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ABSTRACT
We analyse the effect of foregrounds on the observed alignment of the cosmic microwave
background radiation (CMBR) quadrupole and octopole. The alignment between these mul-
tipoles is studied by using a symmetry-based approach which assigns a principal eigenvector
(PEV) or an axis with each multipole. We determine the alignment between these multipoles
and its significance using the internal linear combination (ILC) 5- and 7-yr maps. We also use
the maps obtained by applying the internal power spectrum estimation (IPSE) procedure on
the corresponding Wilkinson Microwave Anisotropy Probe data sets to assess its significance.
The effect of foreground cleaning is studied in detail within the framework of the IPSE method
both analytically and numerically. By using simulated CMBR data, including foregrounds and
detector noise, we study how the PEVs of the simulated pure CMB maps differ from those
of the corresponding clean maps. We find that, in general, the shift in the PEVs is relatively
small and in random directions. Because of the random nature of the shift we conclude that the
residual foregrounds can only lead to misalignment rather than cause alignment of multipoles.
We also directly estimate the significance of the observed alignment by using simulated clean
maps. We find that the results in this case are identical to those obtained by simple analytic
estimates or by using simulated pure CMB maps.

Key words: methods: data analysis – methods: statistical – cosmic background radiation.

1 IN T RO D U C T I O N

The standard cosmological model rests on the cosmological principle which states that the Universe is homogeneous and isotropic. However,
there are many indications from diverse data sets that this principle may not be applicable. In particular, polarizations of radio waves coming
from distant radio galaxies (Birch 1982; Jain & Ralston 1999), the optical polarizations from quasars (Hutsemékers 1998; Hutsemékers &
Lamy 2001; Jain, Narain & Sarala 2004) and the multipoles l = 1, 2, 3 of cosmic microwave background radiation (CMBR) all indicate a
universal axis pointing in the direction of the Virgo cluster (de Oliveira-Costa et al. 2004; Ralston & Jain 2004; Schwarz et al. 2004). This
phenomenon has been called the Virgo alignment puzzle (Ralston & Jain 2004). There have also been other claims of large-scale anisotropy in
the CMBR data. These include the dipole power modulation (Eriksen et al. 2004, 2007b; Hoftuft et al. 2009), the detection of an anomalously
cold spot (Cruz et al. 2005), as well as an anomalous signal in the ecliptic plane (Diego et al. 2010). These and many other CMB anomalies
have been studied in great detail (Bielewicz, Górski & Banday 2004; Hansen, Banday & Górski 2004; Katz & Weeks 2004; Bielewicz et al.
2005; Prunet et al. 2005; Bernui et al. 2006, 2007; Copi et al. 2006, 2007; de Oliveira-Costa & Tegmark 2006; Freeman et al. 2006; Helling,
Schupp & Tesileanu 2006; Wiaux et al. 2006; Land & Magueijo 2007; Magueijo & Sorkin 2007; Vielva et al. 2007). Meanwhile, some studies
did not find any violation of statistical isotropy in the CMB (Hajian, Souradeep & Cornish 2004; Hajian & Souradeep 2006). Furthermore,
the cluster peculiar velocities (Kashlinsky et al. 2008, 2009), as well as the large-scale galaxy distribution (Itoh, Yahata & Takada 2010), also
indicate deviations from isotropy. The preferred axis for the cluster peculiar velocities with a high-redshift cut is found to be again close to
the direction of the Virgo cluster. In the galaxy distribution surveys, the preferred axis appears to depend strongly on the cut made on the data.

There have been a variety of proposals in the literature discussing the possible origin of this alignment anomaly, such as anisotropic
space–times (Berera, Buniy & Kephart 2004; Kahniashvili, Lavrelashvili & Ratra 2008), foreground contaminations (Slosar & Seljak 2004;
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Abramo, Sodre & Wuensche 2006; Rakić, Rasanen & Schwarz 2006), noise bias or systematics (Gruppuso, Burigana & Finelli 2007;
Naselsky, Verkhodanov & Nielsen 2008), vector-like dark energy (Armendariz-Picon 2004), spontaneous breaking of isotropy (Gordon et al.
2005; Land & Magueijo 2006; Erickcek, Hirata & Kamionkowski 2009), inhomogeneous universe (Moffat 2005; Land & Magueijo 2006),
inhomogeneous inflation (Carroll, Tseng & Wise 2010), violation of rotational invariance during inflation (Ackerman, Carroll & Wise 2007),
anisotropic perturbations due to dark energy (Battye & Moss 2006), anisotropic inflation (Buniy, Berera & Kephart 2006), local voids (Inoue
& Silk 2006) and anisotropic dark energy (Koivisto & Mota 2008; Rodrigues 2008).

Another interesting effect associated with the quadrupole is its low power in comparison to the best-fitting � cold dark matter (�CDM)
model (Bennett et al. 2003a). One may speculate that the observed quadrupole–octopole alignment is related to the observed low quadrupole
power. It has been shown that in random realizations of pure CMB maps there is no correlation between the low quadrupole power and
quadrupole–octopole alignment (Rakić & Schwarz 2007; Sarkar et al. 2010).

In the present paper, we analyse the alignment of CMBR quadrupole (l = 2) and octopole (l = 3) moments more closely. In Slosar &
Seljak (2004), it has been suggested that this alignment may be caused by the galactic foregrounds. These authors argue that most of the
power of the quadrupole and octopole lies in the most contaminated region of the sky. Hence, it is entirely possible that these multipoles may
be significantly contaminated and the alignment may be caused due to poor cleaning. The internal linear combination (ILC) map, provided
by the Wilkinson Microwave Anisotropy Probe (WMAP) team (Bennett et al. 2003b), as revised in Gold et al. (2009), has been found to
be consistent with Gaussian random realizations (Gruppuso & Burigana 2009) and hence may not be significantly contaminated. However,
according to the authors, this still does not rule out the possibility that it may be contaminated with a residual which follows a Gaussian
distribution.

