 

Cell cultures were pelleted in a microcentrifuge (10,000 G for 2 minutes), washed in PBS 

buffer twice, and resuspended in 500 μL of RNA-Later (ThermoFisher) and stored in at -20ᴼC 

for one week. The persister-enriched 50 mg/mL lactose culture was unable to be preserved by 

RNA-Later and proceeded to RNA isolation immediately. RNA isolation was performed using 

Direct-zol (Zymo) and TRIzol reagent (ThermoFisher) and stored in a -80ᴼC freezer overnight. 

Isolated RNA was ribo-depleted by RiboZero (Illumina) using ethanol washing to precipitate the 

RNA. Library preparation was completed using NEBNext Ultra II Directional RNA Library Prep 

Kit for Illumina (New England Biolabs) and sequenced using MiSeq v3 Paired End 150 bp 

(Illumina). 

3.4.3. Genome re-annotation with Ecocyc and RegulonDB 

The RNA transcript quantification was performed by kallisto [19] and genome 

NC_012967.1 [17] (Escherichia coli B str. REL606) was used as the reference genome. Kallisto 

was run using paired-end data and 10 bootstrap samples.As there is a recent update to REL606 

sequence on NCBI, sequence offsets exist between Ecocyc annotations and NCBI sequence 

annotations for rel606 strain. Thus annotations from different databases were recognized by 

pairing annotation with gene locus. Furthermore, lacking extensive annotation of gene regulation 

in REL606, we used the K-12 MG1655 strain annotation based on gene and gene product 

similarities. Thus the annotation crossing strains are mapped by sequence alignment 

(Supplementary Methods), where databases Ecocyc [33] and RegulonDB [26] were combined for 

further analyses. 

 

 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000017985.1/
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3.4.4. Differential Expression Analysis 

We used R package DESeq2 for gene differential expression analysis. The RNA transcription 

quantification data were firstly clustered for isolating outliers using principal component analysis 

(PCA) (Figure S2). Two samples were taken out from subsequent analysis due to wrong 

clustering in the PCA plot with a high number of missing values. The rest samples were regarded 

as reliable and went into the DESeq2 pipeline. 

DESeq2 pipeline includes size factor estimation, dispersion estimation, and DEG tests. Low-

count RNA quantifications are noisy and may decrease the sensitivity of DEGs detection [34]. Size 

factors were calculated with a subset of control genes, which are non-regulated genes according to 

RegulonDB[26] and have expression higher than threshold 10 across all replicas. RNA sequencing 

profiles obtained from lactose starvation (0.1 mg/ml), moderate (2.5 mg/ml) and toxification (50 

mg/ml) conditions were analyzed. Setting transcriptome quantification from the moderate lactose 

condition, we applied the adaptive-T prior shrinkage estimator "apeglm" and used Wald 

significance tests for detecting DEGs and obtaining the log2 fold changes (LFC). 
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 Pathway ID NAME 
Pathway 

Size 

Similarit

y 

lac50 

NES 

lac0.1 

NES 

0 PWYCQD-3 N-acetyl-galactosamine degradation 9 -0.25 

1.877689

053 

1.78649

8 

1 GLUCARDEG-PWY D-glucarate degradation I 4 0 

1.760165

246 

1.98710

5 

2 GALACTARDEG-PWY D-galactarate degradation I 4 0 

1.760165

246 2.03351 

3 AST-PWY arginine degradation II (AST pathway) 5 0 

1.723538

403 2.39796 

4 

GLUCARGALACTSUP

ER-PWY 

superpathway of D-glucarate and D-

galactarate degradation 5 0 

1.898099

336 

2.19949

2 

5 

GLYCOLATEMET-

PWY glycolate and glyoxylate degradation I 7 0 

1.962030

992 

2.17885

6 

6 LYXMET-PWY L-lyxose degradation 7 0 

1.955055

932 

1.91480

5 

7 PWY0-301 

L-ascorbate degradation I (bacterial, 

anaerobic) 8 0 

1.843739

519 

1.91480

5 

8 PWY-6961 

L-ascorbate degradation II (bacterial, 

aerobic) 9 0 

2.125790

811 

2.00421

4 

9 

GLYCOL-

GLYOXDEG-PWY 

superpathway of glycol metabolism and 

degradation 11 

0.240562

612 

1.940871

818 

2.53981

3 

1

0 PWY0-1321 nitrate reduction III (dissimilatory) 12 

0.483493

778 

1.937141

283 

1.90322

2 

1

1 PWY0-42 2-methylcitrate cycle I 6 1 1.759956 2.19355 

 

