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A B S T R A C T   

Battery prognostics and health management predictive models are essential components of safety and reliability 
protocols in battery management system frameworks. Overall, developing a robust and efficient fault diagnostic 
battery model that aligns with the current literature is an essential step in ensuring the safety of battery function. 
For this purpose, a multi-physics, multi-scale deterministic data-driven prognosis (DDP) is proposed that only 
relies on in situ measurements of data and estimates the failure based on the curvature information extracted 
from the system. Unlike traditional applications that require explicit expression of conservation principle to 
represent the system's behavior, the proposed method devices a local conservation functional in the neighbor-
hood of each data point which is represented as the minimization of curvature in the system. Pursuing such a 
deterministic approach, DDP eliminates the need for offline training regimen by considering only two consec-
utive time instances to make the prognostication that are sufficient to extract the behavioral pattern of the 
system. The developed framework is then employed to analyze the health of lithium ion batteries by monitoring 
the performance and detecting faults within the system's behavior. Based on the outcomes, the DDP exhibits 
promising results in detection of anomaly and prognostication of batteries' failure.   

1. Introduction 

Li-ion batteries (LIBs) are becoming ubiquitous in the energy storage 
units for plug-in or full electric vehicles (EVs). Based on the statistics 
obtained by Electric Drive Transportation Association (EDTA), EV sales 
in the United States market have increased from 345 vehicles in 2010 to 
601,600 in 2022, with a total of 1.8 million EVs over the twelve-year 
sales period [1]. This trend has also been observed globally as EV 
sales reached 2.1 million in 2019 worldwide, boosting the stock to 7.2 
million [2]. Although the outbreak of the COVID-19 pandemic 
dramatically affected the global EV market, prompting the market to 
plummet over the year 2020 relative to 2019, the projections exhibit an 
increase in EV stock from 7.2 million to 14 million in 2025 and 25 
million in 2030, which accounts for 10 % of global passenger vehicle 
sales in 2025 and 28 % in 2030 [2,3]. This rapid growth is attributed to 
the LIBs' superior characteristics over lead-acid, nickel-cadmium, and 
nickel-metal-hydride batteries, such as lower weight, higher energy 
density, relatively low self-discharge rate, and longer life cycle [4]. 
These features and their low emissions impact have played a significant 
role in the vast adoption of LIBs in various applications, especially in the 

transportation sector [5]. 
Although EVs' market is witnessing an unprecedented evolution, the 

fast adoption of these vehicles requires a more thorough status analysis 
of the battery performance's functionality and reliability as the primary 
power source and energy storage unit for EVs. Owing to their 
rechargeable nature, LIBs operation is subject to different irreversible 
processes taking place during their charging and discharging cycles and 
causing capacity fade due to various degradation mechanisms such as 
decomposition of solid-electrolyte interphase (SEI) on the surface of the 
electrodes, lithium decrease in electrodes caused by lithium plating or 
electrolyte oxidation which negatively impacts the cell performance 
[6–10]. Other deteriorating factors can also cause the LIBs performance, 
such as electrode decay originating from variations of the volume of 
active materials during cycles, which will result in induced mechanical 
stress, a decrease in lithium density of storage sites, and chemical 
decomposition of electrodes [11]. These cycles severely deteriorate the 
battery's electrochemical and mechanical constituents, leading to power 
loss and capacity fade [12,13]. These processes generally result in bat-
tery capacity degradation, which usually results in battery failure, with 
consequences ranging from operational loss to downtime and 
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catastrophic malfunctions [14]. 
To address the aforementioned issues, over the recent years, 

numerous studies have been dedicated to proposing proper prediction 
models for improving the reliability and availability of LIBs [15]. 
However, current models still suffer from inadequate detailing and 
inaccurate aging model construction, mostly due to the high complexity 
and computational burden associated with nonlinear models [16]. 

Furthermore, in some cases, the effect of current and state of charge 
on the proposed models may be overlooked, resulting from data insuf-
ficiency to develop a detailed model and the complexity of the compu-
tational models [17]. On the other hand, failure of LIBs does not 
necessarily occur due to a single battery degradation mechanism. 
Instead, it may stem from detrimental coupling effects during the bat-
tery's operational lifetime [18]. Due to accuracy and computational 
complexity challenges, most existing remaining useful life (RUL) and 
health prediction models focus on singular degradation effect and usu-
ally ignore the integrated deterioration mechanisms that are normally 
involved in the aging model of batteries associated with the inadequacy 
of current health estimation tools. 

