
OBVIAS: A VISUAL INTERACTIVE EDITOR/ASSEMBLER

ON THE

CORVUS CONCEPT PERSONAL WORKSTATION

by

William Bruce Buzbee

B.S.J., University of Kansas, 1980

Submitted to the Department ot
Computer Science and faculty of the
Graduate School of the University
of Kansas in partial fulfillment
of the requirements for the degree
of Master of Science.

Professor in charge

Committee members

For the Department

Date thesis accepted

Abstract

The primary task of the student in computer science is

to learn. This task, however, is often undermined by

inefficient programming environments - environments in

which the student spends more time locating program errors

than learning important concepts. There are also many

concepts in computer science which are difficult to

visualize and/or understand - such as the inner workings of

a computer which is carrying out operations in the

millionths of a second.

The purpose of this thesis is to describe the

development of OBVIAS: Our Best Visual Interactive

Assembler and Simulator - a software system designed to

provide an efficient assembly language programming/learning

environment. OBVIAS supports the Motorola MC68000 assembly

language, and was developed for and on the Corvus Concept

Personal Workstation. It utilizes the large display of

that machine to present a visual model of the key data

states of the machine and shows these changing as a program

executes.

OBVIAS aids in debugging by providing a character-by-

character syntax checking editor/assembler and a dynamic

visual execution model. OBVIAS performs syntax checking

and incremental assembly by utilizing the power of

concurrent productions, and helps alleviate run-time and

logic errors by simultaneously displaying the student's

i

source code and a dynamic model of the CPU during visual

execution. Further, the learning process is accelerated by

OBVIAS' comprehensive help system and general user-friendly

attitude.

This thesis first presents the initial specifications

for the system and the environment in which it is to be

developed. After finalization of the specifications based

on the existing hardware/software environment and the

course related expectations, the implementation process

itself is described. This includes the implementation

strategy, the principle problems encountered, the solutions

to those problems, the overall program structure and the

data structures used.

The product is a complete software system, which

should have substantial value both in a student learning

and a program development setting.

ii

Dedication

To my parents, who made it all possible.

Acknowledgements

Without question, the success of this project is due

to the years of research and development work by Professor

Earl J. Schweppe. For this, and his guidance and support,

he has my gratitude.

iii

1 •

2.

J.
4.

5.
6.

7.

Table of Contents

Abstract. • • • • • • • • • • • . • i

Dedication and Acknowledgements •
Table of Contents.
Introduction •••••• e e • I I • I I I I I I I • • I e I I • I I I I I I I I I I e I

Initial Specification Phase ••••••••••••••.••••••••.

CS 400 Laboratory .••••••••••••••••••••••••••.•••••.

Final Specifications.
Implementation •• 8 I I 8 e e I e e e e 8 e I e I I I I e I I e 8 e e I e e e I I e I I

Data Structures. e I I I e e e e e I e 8 e • I e e e I e e e e e I e I e I I I e e e I

Conclusions.

References.

.......................................
• e • • e e • e 8 • e e e e e e e e I e I • e I e e I • e e e • e e e • e e e I

Appendix I. ..

iv

ii

iv

1

5
26

37
64

92
100

102

104

1. Introduction

A software development tool can take many forms, but

its primary purpose is constant: to provide an environment

in which a programmer can more efficiently produce

software. Similarly, a software educational tool is

designed to provide an environment in which a student can

more efficiently learn. As this thesis will show, the

goals of software development and educational tools need

not be mutually exclusive. This thesis will be devoted to

tracing the development and implementation of a software

tool which fulfills the goals of both software development

and educational tools, depending on the setting in which it

is used.

In the summer of 1983, the University of

acquired a network of eight Corvus Concept

Workstations, powerful MC68k based computers.

machines were to be used in teaching CS 400,

Kansas

Personal

These

Computer

Systems and Concurrent Processes. The course

the physical organization of computers,

approximately 12 laboratory programming projects

introduces

featuring

designed

to give students practical experience in assembly language

programming, and includes an introduction to operating

systems and concurrent processes. The goal of the work

leading up to this thesis was to produce a software tool

which would provide a more efficient and friendly

programming environment so that the students in the course

1

would spend less time trying to get their programs to work

correctly, and more time learning the concepts behind the

projects.

At the time this project began, the general procedure

for completing

follows:

one of the programming projects was as

1. The

until

student would study the project description

he or she understood what tasks the program

was to perform.

2. The student would prepare an algorithm to solve the

problem.

J. The student would convert the algorithm to MC68k

assembly language.

4. The student would enter his or her program into the

computer using a text editor.

5. The text file produced by the text editor would be

processed by an assembler, which would convert the

assembly language into object code. If, however,

the student made any syntax errors in writing the

assembly language code or in entering it into the

computer, the assembler would abort, listing the

errors.

6. If there were any errors detected during assembly,

the student would have to find them, correct them

using the text editor, and go back to step 5.
7. After successfully completing the assembly process,

2

the student would use a program called the linker

to transform the object module produced by the

assembler into executable code.

8. The student would then run his program and test it

to ensure that it performed according to the

specifications outlined in the project description.

9. If errors were detected during execution of the

program, the student would have to manually trace

the execution of the program on paper, find the

error, correct it using the text editor and restart

at step 5.
In practice, students tended to spend a

disproportionate amount of time trying to correct errors -

often to the exclusion of learning important material,

Ideally, a software tool to remedy this situation should

not only reduce time spent attempting to correct errors to

an absolute minimum, but should also give the student a

better insight into the program development process and the

operation of the computer itself. The remainder of this

thesis will show how this was accomplished.

The structure of this thesis will, in general, mirror

the actual development process of the software tool. In

section 2, the problems to be solved are explained in

detail, along with the first stage solutions to them. Also

included are features that would have been helpful or

desirable, but were not or could not be implemented, This

3

section roughly corresponds to the software specification

stage of program development.

Section 3 is devoted to a description of the actual

computers that the system was developed for and on. This

is particularly important in that the solutions to some of

the problems were possible only by utilizing some of the

more powerful features of this particular machine.

Section 4 details the final design stage of the tool,

showing how the problems determined in section 2 are to be

solved using the hardware described in section 3.
Section 5 concerns actual implementation of the

program, and includes discussions on implementation trade-

offs. This section will also discuss problems encountered

during the implementation phase.

Closely related to section 5, section 6 details the

data structures chosen for the implementation.

Finally, some conclusions to this effort are

presented. A series of actual screen images of the finished

system is included as Appendex I.

The basic texts for the research leading to this

thesis were Aho and Ullman [I], Ghezzi and Jazayeri [G],

and Hopcroft and Ullman [HJ.

4

2T Initial Specification Phase

The initial specification phase of a software system

can take many forms, but it must do one thing: determine

what the program is to accomplish. This turned out to be

one of the more difficult tasks of the development process.

Much of the software that is developed today is an

improvement on or modification of existing software, and

thus its designers have the luxury of comparison during the

initial design phase. For example, if one were designing a

word processor, he or she would first become familiar with

the best existing word processors and note the good and bad

features of them before designing a new word processor. In

this case, however, no existing system fully exploited the

capabilities of the modern microcomputer in an assembly

language programming environment. However, several

existing systems include the foundation for a comprehensive

assembly language programming environment. Two such

systems were developed at the University of Kansas.

In 1973, a system similar to the one described herein,

but very restricted in scope, was implemented on the

Datapoint 2200 computer [DJ. Designed by Dr. Schweppe and

programmed by Paul F. Heubner and Daniel T. Skelton, the

system accepted Datapoint 2200 mnemonics, performing

character-by-character syntax checking and interactive

assembly. Following entry, the code could then be visually

emulated using a CPU model displayed on the CRT. This

5

program was limited in that labeled statements were not

allowed and operands were restricted to literals, Research

on this model was also conducted by Martha Lee [BJ.

A more ambitious model was partially implemented on a

Terak computer at the University of Kansas in 1980, An

expansion of the Datapoint 2200 model, it was designed by

Dr. Schweppe and programmed by Eldon Roehl [K], It too,

featured character-by-character syntax checking and

interactive assembly, this time for for a subset of PDP-11

assembly language.

The limited nature of the two earlier systems was

primarily a result of the state of computer hardware at the

time they were developed. Considering the machines they

were developed on, both systems were exceptional, The new

system, however, would have the benefit of a far more

powerful machine, Its potential, therefore, was

correspondingly high,

To determine what tasks the new system was to perform,

it was first necessary to isolate the problems and

weaknesses in the present system, and determine what could

be done to correct them. Thus arose "SUPERT00L," a set of

specifications for an imaginary software system that would

not only provide the students with all possible help, but

some impossible help as well. This unrealistic

specification would be used as a goal when drafting the

true specifications. The theory was that by designing an

6

imaginary system that could do everything, the designers

would be freed from a conventional mind-set in which new

ground might be overlooked simply because it had never been

done before.

Actually, this design process began more than a decade

ago, and most o~ the initial specifications were worked out

by Dr. Schweppe and several of his graduate students.

These specifications have evolved as new computer

capibilities developed.

The assumptions about the CS 400 laboratory were also

gathered largely from Dr. Schweppe and the various student

assistants who have managed the laboratory since the course

began.

The course is not intended to be a general programming

course, yet much of the time spent by students is devoted

to working on their assembly language programming projects.

The projects are designed to give the students practical

experience with topics in machine organization. In

practice, the students tended to spend a disproportionate

amount of time locating syntax and logic errors in their

projects, rather than concentrating on the purpose behind

the projects. The reason for this is that the assembly

language programming environment in the CS 400 laboratory

is not very friendly - a common fault in most low-level

programming installations. The first assumption, then, is

that the students would be better served by an environment

7

in which their time would be spent more productively.

Ideally, this environment would not only streamline the

programming and debugging process, but would help students

to better understand the entire process and overall machine

organization.

Having determined that the environment needed to be

improved, the next stage was to isolate the critical

activities in which time was not being used efficiently.

This was not difficult. The primary one was project

debugging. In general, two types of errors are common in

student projects - syntax and logic errors. Syntax errors

are detected during the assembly process, and are most

often the result of misspellings or an illegal application

of a particular addressing mode. In the existing

environment, there is some help for syntax errors. The

assembler shows the line on which an error occurs, and

displays a cryptic error message. With logic errors,

however, the existing environment provides very little

help. If a logic error results in a error trap, the system

simply halts, offering absolutely no explanation. Once

students work out their syntax errors with what little help

the assembler gives, they are completely on their own. The

only recourse available to them in locating logic or run

time errors is to hand trace the execution of their code,

clearly a time consuming and not particularly productive

process.

8

The next most damaging activity was the process of

learning the physical structure of the processor and

memory. For many students, CS 400 provides the first

glimpse of what is actually inside a computer, and many

students struggle with the concepts throughout the course.

This lack of understanding shows up in the form of

programming logic errors, as well as incorrect answers on

the examinations.

Finally, many students still have trouble grasping

what is really happening during the program development

process, especially when confronted with the detailed level

at which one must work in assembly language. Once again,

these misconceptions manifest themselves as programming

errors.

In brief, the new system would have to streamline the

programming process,

providing assistance

find and correct them.

either eliminating errors entirely or

to the students so that they could

Further, it should aid in teaching

several of the most important topics in the course. Those

the topics should include machine organization and

underlying processes involved in the program entry to

program execution cycle.

The last assumption is perhaps the most important

that a picture is indeed worth a thousand words. In the

normal programming environment a student sees the input,

the program and the output only in a static form. On the

9

other hand, a student who is shown a dynamic visual model

or demonstration of a process or concept during its

execution will learn more quickly and understand more fully

than a student who simply reads about it in a book or

programs in a conventional environment.

Based on these assumptions,

specifications for SUPERT00L were

specifications follow:

the

drafted.

initial

Those

1. Because one of the prime functions of CS 400 is to

teach machine architecture utilizing the Motorola

MC68000, SUPERT00L should provide a visual model

of the microprocessor, including a text tutorial

and quizzes.

2. SUPERT00L should provide a complete programming

environment for the MC68k assembly language,

including an editor, assembler, linker, relocating

loader and visual execution model.

3. All modules within SUPERT00L should be fully

compatible with existing programs in the Corvus

environment. For example, a text file produced by

EdWord, Corvus' text editor, should be permitted

to enter the SUPERT00L environment. Likewise, an

object module created by SUPERT0OL should be of

the same format as the object modules required by

the Corvus supplied linker.

10

4. Because its primary function is to teach,

visually SUPERTOOL should be capable of

demonstrating all relevant tasks during the

program entry to program execution phase.

a. During program entry, SUPERTOOL should

actually assemble the program as it is

entered, visually displaying the incremental

assembly of the machine code as new

information becomes available.

b. If requested, SUPERTOOL should give a visual

demonstration of symbol table search/entry

operations using a user-defined

(hash, linear, tree, etc.).

algorithm

c. SUPERTOOL should be capable of demonstrating

the actual execution of the code line

immediately after it is entered, if possible.

d. During the linking process, SUPERTOOL should

visually demonstrate the searching of object

code libraries and the definition of external

references.

e. During the relocation/loading process,

SUPERTOOL should visually demonstrate the

relocation of the affected code lines.

f. SUPERTOOL should provide a comprehensive

visual model of the actual execution of the

program.

11

g. All of the above visual specifications should

be capable of being turned on or off, so that

the user can focus on the topic currently

being studied.

5. All manuals for SUPERTOOL should be built into the

system. Further, these manuals should be

retrievable in two forms.

a. At any time, the user should be able to

retrieve help on a specific subject by giving

the system the name of the target subject.

b. At any time, the user should be able to make a

general request for help, in which case

SUPERTOOL will determine what information is

most likely needed based on what the user is

currently doing.

6. Detailed prompting must exist throughout the

system. At all times, all possible input choices

should be displayed.

7. In keeping with SUPERTOOL's role as a teaching

device, it must provide a tutorial on the syntax of

MC68k assembly language.

8. SUPERTOOL must provide a tutorial on the function

of all MC68k operation codes and pseudo operations.

9. SUPERTOOL must provide a tutorial on the function

of all MC68k addressing modes.

12

10. SUPERTOOL must provide a tutorial on which

addressing modes are legal with which opcodes.

11. SUPERTOOL should include a comprehensive visual

tutorial on the development and efficiency of

algorithms.

12. No programming errors of any kind are to be

permitted.

a. Syntax errors are simply not to be allowed

during the entry/assembly phase.

b. Logic errors (code which deviates from the

algorithm produced by the algorithm tutorial)

are to be detected and the user warned.

c. Run time errors are to be detected and the

user warned.

13. The editor shall format the source code as it is

entered,

14. Because different users will have different levels

of expertise, SUPERTOOL must be capable of

configuring itself according the needs of each

user. A beginner will get all the prompts, but an

expert user will get fewer.

15. SUPERTOOL must be extremely easy to use and

understand. It should not execute in "teletype"

mode, but rather should present the user with an

extremely visual interactive environment.

13

Clearly, the specifications for SUPERTOOL are

ambitious, but they turned out to be extremely valuable.

The final system achieved far more than was initially

thought possible, largely because of the fact that many of

SUPERTOOL's features were included in the actual initial

design even though it was believed that they were too

difficult to implement. Some of the nicest features of the

completed system were not expected to survive the

implementation phase. Had a truly "realistic" initial

system been designed, those features probably would have

been dropped at the start.

The next step in the initial design phase was to

modify the SUPERTOOL specifications into a more realistic,

but still ambitious, package. This modification would

result in the specifications for the finished system,

OBVIAS - Our Best Visual Interactive Assembler Simulator.

The general strategy for this modification was to evaluate

each specification for SUPERTOOL using the following

questions:

1. Is it possible, given current software and hardware

technology?

2. If the goal is not completely possible, how closely

can a set of new specifications come to achieving

it?

