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How do you make inferences from a Bayesian network (BN) model with missing 
information? For example, we may not have priors for some variables or may not have 
conditionals for some states of the parent variables. It is well-known that the Dempster-
Shafer (D-S) belief function theory is a generalization of probability theory. So, a solution 
is to embed an incomplete BN model in a D-S belief function model, omit the missing 
data, and then make inferences from the belief function model. We will demonstrate this 
using an implementation of a local computation algorithm for D-S belief function models 
called the “Belief function machine.” One advantage of this approach is that we get interval 
estimates of the probabilities of interest. Using Laplacian (equally likely) or maximum 
entropy priors or conditionals for missing data in a BN may lead to point estimates for the 
probabilities of interest, masking the uncertainty in these estimates. Bayesian reasoning 
cannot reason from an incomplete model. A Bayesian sensitivity analysis of the missing 
parameters is not a substitute for a belief-function analysis.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

Pearl [16, Ch. 9, p. 415] writes: “Pure Bayesian theory requires the specification of a complete probabilistic model before 
reasoning can commence. In causal modeling, for example, this means determining for each variable X , the conditional 
probabilities of the values of X given the factors perceived as causes of those values.”

So, what steps can we take when we encounter missing information in a probability model? This article proposes using 
the Dempster-Shafer (D-S) theory of belief functions to draw inferences in Bayesian networks (BNs) with missing data. For 
instance, we may lack prior knowledge of certain variables or miss conditionals for some variables for some states of their 
parents. Our solution is to put an incomplete BN within a corresponding D-S belief function model, excluding the missing 
data, and then use the D-S theory to make inferences. We may only have partial knowledge about priors and conditionals, 
which standard Bayesian theory cannot accommodate, but D-S theory can. It is widely known that the D-S belief function 
theory is a more general version of the Bayesian probability theory. So, a corresponding D-S model will produce the same 
results if we possess complete information in a probability model.

One benefit of utilizing the D-S approach is obtaining interval estimates for the probabilities of interest. However, point 
estimates are produced when employing Laplacian or maximum entropy priors or conditionals for missing data in a BN, 
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which mask the uncertainty in these estimates. Making inferences from a D-S belief function model is computationally 
more expensive than inferences from a BN model [15,22]. Nonetheless, local computational algorithms are available for 
making inferences from a D-S belief function model [28,14], and these algorithms have been implemented for solving large 
belief function graphical models.

A Bayesian sensitivity analysis of missing parameters may lead to probability intervals with narrower widths than those 
produced by a corresponding D-S analysis. This is because the pure Bayesian method cannot model complete or partial 
ignorance. Also, a Bayesian sensitivity analysis of several missing parameters is computationally intractable.

An outline of the remainder of the paper is as follows. In Section 2, we review the basics of the D-S theory, including 
conditional belief functions, conditional independence, and graphical models. Section 3 discusses representing a BN by an 
equivalent D-S belief function model, including a small example. Section 4 discusses making inferences from incomplete BNs 
and includes some new results about the nature of probability intervals resulting from a D-S analysis. Section 5 discusses 
using “Belief Function Machine,” a set of routines in Matlab, for making inferences from large belief function graphical 
models. Finally, Section 6 concludes with a summary and comments on further work.

2. Basics of the D-S theory of belief functions

This section sketches the basics of the D-S theory of belief functions [7,18].

2.1. Representations

We represent knowledge using basic probability assignments, belief functions, plausibility functions, and credal sets.

Notation Let V denote the set of all variables. Let X , Y , Z , etc., denote elements of V . Let r, s, t , etc., denote subsets of V . 
Consider s ⊆ V . For each X ∈ s, let �X denote its finite state space, and let �s = ×X∈s�X denote the state space of s. Let 
2�s denote the set of all subsets of �s .

Basic probability assignment A basic probability assignment (BPA) m for s is a function m : 2�s → [0, 1] such that

m(∅) = 0, and (1)
∑

∅�=a∈2�s

m(a) = 1. (2)

m represents some knowledge about the variables in s, and we say the domain of m is s. m(a) is the probability assigned 
to the proposition represented by subset a of �s . Subsets a such that m(a) > 0 are called focal elements of m. If all the focal 
elements of m are singleton subsets of �s , we say m is Bayesian. There is a 1-1 correspondence between a Bayesian BPA 
m and a corresponding probability mass function (PMF) P for s such that P (a) = m({a}) for all a ∈ �s . If m has only one 
focal element (with probability 1), we say m is deterministic. If the focal element of a deterministic BPA is �s , we say m is 
vacuous. A vacuous BPA for s is sometimes denoted by ιs .

Belief function The knowledge encoded in a BPA m can be represented as a corresponding belief, plausibility, and credal 
function. The belief function Belm corresponding to BPA m is such that for all a ⊆ �s ,

Belm(a) =
∑

b⊆a

m(b). (3)

Belm(a) represents the smallest degree of support for proposition a implied by BPA m.

Plausibility function The plausibility function Plm corresponding to BPA m is such that for all a ⊆ �s ,

Plm(a) =
∑

b⊆�X :b∩a�=∅
m(b). (4)

Plm(a) represents the largest degree of support for proposition a implied by BPA m. It follows from Eqs. (3) and (4) that 
0 ≤ Belm(a) ≤ Plm(a) ≤ 1, and Pl(a) = 1 − Bel(ā) and Bel(a) = 1 − Pl(ā), where ā = �s \ a denotes the complement of a.

Credal sets A BPA can be represented as a ‘credal’ set of PMFs. Let P denote the set of all PMFs for s. Then the credal set 
corresponding to m, denoted by Crm , is defined as follows:

Crm = {P ∈ P : for all a ⊆ �s, Belm(a) ≤ P (a) ≤ Plm(a)} (5)

In Eq. (5), only one inequality is needed—either one implies the other. For a vacuous BPA m, the credal set Crm consists of 
all PMFs P ∈P . For a Bayesian BPA corresponding to PMF P , the corresponding credal set consists of the single PMF P .

Belm , Plm , and Crm have exactly the same information as m. Given any one of these, we can recover the others.
2
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2.2. Inference operators

There are two basic inference operators in the D-S theory, marginalization and combination. As the combination of two 
BPAs on different domains involves a vacuous extension, we also describe a vacuous extension of a BPA.

Marginalization Suppose m is a BPA for s and suppose t ⊆ s. The marginalization operator transforms a BPA m for s to a 
BPA m↓t for t by eliminating variables in s \ t .

Projection of states means dropping some coordinates. If (x, y) ∈ �X,Y , then (x, y)↓X = x. The projection of a subset of 
states is achieved by projecting every state in the subset. Suppose a ⊆ �X,Y . Then,

a↓X = {x ∈ �X : (x, y) ∈ a}.
Suppose m is a BPA for s, and t ⊆ s. Then, the marginal for m for t , denoted by m↓t , is a BPA for t such that for each 

a ⊆ �t ,

m↓t(a) =
∑

b⊆�s :b↓t=a

m(b). (6)

The marginalization operator satisfies the following property. Suppose m is a BPA for s and suppose X1 and X2 are two 
distinct variables in s. Then

(m↓s\{X1})↓s\{X1,X2} = (m↓s\{X2})↓s\{X1,X2}. (7)

Thus, the order in which variables are eliminated does not matter.

Vacuous extension Suppose m is a BPA for r, and suppose r ⊆ t . A vacuous extension of m to t , denoted by m↑t , is a BPA for 
t such that for all a ⊆ �r

m↑t(a × �t\r) = m(a) (8)

Thus, each focal element of m↑t is a vacuous extension of a corresponding focal element of m with the same BPA mass. The 
vacuous extension is implicit in the definition of Dempster’s combination. A numerical example of a vacuous extension is 
found in Example 3 in Section 3.