The above challenges necessitate a robust and reliable predictive 
framework for prognostics and health monitoring (PHM) under a 
complexly hostile working environment. PHM is a multifaceted disci-
pline for evaluating the extent of deviation or degradation of the system 
and is intended to detect incipient components or system faults [19]. 
Traditionally, PHM techniques use either model-based (or physics- 
based) approaches, data-driven approaches, or hybrid methods which 
combine model-based methods with data-driven models [20–22]. In 
model-based or physics-based approaches, mathematical equations, 
such as differential equations, are employed to represent the system's 
performance. Also, the constitutive parameters or coefficients in the 
differential operators must be known a priori. Then, statistical estima-
tion tools relying on parity relations are used to discover, isolate, and 
potentially predict fault within the system's behavior [21,23]. Numeri-
cal predictive models based on conservation principles are then used to 
make such prognostications. A variety of model-based (or physics- 
based) methods have been proposed over recent years to predict the 
system state and failure of LIBs. Aggab et al. proposed a unifying model- 
based prognosis integrated with time series prediction method to esti-
mate the end of life of LIBs [24]. Li et al. developed an electrochemical 
model-based power prediction approach to study the safety and opera-
tion of LIBs [25]. Xiong et al. devised a recognition degradation 
approach to predict the remaining capacity of LIBs and illustrated the 
effectiveness of the model to estimate the failure [26]. Chen et al. pro-
posed a model-based fault diagnosis algorithm to study the external 
short circuit and failure of LIBs [27]. 

On the contrary, data-driven approaches use statistical pattern 
recognition tools and historical information to detect anomalies in 
parameter data, isolate faults, and estimate a product's end of life 
[28,29]. Generally, data-driven methods do not rely on the product- 
specific knowledge of the material parameters and failure mecha-
nisms; in contrast, the product's constitutive parameters are evaluated 
by in situ monitoring based on the provided data and the anomaly in the 
system is detected without needing to know the failure modes [29]. 
However, they largely rely on availability of training data that are used 
to observe abnormal patterns and predict an accurate representation of 
the model. Lately, numerous data-driven approaches have been pro-
posed, such as Artificial Neural Networks (ANN) [30], Support Vector 
Machine (SVM) [31], Gaussian Process Regression (GPR) [32], particle 
filter (PF), and fuzzy logic [28]. For instance, Cadini et al. presented a 
data-driven particle filter diagnosis method to predict the end of life of 
LIBs [33]. Dong et al. proposed a Brownian data-driven model inte-
grated with extended Kalman filter to predict the end of life of batteries 
[34]. Nuhic et al. used a SVM method to estimate the state of health and 
remaining life of LIBs. Ji et al. developed a deep learning model to model 
the aging and health of LIBs. Wu et al. used an online method based on 
feed-forward neural network (FFNN) and Importance Sampling (IS) to 

estimate the LIBs end of life [30]. Zhao et al. proposed a new approach 
combining fault diagnosis results with statistical methods to construct a 
reliable battery model [35]. 

Despite the recent advances in developing data-driven methods, such 
techniques still face major challenges. The primary bottleneck in using 
data-driven methods is their direct dependency on pre-existing data that 
are used to train the models which are not always available. Moreover, 
current data-driven algorithms easily neglect the importance of properly 
tuning hyperparameters, regularization and selection of proper loss 
functions that are important for achieving high accuracy models. When 
too many hyperparameters are adjusted simultaneously, rendering 
conclusive solutions becomes hard to achieve [36]. Considering the 
above challenges in the current state of the art of LIBs prognostics and 
health management, it is crucial to introduce new methods that can 
eliminate the current drawbacks in the battery predictive models with 
high prognostication accuracy. To achieve this goal, the models need to 
minimize their dependency on the presence of explicit expression for 
conservation principles that are widely used in model-based or physics- 
based approaches on one hand and reduce the reliance to large amount 
of training data in data-driven models on the other hand. Thus, 
exploring novel venues to develop such models becomes imperative. 