In the internal power spectrum estimation (IPSE) procedure (Saha, Jain & Souradeep 2006; Saha et al. 2008; Samal et al. 2010), the
cleaning is performed by a blind procedure without making any explicit model for foregrounds. The foregrounds are removed by adding maps
in harmonic space at different frequencies with suitable weights, chosen so as to minimize the foreground power. There also exist other blind
procedures, applicable at low l, for foreground cleaning (Tegmark & Efstathiou 1996; Maino et al. 2002; Martı́nez-González et al. 2003;
Tegmark, de Oliveira-Costa & Hamilton 2003; Hansen et al. 2006; Eriksen et al. 2007a, 2008). Some of these are reviewed in Leach et al.
(2008). The ILC map is also obtained by using a blind cleaning procedure (Bennett et al. 2003b). Here the weighted maps are added directly
in pixel space. Both the IPSE and ILC procedures are highly effective in removing foregrounds. However, some residual foregrounds may
still contaminate the data. Besides this, Saha et al. (2008) and Samal et al. (2010) pointed out the existence of a bias in the low-l multipoles
extracted from foreground cleaned maps. This bias leads to a significant reduction of extracted power in these multipoles. Hence it might
provide a consistent explanation of the observed low power at l = 2, in comparison to the best-fitting theoretical �CDM model. It is clearly
important to determine what this low-l bias might imply for the alignment of these multipoles. It could be that the power gets eliminated in
just the precise manner in order to cause alignment. Here we study whether any of these residuals present in the foreground cleaned data may
cause the observed quadrupole–octopole alignment.

It is important to note that the observed alignment is only getting better with more data. A larger data sample implies smaller uncertainties
due to detector noise. Hence, the signal becomes more prominent as the fluctuations due to detector noise get suppressed. It will, therefore,
be very interesting to see how the signal changes with more data from WMAP and Planck (Planck Collaboration 2005; Lamarre et al. 2010;
Mandolesi et al. 2010; Tauber et al. 2010).

The problem of testing violation of isotropy in the CMBR signal has been addressed by many authors. The CMBR anisotropy spectrum
is generally assumed to be isotropic in a statistical sense. We can make a spherical harmonic expansion of CMBR anisotropies observed over
the sky as

�T (θ, φ) =
∞∑
l=0

+l∑
m=−l

almYlm(θ, φ), (1)

where θ and φ are the usual spherical polar coordinates. Thus, the assumption of statistical isotropy of the CMBR signal means that the
spectral coefficients, alm, are uncorrelated for different m and l, i.e. the ensemble average,

〈a∗
lmal′m′ 〉 = δll′δmm′Cl, (2)

where Cl is the standard power. A multitude of statistics have been proposed in order to test for deviation from statistical isotropy in the CMBR
data (Hajian et al. 2004; Bernui et al. 2006; Copi et al. 2006, 2007; Hajian & Souradeep 2006). Here, we shall use the method introduced
in Ralston & Jain (2004) and further developed in Samal et al. (2008, 2009). In this procedure, we construct what we call a ‘power tensor’
for each multipole using the spectral coefficients, alm, and generators of the SO(3) rotation group. Then, one assigns three orthogonal unit
vectors for each multipole extracted from this power tensor. The orientation of these vectors, as well as the power associated with each vector,
contains information about possible violation of statistical isotropy. This information is encoded in two entropy measures, the power entropy
and alignment entropy, defined in Samal et al. (2008). Using this method one can test for violation of isotropy for each individual multipole
or collectively over a range of multipoles. We present an outline of our analysis procedure in Section 2, with results from cosmological data
and simulations in Section 3 and, finally, summarize our conclusions in Section 4.
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2 A NA LY S I S ME T H O D O L O G Y

The primary objective of the present paper is to determine whether the alignment of quadrupole and octopole can be caused by foreground
contamination. The alignment of different multipoles can be quantified by associating a frame with each multipole (Ralston & Jain 2004;
Samal et al. 2008). In order to analyse the effect of foreground contamination we first perform an analytic calculation of the power tensor,
introduced in Ralston & Jain (2004) and Samal et al. (2008), within the framework of the IPSE technique (Saha et al. 2006, 2008; Samal
et al. 2010). Here we confine ourselves to the simple case of one foreground component following rigid frequency scaling and two frequency
bands. This computation is useful to determine if the low-l bias (Saha et al. 2008; Samal et al. 2010) also leads to violation of statistical
isotropy. We then numerically determine the effect of this bias and residual foregrounds on the alignment of quadrupole and octopole. We
generate many random realizations of the CMBR maps and add foregrounds and detector noise to them. We use the Planck Sky Model
(PSM)1 for foregrounds and use all the five WMAP frequency bands in our analysis. These simulated raw maps are cleaned using the IPSE
technique. We study the difference in the extracted principal eigenvectors (PEVs) of clean maps and simulated pure CMB maps. This allows
us to determine if the residual foregrounds lead to any preferential alignment of these vectors. In the next subsections, we briefly review the
extraction of frames and the IPSE technique.

2.1 Covariant frames

The present study utilizes a symmetry-based statistic (Samal et al. 2008) to test for statistical isotropy in the CMBR data. The method
associates a wavefunction, ψ k

m, defined as

ψk
m(l) = 1√

l(l + 1)
〈l, m|J k|a(l)〉 (3)

with every multipole l. Here |a(l)〉 contains information about the spectral moments, such that

alm = 〈l, m|a(l)〉, (4)

where |lm〉 are the eigenstates of the angular momentum operators J2, Jz in the spin l representation. The wavefunction ψ k
m is useful since it

assigns a frame, i.e. three orthonormal vectors, at each l. The frame can be extracted by making a singular value decomposition (SVD) of the
wavefunction. This assigns the singular values �α and two frames eα

k and uα
m for each l (Ralston & Jain 2004) as

ψk
m =

3∑
α=1

eα
k �αuα∗

m . (5)

Here the indices, α = 1, 2, 3, k = 1, 2, 3 and m = − l, . . . , + l. Here we are interested in the orientation of any particular multipole in real
space. This information is contained in the frames eα

k . The relationship of the wavefunction ψ k
m to the Maxwell multipole vectors (Copi et al.

2006, 2007) is discussed in Samal et al. (2008).
It is also convenient to define the ‘power tensor’ (Ralston & Jain 2004; Samal et al. 2008),

Aij (l) =
∑

m

ψi
mψj

m

∗

= 1

l(l + 1)

∑
m,m′

a∗
lm(JiJj )mm′alm′ . (6)

The frame associated with each multipole eα
i , α = 1, 2, 3, consists of the three eigenvectors of this matrix. The index, i = 1, 2, 3, labels

the three components of each eigenvector. The corresponding eigenvalues, (�α)2, contain information about the power associated with each
eigenvector. The sum of the three eigenvalues equals the total power, Cl. A large dispersion in the eigenvalues indicates violation of statistical
isotropy for a particular mode. For example, if only one of the eigenvalues is non-zero that would imply that the particular mode is maximally
anisotropic. The eigenvector corresponding to that eigenvalue would define the preferred direction in real space.