Dempster’s combination rule Suppose m1 is a BPA for s1, m2 is a BPA for s2, and m1 and m2 are distinct. Then, m1 ⊕ m2 is a 
BPA for s1 ∪ s2 such that for all a ∈ 2�s1∪s2

(m1 ⊕ m2)(a) = K −1
∑

a1∈2�s1 ,a2∈2�s2 :(a1×�s2\s1 )∩(a2×�s1\s2 )=a

m1(a1)m2(a2), (9)

where K is a normalization constant given by

K =
∑

a1∈2�s1 ,a2∈2�s2 :(a1×�s2\s1 )∩(a2×�s1\s2 ) �=∅
m1(a1)m2(a2). (10)

We assume K > 0. If K = 0, then m1 and m2 are said to be in total conflict and cannot be combined. If K = 1, we say m1
and m2 are non-conflicting.

Some comments on Dempster’s combination rule:

1. Dempster called the combination rule “product-intersection” rule [7]. The product of the BPA values m1(a1) m2(a2) is 
assigned to the intersection of the focal elements of m1 and m2.

2. If the BPAs being combined have different domains, we have to vacuously extend them to the union of the domains 
before we can intersect the focal elements.

3. If two or more intersections result in the same focal element of m1 ⊕ m2, we add the products of the BPA masses. 
Hence the summation in Eq. (9).

4. If an intersection of focal elements of m1 and m2 results in the ∅, we discard the product of the BPA values and 
renormalize as in Eq. (10).

5. In general m ⊕m �= m. Thus, Dempster’s combination must be used to combine only distinct knowledge to avoid double-
counting of non-idempotent knowledge [7]. Distinct belief functions are discussed further in Subsection 2.6.

It is easy to show that Dempster’s combination is commutative and associative: m1 ⊕ m2 = m2 ⊕ m1, and (m1 ⊕ m2) ⊕
m3 = m1 ⊕ (m2 ⊕ m3). Also, marginalization and Dempster’s combination rule satisfy a vital property called the local com-
putation property [28].
3
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Local computation property Suppose m1 is a BPA for s1 and m2 is a BPA for s2. Suppose X ∈ s1 and X /∈ s2. Then,

(m1 ⊕ m2)
↓(s1∪s2)\{X} = (m1)

↓s1\{X} ⊕ m2 (11)

This property is the basis of computing marginals of joint belief functions. [10] describes an implementation of a local com-
putation algorithm in Matlab called “Belief Function Machine” for computing the marginals of D-S belief function models.

2.3. Conditional independence

Shenoy [24] describes conditional independence relation in the framework of valuation-based systems using factorization 
semantics. Here, we describe it for the D-S theory of belief functions.

Definition 1 (Conditional Independence (CI)). Suppose V denotes the set of all variables, and suppose r, s, and t are disjoint 
subsets of V . Suppose m is a joint BPA for V . We say r and s are conditionally independent given t with respect to BPA m, 
written as r⊥⊥m s | t if and only if m↓r∪s∪t = mr∪t ⊕ ms∪t , where mr∪t is a BPA for r ∪ t and ms∪t is a BPA for s ∪ t , and mr∪t

and ms∪t are distinct.

Some comments regarding Definition 1:

1. This definition generalizes the CI relation in probability theory [6].
2. The definition of CI in Definition 1 satisfies the ‘graphoid’ properties of probabilistic conditional independence [17]. See 

[24] for details.
3. Shenoy [26] discusses the semantics of CI in terms of no-double counting of non-idempotent knowledge.
4. There are other definitions of CI in the D-S theory [31,2,3], but they are not useful for belief-function graphical models.

2.4. Conditional belief functions

This subsection defines a conditional belief function similar to a conditional probability table in probability theory. The 
definition of a conditional belief function in this subsection is taken from [13].

Definition 2. Suppose r and s are disjoint subsets of variables, r′ ⊆ r, and ms|r′ is a BPA for r′ ∪ s. We say ms|r′ is a conditional 
BPA for s given r′ if and only if

1. (ms|r′ )↓r′
is a vacuous BPA for r′ , and

2. for any BPA mr for r, if mr and ms|r′ are distinct, then mr ⊕ ms|r′ is a BPA for r ∪ s.

We call s the head of the conditional ms|r′ , and r′ the tail. In the second condition of Definition 2, we have BPA mr for r
and a conditional ms|r′ for s given r′ ⊆ r. If given r′ , s is conditionally independent (CI) of r \ r′ , then in this case mr and ms|r′
are distinct. If the CI condition doesn’t hold, then combining mr and ms|r′ may lead to double counting of non-idempotent 
knowledge and are therefore not distinct [27].

Subsection 2.5 discusses belief-function directed graphical models. In graphical models, the joint is constructed from 
the conditionals. We don’t start with a joint. The definition of a conditional belief function in Definition 2 reflects this fact. 
Other definitions of conditional belief functions start from a joint and then factor the joint into a marginal and a conditional. 
These other definitions do not help in constructing graphical models. However, our definition is consistent with these other 
definitions for the joint implicitly defined by a graphical model [13].

We will illustrate belief function conditionals using the Chest Clinic example [15].

Chest clinic Fig. 1 shows a Bayesian network. There are eight discrete binary variables; not all probabilities in the joint 
probability distribution are strictly positive. Fig. 1 also shows the conditional probability tables (CPTs).

Example 1 (A deterministic belief function conditional). In the chest clinic problem, consider the CPT P (E|L, T ) for E given 
(L, T ) as shown in Fig. 1. All variables are discrete with two states. Thus, �E = {e, ̄e}, etc. Notice that this CPT is deterministic 
as all probabilities in the CPT are either 0 or 1. This CPT can be represented in the D-S theory by a deterministic BPA mE|(L,T )

for {L, T , E} as follows:

mE|(L,T )({(l, t, e), (l, t̄, e), (l̄, t, e), (l̄, t̄, ē)}) = 1 (12)

Notice that mE|(L,T ) is a conditional for E given (L,T ) because (mE|(L,T ))
↓{L,T } is a vacuous BPA for (L,T ): (mE|(L,T ))

↓{L,T }(�L,T )

= 1. The other CPTs are all non-deterministic, and these will be encoded in the D-S theory using Smets’ conditional embed-
ding to be discussed next.
4
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Fig. 1. The directed acyclic graph and the CPTs for the Chest Clinic example.

Where do conditionals come from? A conditional BPA mr|s describes the relationship between the variables in r and s. One 
source of conditionals is Smets’ conditional embedding [29]. To describe conditional embedding, consider the case of two 
variables, X and Y . To describe the dependency between X and Y , suppose that when X = x, our belief in Y is described 
by a BPA mYx for Y .

The BPA mYx for Y needs to be embedded into a BPA for mY |x for (X, Y ) such that

1. mY |x is a conditional BPA for (X, Y ), i.e., m↓X
Y |x is the vacuous BPA for X , and

2. when we combine the belief that X = x and marginalize the result to Y , we obtain mYx .

One way to do this is to take each focal element b ∈ 2�Y of mY and convert it to the corresponding focal element

({x} × b) ∪ ((�X \ {x}) × �Y ) ∈ 2�X,Y (13)

of BPA mY |x for (X, Y ) with the same mass. It is easy to confirm that this embedding method satisfies both conditions 
mentioned above.1 Suppose we have several distinct conditionals, e.g., mY |x1 , mY |x2 , etc. obtained by conditional embedding, 
where x1, and x2 are distinct values of X . In this case, we combine the conditionals by Dempster’s combination rule to 
obtain mY |X . An example of conditional embedding follows.