In this context, this study aims at proposing and developing a novel 
data-driven approach called data-driven prognosis (DDP) that estimates 
the relevant constitutive parameters of the system in situ and detects 
deviations from the degradation dynamics or behavioral pattern of the 
system. The proposed DDP approach circumvents the need for offline 
training and relies solely on in situ measurements. This is achieved by 
pursuing a deterministic approach rather than a probabilistic approach 
and considering only two consecutive time instances at each step of the 
simulation to make the prognostication that are sufficient to extract the 
behavioral pattern of the system. Although the DDP uses a deterministic 
framework, the solution's stochastic nature arises naturally from the 
underlying assumption regarding the order of the potential function and 
the number of dimensions considered. It can be easily modified to be 
employed for any system in which such a priori testing is difficult or 
even impossible to conduct due to circumventing the need for offline 
training. DDP functions under the principle that at each two consecutive 
time instances, a conservation functional is locally assigned at each 
observation point which is assumed to be piecewise quadratic in this 
work, whereas the global format is unknown. The conservation principle 
is then used to minimize the system's local curvature at each step of the 
time which is defined as the fault criteria in this study. Using such an 
approach, a dimensionless length scale containing a correct combination 
of geometric and materialistic information of the system is extracted and 
estimated. Ultimately, the system stability is represented as its ability to 
minimize the local curvature below a critical value which is defined as 
the inverse of length scale at each observation point. Therefore, the 
stability characteristics of the system are dependent upon the dimen-
sionless length scale in addition to the local curvature information. Such 
an approach eliminates the need for explicit conservation and consti-
tutive functionals. The instability forecasting capability of the DDP 
method has been verified to be accurate previously in a balloon burst 
experiment [37]. After developing the framework the DDP was 
employed to analyze the health status of LIBs by detecting faults within 
the system's performance and predict the global instability of the bat-
teries. This is done by using a set of data extracted from experimental 
program in which two LIBs were tested and relevant information were 
obtained and fed into the algorithm. The remainder of the paper is 
organized as follows: the DDP model development, including the algo-
rithms, introduced in Section 2. Section 3 briefly details the experi-
mental program, followed by results in Section 4 and the conclusion in 
Section 5. 

2. Model development 

In the proposed approach, it is assumed that a conservation principle 
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is applied to the observation points, which may be the conservation of 
energy, conservation of linear and angular momentums, or all of the 
above. In the proposed DDP method, it is assumed that the total mo-
mentum in the system is conserved. Following such a logic, a dimen-
sionless form of length scale value containing the correct combination of 
geometric and material parameters, is derived from the conservation 
functional. The length scale values are then used to capture the 
magnitude of curvature in the system as a form of absorption or release. 
To do so, suppose we have an observable body or phenomena with a 

finite number of observation points. At each of these observation points, 
information is collected at discrete instants of time in multiple di-
mensions. These points are collectively considered, and a normalized 
relationship is constructed for each pair of points for the entire set of 
observation points. Calling the two observation points A and B, at a 
specific dimension d, the normalized relationship, aAB

d , is defined as Eq. 
(1): 

aAB
d =

uA
d − uB

d

uA
d + uB

d + 2md
(1)  

where uA
d and uB

d are the measured values at dimension d at points A and 
B. The parameter md is a small constant, to be determined later. The 
purpose of such a normalized relationship is to have an understanding of 
the behavior of points in a pairwise manner. Next, a governing conser-
vation principle is applied at each point that must be satisfied at all 
times, considering that the system remains in a conservative state. The 
principle of conservation of linear momentum is chosen for this purpose. 
Furthermore, it will be attempted to satisfy the three canonical re-
quirements: equilibrium, compatibility, and constitutive laws. To 
develop such a model, as the first attempt, a piecewise second-order 
utility function is assumed to sufficiently describe the system's in-
teractions. However, the nature of the piecewise quadratic potential 
function can differ from one point to the other. Additionally, it is 
assumed that the objectivity in the system is also ensured at all times, 

Table 1 
Path dependency index (PDI) categories.  

Category Definition of the category  

1 Complete stability: (abs(ka)/abs(k-long)) <1 and (abs(k)/abs(k-short)) 
<1  

2 Long-term stability & short term instability: (abs(k)/abs(k-short)) > 1  
3 Long-term instability & short term stability: (abs(k)/abs(k-long)) > 1  
4 Provisional stability: Changing mode mixity might cause local instability  
5 Short-term and long-term instability: local instability cannot be 

controlled by altering mode mixity  
6 Short-term and long-term instability in dimension > 1  
7 Short-term and long-term instability in dimensions > 2  
8 Chain length > short-term critical chain length, PDI > 5  
9 Chain length > long-term critical chain length, PDI > 5  

a k = kappa (curvature). 

Fig. 1. Experimental result of the battery peak charge discharge capacity and voltage: a) 48D battery capacity @ 1C, b) 54D battery capacity at @ 2C, c) 48D battery 
voltage, d) 54D battery voltage. 
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implying that the state of the observed system remains unchanged due to 
rigid body transformations of the reference frame. Doing so ensures the 
satisfaction of three canonical requirements. Enforcing these re-
quirements, the system is described by considering the conservation of 
linear momentum in the neighborhood of point A as [37,38]: 

RA
i − βA

ik ×ΔHA
k = 0 (2)  

where Ri represents the rank (long-term rank) in dimension i at point A. 
Hk represents the Borda count (short-term rank) at dimension k at point 
A. ΔHk represents the change in the Borda count in dimension k during a 
time step. Borda count in this context, is calculated by constructing a 
global skew-symmetric matrix that represents the normalized value for 
each pair of points and summing them at each row or column. Long-term 
rank is similarly computed by performing one round of iteration using 
Eq. (3). 

a1
ij = a0

ij +CF •
∑

k∕=i,j

(
a0

ik + a0
kj

)
,∀i, j (3)  

where a0
ij denotes the given initial pairwise differences between i,j, a1

ij 

represents the revised pairwise differences after one iteration defined 
late on, and CF is a positive constant described as the confidence factor. 

