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ABSTRACT
The Ensemble Kalman Filters (EnKF) employ a Monte-Carlo approach to represent 
covariance information, and are affected by sampling errors in operational settings 
where the number of model realizations is much smaller than the model state 
dimension. To alleviate the effects of these errors EnKF relies on model-specific 
heuristics such as covariance localization, which takes advantage of the spatial 
locality of correlations among the model variables. This work proposes an approach 
to alleviate sampling errors that utilizes a locally averaged-in-time dynamics of the 
model, described in terms of a climatological covariance of the dynamical system. We 
use this covariance as the target matrix in covariance shrinkage methods, and develop 
a stochastic covariance shrinkage approach where synthetic ensemble members are 
drawn to enrich both the ensemble subspace and the ensemble transformation. We 
additionally provide for a way in which this methodology can be localized similar to the 
state-of-the-art LETKF method, and that for a certain model setup, our methodology 
significantly outperforms it.
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1. INTRODUCTION

The ensemble Kalman filter (Burgers et al. 1998, Evensen 
1994, 2009), one of the most widely applied data 
assimilation algorithms (Asch et al. 2016, Law et al. 2015, 
Reich and Cotter 2015), uses a Monte Carlo approach to 
provide a non-linear approximation to the Kalman filter 
(Kalman 1960). In the typical case of an undersampled 
ensemble the algorithm requires correction procedures 
such as inflation (Anderson 2001), localization (Anderson 
2012, Hunt et al. 2007, Nino-Ruiz et al. 2015, Nino-Ruiz 
and Sandu 2017, Petrie 2008, Zhang et al. 2010), and 
ensemble subspace enrichment (Nino-Ruiz and Sandu 
2015, 2018, Ruiz et al. 2014).

Hybrid data assimilation (Hamill and Snyder 2000) is 
typically an umbrella term for assimilation techniques 
that combine both offline-estimated climatological 
covariances with their online-estimated statistical 
counterparts. These methods are often thought of as 
heuristic corrections, but in fact stem from statistically 
rigorous covariance shrinkage techniques.

This work is based on enriching the ensemble subspace 
through the use of climatological covariances. Previous 
work (Nino-Ruiz and Sandu 2015, 2018) proposed 
augmenting the covariance estimates derived from the 
ensemble by a full rank shrinkage covariance matrix 
approximation. In this work we consider augmenting 
the physical ensemble with synthetic members drawn 
from a normal distribution with a possibly low rank 
covariance matrix derived from a priori information such 
a climatological information or method of snapshots. 
We show that this is equivalent to a stochastic 
implementation of the shrinkage covariance matrix 
estimate proposed in (Nino-Ruiz and Sandu 2015, 2018), 
and therefore augmenting the physical ensemble with 
synthetic members enriches the rank of the covariance 
matrix, and nudges the resulting covariance estimate 
toward the true covariance.

2. BACKGROUND

Our aim is to understand the behavior of an evolving 
natural phenomenon. The evolution of the natural 
phenomenon is approximated by an imperfect dynamical 
model:

  1, 1( ) ,i i i i iX X− −= + ξ  (2.1)

where Xi–1 is a random variable (RV) whose distribution 
represents our uncertainty in the state of the system 
at time i–1, − 1,i i is the (imperfect) dynamical model, 
iξ  is a RV whose distribution represents our uncertainty 

in the additive modeling error, and Xi is the RV whose 
distribution represents our uncertainty in the (forecasted) 
state at time i.

One collects noisy observations of the truth:

  o ( ) ,t
i i i i= +y x η  (2.2)

where xt represents the true state of nature represented 
in model space, i is the (potentially non-linear) 
observation operator, iη  is a RV whose distribution 
represents our uncertainty in the observations, and o

iy  
are the observation values, assumed to be realizations 
of an observation RV Yi. Take n to be the dimension of 
the state-space, and m to be the dimension of the 
observation space.

The goal of data assimilation is to find the a posteriori 
estimate of the state given the observations, which is 
typically achieved through Bayes’ theorem. At time i we 
have:

  π π π∝( | ) ( | ) ( ).i i i i iX Y Y X X  (2.3)

In typical Kalman filtering the assumption of Gaussianity 
is made, whereby the states at all times, as well as the 
additive model and observation errors, are assumed to 
be Gaussian and independently distributed. Specifically 
one assumes ~ ( , )i iξ 0 Q  and ~ ( , )i iη 0 R .

In what follows we use the following notation. The 
a priori estimates at all times are represented with 
the superscript f, for forecast (as from the imperfect 
model), and the a posteriori estimates are represented 
with the superscript a, for analysis (through a DA  
algorithm).