J. Is the specification within the scope of this

project?

14

4. Does the benefit of implementing the specification

justify its cost in terms of programmer time and

effort?

By subjecting each of SUPERTOOL's specifications to

this test, dropping and modifying specifications where

necessary, the initial set of specifications for OBVIAS

was drafted.

Specification 1, that the system should provide a

complete visual model of the Motorola MC68000

microprocessor, passed the test on all counts, OBVIAS is

based on such a visual model, The sub specifications, that

the system should include text tutorial and quizzes,

however, was determined not to be within the scope of this

project. The function of the tutorial and quizzes,

however, were not to be overlooked. Text explaining the

MC68000 could be easily integrated into the comprehensive

help system outlined in specification 5. A quizzing unit

would probably be better implemented as a stand-alone

package, A quizzing tutorial would not provide the desired

continuity within the system, which was envisioned as a

highly interactive visual environment in which the user is

in control. In a quizzing tutorial, the machine is

generally in control - asking questions and demanding

answers.

15

Specification 2, that the system should provide a

complete programming environment, survived in spirit, but

was somewhat scaled down. First, it was decided that a

relocating loader was unnecessary for two reasons. Most

student projects naturally fall into the memory independent

code category. Thus, a demonstration of relocation would

occur very infrequently. Secondly the early conception of

the system required that code be assembled directly into

memory. Clearly, the editor and assembler were absolutely

necessary, but, in line with specification 12b., that code

be assembled and syntax checked during entry, the two could

be combined into a single unit.

The final requirement, that the system include a

linker, posed the most difficult decision. It would be

beneficial in a programming environment for a user to be

able to call upon libraries of object code. In the final

decision, however, it was determined that it was not within

the scope of the project. One of the primary benefits of

the execution unit (as it was envisioned), was that the

user could simultaneously see the text of his source code

and its execution. With standard object files, the text

would not be present. It was decided to simply "hard code"

the most often used library routines into the system. In

that way, their format could be readily controlled.

Specification J, that the system should be fully

compatible with existing Corvus software, was reduced in

16

some places, and expanded in others. It was decided that

the new system need not actually produce object or load

modules because they were unnecessary for it to function.

The system, however, would be compatible in that its

assembler would conform to the syntax of Corvus' assembler

and the code text files would be interchangeable between

OBVIAS' editor/assembler and Corvus' word processor. Thus,

a user could develop a program using OBVIAS, save the code

text file and then run it through the Corvus assembler,

linker and loader if he or she wished it to function

outside the OBVIAS environment. Further, if a user wished

to bypass OBVIAS' syntax checking editor/assembler, he or

she could use any standard ASCII text editor and then load

it into the OBVIAS environment.

Compatibility, when speaking in terms of a software

environment, was determined to be very important. For this

reason, it was decided that the system should "appear" to

the user as an extension of the Corvus supplied software,

In other words, screen formats and command syntax would be

patterned after Corvus' example whenever possible, In

doing this, it was hoped that the user would more easily

become accustomed to the OBVIAS environment.

Specification 4, that the system should provide a

visual demonstration of all important tasks during the

program development process,

requirements. Nevertheless,

17

is one of the more

it is one of

ambitious

the most

important.

the students

This system was designed with the theory that

would learn more in less time if they were

given a visual demonstration of the topic. Thus, visual

demonstrations were given high priority.

Specification 4a, that the system should provide a

visual demonstration of the incremental assembly process,

was adopted intact.

Specification 4b, that the system should provide a

visual demonstration of symbol table search/entry, was

dropped. This feature was possible and helpful, but

determined not to be within the scope of this project.

Such a teaching device would be better accomplished as a

stand-alone unit.

Specification 4c, that the system should be capable of

demonstrating the actual execution of the code line

immediately after it is entered, was adopted intact. This

feature was believed to be particularly useful for students

attempting to learn the function of the MC68k instructions.

Specification 4d, that the system should visually

demonstrate the linking process, was dropped because OBVIAS

was not to include a linker.

Specification 4e, that the system should

demonstrate the relocation/loading process,

dropped because OBVIAS was not to include a

loader.

visually

was also

relocating

Specification 4f, that the system should provide a

18

comprehensive visual model of the actual execution of the

program, was adopted intact. This would become one of the

key features of the system.

Specification 4g, that all of the visual

demonstrations be switchable, was conditionally adopted.

The reason for switching off a visual display is generally

that doing so will provide an improvement in execution

speed or available display space. It was decided that if

such a trade-off existed, a switch would be provided. But

if nothing were to be gained by switching off a particular

visual model, it should always be kept on.

Specifications 5, 5a and 5b were adopted intact.

Users, particularly novice users, spend a considerable

amount of time searching through users' manuals. By

building the manuals into the environment and essentially

"letting the computer turn the pages," the user would

more time to devote to the problem at hand.

have

This

specification was also somewhat broadened to include error

messages. Much of the students' criticisms of the CS 400

programming process revolved around overly cryptic system

error messages. It was decided to treat error messages in

much the same manner as requests to the system for help.

Instead of receiving a cryptic error message noting a

problem, an 0BVIAS user would, if he or she requested it,

receive as full an explanation of the problem as possible,

as well as suggestions for correction and recovery.

19

Specification 6, that detailed prompting should exist

throughout the system, was adopted intact. It was

determined, however, that the prompting should, whenever

possible, be integrated into the expanded manual help

features outlined in specification 5.
Specification 7, that the system should provide a

tutorial on the syntax of MC68k assembly language was

implicitly adopted in that the combination of the syntax

checking editor/assembler, the help/prompt system, and the

immediate code execution feature would provide an

equivalent function. Similarly, specifications 8, 9 and 10

were implicitly adopted via the same reasoning.

Specification 11, that the system should provide a

comprehensive visual tutorial on the development and

efficiency of algorithms, was dropped. Such a system is

clearly beyond the scope of this project.

Specification 12, that the system should permit no

programming errors of any kind, was impossible to fully

adopt. It was decided, though, to attempt to come as close

as possible to this specification. Specification 12a, that

the system not permit syntax errors during the

entry/assemble phase, was fully adopted. Specification 12b

was dropped not only because the algorithm module was not

to be included,

this project.

but because it too is beyond the scope of

Although the system itself would not detect

logic errors, it was decided to emphasize the execution

20

module

with

of the system so that the user would

an extremely friendly and helpful

assist him or her in finding logic errors.

be presented

environment to

Finally, and in conjunction with the modified

specification 12b, the run time error detection and

recovery specification was fully adopted. It was decided

that any run time error that could be detected, should be

detected and fully explained.

Specification 13, that the editor should format the

source code as it is entered, was fully adopted. Not only

should this make the students' code more visually

appealing, but it is intended to encourage them to always

produce clean, well documented code on whatever future

system they use.

Specification 14, that the system should be

configurable, was conditionally adopted. It was determined

that although it is possible to force the system to

configure itself in response to assumptions about the

current user, it would not be worth the effort. Also, in

most cases, a user is more knowledgeable about his or her

level of proficiency than the system could be.

The final specification, that the system should be

friendly and easy to use, was whole heartedly adopted,

Ease of use was to become a prime consideration throughout

the development process.

21

To summarize, the initial design specifications for

the final system, OBVIAS, follow:

1. OBVIAS shall provide a complete visual model of

the Motorola MC68000 microprocessor.

2. OBVIAS shall provide a complete MC68k assembly

language programming environment.

a. The functions of a text editor and assembler

will be

Character

incremental

combined into a single unit.

by character syntax checking and

assembly will be performed during

program entry.

b. A visual execution module will be included to

demonstrate the execution of a user entered

program. This module will combine the visual

model of the Motorola MC68000 microprocessor

with the user's source code text in order to

trace execution. As each line in the user's

program is executed, it will be marked on the

display, and the MC68000 visual model will be

updated to show the execution results.

3. Whenever possible, OBVIAS shall attempt to be

consistent with existing Corvus software.

a. Source code text files used by the

editor/assembler shall be compatible with text

files produced by Corvus' word processor,

Edword.

22

b. The command structure, screen formats and

operation protocols used by OBVIAS shall be as

consistent as possible with those used by

Corvus software.

4. OBVIAS shall provide detailed visual demonstrations

of selected operations in the code entry to program

execution process.

a. A visual demonstration of the incremental

assembly shall be provided.

b, The option to visually execute a code line

immediately following entry shall be provided.

c. A comprehensive visual execution model shall

be provided.

d, If the inclusion of any visual model presents

a significant performance decline, the user

will be given the option of bypassing it.

5, A comprehensive system to aid the user in utilizing

OBVIAS shall be integrated into each applicable

module,

a. The OBVIAS

programming

system.

user's manual and

manual shall be built

a MC68k-

into the

b. At any time, a user may request information on

a specific topic by informing OBVIAS of the

target subject.

c. At any time, a user may request general help.

23

d.

e.

OBVIAS will then select what information is

most likely needed based on what the user

doing.

is

At all times,

prompt informing

selections

permissible.

or

the user will be presented a

him or her what command

code entry choices are

The error message system shall be functionally

handled as part of the overall help system.

When a user's action generates a system error,

the user will be given the option of viewing a

detailed description of that particular error,

This description shall include as much

information as can be determined by the system

as to what caused the error, along with a

suggested strategy for correcting that error.

6. Character by character syntax checking shall be

performed as code is entered. The problem of

forward referencing is to by handled by immediately

informing the user that he or she is using a

currently undefined symbol.

7. Extensive run time checking shall be performed by

the visual execution module, Any run time error

than can be checked for, will be.

8. The editor/assembler will format the source code as

it is being entered.

24

9. The total OBVIAS system will be user-configurable.

This configuration will be permitted during

operation, but a provision for a startup file

default configuration shall be included.

10. All efforts shall be made to ensure that OBVIAS is

friendly and easy to use.

25

2..!.. CS 400 Laboratory

Having established the initial specifications for

OBVIAS, the next phase in the development process was to

review the existing environment in which it is to be

developed: the CS 400 Laboratory.

Briefly, the laboratory consists of eight Corvus

Concept Personal Workstation computers, a 45-megabyte

Winchester hard disk drive with a built-in network file

server, a network print server, an Okidata 92 Microline

dot-matrix printer, a single 8" floppy disk drive, and the

Bank, a 200-megabyte cartridge tape storage device, All of

these devices are interconnected via Omninet, Corvus' local

area network.

For OBVIAS, the most important units in the lab would

be the Concept personal workstations. Although designed

for network use, the Concepts are powerful computers in

themselves, composed of a large display, base unit and

detachable keyboard,

The display is the most obvious feature of the

Concept, and perhaps one of the most innovative. Measuring

15 inches, the display is fully bit-mapped and occupies 55k
of main memory. Not only can the display tilt and rotate

on the base unit, but it is made to function in two modes:

landscape (hori~ontal), and portrait (vertical). In

landscape mode, the display features a resolution of 720 X

560 pixels, which allows for a character resolution of 120

26

characters by 56 lines using a standard 10 X 6 pixel

character set. In portrait mode, 72 lines of 90 characters

are displayable. The large display area of the Concept,

more than three times that of most micro computers, would

become a pivotal factor in the success of OBVIAS.

One of the nicest features of the bit-mapped display

was the ease of defining and using alternate character

sets. The resolution of a character set can range from 1

X 1 to 16 X 16.

The other half of the Concept's user interface is the

detachable keyboard. Patterned after the IBM Selectric

keyboard, the Concept keyboard features a 15-key numeric

keypad, 10 user-programmable function keys along the top

edge, 4 cursor control keys and 62 traditional keys. In

addition, every key is "soft," and may be changed simply by

loading an alternate keyboard character translation table.

The base unit of the Concept contains a power supply,

cooling fan and a tray containing a Motorola MC68000

microprocessor, either 25~ or 512k bytes of main memory,

four Apple compatible card slots, a speaker, clock battery,

two serial ports and an Omninet tap connection.

The MC68k processor runs at 8 MHZ and features 18 J2-

bit registers, a 24-line address bus, a 16-bit data bus and

one of the most powerful and versatile instruction sets

available for microcomputers. Operations are permitted on

data objects of 8, 16 or 32 bits.

27

Concepts can have either 256 or 512 Kbytes of main

memory, but all of the CS 400 machines have 512 Kbytes.

The Concepts communicate with the outside world via

the Omninet connection and the two serial ports.

Additionally, the card slots can be used for local hard or

floppy disk drive operations, as well as custom hardware

applications.

The local area network that ties the laboratory

together, Omninet, is a detection and retry network running

on a twisted pair at 1 MHZ. The actual data transfer rate,

however, is estimated to be about 60 percent of the clock

speed because of packet transmission overhead. From the

point of view of the Concepts, Omninet functions as a file

and print server. Each Concept is responsible for its own

processing, and Omninet is used as the viaduct for

transferring data to and from the hard disk, and to the

print server (via pipes located on the hard disk). Up to

64 network devices may tap into Omninet, and various device

types are supported, including Radio Shack, IBM, and DEC

computers.

To summarize, three important features of the Corvus

Concept stand out: the large display, the MC68k processor

and Omninet. These features are fully exploited by the

Corvus Concept Operating System, CCOS.

CCOS is a function key/windowed operating system

emphasizing user-friendliness. When operating at the

28

topmost system, or operating system dispatcher level, four

windows are displayed: the status window, containing the

user's id, time and date; the large user window, in which

the system and applications will do most of their

communication to the user; the command window, a thin box

near the bottom of the screen in which the user will type

commands to the system; and finally the function key

window, in which labeled pseudo-function keys are

displayed, corresponding to the 10 user keyboard function

keys. To perform most functions, a user may simply press a

function key corresponding to the desired task. Because of

the labeling of the displayed pseudo-keys, the keyboard

overlays used by many systems are unnecessary.

Up to 17 user windows may be defined in addition to

the four system windows.

character set, allowing

multiple character sets.

Each window may have its own

the simultaneous display of

Only one window may be "active"

at any time, but a user or application program can quickly

switch between windows. Additionally, the windows may

overlap.

The file system of CCOS is basically two-level: volume

and file. A volume logically corresponds to a the

structure of floppy disks on most microcomputer systems.

It contains a directory, and the actual files. Further,

files may be one of two types: text or data. As

implemented, a volume is actually a contiguous chunk of the

29

hard disk or other mass storage medium, or an entire floppy

disk. File allocation is also contiguous. Each user may

have access to several volumes. Typically, a user will

have read-only access to one or two system volumes, and

read-write access to one or more personal volumes. Volume

size is not restricted, but no more than 77 files may

appear in any one volume. Other than access permissions to

volumes, there is little protection. Users must enter a

password to log on to the system, but after that no

passwords are used.

to a volume, he

contained within it.

If a user has read-write permissions

may do anything he wants to any file

It is possible to disallow a user any

access to a volume by using the no-access permission.

Just as CCOS exploits the large display and power of

the MC68k, so do the system programs supplied with it. The

can display a large amount of

as can the spreadsheet program,

all of the Corvus supplied

function key/user friendly

word processor, EdWord,

information on the screen,

LogiCalc. Additionally,

programs conform to the

environment supplied by CCOS.

Pascal, Fortran, C and MC68k assembly language are

available to the programmer, but Pascal is easiest to use.

This is true for several reasons, irrespective of arguments

about the inherent fitness or unfitness of Pascal as a

development language. First, CCOS itself was written in

Pascal, thus, it alone has the easiest operating system

30

interface capabilities. Second, virtually all of the

interface documentation use Pascal examples. Indeed, what

source code exists for informational purposes is almost

exclusively written in Pascal. Most importantly are the

supplied system libraries. Although similar libraries

exist for Fortran and C, the Pascal library is the most

complete, and was used extensively during the

implementation of OBVIAS.