The above discussion leads us to define the PEV, n̂l , as the eigenvector corresponding to the maximum eigenvalue (Ralston & Jain 2004;
Samal et al. 2008). In the case of low l that we studied here, the largest eigenvalue generally carried at least 65 per cent of the total power,
Cl, in each l. We note that the extracted PEVs are headless, meaning, these vectors specify only an axis and not a direction. As explained in
Ralston & Jain (2004), the PEV is analogous to the preferred axis extracted in de Oliveira-Costa et al. (2004). The P value or the significance
of alignment between the quadrupole and octopole PEVs can be estimated analytically by the formula P = 1 − n̂2 · n̂3 = 1 − cos(δ
).
Here δ
 is the angle between the two PEVs n̂2 and n̂3, which correspond to l = 2 and 3, respectively. Alternatively, one can estimate the
significance directly by numerical simulations, as described below.

2.2 IPSE method

The IPSE procedure (Saha et al. 2006, 2008; Samal et al. 2010) removes the foreground contamination by linearly combining maps at different
frequencies with suitable weights in harmonic space. The cleaning is accomplished independently for each l. Let ŵa

l denote the weights for

1 http://www.planck.fr/heading79.html
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the map at frequency channel a corresponding to the multipole l. In case we have several maps at a particular frequency, we simply take their
average. The spherical harmonic components of the cleaned map are given by

aClean
lm =

nc∑
a=1

ŵa
l

aa
lm

Ba
l

. (7)

Here nc is the total number of frequency channels used for cleaning. The factor Ba
l is the circularized beam transform function at frequency

band a (Hill et al. 2009). The aa
lm represents the harmonic coefficients of the observed map. It can be expressed as

aa
lm =

(
as

lm + a
(f )a
lm

)
Ba

l + a
(N)a
lm , (8)

where as
lm, a(f )a

lm and a(N)a
lm represent the contributions from CMB, foregrounds and detector noise, respectively, at frequency channel a.

The weights ŵa
l are obtained by minimizing the total power subject to the constraint

Ŵle0 = eT
0Ŵ

T
l = 1, (9)

where e0 is a column vector with unit elements,

e0 =

⎛
⎜⎜⎜⎝

1
..

..

1

⎞
⎟⎟⎟⎠ , (10)

and Ŵl is the row vector (ŵ1
l , ŵ

2
l , . . . , ŵ

nc
l ). This gives

Ŵl = eT
0 Ĉ

−1
l

eT
0 Ĉ

−1
l e0

, (11)

where Ĉl is the empirical covariance matrix (Tegmark & Efstathiou 1996; Tegmark et al. 2003; Saha et al. 2006; Delabrouille & Cardoso
2009). Its ab matrix element may be expressed as, Ĉab

l /(Ba
l Bb

l ), where Ĉab
l is the cross power spectrum between the ath and bth channel,

Ĉab
l =

m=l∑
m=−l

aa
lmab∗

lm

2l + 1
. (12)

The final cleaned map may be used to extract the power spectrum as well as the PEVs needed for the present study. The power spectrum is
given by

ĈClean
l = 1

eT
0 Ĉ

−1
l e0

. (13)

This would be reliable at low l, where the detector noise is negligible. For our present purpose, this is sufficient. However at high l > 200,
where the detector noise is not negligible, a more elaborate procedure is necessary, as discussed in Saha et al. (2006, 2008).

The procedure contains some bias which can be estimated from simulations. An important bias arises due to inefficient cleaning in the
galactic plane. A similar bias is also present in the procedure used by the WMAP science team in generating the ILC map. As a final step
in generating this map, a ‘bias’ correction based on Monte Carlo simulations is applied by the WMAP science team (Hinshaw et al. 2007).
We employ a similar procedure to correct for any residual foreground bias by subtracting a ‘bias map’ generated from the simulated maps in
pixel space.

Another interesting bias arises due to the cross-correlation term between the foregrounds and the CMB signal in the estimation of CMB
power. This bias is negative and affects dominantly the very low multipoles. This can also be estimated by simulations, but may also be
represented analytically by using some simplifying assumptions (Saha et al. 2008).

2.3 Simulations

In order to study the effect of foregrounds on the detected anisotropy in the CMBR, we generate an ensemble of 500 CMB maps as random
realizations of the best-fitting theoretical power spectrum, available at the NASA’s WMAP public domain webpage.2 These simulated ‘pure’
CMB maps are generated using the publicly available HEALPIX software.3 These ‘pure maps’ are generated at resolution 9 (Nside = 512) of
the HEALPIX sky pixelization scheme. We perform our entire analysis at this resolution. We are interested only in the alignment of the l = 2,
3 multipoles. Hence we do not expect our results to depend on the adopted resolution. Some of the statistical analysis used to quantify the
low l anomalies, such as alignment of l = 2, 3 multipoles, have been performed earlier (Bernui et al 2006, 2007; Hansen et al. 2006, 2009;
Wiaux et al 2006; Vielva et al 2007), using sky maps at lower resolution, such as Nside = 16, 32, 128, 256. The significance of results obtained
by these authors is not significantly different from that obtained at higher resolution. Hence our results are expected to be independent of the
adopted resolution of the sky maps.

2 http://lambda.gsfc.nasa.gov/
3 http://healpix.jpl.nasa.gov/
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After extracting the PEVs of these pure maps, we contaminate the maps with galactic foregrounds and also add Gaussian random noise
with appropriate dispersion per pixel. We use PSM templates as our all-sky foreground maps. The foregrounds included in PSM are thermal
dust, synchrotron and free–free galactic emission templates only. These are the dominant foregrounds as characterized by the WMAP science
team also in all its data releases so far (Gold et al. 2011). The effective number of observations, Nobs, needed to generate the noise maps is
obtained from the temperature maps of WMAP 5 and 7 year data sets, along with σ 0, which are available in FITS format at NASA’s LAMBDA
website.2 The effective noise per pixel is given by σ = σ0/

√
Nobs. These simulated CMB maps are then passed through a cleaning pipeline

which uses the IPSE procedure to clean the maps. This produces a full sky cleaned map corresponding to each random realization which
can be used to study the alignment between quadrupole and octopole. By comparing observations with the random samples, we can easily
estimate the significance level of the observed alignment. Furthermore, we can study how the PEVs in the extracted clean CMB maps differ
from those of pure CMB maps. This can reveal any systematic bias which may be present in the PEVs of cleaned maps. Because of the
presence of residual foregrounds and negative bias at low l, we expect that the corresponding eigenvectors may also be biased. Here we shall
study this bias and its effect on alignment of quadrupole and octopole.