2.1. ENSEMBLE TRANSFORM KALMAN FILTER
Forecasting with an ensemble of coarse models 
has proven to be a more robust methodology than 
forecasting with a single fine model (Kalnay 2003). 
Ensemble Kalman filtering aims to utilize the ensemble 
of forecasted states to construct empirical moments 
and use them to implement the Kalman filter formula. 
The Ensemble Transform Kalman Filter (ETKF) (Bishop 
et al. 2001) computes an optimal transformation of 
the prior ensemble member states to the posterior 
member states; for Gaussian distributions the 
optimal transform is described by a symmetric  
transform matrix.

We now describe the standard ETKF. Let 
a (1),a ( ),a

1 1 1[ , ]N
i i i− − −= …X x x  represent the N–members analysis 

ensemble at time i–1. The forecast step is:

 ( ),f ( ),a ( )
1, 1( ) , 1, , ,k k k

i i i i i k N− −= + = …x x ξ  (2.4)

where ( )k
iξ  is a random draw from ( , )i 0 Q .

The ETKF analysis step reads:

  a f ,i i i=A A T  (2.5a)

  a f a a,T 1x x ,i i
−= + RA Z d  (2.5b)
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where
  

1
2f ,T 1 f( ) ,i i i i

−= − ST I Z Z  (2.6a)

  f f ,T ,i i i i= +S Z Z R  (2.6b)

  f Tf f1
( ),

1i i iN
= −

−
A X x 1  (2.6c)

  f f f T1
( ( ) ( ) ),

1i N
= −

−
 Z X X 1  (2.6d)

  o f( ),i i i= −d y X  (2.6e)

  f f ,( )

1

1
,

N
k

i i
kN =

= ∑x X  (2.6f)

  f f ,( )

1

1
( ) ( ).

N
k

i i
kN =

= ∑ X X  (2.6g)

Here the unique symmetric square root of the matrix is 
used, as there is evidence of that option being the most 
numerically stable (Sakov and Oke 2008b).

The empirical forecast covariance estimate

  f f
f f ,T

i i
iX iX

=Σ A A  (2.7)

is inexact due to a multitude of deficiencies. One method 
to improve the empirical covariance estimate is inflation 
(Anderson 2001), which is applied to the ensemble 
anomalies,

  f f ,i iα←A A  (2.8)

before any other computation is performed (meaning 
that it is also applied to the observation anomalies, f

iZ  
as well). The inflation parameter α > 1 is known to be a 
requirement for the EnKF to converge for linear models 
(Popov and Sandu 2020).

2.2. COVARIANCE LOCALIZATION
Traditional state-space localization of the empirical 
covariance (2.7) is done by tapering, i.e., by using a Schur 
product of the empirical covariance with a localization 
matrix iρ :

  f fX
f

X
= ,

i i
i i ΣB ρ  (2.9)

where iρ  contains entries that are progressively smaller 
as the (physically-relevant) distance between the 
corresponding variables increases.

The localized ETKF (LETKF) (Hunt et al. 2007) is an efficient 
implementation of localization for ETKF. The LETKF and its 
variants are considered to be one of the state-of-the-art EnKF 
methods. In the state-space approach to the LETKF, the j-th 
state space variable xi,[j] is assimilated independently of all 
others, with the observation space error covariance inverse  
replaced by

  1 1
,[ ] ,i i j i

− −← R Rρ  (2.10)

where ,[ ]i jρ  is a diagonal matrix, with diagonal entries 
representing the decorrelation factors between 
all observation space variables and the j-th state 
space variable. Each diagonal element represents a 
tapering factor, and is often chosen to be a function 
of the distance from the state-space variable xi,[j] being 
assimilated and the corresponding observation-space 
variable. The implicit assumption is that all observations 
are independent of each other, in both the observation 
error (Ri is diagonal), and forecast error (ZfZf,T is assumed 
to be diagonal).

2.3. COVARIANCE SHRINKAGE
In the statistical literature (Chen et al. 2010, 2009, 2011, 
Ledoit and Wolf 2004) covariance shrinkage refers to 
the methodology under which an empirical covariance 
is made to approach the “true” covariance from which 
the set of samples is derived. For the vast majority of 
statistical applications, there is no additional apriori 
knowledge about the distribution of the samples, thus 
assumptions such as Gaussianity and sphericity are made. 
In data assimilation applications, however, climatological 
estimates of covariance are commonplace.

