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Abstract: The Costa Rican pygmy rice rat (Oligoryzomys costaricensis) is the primary reservoir of
Choclo orthohantavirus (CHOV), the causal agent of hantavirus disease, pulmonary syndrome, and
fever in humans in Panama. Since the emergence of CHOV in early 2000, we have systematically
sampled and archived rodents from >150 sites across Panama to establish a baseline understanding
of the host and virus, producing a permanent archive of holistic specimens that we are now probing
in greater detail. We summarize these collections and explore preliminary habitat/virus associations
to guide future wildlife surveillance and public health efforts related to CHOV and other zoonotic
pathogens. Host sequences of the mitochondrial cytochrome b gene form a single monophyletic clade
in Panama, despite wide distribution across Panama. Seropositive samples were concentrated in the
central region of western Panama, consistent with the ecology of this agricultural commensal and the
higher incidence of CHOV in humans in that region. Hantavirus seroprevalence in the pygmy rice rat
was >15% overall, with the highest prevalence in agricultural areas (21%) and the lowest prevalence
in shrublands (11%). Host–pathogen distribution, transmission dynamics, genomic evolution, and
habitat affinities can be derived from the preserved samples, which include frozen tissues, and now
provide a foundation for expanded investigations of orthohantaviruses in Panama.

Keywords: Oligoryzomys; One Health; Orthohantavirus; spatial ecology; wildlife surveillance; zoonotic
disease
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1. Introduction

Hantaviruses (Order Bunyavirales, Family Hantaviridae) comprise a group of negative-
sense RNA viruses that are distributed worldwide. While rodents and eulipotyphlans
(shrews and moles) have been advanced as the primary hosts of hantaviruses globally,
new strains have recently been detected in chiropterans [1], reptiles, and fish [2]. As a
result, four subfamilies are recognized within Hantaviridae: Mammantavirinae (Loan-
virus, Mobatvirus, Orthohantavirus, and Thottimvirus), the bat-, mole-, shrew-, and rodent-
borne viruses; Repantavirinae (Reptillovirus), the reptile-borne viruses; Actantavirinae
(Actinovirus), the ray-finned fish-borne viruses; and Agantavirinae (Agnathovirus), the jaw-
less fish-borne viruses [3]. In general, hantaviruses trend towards host specificity (one
virus, one host [4]); however, there have been instances of multiple strains detected in a
single host or the same strain found in multiple different host species [5–8]. To date, only
rodent-borne orthohantaviruses have been associated with human disease.

Zoonotic infection of humans by hantaviruses occurs through the inhalation of aerosols
contaminated by the urine or feces of an infected host [9]. Some New World hantaviruses
cause hantavirus pulmonary syndrome (HPS) or hantavirus cardiopulmonary syndrome
(HCPS), which can lead to fatal cardiac shock in humans [10,11], whereas Old World
hantaviruses cause hemorrhagic fever with renal syndrome (HFRS). In the Americas, HCPS
is characterized as a “flu-like illness” with gastrointestinal symptoms that can range from
mild to severe. Orthohantavirus diseases have a mortality rate ranging from 12% (HFRS) to
40% (HCPS) [12], although many milder cases may go unreported [13]. In contrast, rodent
hosts appear to be relatively unaffected [14], making them both reservoirs and zoonotic
vectors. Establishment of laboratory animal models for hantavirus is challenging [15,16]
due to the risks to personnel, which necessitates expanded investigation of wild hosts
and positions hantaviruses as a model for a One Health (human–animal–environment)
approach towards emerging infectious diseases.

In the early 2000s, an acute outbreak of HCPS on the Azuero Peninsula in the province
of Los Santos in central Panama led to the first documentation of hantavirus in the coun-
try [17,18]. The causal agent, Orthohantavirus chocloense [19], has since been isolated and
sequenced from both humans and its primary wildlife reservoir, Oligoryzomys fulvescens
(=costaricensis) [20,21], the Costa Rican pygmy rice rat [22,23]. Previous ecological stud-
ies of CHOV and Oligoryzomys, along with human epidemiological surveillance, have
characterized a “CHOV-endemic region” in central-western Panama [18,24–27]. Yet until
recent years, the eastern and northern regions of the country had been undersampled and
understudied, so it was unclear whether CHOV was not present there or simply undetected.
Understanding where the host and virus are distributed across the landscape is a necessary
first step in the identification of risk areas for emergence that forms future public health
guidance and future surveillance efforts of both wildlife and people.