Table 3.S1. Pathways enriched in both starvation and toxification conditions measured by 

Normalized Enrichment Score (NES), normalized to the gene set size of the pathways. Pathway 

ID and name are consistent with EcoCyc database annotations, and normalized enrichment score 

is calculated with R package fgsea. 
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 Pathway ID NAME 
Pathway 

Size 

Simila

rity 

lac50 

NES 

lac0.1 

NES 

0 GLUTSYNIII-PWY glutamate biosynthesis III 3 0 -1.9084 

-
1.78044 

1 PWY0-1329 

succinate to cytochrome bo oxidase electron 
transfer 8 0 -1.9627 

-
1.69627 

2 THRESYN-PWY threonine biosynthesis 7 0 -2.2458 

-
1.97413 

3 PYRIDOXSYN-PWY pyridoxal 5'-phosphate biosynthesis I 7 0 -1.9821 

-
1.76787 

4 LEUSYN-PWY leucine biosynthesis 6 0 -2.1543 

-
1.72495 

5 PWY-6277 

superpathway of 5-aminoimidazole 
ribonucleotide biosynthesis 6 0 -2.5038 

-
2.06556 

6 PWY-6123 inosine-5'-phosphate biosynthesis I 5 0 -2.2916 -1.8642 

7 PWY-6121 5-aminoimidazole ribonucleotide biosynthesis I 5 0 -2.3507 

-
1.94256 

8 PHESYN phenylalanine biosynthesis I 5 0 -1.8685 

-
1.68616 

9 PWY-7219 

adenosine ribonucleotides <i>de novo</i> 
biosynthesis 3 0 

-
1.7911
8 

-
1.69118 

10 AMMASSIM-PWY ammonia assimilation cycle III 3 0 -1.8713 

-
1.78044 

11 PWY-6122 5-aminoimidazole ribonucleotide biosynthesis II 5 0 -2.2843 

-
1.94256 

12 ECASYN-PWY enterobacterial common antigen biosynthesis 11 0 -1.8383 

-
1.68834 

13 PWY0-781 aspartate superpathway 26 

0.1851
64 -2.7615 

-
1.87522 

14 P4-PWY 

superpathway of lysine, threonine and 
methionine biosynthesis I 20 

0.2294
16 -2.5674 

-
1.79183 

15 1CMET2-PWY formylTHF biosynthesis 13 

0.2327
37 -2.4992 

-
1.95406 

16 SULFATE-CYS-PWY 

superpathway of sulfate assimilation and 
cysteine biosynthesis 14 

0.2581
99 -1.8539 

-
1.96565 

17 TRNA-CHARGING-PWY tRNA charging 107 

0.2677
3 -4.5769 

-
2.18056 

18 MET-SAM-PWY 

superpathway of S-adenosyl-L-methionine 
biosynthesis 11 

0.2886
75 -2.0786 

-
1.64504 

19 PWY0-1335 NADH to cytochrome bo oxidase electron transfer 17 

0.2988
07 -2.629 

-
2.04831 

20 VALSYN-PWY valine biosynthesis 9 

0.3952
85 -1.9346 

-
1.81595 

21 PWY0-162 

superpathway of pyrimidine ribonucleotides de 
novo biosynthesis 11 

0.4303
31 -2.2873 

-
1.66733 

22 COMPLETE-ARO-PWY 

superpathway of phenylalanine, tyrosine, and 
tryptophan biosynthesis 21 

0.4677
07 -2.7401 

-
2.27617 

23 

ALL-CHORISMATE-
PWY superpathway of chorismate metabolism 52 

0.4730
36 -2.8953 

-
1.97799 

24 PWY-6629 superpathway of tryptophan biosynthesis 16 

0.4923
66 -2.3182 

-
2.07576 

25 PWY0-845 

superpathway of pyridoxal 5'-phosphate 
biosynthesis and salvage 9 0.5 -2.0641 -1.7769 

26 PRPP-PWY 

superpathway of histidine, purine, and 
pyrimidine biosynthesis 43 

0.5511
51 -3.8135 

-
2.78562 
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27 PWY-6628 superpathway of phenylalanine biosynthesis 16 0.5547 -2.5400 -2.1732 

28 ARO-PWY chorismate biosynthesis I 11 0.5863 -1.9821 -1.8532 

29 GLUTAMINDEG-PWY glutamine degradation I 9 0.6123 -2.1606 -1.7888 

30 

BRANCHED-CHAIN-
AA-SYN-PWY 

superpathway of leucine, valine, and isoleucine 
biosynthesis 16 0.6299 -2.5208 -2.0252 