Assume that one has access to a target covariance 
matrix P that represents the a priori knowledge about 
the error covariances. This matrix can be a climatological 
estimate of the covariance, or can be chosen through 
some ergodic assumption (with localization) using 
previous data. In existing data assimilation algorithms, 
such estimates most often exist for 4D-Var methods, and 
take the form of a static known background covariance 
that is an independent estimate from the current state.

We seek to combine this offline estimate of the 
covariance containing prior knowledge with the online 
estimate of the covariance obtained from the EnKF 
ensemble. In this paper we focus on an additive shrinkage 
covariance structure which is a linear combination of 
the the target covariance matrix and the empirical 
covariance (2.7):

 f f
f = (1 ) ,

i i
i i i i X X

γ µ γ+ − ΣB P  (2.11)

with iγ  represents the shrinkage factor (the linear 
combination coefficient) and iµ  represents a scaling 
factor. The choice of iγ  is extremely important. In 
contemporary data assimilation literature (e.g., see (Asch 
et al. 2016)) this factor is taken as a hyper-parameter 
whose optimal tuning could lead to significant reduction 
in error; however, the empirical tuning by trial and 
error is costly, and poor choices can offset possible 
improvements.

By employing a general invertible target matrix P, 
and optimizing for a 2-norm distance over the “true” 
covariance, a closed-form expression to compute the 
shrinkage factor iγ  is proposed in (Stoica et al. 2008, Zhu 
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et al. 2011). In this derivation, weights are computed as 
follows:

f f

f f

( ),f f 4 2
12

2

|| || || ||

||
.

1 1

min ,1
||

i i

i i

N
X

X

k
k i i

i

X

X

N Nγ
=Σ Σ

Σ

 − − 
=  

− 
 





x x

P  (2.12)

Since the estimate (2.12) is expensive to compute in 
an operational setting, here we will settle for a more 
computationally inexpensive method. No assumptions 
about the structure of P are made to compute iγ . 
The general form (2.11) can be reduced to a standard 
form where the target matrix is the (scaled) identity by 
defining:

 f f

1 1
2 2 ( )

,
r

: ,
t

i i

i
i iX X n

µ
− −

== 

C
C P PΣ  (2.13)

where the new target matrix n niµ ×I  represents a 
spherical climatological assumption on Ci. Equivalently 
we can write

 
1 1

f2 2 (1 ) .n ni i i i iγ µ γ
− −

×= + −P B P I C  (2.14)

As is traditional with Kalman type methods, we make 
the assumption that all our samples are drawn from an 
underlying Gaussian distribution. This assumption allows 
for a simpler computation of iγ . The Rao-Blackwellized 
Ledoit-Wolf (RBLW) estimator (Chen et al. 2009) (Nino-
Ruiz and Sandu 2017, equation (9)):

,RBLW

2 ( 1) 2
min ,1 ,ˆ( 2) ( 2)( 1)i

i

N n N
N N U N N n

γ
 − + −

= + + + −  
 (2.15)

is the optimal estimate of the covariance shrinkage 
factor under Gaussian assumptions. The computationally 
dominant (and interesting) term in (2.15) is the sphericity 
factor

2

2 ,
tr

tr
1 ( )ˆ 1

1 [ ( )]
i

i
i

n
U

n
 

= − −  

C
C  (2.16)

which measures how similar the correlation structures of 
the sample and the target covariance are. For example if 
the both the target matrix P and the empirical covariance 
matrix f f

i iX X
Σ  are diagonal (Ci is diagonal in (2.14)), then 

Ûi = 0 in (2.16), meaning that the RBLW estimate (2.15) 
would be ,RBLW 1iγ = . If, on the other hand, there is a large 
difference between the structures of P and f f

i iX X
Σ  (Ci has 

large off-diagonal elements in (2.14)), then the sphericity 
factor is close to 1, forcing the RBLW estimate to be 
small (e.g., for n = 1010 and N = 50, with Ûi = 1, one has 

,RBLW 0.038iγ = ).
Note that if our samples are also used to calculate 

the sample mean, the effective sample size of the 
sample covariance is smaller by one, therefore for 
most practical applications one replaces N by N – 1 in 
(2.15).

A drawback of the RBLW estimate is its reliance on the 
Gaussian assumption, thus, the RBLW estimator will not 
remain optimal for non-Gaussian distributions. In practice, 
any non-zero shrinkage factor leads to a significant 
improvement in performance, and an adaptive heuristic 
such as the RBLW factor (2.15) is superior than choosing 
a constant ad-hoc value, which is shown in section 4.2.

A second drawback is that it is only valid for an over 
sampled ensemble with N > n, meaning that in the 
typical undersampled regime of EnKF with N ≪ n, the 
factor is technically not well-defined. It is nonetheless 
still useful, in a similar fashion to ill-defined covariance 
estimates in the EnKF.