Understanding how viral prevalence changes over time is critical and hinges on the
availability of temporally deep wildlife archives. In the case of CHOV, the wild host is
known to experience seasonal population cycles [28] that may also affect the prevalence
and distribution of the disease [29]. In areas unaltered by agriculture, both the spatial
distribution and abundance of O. costaricensis vary seasonally and inter-annually, with
abundance generally lowest in December during the transition from wet to dry season and
populations reestablishing and then increasing in abundance during the dry season [28].
Such demographic fluctuations are less prominent in agriculturally modified areas where
host reproductive output can occur year-round unrestricted by the availability of food [30]
This pattern suggests that agricultural development may have driven CHOV emergence in
Panama [5,22,31]. Increased abundance of O. costaricensis in response to excess agricultural
food resources may increase host density, elevate pathogen prevalence, and ultimately
increase risk of zoonotic spillover and human infection [22,26,28,32,33]. Agricultural
development also reduces biodiversity, which can unintentionally lead to higher prevalence
of a disease in remaining host species [34]. To this end, it is important to understand
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associations between host distribution and abundance, viral prevalence, and environments
across both space and time.

We conducted holistic mammal surveys from 2000 to 2019. We obtained mitochondrial
barcodes and seroprevalence data from the rodent hosts to document the spatial extent of
O. costaricensis and CHOV. We explored host distribution and geographic variation in
Panama and assessed the viral presence across five microhabitat categories (cropland,
pasture, secondary vegetation, shrub, and peridomestic [26]) within five of the seven
ecoregions in Panama to better understand CHOV prevalence across space and time.

2. Materials and Methods
2.1. Study Area and Small Mammal Surveys

A survey of non-volant small mammals in Panama was undertaken from February
2000 to December 2019. Panama supports diverse habitats with an elevational range
from sea level to 3475 m, annual average precipitation varies from 1200 to 7000 mm, and
temperatures span 7–27 ◦C. The total terrestrial area of the country is 74,177 km2 and
approximately 40% of that is agricultural or pastureland [35,36]. Generally, Panama is hot
and humid along the coasts, while the interior experiences greater environmental variation
dependent on elevation [37].

Survey methods followed animal care and use procedures as outlined by the Amer-
ican Society of Mammalogists [38,39]. Specimens were holistically collected [40], mor-
phologically identified to species level, and collaboratively preserved at the Museum of
Southwestern Biology at the University of New Mexico, the Vertebrate Museum of the
University of Panama, or the Zoological Collection of the Gorgas Memorial Institute for
Health Studies to maximize the utility of the collected samples to the extended biodiversity
and public health communities. Standard measurements, sex, reproductive status, and
GPS coordinates associated with the collection locality (WGS 1984) were recorded at the
time of collection for all animals [41]. These data are publicly available through the Arc-
tos database (https://arctosdb.org, accessed on 30 April 2023). To maximize consistency,
one investigator recorded 80% of the measurements over the 19 years of sampling (MA).
We emphasize the value of long-term collection efforts in enabling temporally deep and
geographically broad public health perspectives on emerging zoonotic diseases [42].

2.2. Sequencing and Serology

To verify morphological host species determinations and assess the potential geo-
graphic variation of O. costaricensis within Panama, we sequenced part of the mitochondrial
cytochrome b (cytb, 1140 bp) gene as a molecular barcode for host identification. Represen-
tatives from populations spanning its Panamanian distribution were selected for molecular
analysis. DNA was extracted from the spleen, liver, or kidney from 33 host specimens
(Supplementary Table S1) using a QIAamp DNA Mini Kit (Qiagen Inc., Valencia, CA,
USA) following the manufacturer’s protocols. We included at least two individuals from
each of seven provinces of Panama: Cañazas, Bocas del Toro; Boca del Monte, Chiriquí;
Aguas Claras, Colón; Tamarindo and Zimba, Darién; El Bebedero, Cañas, Barriada 8 de
Noviembre, San José, Pocrí, and Punta Mala, Los Santos; Santa Rosa Abajo and Tocumen,
Panamá; Malena, La Zumbona, and Punta San Lorenzo, Veraguas (see Figure 1).