For more details about these parameters, readers are encouraged to 
refer to [39–42]. The parameter βik is a non-dimensional quantity that 
represents a second-order norm of the length scale around a point, which 

is described as: 

βik =

(
1

Δt2

)

×

(
ρ

Eijkl

)

×
⃦
⃦LlLj

⃦
⃦ (1) 

Here, Δt is the change in time step, ρ is the density and Eijkl is the 
tangent modulus. Substituting the above expressions into Eq. (2), we 
obtain the general format for the length scale that is expressed as: 

Eijkl

[
Ri

LlLj

]

=
ρ

(Δt)2 ×ΔHk (2) 

The length scale is defined as the region of validity along a particular 
dimension in which the linearization of the governing equation is valid. 
Furthermore, the conservation of angular momentum and the symmetry 
of the potential function about an interchange of the state variables are 
enforced. This is administered by requiring interchangeability of (i and 
j), (k and l) as well as (i,j and k,l) as pairs. Existence of symmetrical 
potential function, is also mandated by the work conjugacy requirement 
of stress and strain [43]. After enforcing all the symmetry requirements, 
a general expression of the potential function at each observation point 
is expressed as: 

Eijkl

2
×

[
Ri

LlLj
+

Rj

LkLi
+

Rk

LjLl
+

Rl

LiLk

]

=
ρ

(Δt)2 ×
[
ΔHi +ΔHj +ΔHk +ΔHl

]

(3) 

Fig. 2. Path dependency index for peak charge capacity: a) 48D battery @ 1C, 
b) 54D battery @ 2C. Fig. 3. Number of roots having category >5 showing path dependencies only in 

peak charge: a) 48D battery @ 1C, b) 54D battery @ 2C. 
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The number of solutions for the potential function is dependent upon 
the number of dimensions involved in the system. In general, the 
number of solution, also called the number of roots, is 2dimsize (dimen-
sion size). At each point, there are a number of dimensions; the root at 
each point in each dimension corresponds to the roots at every other 
dimension. Thus at each point at each dimension, the number of equa-
tions is equal to the number of dimensions. For instance, if there are 4 
dimensions at a specific point, the number of equations is 4. The roots 
then can be obtained by solving the set of (d x d) simultaneous equations 
at each observation point. Thus, the proposed strategy requires solving 
N matrices (when N is number of observation points) each with 
dimension d, resulting in a very computationally efficient and massively 
parallelizable scheme. 

The component md essentially sets the datum, and the coordinate of 
the origin is set at − md in the corresponding dimension. Owing to the 
fact that only a least square approximation is used for calculating md, it 
is applied universally to all points (with the purpose of setting a same 
datum for all observation points). However, the values of md in different 
dimensions are different and are set independently. 

Next, the obtained values of volumetric and shear length scales are 
used to compute the shear and volumetric curvatures. This is achieved 
by defining a composite curvature as (Eq. (7)): 

κ = ακv +(1 − α)κs (4)  

where, κv and κs are volumetric and shear curvatures, respectively, that 
are calculated as: 

κv =
(R × Lv − H × L̃v)(

( (
L2

v

)
× L̃v

)
×
(

1 + (H/Lv)
2
)1.5

) (5)  

κs =
(R × Ls − H × L̃s)(

( (
L2

s

)
× L̃s

)
×
(

1 + (H/Ls)
2
)1.5

) (6) 

L̃ represents the homogenized version of L, α is the proportion by 
which volumetric curvature takes place and R and H are rank and Borda 
count that were described previously. Substituting the volumetric and 
shear curvature values in Eq. (7), it is attempted to minimize the com-
posite curvature by setting the LHS of the equation to zero and obtain 
the α values at each point across each dimension. Then, the mean of all 
squared α values are taken and used in Eq. (6) again using that unique 
value to obtain the composite curvature. 