Aside from the inherent issues with the RBLW 
estimator, there are two major issues with its application 
in the EnKF, both related to its reliance on the sphericity 
of Ci. First, when operating in the undersampled regime N 
≪ n, the estimate Ci (2.13) is also undersampled, and the 
problem of “spurious correlations” will affect the measure 
of sphericity (2.16). The second related issue regards 
the climatological estimate P. Unless the climatological 
estimate accurately measures the correlation structure 
of the sample covariance, the shrinkage estimate (2.11) 
could potentially not be representative of our current 
uncertainty. The long-term accuracy of the climatological 
estimate to the covariance is thus of great importance.

Note that there are alternatives for non-invertible P. 
Commonly, a reduced spectral version of P is known, 

*=   P , with the   being a diagonal matrix of r ≪ 
n spectral coefficients, and   being an n × r matrix of 
orthonormal coefficients. The canonical symmetric 
pseudo-inverse square-root of P would therefore be 

1 1
2 2 *− −=  P . If kσ  is the k-th singular value of 1/2 f−P A , 

then the traces appearing in (2.16) can be computed as 
follows:

1 1
2 2 4

1 1

t .r( ) tr ) (,
N N

k ki i
k k

σ σ
− −

= =

= =∑ ∑C C

Note that only the first N – 1 singular values are required 
for computation, even if n ≫ r ≫ N –1.

The choice of a suitable target matrix P is very much 
an open question, and depends entirely on the problem 
at hand and on the available data. Some of the possible 
options include:

•	 matrices that are used in variational data 
assimilation methods,

•	 localized (through (2.9)) estimates from historical 
data, such as from a previous cycle in quasi-periodic 
models, and

•	 estimates derived from more long-term models 
(such as climate models).

The above is a non-exhaustive list, and it would be up 
to the practitioner to decide the validity of one estimate 
over another. The mismatch of the target covariance 
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with the covariance estimate derived from the dynamical 
ensemble through the sphericity factor (2.16) could also 
be used in an online manner to determine the utility 
of the target P, as a poor choice of the target matrix 
could significantly decrease the overall accuracy of the 
method, in the author’s experience.

3. ETKF IMPLEMENTATION WITH 
STOCHASTIC SHRINKAGE COVARIANCE 
ESTIMATES

In ensemble-based methods our uncertainty is 
represented by an ensemble of samples of the 
underlying probability distribution. We wish to augment 
this representation of our uncertainty by augmenting 
the ensemble of samples with historical (climatological) 
samples of said information, as the application of 
Bayes’ rule requires that all available information is used 
(Jaynes 2003).

A naive approach to augmenting the ensemble would 
simply involve sampling from some known climatological 
distribution, for example sampling synthetic anomalies 
from a mean-zero Gaussian with known covariance, 
and appending this ensemble to our existing dynamical 
ensemble. This would, however, not be statistically 
sound, as the coupling between the two distributions 
would not be explicitly utilized. We therefore attempt to 
make use of the covariance shrinkage estimate (2.11) 
to the covariance in order to couple the dynamical and 
synthetic ensembles correctly.

We build on previous work by Nino-Ruiz and Sandu 
(Nino-Ruiz and Sandu 2015, 2018) who proposed 
to replace the empirical covariance in EnKF with a 
shrinkage covariance estimator (2.11). They showed 
that this considerably improves the analysis at a modest 
additional computational cost. Additional, it was shown 
that synthetic ensemble members drawn from a normal 
distribution with covariance Bf are used to decrease the 
sampling errors.

In this work we develop an implementation of ETKF 
with a stochastic shrinkage covariance estimator (2.11). 
Rather than computing the covariance estimate (2.11), 
we build a synthetic ensemble by sampling directly from 
a distribution with covariance iµP. The anomalies of this 
synthetic ensemble are independent of the anomalies of 
the forecast EnKF ensemble.

Our approach works in a similar manner, but instead 
of simply augmenting the ensemble in a naive manner, 
we attempt to augment the ensemble in a statistically 
consistent manner by utilizing the theory behind optimal 
shrinkage estimators. If the dynamical system is locally 
(in time) stationary, climatologies about the local time 
roughly describe a measure of averaged-in-space 
uncertainty.

To be specific, let f n Mχ ×∈  be a synthetic ensemble 
with M members (as opposed to the dynamic ensemble 

f
iX  

with N members) drawn from a climatological probability 
density. We denote the variables related to the synthetic 
ensemble by calligraphic letters.