https://arctosdb.org
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Partial cytb was PCR-amplified for each host using primers MVZ05 (5′- CGAAGCTT-
GATATGAAAAACCATCGTTG—3′ [43]) and MVZ14 (5′—GGTCTTCATCTYHGGYT-
TACAAGA—3′ [44]). PCR reactions were performed using Taq PCR Master Mix (Qiagen 
Inc.) with 1.5 mM MgCl2, 0.2 mM dNTPs, 0.4 ρmol of forward and reverse primers, 2.5 
units of Taq polymerase, and 1 μL template DNA (50 ng/μL) for a final volume of 25 μL 
with the following thermal cycling conditions: 94 °C for 3 min, 30 cycles at 94 °C for 30 s, 
45 °C for 90 s, 72 °C for 90 s, and a final extension for 10 min at 72 °C. Products were 
visualized on 1.5% agarose gel. Amplicons were cleaned using the QIAquick PCR Purifi-
cation Kit (Qiagen). Sequencing reactions were performed using the ABI BigDye Termi-
nator v. 3.1 Cycle Sequencing Kit (Thermo Fisher Scientific, Waltham, MA, USA) with an 
ABI PRISM 3130xl Genetic Analyzer (Life Technologies, Carlsbad, CA, USA). All se-
quences were assembled and aligned using Sequencher v. 4.6 (GeneCodes, Ann Arbor, 
MI, USA).  

We used NCBI’s (National Center for Biotechnology Information) Basic Local Align-
ment Search Tool (BLAST [45]) to identify two additional cytb sequences from O. costari-
censis (EU192164, EU258539), which were available on GenBank. Those 35 sequences were 
combined with cytb sequences from four outgroup species also from the Neotropics, O. 
fulvescens (EU258548), O. vegetus (EU258538), O. delicatus (GU126529), and O. messorius 
(MK128745), which were used to root the phylogeny. Sequences were aligned using MUS-
CLE [46] and maximum likelihood phylogeny was inferred using IQ-TREE, V.2.2.2.6 
(Nguyen et al. 2018) with automated model selection, which was conducted through Mod-
elFinder [47]. Trees were generated with 1000 ultrafast bootstrap alignments repeated a 
maximum of 1000 times, and the consensus species tree was visualized using Fig Tree v 
4.2 (http://tree.bio.ed.ac.uk/software/figtree/) with text adjustments in InkScape (InkScape 
Project 2020; inkscape.org/, accessed on 10 May 2023) (see Figure 2).  

Figure 1. Mammal capture site distribution in Panama, 2000–2019. Total mammal capture sites (red
crosses), Oligoryzomys costaricensis capture sites (blue triangles), sites where CHOV was amplified
in Oligoryzomys costaricensis (black dots), and sites chosen for the identification of Oligoryzomys
costaricensis by cytb (cream circles) are represented.

Partial cytb was PCR-amplified for each host using primers MVZ05 (5′- CGAAGCTTGA
TATGAAAAACCATCGTTG—3′ [43]) and MVZ14 (5′—GGTCTTCATCTYHGGYTTACA
AGA—3′ [44]). PCR reactions were performed using Taq PCR Master Mix (Qiagen Inc.)
with 1.5 mM MgCl2, 0.2 mM dNTPs, 0.4 ρmol of forward and reverse primers, 2.5 units
of Taq polymerase, and 1 µL template DNA (50 ng/µL) for a final volume of 25 µL with
the following thermal cycling conditions: 94 ◦C for 3 min, 30 cycles at 94 ◦C for 30 s, 45 ◦C
for 90 s, 72 ◦C for 90 s, and a final extension for 10 min at 72 ◦C. Products were visual-
ized on 1.5% agarose gel. Amplicons were cleaned using the QIAquick PCR Purification
Kit (Qiagen). Sequencing reactions were performed using the ABI BigDye Terminator
v. 3.1 Cycle Sequencing Kit (Thermo Fisher Scientific, Waltham, MA, USA) with an ABI
PRISM 3130xl Genetic Analyzer (Life Technologies, Carlsbad, CA, USA). All sequences
were assembled and aligned using Sequencher v. 4.6 (GeneCodes, Ann Arbor, MI, USA).

