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Abstract 

Background:  The insertion of a transgene into a plant organism can, in addition to the intended effects, lead to unin‑
tended effects in the plants. To uncover such effects, we compared maize grains of two genetically modified varieties 
containing NK603 (AG8025RR2, AG9045RR2) to their non-transgenic counterparts (AG8025conv, AG9045conv) using 
high-throughput RNA sequencing. Moreover, in-depth analysis of these data was performed to reveal the biological 
meaning of detected differences.

Results:  Uniquely mapped reads corresponded to 29,146 and 33,420 counts in the AG8025 and AG9045 varieties, 
respectively. An analysis using the R-Bioconductor package EdgeR revealed 3534 and 694 DEGs (significant differ‑
entially expressed genes) between the varieties AG8025RR2 and AG9045RR2, respectively, and their non-transgenic 
counterparts. Furthermore, a Deseq2 package revealed 2477 and 440 DEGs between AG8025RR2 and AG9045RR2, 
respectively, and their counterparts. We were able to confirm the RNA-seq results by the analysis of two randomly 
selected genes using RT-qPCR (reverse transcription quantitative PCR). PCA and heatmap analysis confirmed a robust 
data set that differentiates the genotypes even by transgenic event. A detailed analysis of the DEGs was performed 
by the functional annotation of GO (Gene Ontology), annotation/enrichment analysis of KEGG (Kyoto Encyclopedia of 
Genes and Genomes) ontologies and functional classification of resulting key genes using the DAVID Bioinformatics 
Package. Several biological processes and metabolic pathways were found to be significantly different in both variety 
pairs.

Conclusion:  Overall, our data clearly demonstrate substantial differences between the analyzed transgenic varieties 
and their non-transgenic counterparts. These differences indicate that several unintended effects have occurred as 
a result of NK603 integration. Heatmap data imply that most of the transgenic insert effects are variety-dependent. 
However, identified key genes involved in affected pathways of both variety pairs show that transgenic independent 
effects cannot be excluded. Further research of different NK603 varieties is necessary to clarify the role of internal and 
external influences on gene expression. Nevertheless, our study suggests that RNA-seq analysis can be utilized as a 
tool to characterize unintended genetic effects in transgenic plants and may also be useful in the safety assessment 
and authorization of genetically modified (GM) plants.
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Background
Herbicide-tolerant crops such as RR (Roundup Ready)-
maize and RR-soybeans were first introduced approxi-
mately 25  years ago and now comprise the majority 
of cultivated GM crops worldwide [43]. In this study, 
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Roundup Ready maize (NK603) was analyzed. The 
NK603 transgene consists of two cassettes, which were 
inserted by microparticle bombardment. Both cassettes 
contain a 5-enolpyruvylshikimate-3-phosphate synthase 
(EPSPS) gene obtained from the soil bacterium Agro-
bacterium sp. strain CP4. In the first cassette, the gene 
is regulated by the rice (Oryza sativa) actin promoter. 
The second cassette has nearly the same composition as 
the first one, but it is regulated by an enhanced 35S pro-
moter obtained from the cauliflower mosaic virus. The 
CP4-EPSPS transgene confers plant tolerance to the her-
bicide glyphosate, commercially sold as Roundup®. The 
function of the EPSPS protein, its toxicity and allergenic-
ity as well as metabolites have been examined in several 
projects [9, 29, 39, 70]. In the field of genetic engineering, 
there is still a lack of clarity about transgene integration 
mechanisms and about which biological processes take 
place in the plant after successful transgene integration 
[46, 74]. Since DNA integration can lead to gene disrup-
tions, DNA rearrangements, or the production of new 
proteins [71], the insertion of a transgene into a plant 
organism can, in addition to the intended effects (e.g., 
herbicide resistance), lead to unintended effects in the 
plants [38, 50, 74]. Such unintended effects need to be 
identified and evaluated to detect and prevent possible 
adverse effects [28].

For the authorization and approval of GM crops, it is 
crucial to avoid the occurrence of unintended effects. 
Thus, investigations of GM crops on a molecular biology 
level are essential to enable a deeper understanding of 
plant gene interactions. Currently, unintended effects are 
primarily investigated by targeted approaches, in which 
GM crops are compared to their near-isogenic non-GM 
counterparts. Molecular, compositional, phenotypic, and 
agronomic analyses are performed in order to identify 
similarities and differences between the crops. Signifi-
cant differences between a GM crop and its conventional 
counterpart indicate an unintended effect, which 
requires further investigation [30]. Targeted approaches 
have the disadvantage that important differences can be 
overlooked, as only selected features or chemical/nutri-
tional compounds are investigated. Untargeted omics 
approaches, e.g., the analysis of gene expression in its 
entirety, enable the identification of broad coordinated 
trends that cannot be discerned by targeted approaches 
[54]. Thus, new non-targeted profiling approaches are an 
appropriate tool to complement current investigations 
regarding unintended effects of transgenic plants [31, 63, 
71].

There are several studies investigating unintended 
effects in GM crops using different omics approaches 
and microarrays. In these studies, it was found that trans-
genic inserts of different species of plants might affect the 

overall expression of other endogenous genes [1, 2, 7, 8, 
12, 17, 19, 32, 35, 40, 45, 49, 60, 84, 90]. However, sev-
eral authors of these studies mention that the changes 
in gene expression and protein distribution caused by 
genetic modification were smaller than those caused 
by environmental factors or natural variations. In addi-
tion, no differences were found in some of these studies. 
For instance, [21] and 2009, compared grown MON810 
maize varieties with some comparable varieties using 
microarrays under in  vitro conditions and conventional 
agricultural field conditions. In these studies, no gene 
was found to be significantly differentially expressed in 
any of the variety pairs tested under in vitro or conven-
tional field conditions [20, 21].

Differences in lignin content between MON810 maize 
and comparators were reported by Saxena and Stotzky 
as well as Poerschmann [65, 73]. Herrero et al. detected 
significant differences in enantiomeric amino acid com-
position between two MON810 varieties and compara-
tors but not in a third tested variety pair (MON810 vs. 
non-GM) [41]. Agapito et  al. conducted a comparative 
analysis of MON810 maize and comparators grown 
under different agroecosystem conditions in Brazil using 
two-dimensional gel electrophoresis combined with mass 
spectrometry, which identified 32 differentially expressed 
proteins [1]. La Paz et al. performed RNA sequencing on 
MON810 maize and comparators, which revealed 140 
differentially expressed genes. A slight, but significant, 
delay in seed and plant maturation of MON810 maize 
plants was also observed and, thus, used as an explana-
tion for the detected differences [49].[36].

Unintended effects in NK603 maize were described by 
several authors [2, 8, 12, 37, 40, 58]. Agapito-Tenfen et al. 
analyzed two maize events, NK603 and MON89034, as 
single events and as stacked varieties. Proteomics was 
used for the identification of unintended effects. Twenty-
two proteins were detected to be differentially expressed 
in stacked and single GM events compared to a near-
isogenic non-GM maize and to a landrace variety [2]. 
Mesnage et  al. generated proteome profiles of Roundup 
Ready maize and near-isogenic maize varieties using 
molecular profiling. A comparison of GM maize vs. the 
near-isogenic maize revealed alterations in the levels of 
enzymes of the glycolysis and TCA cycle pathways, which 
can be interpreted as an imbalance in energy metabolism 
[58]. Benevenuto et al. performed proteomic and metab-
olomic analyses on NK603 maize plants under abiotic 
stress conditions. Twenty differentially modulated pro-
teins were identified between GM and non-GM hybrids 
under water deficiency conditions and herbicide sprays 
[12]. Barros et  al. compared two Roundup Ready maize 
varieties with a near-isogenic non-GM variety using tran-
scriptomics, proteomics, and metabolomics. The results 
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showed that the environment had a major effect on pro-
tein and gene expression and metabolite production [8]. 
Harrigan et  al. analyzed differences in the metabolome 
between NK603 hybrids, corresponding negative seg-
regants, and conventional comparator hybrids. It was 
concluded that the largest effects on metabolomic vari-
ation were due to growing location and genomic differ-
ences associated with backcrossing practices [37].

In previous studies, we identified a silent mutation in 
the coding region of the cry1ab gene in different stacked 
MON810 maize varieties using high resolution melt-
ing (HRM) analysis, Sanger sequencing, and amplicon 
sequencing [10, 11]. We have also performed a molecu-
lar analysis of NK603 maize and identified two insertions, 
which are not present in the NK603 patent sequence. 
These insertions were located in the transgenic pro-
moter region; therefore, they may have an effect on the 
promoter activity and, consequently, also on transgene 
expression [14]. However, our analysis of the 5´-end of 
MON810 as a single event with Scorpion probes revealed 
no unintended effects or mutations [62].