Besides the dominant foregrounds mentioned above, many authors have reported the existence of some subdominant or not yet fully
understood foregrounds like, for example, spinning dust grains, dust components correlated with synchrotron (Kogut et al. 1996; Bennett
et al. 2003b; Dobler & Finkbeiner 2008b), foreground X (de Oliveira-Costa et al. 2002), an anomalous emission component in WMAP data
(Bonaldi et al. 2007), an anomalous haze component (Dobler & Finkbeiner 2008a) and spuriously large galactic synchrotron emission in
WMAP data (La Porta et al. 2008) compared to a simple extrapolation of microwave flux from the 408 MHz (Haslam et al. 1982) and 1.42 GHz
(Reich & Reich 2008) all-sky maps. Dobler & Finkbeiner (2008b) also mention the presence of a spinning dust component at roughly 20
per cent of the level of usual foregrounds. However there is considerable uncertainty in these subdominant foreground components and a
consistent model is still elusive (Gold et al. 2011).

The simulations were run on an Intel(R) Xenon(R) CPU cluster with 2 Quad Core processors @2.50 GHz and 16 MB RAM. It took
about 2 d to complete the pipeline which includes generating 500 pure CMB maps, cleaning the foreground and noise contaminated maps
and finally extracting the eigenvalues and eigenvectors of the power tensor thus constructed for each map.

3 EFF ECT OF LOW-L BIAS

In this section we evaluate analytically how the low-l negative bias, arising due to chance correlation between CMB signal and foregrounds,
affects the power tensor. For simplicity we assume that there is only one significant foreground component, which follows rigid frequency
scaling. Furthermore, we assume only two frequency bands in the CMB data analysis. The detector noise is assumed to be negligible, which
is a reasonable assumption at low l. For simplicity we also set the beam transform function to unity. We compute the ensemble average of the
power tensor within the framework of the IPSE method using these simplifying assumptions.

The wavefunction ψ i
m(l) associated with each multipole, equation (3), may be expressed as

ψi
m(l) = 1√

l(l + 1)

∑
m′

〈lm|Ji |lm′〉alm′ . (14)

The corresponding power tensor may be written as

Aij (l) = 1

l(l + 1)

∑
m,m′,m′′

〈lm|Ji |lm′〉〈lm′′|Jj |lm〉alm′a∗
lm′′ . (15)

To calculate the bias in the power tensor we take its ensemble average to get

〈Aij (l)〉ens.avg.
= 1

l(l + 1)

∑
m,m′,m′′

〈lm|Ji |lm′〉〈lm′′|Jj |lm〉〈alm′a∗
lm′′ 〉ens.avg.

, (16)

where the symbol 〈〉ens.avg. denotes ensemble average. It follows from the cosmological principle that the fluctuations in CMBR are statistically
isotropic. Hence we expect for a pure CMB map

〈Aij (l)〉ens.avg.
= Cl

3
δij . (17)

Here we compute the ensemble average of the power tensor for the cleaned map. This will show us whether the bias generated due to
foreground cleaning leads to anisotropy in the power tensor.

The spherical harmonic coefficients of a cleaned map can be written as

aClean
lm = a

(s)
lm + ares

lm , (18)

where ares
lm denotes any residual foreground contamination in the cleaned map,

ares
lm =

nc∑
b=1

ŵb
l a

(f )b
lm . (19)
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In order to estimate the bias in the power tensor, we need to calculate

〈
aClean

lm′ aClean
lm′′

∗〉
ens.avg.

=
〈(

a
(s)
lm′ +

nc∑
b=1

ŵb
l a

(f )b
lm′

) (
a

(s)
lm′′ +

nc∑
b′=1

ŵb′
l a

(f )b′
lm′′

)∗〉

= C
(s)
l δm′m′′ +

〈
a

(s)
lm′ŵ

b′
l a

(f )b′
lm′′

∗〉 +
〈
a

(s)
lm′′

∗
ŵb

l a
(f )b
lm′

〉
+

〈
ŵb

l a
(f )b
lm′ a

(f )b′
lm′′

∗
ŵb′

l

〉
. (20)

The first term after the second equality follows from the assumption that CMB signal is statistically isotropic. The frequency band indices b
and b′ in the second, third and fourth terms are summed over as in the Einstein summation convention.

The elements of the empirical covariance matrix are given by

Ĉab
l = 1

2l + 1

+l∑
m=−l

aa
lmab∗

lm

= 1

2l + 1

+l∑
m=−l

(
a

(s)
lm + a

(f )a
lm

) (
a

(s)
lm + a

(f )b
lm

)∗

= Ĉ
(s)
l + Ĉ

(s)(f )a
l + Ĉ

(s)(f )b
l + C

(f )a(f )b
l .