We used NCBI’s (National Center for Biotechnology Information) Basic Local Align-
ment Search Tool (BLAST [45]) to identify two additional cytb sequences from O. costari-
censis (EU192164, EU258539), which were available on GenBank. Those 35 sequences
were combined with cytb sequences from four outgroup species also from the Neotropics,
O. fulvescens (EU258548), O. vegetus (EU258538), O. delicatus (GU126529), and O. messo-
rius (MK128745), which were used to root the phylogeny. Sequences were aligned using
MUSCLE [46] and maximum likelihood phylogeny was inferred using IQ-TREE, V.2.2.2.6
(Nguyen et al. 2018) with automated model selection, which was conducted through Mod-
elFinder [47]. Trees were generated with 1000 ultrafast bootstrap alignments repeated a
maximum of 1000 times, and the consensus species tree was visualized using Fig Tree v 4.2
(http://tree.bio.ed.ac.uk/software/figtree/) with text adjustments in InkScape (InkScape
Project 2020; inkscape.org/, accessed on 10 May 2023) (see Figure 2).

http://tree.bio.ed.ac.uk/software/figtree/
inkscape.org/
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To test for current or prior hantavirus infection in the host, blood samples from 778 
of the 883 captured O. costaricensis were screened for antibodies using an IgG strip im-
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inflating prevalence estimates with potential transovarial transmission [5,49,50], leaving 
626 adults. Positive and negative results were visualized in geographic space using 
ArcGIS v. 10.7 (ESRI 2019), compared against microhabitat (cropland, peridomestic [e.g., 
households, adjacent outbuildings, gardens, livestock enclosures], pasture, shrub, and 
secondary vegetation), and ecoregion (see Figures 3 and 4). Positive cases were summed 
by microhabitat category within each ecoregion [26].  

Figure 2. Maximum likelihood tree of mitochondrial cytochrome b sequences for 34 Panamanian and
1 Costa Rican Oligoryzomys costaricensis and four outgroups.

To test for current or prior hantavirus infection in the host, blood samples from 778 of
the 883 captured O. costaricensis were screened for antibodies using an IgG strip immunoblot
assay [48]. Immature individuals (<10 g) were removed from analysis to avoid inflating
prevalence estimates with potential transovarial transmission [5,49,50], leaving 626 adults.
Positive and negative results were visualized in geographic space using ArcGIS v. 10.7 (ESRI
2019), compared against microhabitat (cropland, peridomestic [e.g., households, adjacent
outbuildings, gardens, livestock enclosures], pasture, shrub, and secondary vegetation),
and ecoregion (see Figures 3 and 4). Positive cases were summed by microhabitat category
within each ecoregion [26].
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grove South America) and six other terrestrial ecoregions: (1) Central American Atlantic 
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mancan Montane Forests; (3) Isthmian-Pacific Moist Forests; (4) Panamanian Dry Forests; 
(5) Choco/Darién Moist Forests; and (6) Eastern Panamanian Montane Forest (see Supple-
mentary Table S2). Within the last 80 years [52], much of the historical Central American 
Atlantic Moist Forests, Isthmian-Pacific Moist Forests, and Panamanian Dry Forest ecore-
gions have been converted to agricultural lands (67% cattle pasture and 5% crops [rice, 
corn, and cane sugar]). To account for sampling biases across ecoregions, the total number 
of captures in each environmental type (microhabitat categories, ecoregion) was scaled by 
the total number captured in that environment. 

2.4. Statistical Analyses 

Figure 4. Oligoryzomys costaricensis capture site distribution by ecoregion and altitude limit in Panama,
2000–2019. Each dot represents a Oligoryzomys costaricensis capture site: IgG positive at <100 masl
(meters above sea level; red dots), IgG negative at <100 masl (green dots), IgG positive at >100 masl
(red dots with white cross), and IgG negative at >100 masl (green dots with white cross). The color
palette shows the nine ecoregions, and the elevation is shown using a gray gradient from 5 to
>800 masl.