To identify a specific range for the alpha values, we employ the 
composite stress equation that is described by [43]: 

σij = λε′δij + 2G
(

εij −
1
3
ε′σij

)

(7)  

where λ and G are bulk and shear modulus, respectively, and are defined 
as: 

λ =
νE

(1 + ν)(1 − 2ν) (8)  

G =
E

2(1 + ν) (9) 

By comparing Eq. (10) with Eq. (7), a similarity is noticeable be-
tween these two equations and their volumetric and shear components. 
The range of proportionality is obtained from this resemblance and 
considering the proportions of: 

λ
2G

=
α

1 − α =
ν

(1 − 2ν) (10) 

We already are aware of the range of Poisson's ratio that is in the 
range of − 1 < ν < 0.5. hence, the range of α should be between − 0.5 < α 
< 1. By computing alpha, the mode mixity between the dilatational and 
shear modes in the problem is assigned. 

2.1. Post processing [37,38] 

The proposed method relies on a set of criteria that evaluates the 
magnitude of instability in the system. These criteria use the information 
that was obtained from length scale and curvature calculations. They are 
discussed in the following sections. 

2.1.1. Categorizing the instability of observation points 
The next step in model development is the assignment of the path 

dependency index (PDI) to the observation points following the deter-
mination of curvature and associated length scales which is a type of 
data classification. The PDIs are divided into nine possible categories 
each representing a magnitude of instability, in which category 1 rep-
resents no instability and category 9 denotes complete instability 
(Table 1). All 16 roots (in 4D) for the length scale obtained from the 
previous step have to be examined individually for this stage. The 
severity of instability will be measured based on the ratio of the absolute 
value of the obtained composite curvature equation divided by the ab-
solute value of curvature that is determined from the reciprocal of length 

Fig. 4. Number of roots having category >5 and having chain length greater 
than number of points in peak charge capacity: a) 48D battery @ 1C, b) 54D 
battery @ 2C. 
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scales, i.e. L and L̃; we call them kappa short and kappa long, respec-
tively. If the obtained value is less than one in both cases, we conjecture 
that the observation point does not exhibit short or long-term instability. 
Depending on whether the point reaches short-term or long-term 
instability, it will be categorized based on Table 1. The initial 7 cate-
gories are related to PDI, and the remaining 2 categories, i.e. categories 
8 and 9, are designed for further post-processing, which depicts the 
global transcendation index or GTI. Suppose the observation point falls 
in the category 5 or more. In that case, we conclude that the point enters 

the path dependency stage and might illustrate local instability with the 
potential to enter the global instability phase. 

2.1.2. Determination of chain length 
Following the assignment of PDIs, it is necessary to check how long a 

defect or a chain of possible unstable points might continue in either 
direction in the order of their ranks, called chain length. This calculation 
is done to facilitate the determination of chain length in abstract systems 
such as genetics or economic systems that is associated with the 
constitution of energy exchange pathways. For a point to enter an energy 

Fig. 5. Number of roots having residual curvature drops >80 % in peak charge capacity: a) 48D battery @ 1C, b) 54D battery @ 2C.  
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exchange pathway, it must exhibit a PDI ≥ 5. This threshold is identified 
as the critical gateway to transcendation to the next aggregated scale in 
the hierarchy and might enter to global transcendation phase. 

2.1.3. Global transcendation index 
After the system enters the path dependency phase, if it meets two 

additional measurements, it is conjectured that it is progressing toward 
failure. These measurements are: (1) the locally path-dependent obser-
vation points form a chain, whose length exceeds a critical threshold 
value, (2) the aggregated level of the system exceeds a critical threshold 
called residual curvature. Upon meeting these measurements, the sys-
tem enters the global transcendation stage and the category 8 is assigned 
to the point if it reaches PDI > 5, and GTI > 0 in one dimension, and 
category 9 is assigned if both of these conditions are satisfied in multiple 
dimensions. 

2.1.4. Aggregation or zoom-out procedure 
The aggregation procedure (or zoom-out plot) is followed and 

calculated to determine the critical chain length and residual curvature 
(also called aggregated curvature) of the system for each instant of time. 
The residual curvature provides a measure of the potential energy ex-
change rate of the system with its surrounding environment. According 
to the definition of zoom out procedure, the observed curvature for a 
conservative system should be approximately zero in instances when the 
stand-off distance of the observer is both zero and infinity. Such a pro-
cedure serves as a mean to identify the critical length of the energy 
exchange pathway that is required for the local instabilities to transcend 
to global scales. The energy exchange rate also needs to exceed a critical 
threshold value to meet the sufficiency conditions for transcendence of 
local instabilities to global scale. Because the critical energy release rate 
is related to the system's constitutive property, which is determined 
normally by conducting offline testing, the proposed method assumes 
that almost all of the energy stored along the exchange pathways gets 
released when the local instability transition to a global scale. Hence, the 
energy rate fluctuates rapidly and falls nearly to zero during such a 
transcendent procedure. This rapid fluctuation in the energy exchange 
rate is used in this method to account for a trigger initiated every time 
the energy rate drops >80 % during a step (which is arbitrarily chosen 
and associated with the inherent noise and computational burdens). 
Therefore, a point reaches the global transcendent stage following 
exceeding a critical chain length and 80 % or more drop in the energy 
release rate during a single time step, constituting a GTI >0. 