(21)

Terms in the last line correspond to each of the cross-multiplication factors of the second line. Here Ĉ
(s)(f )a
l and Ĉ

(s)(f )b
l denote cross-

correlations between the CMB and foregrounds at frequency bands a and b, respectively. Note that these quantities vanish on an ensemble
average, as CMB and foregrounds are uncorrelated with one another, i.e. 〈C(s)(f )a

l 〉 = 0 = 〈C(s)(f )b
l 〉. However, for a particular realization these

quantities need not vanish.
As mentioned above we make the estimate of bias in the power tensor assuming a single foreground component and two frequency

channels. Thus, we find the empirical covariance matrix to be

Ĉl =
(

Ĉ
(s)
l + 2Ĉ

(s)(f )1
l + C

(f )1
l Ĉ

(s)
l + Ĉ

(s)(f )1
l + Ĉ

(s)(f )2
l + C

(f )1(f )2
l

Ĉ
(s)
l + Ĉ

(s)(f )1
l + Ĉ

(s)(f )2
l + C

(f )1(f )2
l Ĉ

(s)
l + 2Ĉ

(s)(f )2
l + C

(f )2
l

)
. (22)

Hence

Ĉ
−1
l = 1

�̂

(
Ĉ

(s)
l + 2Ĉ

(s)(f )2
l + C

(f )2
l −

(
Ĉ

(s)
l + Ĉ

(s)(f )1
l + Ĉ

(s)(f )2
l + C

(f )1(f )2
l

)
−

(
Ĉ

(s)
l + Ĉ

(s)(f )1
l + Ĉ

(s)(f )2
l + C

(f )1(f )2
l

)
Ĉ

(s)
l + 2Ĉ

(s)(f )1
l + C

(f )1
l

)
, (23)

where �̂ denotes the determinant of Ĉl . Using the above result we compute eT
0 Ĉ

−1
l e0 to get the cleaned map power spectrum as

ĈClean
l = �̂

C
(f )1
l + C

(f )2
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(f )1(f )2
l
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(
Ĉ
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l

)2
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(s)(f )1
l Ĉ

(s)(f )2
l

]
, (24)

and the corresponding weights as

Ŵl = eT
0 Ĉ

−1
l

eT
0 Ĉ

−1
l e0

= 1

δ

(
−Ĉ

(s)(f )1
l + Ĉ

(s)(f )2
l − C

(f )1(f )2
l + C

(f )2
l

Ĉ
(s)(f )1
l − Ĉ

(s)(f )2
l − C

(f )1(f )2
l + C

(f )1
l

)
. (25)

The symbol δ in the denominator of equation (24) and equation (25) is defined as δ = C(f )1
l + C(f )2

l − 2C(f )1(f )2
l . We next calculate all the terms

in equation (20) one-by-one. First, consider the second term in the second line of equation (20):

a
(s)
lm′ŵ

b′
l a

(f )b′∗
lm′′ = a

(s)
lm′ ŵ

1
l a

(f )1∗
lm′′ + a

(s)
lm′ ŵ

2
l a

(f )2∗
lm′′ . (26)

Using equation (25) in equation (26) and then taking an ensemble average, we get

〈
a

(s)
lm′ ŵb′

l a
(f )b′∗
lm′′

〉
= C

(s)
l

(2l + 1)δ

[
−a

(f )1
lm′ a

(f )1∗
lm′′ + a

(f )1
lm′ a

(f )2∗
lm′′ + a

(f )2
lm′ a

(f )1∗
lm′′ − a

(f )2
lm′ a

(f )2∗
lm′′

]
.

(27)

To proceed further we assume that the foreground component follows rigid frequency scaling. We may parametrize the map of any
foreground component at a frequency ν as

F (n̂) = Aν0 (n̂)

(
ν

ν0

)−β(n̂)

, (28)

where Aν0 is the foreground template from observations made at a certain reference frequency ν0 and its corresponding spectral index is β(n̂).
A foreground for which the approximation of a constant value of β over the entire sky holds is said to follow rigid frequency scaling, though,
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in general β is a function of position on the sky, n̂. In the case of a foreground for which the assumption of a constant spectral index may not
hold, the deviations may be modelled with two terms each following the rigid scaling law (Bouchet & Gispert 1999). In that case,

F (n̂) = Aν0

(
ν

ν0

)−β

+ Bν0 (n̂)

(
ν

ν0

)−β

ln(ν/ν0), (29)

where β denotes mean spectral index of the foreground, F (n̂), over the entire sky and A, B are two reference templates of F (n̂). A very strong
variation may require more than two templates for modelling.

Here, assuming a rigid scaling behaviour for the foreground component, we model the spectral coefficients of the foreground in a
frequency band b as

a
(f )b
lm = Alm

(
1

fb

)α

. (30)

Now, equation (27) becomes〈
a

(s)
lm′ ŵ

b′
l a

(f )b′∗
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〉
= −Alm′A∗

lm′′
C

(s)
l

(2l + 1)δ

(
1
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1

− 1

f α
2

)2

. (31)

The third term after second equality in equation (20) is same as the second term. The fourth term is〈
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ŵ1

l ŵ
2
l

〉
a

(f )1
lm′ a

(f )2∗
lm′′ +

〈(
ŵ1
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(32)

With rigid scaling approximation for the foreground and after some lengthy algebra, we finally get〈
ŵb

l a
(f )b
lm′ a
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lm′′

∗
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〉
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. (33)

Here we have used

δ = C
(f )1
l + C

(f )2
l − 2C

(f )1(f )2
l = 1

2l + 1

m=+l∑
m=−l

|Alm|2
(
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f α
1

− 1
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.

Finally we get, from equation (20),

〈
aClean

lm′ aClean∗
lm′′

〉 = C
(s)
l δm′m′′ − C

(s)
l Alm′A∗

lm′′

(
m=+l∑
m=−l

|Alm|2
)−1

. (34)

Hence, we find that the low-l negative bias term leads to an anisotropic power tensor. As discussed in Saha et al. (2008) and Samal et al.
(2010) this bias arises even in the case of perfect cleaning, where we have enough frequency channels to remove all the foregrounds. Besides
this term, we also expect a positive contribution due to residual foreground contamination. This arises due to foregrounds which may not
be eliminated by our cleaning procedure. By explicit numerical computation we find that the PEV of the power tensor corresponding to
equation (34) is well aligned with the galactic poles. The other two orthogonal vectors of the power tensor lie in the galactic plane. This is
of course expected since the eigenvectors are determined entirely by the galactic foregrounds, which are present predominantly along the
galactic plane.

The main result of this section is that power tensor corresponding to the cleaned map acquires an anisotropic contribution due to low-l
negative bias. This contribution arises even in the case of perfect cleaning when we have sufficient frequency channels to remove all the
foregrounds present in the data. Although we have made several simplifying assumptions, this basic result is expected to hold in general. Our
analytic results in this section, however, do not provide any guidance on how the PEV is affected due to foreground cleaning. In the next
section, we estimate the total bias in the PEV by direct simulations.