In this study, we focused on a non-targeted transcrip-
tomics approach (RNA-sequencing) for the identifica-
tion of possible unintended effects in herbicide-resistant 
maize (NK603 maize). To the best of our knowledge, this 
is the first study in which NK603 maize varieties and 
corresponding non-GM counterparts were analysed by 
RNA sequencing. We compared the entire transcriptome 
of RR maize with near-isogenic varieties to character-
ize gene candidates that may be differentially expressed 
between RR maize and near-isogenic varieties in two dif-
ferent genetic backgrounds. We conducted a principal 
component analysis (PCA) as well as a heatmap to evalu-
ate the variance structure of our data. Moreover, we per-
formed GO, KEGG annotations/enrichment and DAVID 
analyses, which can identify biological functions and 
metabolic pathways particularly affected by the modi-
fication of gene expression. Our results indicate several 
unintended effects that may have occurred as a result of 
transgene integration.

Materials and methods
Rationale and experimental design
The main objective of this study was to compare gene 
expression profiles of two different NK603 varieties 
(AG8025RR and AG9045RR) with the profiles of corre-
sponding near-isogenic varieties that do not contain any 
transgenes (AG8025conv and AG9045conv, respectively) 
and investigate whether there are consistent altera-
tions in the NK603 varieties. For this purpose, we used 
high-throughput RNA sequencing as well as RT-qPCR 
approach. The pipeline used for the analysis of this study 

is depicted in Fig. 1. DGE analysis was performed by two 
different statistical packages (DeSeq2, EdgeR).

Further, we performed a singular enrichment analysis 
(SEA) to identify if special gene classes and gene inter-
acting networks that are overrepresented among the 
differentially expressed genes, and we identified the bio-
logical functions of differentially expressed genes using 
GO annotations. In order to search for shared GO terms 
in the two NK603 genetic backgrounds, we have per-
formed a second joint analysis using REViGO tool fol-
lowed by a functional pathway analysis with KEGG 
annotations. A KEGG metabolic pathways analysis was 
also conducted. These analyses were performed for each 
variety pair (NK603 and conventional counterpart) sepa-
rately. Finally, we compared the genes of the overrepre-
sented gene classes (SEA) with the genes involved in 
significantly affected metabolic pathways (KEGG) and 
conducted a DAVID analysis with these key genes to clar-
ify the relationship between these genes.

Next to this, we performed RT-qPCR for determin-
ing if some of the detected differences in gene expres-
sion of AG8025RR2 vs. AG8025conv were also present in 
AG9045RR2 vs. AG9045conv. In parallel to these analy-
ses, we have performed a PCA as well as a heatmap to 
evaluate the variance structure of our data set.

Plant material
Maize hybrids of the commercial GM varieties 
AG8025RR2 and AG9045RR2 (unique identifier MON-
ØØ6Ø3-6 from Monsanto Company, carrying the NK603 

RNA 
Sequencing PCAHeatmap

8025RR2xConv
29,146 counts

Deseq2 n=2477
EdgeR n=3534

9045RR2xConv
33,420 counts 
Deseq2 n=440
EdgeR n=694

KEGG analysis

Genes of significantly 
affected pathways = 

key genes 
(n= 11)

DAVID analysis

SEA and REViGO

Fig. 1  Overview of the performed screening procedure
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insert which enables glyphosate herbicide tolerance) and 
the near-isogenic varieties AG8025 (conventional coun-
terpart of AG8025RR2) and AG9045 (conventional coun-
terpart of AG9045RR2) were obtained from the Brazilian 
market (Sementes Agroceres). AG8025RR2 and its con-
ventional counterpart AG8025 have the same genetic 
background since they are produced from the same endo-
gamic parental lines. The same is for AG9045RR2 and its 
conventional counterpart AG9045. The AG8025 variety 
is the hybrid progeny of the single-cross between mater-
nal endogamous line “A” with the paternal endogamous 
line “B”. Thus, the tested hybrid variety grains have high 
genetic similarity (AB genotype). The AG9045 variety is 
the hybrid progeny of the single-cross between maternal 
endogamous line “C” with the paternal endogamous line 
“D” resulting in CD genotype. Presence/absence of the 
transgenic NK603 insert was confirmed by qPCR in both, 
GM and conventional maize grains. The obtained maize 
hybrids were directly used for the transcriptome analysis. 
We have not received any information about the exact 
place of cultivation, type of soil, the possible application 
of fertilizers or pesticides. However, it is confirmed that 
these varieties were produced in Brazil in 2012.

RNA extraction
Total RNA from pools of ten maize grains (of each vari-
ety) was isolated based on protocols of Barros et al. and 
Cheng et  al. [8, 15]. Maize grains were homogenized in 
liquid nitrogen using mortar and pestle. 500  mg of the 
homogenized grains was transferred into a 15  ml tube 
and 5 ml of 60 °C warm extraction buffer (2% CTAB, 2% 
PVP), 2  M NaCl, 0.9  mM DEPC, 0.5  mM spermidine, 
100  mM Tris [pH = 8]) and 100  µl of mercaptoethanol 
were added. After vortexing, 5 ml of chloroform-isoamyl-
alcohol (24:1; CIA) was added. The mixture was vortexed 
and centrifuged (15  min, 15  °C, 3184 × g). The upper 
aqueous phase was mixed with 5 ml of CIA and centri-
fuged again (15  min, 15  °C, 3184 × g). This CIA extrac-
tion was repeated once. After the third centrifugation, 
900  µl of 10  M lithium chloride with 1  mM DEPC was 
added to the upper phase (in a new tube). The mix-
ture was vortexed and stored in the refrigerator (4  °C, 
o/n). After o/n incubation the mixture was centrifuged 
(30  min, 5  °C, 3184 × g) and the supernatant was elimi-
nated. The formed pellet was solved with 500 µl of 60 °C 
warm SSTE buffer [1 M NaCl, 0.5% SDS solution, 1 mM 
EDTA, 1  mM DEPC, 10  mM Tris (pH = 8)]. Then, the 
buffer/pellet mixture was transferred into a new tube and 
500  µl of CIA was added. After vortexing, the mixture 
was centrifuged (10  min, 21  °C, 16,363 × g). The upper 
aqueous phase was transferred to a new tube and 96% 
ethanol was added in the threefold amount of the sample 
(approx. 1.5 ml). Then, the samples were incubated on ice 

(5 min) and centrifuged (4 °C, 35 min, 16,363 × g). After 
eliminating the supernatant, 250 µl of 75% ethanol were 
added and the mixture was vortexed shortly. The mixture 
was centrifuged (4 °C, 10 min, 16,363 × g) and the super-
natant was removed. For drying the pellet, the tubes 
were incubated with open lids (10 min, rt), and 150 µl of 
10 mM Tris (pH > 7) was added. After an incubation step 
(65  °C, 10  min), the RNA was dissolved and extracted 
RNA was purified (including DNA digestion) using the 
RNeasy Mini Kit (Qiagen) and the RNase-Free DNase Set 
(Qiagen) following the manufacturer’s instructions. Puri-
fied RNA was quantified by a fluorometer (Qubit). The 
integrity of the purified RNA intended for RNA sequenc-
ing was verified with an Agilent 2100 bioanalyzer (Agi-
lent Technologies). RNA was stored at − 80 °C until use.

RNA sequencing and data analysis
Three pools of variety AG8025conv and three pools of 
variety AG8025RR2 were subjected to standard Illumina 
library preparation using the NEBNext Ultra RNA library 
prep kit according to the manufacturer’s instructions. 
Three pools of varieties 9045conv and 9045RR2, respec-
tively were treated in the same way. The resulting six 
cDNA libraries of each conv, RR2 variety pair were paired 
end sequenced (125  bp) using an Illumina HiSeq2500 
machine at the Vienna Biocenter Core Facilities NGS unit 
(https​://www.vbcf.ac.at). Reads, which passed basic qual-
ity control (Illumina chastity filter), were preprocessed: 
Adapters were removed with cutadapt (https​://cutad​apt.
readt​hedoc​s.io/en/stabl​e/guide​.html) and the reads were 
filtered against the rDNA using Bowtie2 (https​://bowti​
e-bio.sourc​eforg​e.net/bowti​e2/index​.shtml​), which is 
a very sensitive contaminants database. The remaining 
reads were paired end aligned with STAR [25] against the 
B73 reference genome of Zea mays (AGPv3).

Statistical analyses
The Principal Component Analysis was performed using 
‘stats and ‘ggplot2′ libraries while the heatmap cluster-
ing analysis was conducted using ‘pheatmap’ library in 
R environment aiming to find gene expression patterns 
across the different varieties. All clean read counts for 
each sample (n = 12) were used in these analyses.