Viruses 2023, 15, 1390 7 of 15

2.3. Environmental Associations

About 44% of Panama is wooded, 39% is rural agricultural (crops and pasture, [26,35],
and 2% is multi-use, which includes towns and industrial centers [35,51]. To explore the
association between host, viral presence, and general environmental composition, each
site was classified at two coarse spatial scales: (1) microhabitat, (cropland, pasture, perido-
mestic [e.g., households, adjacent outbuildings, gardens, livestock enclosures], secondary
vegetation, and shrub), and (2) ecoregion [51]. There are 9 distinct ecoregions (7 terrestrial,
2 marine) in Panama. We sampled one coastal ecoregion (Pacific Mangrove South America)
and six other terrestrial ecoregions: (1) Central American Atlantic Moist Forests, which
includes Ngäbe-Buglé, one of Panama’s five ‘comarcas indígenas’ formerly belonging to
the provinces of Bocas del Toro, Chiriquí, and Veraguas; (2) Talamancan Montane Forests;
(3) Isthmian-Pacific Moist Forests; (4) Panamanian Dry Forests; (5) Choco/Darién Moist
Forests; and (6) Eastern Panamanian Montane Forest (see Supplementary Table S2). Within
the last 80 years [52], much of the historical Central American Atlantic Moist Forests,
Isthmian-Pacific Moist Forests, and Panamanian Dry Forest ecoregions have been con-
verted to agricultural lands (67% cattle pasture and 5% crops [rice, corn, and cane sugar]).
To account for sampling biases across ecoregions, the total number of captures in each
environmental type (microhabitat categories, ecoregion) was scaled by the total number
captured in that environment.

2.4. Statistical Analyses

Continuous and categorical variables were analyzed using EPIINFO Version 7.2.4.0
(Centers for Disease Control and Prevention, Atlanta, GA, USA) and assessed using parametric
and nonparametric techniques. A p-value with alpha <0.05 was considered significant.

3. Results
3.1. Biorepository Development & Spatial Distributions of Host & Pathogen

This 20-year surveillance project generated >10,500 specimens representing 110 species
of non-volant small mammals distributed throughout Panama. This biodiversity archive
provided critical biological material for the two recognized hosts of two orthohantaviruses
in Panama, O. costaricensis (CHOV) and Zygodontomys brevicauda, the primary host of
Calabazo virus [17]. The archive also built comprehensive sampling of the associated
mammalian communities for diverse other studies. All specimens were holistically pre-
pared, including heart, lung, kidney, spleen, and blood samples, cryogenically preserved,
and archived at the Gorgas Memorial Institute, the Vertebrate Museum of the University
of Panama, and Museum of Southwestern Biology (MSB) in Albuquerque, New Mexico.
Traditional host voucher specimens were archived in the MSB Division of Mammals. Tis-
sues (heart, liver, kidney, spleen) were cryogenically preserved in nitrogen in the field
and permanently archived in ultracold freezers (−80 ◦C) in the Gorgas Memorial Institute
or in nitrogen vapor tanks (−190 ◦C) in the MSB Division of Genomic Resources. Data
associated with each specimen are openly available through the Arctos museum database
and physical specimens can be loaned from the institutions.

In total, 833 wild O. costaricensis were collected from 2000 to 2019. Of those, 380 specimens
collected between 2000 and 2006 formed the basis for earlier investigations [22,24,26,33].
Here, we add an additional 453 samples to extend the geographic extent and temporal
span of earlier samples to include 2007 to 2019 (see Figure 1). Collection localities were
widespread, reaching from the southwestern border of Panama and Costa Rica to 40 km east
of the Panama Canal. Of the 155 sites sampled for rodents, O. costaricensis were detected
at 71 sites. Occurrences were consistent with the previously described distribution of
O. costaricensis in Panama [53], but we document important new records in Ngäbe-Buglé to
the north and also eastward into Darién (see Supplementary Figure S1), potentially related
to agricultural development and host range expansion. About 93% of O. costaricensis
captures occurred below 100 m elevation, with only six exceptions, each a single capture
event: Veraguas (El Jagua, Cerro Hoya), Coclé (El Cope National Park, San Miguel Centro),
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Panama (Altos de Campana National Park), and Los Santos (Oria) (see Figure 4). The
highest elevational record of O. costaricensis was at 797 m.