Example 2 (Conditional embedding of a CPT). Consider the CPT for T given A for the chest clinic example in Fig. 1. Given 
A = a, the condition probability distribution for T is P (t|a) = 0.05 and P (t̄|a) = 0.95. This conditional distribution for T
(given A = a) can be represented as a Bayesian BPA mTa for T as follows: mTa ({t}) = 0.05, mTa ({t̄}) = 0.95. After conditional 
embedding, we have a BPA mT |a for (A, T ) as follows:

mT |a({(a, t), (ā, t), (ā, t̄))}) = 0.05,mT |a({(a, t̄), (ā, t), (ā, t̄))}) = 0.95 (14)

The BPA mT |a for (A, T ) is a conditional for T given A as m↓A
T |a is a vacuous BPA for A: m↓A

T |a(�A) = 1.

1 Smets [31] claims that the conditional embedding method satisfies the principle of minimal commitment: one should never give more support than is 
justified to any proposition.
5
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Similarly, the conditional probability distribution for T given A = ā can be embedded into a BPA mT |ā for (A, T ) as 
follows:

mT |ā({(a, t), (a, t̄), (ā, t)}) = 0.01,mT |ā({(a, t), (a, t̄), (ā, t̄)}) = 0.99. (15)

If we combine the two conditionals mT |a and mT |ā by Dempster’s rule, we obtain the conditional BPA mT |A = mT |a ⊕ mT |ā
for T given A as follows:

mT |A({(a, t), (ā, t)}) = P (t|a) P (t|ā) = 0.0005,

mT |A({(a, t), (ā, t̄)}) = P (t|a) P (t̄|ā) = 0.0495,

mT |A({(a, t̄), (ā, t)}) = P (t̄|a) P (t|ā) = 0.0095,

mT |A({(a, t̄), (ā, t̄)}) = P (t̄|a) P (t̄|ā) = 0.9405. (16)

There is no conflict (K = 1) in the combination mT |a ⊕ mT |ā . Also, mT |A is not a Bayesian BPA for (A, T ). mT |A has the 
following properties:

1. (mT |A)↓A is the vacuous BPA for A;
2. If mA=a is a deterministic BPA for A such that mA=a({a}) = 1, then (mA=a ⊕ mT |A)↓T = mTa ;
3. If mA=ā is a deterministic BPA for A such that mA=ā({ā}) = 1, then (mA=ā ⊕ mT |A)↓T = mTā .

Thus, mT |A is a belief function analog of CPT P (T |A).

2.5. BF directed graphical models

We start with some notation. A directed graph G is a pair G = (V, E), where V = {X1, . . . , Xn} denotes the set of nodes
and E denotes the set of directed edges (Xi, X j) between two distinct variables in V . For any node X ∈ V , let PaG(X) denote 
{Y ∈ V : (Y , X) ∈ E}. A directed graph is said to be acyclic if and only if there exists a sequence of the nodes of the graph, 
say (X1, . . . , Xn) such that if there is a directed edge (Xi, X j) ∈ E then Xi must precede X j in the sequence. Such a sequence 
is called a topological sequence (as it depends only on the structure of the directed graph).

Definition 3 (BF directed graphical model). Suppose we have a directed acyclic graph G = (V, E) with n nodes in V . A belief-
function directed graphical model (B F DGM) is a pair (G, {m1, . . . , mn}) such that BPA mi associated with node Xi is a 
conditional BPA for Xi given PaG(Xi), for i = 1, . . . , n. A fundamental assumption of a BFDGM is that m1, . . . , mn are all 
distinct, and the joint BPA m for V associated with the model is given by

m =
n⊕

i=1

mi . (17)

Some comments about Definition 3:

1. The assumption in Definition 3 that all conditionals are distinct allows the combination in Eq. (17).
2. Given m, the joint BPA for V as defined in Eq. (17), it follows from Definition 1 that the following CI relations hold. 

Suppose (X1, . . . , Xn) is a topological sequence associated with BFDGM (G, {m1, . . . , mn}). Then for each Xi , i = 2, . . . , n, 
Xi⊥⊥m({X1, . . . Xi−1} \ PaG(Xi)) | PaG(Xi).

3. An example of a BFDGM is the Chest Clinic example discussed in Section 2.4.

2.6. Distinct belief functions

This material is taken from Shenoy [27]. Distinct belief functions are also called independent belief functions in the 
D-S literature.2 Dempster’s combination rule is only applicable to combining distinct BPAs. So, what are distinct BPAs? 
Dempster [7] provides a definition. Consider the multi-valued semantics of BPAs as shown in Fig. 2.

We have a probability mass function (PMF) P (X1) for X1, a multivalued function �1 : �X1 → 2S1 \ ∅ that defines the BPA 
m1 for S1. Similarly, we have a probability mass function (PMF) P (X2) for X2, a multivalued function �2 : �X2 → 2S2 \ ∅
that defines the BPA m2 for S2. m1 and m2 are distinct if and only if X1 and X2 are independent random variables, 
i.e., P (X1, X2) = P (X1) ⊗ P (X2), where ⊗ is the probabilistic combination operator, point-wise multiplication followed by 
normalization.

2 The terminology of ‘distinct’ belief functions is due to Smets [30]. As independence is usually associated with random variables, we prefer the termi-
nology of distinct belief functions.
6
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Fig. 2. Dempster’s multi-valued semantics for BPAs.

Some comments about Dempster’s definition.

1. As P (X1), and P (X2) are PMFs, and the two multi-valued mappings �1 and �2 map non-empty subsets of S1 and S2
respectively, it is clear that m1 and m2 are BPAs for S1 and S2, respectively.

2. In practice, not every belief function in a belief function model is associated with a multi-valued mapping. Thus, Demp-
ster’s definition cannot be used directly in practice.

3. We say BPA m is idempotent if m ⊕m = m. Idempotent knowledge is knowledge encoded in a BPA m that is idempotent. 
For example, if m is deterministic, then m is idempotent. Thus, double-counting idempotent knowledge is not a problem; 
double-counting non-idempotent knowledge is.

4. If we assume independence of variables X1 and X2 when they are not, then if we combine m1 and m2, we are double-
counting non-idempotent knowledge. Thus, the spirit of Dempster’s definition is that two belief functions are distinct 
if, when combining them using Dempster’s combination rule, we are not double-counting non-idempotent knowledge. 
We will use this heuristic in discussing what constitutes distinct belief functions in practice.

5. The discussion of distinct belief functions is valid more broadly to many uncertainty calculi, including probability theory.

Using the no-double counting non-idempotent knowledge heuristic, we can argue that in the probabilistic graphical 
model X → Y , potentials P (X) and P (Y |X) are always distinct [26,27]. Thus, P (X, Y ) = P (X) ⊗ P (Y |X) is the joint PMF of 
(X, Y ). There are no CI assumptions in this model.

If X and Y are independent with respect to the joint PMF P (X, Y ) represented by the graphical model with variables X
and Y with no directed edges from X to Y or vice versa with conditionals P (X) and P (Y ), then P (X, Y ) = P (X) ⊗ P (Y |X) =
P (X) ⊗ P (Y ) (as X and Y are independent, P (Y |X)(x, y) = P (Y )(y)). Thus, P (X) and P (Y ) are distinct potentials.