In order to determine DEGs, the two NK603 varieties 
AG9045RR2 and AG8025RR2 were compared to their 
isogenic counterparts AG9045conv and AG8025conv, 
respectively. Data were calculated by two tests, DEseq2 
and EdgeR, using the software packages Bioconductor 
and Galaxy. These tests are among the best and most 
used performance tools for RNA-seq analysis with low 
numbers of false positives and reliable gene-wise dis-
persion estimates across all samples [4, 53, 72]. DEseq2 
and EdgeR analysis are based on the assumption that the 

https://www.vbcf.ac.at
https://cutadapt.readthedocs.io/en/stable/guide.html
https://cutadapt.readthedocs.io/en/stable/guide.html
https://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://bowtie-bio.sourceforge.net/bowtie2/index.shtml
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data follow a negative binomial distribution [27]. Using 
the raw counts, the data were normalized and trans-
formed to correct for dispersion artifacts and variability 
within the compared groups or to account for differences 
in sequencing depths. Genes without any counts were 
removed. As significance level an adjusted p-value con-
trolled for multiple testing using Benjamini and Hoch-
berg’s correction- with a false discovery rate (FDR) below 
or equal to ≤ 0.05 was taken for the characterization 
of DEGs [13, 67, 75, 76]. In addition, a general cut-off 
threshold of a log2-fold change (log2 FC) ≥  + 1 as well as 
a log2 FC ≤ -1 was used. Thus, DEG unigenes had to meet 
the following criteria: produce a p-value below or equal 
to 0.05 and a log2-fold value above log2 FC ≥  + 1 for 
upregulation or produce a p ≤ 0.05 together with a log2-
fold value below log2 FC ≤ -1 for downregulation.

DEGs were annotated and calculated for enriched 
ontologies at a significance level of 5% by AgriGO v.2 
[80], a specific GO analysis toolkit and a database for 
agricultural purposes. There are three ontologies in the 
GO database, namely, molecular function, cellular com-
ponent and biological process. For this study, we used the 
results from the category “biological process”. DEGs were 
also annotated using KEGG pathway enrichment analy-
sis aiming at identifying significantly enriched metabolic 
pathways or signal transduction pathways affected by 
the NK603 transgene insertion in each variety. Pathways 
with adjusted p-value < 0.05 were significantly enriched. 
KEGG analysis was performed using ‘clusterprofiler’ and 
‘enrichplot’ packages in R environment [86, 87]. For the 
second KEGG analysis an annotation mapping [56, 85] 
was performed using Kobas 3.0 (https​://kobas​.cbi.pku.
edu.cn/ kobas3). KOBAS is a widely used gene set enrich-
ment analysis tool, its annotation module accepts gene 
list as input, and generates annotations for each gene 
based on multiple databases about pathways, diseases, 
and Gene Ontology.

Selected key genes were examined using DAVID Bio-
informatics Resources 6.8 (https​://david​.ncifc​rf.gov/). 
After creating a gene list (using Entrez ID), a Gene Func-
tional Classification Analysis was performed. Similarities 
were measured by Kappa values; furthermore, KEGG 
pathways were determined. First, a cluster analysis was 
performed with the following settings: the classifica-
tion stringency was set to the lowest level, i.e. the indi-
vidual parameters were as follows: (a) Kappa Similarity: 
“Similarity Term Overlap level = 3”, “Similarity Thresh-
old = 0.2”; (b) Classification parameters: “Initial Group 
Membership = 3”, “Final Group Membership = 3”, “Mul-
tiple Linkage Threshold = 3”. Subsequently, the similar-
ity between all genes was determined using Kappa scores 
between 0.05 and 1. Cohen’s Kappa values are generally 
accepted to be a robust measure for genetic similarity. 

Kappa results range between 0 and 1. The higher the 
value of Kappa, the stronger the agreement. Kappa more 
than 0.7 typically indicates a strong agreement between 
two genes [57].

Furthermore, KEGG pathways were determined with 
the genes of the cluster. The components of the pathways 
found were as follows: “zma-Category; Counts; LT(List-
Total); PH (Pop Hits); PT(Pop-Total); %; p-Value; Fold 
Enrichment”:

(1) zma00010;3;3;181;6522;100;0,00077;24 / (2) zma012
30;3;3;360;6522;100;0,0030;12 / (3) zma01200;3;3;364;652
2;100;0,0031;12 / (4) zma01130;3;3;634;6522;100;0,0094;6
,9 / (5) zma01110;3;3;1415;6522;100;0,047;3,1 / (6) zma01
100;3;3;2496;6522;100;0,15;1,7.

Confirmation of differentially expressed genes 
with RT‑qPCR
The gene expression of two differentially regulated genes 
(GRMZM2G127948, AC204711.3_FG003) was assayed 
by RT-qPCR. To test the biological and the technical 
reproducibility of the RNA-Seq results (validation of 
RNA-Seq), a new set of three RNA pools was generated 
from AG8025conv and AG8025RR2 which was not used 
for the main RNA-Seq assay. In addition, three new pools 
of AG9045RR2 and its counterpart AG9045conv were 
generated to confirm the identified differences between 
the AG8025conv and AG8025RR2 gene expression.

RT-qPCR was performed on a Rotor Gene Q (Qiagen) 
using the GoTaq® 1-Step RT-qPCR System (Promega) 
according to the manufacturer’s instructions. Each reac-
tion was performed in a 20  µL final volume containing 
10 ng total RNA and 0.2 µM of each primer. Primers tar-
geting differentially expressed genes were designed using 
the software Primer-BLAST (https​://www.ncbi.nlm.nih.
gov/tools​/prime​rblas​t/). Their sequences are given in 
the results section. Primer for the reference gene, ubiq-
uitin carrier protein (fwd. 5′-CAG​GTG​GGG​TAT​TCT​
TGG​TG-3′, rev. 5′-ATG​TTC​GGG​TGG​AAA​ACC​TT-3′) 
were taken from Manoli et al. [55]. The primers were pur-
chased from Sigma-Aldrich (Vienna, Austria).

First, to test the specificity of the PCR primer a melt-
ing curve analysis was executed which should give just a 
single peak for each primer pair. Secondly, the efficiency 
was tested by a dilution series with four different concen-
trations of a sample. From this test, a standard line and 
a slope was obtained [68]. Each standard of the dilution 
was tested in duplicate with a target primer and ubiquitin 
carrier protein as reference.

All reactions were performed with a hold step at 37 °C 
(15 min) followed by an initial denaturation step at 95 °C 
(10 min), followed by 45 cycles of denaturation (95 °C for 
10 s), annealing (60 °C for 30 s) and extension (72 °C for 
30 s) with a fluorescence measurement at the last step of 

https://kobas.cbi.pku.edu.cn/
https://kobas.cbi.pku.edu.cn/
https://david.ncifcrf.gov/
https://www.ncbi.nlm.nih.gov/tools/primerblast/
https://www.ncbi.nlm.nih.gov/tools/primerblast/
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each cycle. A melting curve, ranging from 60 to 99  °C, 
with fluorescence measurements at 1  °C intervals, was 
done after every RT-qPCR, to determine the specific-
ity of the reaction. The differential expression of the two 
selected genes was measured by comparing the RNA of 
three independent pools of GM maize grains with three 
independent pools of conventional maize grains. Each 
sample pool was tested in triplicate. One pool consisted 
of 8 maize grains. For inhibition testing and to evalu-
ate the efficiencies of the specific and reference gene 
PCR assays, standard curves were pipetted in every run. 
Negative-control and reverse transcriptase (RT)-minus 
controls (reverse transcription reaction without addition 
of reverse transcriptase) were also used. Every run was 
repeated on another day and the mean of the values was 
taken.

Data were evaluated using the Rotor Gene Q Series 
software. Linearity (R2) and efficiency (E = 10[−1/slope]) 
of every reaction were within the accepted values. For a 
valid linearity a value of > 0.98 and for a valid efficiency 
a slope between −3.1 and −3.6 was required. Relative 
quantitation was calculated using the 2−ΔΔCt method 
[52]. Values were normalized using the reference gene 
ubiquitin and efficiency correction was performed as 
described by Pfaffl [64].

Results
1_RNA sequencing (RNA‑seq) and library construction 
for NK603 and near‑isogenic maize kernels
Three cDNA libraries per variety were constructed for 
each GM variety and their near-isogenic non-GM coun-
terparts (12 libraries in total). Table  1 gives an over-
view of the statistical analyses and the bioinformatic 
data processing of the libraries per variety. The libraries 
of AG8025RR2 and AG8025conv yielded 93.6  M of raw 
reads on average. A total of 14.6% of the raw reads were 
removed due to adapter removal and cleaning (quality 
filtering and elimination of rRNA). Next, 73.8% of the 
raw reads could be mapped uniquely to the B73 maize 
reference genome version AGPv3. Overall, 5.7% of the 
raw reads contained repetitive sequences, which aligned 
at multiple sites. Further, 5.9% of the reads could not be 

mapped because they had too many errors to match the 
target sequence. Uniquely mapped reads corresponded 
to 39,625 unigenes containing 29,146 genes with counts 
above zero in the transgenic and near-isogenic varie-
ties. The libraries of AG9045RR2 and AG9045conv 
yielded 71.9  M of raw reads on average; 9.2% of these 
were removed, 48.6% could be mapped, 4.6% contained 
repetitive sequences, and 16.4% of the reads could not be 
mapped. Uniquely mapped reads corresponded to 39,625 
unigenes containing 33,420 genes with counts above zero 
in the transgenic and near-isogenic varieties.