4 R ESULTS

4.1 Observational data

We first present the results from actual cosmological data and then discuss the simulation results. The PEVs, n̂2 and n̂3, for the quadrupole
and octopole, respectively, from different clean maps extracted from the WMAP data are given in Table 1. The results presented here are for
the WMAP ILC maps and the IPSE cleaned maps, with and without bias correction, for both 5- and 7-year data sets. All these maps are at
resolution 9 of the HEALPIX sky tessellation format. The bias map, generated from Monte Carlo simulations of 500 random realizations, is
shown in Fig. 1. The power spectrum corresponding to this bias map is shown in Fig. 2. As expected, we see that the bias correction is present,
predominantly, in the galactic plane and is almost zero away from it. We point out that this bias is completely different from the negative bias
discussed in the previous section.

The ILC map is obtained by linearly combining the temperature maps, observed in different frequency bands, in real space, with
appropriate weights to remove the foregrounds. In contrast, the IPSE map is obtained by making linear combinations in harmonic space. We
point out that the bias removal leads to a significantly improved cleaning in the galactic plane and has already been applied in the publicly
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Effect of foregrounds on the CMBR alignment 1039

Table 1. The PEVs n̂2 and n̂3 of the quadrupole and octopole, respectively, for different clean maps.

n̂2 n̂3

WMAP ILC map (5 year) (0.2458, 0.4135, −0.8767) (0.2505, 0.3823, −0.8895)
WMAP ILC map (7 year) (0.2484, 0.3921, −0.8857) (0.2434, 0.3842, −0.8906)

IPSE cleaned map (5 year) (0.1481, 0.1923, −0.9701) (0.2040, 0.3863, −0.8996)
Bias-corrected IPSE map (5 year) (0.2936, 0.4091, −0.8640) (0.2086, 0.3855, −0.8988)

IPSE cleaned map (7 year) (0.1355, 0.1957, −0.9713) (0.1782, 0.3773, −0.9088)
Bias-corrected IPSE map (7 year) (0.2301, 0.3240, −0.9176) (0.1773, 0.3754, −0.9097)

Figure 1. The bias-correction map, in units of µK, for 7-year data generated using the IPSE procedure with PSM for foregrounds (colour online).

Figure 2. The power spectrum of the bias-correction map shown in Fig. 1.

available ILC map. The angle, δ
, between the two axes, n̂2 and n̂3, for different foreground cleaned maps, is listed in Table 2, along with
an analytic estimate of probability that the observed alignment between these two PEVs in the WMAP data may be obtained as a random
occurrence in an isotropic sample. This is given by P = 1 − n̂2 · n̂3 = 1 − cos δ
.

We find that the alignment between quadrupole and octopole is striking in both the ILC 5- and 7-year maps. We also note that, in the
WMAP 3-year ILC map, the alignment of quadrupole and octopole is found to be 5.◦87, which has a random occurrence probability of 0.00524.
So, with more data release, the alignment appears to be getting better. The significance of the observed alignment in 7-year data is better than
4σ . The IPSE cleaned, bias-corrected 7-year map gives a significance better than 3σ . In comparison, the IPSE map without bias correction
gives a much poorer alignment with δ
 = 11.◦28 [a 98.1 per cent confidence level (CL)]. The main difference between these two maps is
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Table 2. The alignment angle δ
 between quadrupole and octopole in different
foreground cleaned maps. Here δ
 is the angle between PEVs of quadrupole and
octopole moments. Also listed are the analytic estimates of the probability that
the observed alignment may arise in a random isotropic sample. This is given by
P = 1 − n̂2 · n̂3 = 1 − cos δ
.

δ
 1 − cos δ


WMAP ILC map (5 year) 1.◦95 0.00058
WMAP ILC map (7 year) 0.◦6 5.5 × 10−5

IPSE cleaned map (5 year) 12.◦27 0.023
Bias-corrected IPSE map (5 year) 5.◦44 0.0045

IPSE cleaned map (7 year) 11.◦28 0.019
Bias-corrected IPSE map (7 year) 4.◦25 0.0027

that a significant foreground contamination in the galactic plane has been removed during the process of bias removal. This suggests that the
effect of foregrounds is to distort the signal of alignment rather than to cause alignment.

We also notice from Table 1 that, as we remove the bias in the IPSE map, the octopole PEV changes only by a negligible amount,
whereas the quadrupole PEV changed appreciably after applying bias correction. Indeed, after bias removal, the quadrupole PEV is relatively
close to that corresponding to the ILC map. The IPSE octopole PEV agrees well with that obtained from the ILC map, irrespective of whether
the bias is removed or not. So, it seems that quadrupole is more susceptible to distortion due to the presence of residual foregrounds.

4.2 Simulation results

We next use 500 simulated CMB maps to determine the effect of foreground cleaning on the properties of the extracted CMB signal. We find
that 500 simulations are sufficient for most of the results obtained in this paper. The number of simulations is enlarged whenever necessary.
The simulated maps containing CMB, foregrounds and detector noise are cleaned using the IPSE procedure. In each of the simulated maps,
the bias due to foreground power in the galactic plane is removed in exactly the same manner as in the real data. Even after removing this
bias, we expect that the PEV extracted from the cleaned map may not be exactly the same as that corresponding to the pure CMB map.

Let α be the angle between the pure map PEV (n̂p) and cleaned map PEV (n̂c) for a particular multipole. Here, we are interested only
in the quadrupole and the octopole. We call this change in position of pure map PEVs as ‘rotation’ of PEVs in the presence of foregrounds.
We want to find out whether there exists any preferred alignment of the pure map PEVs along a particular direction in the presence of
foregrounds. In Fig. 3, we show the distribution of ‘1 − cos(α)’, which is a convenient measure of the rotation of the PEVs. One can readily
see from the graph that most of the PEVs do not undergo any significant shift. In fact, the number of PEVs that got rotated beyond a value of

Figure 3. The distribution of (1 − cos α), where α is the angle of rotation of pure maps PEVs in the presence of residual foregrounds. Here, the distribution
of α is shown for both l = 2 (top) and l = 3 (bottom). The inset shows the range 0 < 1 − cos α < 0.015 in more detail. The vertical line in the inset shows the
level of alignment of multipoles l = 2, 3, 1 − cos δ
 = 0.0027 for the 7-year IPSE bias-corrected map.
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Effect of foregrounds on the CMBR alignment 1041

Figure 4. Plot of (1 − cos α), as a function of polar angle, θ , of pure map PEVs. Here α is the rotation angle between the PEVs of pure CMB maps and
bias-corrected clean maps. The vertical line indicates the polar angle of quadrupole (top) and octopole (bottom) PEVs of the WMAP 7-year ILC map.