Suppose X and Y are not independent, and the dependency of Y on X is described by conditional P (Y | X). If we assume 
independence of X and Y , then P (X) ⊗ P (Y ) = P (X) ⊗ (P (X) ⊗ P (Y |X))↓Y and we are double-counting the knowledge in 
P (X) (assuming it is not idempotent). In this case, P (X) and P (Y ) are not distinct potentials.

The concept of distinct belief functions in the D-S theory is similar to the discussion above in probability theory. Each 
belief-function directed graphical model is associated with a set of CI assumptions for the variables in the model. The 
definition of conditional independence in the D-S belief function theory is similar to that of probability theory [6,24]. Also, 
associated with each variable X in the model, we have a conditional for X given its parents. Unlike the Bayesian case, 
some conditionals may not be known. In this case, a vacuous BPA is associated with such variables [27]. If we have partial 
knowledge of the conditionals, we can represent it by a non-Bayesian BPA. As in the probabilistic case, assuming the CI 
relations are valid, the BPAs in the model are distinct.

3. Representing a BN by a belief function graphical model

This section will show that any BN can be represented as a directed graphical belief function model. The joint probability 
distribution defined in a BN is described as a Bayesian BPA in the corresponding D-S belief function model.

Theorem 1. Consider a two-variable BN with variables X and Y with state spaces �X and �Y , respectively, as shown in Fig. 3. Let P X

and P Y |X denote a prior probability mass function (PMF) for X and a CPT for Y , respectively. Let P X,Y denote the joint PMF of (X, Y )

such that P X,Y (x, y) = P X (x) P Y |X (x, y) for all (x, y) ∈ �X,Y . Let BPA mX for X denote the Bayesian BPA for X corresponding to PMF 
P X , and let BPA mY |X for (X, Y ) denote the conditional BPA for Y |X obtained from the CPT P Y |X by Smets’ conditional embedding. 
Then, mX ⊕ mY |X is the Bayesian BPA for (X, Y ) corresponding to PMF P X,Y .
7
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Fig. 3. A two-variable BN and a corresponding directed graphical belief function model.

Table 1
Details of mX ⊕ mY |x1 .

{x1} × �Y {x2} × �Y . . . {xm} × �Y

mY |x1 ⊕ mX P (x1) P (x2) . . . P (xm)

{(x1, y1), {x2, . . . xm} × �Y {(x1, y1)} {x2} × �Y . . . {xm} × �Y

P (y1|x1) P (x1, y1) P (x2) P (y1|x1) . . . P (xm) P (y1|x1)

.

.

.

.

.

.

.

.

.
. . .

.

.

.

{(x1, yn), {x2, . . . xm} × �Y {(x1, yn)} {x2} × �Y . . . {xm} × �Y

P (yn|x1) P (x1, yn) P (x2) P (yn|x1) . . . P (xm) P (yn|x1)

Proof. This is a folk theorem: well-known (see, e.g., [1]), but no proof appears to be published anywhere. Therefore, we 
include a proof here. We will assume |�X | = m, and |�Y | = n. Let �X = {x1, . . . , xm}, and let �Y = {y1, . . . , yn}. Each 
conditional P (Y |xi) is represented as a conditional mY |xi using Smets’ conditional embedding. Thus, we have m conditionals 
mY |xi , one for each xi ∈ �X .

We start by Dempster’s combination mX ⊕ mY |x1 . As the domain of mX is X and the domain of mY |x1 is (X, Y ), we need 
to vacuously extend mX to (X, Y ). Let m↑{X,Y }

X denote such a vacuous extension. The focal elements of m↑{X,Y }
X are {xi} ×�Y

for i = 1, . . . , m, with BPA values P (X = xi) Notice that after vacuous extension, m↑{X,Y }
X is no longer a Bayesian BPA.

Now consider mY |x1 . Prior to conditional embedding, we have a Bayesian BPA mYx1
for Y whose focal elements 

are {y1}, . . . , {yn} with BPA values P (y1|x1), . . . , P (yn|x1). After conditional embedding, the focal elements of mY |x1 are 
{(x1, y1), {x2, . . . , xm} × �Y }, . . ., {(x1, yn), {x2, . . . , xm} × �Y )} (with BPA values P (y1|x1), . . . , P (yn|x1)).

Next, we combine mX and mY |x1 using Dempster’s rule. The details are shown in Table 1. Notice that some of the focal 
elements of mX ⊕mY |x1 are singleton subsets (in the second column of Table 1) whose BPA values are the same as the joint 
distribution of P X,Y .

Next, we do a Dempster’s combination of (mX ⊕ mY |x1 ) ⊕ mY |x2 . The singleton focal elements {(x1, y j)} for j = 1, . . . , n
remain singletons with values P (x1, y j) P (y j|x2), and these values sum to P (x1, y j). Also, the focal elements {x2} × �Y of 
mX ⊕ mY |x1 (in the third column of Table 1) become singleton subsets {(x2, y j)} whose values sum to P (x2, y j), the same 
as the joint distribution of P (X, Y ).

If we continue in this manner until we have combined all conditionals mY |xi for i = 1, . . . , m, the joint BPA mX ⊕ mY |X

will be a Bayesian BPA whose values are the same as the Bayesian joint distribution P X,Y .
What if Y is independent of X? This is a special case where the conditional distributions P (Y |x1) = . . . = P (Y |xm) =

P (Y ). Our proof remains valid for this case as the only fact about the conditionals we use in the proof is that 
∑n

j=1 P (Y =
y j |xi) = 1 for all i = 1, . . . , m. Of course, this case can be handled without the use of conditionals P (Y = y j | xi) by just 
using Bayesian BPA mY corresponding to P (Y ) without the need for Smets’ conditional embedding. As for P (X), we need 
to vacuously extend mY to (X, Y ), and the theorem is true. �

Theorem 1 can be generalized to a complete BN with more than two variables.

Theorem 2. Suppose we have a BN with n variables X1, . . . Xn. Suppose each CPT P (Xi |pa(Xi) in the BN is represented as a conditional 
BPA mXi |pa(Xi) obtained by conditional embedding of CPT P (Xi|pa(Xi)). Then, ⊕n

i=1mXi |pa(Xi) is a Bayesian BPA corresponding to 
⊗n

i=1 P Xi |pa(Xi) . Here, ⊗ denotes the probabilistic combination operator, pointwise multiplication followed by normalization [28].

Proof. Without loss of generality, let (X1, . . . , Xn) denote a topological sequence associated with the directed acyclic graph 
of the BN. First, consider the sub-BN consisting of only variables {X1, X2}. It follows from Theorem 1 that the joint BPA 
for (X1, X2) is Bayesian corresponding to ⊗2

i=1 P Xi |pa(Xi) . Next, consider the sub-BN corresponding to (X1, . . . , X3). We can 
consider this as a BN with two variables (X12, X3), where X12 is a composite variable whose state space is �X1,X2 with 
a prior distribution P (X12) = P (X1) ⊗ P (X2|X1). Again, it follows from Theorem 1 that the joint BPA ⊕3

i=1mXi |pa(Xi) is 
a Bayesian BPA corresponding to ⊗3

i=1 P Xi |pa(Xi) . Proceeding in this manner, it follows from induction that the result is 
true. �
Example 3 (A BN consisting of A and T ). Consider the BN consisting of variables A and T with the corresponding conditionals 
as shown in Fig. 1. Let mA denote the Bayesian BPA for A corresponding to P A and let mT |A denote the conditional BPA 
8
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Table 2
The computation of mA,T in Example 3.

m↑{A,T }
A

mA ⊕ mT |A {(a, t), (a, t̄)} {(ā, t), (ā, t̄)}
0.01 0.99

mT |A

{(a, t), (ā, t)} {(a, t)} ({ā, t)}
0.0005 0.000005 0.000495
{(a, t), (ā, t̄)} {(a, t)} ({ā, t̄)}
0.0495 0.000495 0.049005
{(a, t̄), (ā, t)} {(a, t̄)} ({ā, t)}
0.0095 0.000095 0.009405
{(a, t̄), (ā, t̄)} {(a, t̄)} ({ā, t̄)}
0.9405 0.009405 0.931095

Table 3
The marginal BPA mT for T in Exam-
ple 4.