2_Exploratory data—PCA and heatmap
Unsupervised PCA results are depicted in Fig. 2 for the 
entire data set. The analysis demonstrated a clear cluster 
by variety (PC1 23% of variation) and a second cluster by 
transgenic event (PC2 11% of the variation). Variability 
within the replicates was low (except for one sample from 
AG9045). For AG9045 and AG9045RR2 the distance 
between transgenic and non-transgenic is lower than the 
distance between both non-transgenic. For AG8025 and 
AG8025RR2 the distance between transgenic and non-
transgenic is similar to the distance between both non-
transgenic. The heatmap data are presented in Fig. 3. The 
heatmap hierarchical clustering corroborates the PCA 
results as the varieties pairs are clustered together. In 
addition, there was no significant variability between rep-
licates observed.

3_Characterization of significant differentially expressed 
genes
Based on the criteria outlined in section  Materials and 
methods (subchapter statistical analyses) a total of 2477 
genes were determined to be differentially expressed by 
DESeq2 in AG8025RR2 vs. AG8025conv. (29,146 uni-
gene counts above zero), and a total of 440 genes were 
determined to be differentially expressed in AG9045RR2 
vs. AG9045conv. (33,420 unigene counts above zero). 
EdgeR analysis indicated 3534 and 694 DEGs were pre-
sent in AG8025RR2 vs. AG8025conv and in AG9045RR2 
vs. AG9045conv, respectively. The DEGs and analytical 
process results are shown in Fig. 1. The complete list of 

Table 1  Details of run statistics and data processing for library construction AG8025RR2, AG9045RR2 and near isogenic 
varieties

Run statistics AG8025RR2 AG8025 conv AG9045RR2 AG9045 conv

Raw reads 95.5 M 91.7 M 71.1 M 73.1 M

Uniquely mapped reads 71.7 M 65.9 M 37.6 M 49 M

Repetitive sequences 5.4 M 5.2 M 3.1 M 3.6 M

Not aligned 5.0 M 6.1 M 20.8 M 2.8 M

Median insert size (nt) (from aligned 
paired end reads)

107 128 165 159
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all DEGs analyzed by both tools are available under Addi-
tional files: 1–8.

Analysis of the data using EdgeR and DESeq2 showed 
that a total of 1355 genes were significantly upregulated 
and 1105 genes were significantly downregulated in the 
AG8025RR2 variety vs. the AG8025conv counterpart. 
On the other hand, in the AG9045 variety, a total of 308 
genes were significantly upregulated, and 79 genes were 
significantly downregulated in the AG9045RR2 variety 
vs. the AG9045conv counterpart. If just common genes 
were considered, 27 genes were commonly upregulated, 

and 26 common genes were downregulated in both vari-
eties when comparing the significantly upregulated or 
downregulated genes of the two varieties AG8025 and 
AG9045.

4_Singular enrichment analysis, characterization of Gene 
Ontologies, and REViGO
After statistically defining DEGs, these genes were fur-
ther analyzed by SEA using the agriGO tool. Explor-
ing GO has become a widespread practice to obtain 
insights into the potential biological meaning of RNA 

Fig. 2  PCA of the entire data set (n = 12)
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experiments. For this analysis, there is a growing number 
of available gene-sets and functional literature containing 
many genes/proteins and biochemical pathways. Compu-
tational analysis helps to find functionally coherent gene-
sets that are statistically overrepresented in a given gene 
list. The results are mapped as well and compared to gene 
functional categories of a GO database. Thus, GO analy-
sis may indicate that a certain biological process plays a 
role in the analyzed biological condition.

For the SEA analysis, the sum of the upregulated plus 
downregulated DEGs of both varieties, AG8025RR2 
vs. AG8025 conv (n = 2460) and AG9045RR2 vs. 
AG9045conv (n = 387), was calculated  (Additional 
files 9, 10). There were n = 81 GOs in the AG8025RR2 
vs. AG8025conv comparison and n = 78-GOs in the 
AG9045RR2 vs. AG9045conv comparison. However, 
these numbers were reduced when considering just the 

Fig. 3  Heatmap of the entire data set (n = 12). Each row of the heat map represents the log2 fold values transformed with z score of a differentially 
expressed gene (blue, low expression; red, high expression). Hierarchial grouping of differentially expressed genes shows clustering
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Table 2  Characteristics of significant GO-ontology groups before (all rows) and after REViGO calculation (marked in bold)

GO:ID Description No. genes 
AG8025 vs 
AG8025RR2

No. genes 
AG9045 
AG9045RR2

No. 
of common 
genes

SEA_FDR mv log10_p-val Frequency 
(%)

Uniquen Dispens

GO:0003006 development 
process 
involved in 
reproduc‑
tion

350 71 22 0.0310 −1.5086 1.227 0.92 0.00

GO:0042221 Response to 
chemical

726 150 42 0.0000 −4.4909 4.749 0.34 0.00

GO:0044711 Single-
organism 
biosynthetic 
process

534 91 24 0.0160 −1.7959 6.613 0.87 0.00

GO:0044763 Single-organ‑
ism cellular 
process

1398 238 67 0.0177 −1.7533 19.396 0.87 0.3

GO:0009651 Response to 
salt stress

178 40 14 0.0024 −2.6289 0.389 0.37 0.41

GO:0009266 Response to 
temperature 
stimulus

167 43 10 0.0020 −2.6946 0.601 0.37 0.74

GO:0006970 Response to 
osmotic stress

186 46 15 0.0016 −2.7945 0.468 0.36 0.71

GO:0044710 Single-
organism 
metabolic 
process

1112 181 51 0.0210 −1.6778 23.696 0.87 0.42

GO:0051707 Response to 
other organ‑
ism

293 63 17 0.0014 −2.8697 0.704 0.33 0.44

GO:0043207 Response to 
external biotic 
stimulus

294 64 17 0.0014 −2.8697 0.704 0.33 0.97

GO:0009620 Response to 
fungus

120 26 9 0.0137 −1.8649 0.285 0.36 0.91

GO:0098542 Defense 
response to 
other organ-
ism

120 26 9 0.0083 −2.0835 0.601 0.31 0.98

GO:0009607 Response 
to biotic 
stimulus

311 66 17 0.0019 −2.7328 0.771 0.42 0.44

GO:0009605 Response to 
external 
stimulus

423 82 24 0.0011 −2.9788 1.057 0.41 0.46

GO:1901700 Response to 
oxygen-
containing 
compound

428 101 29 0.0006 −3.2217 1.196 0.35 0.47

GO:0010033 Response to 
organic 
substance

519 121 36 0.0010 −3.0222 2.423 0.31 0.71

GO:0070887 Cellular 
response to 
chemical 
stimulus

349 76 16 0.0186 −1.7317 1.470 0.34 0.73

GO:0006952 Defense 
response

330 64 15 0.0036 −2.4461 1.312 0.37 0.48
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common ontologies of both varieties which resulted in 24 
GO ontologies (Table 2).

Redundancy of GM terms constitutes a major problem 
for the interpretation of RNAseq results. Very recently, 
a software called REViGO was developed using an algo-
rithm that evaluates semantic similarities in GO assign-
ments from hierarchical functional annotation of gene 
ontologies [79]. GO terms with semantic similarities are 
used to find representative subsets of the terms. Clusters 
are formed, and each of the GO terms is assigned to the 
clusters. Cluster representatives are kept, while subor-
dinate cluster members can be removed, thus avoiding 
redundancy in the results. However, it should be con-
sidered that GO annotations are hierarchical, REViGO 
retains more general ontologies and removes more 
detailed ontologies, and other programs e.g. ClueGO sort 
ontologies differently. The usage of REViGO enabled us 
to reduce the number of ontologies from 24 to 16 GOs. 
When taking a closer look at the total amount of genes, 
we discovered n = 81 unique genes (see Table  3) within 
the 16 ontologies. The results, in particular the number 
of genes in the GO clusters, the FDR values from the 
SEA analysis, as well as the p-values for the frequency, 
uniqueness and dispensability—these parameters are 
useful to select different level of ontologies- of the SEA 
analysis are given in Table 2. The largest groups of ontol-
ogies were different types of responses, for instance, 
response to stress, cold, inorganic substances, chemicals, 
acid chemicals, oxygen-containing compounds, and salt 

stress, the defense response, and the response to abi-
otic, biotic, chemical, external or endogenous stimuli. 
Next, a smaller group of ontologies contained three sin-
gle-organism processes: a biosynthetic process, single-
organism metabolic process and single-organism cellular 
process. Other ontologies were developmental processes 
involved in reproduction and single-organism biosyn-
thetic processes.