31 SER-GLYSYN-PWY superpathway of serine and glycine biosynthesis I 6 0.7071 -1.8709 -1.6995 

32 PWY-6126 

superpathway of adenosine nucleotides de novo 
biosynthesis II 9 0.75 -2.4288 -1.8348 

33 

DENOVOPURINE2-
PWY 

superpathway of purine nucleotides de novo 
biosynthesis II 21 0.8167 -3.6885 -2.5339 

34 PWY-6125 

superpathway of guanosine nucleotides de novo 
biosynthesis II 9 0.8183 -2.3273 -1.7532 

35 PWY0-1544 proline to cytochrome bo oxidase electron transfer 5 1 -1.9282 -1.9021 

36 PWY-7221 guanosine ribonucleotides de novo biosynthesis 4 1 -1.9537 -1.7658 

 

Table 3.S2. Pathways that are down regulated in both starvation and toxification conditions. 

Pathway ID and name are consistent with EcoCyc database annotations, and normalized 

enrichment score is calculated with R package fgsea. 
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 Pathway ID NAME 
Pathway 

Size 

Similarit

y 

lac50 

NES 

lac0.1 

NES 

0 FAO-PWY fatty acid β-oxidation I 9 -0.125 0 2.569134 

1 PWY-4261 glycerol degradation I 5 0 0 2.21895 

2 PWY0-381 
glycerol and glycerophosphodiester 

degradation 
7 0.645497 0 2.216135 

3 PWY0-1182 trehalose degradation II (trehalase) 3 1 0 1.776402 

4 
GLYOXDEG-

PWY 
glycolate and glyoxylate degradation II 5 1 0 2.2208 

5 PWY-6952 glycerophosphodiester degradation 6 1 0 2.090168 

 

Table 3.S3. Pathways uniquely enriched in starvation condition. Pathway ID and name are 

consistent with EcoCyc database annotations, and normalized enrichment score is calculated 

with R package fgsea. 
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 Pathway ID NAME 
Pathway 

Size 

Similari

ty 

lac50 

NES 

lac0.1 

NES 

0 

PYRUVDEHYD-

PWY pyruvate decarboxylation to acetyl CoA 3 0 0 -1.59135 

1 PWY-5340 sulfate activation for sulfonation 3 0 0 -1.55612 

2 PWY-5084 

2-oxoglutarate decarboxylation to succinyl-

CoA 3 0 0 -1.59135 

3 GLYCLEAV-PWY glycine cleavage 4 0 0 -1.645 

4 

DTDPRHAMSYN-

PWY dTDP-L-rhamnose biosynthesis I 6 0 0 -1.65113 

5 PWYCQD-2 dTDP-N-acetylviosamine biosynthesis 6 0 0 -1.65113 

6 SO4ASSIM-PWY sulfate reduction I (assimilatory) 6 0 0 -1.93692 

7 HISTSYN-PWY histidine biosynthesis 9 0 0 -2.02013 

8 

OANTIGEN-PWY-

1 

O-antigen building blocks biosynthesis 

(<i>E. coli</i>) 12 0 0 -1.78812 

9 

GALACTMETAB-

PWY galactose degradation I (Leloir pathway) 5 

0.40824

8 0 -1.78613 

1

0 ILEUSYN-PWY isoleucine biosynthesis I (from threonine) 10 

0.62546

3 0 -1.81948 

1

1 PWY0-1348 

NADH to dimethyl sulfoxide electron 

transfer 16 

0.72252

9 0 -1.6492 

1

2 PWY0-1347 

NADH to trimethylamine N-oxide electron 

transfer 17 

0.76712

3 0 -1.65104 

1

3 THREOCAT-PWY superpathway of threonine metabolism 19 

0.79294

8 0 -1.77919 

 

Table 3.S4. Pathways that are uniquely down regulated in starvation condition. Pathway ID and 

name are consistent with EcoCyc database annotations, and normalized enrichment score is 

calculated with R package fgsea. 
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 Pathway ID Name 
Pathway 

Size 

Similarit

y 

lac50 

NES 

lac0.1 

NES 

0 

PYRUVDEHYD-

PWY pyruvate decarboxylation to acetyl CoA 3 0 0 -1.59135 

1 PWY-5340 sulfate activation for sulfonation 3 0 0 -1.55612 

2 PWY-5084 

2-oxoglutarate decarboxylation to 

succinyl-CoA 3 0 0 -1.59135 

3 GLYCLEAV-PWY glycine cleavage 4 0 0 -1.645 

4 

DTDPRHAMSYN-

PWY dTDP-L-rhamnose biosynthesis I 6 0 0 -1.65113 

5 PWYCQD-2 dTDP-N-acetylviosamine biosynthesis 6 0 0 -1.65113 

6 SO4ASSIM-PWY sulfate reduction I (assimilatory) 6 0 0 -1.93692 

7 HISTSYN-PWY histidine biosynthesis 9 0 0 -2.02013 

 