An important issue is the choice of the climatological 
distribution. As sampling from the dynamical manifold 
is impractical, heuristic assumptions are made about 
the distributions involved. A useful known heuristic is 
the principle of maximum entropy (PME) (Jaynes 2003). 
Assume that the mean and covariance of the distribution 
are known (through sampling), and that the distribution 
is supported over all of n

 . The synthetic ensemble 
distribution of maximum entropy consistent with these 
assumptions is Gaussian:

  
ff ~ ( , ).ii iχ µ x P  (3.1)

The synthetic ensemble anomalies in the state and 
observation spaces are:

 

( )
( )

f T

f f

f

f T

f1
,

1
1

( ) ( ) .
1

i

i i

n M
Mi i

m M
Mi

M

M

χ χ

χ χ

×

×

= − ∈
−

= − ∈
−







  

1

1  
(3.2)

The shrinkage estimator (2.11) of the forecast error 
covariance for f

iB  is represented in terms of synthetic and 
forecast anomalies as follows:



f f f ,T f f ,T(1 ) .i i i i i i iγ γ= + − B A A  (3.3)

The Kalman filter formulation (Kalman 1960) yields the 
following analysis covariance matrix:

   

f Ta f f1 ,i i i ii i i
−= −B HB B S BH  (3.4)

where Si will be discussed later.
Using the forecast error covariance estimate (3.3) in 

(3.4) leads to the following analysis covariance:

 ( )
( )

a f f ,T f f ,T f f ,T f f ,T

1 f f ,T f f ,T

(1 ) (1 )

(1 ) ,

i i i i i i i i i i i i i

i i i i i i i

γ γ γ γ

γ γ−

= + − − + −

+ −

B A A Z

A

A

S Z

   

   (goal-cov)

which we refer to as the “goal” analysis covariance 
formula. Where in this paper the factor the factor iγ  
is chosen to be the RBLW estimate in (2.15), unless 
otherwise specified.

The ensemble goal of our modified ensemble 
Kalman filter is to construct an N-member analysis 
ensemble such that the anomalies a

iA  (2.5a) 
represent the (goal-cov) analysis covariance as well as 
possible:



a a, aa TFind   such that: .n N
i i ii

×∈ ≈ A BA A  (goal-an)
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In the proposed method, we enrich our forecast 
ensemble in a way that closely approximates the 
shrinkage covariance (2.11).

3.1. THE STOCHASTIC SHRINKAGE 
IMPLEMENTATION
We enrich the ensembles of forecast anomalies with 
synthetic anomalies (3.2):

 

f f f ( )

f f f ( )

1   ,

1   .

n N M
i i i i i

m N M
i i i i iZ

γ γ

γ γ

× +

× +

 = − ∈ 
 = − ∈ 





 



A

Z
 (3.5)

Next, we define a transform matrix (2.5a) that is applied 
to the enriched ensemble (3.5), and leads to an analysis 
ensemble that represents the target analysis covariance 
(goal-an). Specifically, we search for a transform matrix

i  such that:

  

a f,TTf .i i i i i=   B  (3.6)

Using the extended ensembles (3.6) the (goal-cov) 
becomes

 

a f f ,T 1 f f ,T
( ) ( ) ,( ) i i N M N M i i i iZ Z−

+ × += − B I S  (3.7)

where, from (2.6b),

  f f ,T .i i i iZZ= +S R  (3.8)

The transform matrix (2.6a) is a square root of (3.6):

1
2f ,T 1 f

( ) ( )( ) .i N M N M i i iZZ −
+ × += − I S  (3.9)

We compute the analysis mean using the shrinkage 
covariance estimate. From (2.5b):

a f f f 1T ,T ,i i i i i i i iZ −= +  x x dR  (3.10)

where the full analysis covariance estimate (3.7) is used. 
In addition, we achieve the (goal-an) by keeping the first 

Algorithm 1 An explicit implementation of the stochastic shrinkage ETKF.

input: Forecast ensemble Xf, target matrix P, synthetic ensemble size M

output: Analysis ensemble Xa

1
f f 1 T1

)
1

( N N NN
N

−← −
−

A X I 1 1 ▷ Compute the forecast anomalies

2 f 1 Tf1
( )( )

1 N N NN
N

−← −
−
Z X I 1 1 ▷ Compute the observed forecast anomalies

3 f ~ ( , )  0 P ▷ Compute synthetic ensemble of anomalies

4
f f 1 T1

)
1

( M M MM
M

−← −
−

  I 1 1 ▷ Set mean to zero and scale

5 f f f1M Mχ ← + − X 1 ▷ Compute the synthetic ensemble

6 f 1 Tf1
( )( )