5_KEGG pathway classification of identified genes
The GO ontologies evaluated in the previous section con-
tain just a general semantic description of DEGs, which 
are merged into certain GO terms. One general drawback 
of GO terms is that their meaning may be very general. 
However, an important aspect of this study should be 
that the biological/biochemical functions of identified 
genes and their functional annotation are understood. 
This is possible by means of pathway analysis using 
KEGG annotation/enrichment analysis of single DEGs. 
KEGG is a database containing a collection of genomes, 
biological pathways, diseases, drugs, and chemical sub-
stances. Thus, KEGG is a popular method to find func-
tionally related genes and pathways that are enriched in 
a gene list and can be defined based on participation in a 
metabolic or signaling pathway.

For the KEGG analysis, the two NK603 varieties, 
AG9045RR2 and AG8025RR2, were compared to their 
isogenic counterparts, AG9045conv and AG8025conv, 
respectively. First, an annotation mapping was performed 

Table 2  (continued)

GO:ID Description No. genes 
AG8025 vs 
AG8025RR2

No. genes 
AG9045 
AG9045RR2

No. 
of common 
genes

SEA_FDR mv log10_p-val Frequency 
(%)

Uniquen Dispens

GO:0009628 Response 
to abiotic 
stimulus

462 109 25 0.0004 −3.4144 1.925 0.38 0.5

GO:0009719 Response to 
endogenous 
stimulus

388 95 27 0.0125 −1.9031 2.168 0.38 0.51

GO:0010035 Response to 
inorganic 
substance

261 52 14 0.0108 −1.9666 0.735 0.37 0.62

GO:0006950 Response to 
stress

821 146 39 0.0077 −2.1135 7.803 0.31 0.62

GO:0001101 Response to 
acid chemi‑
cal

290 71 19 0.0075 −2.1240 0.753 0.37 0.62

GO:0009409 Response to 
cold

125 30 8 0.0031 −2.5157 0.310 0.38 0.68

GO:ID, identity of GO-Ontologies; description, definition of ontologies; nr.genes AG8025 vs AG8025RR2, and nr.genes AG9045 vs AG9045RR2, number of genes in the 
ontology groups AG8025 vs AG8025RR2, and AG9045 vs AG9045RR2; common genes(nr.), number of genes commonly up- or downregulated genes in both variety 
pairs; SEA_FDR mv, mean value of AG8025 and AG9045 false discovery rate (p < 0.05); Rev log10, log10 value of REViGO analysis; Frequ, proportion of GO terms in the 
annotation database; Uniqueness, comparison measure to other ontologies (Parameter for ontology outliers); Dispensability, similarity threshold for elimination of 
ontologies
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Table 3  Gen-IDs, occurence in GO-Ontologies, ko-identities and gene description of GO-Ontology genes

Gene-ID Occur. in 16 GOs Entrez-ID Gene/protein description

AC204711.3_FG003 8 100286331 Senescence-associated protein DIN1

GRMZM2G005954 16 100191257 Uncharacterized

GRMZM2G007252 4 100383338 3beta-hydroxysteroid-dehydrogenase/

Decarboxylase isoform 2

GRMZM2G011523 1 100276951 Uncharacterized

GRMZM2G013448 11 100283053 1-Aminocyclopropane-1-carboxylate oxidase 1

GRMZM2G025611 5 103629239 Cation/H(+) antiporter 20

GRMZM2G028677 1 100284998 Trans-cinnamate 4-monooxygenase

GRMZM2G036351 6 100284433 Uncharacterized

GRMZM2G039166 9 541876 Homocysteine S-methyltransferase 4

GRMZM2G040559 1 100281010 Tubulin alpha-6 chain

GRMZM2G046392 1 Does not match to Entrez GenBank accession: AFW62113

GRMZM2G053206 4 100272880 Uncharacterized

GRMZM2G054224 9 100274058 Putative prolyl 4-hydroxylase 12

GRMZM2G069758 11 100283562 Pyridoxal kinase

GRMZM2G084491 8 103641981 Uncharacterized

GRMZM2G089557 16 100281848 Zinc finger, C2H2 type family protein

GRMZM2G090043 1 100275716 Uncharacterized

GRMZM2G099619 10 100501607 ABC transporter G family member 16

GRMZM2G105987 10 100281231 NHL25

GRMZM2G106445 2 100285556 Wound induced protein

GRMZM2G107073 2 100284797 Glycoside hydrolase, family 28

GRMZM2G127251 2 100274269 Hydroxycinnamoyltransferase3

GRMZM2G127948 3 107282093 Caffeoyl-CoA O-methyltransferase1

GRMZM2G129018 16 100284454 Uncharacterized

GRMZM2G129674 5 100216626 Uncharacterized

GRMZM2G135044 6 100272362 Uncharacterized

GRMZM2G144997 1 103634596 Chaperone protein dnaJ 20, chloroplastic

GRMZM2G148485 2 103653873 Expansin-B15

GRMZM2G152175 3 100284504 Dihydroflavonol-4-reductase

GRMZM2G156356 6 100283084 Maltose excess protein 1-like

GRMZM2G156632 1 542729 Wound induced protein 1

GRMZM2G162359 12 100274481 Uncharacterized

GRMZM2G166944 10 100191584 Xyloglucan endotransglucosylase/hydrolase protein 23

GRMZM2G306643 4 100278004 Senescence regulator

GRMZM2G354319 6 103629679 Putative B-box type zinc finger family protein

GRMZM2G408158 11 103648268 9-cis-epoxycarotenoid dioxygenase NCED4

GRMZM2G425206 2 100280859 OLE-5

GRMZM2G446253 2 103631112 Enolase 1-like

GRMZM2G477872 14 100280163 Uncharacterized

GRMZM5G800586 10 100273184 BURP domain protein RD22

GRMZM5G831577 11 100280792 RNA-binding protein

GRMZM5G880028 4 103639108 Putative calmodulin-binding family protein

GRMZM5G896756 1 Does not match to Entrez GenBank accession: AFW74673

GRMZM5G899851 5 542229 Uncharacterized

GRMZM2G003711 1 Does not match to Entrez GenBank accession:DAA60655

GRMZM2G015599 1 100272609 Uncharacterized

GRMZM2G018059 7 103646429 Uncharacterized

GRMZM2G020423 1 100280615 Uncharacterized
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using Kobas 3.0. The mapping was carried out with the 
unique n = 81 genes (73 Entrez-IDs) of the 16 ontology 
groups (these genes are listed in Table  3). The detailed 
result of the annotations is specified in Additional file 11. 
We have also performed a KEGG pathways scatter plot 
for the enriched metabolic pathways for each of the 
NK603 varieties. Biosynthesis of secondary metabolites 
was found altered in both NK603 varieties compared to 
their near-isogenic conventional counterpart. The vari-
ety AG8025RR showed imbalance for starch and sugar 
metabolism, oxidative phosphorylation, glyoxylate and 
dicarboxylate metabolism, butanoate, beta-alanine, 

valine, leucine and isoleucine metabolism and also splice-
osome (Fig. 4). Whereas variety AG9045RR only showed 
arginine and proline metabolism disturbance (Fig.  4). 
The list of enriched pathways and their corresponding p 
adjusted values are present in Table 4 and in Additional 
file 12.

6_DAVID—functional classification of genes
We compared the genes of the overrepresented gene 
classes (SEA) with the genes involved in significantly 
affected metabolic pathways (KEGG). Genes occurring 
in SEA as well as in KEGG analysis of AG8025(RR2) 

Table 3  (continued)