Figure 5. Distribution of the polar angle of PEVs in both the pure map and bias-corrected clean map ensembles for l = 2, 3. The dip at the centre in the l = 2
cleaned map indicates the tendency of PEVs to rotate away from the galactic plane in the presence of residual foregrounds. A similar dip is also present in the
l = 3 cleaned map with much smaller amplitude.

1 − cos(α) = 0.15 is 52 for l = 2, and 30 for l = 3, out of the 500 bias-corrected clean maps. Hence, the error introduced due to foregrounds
on the extraction of the PEVs is generally small.

Fig. 4 shows the plot of ‘1 − cos(α)’, for all the 500 simulated maps, as a function of the polar angle, θ , of the pure map PEV, for both
l = 2 and 3. Notice the clustering of data points near the zero of the y-axis in this plot, which indicates only a very nominal shift in most of
the PEVs. It also shows that the PEVs which were lying, initially, in the galactic plane generally undergo larger rotation whereas the effect
is small on PEVs at higher latitudes. Note that the galactic foregrounds extend roughly up to 30◦ on either side of the galactic equator and
are distributed asymmetrically. Next, in Fig. 5 we show the distribution of PEVs in different sky regions for l = 2 and 3. The histograms are
shown for both pure and cleaned maps in an interval of 30◦ of polar angle across the sky. The distribution of pure map PEVs is relatively flat,
as expected. However, the foreground cleaned maps show a dip near the galactic plane. This illustrates that in the cleaned maps the PEVs
have a tendency to rotate away from the galactic plane. This effect is seen to be more pronounced in the case of the quadrupole in comparison
to the octopole. The effect is easily understood since the region of the galactic plane is most contaminated by foregrounds. Hence the PEVs
in the galactic plane are naturally expected to undergo larger rotation.

Next, we look at the alignment of quadrupole and octople in both pure and cleaned maps. Fig. 6 shows the distribution of
‘1 − cos(α23)’, where α23 is the angle between the quadrupole and the octopole. The data are binned with a bin size of 0.2. We can
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1042 P. K. Aluri et al.

Figure 6. Distribution of 1 − cos(α23) where α23 is the angle between the quadrupole and octopole. Results are shown for both the pure maps and bias-corrected
clean maps. The distribution is found to be very close to uniform in both cases, indicating isotropy.

Figure 7. The alignment between quadrupole and octopole of pure map and bias-corrected clean maps. On the y-axis, we have 1 − cos(α23,c), where
cos α23,c = n̂l2 · n̂l3, and n̂l2 and n̂l3 are the PEVs corresponding to l = 2 and 3, respectively, for the simulated foreground cleaned maps. On the x-axis, we
have the same measure corresponding to the pure CMB maps. No preferred alignment was seen in the simulated maps.

easily infer from the figure that these alignments are completely random. Hence, we find no evidence for foreground induced alignment in
the cleaned maps. In Fig. 7 we show a plot of 1 − cos(α23,p) versus 1 − cos(α23,c) for all the 500 simulations. Here, the subscripts ‘p’ and ‘c’
stand for ‘pure’ and ‘clean’ simulated CMB maps, respectively. If there is any correlation it will show up in such a plot. However, this plot
illustrates that there is no sign of preferred alignment.

We next compute the P value or the probability that the alignment seen in data arises due to a random fluctuation directly from simulations.
We determine the number of random realizations of CMB data which show better alignment in comparison to what is observed in WMAP
data. The probability is obtained by dividing this number by the total number of random samples. Here we use both the randomly generated
pure CMB maps as well as simulated foreground cleaned maps. For the bias-corrected IPSE 5-year map we find that the probability is 0.004
if we use the simulated pure CMB maps. The probability remains unchanged if it is computed by using the simulated cleaned maps. The
corresponding numbers for the 7-year maps are 0.004 and 0.002 for the simulated pure CMB maps and the cleaned maps, respectively. The
result remains unchanged if we apply the residual foreground bias correction to the simulated cleaned maps. These results have been obtained
by using 500 simulations. For a signal of alignment at a CL of 3σ , seen in the IPSE bias-corrected map, we need at least 1/(1 − 0.997) ≈
333 number of random realizations of CMB sky. A 500 maps ensemble that we generated here for our study is barely sufficient to test the
alignment at 99.7 per cent CL. Hence we verified these results by using an additional 500 simulations. These did not lead to any significant
change in results. The simulation results agree well with those given in Table 2.

As we have mentioned earlier, the negative bias does cause a systematic reduction of power for low-l multipoles. This is seen clearly in
Fig. 8 where we plot the sum of the eigenvalues of the power tensor for l = 2, 3 for both simulated pure and bias-corrected clean maps. The
sum of eigenvalues equals the total power, Cl, in each multipole. We find a systematic negative shift in the power in each of the cleaned maps.
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Effect of foregrounds on the CMBR alignment 1043

Figure 8. The sum of eigenvalues or the total power, Cl, for l = 2, 3 of the simulated pure and cleaned CMB maps, after bias correction. We see a systematic
negative shift in the power in each of the simulated clean maps.

After taking the average over all the simulations, we find that quadrupole power of the cleaned map is lower by 39 per cent in comparison to
that of the pure CMB map. The corresponding octopole power gets reduced by 22 per cent.

To summarize, we find no evidence for any systematic effect which may cause alignment of PEVs, despite the presence of a systematic
effect on power, Cl. We do find a systematic shift of the PEVs away from the galactic plane. However, the final PEVs point in random
directions. Hence, rather than causing alignment, this effect has a tendency to distort any signal of alignment that might be present in the
original sample.

Our results strongly suggest that the alignment is caused by some effect other than foreground contamination. The foregrounds lead to
a random shift in the PEVs causing a certain level of misalignment. Hence the angle between l = 2 and 3 PEVs must not be very small in
comparison to the shift caused by foregrounds. The shift of the PEVs is quantified by the distribution plot shown in Fig. 3. This should be
associated with the randomness that the cleaning process introduces in the extraction of the PEVs. We find that the probabilities of chance
alignment for the IPSE cleaned 5- and 7-year maps, after bias correction, are 0.0045 and 0.0027, respectively. We find that about 16 per cent
of the simulations have (1 − cos α) < 0.0027. At high galactic latitudes, corresponding to the Virgo alignment axis, this number is higher. It
is reassuring that the number of random samples which show a shift in the PEV less than the observed alignment in the IPSE cleaned map is
not too small.