1 M M MM
M

χ −= −
−

  I 1 1 ▷ Compute the synthetic observed forecast anomalies

7 RBLWγ γ← ▷ Compute the shrinkage factor according to (2.15)

8 f f f1 γ γ ← −  A ▷ Construct the forecast anomaly ensemble

9 f f f1 γ γ ← −  Z ▷ Construct the obs. forecast anomaly ensemble

10 f ,TZfZ← +S R ▷ Compute the combined oservation covariance

11
1
2f,T 1 f

( ) ( )( )N M N M Z Z−
+ × += − I S ▷ Compute the transform matrix

12
a f

:,1:

1
1

[ ] Nγ
←

−
 A ▷ Compute the analysis anomalies

13 ( )a f f f , oT T 1 fy ( )iZ −← + −x XRX     ▷ Compute the analysis mean

14 aTaa x 1N N← + −X 1 A ▷ Compute the analysis ensemble
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N members of the transformed extended ensemble, or 
equivalently, the first N columns of the symmetric square 
root (3.9). From (2.5a) we have:

[ ]a f f
:,1: :,1:

1 1
, .

1 1
[ ] Ni i i i i i i N
i iγ γ

= = =
− −

 

     A  (3.11)

An alternative approach to achieve the (goal-an) is to 
look for a low-rank, approximate square root instead of 
the symmetric square root (3.9). Specifically, we seek a 
transformation matrix i  such that:

  

T( ) f ,T 1 f
( ) ( ), .N M N

i i i N M N M i i iZ Z+ × −
+ × +∈ ≈ −   SI  (3.12)

The calculation of the symmetric square root (3.9) 
requires an SVD of the right hand side matrix. With the 
same computational effort one can compute the low 
rank transformation:



f ,T 1 f ( ) ( )

1/2 ( )
1: ,:

1/2 ( )
:,1: 1: ,

T

T

1:

=( ), U, ;

[ ] (symmetric square root (3.9));

(low rank square root (3.12)). 

N M N M
i i i

N M N
Ni

N M N
i N N N

ZZ − + × +

+ ×

+ ×

− ∈

= ∈

= ∈∑









U U I

U U

U

S∑ ∑

∑


 (3.13)

The mean calculation (3.10) is the same. The ensemble 
transform produces N transformed ensemble members 
that contain “mixed” information from both the physical 
and the synthetic ensembles:



a f1
.

1
ii i

iγ
=

−
 A

A complete pseudocode for the algorithm can be found 
in Algorithm 1.

3.2 LOCALIZATION
It is possible to combine the proposed stochastic 
shrinkage approach with traditional localization. 
The LETKF implementation (Hunt et al. 2007) 
computes transform matrices for subsets of variables, 
corresponding to localized spatial domains. In a similar 
vein one can combine our shrinkage algorithm with 
classical localization, as follows. Subsets of variables 
of the enriched ensembles (3.5) are used to compute 
local transform matrices (3.9) or (3.12), which are then 
applied to transform the corresponding local subsets, i.e. 
to compute the corresponding rows in equations (3.11) 
or (3.11), respectively. Utilizing the Sherman-Morrison-
Woodbury identity (Petersen et al. 2008), it is possible to 
decompose the inverse of (3.8) into,

 T1T1 1 1 1,( )N Mi i i i i i i i i
− − − − −

+= − +   S R R R I R  (3.14)

where the inverse observation covariance is replaced by 
the localized variant in (2.10).

This is the most practical form of the algorithm, and 
thus an analysis of the computational complexity is in 
order. According to (Hunt et al. 2007), the complexity 

of the LETKF algorithm is either of order 3( )N  if the 
maxtrix operations dominate the cost or 2( )N  if 
they do not. Accordingly for the localized stochastic 
shrinkage algorithm, these terms are 3(( ) )N M+  
and 2(( ) )N M+ . In the worst case, when the matrix 
computations dominate, and the synthetic ensemble 
size M is significantly larger than that of the dynamical 
ensemble size N, the dominant cost term will be of 
order 3( )M .

4. NUMERICAL EXPERIMENTS

In the numerical experiments we aim to assess the 
performance of the methodology in three different 
regimes: (i) a small scale model (Lorenz ’96) to empirically 
test the performance of the optimally estimate the 
covariance shrinkage factors γ (2.15) constants against 
hand-picked values, (ii) a medium scale model (Quasi-
geostrophic equations) with small observation errors to 
test the unlocalized shrinkage covariance methodology 
against the state-of-the-art LETKF, (iii) a geophysical 
model (shallow water on the sphere) with large 
observation errors to test our localized methodology 
against the LETKF.