Gene-ID Occur. in 16 GOs Entrez-ID Gene/protein description

GRMZM2G027490 1 Does not match to Entrez GenBank accession:DAA63464

GRMZM2G028521 2 100285151 Uncharacterized

GRMZM2G044670 2 100272471 Uncharacterized

GRMZM2G071630 12 542333 Cytosolic glyceroldehyde-3-phosphate dehydrogenase

GRMZM2G075018 1 100383107 Uncharacterized

GRMZM2G087714 2 107198085 Protein NUCLEAR FUSION DEFECTIVE 6

Chloroplastic/mitochondrial

GRMZM2G089750 5 100193060 Uncharacterized

GRMZM2G103342 14 100275716 Uncharacterized

GRMZM2G104942 2 100216884 Putative glycerol-3-phosphate transporter 1

GRMZM2G105657 1 100274546 Uncharacterized

GRMZM2G106092 3 Does not match to Entrez GenBank accession:DAA38807

GRMZM2G108847 1 100037813 Putative serine type endopeptidase inhibitor

GRMZM2G108991 4 103647628 Serine/threonine protein phosphatase 2A

57 kDa regulatory subunit B’ alpha isoform

GRMZM2G111189 1 100383286 Uncharacterized

GRMZM2G135536 9 100285285 Uncharacterized

GRMZM2G149422 4 103654240 Protein EXORDIUM

GRMZM2G152908 8 542247 Sucrose synthase 1

GRMZM2G168115 3 100281436 Uncharacterized

GRMZM2G170017 6 100281076 Uncharacterized

GRMZM2G176225 12 100281741 Uncharacterized

GRMZM2G176307 12 100037774 Uncharacterized

GRMZM2G179138 2 Does not match to Entrez GenBank accession:DAA47206

GRMZM2G180246 1 100101544 Growth-regulating-factor-inteacting factor1

GRMZM2G312110 8 103633920 Auxin transport protein BIG

GRMZM2G339336 2 Does not match to Entrez GenBankaccession: AFW64680

GRMZM2G368886 1 107325939 Alpha-expansin4

GRMZM2G373124 8 100280958 Uncharacterized

GRMZM2G703490 1 100278319 Uncharacterized

GRMZM5G801436 3 100282335 Uncharacterized

GRMZM5G817651 7 100278060 Uncharacterized

GRMZM5G836174 5 100191227 Phosphatase phospho 1

GRMZM5G843555 9 100272381 Uncharacterized

GRMZM5G845532 2 Does not match to Entrez GenBank accession: AFW62896)
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and AG9045(RR2) are depicted in Table 5. If the genes 
of Table 5 are to be used for more detailed analysis, the 
knowledge of the genetic similarity between these genes 
would be very valuable. Thus, the relatedness between 
the most important genes of Table  5 was determined. 
Eleven genes occurring in the GO-ontologies as well as 
in the KEGG pathways of AG8025 and AG9045 were 
analyzed using the gene functional classification tool 

of the DAVID Bioinformatics Package (see Materials 
and methods). The analysis revealed a cluster of three 
genes (Entrez No. 103631112, 100037774, 542333), 
while eight genes of the list were not in the output. 
The genetic similarity between all eleven genes was 
determined by the calculation of Kappa scores (see 
Table  6). In addition to the determination of similari-
ties, the three cluster genes were also used to determine 

Fig. 4  Enrichment maps of DEGs of AG8025(RR2) and AG9045(RR2). The size stands for the number of different genes and the color stands for 
different p-values
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enriched KEGG pathways by DAVID. The following 6 
KEGG pathways were found: zma00010: Glycolysis /
Gluconeogenesis, zma01230: Biosynthesis of amino 
acids, zma01200: Carbon metabolism, zma01130: Bio-
synthesis of antibiotics, zma01110: Biosynthesis of sec-
ondary metabolites, zma01100: Metabolic pathways. 
Two of these pathways (zma01110 and zma01100) were 
also found with the above-mentioned KEGG enrich-
ments of all significant DEG genes. Thus, a more accu-
rate representation of the components of these KEGG 
pathways is intriguing. However, since the KEGG path-
ways contain a huge number of genes, the number of 
the background genes occurring in the maize data-
base and the complexity of the maps of KEGG path-
ways were too high to be listed in the results section, 
but are indicated in Additional files 14 and 15 instead. 
Based on this information, it is possible to look up 

the biochemical relationships between the 11 genes of 
Table 5.

7_Verification of RNA sequencing results by RT‑qPCR
As described above, two different program packages 
were used for analysis of the primary RNA-seq data with 
the aim of avoiding false-positive results. However, as 
in most transcriptomic studies our RNA-seq data con-
tain just a low number of biological replicates (n = 3), 
but a high number of total data. Thus, from a math-
ematical perspective it is desirable, and it is practiced 
as a gold standard to validate DEG data with additional 
methods such as microarray hybridization or RT-qPCR 
analysis [18, 22, 44, 49, 69, 89]. Reverse transcription fol-
lowed by PCR is a powerful tool for the quantification 
and detection of gene expression levels, in particular for 
low-abundance transcripts. Thus, we decided to assign 

Table 4  Main values of KEGG enrichment for AG8025(RR2) and AG9045(RR2) groups

ID identification of the metabolic pathways under KEGG database, size the number of genes in that pathway, enrich the enrichment score and NES the normalized 
enrichment score

ID Description Size Enrich. NES p value p. adjust q values Rank

KEGG enrichment 8025

zma01100 Metabolic pathways 253 −0.176 −2047053 0.0009 0.0009 0.0741 2039

zma00280 Valine, leucine and isoleucine degradation 7 −0.604 −1854659 0.0135 0.0135 0.3370 986

zma00500 Starch and sucrose metabolism 21 0.380 1739141 0.0192 0.0192 0.3370 1008

zma00650 Butanoate metabolism 5 −0.667 −1753212 0.0197 0.0197 0.3370 187

zma01110 Biosynthesis of secondary metabolites 140 −0.156 −1555442 0.0244 0.0244 0.3370 2028

zma00630 Glyoxylate and dicarboxylate metabolism 9 −0.505 −1739344 0.0244 0.0244 0.3370 68

zma00190 Oxidative phosphorylation 7 −0.560 −1721144 0.0277 0.0277 0.3370 720

zma00410 Beta-Alanine metabolism 7 −0.542 −1662939 0.0389 0.0389 0.4152 862

zma03040 Spliceosome 4 −0.660 −1567797 0.0466 0.0466 0.4266 479

KEGG enrichment 9045

zma00330 Arginine and proline metabolism 3 0.892 1822906 0.0017 0.0017 0.0323 45

zma01110 Biosynthesis of secondary metabolites 40 0.323 1714550 0.0226 0.0226 0.2139 117

Table 5  Key genes

Only genes involved in significantly affected metabolic pathways (KEGG) and among overrepresented gene classes (SEA) are shown

Gene-ID Entrez-ID Gene/protein description

GRMZM2G007252 100383338 3Beta-hydroxysteroid-dehydrogenase/

GRMZM2G013448 100283053 1-Aminocyclopropane-1-carboxylate oxidase 1

GRMZM2G028677 100284998 Trans-cinnamate 4-monooxygenase

GRMZM2G039166 541876 Homocysteine S-methyltransferase 4

GRMZM2G054224 100274058 Putative prolyl 4-hydroxylase 12

GRMZM2G408158 103648268 9-Cis-epoxycarotenoid dioxygenase NCED4

GRMZM2G446253 103631112 Enolase 1-like

GRMZM2G071630 542333 Cytosolic glyceroldehyde-3-phosphate dehydrogenase

GRMZM2G170017 100281076 Uncharacterized

GRMZM2G176307 100037774 Uncharacterized

GRMZM5G843555 100272381 Uncharacterized
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two randomly selected differentially regulated genes for 
reverse transcription real-time PCR. One of the genes 
was upregulated (AC204711.3_FG003), while the other 
was downregulated (GRMZM2G127948). The results of 
the DEGs (log2 FC values) tested with DeSeq2 and EdgeR 
for both genes are depicted in Table 7. The log2 FC val-
ues for these genes were either above the cut-off value 
of log2 FC =  + 1 (upregulated) or below log2 FC = −1 
(downregulated).

The first gene, GRMZM2G127948, codes for the pro-
tein ´Caffeoyl-CoA O-methyltransferase 1´. Caffeoyl-
CoA omethyltransferase 1 is a key enzyme in lignin 
biosynthesis. Lignin provides mechanical strength to 
vascular tissues and protects plants from biotic stresses, 
including pathogen attack [83]. In investigating the ontol-
ogies to which these genes belong, the gene with the 
ID GRMZM2G127948 could be found in the following 
ontologies of both varieties—AG9045 as well as AG8025:

GO:0044710 (single-organism metabolic process),
GO:0044711 (single-organism biosynthetic process), 

and.
GO:0044763 (single-organism cellular process).
The second gene with the ID AC204711.3_FG003 is a 

gene (senescence-associated protein DIN) relevant for 
senescence-related processes. Senescence is involved 
in the deterioration found in several parts of a plant or 
functional characteristics at a cellular level, in death rates 
or in fecundity. AC204711.3_FG003 can be assigned 
consistently to the following functions in the compari-
son of both varieties—AG9045NK603 vs. AG9045 and 
AG8025NK603 vs. AG8025:

GO:0044710 (single-organism metabolic process),
GO:0044711 (single-organism biosynthetic process),
GO:0044763 (single-organism cellular process),
GO:0009719 (response to endogenous stimuli),
GO:0042221 (response to chemicals),
GO:0001101 (response to acid chemicals),

GO:0006950 (response to stress), and.
GO:1901700 (response to oxygen-containing 

compounds).
To assess if the DGE analysis of both genes can be 

validated with independent methods, these genes were 
tested twice using RT-qPCR with the aid of gene-specific 
and reference primer pairs (see Materials and methods 
section). The log2 FC data obtained with RT-qPCR com-
pared to the RNA-seq data are shown in Table  7. The 
log2 FC values of the upregulated gene were distinctly 
above the positive cutoff value in both GM varieties, log2 
FC =  + 5.08 and + 2.20 respectively. Additionally, the 
tendency of the downregulated gene was in accordance 
with the DGE data. The log2 FC value of the first vari-
ety (log2 FC = −1.21) was below the cut-off value (log2 
FC = 1), and the log2 FC value of the second variety (log2 
FC = −0.82) was very close to the negative cut-off value 
(log2 FC = −1). For these two genes, the log2 FC values 
measured by RT-qPCR expression were in good agree-
ment with the DGE data. Thus, the RNA-seq results 
agreed with the RT-qPCR results and seem to be of high 
reliability. Nonetheless, it would be still necessary to con-
duct more single gene experiments using RT-qPCR as a 
method to get a better estimate of the reliability of the 
implemented RNA-seq results.