2�T mT BelT PlT

∅
{t} 0.0005 0.0005 0.0595
{t̄} 0.9405 0.9405 0.9995
{t, t̄} 0.0590 1 1

for T |A after Smets’ conditional embedding of P T |A as shown in Example 2. The computation of the joint BPA for (A, T ) is 
shown in Table 2.

Thus, in this complete model for A and T , the joint BPA mA,T for {A, T } is as follows:

mA,T ({(a, t)}) = 0.000005 + 0.000495 = 0.0005

mA,T ({(a, t̄)}) = 0.000095 + 0.009405 = 0.0095

mA,T ({(ā, t)}) = 0.000495 + 0.009405 = 0.0099

mA,T ({(ā, t̄)}) = 0.049005 + 0.931095 = 0.9801.

Notice that there is no conflict, i.e., (K = 1), in the combination mA ⊕mT |A as mT |A is a conditional, i.e., m↓T
T |A is vacuous.

The joint mA,T is Bayesian. Its marginal for T is as follows: mT ({t}) = 0.0005 + 0.0099 = 0.0104, and mT ({t̄}) = 0.0095 +
0.9801 = 0.9896, which is the same as in the Bayesian solution of this problem.

4. Making inferences from an incomplete BN

In this section, we examine the case of an incomplete BN where we are missing some priors, some conditionals, or both. 
In a corresponding belief function model, if we are missing the prior for a variable, we can omit the prior or use a vacuous 
BPA to represent the missing information. We do the same if we are missing a conditional for a variable.

Example 4 (A BN model with a missing prior). Consider the BN from Example 3 in which we are missing the prior for A. If 
we embed this incomplete BN to a corresponding D-S belief function model, we have just the conditional BPA mT |A , which 
from Example 2 is as follows:

mT |A({(a, t), (ā, t)}) = 0.0005,

mT |A({(a, t), (ā, t̄)}) = 0.0495,

mT |A({(a, t̄), (ā, t)}) = 0.0095,

mT |A({(a, t̄), (ā, t̄)}) = 0.9405. (18)

The conditional BPA mT |A for {A, T } is not Bayesian. We can compute the marginal mT = (mT |A)↓T as shown in Table 3. The 
corresponding belief and plausibility functions are also shown in Table 3. Thus, the bounds on P (t), the probability that a 
patient suffers from Tuberculosis, are as follows: 0.0005 ≤ P (t) ≤ 0.0595. Similarly the bounds on P (t̄) are: 0.9405 ≤ P (t̄) ≤
0.9995. Notice that the bounds include the point estimates (P (t) = 0.0104, and P (t̄) = 0.9896) from the complete model in 
Example 3.

If we model the missing prior for A by the Laplacian (equally likely) Bayesian distribution P (a) = 0.5, P (ā) = 0.5, and 
find the marginal for T , we get the point estimates P (t) = 0.03 and P (t̄) = 0.97. This, of course, masks the uncertainty in 
the posterior marginal distribution for T .
9
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Fig. 4. Left: The possible values of a Bayesian prior for A. Right: The possible values for a prior BPA for A.

A question that arises is as follows: If we do a sensitivity analysis on a Bayesian analysis of this problem with P (A) =
(p, 1 − p), where p = P (A = a) and 1 − p = P (A = ā), we vary p ∈ [0, 1], the marginal posterior probability of T = t varies 
from 0.01 when p = 1 to 0.05 when p = 0. The bounds on P (T = t) from a D-S belief function model are much wider—from 
0.0005 to 0.0595. Why?

1. A Bayesian sensitivity analysis is restricted to a one-dimensional region: {(p, 1 − p, 0) : 0 ≤ p ≤ 1} (see Fig. 4). 
Consider a BFDGM corresponding to an incomplete BN with a missing prior. A BFDGM is said to be complete if 
the BPA corresponding to the missing prior is Bayesian. If we assume complete knowledge of the prior of A, de-
noted by {(p, 1 − p, 0) : 0 ≤ p ≤ 1} (where p = mA({a}), 1 − p = mA({ā}), and 0 = mA({a, ̄a}), then the marginal 
mT = (mA ⊕ mT |A)↓T is a Bayesian BPA representing P (t) = p 0.05 + (1 − p) 0.01 and P (t̄) = p 0.95 + (1 − p) 0.99. 
Under the complete knowledge assumption, varying 0 ≤ p ≤ 1, we get a range of point estimates for P (t), not intervals. 
A Bayesian model can only reason with complete information [16, Ch. 9, p. 415]. Taking the range of point estimates 
and constructing an interval is ad-hoc and may not be justified by the laws of probability.

2. A D-S belief-function analysis is more expressive than a Bayesian sensitivity analysis discussed in Comment 1. If we 
are completely ignorant of the prior distribution of A, we can model it using the vacuous BPA for A, ιA (denoted by 
the point (0, 0, 1) in Fig. 4). BPA ιA for A corresponds to the credal set CrιA which consists of all PMFs of A. A D-S 
analysis of the model where we have BPA ιA as the prior for A, and conditional BPA mT |A for (A, T ) results in the 
interval [0.0005, 0.0595] for P (T = t) as discussed in Example 4 with width 0.0590. The wider interval here (compared 
to the Bayesian analysis discussed in Comment 1 where we get the point estimates) is a consequence of the ignorance 
of the prior for A. There is no ignorance in a Bayesian prior for A. Unlike the Bayesian case (discussed in Comment 1 
above), there is no need for an ad-hoc sensitivity analysis. It is inappropriate to compare the interval [0.01, 0.05] for 
P (t) obtained from a Bayesian meta-analysis with the interval [0.0005, 0.0595] obtained from a regular D-S analysis. A 
Bayesian analysis yields point estimates of P (t) regardless of the value of p = P (A = a) as there is no ignorance in the 
prior for A. A D-S analysis using the vacuous BPA for A results in an interval because of ignorance of the prior of A. 
There is no anomaly in these results.

3. A D-S analysis can also model partial knowledge of priors. Consider the point (mA({a}), mA({ā}), mA({a, ̄a})) =
(0.3, 0.3, 0.4) representing the knowledge that 0.3 ≤ P (A = a) ≤ 0.7 and 0.3 ≤ P (A = ā) ≤ 0.7. A D-S analysis results in 
the posterior marginal for T as follows:

(mT ({t}),mT ({t̄}),mT ({t, t̄}) = (0.0182,0.9582,0.0236).

This can be interpreted as follows: posterior probability 0.0182 ≤ P (T = t) ≤ 0.0418. Again, there is no need for a 
sensitivity analysis. See Table 5 for the posterior intervals and widths for some sample values of mA .

4. The width of the probability interval for T = t varies continuously from 0.0590 (for (0, 0, 1)) to 0 (for (p, q, 0) as a 
function of r = mA(a, ̄a).

5. The following lemma describes the probability intervals for t and t̄ and their widths in a general 2-variable BN with 
binary variables.