All test problem implementations are available in 
the ‘ODE Test Problems’ suite (Computational Science 
Laboratory 2020, Roberts et al. 2019).

4.1. THE LORENZ’96 MODEL (L96)
We first consider the 40-variable Lorenz ’96 problem 
(Lorenz 1996),

[ ] [ ] [ ] [ ]( ) [ ]1 2 1
, 1, ,40, 8.

i i i i i
y y y y y F i F

− − +
′ = − − − + = … =  (4.1)

Assuming (4.1) is ergodic (thus having a constant spatio-
temporal measure of uncertainty on the manifold of the 
attractor), we compute the target covariance matrix P 
as the empirical covariance from 10,000 independent 
ensemble members run over 225 days in the system 
(where 0.05 time units corresponds to 6 hours), with 
an interval of 6 hours between snapshots. This system 
is known to have 13 positive Lyapunov exponents, with 
a Kaplan-Yorke dimension of about 27.1 (Popov and 
Sandu 2019).

The time between consecutive assimilation steps is 
Δt = 0.05 units, corresponding to six hours in the system. 
All variables are observed directly with an observation 
error covariance matrix of Ri = I40. The time integration of 
the model is performed with RK4 the fourth order Runge-
Kutta scheme RK4 (Hairer et al. 1991) with a step size 
h = Δt. The problem is run over 2200 assimilation steps. 
The first 200 are discarded to account for model spinup. 
Twenty independent model realizations are performed in 
order to glean statistical information thereof.
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4.2. L96 ASSIMILATION RESULTS
We assess the quality of the analysis ensembles using 
a rank histogram (Hamill 2001), cumulative over 20 
independent runs. For a quantitative metric we compute 
the KL divergence from Q to P,

 l( )|| og ,k
KL i

k k

P
D P Q P

Q
 

= −  
 

∑  (4.2)

where P is the uniform distribution and Q is our ensemble 
rank histogram, and Pk & Qk are the discrete probabilites 
associated with each bin. A low KL divergence would 
indicate that our rank histogram is close to uniform, and 
thus the ensemble is representative of the truth.

Additionally, for testing the accuracy of all our methods 
we compute the spatio-temporal analysis RMSE,

2

1 1

1
,

K n
a t
i i j

i j

x x
Kn = =

 − ∑∑
 

(4.3)

with K representing the amount of snapshots at which 
the analysis is computed, and [xi]j is the jth component 
of the state variable at time i.

For the given settings of a severely undersampled 
ensemble (N = 5) and mild inflation (α = 1.1), we compare 

the stochastic shrinkage methodology coupled to the 
RBLW formulation for the shrinkage factor γ (2.15), with 
the optimal static γ = 0.85 shrinkage factor. For a dynamic 
ensemble that captures the positive error growth modes 
(N = 14) will will compare the RBLW estimator with the 
optimal static γ = 0.1. We will compare the mean and 
variance of the KL divergence of the rank histogram of 
the variable [y]17 from the uniform, and the statistics of 
the spatio-temporal RMSE.

The results are reported in Figure 1. For both an 
undersampled and sufficient ensemble, the optimal 
shrinkage factor has a smaller mean error, and a 
smaller KL divergence with less variance (top left, top 
middle, bottom left, and bottom middle panels). In 
the undersampled case, the RBLW estimator induces 
more variance into the RMSE (top middle panel). For the 
sufficiently sampled ensemble, however, the optimal 
static shrinkage value induced significantly more variance 
into the error, with the RBLW estimator reducing the error 
significantly (bottom middle panel).

It is possible that a better estimator than RBLW 
may get the ‘best of both worlds’ and induce low error 
with low variance, though this is as-of-yet out of reach. 
This is to be expected as the RBLW estimate is only 

Figure 1 Results for the L96 problem with dynamic ensembles sizes of N = 5 and N = 14, inflation factor α = 1.1, and different 
synthetic ensemble sizes M. We compute the KL divergence of the rank histogram (4.2) and the RMSE (4.3) for the methods. Error 
bars show two standard deviations.
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accurate in the limit of ensemble size, and there is no 
theory about its accuracy in the undersampled case. 
In the authors’ experience other estimators such as 
OAS, while having the theoretically desired properties, 
perform empirically worse in conjunction with ensemble 
methods. Currently, for a modest reduction in accuracy, 
one of the hyperparameters can be estimated online by 
the methodology.

For the second round of experiments with Lorenz ’96, 
reported in Figure 2, we compare analysis errors when 
the synthetic and dynamic ensemble sizes are modified 
(left panel). It is evident that increases in both dynamic 
and synthetic ensemble size lead to lower error. In the 
right panel we also compare dynamic ensemble size 
to the values of γ that are produced. It is clear that an 
increase in dynamic ensemble size decreases the need 
for shrinkage.