7_Measurement of NK603 grains vs. grains 
of the near‑isogenic conventional variety
When comparing gene expression of GM varieties with 
those of conventional counterpart plants, it should be 
considered that potential nonspecific effects might 
influence the results of the RNA-seq analysis. Thus, we 
were interested in whether a general difference exists 
among the investigated kernels. To get a rough estimate 
of potentially unspecific differences, we measured the 
weight of GM and conventional kernels. To determine 
the differences between transgenic and conventional 
maize, 53 grains of each variety were weighed, and eval-
uated for significant differences. Because the weights 
of the grains were not normally distributed (8025conv 
p = 0.031; 8025RR2 p = 0.00074; Shapiro Wilk test) we 
evaluated the significance of the differences by a non-par-
ametric test (Mann Whitney U-test). AG8025RR2 maize 
grains had an average weight of 0.291 g and AG8025conv 
maize grains 0.378  g. This difference was significantly 
different (z-value =  + 7.12, limit for p = 0.001 signifi-
cance =  + 3.29). Additionally, AG9045RR2 maize grains 
had an average weight of 0.357 g and AG9045conv maize 
grains an average weight of 0.232 g. This difference was 
significantly different as well (z-value = −8.87, limit for 
p = 0.001 significance = −3.2).

Thus, in the case of the AG8025 comparison, the con-
ventional variety was heavier, whereas in the case of the 

Table 7  Comparison of log2 FC-values of two single genes 
(AC204711.3_FG003, GRMZM2G127948) obtained by DGE 
(DESeq2, EdgeR) and single gene (RT-qPCR) analysis

AC204711.3_FG003 Senescence-associated protein DIN1

 DGE analysis AG8025 AG9045

 Deseq2  + 2.20  + 1.34

 EdgeR  + 2.92  + 2.20

 RT-qPCR analysis  + 5.08  + 2.32

GRMZM2G127948 Caffeoyl-CoA O-methyltransferase1

 DGE analysis AG8025 AG9045

 Deseq2 −1.81 −1.29

 EdgeR −1.97 −1.45

 RT-qPCR analysis −1.21 −0.82
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AG9045 comparison, the transgenic variety was heavier. 
Figure 5 shows the dry weights of the maize grains of all 
tested varieties. All measurement values for these sam-
ples are present in Additional file 13. As the results were 
opposite in the two varieties, it cannot be concluded that 
there is a consistent weight difference between transgenic 
maize and its conventional counterpart.

Discussion
Rationale of the study
Gene variation and interactions are common and impor-
tant phenomena in understanding plant genetics and 
breeding. Thus, a high-throughput RNA sequencing 
approach allows a dynamic and functional analysis of 
maize genetics. The development of ‘omics’ technology 
has enabled comprehensive analysis of gene interactions, 
as well as unintended effects, in different GM events on 
transcript, protein and metabolite levels [23, 27]. How-
ever, due to differences in methodological approaches 
and/or genetic background, little to no consistent results 
have been obtained among previous studies on how 
gene expression is influenced by transgene insertion and 
expression in plant genomes.

The rationale of this study was to investigate poten-
tial unintended effects deriving from the insertion of a 
specific transgene—NK603—into two transgenic maize 

varieties. RNA-seq analysis was used as a molecular 
profiling technique to study two GM crops in compari-
son to their near-isogenic maize varieties. Differentially 
expressed genes were detected with high stringency, tak-
ing into account different varieties. False-positives were 
limited, as we employed different statistical packages for 
DGE analysis [4, 16, 53]. Overall, this approach allowed 
the detection of common effects in two variety pairs. 
Between the variety pair AG8025RR2 and AG8025conv, 
we took upregulated DEG genes (n = 2460) that were 
common between EdgeR and Deseq2 as well as down-
regulated genes common between EdgeR/Deseq2, of 
these were 55.1% upregulated and 44.9% downregulated. 
Between the variety pair AG9045RR2 and AG9045conv, 
n = 387 genes were differentially expressed (79.6% upreg-
ulated and 20.4% downregulated). This number corre-
sponded to ~ 6.21% (for AG8025conv and AG8025RR2) 
and ~ 0.98% (for AG9045conv and AG9045RR2) of all 
detected maize genes. Further investigation must be 
performed to convincingly explain why the variety pair 
AG8025RR2 has a significantly higher number of dif-
ferentially expressed genes than the AG9045RR2 variety 
pair as it does not correlate to the total number of anno-
tated genes in these libraries.

Gene annotations and ontologies
In the analysis of RNA-seq experiments used to study 
several varieties, it is common to further analyze genes 
that are affected in both varieties. In our case, it turned 
out that the 27 upregulated genes and 26 downregu-
lated genes were differentially expressed in the compar-
ison of the AG8025RR2/AG8025conv and AG9045RR2/
AG9045conv variety groups, respectively. To reduce 
artifacts, we decided to analyze not only two pairs of 
varieties but also performed several statistical evalua-
tions. For this reason, in addition to individual gene 
evaluations, we determined matching annotations of 
GO ontologies and KEGG ontologies for the two GM/ 
conventional groups. Because each ontology term con-
tains clusters of multiple genes, the ontology results 
are less affected by single false-positive or false-nega-
tive results than DEGs. In the statistical evaluations of 
the GO ontologies, we used only those ontologies for 
further analysis that matched between AG8025RR2/
AG8025conv and AG9045RR2/AG9045conv, which 
consisted of n = 24 ontologies with biological processes 
in both varieties. A REViGO analysis enabled us to 
reduce this number to 16 GOs containing n = 81 genes 
(although other programs such as ClueGO are merg-
ing the groups differently). The result of REViGO can 
be summarized as follows: the largest groups of ontolo-
gies were twelve different types of responses. Further 
ontologies contained three single-organism processes 
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Fig. 5  Result of measurements (dot plots) of n = 53 NK603 maize 
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and developmental processes involved in reproduc-
tion. When calculating KEGG annotations and even 
more importantly KEGG enrichments discovering sig-
nificant pathways with p < 0.05, the results were dif-
ferent between the two variety pairs AG8025(RR2) 
and AG9045(RR2). Variety pair AG9045(RR2) con-
tained less significant pathways (n = 2) than variety 
AG8025(RR2) (n = 9). The pathways with p < 0.05 are 
shown in detail in Additional file 12 and Fig. 4 indicat-
ing some main components of the analysis as well as 
enrichment map of AG8025(RR2) and AG9045(RR2). 
Several aspects are worth to be emphasized. In vari-
ety pair AG9045(RR2) there was a cluster consisting 
of three pathways (zma00650: Butanoate metabolism; 
zma00280: Valine, leucine and isoleucine degradation; 
zma00410: beta-alanine metabolism). It is even more 
interesting that AG9045(RR2) had a second cluster con-
taining the same pathway found also in AG8025(RR2) 
(zma01110: Biosynthesis of secondary metabolites).

In order to identify unintended effects arising from 
the insertion of the NK603 gene more in detail and to 
facilitate future investigations, we compared the results 
of SEA/REViGO and KEGG analysis and used the genes 
that occurred in both evaluations (see Table 5) for addi-
tional analyses. Thus, we have determined the similarity 
among the most important genes with a DAVID analysis 
and by means of Kappa values. In addition, we have listed 
the background genes of important KEGG pathways and 
the biochemical maps of these pathways in Additional 
files 14 and 15.