Lemma 1 (A non-Bayesian prior). Consider a BFDGM with two binary variables: A with �A = {a, ̄a}, and T with �T = {t, ̄t}. 
Assume we have a non-Bayesian prior BPA mA for A with parameters p = mA({a}), q = mA({ā}), and r = mA({a, ̄a}), p + q + r =
1. Assume we have a conditional BPA mT |A for T given A that is derived from a Bayesian CPT for T with parameters P (t|a), P (t̄|a), 
P (t|ā) and P (t̄|ā), P (t|a) + P (t̄|a) = 1, and P (t|ā) + P (t̄|ā) = 1. For this model, the marginal BPA mT = (mA ⊕ mT |A)↓T is as 
follows:

mT ({t}) = p P (t|a) + q P (t|ā) + r P (t|a) P (t|ā),

mT ({t̄}) = p P (t̄|a) + q P (t̄|ā) + r P (t̄|a) P (t̄|ā),

mT ({t, t̄}) = r (P (t|a) P (t̄|ā) + P (t̄|a) P (t|ā))

Thus, the probability interval for T = t is

[mT ({t}),mT ({t}) + mT ({t, t̄})],

10
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Table 4
The computation of mA ⊕ mT |A in Lemma 1.

m↑{A,T }
A

mA ⊕ mT |A {(a, t), (a, t̄)} {(ā, t), (ā, t̄)} �A,T

p q r
mT |A

{(a, t), (ā, t)} {(a, t)} {(ā, t)} {(a, t), (ā, t)}
P (t|a)P (t|ā) p P (t|a)P (t|ā) q P (t|a)P (t|ā) r P (t|a)P (t|ā)

{(a, t), (ā, t̄)} {(a, t)} {(ā, t̄)} {(a, t), (ā, t̄)}
P (t|a)P (t̄|ā) p P (t|a)P (t̄|ā) q P (t|a)P (t̄|ā) r P (t|a)P (t̄|ā)

{(a, t̄), (ā, t)} {(a, t̄)} {(ā, t)} {(a, t̄), (ā, t)}
P (t̄|a)P (t|ā) p P (t̄|a)P (t|ā) q P (t̄|a)P (t|ā) r P (t̄|a)P (t|ā)

{(a, t̄), (ā, t̄)} {(a, t̄)} {(ā, t̄)} {(a, t̄), (ā, t̄)}
P (t̄|a)P (t̄|ā) p P (t̄|a)P (t̄|ā) q P (t̄|a)P (t̄|ā) r P (t̄|a)P (t̄|ā)

Table 5
Posterior intervals and widths for T for some sample values of 
mA .

Interval Width of interval
mA [BelT ({t}), PlT ({t})] PlT ({t}) − BelT ({t})
(1,0,0) [0.01,0.01] 0
(0,1,0) [0.05,0.05] 0
(0,0,1) [0.0005,0.0595] 0.0590
(0.3,0.3,0.4) [0.0182,0.0418] 0.0236
(0.3,0.6,0.1) [0.02105,0.02695] 0.0059
(0.5,0.4,0.1) [0.02905,0.03495] 0.0059

Table 6
The computation of mA,T in Example 5.

m↑{A,T }
A

mA ⊕ mT |a {(a, t), (a, t̄)} {(ā, t), (ā, t̄)}
0.01 0.99

mT |a
{(a, t), (ā, t), (ā, t̄)} {(a, t)} {(ā, t), (ā, t̄)}
0.05 0.0005 0.0495
{(a, t̄), (ā, t), (ā, t̄)} {(a, t̄)} ({ā, t), (ā, t̄)}
0.95 0.0095 0.9405

with width mT ({t, ̄t}) that depends only on r = mA({a, ̄a}) and not on p or q. Similarly, the probability interval for T = t̄ is

[mT ({t̄}),mT ({t̄}) + mT ({t, t̄})],
with width mT ({t, ̄t}) that depends only on r = mA({a, ̄a}) and not on p or q.

Proof. Dempster’s combination mA ⊕ mT |A = mA,T is shown in Table 4. Of the 12 cells, five have only t ’s, five have 
only t̄ ’s, and two have both t and t̄ . When we compute the marginal mT = (mA,T )↓T , mT ({t}) is the sum of the masses 
associated with the five cells that have only t ’s. Similarly for mT ({t̄}), and mT ({t, ̄t}). Thus, the result follows. �

Example 5 (A BN model with a missing conditional). Consider the BN from Example 3 in which we are missing a conditional 
for T given A = ā. If we embed this incomplete BN to a corresponding D-S belief function model, we have just two BPAs: 
mA and mT |a , the conditional for T given A = a. The belief function computations are shown in Table 6.

The joint BPA mA,T for {A, T } is as follows:

mA,T ({(a, t)}) = 0.0005

mA,T ({(a, t̄)}) = 0.0095

mA,T ({(ā, t), (ā, t̄)}) = 0.9900

The joint BPA mA,T for {A, T } is not Bayesian. We can compute the marginal mT = (mA,T )↓T as shown in Table 7. 
The corresponding belief and plausibility functions are also shown in Table 7. Thus, the bounds on P (t), the posterior 
probability that a patient suffers from Tuberculosis, are as follows: 0.0005 ≤ P (t) ≤ 0.9905. Similarly the bounds on P (t̄)
are: 0.0095 ≤ P (t̄) ≤ 0.9995. Notice that the bounds include the point estimates (P (t) = 0.0104, and P (t̄) = 0.9896) from 
the complete model in Example 3.
11
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Table 7
The marginal BPA mT for T in Exam-
ple 5.

2�T mT BelT PlT

∅
{t} 0.0005 0.0005 0.9905
{t̄} 0.0095 0.0095 0.9995
{t, t̄} 0.9900 1 1

If we model the missing conditional for T given A = ā by the Laplacian (equally likely) conditional distribution P (t|ā) =
0.5, P (t̄|ā) = 0.5, and find the marginal for T , we get point estimates P (t) = 0.4955 and P (t̄) = 0.5045. This, of course, 
masks the uncertainty in the posterior marginal distribution for T .

Some comments:

1. The posterior marginal BPA mT for T has mass 0.9900 for the focal element {t, ̄t}, which is the value mA(ā) of ā for 
which we are missing a conditional distribution for T .

2. The width of the interval for posterior probability P (T = t) and P (T = t̄) is the same (= 0.99 = mT ({t, ̄t})).
3. A belief-function model allows for partial knowledge of conditionals. For example, suppose in Example 5, when A = ā, 

the conditional for T is not missing, but as follows: mTā ({t}) = 0.01, mTā ({t̄}) = 0.90, mTā ({t, ̄t}) = 0.09. Thus, 0.01 ≤
P (T = t|ā) ≤ 0.10, and 0.90 ≤ P (T = t̄|ā) ≤ 0.99. We use Smets’ conditional embedding to create a conditional BPA for T
given A and combine all three BPAs to find the marginal BPA for T as follows: mT ({t}) = 0.0104, mT ({t̄}) = 0.9005, and 
mT ({t, ̄t}) = 0.0891. Thus, the posterior marginal for T is: 0.0104 ≤ P (T = t) ≤ 0.0995, and 0.9005 ≤ P (T = t̄) ≤ 0.9896. 
The width of both these intervals is 0.0891 = mA({ā}) · mTā ({t, ̄t}) = 0.99 · 0.09, which is a consequence of Dempster’s 
product-intersection combination mA ⊕ mT |A . A general result is as follows.