The failure prediction relies on three primary measurements, and for 
a system to initiate instability and it needs to meet the following metrics: 
(1) the system enters the path dependency phase, (2) long-term chain 
formation is triggered, and (3) residual curvature (or energy release 
rate) is dropped by 80 % or more. A system is said to approach to failure 
if it meets these conditions simultaneously and the prognosis scheme 
makes a prediction based on the instant of time that these measurements 
were met. It should be noted that the method was previously validated 
based on the studies conducted in [37,38]. 

3. Experiments 

The experiments were mainly aged battery cycling tests. Since the 
proposed DDP requires large amount of data (i.e., charge capacity, 
discharge capacity, current, and voltage) at each data collection and 
sampling to analyze, we selected commercially available rechargeable 
lithium batteries that are naturally aged in our lab and quickly failed 
during testing. Cost and equipment limiting factors led to the decision to 
use Kokam superior lithium polymer pouch-sized batteries that are 95 
mm in height and 3.5 mm in depth, and 64 mm wide. As suggested by 
the manufacturer, the maximum charge current and voltage were set to 
below 2020 mA and 4.2 V; the maximum discharge current and voltage 
were 3030 mA with a cut-off voltage of 3.0 V. The battery-rated ca-
pacity, nominal voltage, and cycle life are 2100 mAh, 3.7 V, and 500 

Fig. 6. Zoom out plot – Chain length calculation in peak charge capacity 
(48D battery). 

Fig. 7. Composite failure prediction for: a) 48D battery @ 1C, b) 54D battery 
@ 2C. 
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Fig. 8. Composite failure prediction of DDP for: a) 48D battery @ 1C, b) 54D battery @ 2C.  
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cycles (@ 0.5C charge and discharge). Data collection used a Neware 
BTS5V6A8CH battery testing system. Constant Current Constant Voltage 
(CCCV) charging and discharging protocol was adopted for all tests. The 
test included loading and unloading the cells to their cut-off voltage and 
subsequently charging them to their maximum safe voltage (100 % 

SOC). Then, the Vencon recharges the cells to 30 % SOC in order for safe 
storage. Furthermore, each step is performed based on the battery 
specifications and desired test (for instance, maximum C-rating). 

In order to define the battery failure, we have considered the ex-
ceedance of capacity loss >80 % with respect to original capacity as the 
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Fig. 9. Normalized charge discharge capacity for (a) NMC and (b) LFP batteries.  

Fig. 10. Composite failure prediction of DDP for: a) LFP battery, b) NMC battery.  
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failure point. Owing to the fact that the selected batteries were already 
ages and not much capacity was left in the devices, it was expected that 
the batteries will reach this threshold fairly soon. Furthermore, we 
carried out model validation by performing an additional analysis using 
the DDP for brand new batteries with the results shown in the next 
sections. 

4. Results and discussion 

After the batteries were analyzed, the results of the experimental 
tests were extracted. The extracted battery data are voltage, current, 
charge, and discharge capacity. Fig. 1 shows the variation of peak charge 
and discharge capacity for the battery cycling in 48 days (i.e., 48D) @ 1C 
and 54 days (i.e., 54D) @ 2C and voltage graphs of batteries for the first 
1500 and 1000 min of cycling. According to the nominal capacity value 
of the batteries which was 2.1 Ah, after performing the experimental 
tests, it was witnessed that the capacity values started from 1.7 Ah for 
the 48D battery at 1C and 0.8 Ah for the 54D battery at 2C which 
indicate that the batteries are already crossed the end of life threshold. 
The results are shown in Fig. 1. 