Costa Rican pygmy rice rats were frequently detected in anthropogenically trans-
formed rural areas (91%; 65 of 71 sites) or highly-disturbed urban areas (3%; 2 sites), as
opposed to intact natural areas (6%; 4 sites). Among ecoregions (see Figure 1), 42% of
all sites where O. costaricensis were recorded were in the Isthmian-Pacific Moist Forest
(30 of 71 sites) and 34% were in the Panamanian Dry Forest (24 of 71 sites there). There was
only one record each from the Talamancan Montane Forest and Pacific Mangrove South
America ecoregions. Although there were four sampling sites in Choco/Darién, no O.
costaricensis were detected there. Only 21% of all sites in Panama where O. costaricensis
were detected were located in the Central American Atlantic Moist Forest ecoregion (15 of
71 sites), the largest ecoregion in Panama. Two sites (Zimba, Tamarindo) in this ecoregion
located in Darién province had O. costaricensis, representing the most eastern records for
the species. These extend the known distribution of O. costaricensis [53] by ca. 120 km to the
east (see Supplementary Figure S1). Finally, for the total number of individual captures of
O. costaricensis across microhabitat categories, 28% (234) of O. costaricensis captures occurred
in croplands, 26% (217) in peridomestic sites, and 39% (322) in pastures.

3.2. Sequencing and Serology

We generated high-quality sequence data from host tissues cryogenically preserved
in museum collections. Partial cytb sequences from O. costaricensis formed a single mono-
phyletic group with 100% bootstrap support, consistent with morphological species diag-
noses that a single species of pygmy rice rat occurs in Panama (see Figure 2) with generally
minimal substructure. Within the Panamanian clade, however, potential geographic sub-
structure was identified with a well-supported Darien clade. Our species records extend
the documented range of pygmy rice rats east into Darién (see Supplementary Figure S1)
and north into Ngäbe-Buglé. Preliminary mitochondrial sequence data identified pygmy
rice rats from Costa Rica as ancestral to those in Panama. Two major mitochondrial clades
were detected within Panama, one distributed in the eastern provinces of Chiriquí and
Bocas del Toro and another distributed throughout the rest of Panama.

Hantavirus seroprevalence in O. costaricensis was 16% (122/778) overall. After re-
moving immature individuals, adult seroprevalence levels increased to 18% (111/626),
with significant differences between male (22.5% [87/386]; 95% CI = 19.0, 27.0) and female
(10.00% [24/240]; 95% CI = 7.0–15.0%) prevalence across sites (X2 = 15.10; p = 0.0001).
Seroprevalence data were summarized by ecoregion and microhabitat (see Table 1).

Table 1. Total captures of Oligoryzomys costaricensis and percent prevalence of IgG antibody against
N protein by microhabitat * across five ecoregions in Panama. No seropositives were found in
Choco/Darién Moist Forests, Eastern Panamanian Montane Forest, and Talamancan Montane For-
est ecoregions.

Ecoregion Total % (IgG+/n)

Central American Atlantic Moist Forests 8 (8/102)
Peridomestic * 13 (2/15)
Crops 4 (1/26)
Pasture 10 (5/56)
Shrubs 0 (0/2)
Secondary vegetation 0 (0/3)

Isthmian-Pacific Moist Forests 18 (66/374)
Peridomestic 16 (10/63)
Crops 25 (32/126)
Pasture 13 (21/163)
Shrubs 0 (0/1)
Secondary vegetation 14 (3/21)
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Table 1. Cont.

Ecoregion Total % (IgG+/n)

Panamanian Dry Forests 16 (47/293)
Peridomestic 14 (15/106)
Crops 20 (14/71)
Pasture 15 (14/91)
Shrubs 14 (3/22)
Secondary vegetation 33 (1/3)

Pacific Mangrove S. America 13 (1/8)
Peridomestic -
Crops -
Pasture 25 (1/4)
Shrubs 0 (0/3)
Secondary vegetation 0 (0/1)

Total 16 (122/778)
* Disturbed environments are peridomestic, crops, pasture, shrubs, and secondary vegetation [26].

The highest prevalence coincided with the historically recognized endemic area of the
hantavirus disease [24,26,54], but 3 of 15 O. costaricensis individuals sampled outside the
area of endemism tested positive.

4. Discussion

We summarize two decades of hantavirus field studies in Panama that were initiated
following the emergence of CHOV in late 1999. We update the known distributional limits
of O. costaricensis, the primary host of CHOV, and demonstrate limited molecular variation
across Panama, with the exception of Darien specimens, based on a single mitochondrial
DNA barcode. Additional independent nuclear markers and more comprehensive ge-
ographic sampling of the host in Panama, Costa Rica, and Colombia, with a focus on
undisturbed areas, should now be developed. Such molecular investigations could explore
in more detail potential geographic variations in the host, demographic and phylodynamic
history (e.g., expansion and contraction), and biogeographic origins.