Lemma 2 (A non-Bayesian conditional). Consider a BN with two binary variables: A with state space �A = {a, ̄a}, and T with 
state space �T = {t, ̄t}. Suppose we have a Bayesian prior for A represented by BPA mA({a}) = P (a), and mA({ā}) = P (ā), where 
P (a) + P (ā) = 1. When A = a, we have a Bayesian BPA mTa for T as follows: mTa ({t}) = P (t|a), and mTa ({t̄}) = P (t̄|a) where 
P (t|a) + P (t̄|a) = 1. When A = ā, suppose we have a non-Bayesian BPA mTā for T as follows: mTā ({t}) = p, mTā ({t̄}) = q, 
mTā (�T ) = r, where p + q + r = 1. For this model, the marginal BPA for T is non-Bayesian. The probability of T = t is in the 
interval

[P (t|a) P (a) + p P (ā), P (t|a) P (a) + p P (ā) + r P (ā)].
Thus, the width of the interval is r P (ā), where r = mTā (�T ), and P (ā) is the probability of the state of A for which we have a 
non-Bayesian conditional.

Proof. After Smets’ conditional embedding of mTa and mTā , we have:

mT |a({(a, t), (ā, t), (ā, t̄)}) = P (t|a),

mT |a({(a, t̄), (ā, t), (ā, t̄)}) = P (t̄|a),

and

mT |ā({(a, t), (a, t̄), (ā, t)}) = p,

mT |ā({(a, t), (a, t̄), (ā, t̄)}) = q,

mT |ā(�A,T ) = r.

Let mT |A = mT |a ⊕ mT |ā . Then mT |A is as follows:

mT |A({(a, t), (ā, t)}) = P (t|a) p,

mT |A({(a, t), (ā, t̄)}) = P (t|a)q,

mT |A({(a, t), (ā, t)), (ā, t̄)}) = P (t|a) r,

mT |A({(a, t̄), (ā, t)}) = P (t̄|a) p,

mT |A({(a, t̄), (ā, t̄)}) = P (t̄|a)q,

mT |A({(a, t̄), (ā, t), (ā, t̄)}) = P (t̄|a) r.

Next, we compute mA,T = mA ⊕ mT |A . mA,T is as follows:
12
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mA,T ({(a, t)}) = P (t|a) P (a),

mA,T ({(a, t̄)}) = P (t̄|a) P (a),

mA,T ({(ā, t)}) = p P (ā),

mA,T ({(ā, t̄)}) = q P (ā),

mA,T ({(ā, t), (ā, t̄)}) = r P (ā).

The marginal mT = (mA,T )↓T of the joint is as follows:

mT ({t}) = P (t|a) P (a) + p P (ā),

mT ({t̄}) = P (t̄|a) P (a) + q P (ā),

mT ({t, t̄}) = r P (ā).

Thus, the result follows. �
5. Belief function machine

Belief function machine (BFM) [10] is a set of routines in MatLab for constructing belief function graphical models and 
computing marginals of the joint for variables of interest using local computation. It was written in 2002 by Phan Hong 
Giang under the supervision of Thierry Denoeux, Prakash Shenoy, and Philippe Smets. It was further developed in 2003 by 
Sushila Shenoy by incorporating features described in [11] to enable the solution of large belief function models.

Some features of BFM are as follows. Belief function models are constructed using UIL (unified input language). UIL is 
based on the framework of the valuation-based system [23]. It can find marginals of belief function models containing 
hundreds of variables.

A UIL text file for the chest clinic example is as follows:

# Variables and their state space
DEFINE VARIABLE A {a ∼a}; # Visit to Asia
DEFINE VARIABLE S {s ∼s}; # Smoker
DEFINE VARIABLE T {t ∼t}; # Tuberculosis
DEFINE VARIABLE L {l ∼l}; # Lung Cancer
DEFINE VARIABLE B {b ∼b}; # Bronchitis
DEFINE VARIABLE E {e ∼e}; # Either T or L
DEFINE VARIABLE X {x ∼x}; # X-ray
DEFINE VARIABLE D {d ∼d}; # Dyspnoea

# CPT for T given A
DEFINE CONDITIONAL RELATION TA {T } GIVEN {A};
SET CONDITIONAL VALUATION TA GIVEN {a}{(∼t)} 0.95 {(t)} 0.05;
SET CONDITIONAL VALUATION TA GIVEN {∼a}{(t)} 0.01 {(∼t)} 0.99;

# CPT for L given S
DEFINE CONDITIONAL RELATION L S {L} GIVEN {S};
SET CONDITIONAL VALUATION L S GIVEN {s}{(∼l)} 0.9 {(l)} 0.1;
SET CONDITIONAL VALUATION L S GIVEN {∼s}{(l)} 0.01 {(∼l) 0.99;

# CPT for B given S
DEFINE CONDITIONAL RELATION B S {B} GIVEN {S};
SET CONDITIONAL VALUATION B S GIVEN {s}{(∼b)} 0.4 {(b)} 0.6;
SET CONDITIONAL VALUATION B S GIVEN {∼s}{(∼b)} 0.7 {(b)} 0.3;

# Deterministic conditional for E given T , L
DEFINE RELATION ETL {E T L};
SET VALUATION ETL {(∼e ∼t ∼l)(e ∼t l)(e t ∼l)(e t l)} 1.0;

# CPT for X given E
DEFINE CONDITIONAL RELATION XE {X} GIVEN {E};
SET CONDITIONAL VALUATION XE GIVEN {e} {(x)} 0.98 {(∼ x)} 0.02;
SET CONDITIONAL VALUATION XE GIVEN {∼e} {(x)} 0.05 {(∼ x)} 0.95;
13
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# CPT for D given B , E
DEFINE CONDITIONAL RELATION D B E {D} GIVEN {B E};
SET CONDITIONAL VALUATION D B E GIVEN {b e} {(d)} 0.9 {(∼d)} 0.1;
SET CONDITIONAL VALUATION D B E GIVEN {b ∼e} {(d)} 0.7 {(∼d)} 0.3;
SET CONDITIONAL VALUATION D B E GIVEN {∼b e} {(d)} 0.8 {(∼ d)} 0.2;
SET CONDITIONAL VALUATION D B E GIVEN {∼b ∼e} {(d)} 0.1, {(∼d)} 0.9;

#Prior distribution for S
DEFINE RELATION PRIORS {S};
SET VALUATION PRIORS {(∼s)} 0.5 {(s)} 0.5;

#Prior distribution for A
DEFINE RELATION PRIORA {A};
SET VALUATION PRIORA {(a)} 0.01 {(∼a)} 0.99;

Some comments.

1. All text to the right of # are comments. In the first set of statements, we define all variables by specifying their names 
and all possible states within curly parenthesis; a space separates each state. Thus, e.g., variable A has two states: a
and ∼a.

2. In the subsequent statements, we define belief functions. Unconditional BPAs are described in two steps. In the first 
step, we have a DEFINE RELATION statement with the name of the BPA and its domain. In the second step, we have 
a SET VALUATION statement that specifies the details of the BPA (focal elements and values). Thus the deterministic 
conditional for E given T , L is defined as an unconditional deterministic belief function, whose name is E T L, and whose 
domain is {E, T , L}. This belief function has one focal element within curly parenthesis followed by its value. If there is 
more than one focal element, these are separated by space as in the definition of the prior distribution for A and S .