Table 3.S5. Pathways that are uniquely enriched in toxification condition. Pathway ID and name 

are consistent with EcoCyc database annotations, and normalized enrichment score is calculated 

with R package fgsea. 
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 Pathway ID NAME 
Pathway 

Size 

Simila

rity 

lac50 

NES 

lac0.1 

NES 

0 PWY-5188 tetrapyrrole biosynthesis I (from glutamate) 10 -0.666 -2.1521 0 

1 

FASYN-

INITIAL-PWY 

superpathway of fatty acid biosynthesis initiation (E. 

coli) 4 0 -1.8267 0 

2 PWY0-881 superpathway of fatty acid biosynthesis I (E. coli) 9 0 -2.4322 0 

3 PWY-6387 

UDP-N-acetylmuramoyl-pentapeptide biosynthesis I 

(meso-DAP-containing) 9 0 -1.9031 0 

4 PWY-6284 

superpathway of unsaturated fatty acids biosynthesis 

(E. coli) 8 0 -2.1111 0 

5 PWY0-163 salvage pathways of pyrimidine ribonucleotides 7 0 -1.9229 0 

6 

FASYN-

ELONG-PWY fatty acid elongation -- saturated 7 0 -2.1727 0 

7 PWY-5971 palmitate biosynthesis II (bacteria and plants) 6 0 -1.9823 0 

8 PWY-5973 cis-vaccenate biosynthesis 7 0 -2.1518 0 

9 

NAGLIPASYN-

PWY lipid IVA biosynthesis 6 0 -1.8287 0 

10 PWY-5989 stearate biosynthesis II (bacteria and plants) 5 0 -1.9988 0 

11 PWY0-862 cis-dodecenoyl biosynthesis 5 0 -1.9823 0 

12 PWY-6282 palmitoleate biosynthesis I 6 0 -1.7539 0 

13 

DAPLYSINESY

N-PWY lysine biosynthesis I 11 0 -2.0096 0 

14 METSYN-PWY homoserine and methionine biosynthesis 10 0.2721 -1.9882 0 

15 LPSSYN-PWY superpathway of lipopolysaccharide biosynthesis 20 0.3429 -2.2445 0 

16 

KDO-

NAGLIPASYN-

PWY superpathway of (KDO)2-lipid A biosynthesis 16 0.4285 -2.4428 0 

17 PWY0-1479 tRNA processing 8 0.4879 -2.2374 0 

18 PWY0-1061 superpathway of alanine biosynthesis 8 0.5204 -1.8253 0 

19 TCA TCA cycle I (prokaryotic) 19 0.5244 -1.8710 0 

20 PWY0-166 

superpathway of pyrimidine deoxyribonucleotides de 

novo biosynthesis (E. coli) 12 0.5345 -1.8572 0 

21 PWY-5686 UMP biosynthesis 8 0.5773 -2.1137 0 

22 

TCA-GLYOX-

BYPASS superpathway of glyoxylate bypass and TCA 22 0.5980 -1.7823 0 

23 PWY-7220 adenosine deoxyribonucleotides de novo biosynthesis II 6 0.7745 -1.9416 0 

24 PWY-7222 guanosine deoxyribonucleotides de novo biosynthesis II 6 0.7745 -1.9416 0 

25 

GLYCOCAT-

PWY glycogen degradation I 6 1 -1.7583 0 

26 PWY-5188 tetrapyrrole biosynthesis I (from glutamate) 10 -0.666 -2.1521 0 

Table 3.S6. Pathways that are uniquely downregulated in toxification condition. Pathway ID and 

name are consistent with EcoCyc database annotations, and normalized enrichment score is 

calculated with R package fgsea. 
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Figure 3.S1: Distribution of statistically significant differential expressed 

gene log2 fold change for different culture conditions, including a. induced 

ppGpp stress response, b. starvation condition (lactose conc. 0.1mg/ml), c. 

toxicity condition (lactose conc. 50 mg/ml). Vertical line in orange indicate 

expression level fold change of 2, corresponding to log2 foldchange of 1.  
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Abstract 

Cell physiological studies demonstrate systemic quantitative relationships between growth 

rate, metabolic state, and various structural parameters of bacterial cells. Regulatory networks are 

embedded in this context. Moreover, stochastic effects that arise at the scale of single bacterial 

cells result in uncertainty about how subnetworks interact with systemic physiological variables. 