The primary Pascal system library, CCLIB, is composed

of 13 units, each containing one or more related functions

or procedures. A brief description of those units follows:

1. CCDEFN These are the global system definitions

that are used by the other units. Included are

often-used data types and constants.

2. CCHEXOUT: This unit contains routines to convert

and display number in hexadecimal format.

3, CCLNGINT This unit contains routines to perform

operations using the longword (32-bit) data type.

4. CCCLKIO Also known as the clock control unit,

CCCLKIO provides routines to set, read and

manipulate the system clock.

5. CCCRTIO One of the most often used units, it

provides CRT functions such as clearing the screen,

reversing the video display and positioning the

cursor.

31

6. CCDCPIO : This unit handles the manipulation of the

serial ports.

7. CCDIRIO The directory unit, this provides

routines to read and write volume directories.

8. CCGRFIO : Also known as the graphics unit, CCGRFIO

contains routines to perform basic graphic

manipulations such as setting points and drawing

lines.

9. CCLBLIO : This unit controls the function keys. It

allows the keys to be defined, displayed and

manipulated.

10. CCOMNIO : The Omninet unit, this contains routines

to allow a program to directly send and receive

messages via Omninet.

11. CCWNDIO: Provides the ability to create and select

display windows.

12. TURTLEGRAPHICS As the name implies, this unit

supplies the programmer with basic turtle graphic

capabilities.

13. MISCELLANEOUS This unit contains routines to

perform low-level bit manipulation, check whether a

key has been pressed but not read, and retrieve

selected system parameters.

Another system library, C2LIB, is also provided. A

brief description of its three units follows:

32

1. CCDRVIO : This unit provides access to the network

disk server, allowing a program to make direct

requests of the hard disk.

2. CCPIPES Because of the access/no access

protection schemes, this unit is particularly

important. It provides a pipe mechanism, similar

to the UNIX pipe. It is primarily used for print

spooling.

3. CCSEMA4 : This unit enables a program to set up and

test network-wide semiphores to protect critical

regions in programs which might be running on

several network stations simultaneously.

In addition to the Pascal libraries, the Pascal

programming environment on the Concept is comprised of a

Pascal compiler, a code generator, an object module library

utility, a linker and an extremely low-level debugging

program. However, the debugger is so limited that is

essentially useless to the Pascal programmer.

The Pascal compiler was developed by Silicon Valley

Software, and is their implementation of the Pascal

language as defined in "Pascal News" [J]. SYS Pascal

supports independent compilation units, using the UCSD

notation. Further, it allows a programmer to define

segments, which will be used as overlays by the operating

system at runtime. The rule for overlayed execution is

that unless a segment is locked into memory, it remains in

33

memory

or code

only so long as either code within it is executing,

from a procedure or function within it is

executing. The maximum size of an overlay is 32k bytes.

This limitation is imposed in order to take advantage of

the MC68k 16-bit relative addressing mode.

The Corvus supplied MC68k assembly language programming

environment, which OBVIAS will attempt to improve upon,

consists of a MC68k assembler, also developed by SVS, the

linker, the object code librarian and MACSBUG [L], a rom-

based debugger.

In practice, MACSBUG is never used by students, In

addition to requiring communication via a separate

terminal, its operating instructions were deemed too

complex and confusing to burden the students with. In the

first year of operation, MACSBUG was run less than four

times - largely to make sure it functioned.

In addition to the Corvus-supplied environment,

several demonstration and machine models were developed by

students working under Dr. Schweppe in conjunction with the

OBVIAS system. The most impressive, AMODE, was programmed

by Alice Forester, an undergraduate, and Eric Harkness a

graduate student. It provided a two-part tutorial on the

MC68k addressing modes. The first part features a "fun"

cartoon-style setting in which a character named Terry

tries to locate a friend and illustrates indirect

addressing. Next, the scene changes to "Terry and the

34

Pirates," as Terry sails to pirate island to follow

instructions on a treasure map. The second segment of the

tutorial is done in a more serious tone. It features a

function key based tutorial in which students can select

the individual addressing mode they wish to study. In

addition to displaying dynamic examples on a MC68000

processor mockup, it asks questions and responds to student

replies.

Also available are two prototype machine models: ZERO,

a generic zero-address machine model, and THREE, a generic

three-address machine model. In both models, students may

select a brief tutorial, or may "program the machine" using

a simplified instruction set. After programming the

models, the programs could be visually executed slow, fast

or single stepped. ZERO was programmed by undergraduate

Jerre Bowen, and THREE was programmed by Allison Mills, a

graduate student. Both students are developing second

versions of their programs.

The last program developed at KU being actively used

in CS 400 is SCREEN DEMON, a script-driven display and

graphics management program by Hal Preston.

In addition to the programs already in use by students

in CS 400, several additional models and tutorials are

planned. To complete the battery of machine models, one

and two-address machine models are planned, as well as a

memory management model, a symbol table insertion/lookup

35

model, a Fortran syntax checker, a Pascal syntax checker

and a data flow machine model. These tutorials and models,

together with OBVIAS, will comprise the total CS 400

programming/learning environment.

Although related to the problem at hand only in an

environmental sense, the CS 400 lab also features ISYS, an

integrated word processor, spreadsheet program and graphic

system; PAINT, a mouse operated graphic drawing system;

PWX, a screen printing program developed by the author;

TERMINAL, a terminal program; DISASM, an object code module

disassembly program, developed by KU student Dennis Conley;

CORE, a Pascal object code library implementing the CORE

graphics standard, by KU graduate student Jim Buzbee;

NEWQIX, a program which generates an infinite number of

continuously changing and hypnotically beautiful graphic

patterns, done by the author; and a host of system and

graphic demonstration programs and utilities.

For further information on the Corvus system, consult

Corvus [A], [E] and [F]. Documentation on AMODE, THREE,

ZERO, NEWQIX, CORE, DISASM, NEWQIX and SCREEN DEMON is

available through the Department of Computer Science at the

University of Kansas.

36

4. Final Specifications

The next step in the development process was to draft

the final specifications by mapping the initial

specifications onto the hardware/software environment

outlined in the previous section. This mapping, and the

subsequent implementation of OBVIAS, was not a classic top-

down process, but evolved into a modified bottom-up to top-

down to bottom-up process.

The initial bottom-up phase involved immediately

considering the actual implementation of the display

format. This was deemed necessary because of the extensive

visual requirements. Before proceeding further, it was

necessary to verify that those requirements could be met

using the Concept display. In fact, a display mockup was

coded at this point - well before the bulk of the system

specifications were even considered.

In considering the visual requirements of the system,

it was necessary to isolate the displayable objects and

determine how much display space they would require. Then,

a prototype screen format was developed. This was an

extremely valuable process, which resulted not only in a

clean, professional display, but some important added

features not considered earlier. A summary of the

displayable objects and their individual requirements

follow:

37

1. Source code text window: This would be the screen

area in which the user would type in his code.

Additionally, it would be used during the execution

phase, when the code lines would be highlighted

immediately preceding their execution. This window

must include enough space for code and comments,

line numbers, the machine code produced during the

assembly process, and the relative address in which

the machine code would lie. Further, it was

decided to attempt to make this window look as much

like a standard assembly listing as possible. An

absolute minimum of 80 characters per line was

determined.

2. MC68000 Microprocessor Model: The heart of the

execution module, this area must contain the values

of the eight data registers, the eight address

registers, the status register and the user stack.

a. Data Registers : Because the values in the 32-
bit data registers are used in different ways

depending on the program, it was decided to

allow them to be displayed individually in any

of four base combinations:

hexadecimal/decimal, hexadecimal/octal,

hexadecimal/ASCII and binary. Clearly, if a

standard character set were used, allowing the

display in binary would pose a problem. A

38

b.

binary display would require a line at least

36 characters long. By using a smaller

character set for the binary display, the

width requirements of this field could be

reduced to an acceptable level. A 4 X 10

character set would allow readable O's and

l's, and satisfy the width requirement of this

field 24 standard characters wide. The other

three combinations would easily fit into such

a field.

Address Registers

would follow the

registers.

The address registers

same format as the data

c. Status Register

ASM68k programming,

For the vast majority of

the relevant bits in the

status register are the carry, sign, zero,

extend and the overflow. They could be

displayed on a single line.

d. Stack: Although the stack pointer, A7, would

be displayed in the address registers region,

it was decided that the stack should be

dynamically displayed in the same manner in

which it is logically thought of by

programmers. Thus, it would have a variable

space requirement. The more room

the more stack elements that

39

available,

could be

displayed.

e. Memory Memory, or rather a user-defined

window into memory, would also have a variable

space requirement. The more room available,

the more user memory could be displayed.

3. Help Manual: Some portion of the screen must be

available to display the long help messages, or

pages from the manual, as well as the extended

error messages.

continual use.

This region, however, is not in

For this reason it was decided to

have the source code text window double as the help

display region. This could be achieved by swapping

out the source code when necessary, and restoring

it after the help or error message had been read.

4. Command Entry/System Message : Some area of the

screen would have to function as the command entry

region. Although the function keys would be used

for most user commands, some commands might require

numeric or alpha entry. It was decided to simply

use the existing CCOS system command window for

this function, as well as for displaying short

system messages.

5. User Program I/0 Because the programs written by

the users would often contain screen output, some

region would have to be set aside for this. Using

the same reasoning as doubling the source code and

40

help regions, it was decided to devote the entire

screen to user program I/0. Of course, this would

be accomplished by swapping out the OBVIAS display

before a user program performs screen I/0, and

restoring it afterwards. This would have the added

benefit of enabling a user to see exactly what his

or her program output would look like if the

program were not running in the OBVIAS environment.

After experimenting with different display

configurations, it was decided to use the Concept in the

horizontal, or landscape configuration, with the user

source code window on the left and the CPU display on the

right. Additionally, there was enough room left over in

the CPU display to add another feature: addressing mode

display. Two small windows, one for the source and one for

the destination addressing modes, would be used to display

the addressing modes used by the code lines.

Figure 4.1, on the following page, is an actual screen

printout of the final display format.

41

~r_rn:: u l .2 lk.ar-1 SHCR ~t.at inn1 8 \J~ l t JA.a I /IJAA lnndMJ .JUNt lL •~• 161:U

Adr Kac:hine Coda Line LAbal Op Coda/()pa,-Ands Co.-..nts O.h Ra9isters
081
011
021
031
041
OSa
06,

1-tj Oi'a
Address R~i•t•r•

(D A&a
All

+=" A2a . Ala A4a . ASa
A6a
Ai'a

0
b1 < +=" H

N :r:>
C/l

... I St,Atus R~istar

I)CI Ha Za Ya Ca

p,
(Jl
Id
t-'

D ,-tln•tim I
P>

'< StAdc User
H.»
0
ti s
P>
c-t

n r2 n r. rs f6 n re f"9 ne ----- -----

Next, the other half of the user interface had to be

considered. As previously decided, OBVIAS would be a

function key based system, and the design proceeded with

this in mind. This decision strongly influenced the

remainder of the design, as well as the implementation.

Because the function key approach is a variation on a menu-

driven system, it lends itself naturally to a tree-like

command structure. Once this command, or function key,

tree was developed, it became obvious that the module

design would match the command tree almost exactly. In

fact, not only did the command tree become a general

blueprint for the implementation of OBVIAS at the module

level, but once expanded, it became a visual version of the

final OBVIAS specifications.

The development of the command tree marked a return to

the classic top-down strategy. Logically, the two most

important tasks OBVIAS had to perform were edit/assemble,

and execute. Thus, the topmost level in the command tree

would have to include function keys to enter edit/assemble

and execute.

The edit/assemble function key level was broken down

in a similar manner. The important functions were

determined and assigned function keys of their own. Such a

function key would either be a terminal if it did not

require a function key level of its own, or non-terminal if

it did. Before proceeding, it is necessary to note that at

43

this time it was decided to limit the text editing commands

to the insertion and deletion of lines. This was done in

an effort to reduce the growing complexity of the system.

Edit/assemble, henceforth referred to as the edit level,

was broken down into the following functions: insert line,

delete line and "workpad," an EdWord term referring to file

manipulation. In keeping with the requirement to make

OBVIAS as compatible with existing Corvus software in

spirit as well as form, EdWord's terminology was adopted.

A workpad, or pad, refers to an internal workspace in which

users would type in separate assembly units. The text of

the code in a workpad would be saved to a file, and a text

file could be loaded into a workpad. The insert and delete

line functions were determined to be terminal in nature,

but workpad required its own function key level.

Workpad broke down into the following functions: save

file, load file, make pad, clear pad, name pad, pad

parameters and view pad. The purpose of each of these

functions will be detailed later.

In the execution unit, there needed to be provisions

for executing a program, controlling its run mode, setting

display modes, setting breakpoints, setting the execution

entry point, and manually modifying the CPU display. Of

these, it was determined that execution initiation and run

mode control could be treated as terminals, whereas entry

point, breakpoint and CPU modification required further

44

function key levels. At this point, the supported run and

display modes were specified. A program should be able to

run single step, with breakpoints, or at variable speeds.

Further, it was decided to add another run mode - micro

step. This mode would simulate the fetch/execute cycle of

the processor. The running display mode would be either

trace on or trace off. With trace off, the CPU display

would not be highlighted after each instruction is

executed. Further, the code lines would not be

highlighted. The run and display modes were also

determined to be a function of the individual pads, and

could be changed locally.

The entry point and breakpoint function key levels

both needed a means of specifying the address in the

program on which they were to operate on. Three modes were

allowed: absolute address (something the user would

probably not know), relative address (relative to the

beginning of the current pad) and label. Further, it was

decided that when a label selection was necessary, the

function keys should be redisplayed, each one corresponding

to a label in the user's program.

The CPU modification level would have to have

provisions to change the value of the data registers, the

address registers, that status register, values in memory

locations and the register display modes. All of these

functions were considered terminal.

45

Additionally, several modules were determined to have

useful functions in multiple levels within the command

tree. These were the help function, the default settings

function, swap screen (temporarily exchange the OBVIAS and

user program I/0 screens), and convert - a generic number

base conversion utility, Of these, only DEFAULTS was

deemed to be encompassing enough to require a function key

level of its own. These modules were inserted into the

command tree wherever they were believed to be useful,

Minor modifications to the original command tree were

performed throughout the implementation process, but there

were no significant changes. For that reason, and for

clarity, the final command tree will be presented in this

section. In addition to a graphic representation of the

level, non-terminal functions will be noted and terminal

functions will be explained. This combination of a command

tree and terminal descriptions will serve as the final set

of OBVIAS specifications, as well as the implementation

blueprint.

The command tree follows:

46

OBVIAS

Edit Execute Defaults

EDIT: Non-terminal, enter the edit/assemble module.

EXECUTE: Non-terminal, enter the execution module.

DEFAULTS: Non-terminal, enter the defaults module.

HELP: Terminal, access the system help function. This

feature is to be provided in two forms: brief and

expanded. Immediately upon entering HELP, the system

will be in brief mode. Until the user exits by

pressing the ESC key, any function key press will

cause a short explanation of the key's function to

appear in the command window. If a user then types
ti? II . , the user source code window will be swapped out

47

and a page from the users' manual will be displayed,

CONVERT Terminal, enter the generic number base

conversion utility, This utility will convert any 32-

bit number in any base from 2 to 32 into any other base

from 2 to J2.

SWAP SCREENS Terminal, temporarily exchange the OBVIAS

display and the user program I/0 screen.

QUIT: Terminal, exit the OBVIAS environment, return CCOS.

48

Edit

Execute Workpad Defaults

Belp Ins ~ine Del Line Exit

EXECUTE: Non-terminal, enter the execute module.

WORKPAD Non-terminal, enter the workpad module.

DEFAULTS: Non-terminal, enter the defaults module.