4.3 Subdominant foreground components

So far we have only considered the dominant components of the foregrounds in our analysis. We next briefly address the issue of subdominant
foregrounds. The known subdominant foregrounds are described in Section 2.3. As discussed in Section 2.3, there is considerable uncertainty
in these components and a reliable model over the entire sky is not available.

Our analysis suggests that the foreground cleaning really tends to distort any signal of alignment rather than causing alignment. The only
systematic trend we have seen so far is a shift away from the galactic equatorial plane. The shift is larger for l = 2 and much smaller for l = 3.
Hence it tends to cause misalignment rather than alignment. The only way this can cause alignment is if the foreground level is so large that
both l = 2, 3 get pushed towards the galactic poles. However, the level of foregrounds required for this is unrealistically large. Subdominant
foregrounds of the type discussed in Section 2.3 cannot produce such an effect. In order to produce an alignment in the direction of Virgo,
as seen in data, we would require an unrealistically large foreground component in a plane perpendicular to the PEV corresponding to l =
2, 3 seen in data. The level of foreground required for this purpose would be much larger than even the galactic foregrounds. Hence such a
scenario is ruled out.

In order to explicitly check the effect of subdominant foregrounds we added some additional foregrounds at random. Their strength was
chosen to be less than 20 per cent of the dominant foregrounds. We also added a foreground component along the supercluster plane and
separately in a patch of angular size 20◦ × 20◦ in the direction of the PEV corresponding to l = 2, 3. These foregrounds are chosen to be well
correlated with the direction of the observed axis of alignment in the WMAP data. Hence they have the best chance of causing alignment in
the simulated data sets. The spectral index in these cases was chosen to be different from that of the dominant foregrounds. No change in
results was detected in any of these studies. The random simulations did not show any evidence for alignment of the l = 2, 3 multipoles.
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The results and discussion in this section clearly suggest that even unknown subdominant foregrounds are unlikely to change the main
results of our paper. It is highly inconceivable that they can cause alignment as long as their strength is a fraction of the dominant foregrounds.
We postpone an exhaustive study of such foregrounds for future research.

5 C O N C L U S I O N S

We have studied the effect of foreground cleaning on the alignment of low-l multipoles, l = 2, 3. It has been speculated in the past that the
alignment may be caused by foreground contamination. The presence of residual foreground power in the cleaned CMB maps could lead
to violation of statistical isotropy and hence alignment of low-l multipoles. Furthermore, even in the case of perfect cleaning, the extracted
power contains a negative bias, which is quite significant at low l. This has been shown explicitly in the case of the IPSE procedure and in the
ILC map (Chiang, Naselsky & Coles 2008). Using the IPSE procedure, we analytically compute the power tensor using some simplifying
assumptions. We find that its ensemble average is not proportional to an identity matrix due to the presence of low-l bias. Hence this implies
a violation of statistical isotropy. We next performed detailed numerical simulations within the framework of the IPSE method to determine
the effect of foregrounds on the observed alignment.

Our IPSE simulation results, obtained using 500 randomly generated samples, show that the PEVs extracted from foreground cleaned
maps are generally in good agreement with those obtained from pure CMB maps. In most cases the shift in PEVs is observed to be small. The
largest change is seen in the case of the quadrupole. The shift is dominant for PEVs which initially lie close to the galactic plane. In general,
we find that the PEVs tend to get pushed away from the galactic plane towards the galactic poles. A similar trend is also seen in the case of the
octopole but with much reduced significance. We do not, however, see any evidence for alignment among the quadrupole and octopole PEVs
in the foreground reduced maps. The significance or P values extracted by using simulated clean maps are found to be in good agreement
with those obtained by using simulated pure CMB maps. These also show good agreement with the results obtained analytically and listed in
Table 2.

Hence, despite the systematic shift of PEVs away from the galactic plane, as observed dominantly in the case of the quadrupole, we
find that foregrounds do not cause alignment of quadrupole and octopole. This is because the change in PEVs due to foreground cleaning
is generally small and mostly in random directions. One might be tempted to propose a scenario where the shift towards galactic poles is a
much more significant effect which may be caused by the presence of a much stronger level of foreground contamination. In this case it is
conceivable that the PEVs extracted from the foreground cleaned maps would point dominantly towards the galactic poles and hence show
alignment. However, this would require a very large foreground contamination in comparison to the currently accepted model. The level of
contamination has to be sufficiently large so that both the quadrupole and octopole PEVs tend to align with the galactic poles. Although the
quadrupole shows a somewhat significant shift of PEVs away from galactic plane, this trend is barely notable in the case of the octopole. We
emphasize that even in the case of the quadrupole the shift of PEV is very small in most cases. Furthermore, such a proposal will imply that
the direction of alignment points towards the galactic poles which is not consistent with the observed axis. Hence we infer that foreground
contamination is very unlikely to cause the observed alignment.

A significant effect is observed in the case of total power, Cl, for low-l multipoles. We see a systematic cut-off of power in these multipoles
which has been attributed to a chance correlation of CMB signal and residual foregrounds. Since such a systematic trend in alignment is not
observed, we conclude that the observed alignment and anomalously low power may be independent of each other.

Because of the random nature of the shift caused by foreground cleaning, it is more likely to cause misalignment of multipoles. We
see this clearly by comparing the results from IPSE cleaned maps, before and after removing the bias due to foreground contamination in
the galactic plane. The alignment is found to be much stronger after removing the residual foreground bias which arises due to remnant
foregrounds present in our cleaned maps. Furthermore, we see that alignment becomes much more significant as more data are accumulated.
The alignment seen in 7-year data, for example, is much better than seen in 5-year data which in turn is better than that seen in 3-year data.
This is clearly caused by reduced uncertainties as more data accumulate. Hence, we conclude that both the foregrounds and detector noise
are more likely to distort, rather than cause alignment.
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Eriksen H. K., Hansen F. K., Banday A. J., Górski K. M., Lilje P. B., 2004, ApJ, 605, 14
Eriksen H. K. et al., 2007a, ApJ, 656, 641
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