Experimentally measuring all functionally relevant variables in the same cell is not technically 

feasible. However, building accurate computational or mathematical models capturing all of these 

interactions has also proven difficult. We use a hybrid statistical-stochastic modeling approach 

that simulates a well-characterized and detailed regulatory network with empirically precise 

parameter values that has key points of interaction with a knowledge-based statistical model of 

how cellular physiology responds to fluctuations in the network. This approach maximizes realism 

of the specific regulatory subnetwork within the context of a defined set of conditions captured by 

the statistical model. We apply the approach to the phosphate starvation response induced by the 

PhoBR two-component system in E. coli. The results reveal that fast molecular fluctuations are 

transmitted through an intermediate-timescale active transcriptional regulator to affect slower 

physiological processes that fluctuate with the growth rate. We thus reveal a principle for how 

PhoBR affects the cell cycle that could not be discovered with experiments alone.  
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4.1. Introduction 

Cellular homeostasis is an energy-intensive process. The cost of gene expression is sufficiently 

costly [1] that some metabolic processes have evolved to run inefficiently in terms of metabolite 

usage to minimize protein production [2]. In bacteria, particularly the model organism E. coli, the 

cell cycle has been shown to be a coordinated process that depends on nutrient signals (energy) to 

determine its rate [3]. Chromosome replication and segregation is an energy-consuming, regulated 

process during the cell cycle [4-8] that continually alters gene dosage. The resulting coupled 

system has revealed well-known and newly emerging quantitative principles that couple the rate 

of growth to cell volume, chromosome segregation, rates of gene expression, and ribosome 

content. Sensory and signaling responses are inextricably embedded in this milieu. At the same 

time, gene expression and all other chemical reaction processes in single cells have a stochastic 

component that arises from the underlying nature of physical chemistry when the number of 

reacting components is limited. Stochasticity adds an element of uncertainty into how regulatory 

responses to environmental changes interacts with the systemic cell cycle. 

The complexities of cellular physiology make it difficult to reconstruct and predict overall 

cellular responses to changing environments, despite the clear opportunities this would create for 

novel drug discovery and exploration of developmental processes. Current experimental methods 

restrict the number of measurable variables at single-cell resolution [9]. It is a remarkable fact that 

state-of-the-art understanding of the high-dimensional single cell has depended on measurements 

only a few at a time combined with extensive inference from large-population studies and models. 

We have developed a hybrid statistical-stochastic modeling approach to create robust, data-driven 

inferences of how regulatory subnetworks interact with systemic physiology and the cell cycle 

[10]. 
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The first step is to identify a stimulon of interest, and then to determine the core subnetwork 

driving the response and any feedback resulting from changes in concentration of molecular 

species, and then determine points of contact with other physiological processes in the cell. The 

core network and any molecular feedback processes are encoded into a detailed stochastic 

simulation framework. Molecular fluctuations are coarse grained into discrete, functionally 

equivalent markovian variables. Within a set of conditions of interest (i.e. relevant to the 

subnetwork), experimental data are used to determine the quantitative effect of cellular responses 

to physiology. A specific example is detailed below, concerning the phosphate starvation response 

in E. coli. The advantage of this approach is that the high costs of whole-cell modeling are 

significantly reduced by data, in a similar manner to complexity-aware modeling [11, 12]. At the 

same time, it gives a detailed enough representation of a specific response that the dynamics are 

realistic, allowing quantitative simulation of the network of interest and inference of the 

relationship between global physiology and a given response. 

We applied this approach to the phosphate starvation response in E. coli, regulated by the well-

studied two-component system (TCS) PhoBR. PhoBR is a sensor histidine kinase – response 

regulator pair. The PhoR protein is membrane-bound and senses cytoplasmic phosphate starvation. 

On phosphate starvation, PhoR can autophosphorylate and transfer the phosphate group to PhoB, 

which stabilizes its dimerization and enables it to become an active transcriptional regulator of 32 

known operons (one of which is cryptic in the popular E. coli strain K-12) containing 60 genes (46 

in K-12). Among the members of the (PhoB~P)2 regulon are the genes phoU, encoding a negative 

regulator of the PhoBR response, and phoA, a periplasmic alkaline phosphatase that recovers 

inorganic phosphate from multiple sources and accounts for a substantial fraction of the proteome 

during phosphate starvation. 
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The kinetics of PhoB-PhoR interactions have been quantitatively characterized in biochemical 

experiments. Furthermore, studies have measured global physiological responses to phosphate 

starvation in wild-type and strains lacking the PhoBR response, allowing robust estimation of the 

effects of the response on physiology, and in strains lacking such a response because of genetic 

inactivation of PhoBR responses. 