HELP: Terminal, go into help mode.

INSERT LINE: Terminal, insert source code lines. Although

this is considered terminal, it actually does have two

function key levels, but they are primarily for option

selection and prompting.

DELETE LINE: Terminal, delete lines.

EXIT: Terminal, return to the calling function key level.

Workpad

Defaults LoadFile SaveFile

Make Pad PadParam ClearPad New Name

Help SwapScrn View Pad Exit

DEFAULTS: Non-terminal, enter the defaults module.

SWAP SCREENS : Terminal, swap OBVIAS and I/0 screens.

HELP: Terminal, go into help mode.

LOAD FILE Terminal, load a source code file into the

current pad.

50

SAVE FILE: Terminal, save the source code in the current

pad to a text file.

PAD PARAMETERS: Terminal, modify the run and display modes

of the current pad.

MAKE PAD Terminal, create a new pad.

NEW NAME Terminal, rename the current pad.

VIEW PAD Terminal, make another pad "current."

CLEAR PAD: Terminal, clear all code from the current pad.

EXIT: Terminal, return to the EDIT function key level.

51

Execute

Edit Modify Entry BrkPoint

Defaults PadParam, Abs Pc Rel Pc

Run/Stop· MicroStp Sng_lStep slower

Faster Resume View Pad Exit

52

EDIT: Non-terminal, enter the edit module.

MODIFY: Non-terminal, enter the CPU modification module.

ENTRY: Non-terminal, set the new execution entry point.

BREAKPOINTS Non-terminal, set or reset execution

breakpoints.

DEFAULTS Non-terminal, enter the DEFAULTS module.

VIEW PAD Terminal, make another pad current.

PAD PARAMETERS : Terminal, change the current pad's run and

display modes.

ABSOLUTE PC Terminal, display the absolute value of the

program counter.

RELATIVE PC Terminal, display the value of the program

counter relative to the beginning of the current pad.

RUN/STOP Terminal, begin or end program execution.

Although this is considered a terminal, when a program

is executing a subset of the applicable execute

function keys will be displayed.

SINGLE STEP Terminal, begin execution in single step

mode, or, if running, change mode to single step.

MICRO STEP Terminal, begin execution in micro step mode,

or, if running, change mode to micro step.

SLOWER

FASTER

Terminal, slow execution.

Terminal, speed up execution.

RESUME Terminal, resume previous run mode following

execution breakpoint.

EXIT : Terminal, return to the calling module.

53

BrkPoint

Rel Addr Abs Addr

Label ClearAll View Pad

CLEAR ALL: Terminal, clear all breakpoints.

LABEL: Terminal, set a breakpoint to correspond to a label

in the program.

VIEW PAD Terminal, make another pad current.

ABSOLUTE ADDRESS Terminal, set a breakpoint to an

absolute address.

54

RELATIVE ADDRESS : Terminal, set a breakpoint to an address

relative to the start of the current pad.

HELP: Terminal, enter help mode.

CONVERT: Terminal, enter the conversion utility.

SWAP SCREENS: Terminal, swap the OBVIAS and I/0 screens.

EXIT: Terminal, return to the EXECUTE module.

55

ABSOLUTE ADDRESS

address.

RELATIVE ADDRESS

address.

Entry

Rel Addr Label

Abs Pc

Terminal, set entry point to absolute

Terminal, set entry point to relative

LABEL: Terminal, set entry point to label in program.

VIEW PAD: Terminal, make another pad current.

56

RELATIVE PC

program

pad.

Terminal, display the current value of the

counter relative to the start of the current

ABSOLUTE PC Terminal, display the absolute value of the

program counter.

HELP: Terminal, enter help mode.

CONVERT: Terminal, enter the CONVERT utility.

SWAP SCREENS: Terminal, swap the OBVIAS and user I/0 screens.

EXIT: Terminal, exit to EXECUTE level.

57

Modify

Defaults D-Reg A-Reg.

Pop Stat Reg

Oser Ptr Memory PadPara.m EntryBas

Help DsplyBas SplitBex Exit

58

DEFAULTS: Non-terminal, enter the DEFAULTS unit.

ADDRESS REGISTER: Terminal, change the value of an address

register.

DATA REGISTER Terminal, change the value of a data

register.

PUSH: Terminal, push a value onto the user stack.

POP: Terminal, pop the top value from the user stack.

MEMORY: Terminal, change the value of a memory cell.

STATUS REGISTER Terminal, change the value of the status

register.

PAD PARAMETERS : Terminal, change the run and display modes

of the current pad.

SPLIT HEX Terminal, toggle the display mode of the first

word of machine code between normal

split hexadecimal[1]/octal[4] modes.

hexadecimal and

In the split

mode, the first four bits of the opcode are displayed

as a single hexadecimal digit, and the last 12 bits are

displayed as four octal digits. This enables a clearer

picture of the structure of the actual machine code.

ENTRY BASE: Terminal, change the default entry base to any

of decimal, hexadecimal, octal or binary. Note that

when using numeric entry, the default entry base can

always be locally overridden.

USER POINTER Terminal, change the value of the user's

pointer into memory to one of the following - absolute

address, relative address, program label, or

59

dynamically linked to one of the address registers.

CONVERT: Terminal, enter the CONVERT utility.

SWAP SCREENS Terminal, swap the OBVIAS and user I/0

screens.

EXIT: Terminal, exit to the EXECUTE module.

60

Defaults

DsplyMod

Outfile Infile StrtFlag StrtFile

Help BelToggl

61

MEMORY LEFT Terminal, display the remaining machine

memory in bytes and approximate code lines.

JOURNALIZATION ON: Terminal, begin journalization mode,

sending all program output to a user-selectable file or

device.

JOURNALIZATION OFF: Terminal, end journalization mode,

SIMTOGGLE: Terminal, set the default value of SIMTOGGLE,

DISPLAY MODE Terminal, set the default value of the

execution display mode.

SPLIT HEX: Terminal, set the default value of the split

hexadecimal/octal machine code display mode.

BELL TOGGLE Terminal, set the default flag controlling

whether the bell will beep when an error is generated.

INFILE Terminal, set the default file name from which

user program file input will be read.

OUTFILE: Terminal, set the default file name to which user

program file output will be sent.

HELP: Terminal, enter help mode.

PAD SIZE: Terminal, set the default pad size in Kbytes,

STACK SIZE Terminal, set the default user stack size in

Kbytes.

START FLAG: Terminal, set the flag that tells the system

whether to load a source file immediately upon startup.

START FILE Terminal, set the file name for the source

code file that is to be loaded immediately upon startup

if START FLAG is active.

62

DELAY: Terminal, set the default and current value for the

variable execution delay variable.

FILESAVE Terminal, save all default values,

the current state of the CPU to a default

as well as

file that

will be loaded upon program initialization. This

enables a user to configure the system to his or her

needs.

EXIT: Terminal, return to the calling module.

63

.2..!. Implementation

The actual implementation phase of OBVIAS began in

January, 1984. Some seven months and 14,000 lines of code

later, the system was operational. Overall, the process

went smoothly and quickly.

Since the emergence of Pascal and other block

structured languages in the last two decades, the top-down

programming methodology has risen to a place of dominance

in the computing community. OBVIAS, with its tree-like

architecture, seemed a natural for top-down implementation.

This, however, was not to be.

The implementation of OBVIAS strictly followed the

top-down canons in the early stages, but quickly

transformed into a modified top-down, bottom-up

development. The reason for this is simple: OBVIAS was

required to perform tasks outside the scope of the design

language, Pascal.

Top-down implementation requires that complex tasks be

repeatedly divided into smaller, more intellectually

manageable tasks. This division is to continue until the

programmer is left with small, simple routines. Basically,

it is the use of abstraction techniques which delay low-

level decisions until the final stages of the

implementation process. OBVIAS began in such a manner.

The function key command tree detailed in the previous

section was coded into the system's outer controlling

64

shell. Although none of the terminal functions were

operational at first, the non-terminals permitted

"movement" up and down the command tree. The idea was that

the terminals could then be taken on one at a time, and

handled in a similar manner.

At this point, the top-down method was unconsciously

abandoned. OBVIAS required immediate resolution of

numerous low-level implementation problems - fundamental

decisions that could not be delayed. OBVIAS needed to

directly access processor registers, recover from system

run time error traps, directly manipulate the flow of

execution, access specific memory locations and simulate

concurrent processing. These tasks are not normally within

the Pascal domain, and the structures of the higher level

routines were intimately tied to the low-level methods of

implementing them. Thus, the implementation process

oscillated between top-down and bottom-up. The design of a

terminal function would generally proceed top-down for a

while, and then go bottom-up until the two designs met in

the middle.

This was not a disadvantage at all. It worked quite

well.

With one notable exception, the Pascal programming

environment provided by Corvus worked well. The same large

screen that would make OBVIAS so useful was of great help

during the implementation of OBVIAS. Further, the unit

packaging and ease of implementing overlays was especially

helpful. The one disadvantage was the SYS Pascal standard

function library. Deficiencies in it forced the addition

of more than 2,000 lines of code to OBYIAS - lines which

never should have had to be coded. The problems stemmed

largely from SYS' decision not to implement DISPOSE. Once

dynamic memory was allocated, it could never be returned to

the heap. Because of OBYIAS' large dynamic memory

requirements, a complete heap management system had to be

added. Further, the standard procedure READ had a tendency

to cause fatal program aborts if an illegal character were

inadvertently entered. Clearly, this was not consistent

with the intended user-friendly environment.

The first problem of any consequence in the

implementation phase was developing methods to "trick" the

Pascal environment into performing the necessary low-level

tasks.

Most of the low-level problems were directly related

to Pascal itself, but one dealt with the operating system's

window control mechanism. CCOS allows only one character

set to be defined per window. OBYIAS, however, would have

to display mixed character sets in various portions of the

screen, and in the exact same character positions from time

to time. Three methods were suggested to perform this.

CCOS determines the character set to use by following

a pointer in a window control record. It seemed likely

66

that if OBVIAS changed this pointer directly whenever a new

character set were needed, the problem would be solved.

This method, however, did not work. There are several

parameters in the window control record relating to

character sets, and the exact purpose of them was not

recorded in the available documentation.

The next method also involved directly altering the

window control record. It was suggested that a single

character set be created which included all of the

characters which might be needed within a particular

window. Those characters that were smaller than 10 X 6

would be "padded" with blank pixels on the top and left.

When a normal sized (10 X 6) character was to be

displayed, it would be written to the window in the usual

manner. However,

to be displayed,

when a string of smaller characters was

it would be written from right to left,

and in between the displaying of each character, the cursor

position variables in the window control record would be

altered the desired number of pixels to the right. In

other words, each smaller character would overwrite the

left side padding of the previous character. This method

did work, but it was not used in OBVIAS.

The method that was used in OBVIAS was really the

simplest. CCOS required that only one character set be

defined per window, but it had no restriction against more

than one window covering the same portion of display space.

Thus, if three character sets were required in the same

portion of the display, three windows would be defined to

cover that space. Using this method, OBVIAS had only to

select the appropriate window before displaying a character

from the new character set.

There are several reasons that this method was chosen.

First, it was the easiest to implement - not a trivial

reason given the overall complexity of the system. More

importantly it avoided direct manipulation of the window

control record. The window control records are not

intended to be modified by user programs. If Pascal had

such a facility, the window control records would have

likely been hidden in a data encapsulation package. There

is no guarantee that a future version of CCOS might not

handle window control records differently, therefore

potentially causing problems to any program accessing them

directly.

OBVIAS could avoid direct access of the window control

records, but it could not avoid direct access of memory.

In the execution unit, OBVIAS would have to support a

running assembly language program. Not only would it have

to place that program in a specific location, but it would

have to be able to check for any memory cells that the

program may have altered. In the SVS Pascal environment,

there were two ways to accomplish this.

68

The system linker is capable of tying together object

modules created by any of the supported compilers and the

ASM68k assembler, provided the programmer supplies the

correct calling sequence linkage. Thus, it would have been

a simple matter to code two assembly language routines

one to store a value into memory given the address and data

size, and another to return a value from memory, also given

the address and data size. However, this method was not

used. Instead, a Pascal variant record type was created to

achieve the desired results. Its single variant field

could be a long integer (32-bit), a pointer to a byte, a

pointer to a word or a pointer to a longword. In short, it

was a semantic trick to bypass the compiler's type checking

mechanism.

The decision to use the "kludgey" variant record

scheme was somewhat shaky, but there were valid reasons.

First, one of the early implementation decisions was to

keep as much of the code in Pascal as was possible. It is

very easy to make mistakes in the Pascal to assembly

calling sequence interface. Second, the MC68k

microprocessor will not permit 16 or 32-bit memory access

beginning on an odd address. It was easier to include the

error handling and recovery in the Pascal versions of the

fetch and store routines than it would have been in

assembly language versions.

The disadvantages to the method chosen should not be

overlooked. The SVS compiler does not support code

optimization, but if a future version did, 0BVIAS might no

longer function. For example, the following code sequence

retrieves a byte of data from memory location 1000.

VARREC.N := 1000;

I := VARREC.B;

(* Longword portion of VARREC
set to address*)

(* Use as pointer to byte*)

A code optimizer might not recognize that VARREC.N is

really an alias of VARREC.B, and delete the assignment. In

any event, a potential for problems exists. These problems

would have been avoided had assembly language language

routines been used.

Assembly language was used to solve the next problem:

direct manipulation of the processor's internal registers.

The register contents of the Pascal environment and the

register contents of the user's program would have to be

exchanged before and after each line of code in the user's

program was executed. Further, after execution, 0BVIAS

would need to compare the new register values with the old

ones to determine if the CPU display needed to be updated.

This was accomplished by using several assembly language

routines. The register swapping would be handled entirely

in assembly language. Another assembly language routine

would return a pointer to the register save area. This

70

pointer would be assigned to a pointer variable using a

record template that matched the format of the register

save area. OBVIAS could then manipulate that area using

Pascal.

The most complex task of the execution unit was to

force the processor to actually execute each code line in

the user's assembly language program. This was

accomplished by using special trap handlers and the MC68k

trace trap bit. Motorola included a special single step

trace feature in the MC68k. When the trace bit in the

program status word is set, the processor will execute the

next instruction and then perform a special system trap.

Upon execution of the system trace trap, the processor

saves the program counter and the current status word, goes

into supervisor mode and jumps to the trap handler whose

address is stored in the trace trap vector.

The solution to OBVIAS' problem would be to load the

processor with the user's register values, and then

simultaneously insert the address of the instruction to be

executed into the program counter and set the trace bit.

After the instruction is executed, the trace trap would

occur. OBVIAS would have to replace the system's trace

trap handler with one of its own - one that would save the

user program's registers and status, restore the Pascal

environment's registers and status, turn off the trace

function and return to the Pascal environment.

71

The two primary difficulties with this solution were

how to simultaneously change the program counter and the

trace bit, and how to return to the Pascal environment.

Both were solved by using a secondary trap mechanism. As

stated earlier, the initiation of a trap causes the

processor to save,

and status word

at minimum, the current program counter

on the stack. The return from trap

instruction, RTT, simultaneously restores the previous

values of the PC and the status word by popping them from

the stack.

Following is the algorithm used to leave the Pascal

environment, execute one instruction in the user's program,

and return to the Pascal environment:

O. (From Pascal environment) : Make a copy of the

register values of the user's CPU model and save

them for later comparison.

1 •

1 • 1

(From Pascal environment) Call

language routine TSETUP.

(From TSETUP) : Store the address of

language trace trap handler, THANDLE,

system trace trap vector.

assembly

assembly

in the

1.2 (From TSETUP) : Store the address of assembly

language user trap #O handler, TSETUP, in the

system trap #O vector.

1,J (From TSETUP) Execute return from subroutine

instruction.