4.1. Path dependency index (PDI) 

As described in the model development section, first the long-term 
and short-term ranks are computed using the constructed global ma-
trix and Eqs. (1) & (2) at each instant of time. Using the two obtained 
values, the conservation principle is enforced at each point and the 
dimensionless length scales (dilatational and distortional) using the 
given Poisson's ratios are obtained, allowing for the calculation of local 
curvature. The obtained local curvature information is then used to 
compare the curvature values with the critical threshold (denoted by the 
reciprocal of the length scale). Based on the comparison results, each 
point at a specific root is assigned a PDI category based on Table 1 to 
evaluate the amount of instability that occurs at each point. A PDI >5 
represents local instability in the system with the potential to transcend 
to global instability. Next, consistent with the assumption of piecewise 
second-order utility function around each observation, the zoom-out 
aggregation procedure is followed. This procedure is done to identify 
the critical chain length in the system defined as the magnitude of en-
ergy exchange pathway required for a local instability to transcend to 
global scales. Coupling occurrence of chain length greater than the 
critical value in addition to the exceedance of energy exchange rate 
through such a pathway, constitutes the global instability in the system. 
Such critical energy release rate is an inherent property that is normally 
calculated through offline testing. In this work, instead of such offline 
measurement, it is conjectured that almost all of the energy stored along 
such a pathway gets released when the local instabilities transition to 
global scales. Hence, during such transcendent, the energy exchange 
rate fluctuates rapidly and reaches zero. This rapid energy exchange rate 
is used in the scheme as the instant that energy drops >80 % at a time 
instant. Selection of such a rate is arbitrary in this method, alluding to 
the inherent noise floor in the procedures. The results of the PDI cate-
gorization are shown in Fig. 2 for the batteries. The figure demonstrates 
the percentage of points reaching a specific PDI for different time in-
stants. Based on the results of the PDI calculation, the system enters the 
path dependency phase in its initial stages. 

The figure illustrates the number of roots that have a PDI category 
larger than 5 only without the chain length information considered. The 
times when the roots are equal to and >50 % in number of points, is said 
to be path dependent. The system is said to be path-dependent if at least 
one point in the observation body is path-dependent. Fig. 3 shows the 
plots that highlight the moments when the batteries might have become 
path-dependent only. In other words, they show the number of roots 
with a PDI category >5 without the chain length information. Based on 
the results, the systems in both cases enter the path dependency at their 
early stage. 

4.2. Chain length formation 

Fig. 4 illustrates the number of roots that had PDI ≥ 5 and also 
crossed the critical chain length threshold (22 in the battery system). 
The value of critical chain length is calculated from the zoom-out plot 
which is shown in Fig. 6, as a sample plot for an arbitrary dimension. 
After calculating the curvature values (κ or kappa) as well as short-term 
and long-term critical values which are denoted by ( 1

LBar,
1

LBarTilda 
respectively) at every aggregation level, the kappa graph is extrapolated 
in its opposite region using the symmetry condition. Then, 1

LBarTilda line is 
extended backwards until it intersects with the mirror line (around y- 
axis) of kappa graph. Then, the logarithmic value of this intersection is 
identified and considered as the number of points related to the aggre-
gated frame and critical chain length value. Such a value provides an 
estimate for long-term critical chain length. Critical chain length is 
calculated to determine how long a defect continues in each direction in 
order of their ranks. The critical chain length depends on the number of 
chosen observation points. The instants of time when the roots are equal 
and >50 % (8 out of 16) in number, the system is said to be near failure 
in all those times. Based on the results, for both 48D and 54D batteries, 
the systems cross the long-term localization index at an early stage and 
this phenomenon is more severe for 54D batteries. 

4.3. Residual curvature 

As discussed in previous sections, Fig. 3 illustrates when the system is 
only path-dependent, while Fig. 4 illustrates when local instability 
might transcend to global instability by forming an energy exchange 
pathway longer than the critical threshold value. The residual curvature 
results for the systems at different time indices are shown in Fig. 5. The 
residual curvature concept is used herein to provide a dimensionless 
aggregated measure of the magnitude of the energy exchange rate for 
the system. According to this concept, if the residual curvature surpasses 
a critical threshold value, the local instability can transcend to global 
instability in the system. 

Here, another fact was used is that the stored energy in the system is 
depleted rapidly during such global transcendation. Thus, the rate of 
change, such rapid drop, is constantly monitored to detect any imminent 
failure of the system. At time instances in which this rapid drop exceeds 
>80 %, it is said that the system is progressing toward failure. After each 
time instant was analyzed, the results were obtained and shown in Fig. 5, 
which shows the percentage of a total number of roots (out of 64) in all 
four dimensions of the battery that had a drop of residual curvature 
larger than 80 %. The battery will dissipate a large amount of energy if 
the number of roots reaches a value larger than 20 % (12 out of 64 
roots). 

4.4. Critical localization index 

The zoom out plots, as stated previously, are used to calculate the 
critical chain length in the system. Based on the results of the critical 
chain length calculation shown in Fig. 6 for 48D battery in an arbitrary 
dimension, the number for the critical chain length can be obtained and 
converted to a number corresponding to the number of observation 
points were considered for the lithium-ion batteries. The number 
derived from Fig. 6 represents the critical chain length for 9 points and 
later converted to match the number of points considered for the system. 
This number is considered for the chain length algorithm to determine 
how many points form a chain that is larger than the calculated value. 