With this model we analyzed the effects of stochastic fluctuations in PhoBR and variations in 

the E. coli cell cycle. Our results reveal that the key molecule in the system – the transcriptionally 

active PhoB~P dimer – functions as a translational layer between the fast molecular 

conformational fluctuations in the biochemical network and the slower fluctuations of large-scale 

physiological variables. 

4.2. Results 

4.2.1 Phosphate-Stressed E. coli Cells are Adders 

The long-standing question of how the timing of cellular division is central to cellular 

physiology, and critical for an accurate model of the bacterial cell cycle. Such studies have 

previously been performed in many growth conditions. While E. coli growing normally at steady 

state are known to be “adders” (determining division based on the addition of a given quantity of 

biomass [13]), one study suggested that starving E. coli may be more like “timers”, which divide 

after a certain amount of time regardless of the biomass gain [14]. However, whether this result is 

robust or general has come under question [15]|. Specifically, to our knowledge it is unknown 

whether the adder property of E. coli holds under phosphate starvation. Knowing this mechanism 

is critical to the accuracy of our cellular physiology model. 

To address this question, we performed time-lapse microscopy experiments of E. coli K-12 

MG1655 in a microfluidic flow device that provided MOPS medium with high (1mM) or low (50 



68 

 

μM) supplemented phosphate. We segmented the images and measured the relevant physiological 

variables: cellular division size, initial cell size, and the amount of time before division. The results 

clearly show that both phosphate-starved and phosphate-replete conditions are adders, with no 

significant difference between them (Fig. 4.1). 

 

 

 

 

4.2.2 Dynamics of the E. coli Cell Cycle During Phosphate Starvation 

Simulations of the E. coli PhoBR stress model revealed a non-constant growth rate over 

the course of the cell cycle (Fig. 4.2a). The replicates exhibit the same non-monotonic pattern in 

their growth rate for cells grown under constant stress. Correlations on a principle component 

 

Figure 4.1. The effect of phosphate starvation on cell division size and time in 

E. coli. a. Relationship between initial cell size and division size shows that 

both phosphate-starved and phosphate-replete cultures are indistinguishable 

from the adder model. b. Relationship between initial cell size and time before 

division again supports the adder model. For phosphate-replete conditions, the 

number of cells analyzed was 50. For phosphate-starved conditions, the number 

of analyzed cells was 51. 
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analysis (PCA) of growth rate variation show that there are different drivers of the cell growth rate 

depending on the progress through the cell cycle (Fig. 4.2).  

To understand the role of each molecular species in determining the growth rate, we 

measured the correlation between each molecular species and the first principal component of the 

cellular and molecular information (Figs. 4.3-4.9). The correlations reveal that the variability of 

transitioning through the cell cycle has several drivers at different rates of fluctuation. The primary 

cause of changes in the cell cycle is the proteins in the phosphate stress response regulon. This 

result makes intuitive sense, as the regulon is by far the most costly (aggregate) variable and also 

directly alleviates the penalties to growth rate introduced by the stress response. Other relevant, 

but less significant, species include the precursors to the active response regulator dimer (RR, 

RR~P) and the activated sensor histidine kinase (SHK2P). Additionally, the sensitivity analysis 

revealed discrete timescales of growth rate effectors (Fig. 2b). The four classes of timescale and 

effect on the cell cycle can be broken down into physiological variables, precursors to response, 

inactive protein conformations and, in its own unique category, the transcriptionally active 

response regulator.  
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Figure 4.2. Cell cycle-synchronized simulations reveal new 

relationships between biochemical and physiological processes. a. 

Multiple cell cycle simulations under phosphate stress are 

synchronized, allowing stochastic sensitivity analysis of what 

processes contribute to a phenotype of interest (here, growth rate). 

b. Sensitivity analysis reveals discrete timescales of effects that 

different model variables have on growth rate. The timescales fall 

into discrete categories, reflecting the diverse ways that molecular 

fluctuations can emerge as effectors of overall cellular phenotype. 



71 

 

 

 

 

 

 

 

Figure 4.3. Principal component analysis to reveal the primary contributors of cell cycle variation 

during a phosphate stress response. The first principal component explains the most variance. 

Correlations (Spearman ρ) show the relationship between each variable and each principal 

component. Note that the 18 variables considered are consistently explained by four principal 

components throughout the cell cycle. a. Start of cell cycle immediately after division. b. Midpoint 

of cell cycle. c. End of cell cycle immediately before division. 
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Figure 4.4. Internal variable 

correlation analysis of sensor kinase 

protein effects on cell cycle variability. 