72

2. (From Pascal environment) Call assembly

language routine EXEClLINE. Note: the

subroutine jump mechanism will save, on the

stack, the address of the next instruction to be

executed in the Pascal environment.

2,1 (From EXEClLINE) : Execute TRAP #O instruction.

Note: this will cause the program counter and

status word to be pushed onto the stack, and the

new program counter to be taken from the TRAP #O

vector.

2.1.1 (From TSTART)

CPU registers.

Save the current values of all

Note: these values are the

Pascal environment's registers, and have not

been changed since the call to EXEClLINE in step

2.

2.1.2 (From TSTART) Remove the saved status word

from the top of the stack and save it. Note:

this is the Pascal environment's status word,

also unchanged since the call to EXEClLINE in

step 2.

2.1.J (From TSTART) Remove EXEClLINE's return

address from the top of the stack and discard

it. This return address will not be used.

2.1.4 (From TSTART) : Remove the Pascal environment's

return address from the top of the stack and

save it. This return address will be used later

73

to return to the Pascal environment.

2.1.5 (From TSTART) Push the address of the

instruction in the user's program that is to be

executed.

2.1.6 (From TSTART) Push the user program's status

word onto the stack. Note: steps 2.1.5 and

2.1.6 have effectively replaced EXEClLINE's

return address and status word with those from

the user program.

2.1.7 (From TSTART) : Set bit 15, the trace enable

bit, of

located

the user status word that is currently

on the top of the stack. Note: this

does not affect the current status word.

2.1.8 (From TSTART) : Load all CPU registers with the

user's program CPU values.

2.1.9 (From TSTART) Execute return

instruction. Note: this will

processor

address

to pop the status word

from the top of the stack.

from

cause

trap

the

and return

Execution

will then commence, in trace mode, at the target

instruction in the user's program.

3. (From User's Program) : Execute one instruction.

3.1 (From User's Program) : After instruction is

executed, a trace trap will occur, pushing

return address and status word, and continuing

execution at the address stored in the system

74

trace trap vector.

3,1.1 (From THANDLE) : Save all CPU register values.

Note: these are the new register values of the

user's program.

3.1.2 (From THANDLE) : Pop the user's status word from

the stack and save it.

3.1.3 (From THANDLE) Reset the trace enable

bit in the user's status word that has just been

saved.

3,1.4 (From THANDLE) : Pop the return address from the

stack and save it, This will be the new value

of the user's program counter.

3,1,5 (From THANDLE) Push the Pascal environment's

return address onto the stack, Note: this was

the return address created in step 2 and saved

in step 2.1.4.

3,1,6 (From THANDLE) Push the Pascal environment's

status word. Note: this was the status word

saved in step 2.1.2.

3,1.7 (From THANDLE) Restore the Pascal

environment's register values. Note: these are

the register values saved in step 2.1.1.

3,1.8 (From THANDLE) Execute return from trap

instruction.

4. (From Pascal environment) : Compare the current

values of the user program's CPU with the values

75

saved in step O, and update the CPU display if

necessary.

The actual code used in OBVIAS was slightly more

complex than the above example because of the requirement

that all run-time errors be handled. If an error trap,

such as an invalid address, occurs during execution in

trace mode, it will take precedence. To solve this

problem, all of the system error trap handlers also had to

be replaced with custom OBVIAS versions. The error trap

handlers would function identically to THANDLE, with the

exception that they would set a run-time error variable

that would be visible within the Pascal environment.

Additionally, whatever diagnostic information that the trap

provided would also be passed to the Pascal environment.

The last major problem involved the implementation of

the edit/assemble unit: how would OBVIAS perform

simultaneous character by character syntax checking and

incremental assembly.

In reviewing the final specifications, the

edit/assembly unit would have to:

1. Completely syntax check the user's program on a

character by character basis during entry. Any

invalid character will be discarded. To handle the

problem of forward referencing, the currently

undefined symbol will be immediately highlighted to

76

inform

When it

removed.

the

is

user that it must be defined

defined, the highlighting

later.

will be

2. If desired, and if possible, OBVIAS will execute a

code line immediately following entry. This

immediate execution is not possible if the code

line uses an undefined symbol, or if it is a

branch, jump or pseudo operation.

3. At all times during entry, OBVIAS will present a

prompt line showing the user what is expected. At

the beginning of the line the user would be told

that a label, space, comment or carriage return was

possible. Further, when the user is typing a label

or comment, the syntax of labels and comments will

be displayed. When the user is typing an opcode or

operand, all possible choices will be displayed,

and updated after each new character is accepted.

For example, if the user had typed "AD" in the

opcode field, ADD, ADD.B, ADD.L, ADD.W, ADDA,

ADDA.L, and ADDA.W would be possible.

4. At any time during entry, the user can request help

and OBVIAS will decide what information the user

most likely needs. For example, if the user has

typed "ADD.B" in the opcode field and requests

help, OBVIAS should retrieve the full description

of the ADD.B instruction from the programmer's

77

manual and display it. Likewise, if the user is

typing a label and requests help, a full

description of labels, complete with examples, will

be displayed. If help is requested in the opcode

or operand fields and more than one choice is

available, OBVIAS will present, in alphabetical

order, the manual pages covering all choices.

5. OBVIAS will format source code as it is entered.

Considering only the syntax checking requirement, the

operand fields would pose the only real problem. During

label entry, OBVIAS could simultaneously search the symbol

table, and would know immediately when a label had not

previously been defined. Once comment entry beg~ns, any

combination of keystrokes is syntactically correct, so it

posed no problem. The checking of opcodes is also

relatively simple. The opcodes would be stored in a sorted

table, which could be searched after each new character was

entered.

The problem with the operand field stemmed from the

wide variety of permissible operands. Most operation codes

permit six to eight different operand types in both source

and destination fields. Further, many of those addressing

modes can include constant or relative expressions.

Additionally, the allowable addressing modes for the

destination field might change depending on what addressing

78

mode was used in the source field.

Clearly, ordinary programming methods would be

insufficient for such a complex task.

Two programming language syntax checkers have

previously been implemented at the University of Kansas by

graduate students working under Dr. Schweppe at the

University of Kansas.

Designed by Dr. Schweppe and programmed by John C.

Pinc, a Fortran statement by statement interactive syntax

checking/prompting system [CJ became functional in 1973.
This system was developed in an ad hoc manner on a very

limited Datapoint 2200, Version 1, with a serial

arithmetic/logic unit and 8 Kbytes of shift register

memory, The system would provide users with a dynamic

prompt which displayed a top-down abbreviated syntax

description during code entry. As each character was

typed, the prompt would be updated. Further, if the

current input completely specifies the target statement,

the remainder of the statement will be supplied by the

system.

An almost complete ANSI Fortran 66 system based on

this work was developed in 1976 by Mary Owens Cheng [M].

This system used transition matrix techniques and the whole

system occupied less than 8 Kbytes of memory, even though

it was developed on a 16 Kbyte machine.

79

The transition matrix method would not be appropriate

for 0BVIAS not only because the large number of addressing

modes and expressions would force the creation of extremely

large tables (or perhaps a large number of smaller tables),

but because it was suspected that the debugging process for

such tables would be oppressively long and arduous. This

concern was expressed by Roehl [K] in reference to the PDP-

11 visual emulator. Although it supported only a limited

subset of the language (70 mnemonics and limited operands),

a transition matrix of more than 5,000 entries was

required. 0BVIAS would have to support more than 240

different operation codes and considerably more complex

addressing modes. A transition matrix for 0BVIAS would be

enormous.

It was decided to use a production-driven system. In

such a system, a small pseudo-machine would be implemented

as an assembly language driver. This machine would be

composed of a stack and a program counter, and would

interpret productions stored as data statements. The

productions would be simple, allowing a comparison of data

on the stack with a string of tokens. If a match occurred,

the matched string on the stack would be replaced by a

string specified in the production, and a list of actions

would be performed.

For example, the following is a sample production

which will perform syntax-checking for the data register

80

direct addressing mode (DO,Dl,D2 ••. D7-). Action GETCHAR

takes the current input character and places it on the

stack, action GOTO xxx causes the driver to continue

interpretation at label xxx, action ERROR performs error

recovery, and action ACCEPT accepts the string and returns.

Interpretation will begin at label DDIR.

(LABEL) (ON STACK?) (REPLACEMENT) (ACTION LIST)
==-=-==---=-
DDIR:

"D" =
(ANY) =

GETCHAR
GOTO DDIRl

I ERROR; GOTO DDIR

DDIRl:
"0" .. "7"
(ANY)

=
=

(SAME)
GETCHAR;
GOTO DDIR2

I ERROR; GOTO DDIRl

DDIR2:
(EOL) =
(ANY) =

GETCHAR
ACCEPT

I ERROR; GOTO DDIR2

In the above example, only a "D" will be allowed on

the first keystroke. Any other character will be

discarded. After a "D" is entered, any digit between "0"

and "7" will be permitted. Any other character will be

discarded. Finally, the production requires that an end of

line character be entered before the addressing mode is

accepted. The numeral denoting the data register used is

left on the stack so that it can be used in the assembly

process.

For most of the MC68k addressing modes, the stack in

the production driver is not really necessary. The data and

81

address register direct, address register indirect,

indirect with post-increment and pre-decrement and register

list could have been checked using only the next available

character. However, the stack becomes indispensable when

constructing productions to handle expressions.

Having decided to use productions, the next step was

to determine how many productions would have to be

developed - and how complex they would be. Strictly

following the above scheme, a set of productions would have

to be developed for every combination of addressing modes

permitted by the various operation codes. For example, to

cover the source operand field of the ADD.B instruction,

the production would have to permit one, and only one, of

the following addressing modes:

1. Data register direct,

2. Address register indirect.

3. Address register indirect with pre-decrement.

4. Address register indirect with post-increment.

5. Address register indirect with displacement.

6. Address register indirect with index,

7, Absolute short address.

8. Absolute long address.

9, Program counter with displacement,

10. Program counter with index,

11. Immediate data.

82

Clearly, a production to handle this would have been

complex. Further, it was determined that more than JO

combinations existed - all but two or three similarly

complex. This complexity was not just an implementation

concern, but it raised fears that the debugging process

would be long and unstable.

Ideally, a tool could be developed to automatically

generate the productions given the syntax of the individual

addressing modes. Such a tool, however, was not available

and the development of one was beyond the scope of this

project.

The problem, then, was to reduce the complexity of the

productions to the point that they were simple enough to

confidently debug. This was accomplished by modifying the

production drivers to simulate concurrency.

The new approach would be to generate one production

for each single addressing mode. Each of these productions

would be generally small and simple, Then, rather than

using one production for each combination of addressing

modes, a combination of productions would be used

"concurrently."

Considering the problem abstractly, each addressing

mode production would constitute a pseudo machine. At the

beginning of the syntax checking, each applicable machine

would be activated by sending it the first input character.

Concurrently, each machine would operate on that character

83

and make the appropriate transition. If the transition

resulted in an error, that machine would die. After the

first input character had been operated on by all the

machines, the machines that were still alive would be sent

the second character and would again make the appropriate

transition. This would continue until one of the machines

announced that it had accepted the input string - i.e. a

syntactically correct addressing mode had been entered. If

all of the machines died on a particular input, that

character would not be accepted and the machines would

restart at their previous state.

This method not only had the benefit of simple

productions, but it made it easy to determine which

addressing modes were still permissible given the previous

input. In order to construct the required prompt line

telling the user what choices are still available, OBVIAS

would have only to check to see which machines were still

alive.

The only problem with the use of "concurrent"

productions was the implementation of the pseudo-machine

driver. The driver would have to take the current

character, make the appropriate transitions, save its state

within the current production, and then operate on another

production. It would also have to recover the previous

state in case a transition resulted in an error.

84

It was decided to develop one generic driver that

would be appended to each of the productions. This driver

would have to be coded in assembly language in order to

save its state across subroutine calls, Additionally, a

companion initialization routine would be developed for

each driver/production combination. This initialization

routine would be called before the first input character

was received to reset the driver.

Besides doing syntax checking, OBVIAS would also have

to perform incremental assembly during code entry.

was done in three steps.

This

First, after the operation code was correctly entered,

a record would be retrieved containing information of what

operand types were permissible and what assembly format the

instruction used, Additionally, the record would contain a

machine operation code template. This 16-bit number would

be filled in with the correct value for the operation code,

with the operand fields left blank.

Next, OBVIAS would use the operand type information to

determine which addressing mode pseudo-machines to

activate. Besides performing the syntax checking, some

actions in the addressing mode productions would be devoted

to saving pertinent information for the assembly phase.

For example, the data register direct mode would save the

number of the data register. After the operand was

completed, this information would be passed back to the

85

edit/assemble unit.

Finally, the operand fields in the machine code

template would be filled in using the information provided

by the syntax-checking productions. This process would be

repeated for for two-address instructions, and the display

would be updated whenever possible.

If a code line could not be assembled because it used

a forward-referenced symbol, it would be marked as

unfinished, and linked into a chain associated with the

undefined symbol. When that symbol was defined, the chain

would be followed, and each affected code line would be

reassembled at that point.

One final edit/assemble implementation decision should

be discussed: how backspacing was handled. The productions

were designed to make transitions in one direction only -

forward. But to be truly interactive and useful, the

system should be able to handle backspacing. Once again,

the simplest method was chosen. A copy of all previously

entered characters is maintained during entry. If a

backspace is encountered, the last character entered is

deleted from the copy, edit/assemble is initialized, and

that string is fed back through the entire process. During

string re-feeding, the display is not updated to avoid a

delay. As implemented, the code runs fast enough that

string re-feeding does not produce a noticeable delay.

86

The core of OBVIAS consists of the execute trap

mechanism and the concurrent productions, but surprisingly,

they were among the easiest features to implement once the

solutions were discovered. More than 80 percent of OBVIAS'

total code is devoted to producing a user-friendly

environment. Despite the problems detailed in this

section, the most difficult task from a coding aspect was

generating the routines to make the system polished and

professional. Many features not included in the final

specifications were added during the coding process. The

value of these features should not be overlooked despite

their comparative lack of sophistication. The cumulative

effect of the "polish" routines would determine whether

OBVIAS would be a useful system or just an interesting side

attraction. Among those features were:

1. Variable base numeric entry: Users are given the

choice of selecting decimal, hexadecimal, binary or

octal as the default numeric entry base. Further,

they are given the ability to locally override the

default base by preceding their entry with a

special character.

2. Visual stack: OBVIAS' stack visually functions

like a stack should: it grows up and down within

its window.

data object

accordingly.

Further, it remembers the size of the

pushed and displays the value

87

3. Convert utility: A generic number base utility is

provided on most function key levels. This utility

will convert a number in any base from 2 to 32 into

any other base from 2 to 32.

4. Pad size control: Users may control the size in

Kbytes of the pads they create as well as the

default pad that is created upon system

initialization.

5. Stack size control: Users may control the size in

Kbytes of the user stack that is created upon

system initialization.

6. Label selection: When a user symbol selection is

required, the symbols will appear on the function

keys sorted alphabetically.

7. Pad renaming: A provision is included to rename

user and system pads,

8, Address selection: Whenever an address selection

is required,

specifying it

users

as an

address or label,

are given the

absolute address,

choice of

relative

9, User pointer: The user's window into memory

pointer can be set to an absolute address, relative

address, label or dynamically linked to any of the

address registers,

10. Journalization: A journalization feature is

included to permit the user to echo all program

88

output to a disk file, printer or other device.

11. Editing keys: While typing in source code, a user

may delete the current field or restart the line

from the beginning by using special function keys.

12. Bell toggle: A bell rings whenever a system error

occurs, but it may be turned off by users who find

it annoying.

lJ. Expert mode: Experienced users can disable the code

entry prompting by invoking expert mode.