4.5. Composite failure prediction 

The final failure prediction of the batteries takes all the above 
analysis into account in order to make a prognostication about the 
system as to when is the most probable time that it fails. The results are 
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shown for 48D and 54D batteries in Figs. 7 and 8. To prognosticate the 
failure, the system first needs to enter the path dependency phase. Then, 
if the chain formed at each time instant exceeds the critical chain length 
in both short-term and long-term phases, the dislocations have the po-
tential to form a line defect which can cause failure in the system. 

Furthermore, the system needs to have greater energy absorption or 
release than the critical energy exchange rate. Such activity is seen 
through large and rapid drops in residual curvature. A drop of larger 
than 80 % is used here as a trigger in the system. Once both of these 
criteria are met (GTI > 0) after the system entered the path dependency 
mode (PDI > 5), failure can be predicted for the system. In the battery 
prognostics, the systems were under constant monitoring when it 
entered the path dependency stage. Based on the results, for the 48D 
battery, the system is supposed to fail at time instant 15, while for the 
54D battery, the system is expected to fail at time instant 5 which was 
expected as the batteries were already aged and did not contain much 
capacity. The prognostications were validated by comparing the results 
with the experimental testings. The failure of LIBs is defined as the 
moment when the full charging capacity reaches 80 % of the rated value 
which is a common threshold in most applications. As such, this 
threshold was chosen as the end of life (EOL) of LIBs. According to the 
results, both batteries fail in the initial stages of cycling which aligns 
with DDP results. Taking into account all of the failure criteria for the 
batteries, the results are compiled and shown in Fig. 8. In the figure, the 
critical instances for each criterion, i.e. PDI, chain length and residual 
curvature are shown with yellow color indicating exceeding the limit 
and green color noting not a critical region. 

4.6. Further estimation of battery failure 

In order to validate the DDP results and provide a further estimation 
of the battery failure, additional simulations were carried out on new 
batteries. For this purpose, two batteries with polymer electrolyte were 
chosen with the cathode made of lithium nickel cobalt manganese oxide 
(NCM) and lithium iron phosphate (LFP). The cut-off voltage range for 
NMC was between 3.0 and 4.2 V and for LFP was between 2.0 and 3.65 
V. Nanocomposite polymer electrolytes (CNPEs) based on polyethylene 
oxide were used for the electrolyte with the tests being stopped when the 
charge capacity of the batteries were dropped to 80 % of the initial 
capacity which was 82 cycles for the NMC battery and 230 cycles for the 
LFP battery. The data that were used for the DDP were extracted from 
[44] with the normalized capacity graphs shown in Fig. 9. The features 
that were fed to the algorithm were charge discharge capacity and 
impedance information from the experimental tests. 

The results of the simulations for the selected batteries are shown in 
Fig. 10 that are compiled in a single graph. As shown in the results, the 
DDP predicted the failure of the batteries accurately before the actual 
failure of the batteries. The yellow color in the prognostication chart 
depicts the instance that the corresponding criteria of the DDP are met 
and the red color indicates the onset of failure in which the operation of 
the batteries needs to be stopped. 

5. Conclusions 

One of the main obstacles in the further adaptation of the current 
electric vehicle market is the reliability and safety of battery packs. A 
universal solution for safe operation and accurate monitoring of batte-
ries is the implementation of PHM frameworks. This study proposed and 
employed a novel data-driven method to analyze the health status of Li- 
ion batteries. The method is suitable for handling multi-scale and multi- 
physics problems that is based on data gathered in a continuous process. 
Unlike many PHM methodologies that rely on the system's available 
information or constitutive parameters obtained by offline testing, the 
proposed scheme obviates the need for a priori offline testing by pur-
suing a deterministic approach considering two consecutive time se-
quences at each step. The developed method was then used to monitor 

the performance of lithium-ion batteries by making a prognostication as 
to when is the most probable time that the batteries will fail. Experi-
mental data from battery cycling were fed into the algorithm which were 
voltage, current and charge discharge capacity. DDP uses these infor-
mation to detect excessive deviation from the critical threshold repre-
sented by system curvature. Based on the results obtained, it has been 
proven that DDP was able to predict the failure of the batteries prior to 
the actual failure. The results were validated by conducting a model 
verification scheme that confirmed the efficacy of the framework. The 
proposed method can substantially contribute the increase in the ad-
vancements of PHM techniques and ensure the safety and reliability of 
lithium ion batteries. 
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