3. Conditional belief functions are specified using the DEFINE CONDITIONAL RELATION statement that has the name of the 
belief function followed by the head of the conditional and then the tail. In BNs, the head is a singleton variable, but 
the tail consisting of the parents of the head can have several variables. The details of the conditional belief function 
are specified for each state (or set of states) of the tail variables. Thus the conditional distribution of T given A = a, 
P T |a(t) = 0.95, and P T |a(∼t) = 0.05 is specified by the SET CONDITIONAL VALUATION statement:

SET CONDITIONAL VALUATION TA GIVEN {a}{(∼t)} 0.95, {(t)} 0.05;

Specifying a conditional after conditional embedding is unnecessary, as BFM has a command to do it. This is illustrated 
in Subsection 5.1.

5.1. Using BFM

BFM consists of a set of routines that run in MatLab. Suppose the UIL file for the chest clinic example is saved as a text 
file named ‘cclinic.txt.’ A short script for computing the marginal belief function for T is shown below. BFM can also build 
a binary join tree [25], propagate belief functions, and compute the marginals for every variable in a model.

uil2bm(‘cclinic.txt’, ‘bmcclinic’)
# translate UIL file into BFM format

global BELIEF VARIABLE ATTRIBUTE STRUCTURE FRAME QUERY
global BELTRACE NODE BJTREE TRANSPROTOCOL
# declaration of global variables

load bmcclinic
# load file containing BFM data structure

belall = condiembed([BELIEF(:).number])
# convert all conditional valuations into conditional belief functions using Smet’s conditional embedding, leaving the un-
conditional valuations unchanged.

keepbel(belall)
# discard unnecessary belief functions from memory.
14
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Table 8
The marginal BPAs mT for T , mL for L, and mB for B , in the 
complete chest clinic example. Empty cells have 0 values.

2�T mT 2�L mL 2�B mB

∅ ∅ ∅
{t} 0.0104 {l} 0.0550 {b} 0.5500
{∼t} 0.9896 {∼l} 0.9450 {∼b} 0.4500
{t,∼t} {l,∼l} {b,∼b}

Fig. 5. The results from a Bayesian propagation for the complete chest clinic example.

showbel(solve(belall, ‘T’))
# Find the marginal BPA of the joint for T and display its details.

bjtbuild(‘T’, belall)
# build a binary join tree with T as the final node.

showbel(solvetreeall(1));
# Find the marginal for every variable using binary join tree BJTREE(1) created by the previous command and display the 
details.

The marginals for variables T , B , and L resulting from the last command are shown in Table 8. Fig. 5 shows the results 
from a Bayesian propagation in Hugin. Notice that the results are the same in both cases.

Now assume that we have an incomplete BN where we are missing the following pieces of information:

1. prior for A,
2. prior for S ,
3. conditional distribution P T |∼a ,
4. conditional distribution P X |∼e , and
5. conditional distribution P D|e,b .

We comment out the corresponding SET VALUATION and SET CONDITIONAL VALUATION statements in the UIL text file 
and re-run the script. The results are shown in Table 9. Notice that the marginals are not Bayesian. Thus,

0 ≤ P T (t) ≤ 1,0.001 ≤ P L(l) ≤ 0.109,0.18 ≤ P B(b) ≤ 0.72,

0 ≤ P T (t̄) ≤ 1,0.891 ≤ P L(l̄) ≤ 0.999,0.28 ≤ P B(b̄) ≤ 0.82

If we insert Laplacian priors/conditionals for the missing information and do a Bayesian propagation, we get the point 
estimates of the marginals as shown in Fig. 6. These point estimates lie in the intervals from a belief function analysis. 
A belief function model with interval estimates of the marginals is more useful for decision-making [8] than the point 
estimates from a Bayesian propagation that doesn’t provide any information about the uncertainty of the estimates.
15
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Table 9
The marginal BPAs mT for T , mL for L, and mB for B in the 
incomplete chest clinic example. Empty cells have 0 values.

2�T mT 2�L mL 2�B mB

∅ ∅ ∅
{t} {l} 0.0010 {b} 0.1800
{∼t} {∼l} 0.8910 {∼b} 0.2800
{t,∼t} 1.0 {l,∼l} 0.1080 {b,∼b} 0.5400

Fig. 6. The results from a Bayesian propagation for the incomplete chest clinic example.

6. Summary & conclusions

This article discusses the challenges of working with incomplete Bayesian Networks (BNs), where certain priors and 
conditional distributions are missing or partially known. When the parameters of a BN are estimated from data, some rare 
scenarios may not occur in the dataset. Similarly, if domain experts estimate the parameters, they may feel uncomfortable 
providing estimates for certain variables due to their lack of experience.

To address this issue, our proposed method is to embed an incomplete Bayesian network model in a corresponding 
D-S belief function model and then reason from such a model. D-S models are a generalization of Bayesian reasoning. We 
can express ignorance of missing information using vacuous belief functions in the D-S theory. We can also express partial 
knowledge of priors and conditional using belief functions. There is no analog of a vacuous belief function or partial infor-
mation in a Bayesian representation. Consequently, Bayesian analysis cannot reason with incomplete/partial information [16, 
Ch. 9, p. 415]. The best we can do is a sensitivity analysis where we vary the parameters of a missing prior or conditional 
(assuming “complete” knowledge modeled as a Bayesian BPA). Such an analysis cannot replicate the results obtained from 
a belief-function analysis (without the necessity of sensitivity analysis). Also, such a sensitivity analysis (assuming com-
plete knowledge) results in a confidence interval with a narrower width than a corresponding D-S analysis, which may be 
misleading. Finally, if we have several missing priors/conditionals, a sensitivity analysis is not a computationally tractable 
task.

Dempster’s combination rule for aggregating evidence is more computationally demanding than Bayesian aggregation. 
For large BN models, the marginals of the joint probability distribution can be computed without explicitly computing the 
joint distribution using local computation. The same is true for the D-S theory, which satisfies the same axioms on which 
local computation is based [28]. There are implementations of local computation algorithms for the D-S theory. One such 
implementation is described in this paper.

We do not claim that the method described in this article is the only method for making inferences in incomplete 
Bayesian networks. For example, in the imprecise probability literature, there is an alternative theory of belief functions that 
use credal set semantics of belief functions, which considers belief functions as a set of PMFs such that the lower bound 
of the probability of a proposition a is equal to the value of Bel(a) for all propositions a ⊆ �r . Credal set semantics are 
incompatible with Dempster’s combination rule [19–21,12].

Fagin and Halpern [9] propose another rule for updating beliefs, referred to as the Fagin-Halpern combination rule. 
Suppose we start with a credal set of PMFs characterized by BPA m for r and observe some proposition a ⊆ �r . In that 
case, one possible updating rule is to condition each PMF in the credal set on proposition a and then find the revised 
BPA m′ corresponding to the lower envelope of the revised set of PMFs. The Fagin-Halpern rule does precisely this and 
differs from Dempster’s rule of conditioning, a special case of Dempster’s combination rule. It would be interesting to 
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compare the two distinct theories of belief functions. Like the D-S theory, the Fagin-Halpern theory is also a generalization 
of probability theory. However, we must determine if the Fagin-Halpern combination rule satisfies the local computation 
property. Also, we must learn how to represent conditional knowledge as conditional belief functions (similar to Smets’ 
conditional embedding). Finally, we must find out if the Fagin-Halpern belief function theory is implemented to compute 
the marginals of large belief function graphical models. Comparing these two belief function theories for making inferences 
from incomplete Bayesian networks is an important task that needs to be done.

Another alternative to using D-S theory is to use Cozman [4]’s credal networks. There are local computation algorithms 
for credal networks [5] and some implementations [32]. Comparison of credal networks with the D-S theory is another 
important task that needs to be done.
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