We then associated the geographic distribution and relative abundance of O. costaricen-
sis in Panama with the prevalence of CHOV antibody detection across multiple ecoregions.
Human CHOV cases, reported outside of this investigation, primarily occur in agricultural
communities in the central region of Panama (Los Santos, Herrera, Coclé, and Veraguas
provinces [55]) likely due to local abundance of granivorous rodents in response to excess
food availability. A greater abundance of rodents increases the opportunity for contact
with and zoonotic transmission to humans, especially for those working and living close
to agricultural fields. Through our long-term screening efforts, we have extended the
understanding of the Costa Rican pygmy rice rat as the primary wild reservoir of CHOV
in Panama. Consistent with previous investigations, we document a wide geographic
distribution of the host [18,22,24,26,31,53], with pygmy rice rats found in four of seven
terrestrial and coastal ecoregions. Seropositive hosts were identified across four ecoregions
and five distinct microhabitats. All habitats where O. costaricensis were detected have been
modified somewhat by human perturbation (e.g., cropland, pasture, shrub, secondary vege-
tation, and peridomestic). New host records in the Central American Atlantic Moist Forests
(Ngäbe-Buglé) and Eastern Panamanian Montane Forest (Darién) ecoregions suggest that
the host species may have expanded northward and eastward coincident with regional
agricultural expansion [56,57]; however, the species may have simply been undetected
until now.

A pathogen always has a broader spatial distribution than that of the disease itself [58]
and a narrower distribution than that of its hosts. Consistent with this hypothesis, we did
not record CHOV-positive mice throughout the entire geographic range of O. costaricensis.
Instead, we found higher prevalence of CHOV in disturbed rural areas compared to natural
areas, although our sampling was primarily focused on the former. Agricultural proximity
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is associated with sustained, year-round reproduction in Oligoryzomys, presumably because
such areas provide an abundance of supplementary and stable food resources [30]. We
hypothesize that higher host densities translate to higher pathogen densities. Support for
this scenario has been documented for other rodent–hantavirus systems in South America,
where host population density and prevalence of hantavirus infection were significantly
higher in peridomestic habitats [59].

Understanding the natural history of the host, in addition to the distribution of the
pathogen, is essential to refining our understanding of the spatial distribution of the
disease and forecasting how that distribution might change in the future. In the case of
orthohantaviruses in Panama, expanded agricultural development may have facilitated
an expanded geographic distribution of the host (e.g., captures west of the Panama Canal,
where previous surveys from 1970–1977 had not detected the species) and also led to
increased host population sizes through elevated reproductive output. These possibilities
should be further monitored and rigorously tested. Previous longitudinal studies of
small mammals and Sin Nombre orthohantavirus in the southwestern United States [41]
demonstrated a positive relationship between increased resource availability due to natural
environmental change (El Niño Southern Oscillation [ENSO] events), rodent density, and
subsequent changes in hantavirus prevalence. Human-induced habitat changes have the
potential to artificially mirror naturally occurring events, particularly when the reservoir
species involved are well-adapted for rapid response to favorable conditions (e.g., cricetid
rodents). Hosts for zoonotic viruses are more likely to be opportunistic, generalist species
that frequently inhabit anthropogenically disturbed habitats [60]. Wildlife surveillance that
targets agricultural interfaces near human city centers may be most effective at detecting
and subsequently mitigating regional hantavirus outbreaks. Further, forest restoration was
shown to decrease the abundance of hantavirus reservoir rodents, including Oligoryzomys
(from 89% to 43%), thereby decreasing the chance of zoonotic transmission by ~45% [57].
Expanded sampling and regular resurveys across representative environments remains
critical, especially as anthropogenic impact on the environment induces change in natural
communities. Substantial environmental heterogeneity in western Panama is associated
with elevated endemism in rodents, which may also contribute to patterns of zoonotic
transmission, but sampling remains too limited to effectively explore this possibility.