14. Memory left: The available system memory is

displayed not only in bytes, but in approximate

code lines.

15. Start file: A source code

containing library routines,

loaded upon initialization.

16. System configuration: The

text file, perhaps

may be automatically

total OBVIAS system

configuration may be saved to a personal or system-

wide default file that will be loaded during system

initialization.

17. File robustness: If any of the files needed for

system execution are not available, a detailed

error message will be displayed. Further, the

system can still be operated provided the opcodes

file exists.

18. Personal files:

and error message

OBVIAS will always look for help

files first on the current

89

volume, and then on CCSYS. Because of this, each

user on the network could have his own personal

error or help files, as well as his own personal

default settings file.

19. Run-time checking: Extensive run-time error

detection and recovery is performed.

a. Code corruption: If a user program corrupts

its own code, the user is warned and the code

is corrected.

b. Stack over/underflow: The user's stack is

checked for both underflow and overflow.

c. Data size mistake: Because the stack

remembers the data size of the objects placed

on it, OBVIAS requires that they be taken off

in the proper manner. For example, if a user

pushed a long word, he cannot pop a word.

d. Proper code execution: Only code lines in a

user's program may be executed. Attempts to

execute data, pseudo operations or system code

are prohibited,

e. Address violation: OBVIAS will recover from a

user address violation and display a detailed

error message,

f. Bus time out: OBVIAS will recover from a bus

time out and display a detailed error message.

g. Additional run time error traps: OBVIAS will

90

detect and recover from privilege

illegal instruction, division by

reserved instruction traps.

violation,

zero and

To summarize, although the trickiest part of the

implementation was developing solutions to the core of the

system, the most difficult task was generating the

thousands of lines of code to make the system friendly and

easy to use.

91

6. Data Structures

In contrast to the cleanliness of the hierarchical

OBVIAS module design, the initial attempt to define the

system data structures resulted in an conglomeration of

similarly named data objects. The reason is that OBVIAS

required a large number of globally defined variables. The

CPU model would have to be visible to virtually every

module in the system, as would the user program structure,

symbol tables and the system parameters.

The primary concern was not one of computational

functionality, but of programmer understanding and system

maintainability. The static global variables would be

handled similarly by the compiler no matter how they were

defined, but it was suspected that the large number of

globals would cause considerable confusion during coding

and maintenance,

The solution chosen was to cluster data objects with

similar functions into large global records. In effect,

this would modularize OBVIAS' data structure at the global

level, This philosophy of data structure modularization

was most easily applied to static objects, but was applied

to the dynamic structures as well, generally through the

use of header records on lists.

The packaging of OBVIAS data objects corresponds to a

conceptual view of the system.

the system are the CPU model,

92

The primary data objects in

the user program, and the

state of the system. These were broken down into the

following packages:

1. CPU: Conceptually represents a "snapshot" of the

current state of the MC68k microprocessor and its

relation to the user's program. It also contains

information on the current display mode.

a. Register values: Two arrays of 32-bit

integers, one each for data and address

registers.

b. Program counter: A pointer to the address of

the next user instruction to be executed.

c. Status word: For ease of manipulation, an

integer is used, even though only the lower

order five bits are relevant to the OBVIAS

user.

d. Register save area: A pointer to the register

save area used by the trace trap handlers.

e. User pointer: The user's window into memory.

f. User link: A flag determining whether the user

pointer is to be dynamically linked to an

address register.

g. Memory: An array of long words, this is used

to determine if any memory location in the

user's memory window has been altered by the

previous instruction.

93

h. Stack: A linked list containing the history of

the data sizes of objects pushed onto the user

stack.

i. Current pad: A pointer to the beginning of the

actual memory in which the user's assembled

code resides.

j. Current pad record: A pointer to the header

record of the current user workpad.

k. Stack memory: A pointer to the beginning of

stack memory.

1. Stack end: A pointer to the end of stack

memory.

m. Modification flags: A complete set of flags to

denote whether any CPU value has been modified

by the previous instruction. These are used

in determining whether the CPU display needs

to be updated.

2. User program: The most complex of the OBVIAS

structures, consisting of a linked chain of workpad

header records.

a. Workpad headers: A record containing

identifying and defining information about the

user assembly module stored in it.

1. Name: A string defined by the user

naming the pad.

94

2. Number: The pad's identifying number,

used by the system.

J. Workpad: A pointer to the section of

actual memory that the assembled machine

code will reside in.

4. Start: An integer defining the line

number of the source code entry point.

5. Run mode: The run mode (variable, single

step, etc.) of the workpad.

6. Display mode: This controls the visual

tracing during execution.

7. Complete: A boolean flag denoting

whether the pad is completely defined,

8. Code: A linked list of user source code

line records.

a. Number: The line number of the

source code line as it appears on

the display.

b, Line Number: The actual number of

the source code line.

c. Relative Address: The address of

the source relative to the

beginning of the pad.

d. Code: A string containing the

actual text of the source code

line.

95

e. Length: Length, in bytes, of the

machine code.

f. Display lines: Length, in lines,

of the displayed statement.

g. Sim flag: Determines whether

immediate execution will be

attempted.

h. Source:

mode.

Source operand addressing

i. Destination: Destination operand

addressing mode,

j. Identifiers: List of boolean flags

denoting whether the code line

contains a label, opcode, operands,

comment or pseudo operation.

k. Data: A variant record which will

contain either the actual machine

code of the line, or a list of data

if the code lines has the DATA

pseudo instruction.

9. Symbol table: A linked list representing

the pad's local symbol table.

1. Name: A string containing the name

of the symbol.

2. Defined: Flag denoting whether the

symbol is currently defined.

96

J. Value: Either the absolute or

relative value of the symbol.

4. Kind: Denotes whether symbol is

absolute or relative.

5. Where defined: The line number of

the symbol definition within the

pad.

6. Where used: A list containing the

line numbers within the pad where

the symbol is used.

J. Windows: Contains all of the OBVIAS window control

records.

4. Defaults: Contains system parameters that may be

stored to a default startup file.

a. Delay: Execution speed variable,

b. Split mode: Flag determining hexadecimal/octal

or normal hexadecimal display of machine code.

c. Bell toggle: Flag denoting whether bell will

sound.

d. Run mode: Default run mode.

e. Display mode: Default display mode.

f. Start flag: True is source code file to be

loaded during system initialization.

g. Start file: File name of source code file to

be loaded during initialization.

97

h. Sim toggle: Determines whether immediate

execution of code will be attempted.

i. Entry base: Default numeric entry base.

j. Stack size: Size of user stack.

k. Pad size: Size of initial workpad.

1. CPU state: All register values, status word

and CPU display modes.

5. Globals: Besides containing all of the default

parameters with the exception of CPU state, globals

contains current system variables.

a. Addressing modes: Text strings for addressing

mode display.

b. Breakpoint: Flag denoting that breakpoints are

set.

c. Sim screen: Denotes whether OBVIAS or I/0

screen is currently displayed.

d. Journal: Flag denoting whether journalization

is currently in effect.

e. Global symbol table: A linked list comprising

the global symbol table.

1. Name: The name of the symbol.

2. Defined: Whether it is defined.

J. Value: The absolute value of the symbol.

4. Pad defined: The number of the workpad

where the symbol is defined.

98

5. Where defined: The line number where the

symbol is defined.

6. Where global: The line number where the

EXTERN or GLOBAL declaration was made.

7. Where used: A linked list of workpad and

line numbers where the symbol is used.

6. Help: An array of strings containing the short

help messages that are always resident.

7. Error: An array of strings containing the short

error messages that are always resident.

The transient or local data structures and variables

are, in general, self explanatory. Two exceptions are the

pointer variables CURRLINE and NEXTLINE. Both are used by

the visual execution unit. Together, they constitute a

program counter into the user's code text. While the CPU's

program counter always points to the actual machine

instruction in memory, NEXTLINE always points to the

corresponding text code line, CURRLINE is active

immediately prior to execution, pointing to the fully

highlighted code line.

Overall, the definition of OBVIAS' data structures

proceeded smoothly once the decision to package them was

made.

99

L!:. Conclusion

The true measure of the success of OBVIAS will not be

known until Fall 1984, when the system will be integrated

into the CS 400 laboratory. But initial responses have

been extremely positive.

A partially functioning version of OBVIAS was

demonstrated at the National Educational Computer

Conference in Dayton, Ohio in June, 1984. It was well

received by dozens of computer scientists who stopped to

see it in operation. Among the comments by those who

viewed the demonstration were "best thing in the show,"

"finest debugging tool I have ever seen," and "I wish we

had something like that when I learned assembly language."

OBVIAS has far surpassed original expectations, but it

certainly is not an end in itself. OBVIAS is merely one

step in a continuing trend towards harnessing the power of

the computer to free the human mind for more productive

work. Design is currently under way at the University of

Kansas for Pascal and Fortran environments that will

provide similar assistance to students learning those

concepts in computer science.

OBVIAS is certainly not perfect. In particular, some

of the edit/assemble specifications have not yet been

fulfilled. OBVIAS was not intended to impose any

limitations on the assembly language syntax, but Version

1.0 does not allow expressions in the operand fields.

100

OBVIAS, however, will never be truly finished so long

as there is a need for it. Like any software system,

OBVIAS must evolve to meet the needs of its users, or it

will die. Its future success will rely almost entirely on

its maintenance.

101

References

[A] Corvus Systems, Pascal Users Manual, Corvus Systems,

San Jose, California, 1984.

[BJ Lee, Martha B. "Computer-assisted instruction on and

about a personal computer," unpublished Masters

Research Paper, Computer Science Department,

University of Kansas, 1971.

[CJ Schweppe, Earl J. "Dynamic Instructional Models of

Computer Organizations and Programming Languages." ACM

SIGCSE Bulletin, Vol. 2, No.1 (Febuary 1973), PP• 236-

248.

[DJ Huebner, Paul F., Skelton, Daniel T., Schweppe, Earl

J. "Interactive Instruction Simulation On And Of The

Datapoint 2200 Computer." Proceedings of ACM73

Annual Conference, Atlanta, Georgia, 1973 August 27-

29, pp. J04-J08.

[EJ Corvus Systems, Corvus Concept Personal Workstation,

Corvus Systems, San Jose, California, 1984.

[F] Corvus Systems, Operating System Reference Manual,

Corvus Systems, San Jose, California, 1984.

[GJ Ghezzi, Carlo, Jazayeri, Mehdi, Programming Language

Concepts, John Wiley & Sons, New York, New York, 1982.

[HJ Hopcroft, John E., Ullman, Jeffery D. Introduction to

Automata Theory, Languages and Computation. Addison-

Wesley, Menlo Park, California, 1979.

102

[I] Aho, Alfred V.,

Compiler Design.

California, 1979.

Ullman, Jeffery D.

Addison-Wesley,

Principles of

Menlo Park,

[J] A proposed ISO Standard for Pascal, Pascal News 20,

December 1980.

[K] Roehl, Eldon "Visual Emulation of a PDP-11 Computer

in Assembly Language Form," unpublished Masters

Thesis, Computer Science Department, University of

Kansas, 1982.

[L] Corvus Systems, MACSBUG User's Manual, Corvus Systems,

San Jose, California, 1984.

[K] Cheng, Mary Owens, "A Visual Interactive Transition

Pair Processor," unpublished Masters Research Work,

Computer Science Department, University of Kansas,

1976.

103

Appendix I

The following pages contain actual screen images

representing the various sections of OBVIAS.

The images are presented in an order representing a

typical OBVIAS programming session. First, the

EDIT/ASSEl\lIBLE module is entered. There, program entry is

represented by several sample help messages corresponding

to code entry.

The remainder of the screen images show the EXECUTE

function keys and several running programs.

104

t-J:j
ti
(D

H
I!
I

trj
p..
c+

I-'
CD
< CD
I-'

0
V\ CD

>4
c+
CD

p..
CD
p..

(D
I-'

s
CD
en
en
p)

CD

ccos _l,l_ t .2 Usar1 SNGR St .at i on_t__& Volu..1 /t.lBB

NKhine Code Line LM>el Op Code/Oper.nds Co111Mnts

EDIT LEVEL

Prassin9 this ru,cttan Ka,. hkes to the Editinst portion ot the progrH. 0n1,.
fr04 Edit •..i ,.OU altar the text of pro9rM. flrther, froa Wortcpad, within Edit,
i.,ou ..., create nn workp~, chMl9e their naMs, load and s.-ve pads to disk, ate:.

To crute a new prowr•, do the tollowinsu
1. Go to EDIT. 1' wou have a workpad (ts ,.CU' text sc:rean blank? >, 9oto step 3.
2. Go to WOfij(pAO. In IIOf'kpad, press CREATE PAO to crHtc a new IIOf'kpad. If' wou don'

IM'lderstand the proapts, answer U(boi,te to size, VARIABLE to speed, and OH to
dtspl~. How, press raa to retu--n to EDIT.

J. Press r6, INSERT LINE to enter the line insertion section.
4. Pru• rt, rJRST LINE to be9in cntcrins, code at the bc9imins1 of th4t pad.
5. Enter vaur code. It wou wish to stop enterins bct>ore the entire progr• has been

tw,:>ed in, preu <BREAK>. lihtn \IOU tw,:>e the pseudo oper•tion EHO, insert •odot ui 11
autoHticall,. be tar11inatcd. Note that 'iPJ c.nnot 90 to EXECUTE Ult il all p.ads

been coiaplcted.

To •odifw _~ existin9 pad, do the followin91
1. Go to EDIT. If the p~ wou wish to edit is currently displayed, 90to sttp J.
2. Go to ~PAO. Press F7, VIEWPAO. Now, press the k•'iil that naacs the pad 'iiiOU wish

to •odif,.. How, prus rte, EDIT LVL, to exit WORKPAO ¥ld rehrn to EDIT.
3. VOY • .,. now U:H f'6 and <SHln> r, to Wd Mld delete lino1s. Note that u of this

version, the onl,. •~ to •odifw an existins line is to delete it and then ret~ i
in usina INSERT LINE,
To save the cu--rcnt pad to disk, do th4t ,0110111091

1 • Go to EDIT.
2. Co to ~PAO.
3. Pr••• rt, SAVE rile. .
4. Ans .. r the pro.pts, 9ivin9 the ,ue n.e "'°"' wish to •,. th• p~ under.

To lo~• pr~iousl'iil s.vcd pad fro.a disk, do the following&

1. Go to EOIT.
2. Go to l,QOO)AO.
3. Pres• f'6, CR[ATt PAO to crute the .. _,,.~ SpKe for the n&tl pad.
4. Pre_ss F2, LOAD rll[, and •nswcr fl le naac pr-oapt. The fa la wi 11 now be read into

pad 'iilOU Just created.