 

Figure 4.5. Internal variable 

correlation analysis of response 

regulator protein effects on cell cycle 

variability. 
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Figure 4.6. Internal variable 

correlation analysis of TCS regulon 

gene expression effects on cell cycle 

variability. 
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Figure 4.7. Internal variable correlation analysis of TCS gene expression 

effects on cell cycle variability. 

 

Figure 4.8. Internal variable 

correlation analysis of sensor-regulator 

complex protein effects on cell cycle 

variability. 



75 

 

 

 

4.3 Discussion 

4.3.1. Transcriptionally active response regulator as signal transducer in stress response 

Wide distributions of response are characteristic of bacterial stress responses. The stochastic nature 

of bacterial stress responses could be due to the biological constraints of using a protein as an 

information channel. Our results show that the autocorrelation time for the transcriptionally active 

response regulator (RRP2) is in an intermediary scale between the inactive protein conformation 

 

Figure 4.9. Internal variable 

correlation analysis of physiological 

variable effects on cell cycle 

variability. 
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states and the regulon proteins expressed. Naturally, the role of the response regulator is to transfer 

molecular scale fluctuations of proteins into the expression of genes, but the significance of this 

result is that the response regulator is the only signaling species that occupies an intermediate scale 

in autocorrelation time. This implies that the only dynamically relevant species for transferring the 

state of the short-scale molecular fluctuations to the regulon is the active transcriptional regulator 

RRP2. Furthermore, since RRP2 is effectively the channel by which information transfer occurs in 

the signaling network, the highly variable stress responses in bacteria may be explained by 

complex physical interactions that comprise response regulator-mediated expression. Specifically, 

there is a poorly understood relationship between the PhoB-regulated promoter and the ultimate 

expression level of the regulated genes [16]. The expression level also seems independent of the 

number of PhoB-regulated promoters directly before the gene, but instead the expression level 

depends on the function of the gene [16].  

Previous studies of two-component systems revealed that some exhibit input-output 

robustness: the ability of the active transcriptional regulator to reflect signal levels outside the cell 

regardless of fluctuations in the number of TCS proteins present in the cell. Our study fill in a new 

aspect of that result, highlighting why input-output robustness may be an important trait selected 

for in evolution. 

 4.4 Methods 

4.4.1 E. coli Growth Conditions 

The E. coli strain K-12 MG1655 was inoculated into LB medium from a –80ᴼ C bacterial 

stock and grown for 16 hours in a 37 ᴼC shaking incubator (Corning LSE 71L). The LB culture 

was then resuspended (1:1000) into 1mL of MOPS EZ Rich Defined Medium (VWR) with 0.4% 

added glucose and high (1 mM) or low (50μM) phosphate. The cultures were allowed to 
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acclimatize for 24 hours before being resuspended (1:1000) into 1mL of the same MOPS medium 

and phosphate concentration. Cultures were grown for 4 hours before being transferred into the 

microfluidic device for imaging.  

4.4.2 Integrated Computational Model 

The basis of the integrated computational model has been described previously [10]. The 

concept is related to complexity-aware models that quantitatively account for physiological effects 

even if their precise mechanisms are not directly represented in the model [11, 12]. In this 

framework, we have statistical models representing the effects of phosphate starvation on the E. 

coli cell cycle and a detailed mechanistic stochastic simulation of the primary signaling system 

that responds to phosphate starvation – the PhoBR two-component system. 

4.4.3 Analysis of Simulated Cell Cycle Trajectories 

Simulated trajectories were subjected to two stages of analysis: (i) internal variable correlation 

analysis (IVCA) and (ii) autocorrelation analysis. The former allows us to quantify the 

relationships between any pair of variables in the model and the latter gives the timescales of those 

effects. 

4.4.4 Internal Variable Correlation Analysis 

IVCA is related to the popular approach of sensitivity analysis used in large-scale simulations 

in many fields [17, 18]. The difference is that while sensitivity analysis is concerned with how 

constant, but uncertain, parameters affect the prediction of a model (i.e. epistemic uncertainty), the 

analysis here is concerned with how stochastic fluctuations in different model predictions are 

related to each other (i.e. aleatory uncertainty). 

The procedure is as follows: independent cell cycle trajectories were aligned at the same 

starting time, principal component analysis was performed at each timepoint, and the Spearman ρ 
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(non-parametric correlation) was computed between the first principal component of each pair of 

dependent variables of interest. 