RT‑qPCR
For a reliable interpretation of RNA-seq analyses, it is 
necessary to validate the results by additional molecu-
lar methods, for example by microarray or by RT-qPCR 
[3, 44, 61, 69]. La Paz et al. was able to show that a high 
number of DEGs analyzed with RNA-seq could be con-
firmed with both microarray and RT-qPCR [49]. We were 
able to confirm the results of two randomly selected dif-
ferentially expressed genes using RT-qPCR as well. Evalu-
ation of the analyses shows that the results are highly 
reliable. These two genes were randomly selected and 
are important for plant function. One gene with the ID 
GRMZM2G127948 codes for the protein caffeoyl-CoA 
O-methyltransferase 1, a key enzyme in lignin biosyn-
thesis. Lignin provides mechanical strength to vascular 
tissues and protects plants from biotic stresses, includ-
ing pathogen attack [51, 83]. The second gene with the 
ID AC204711.3_FG003 is a gene (senescence-associated 
protein DIN) relevant for senescence-related processes. 
Senescence is involved in deterioration and is found in 
several parts of a plant or has functional characteristics 

at the cellular level or may be involved in death rates or 
fecundity. The expression of these genes can be found in 
the articles of [16, 42, 47, 59, 66, 77, 78].

Interpretation of genetic diversity using PCA and heatmap
In the interpretation of our results, we are aware that 
there may be more genes that show differential expres-
sion in RNA-seq experiments of genetically modified 
organisms (GMOs) or when exposed to different envi-
ronmental conditions. The results of the comparison 
of single GM crop varieties with corresponding near-
isogenic varieties may only apply to the specific vari-
ety and to the conditions of the year when the variety 
was harvested. In order to assess variance structure of 
our data, we performed PCA and heatmap. The results 
confirm that we have robust data that differentiates the 
genotypes even by transgenic event although the high-
est variability is explained by genotype. AG8025RR2 
and its near-isogenic variety have more DEGs than 
AG9045RR2 and its corresponding near-isogenic vari-
ety. Differences between the two near-isogenic varie-
ties (AG9045 and AG8025) are higher than differences 
between AG9045RR2 and AG9045 but similar com-
pared to the differences between AG8025RR2 and 
AG8025. This indicates that most of the transgenic 
effects are variety-dependent which is also implicated 
by the heatmap results. However, as the two pairs of 
varieties we examined have different genetic back-
grounds, the DEGs occurring in both variety pairs 
could also indicate that some differences may be con-
served among the two varieties. In order to assess the 
role of GM crops in more detail and to get a better 
insight into general effects of GM crops, such as unin-
tended effects and pleiotropy [33, 50], further studies 
would have to be performed. For these investigations 
it would be important to carry out an analysis of addi-
tional NK603 varieties containing different genetic 
backgrounds and the experiments should be performed 
in more standardized and well defined environmental 
conditions [8]. To distinguish between environmental 
and genetic effects, the varieties would have to be culti-
vated at different times of the year, and the genetic rela-
tionship between GM varieties and comparators should 
be clear in more detail. However, it is difficult to imple-
ment this approach, as many varieties, and especially 
isogenic conventional lines, necessary for RNA-seq 
analyses of GM crops, are in the hands of corporations 
and have not been made available for research purposes 
in response to our enquiries.
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Interpretation of unintended genetic effects
Our results indicate that several unintended effects 
involved in different biological processes have occurred 
as a result of NK603 integration. Further single-gene 
analyses of the key genes and genes associated with 
affected biochemical pathways in different NK603 maize 
varieties and corresponding counterparts is necessary to 
interpret the role of the transgene and the biological sig-
nificance of our findings.

Unintended genetic effects of GM plants have been 
described in other publications as well [2, 5–8, 12, 17, 
19, 32, 35, 40, 45, 49, 58, 60, 84, 88]. According to these 
studies, transgenic inserts into the genome of one plant 
variety might affect the overall expression of other 
endogenous genes in the GM plant. Benevenuto et  al. 
compared proteome profiles of herbicide-tolerant NK603 
maize to near-isogenic non-GM maize under drought 
and herbicide stress and detected twenty differentially 
abundant proteins mainly assigned to energetic/carbohy-
drate metabolic processes. When comparing the NK603 
maize and its non-GM near-isogenic variety under the 
same environmental conditions differences were iden-
tified in the levels of jasmonate, methyl jasmonate and 
cinnamic acid and in the abundance of 11 proteins [12]. 
This is similar to our results as we observed a high abun-
dance of the “jasmonate ZIM domain-containing protein 
(ko13464)” across the DEGs which, together with their 
interacting partners, plays an essential role in orches-
trating the cross talk between jasmonate and other hor-
mone signaling pathways [89]. Agapito et al. analyzed the 
proteome profiles of stacked commercial maize hybrid 
containing insecticidal (BT = Bacillus thuringiensis) and 
herbicide tolerant traits (NK603) in comparison to the 
corresponding single event hybrids and non-GM con-
ventional counterparts in the same genetic background 
as well as in comparison to a non-GM landrace variety 
under highly controlled growth conditions. Twenty-two 
proteins were differentially expressed in stacked and 
single GM events versus non-GM isogenic maize and a 
landrace variety. These proteins were mainly assigned 
to energy/carbohydrate and detoxification metabolism. 
Stacked GM genotypes were clustered together and dis-
tant from other genotypes analyzed by PCA. In addition, 
the varieties containing either BT or NK603 were clus-
tered separately and clearly different from the non-GM 
varieties [2]. Arruda et  al. and Herrera-Agudelo et  al. 
detected significant differences in proteins, metallopro-
teins, enzymes and metals between transgenic soybeans 
harboring a RR insert and non-transgenic soybeans [5–7, 
40].

However, many authors of these studies argue that 
the changes in gene expression, protein distribution and 
metabolite content caused by genetic modification are 

less frequent than those caused by environmental factors 
or natural variations. In the study of Coll et  al., natural 
variation explained most of the variability in gene expres-
sion among the samples, but the authors still emphasized 
that “transcriptional differences of conventionally bred 
varieties should be considered in the safety assessment 
of GM plants” [19]. When interpreting these studies, it 
should be beared in mind that genetic diversity in natural 
populations can be very large. Breeding or local popula-
tions generally show much lower genetic diversity than 
landraces and different types of wild relatives in maize 
[34]. Maize has been used as a crop for about 9,000 years 
[26] and its domestication resulted in a wide genetic 
diversity of native landraces [82]. During this period, 
considerable changes in the morphology and physiol-
ogy of maize may have occurred. Thus, the quantity and 
quality of genetic effects and the ratio of genetic effects 
to effects of transgenic insertions may be very diverse in 
different populations. Specific aspects of risk assessment 
such as the selection of comparators have been discussed 
and developed by the EFSA GMO Panel [24].

Secondary effects
Another important requirement for future RNA-seq 
analyses is to consider secondary effects. La Paz et  al. 
described a small but significant delay in seed and plant 
maturation, which possibly influenced the functional 
annotation and expression of differentially expressed 
genes of MON810 plants [49]. To consider secondary 
effects in our analysis, we measured the weight of maize 
grains and compared them between NK603 and isogenic 
varieties. In these experiments, we did not find any con-
sistent effects between the two varieties. However, we 
do not know whether there are other secondary effects 
between GM crops and conventional varieties. Thus, it 
would be important to carry out additional experiments, 
for which one could either evaluate certain parts of plants 
or otherwise analyze embryos as performed in the study 
of La Paz et al. [49].

Conclusion
Overall, our data clearly demonstrate substantial differ-
ences between the analyzed transgenic varieties and their 
non-transgenic counterparts. PCA confirms a distinct 
difference between conventional and transgenic samples 
for variety AG8025 and a slight difference for the other 
variety pair. Several biological processes and metabolic 
pathways are modulated in the transgenic varieties. 
These differences indicate that several unintended effects 
have occurred as a result of NK603 integration. Heat-
map data imply that most of the transgenic insert effects 
are variety-dependent. However, identified key genes 
involved in affected pathways of both variety pairs show 
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that transgenic independent effects cannot be excluded. 
Further research is necessary to clarify the role of inter-
nal and external influences on gene expression.

In general, our studies show that transcriptomic analy-
sis is very useful to assess gene interactions, pleiotropic 
effects and unintended effects in transgenic crops. Thus, 
this technique may be a valuable tool for assessing genes 
that affect plant health or plant fitness, and serve as com-
plementary safety analysis for the pre-market approval of 
GMOs. Even though RNA-seq has become the standard 
method for transcriptome analysis there are still ana-
lytical gaps that need to be taken into account, especially 
those related to the quantification of low levels tran-
scripts [22]. However, with continuous developments of 
RNA-seq strategies, it is anticipated that more robust 
transcript identification will be able to be performed 
from longer reads. Thus, allowing a more accurate detec-
tion of individual, allele-specific biological variations and 
splice variants [61, 81].

In future investigations of NK603 varieties, it would 
be important to analyze genes of affected biochemical 
pathways more in detail to assess the influence of inter-
nal (such as variety or NK603 transgene) and external 
(such as environment) factors on the expression of these 
genes. Moreover, ontology clusters of this study should 
be evaluated more accurately and with other methods for 
example, different types of omics studies [48, 58]. Fur-
thermore, analyzing stacked varieties [84] and the con-
sideration of several transgenic events could be of great 
interest for the regulatory authorities.
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