This work was limited by several assumptions that require further exploration. First,
many pathogens, including hantaviruses [61], are capable of infecting multiple host
species [8] but being able to infect a host is not the same as being productively infec-
tious. Second, seroprevalence is not a measure of active infection and, although serological
data for hosts <10 g were excluded from analysis, the possibility and frequency of transovar-
ial transmission of the virus or maternal antibodies remain unknown. That knowledge gap
challenges our ability to extend these test results into environmentally and spatially explicit
models [5,50]. We only generated sequence data for a subset of seropositive hosts and only
from a single mitochondrial marker; therefore, additional genetic structure within the host
may be yet undetected. More comprehensive assessment of host genomic variation might
provide key insight into the host colonization dynamics of newly disturbed habitats in
Panama. Host phylogeography also can provide insights into mechanisms underlying viral
evolution [62]. Given that these specimen collections were accumulated over the last two
decades, insight into temporal aspects of both host neutral and immune-related genes [63]
as well as Orthohantavirus evolution can now be pursued. Full genome sequencing of the
hosts and viruses should be a priority as we aim to understand issues such as mutation
rates, reassortment, and potential interactions with other co-circulating orthohantaviruses
in these mammalian communities.

5. Future Directions

The Gorgas Memorial Institute’s approach to CHOV field studies in Panama empha-
sizes the development of temporally deep and spatially broad biorepositories of both host
and pathogen samples. Now, after 20 years of site-intensive sampling, questions related to
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CHOV evolution and ecology are tractable, reinforcing the value of holistic collecting [40] of
wildlife hosts and their associated parasites, endoparasites, and pathogens. The One Health
approach is predicated on building long-term biorepositories to allow for the replication
and extension of studies and as technology improves, these historic samples allow us to
more fully understand host–pathogen dynamics in addition to the distribution and ecology
of emerging zoonotic diseases [64–66].

Although not explored in detail here, preliminary sampling in undisturbed natural
ecosystems (e.g., Parque Nacional Amistad, Vulcan Baru) has identified other potential
seropositive hosts for orthohantavirus not included here, such as Peromyscus nudipes, Rei-
throdontomys mexicanus, R. sumichrasti, R. creper, Sigmodon hirsutus, Liomys adspersus, and
Transandinomys talamancae, which we are now characterizing. An incomplete understand-
ing of the mammalian communities that may serve as reservoirs for CHOV or other yet
unrecognized orthohantaviruses in Panama may complicate interpretations of the spatial
distribution of the pathogen and risk landscape. Other orthohantaviruses, such as Calabazo
virus that has been found primarily in Z. brevicauda, are circulating in these mammalian
communities but have been only minimally surveyed [17,22]. Survey efforts will require
viral screening of specimens of other wild mammalian hosts that are now available through
these archival collections built over two decades of fieldwork. Understanding potential in-
teractions among the diverse pathogens circulating in these communities may be facilitated
by the application of new metatranscriptomic or metagenomic sequencing methods [67].
More extensive and detailed genetic characterization and analyses of both host and virus
are needed to test these preliminary findings using phylodynamic methods and disease
modeling, among other approaches [68,69]. Such analyses will help to characterize the
virus’ evolution and identify the suite of environmental and ecological conditions suitable
for the host and the subset of conditions in which the virus is found.

While we use gross correlative methods to characterize broad environmental associa-
tions among hosts, pathogens, and their environment, the next step will be to incorporate
these data into an ecological niche modeling framework [70]. Such a framework will
allow us to visualize how the suitability of the landscape for each interacting component
changes across space and time and to identify potentially causal features useful for building
predictive models of emerging disease. Habitat conversion, for example, is now opening
the Darién Gap to expansion by commensal mammalian species likely to cause disease
outbreaks (e.g., grassland species such as Oligoryzomys, livestock-fed Desmodus vampire
bats, and edge-exploiting species such as Didelphis marsupials). Pairing this habitat con-
version with increasing human migration through the Panamanian Isthmus suggests the
importance of wildlife pathogen surveillance to public health throughout the Americas.
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distribution map creates a spatial model generated by circular polygons around capture points,
assuming a dispersion range of 20 km; Table S1 ([43,44,71,72]): List of primers used for amplifications
and sequencing of Choclo orthohantavirus S segment and cytb gene of Oligoryzomys costaricensis. Table
S2: Distribution of ecoregions of Panama according to land use [35], area, and altitude.
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