4.4.5 Autocorrelation Analysis 

To determine the timescales at which different correlations fluctuate in the model, we 

performed autocorrelation analysis on the IVCA trajectories using standard methods [19] 
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Chapter 5 
 

Conclusions and Future Directions 

 

5.1. Summary of Results 

The work presented here uses both experimental and computational and mathematical models 

to study the principal effectors in stress responses.  

5.1.1. Responses in E. coli are noisy due to regulatory constraints 

The work presented in Chapters 2 and 4 show that the transcriptionally active response 

regulator RRP2 is principally responsible for short term cellular memory and acting as the 

information channel for expression of the regulon. The memory effect is due to a sequestration of 

activated response regulator, since the response regulator cannot be dephosphorylated while it is 

in its active, dimerized form, allowing the stress response to be fractionally “active” for 2-4 

generations after the stress is no longer present. Sensitivity analysis performed in Chapter 4 on the 

same model under constant stress shows that the response regulator occupies an intermediary 

bridge state between the fast fluctuations of the inactive protein conformation states and slower 

scale gene expression products.  

The work presented in Chapter 3 shows that the regulatory differences in persistent and non-

persistent cells may be explained by the difference in σ factor expression. The competitive binding 

between the σ factors is a compelling hypothesis for phenotype determination due to the wide 

number of genes each σ factor regulates. Each condition showed a unique σ factor combination, 

but the persister enriched conditions showed a higher representation of nutrient starvation σ factors 

compared to intermediate lactose level, which had higher σ70 expression. The differential 
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combinations of these sigma factors may be the underlying mechanism of high-lactose mediated 

persistence. 

5.1.2. Proteomic pressures in E. coli may cause bistability in bacterial populations 

Bistable phenotypic responses are common in bacterial cultures, but the mechanisms are 

usually an internal system that causes growth arrest or a drastic change in growth rate. Here, we 

have presented evidence that E. coli, grown in high concentrations of lactose, undergoes 

population level heterogeneity through a combination of toxic intermediates of the Leloir pathway 

and the proteomic pressure provided by utilizing overflow-like metabolism. The diauxic shift from 

glucose to left over galactose via lactose degradation could be responsible for the essential 

condition for this type of bistability to occur.  

5.2. Future Directions 

5.2.1. Coarse graining of chromosomal modeling in E. coli  

To extend our computational model presented in Chapter 2, we modeled the chromosomal 

replication cycle. The model uses the chromosomal locations of the genes in the PhoB operon and 

the speed of the replication fork to determine when the number of promoters for each gene should 

increment. Our model makes use of known trinormal replication fork speeds [1] to sample the 

speed at which DNA polymerase replicates the chromosome, and the model is capable of active 

replication forks to daughter cells in the event of multiple initiation events in fast growing cells.   

To further improve the chromosome replication dynamics, the options are to implement 

previously developed models [2] that assume a time independent probability of replication or to 

add a more complex and rigorous DnaA dependence on initiation. Replication initiation occurs 

when DnaA reaches a critical concentration within the cell [3] so it would be an excellent extension 
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of the model to include. However, in high-nutrient simulations, the model’s ability to support 

multiple origins of replication requires further experimental testing to consider multiple-origin 

DnaA criticality, as origins of replication typically initiate together [4].  

 

 

 

 

 

 

 

 

 

5.2.2. Spatial Stochastic Models 

Moving forward, we seek to implement our whole-cell mesoscale E. coli stochastic model in 

a spatial context. Using nonspatial SSA methodology has specific limitations that we would like 

to explore. Principally, PhoR is an integral membrane protein and the kinetic effects of 

sequestering a protein in SSA-like simulations is currently unknown. Additionally, there is a 

gradual accumulation and localization of degraded protein in the old pole of E. coli [5] that is 

unable to be modeled in nonspatial simulations where there are no cell poles.  

Figure 5.1: Representation of the 

locations of PhoB regulated genes 

in E. coli. 



84 

 

We have done preliminary work on the implementation of the mesoscale E. coli model as 

a spatial model. Using SpatialPy [6] we first create a mesh network of nodes (fig) in which each 

node is a nonspatial stochastic simulation. We impose spatiality by connecting the nodes and 

allowing proteins and protein complexes to diffuse between nodes. The nodes can be classified 

into regions subject to different parameter sets (e.g. cytoplasm, nucleoid, membrane, among others 

as needed) and diffusion rates can be altered to adhere to specific biological diffusions such as the 

asymmetric diffusion of a membrane bound protein moving to the membrane but then remaining 

confined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Spatial mesh of connected nodes in an E. coli mesh. Each node 

represents a voxel that performs an SSA simulation, but allows diffusion of 

molecules between locally connected nodes. 
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