Prus <RCTURH> to continue I

fl f2 fJ f4 f5 f"6 n
BP'lmlilUIIIRffll-11

1ondw •. J~ 1984 16131

~t• Ra9istus

OB a•>IMMl>MIINl>IMtaOO•NtotuUl
01 &1)HH01111H0101MI011HllU0111
02 10HH010tll1010N1UIOHHUUH
OJ aottatoettmoeoe11t1111tamm1
04ara0£301Be +14930352
OS1008CCCC9 +9227465
06&005784£7 00025602347
07 a0035C7E2 80015343742

Adcress Re9istcrs

A&a80008827 +39
At aottHOIOMHOIOIMIOUtttotOIU
A2 10ltaeotOMleoeotMIOIOtHtOIOIU
Al aOltt~IOIOIMIOIOHHOIOtta
A4 I otMfOIOtNIOelMMIOIOttHOIOffl
AS aotMMOUl_,. .. ,oooHHOtOIM
A6 aottafOIOtNMOeMIOOOIUtOll)Ota
A7 a~E82 00082~7802

If St•tus Rc9istcr

11)(10 H18 Zae V:0 C1B I Cl IOutinati~ I

re

St•dc

080AEE02
eee~3A
000A253A
008A-->53A
000A253A
000A252C

Unr

000~~
42874
42854284
42834282
42817001
20415288

C543C342

co.tents ~t• Regtatu-s
0 008 I-•:::::::::*- rJBBOHACCI SEQUEHCE -•:::::::::- D0aeeMeoMMNeOINIOtl»MMOUl
8 881 START D 1 a8HH011UH01810H0111HIU0'11
8 4Ut1 802 CLR.L 07 , Jniti•liza Re9tsters D2 10HHOlOlllH10Nll11UtMlltlHl
2 4UM 803 CLR.L 06 DJ aotMtoelt1110IOttHUUMUUH1
4 4Utt 884 a.R.L 05 D4aee£30180 +14930352
6 41M CLR.L 04 D:5a008CCCC9 +9227465 ...,. 8 4UtS 806 Q.R.L OJ 061005784[7 0002:5602347
A 4UH 807 CLR.L 02 D7a0035C7E2 8081:5343742
C 4Utl 808 CLR.L 01 1 Set rtbboC8l.
E 7HH 809 NOVCQ.L 11,D8 1 S.t rtbboCll.

(D 8 2tm 818 NOVC.L Dl,A8 I Cle•r fibbo. Count Address Registers
2 811 LO<FJt«.

H 2 5Ult 812 ADDQ.L 11,A0 , Hullber of current rtbbo. A0a00008827 +39 . CHtJ 013 EXC. 06,07 , l1ove 06 to 07 A 1 aMNtotaeNNeOINIOIOOMeoeotM
I\) CH"' 814 EXG 05,06 I Move D5 to 06 A2aOIMIOIOIMIOMNIOMMtoOOOM

1 CteM 81' EXG 04,05 , l1ove 04 to 05 Al 10ttHOeotNeoeolMeoeotMfOIOOM
tA CHOI! 816 EXG 03,04 I l1ove DJ to D4 A4 aOIMeoeOINIOeOeMt(ltl>tMMIMH
lC cu., 817 EXG 02,03 I l1ove 02 to DJ AS 1QtMt0•ou•toe1>tMIOe.>etHOIOHt

trj E CUN 818 EXG 01,02 1 Move Dl to 02 A6 aOIMIOeOIMNeOIMIOIOIMtoOOtM p. e Cts.t 819 EXG 08,Dl I l1ove 00 to Dl A7a000AEE82 00082~70&2 ...,. 2 2Htl 828 NOVE.L 01,08 1 l•st ribbo •
c+ 4 0.2N 821 AOO.L 02,08 1 Coapute new Fibbo.

6 , FFEA 822 eve LOOPIHI. I Go 'till c,.,,erflow

II
Shtus Register 8018 823 LEA PROt1PT ,A8 I Go •9•in proapt

0 (D 8006 824 JSR PRIHTS , Print pr01Aft)(18 Hae z,e v,0 c,0
°' < 0002 825 JSR G£TOHE , Get response

(D 4U1t 0004 026 JSR PUTOHE 1 Echo print
010.stination 8H1' ~9 827 CNP.8 l'Y' ,00 1 'Y' for Yes?

6, rrce 828 SEQ START , Then go ~inf
H:a 829 RTS ' AU. 00t£.
§ 830 1 -•=========-- DATA AREA-*:::::::::*-

00 80 00 00 8-Jl PRONPT DATA.8 13,13,13,13 , Linefec~ ••••
0 28 47 28 41 47 832 DATA.8 " ;o AGAIH CY....-Ml ? a " , Pro.pt.
c+ 49 4E 20 5S StKi< User ...,. 2F" 4[50 28 3F' 28
0 3A 28 DSM ws~~ ::;:$ eeee 833 DATA.W e , End of strl09. 4 N

834 , 888A2~ 428~284
835 DC) START 880A253A 4283-4282

(D 088A253A
tc:: 080A252C 28415..'>88
C/l

C945C7«

llillilliii Pleue Sel«.ct f'unction a
rt F2 f3 n r6 n re rs fl6

f,-1•

CD

H

w
I

0
0
p.
CD

CD
:;:$
c-t
t-"$ «
::s'

0 CD
-..J 1--'

td
s
CD
en
en
Pl

oq
CD

..........

Pl
o'
CD
1--'

f,-1•
CD
1--'
p. -

:COS \,I 1,2 U.rl SICR St.ation1 8 Voluae1

Adr ttKhine Coda Line Leal Op Coda-'Operands COMMllltS

LABEL

A hbcl is a strina of I to 8 chractars that is used ba, th• pt"'09"a.....,. to
swabolicallw da"na • relative or .t>solute adcress, or a nuaeric const.nt.

A label consists o, • letter <A •• z> or special ch,actcr < '%' or '_, >,
,olloued up to HVen letters, special chvacters or digits < 8 •• 9 >. f'w-thar,
labels are classified H .t>solute or relative. A relative label represents Ml
address in W0'r proara• that will chlfl9C, depending on the location in which it is
lo«ied. An .t>soluta l~I re,.,.. either to a tixed location in ••i:eot"\I, or a nuNric:
constant.

A lllbel •aw .,ear in -.,our proar• in two ~s - definition or usc as an
opcrMld. To have received thi• ... Hae, wou are in the process o, dafinin9 a 1~1.

To define a 1.t>iel, \ICkJ aust first ttntar it in the hbd Field of the code line.
If wou wish it to be a relative label rapresantin9 the current code line, wou nHd do
nothi"9 ,urthcr - the dafinit ion ls coepl&te. To define an ilbsolute label or •
relative labal repruentin9 •oae other point in the pr<>9rH, vou aust follow the
label with the [QU pscudoop in the opcoda "eld, folloued desired operands.

Absolute label delinitions•

ASCIIZ EQU
WARl'l300T EQU

'Z'
4

I 'ASCIIZ' refers to ucii value of char 'Z'.
, 'UARl1800T' refers to llbsolutc .cldrus

Relative label definition••

c;QSAO(AOOQ.B 11,08 , 'GOBACK' refers to this code line
c;()OBACK EQU c.oeACK - 4, 'C.OOSACI<' refers to relative Address ''°8ACK' - 4.

If \10'.1 use .,.. exprnsion to dafinc a label with EQU < as in previous e><Mple >,
the dcfin.d label is ABSQ..UTE iff the expression is 1

RELATIVE - RELATIVE
A8SCl..UTE

ABSG.UTE * ABSCl.UTE
ASSOLUTE / ABSQ..UTE

The dellned label is clusified u RELATIVE iff the txpr«Ssion isa

RO..ATIVE +/- A8SOLUTE
A8SOLUTE + R£LATl~l£

Prus <RETURN> to cont iroe I

Mond.au. ~une 11~ t99, 1~131

O.ta Ra9ishrs

oe 100MIUUUUIOIM"'11HHUHM
0 I 10IMlM1ltlUUHIM1llllllllltl
D210INIUOHHUOIIUlU11UOl1Hl
0310IMIOUUHHOlMI01UIUllOIU
04 10HHOlotHlllOllllllOIMHHN1
DS •OIOH811HllOIOllllllll•UUlll
06100 .. IOOl>UUOIUlllUOllUUONI
D7100 .. IOIOI .. IUOllHOUIIUMl .. l

Address Raaisters

A810000892A +42
Al eoeoe _.,. ..
A2 10 .. 110..-.. eoeoelllOIOl•IOIOUI
Al 10IMIOl8HII.OHIMOIMIOll)I ..
A4 tolOIMIOIOllt
RS aoe•eoeoeMeoeoe .. ••ou .. oeoe ..
R61011teOllll•eoeoe•eoeoeMeoeotM
R71000AEE82 00082567082

Shtus Register

x10 Hae z,a v,e cae

I
St.Ide

DIM
eee~
080-A.253A
000A...~
000A...~

User

nama
•2854284
42834282
42817001
2841~288
C047C846
CS45C?44
~4JC342

t"tj

CD

H •
I

(')
0
p.
CD

CD

c--r

'<
!:l"
CD

0,
(X)

s
CD
Cll
Cll

aq
CD

.........
0

0
0
p.
CD

H)
CD,
p. ---

r:cos v 1.2 Uur-LS11.1L_ _ __stauonL8 __ Voluaea ... wee

Adr ttachine Code Line LM>el 0, Code/Ope,-~ Co--.nts

ADO.W
< Add Bin...., - Word Oper•tion >

OPCRATIOH I Satree.w O.stin.Uon.W ==> Outin.tion.W

SYHTA>< 1 A00 <••>,On ADO Dn,<ea>
SOURCC <ea> a C On : An : (An) : <An>+ : -<An> : d<An) l d<An,Xi)

Abs.W : Abs.L : d<PC> : dCPC,)(i > : 1 ... J

DESTINATION <u> 1 C Un> : <An>+ : -<An> d<An> : d<An,>Ci Abs.W :
Abs.L J

SIZE I Word < 16-bit).

DESCRIPTION I Add the•~• o,,_..nd .or-ct to the destination oper.nd word, and store
the rasult in the ~u~uon opar-¥\d -.orc:t.

COtl>JTIOH CODES 1

[~S I

H I Set if the re-..lt is ~Uva, cle.-ed otherwise •
Z I Set tt the result is zro, clered otherwise.
V I Set if .,_ ov.,-,1°" ocarred, cle.,-ed otherwise.
C I Set ii a crrv ts aenerated, cle...-.d otherwise.
)C I Set the Uthe c~ bit.

AOO.W 08,<AJ> , Add word in oe to word pointed to bw Al.
ADO.W tl8.W,Dl J Add word at absolute address *16 to word in 01.

IHSTRUCTIOH FORMT 1 C 1181 --)00(W.. zzz l

•- O.h Re9ister.
X)OC Op-Node•
\IW c,,cctive Address Noda.
zzz c,,cctlve Address Re9ister.

Press <RET> to continue or ' Q' to quit a

lond.N. Jui. 11. 1984 1613

~ta Registers

08 100008880 00888800008
0 l 180888880 00008000808
02100008880 00000000008
OJ ,ooeeeeee 00008000008
04 a00008&ee 00088800008
05 •800088ee 00000eeeeea
06100008880 00088800008
07180008800 000088008&8

Address Re9isters
A8100008880 +8
Al _,.,.
A2 aOHHOIOHHOIOHHOtOHHOtoe•
Al • MeteOIOIMIOIOHtlOIOIOHOtoe•
A4• .. •toeoe•IOll>tMeoeoe .. eotot•
A5 ••MIOll>e ... MIOIOtMtolOI ..
A61M .. IOIOIMeoeottleoeotMtoeotM
A7 •800AEE 16 00082567026

Sbtl.15 Re9ishr
X18 H18 Z18 V18 C18

010.•tln•tlon

St.ck

00QAEE16

User

000A8E80
52885280
52805280
52805280
52805280
52805..?Se
52805...?Se
52885280
528e5280

t"rj

(1)

H .
V\

I

trj
><
(1)
0

rt
CD
.,._,
CD <

0 CD

'°
.,._,
CD
>< c+
CD
:J p.
CD
p.

::,--
(1) .,._,
to
;3
CD
Cll
Cll
Pl

CD

ccos 1.2 Usar•SN:R ~iOf"ll 8 Voll.M!IU .,1J88

Adr NKhine Code Line LM>el Op Code/Oper~ co.-.ants

OCEQJTE LEVEL
The tuncUons provided by DCECUTE allow "'°"' to visu•111i1 MOnitor execution of

your finilhed worlcpMls. In brte,, wou create Y0'r progrus in EDIT, ~d rUl thu in
E><ECUTE. Note tt~t wou CMlnOt enter [)([QJTE ...,til •11 of wortcp~s bHn
coaapl•ted, and all undetined ret...-.nc•• t.-Cen ere of. This restriction is neces..-w
becMJS& ot the extansiv• run-UM checkin9 tMt [)(£CUTE does. If~ wish to test a
portion on Wl unfinished,~, wou uw do this bw siaaplw insertin9 dt--., stl.bs tor •11
unditlined raferences. .

EXECUTE is co.posed of sever•l dil,erent Hctions1 ENTRY, NOOIF"Y, BREAl<POIHT
RUH. NOOIFY alla-es \IOU to ch~ the st.ta of the CPU or of M•Of"lil• BR£AKPOJHT
•I lows vou to set ex.cut ion breapoints, i ·•. points in -.,our pro9r.11e th•t wi 11 c.use
the SltlJL.ATOR to .utoHtic•llw ..ace the tr.nsition froa rWW\in9 with displ~ off to
r~in9 in si09l• step .ode with displ~ on. EHTRV •llows to define the first
instruction to be executed once e><ecution ls begun. Rll4 is the aodule which •ctu.llw
runs \IOUt' pr09ra•, upd11t in9 •11 rc9istcrs, •t•tus 901"'d, st.ck pointer, •~, etc.

It should be noted tMt whenever WOU 11rc in EXECUTE, the ~dr11tss ~d lK>&l
portions of the code line pointed to by the o.rrent progrH counter 11ill be
hi&hli&hted. This fHture all°'" wou to al•~ keep trKk of' the next in.truction to
be executed. If no labels or ~use.s re hi&hli9htcd, the pr09f"M counter is
undet'ined. If wou try to begin execution with -. undcf'ined prosir'M counter, an error
•111 be 9ener11ted. You aust r'Uct the PC viii the ENTRY function •

A fin.I not• on the hi&hli9htin9 o, th• instruction pointed to bv the PC • on
entr" to EXECUTE, the PC is lo~d with the ilddreH of the l.t>cl ckfined in yaur 01)
pse•~ oper•tlon o, the current p~. Jf' no stM't109 ~us ns difined, th« PC will
be undefined. This Ktion is •lso rep«•ted when \IOU select • different p.ad 111th
VIEIJPAD. Besides ulcinsi tMt p~ current, its shrtin9 •ddress <if present) is
loilded into the PC.

Press <RETURH> to continue •
n r2 FJ F"4 rs F6 f7

lllAMI-- -

1onc1...,.# June _LL_ 1984 16:31

Oat• Re9isters

oe.eeeeeeee
01 •00008800
02100008000
03100008800
04100008800
0~100008800
06100088800
07100000800

00088800088
00088000000
00008000008
00088000088
00088000008
00080000008
00080000008
00080000000

Address Registers

A8•80008800 +8
Al 1otlHMottHoeoe
A21 IMOI .. IOllllMINOINIOIOell
Al•NNIIIOINMot .. lOIOINeoeotll
A4 10IIHOIOtlHO.OINIOtOt .. toeOHI
A5a ... lMOllleMOI .. IOIOIM_,...
A6_.MtfllOt .. toli>IM
A7 •000AEE16 00082567026

Status R~ister

x,e Hae z,e v,e c,0

I
Stack

088AEE16

re F'S

User

nn
52805280
52805280
528~
528~
52885280
52805280
52~

ne

808
801
802

80888931 803 • 1-"rj ...,. 8016 805
806 ,, 000A 807

11 1 .. 1'1 8031 808
CD 8004 809

SU2l 810 HOP
H 1884 811 . 012

°' 80080800 013 rLAG
00008000
80888800
00008808

trj ·~ >< (l)
0

c+
CD

0 I--'
(l)

<
(l)
I--'

H.i s:;
0
c+
0

CD
cc::
C/l

t)leue Select Function a
rt r2 F3 r4

BP

Co-..ents

I ***U - THIS IS THE rIRST ROUTlt£ - **"* EXTERN TIJO,PUTOHE
GLOOAL CHE
EQU '1'

LEA
TST.L
SEQ
NOVE.8
JSR
AOOQ.L
JJf

f"l.A(;,Al
(Al)+
t-a
•Asc111,oe
PUTOHE
II ,(Al>
TWO

, ++++++++++++++
DATA.L e,e,0,0

DATA

DI> START

rs f"6 n

~t.a Re9isters
oa m
0 l •M .. IOllllMOl0l UllUH0Ht
02 •0Hl .. 1MH1010MUHOHllletHl
03 •0 .. HNHlllNOllllllll .. lllHll
04 •00£30180 +149-10352
OS1008CCCC9 +9227465
06•005784£7 0002S682347
07•0035C7£2 80815343742

Address Registers
A8•00008827 +39
Al,_. ..
A2•MM...,_._,. .. _. .. _,. ..
A31MMtMNMINOMHNOIMeotOIM
A4 eoeoett .. •eoootM
AS•ot•._. _,,. .. eoeot ..
A6 •MMINOl....,_eoeotMtoooeM
A7 1000A£E82 00002567002

St~tus Register

x.e H•& z.e v10 c10

Source

II

0.st inat ion

f8

St.ck

000AEE02
800A253A
00~
080A253A
880A253A
eeeA.252C

User

n:~m
4285-4284
42834282
42817001
2041~
C04?CB46

......

......

t"rj

f
CD

H .
-..J

§
I-'•

oq

"d
t-'J
0

;
<
......
P>
o'
(1)

00
"d

CD
(1)
p..

412'J1

4Ut5

"'"'
7N01
2HOl

SUit
CC5Cl1
C1!1M

c,,...
CHos c,soa
Cttot
2H01
DUO! Pmllf

8006
4m• 8002
4U1t 8004
BM~ 8059
6s• rrce
4110

eo eo eo eo
28 47 28 41

28 SB :s9
2F 50 28 3F" 28
3A 28 eeee

808
801
802
803
804
805
806
807
888
809
818
811
812
813

815
816
817
818
819
828
821
822
823
825
826
827
828
829
838
831
832

833
834
83'

START

LOOPltG

PRONPT

CoMents

I-•=========*- FIBBOHACCI SEQUENCE-*:::::::::-

a.R.L
a.R.L
a.R.L
a.R.L
a.R.L
CLR.L
CLR.L
NOVEQ.L
NOVE.L

AOOQ.L
E~
E)(f;
E)(f;
[>a.
CXC.
E~
NOVE.L
AOO.L

JSR
JSR
JSR
CtF.8
BEQ
RTS

DATA.8
DATA.9

07
06
DS

DJ
D2
01
11,08
C>l ,A8

11,A8
06,07
DS,06
[)J,04
02,03
Dl,02
08,01
01,08
02,[)8

PRINTS
~TOt£
PUTOt£
l'Y',08
START

, Initialize Re9isters

I S.t FibboC8l.
I S.t rtbbotll.
I Clear Fibbo. Coult
1 Husber ot cur-r-ent ribbo.
I Hove D6 to 07
1 Hove DS to 06
I Hove to OS
, Hove D3 to 04
, Hove D2 to 03
, Hove 01 to 02
I Hove De to Dl
I 1.at rtbbo.
;,c7ute new fibbo. UfMHiiM
, Go a9ain pro.pt
, Print pro.pt
, Get response
I Echo print
1 'V' for Vu?
I Then 90 ~•inl
I AU.()(»£.

1 -i::::::::=i- DATA AREA -i::::::::=i-
13,13,13,13 , Linafeads •••• ' '° AGAIN CY/HJ 1 a ' J Pro.pt.

DATA.W I End of string.

DI) START

Prus Function ke\l to Alter Run Noda or <BR£~> to stop

n r2 f3 H f6

O.ta Registers
08a86197EC8 00686277313
01a83C58EA2 80361287242
02182547829 80225870051
03181789[79 80134117171
D4a80£301Be 00078750668
D5a8B8CCCC9

00025602347
07a0035C7E2

Address Re9isters

A8180008827 +39
Al1otNIOtotMIMOlettoeolMloeGeM
A210HHoeOIUIOIOeNtoe0ttHOIOtM
Al 1otOHOtOINtotOeUIOtOtNtOIOtM

aMotaoeotttlOIOINIOIOtMIOtoeN
A51NNIOtOINtolOtMIOlotMtototM
A61MMtOIOttteOlotMIOIOINtotooM
A71800AEEl6 00002567826

Shtus Re~ister
xae Hae Z18 v,0 cae

~L__J
Stack

000AE£J6

rs

User

080AJCd!

28415288

ne ;a:u

._.

.....
I\)

f
CD

H .
CX>

:::t:t

§ ...,.
!:j

(Jt}

to
'1
0

;
Si: ...,.
0
'1
0

C/l
c+
(D

to
s
0 p.
CD

(111

'4Utll

7tMI
2Htt

s,u,
CHOJ
CHM
C11tsot c,so.
Caso, c,w
P.!T o.w
6'tot FFEA

8818
8006
8082

em" 8859
""" rrca
eo eo eo eo
28 47 28
41 49 28 SB 59
2f" 4E SO 28 'JF 28
JA 21 eeee

808
801 START
802
&e3
884
805
896
&e7
888
909
818
811 LOOPI~
812
813
814
815
816
817
818
119
829
821
822
823

825
826
827
828
829
838
831 PR<n>T
832

IJ3
834
835

Ca....nts

I-•:::::::::*- Fl~l SEQUENCE -i:::::::::-

a.R,L
a.R,L
Cl..R,L
a.R.L
a..R.L
a.R.L
a.R.L
NOVEQ.L
NOVE.L
ADOQ.L
Ex..
Ex..

D«; -NOVE.L
AOO.L eve
LEA
JSR
JSR
JSR
Clf.8
BEQ
RTS
DATA.8
DATA.8

07
D6
l)5
04
[)3
D2
01
11,08
01,Ae
11,Ae
D6,D7
[)5,06
[)4,05

[)2,03
1)1 ,02

9
02,08
LOOPING
PRONPT,A8
PRINTS
c;ETOHE
PUTOHE
l'V' ,De
START

, lnitiAlize Registers

I Set FibboC8l.
I Set ribboCl l.
, Cle•r Fibbo. Count
, tu.ber of current F'ibbo.
, Nove D6 to 07
, Nove D5 to 06
, Nove D4 to 05
, Novt DJ to 04
, Novt D2 to DJ
1 Nov. 01 to 02
, Hove oe to Dl
I lut f"ibbo.
I Co.Aputc MW fi bbo •
, Co 'till overflow
, Go •9•in pro,apt
, Print pro.pt
, Get rcspon.H
, Echo print
I ''(' tor Vas?
I Then go ~~in !
, ALL[)(»£.

1 -•:::::::::i- DATA AREA -•=::::::::i-
13,13,13,13 1 Linefttds ••• •
' C.O AGAIH CY/HJ ? a ' I Pro.pt.

MTA.W 8 , End of string.
I

DI> START

lbWIW Pres• <SPACE> to continue OIi' tunct ton k...a to rU"l llode 1

ra rz FJ r4 rs f"6 r7 ----- --

0.h Reaisters
DI •••1011lllllUIHIOUllllUllH
01 , Mllll1llll•to11Hl1110lll
02 •• .. IUOIMllOIHUUlUllOlllU
OJ ,11 .. eo1m1•101•t0m1111eottt
04,~7829 +39888169
0Sa81709E7'9 +24157817
06 a80E30100 888787S0668
071808CCCC9

Address Rqisters
A8 100008829 +41
A 1 •OUIIOIOHIIIIOIIIIOll)INIOIOIII
A2 tOtOeotMOIII
Al •OIMIOI0HH0tONttoeoe•eoeoHI
A4• Meoe .. MIOI .. IOtOI•
AS I OIMtOIOt .. lOIOIIIIOtOI .. IOIOt ..
A6 , ... IOloe .. lOeol .. OOIOIOHOtOI ..
A7 a800AEE92 aee&2567882

Shtus Register
x,e H•8 z.e v.e c.e

Dcstin•tion ~--
F'S

Stack

am
eeaA....~
080A2~
008A...?53A
090A2!52C

U•er

n°A.JCI 48742
42854284

•2817001

F'S rte

444-i&ZA

1-tj ,-,.

CD

H

'° I

::0 g ,_..

1-cJ .,
0

w
t1 ; -
Cll
c+
Pl
0
Pi'
0

1-cJ
(D

t1
P>
c+
0
!:j

Co•-..nts
eee I-*:::::::::*- RECURSI04 1 SNAlL ~E -•==:::::::*-
881 START I This ls the NAJH

71..S 882 l'IOUEQ.B 15,08 , 0.9ree of recursion
6t• 0806
6t ... Fff8

803 JSR SU8ROUT , JI.Mlp to Subroutine
804 BRA START , l<eep loopin9 ,orav•r
80:S ' ----
886 SUBRWT , Recursive subroutine s, 887 St&.B 11,08 , OecreMnt colllt

6S'IM 8006
1111 ..
41"5

808 BEQ ALLDOHE ;;;; to return if' zero
809 - --818 1111111 ' 811 RTS , Return froe sub.
812 DI) START

Press runcuon K~ to Altar R\11 ftode or <BREAK> to stop

0.t• Re9isters

08100008881
D l •03C'8£A2
02•02567829
03•01789£79
D4 •80E30 l Be
DS•008CCCC9
D6•885784E7
D7•003SC7E2

88080800081
88361287242
802258~1
00134ll717l
00078~
0004314631 l
00025602347
00015343742

~ddrass Registers
A8•00008027 +39
Al • OIIHOtollteoeotNMOHIIOtOI ..
A2 •8HHOeGI .. IOIOt .. OOOOIOHOOOI ..
AJ •OIMINOe .. lOIOl .. eotOIOIIOOIM ..
A4 •Ol .. eoeot .. lOIOIMOOIOHHOIOI ..
AS 10I .. IOIOI .. IOIOHH080HHOIOI ..
~6 • OIIHOIOI .. IOtOl8HOIOIOIIOltlt ..
A7 a000AEE86 00002:567006

Shtus R•~ister
x,e Hae zae v,e c,e

1111,ecl
St•dc

UM
000A253A

0A.2~

Oestin•tion

=== USU"

nxmxt
428~284
42834282
42817001
28415288
C047C846
C945C744

r1 rz n r4 rs f"6 n
- re

1-"Jj Adr ftKhine Code Line L••l Op Code~Ands co ... ents ~ta Re9isters
8 su .. 181 IADOQ.L 11,08 08180008886 000888080e6
A SUM 182 AOOQ.L 11,08 Ol183CS8EA2 00361207242 t1 C su .. 183 AOOQ.L 11,08 02&82547829 00225870851 CD E su .. UM AOOQ.L 11,08 03a81709E79 00134117171

H 8 su .. 185 AOOQ.L 11,08 04180EJOl80 00078750668
2 su .. 186 AOOQ.L 11,08 os,eeeccccs 8004314631 l .
4 su .. 187 ADOQ.L ll,08 80025602347

0 6 su .. 188 AOOQ.L ll,08 07a8835C7E2 00015343742
6 5aate 189 AOOQ.L 11,08

State 118 AOOQ.L 11,08
5aate lU AOOQ.L 11,08 Adca--us Re9isters

::::0 su .. 112 AOOQ.L 11,08

g su .. 113 AOOQ.L tl,08 A81800e8827 +39
su .. 114 ADOQ.L 11,08 Al aNOHOIOHHOeotMI .. OHtMOIM
Slate 115 AOOQ.L 11,08 A2 1MMIMOINIOeotMIOeotHeotoeN su .. 116 ADOQ.L ll,08 A3 allMIOIOtllMe0tMMeotlleoeotN

::;$ State 117 RDOQ.L ll,08 allll....,.MIOIOtttlototMIOIOIM
oq su .. 118 AOOQ.L ll,08 ASaNN-,.MIOtOMtlNOINIOIOIN

su .. 118 AOOQ.L 11,08 A61MNeMOeNIOIOIIOtototllMOeN
td State 128 AOOQ.L 11,08 A71800AEE82 00082567802
t1 Slate 121 ADOQ.L ll,08
0 Slatt 122 ADOQ.L 11,oe su .. 123 RDOQ.L ll,08 I St.-tus Re9istar-

...... 5aate 124 ADOQ.L ll,08
1 >< ,8 ; Suot 125 AOOQ.L 11,08 H18 Z18 v,e c,e

I! 126 m Pl -r=- 127
State 128 AOOQ.L ll,08 ~l~inotlon [ll tee Slate 129 ADOQ.L ll,08

0 182 Sazoe 138 ADOQ.l 11,08 --=-ti 184 SUM 131 AOOQ.L ll,08
0 186 Suot 132 ADOQ.L 11,08
I--' 188 Suot 133 AOOQ.L ll,08
I--' 18A Suot 134 ADOQ.L 11,08 Stade User 18C Suot ·~ AOOQ.l ll,08
::;$ l8E ~hate 136 ADOQ.L 11,08 90~~ oq 118 su .. 137 ADOQ.L 11,oe eee :ran ..

112 su .. 138 AOOQ.L ll,08 eee~ 42854284
p. 114 su .. 139 AOOQ.L 11,08 000A253A 4283'4282
CD 116 ,u .. ADOQ.l ll,08 008A2'3A 42817001
a 118 :sazoe ADOQ.L ll,08 088A252C 20415288
0 tlA su .. AOOQ.L ll,00 C047C846
::;$ UC su .. 143 AOOQ.L 11,oe C945C744
rn llE Slate AOOQ.L 11,oe
ct
t-1 I 1~111111• Prus runct ion tc .. ., to Alter Run ttoCk or <8RE.AI<> to stop 1 P>
ct ,..,.

fl f2 f"3 r• ,., F6 n F8 F9 ne 0 ----.

	buzbee30
	FN-000001
	FN-000002
	FN-000003
	FN-000004
	FN-000005
	FN-000006
	FN-000007
	FN-000008
	FN-000009
	FN-000010
	FN-000011
	FN-000012
	FN-000013
	FN-000014
	FN-000015
	FN-000016
	FN-000017
	FN-000018
	FN-000019
	FN-000020
	FN-000021
	FN-000022
	FN-000023
	FN-000024
	FN-000025
	FN-000026
	FN-000027
	FN-000028
	FN-000029
	FN-000030
	FN-000031
	FN-000032
	FN-000033
	FN-000034
	FN-000035
	FN-000036
	FN-000038
	FN-000039
	FN-000040
	FN-000041
	FN-000042
	FN-000043
	FN-000044
	FN-000045
	FN-000046
	FN-000047
	FN-000048
	FN-000049
	FN-000050
	FN-000051
	FN-000052
	FN-000053
	FN-000054
	FN-000055
	FN-000056
	FN-000057
	FN-000058
	FN-000059
	FN-000060
	FN-000061
	FN-000062
	FN-000063
	FN-000064
	FN-000065
	FN-000066
	FN-000067
	FN-000068
	FN-000069
	FN-000070
	FN-000071
	FN-000072
	FN-000073
	FN-000074
	FN-000075
	FN-000076
	FN-000077
	FN-000078
	FN-000079
	FN-000080
	FN-000081
	FN-000082
	FN-000083
	FN-000084
	FN-000085
	FN-000086
	FN-000087
	FN-000088
	FN-000089
	FN-000090
	FN-000091
	FN-000092
	FN-000093
	FN-000094
	FN-000095
	FN-000096
	FN-000097
	FN-000098
	FN-000099
	FN-000100
	FN-000101
	FN-000102
	FN-000103
	FN-000104
	FN-000105
	FN-000106
	FN-000107
	FN-000108
	FN-000109
	FN-000110
	FN-000111
	FN-000112
	FN-000113
	FN-000114
	FN-000115
	FN-000116
	FN-000117
	FN-000118
	FN-000119
	FN-000120