4.3 THE QUASI-GEOSTROPHIC MODEL (QG)
We follow the QG formulations given in (Mou et al. 2019, 
San and Iliescu 2015). We discretize the equation

 

1 1 1( , ) ,

( , ) ,
t x

y x x y

J Ro Re Ro F

J

ω ψ ω ψ ω
ψ ω ψ ω ψ ω

− − −+ − = ∆ +
≡ −  (4.4)

where ω stands for the vorticity, ψ stands for the stream 
function, Re is the Reynolds number, Ro is the Rossby 
number, J is the Jacobian term, and F is a constant (in 
time) forcing term.

The relationship between stream and vorticity, ω = –
Δψ is explicitly enforced in the evaluation of the ODE. The 
forcing term is a symmetric double gyre,

  sin ( ( 1)).F yπ= −  (4.5)

Homogeneous Dirichlet boundary conditions are 
enforced on the spatial domain [0,1] × [0, 2]. The spatial 
discretization is a second order central finite difference 
for the first derivatives, and the Laplacian, with the 

Arakawa approximation (Arakawa 1966) (a pseudo finite 
element scheme (Jespersen 1974)) used for computing 
the Jacobian term. All spatial discretizations exclude the 
trivial boundary points from explicit computation.

The matrix P is approximated from 700 snapshots of 
the solution about 283 hours apart each, with Gaspari-
Cohn localization applied, so as to keep the matrix sparse. 
The true model is run outside of time of the snapshots 
so as to not pollute the results. Nature utilizes a 255 × 
511 spatial discretization, and the model a 63 × 127 
spatial discretization. Observations are first relaxed into 
the model space via multigridding (Zubair 2009), then 
150 distinct spatial points (using an observation operator 
similar to (Sakov and Oke 2008a)) from the non-linear 
observation operator,

  2 2( ) ,x yψ ψ ψ= +  (4.6)

representing zonal wind magnitude, are taken. The 
observation error is unbiased, with covariance R = 4I150. 
The number of synthetic ensemble members is fixed 
at a constant M = 100, as to be more than the number of 
full model run ensemble members, but significantly less 
than the rank of the covariance. Observations are taken 
Δt = 0.010886 time units (representing one day in model 
space) apart. We run a total of 350 assimilation steps, 
taking the first 50 as spinup. Results are averaged over 
5 model runs (with the same nature run, but different 
initializations of the dynamic ensemble), with diverging 
runs treated as de-facto infinite error.

4.4. QG ASSIMILATION RESULTS
Figure 3 reports the results with the QG model. Comparing 
our methodology to the LETKF with an optimally tuned 
Gaspari-Cohn (GC) (Gaspari and Cohn 1999) localization 
(such that both error and stability are prioritized), we see 
that GC significantly decreases the error for larger values 
of N and α, but is not stable for more operational under-
sampled dynamic ensemble sizes and low inflation 
factors, as opposed to our shrinkage method. Possible 

Figure 2 Results for the L96 problem. The left panel presents 
the analysis RMSE for various values of the dynamic and 
synthetic ensemble sizes. The right panel presents the 
shrinkage factor γ (2.15) for a synthetic ensemble size of 
M = 100 over a number of assimilation steps, with error bars 
showing two standard deviations.

Figure 3 Analysis RMSE results for the QG model. The 
experiments use a synthetic ensemble size M = 100 and 
Gaussian samples. Results are compared against LETKF with 
the Gaspari-Cohn decorrelation function (GC).
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sources of error are both the nonlinear observations and 
the coarse approximation to the covariance estimate.

These results lend additional support to the argument 
that shrinkage alone is not enough. Localization is still 
required in operational settings, and combining both 
might yield a positive result.

The quasi-geostrophic results indicate that our 
methodology holds promise to be of use for practical data 
assimilation systems, and that the methodology can 
handle observations that are non-linear transformations 
of the state representation. However, the methodology 
needs to be refined with more optimal shrinkage factors 
for operational undersampled empirical covariances.

An operational implementation of the LETKF requires 
m × N linear solves and m matrix square roots, while 
our stochastic shrinkage algorithm requires N + M 
linear solves and one matrix square root. Thus as the 
number of observations grows, the stochastic shrinkage 
methodology becomes a lot more compelling.

4.5. SHALLOW WATER ON A SPHERE (SWS)
The last round of experiments aims at validating the 
Localized Shrinkage ETKF on a different geophysical 
problem of interest. To that end we employ the shallow 
water equations (Flyer and Wright 2009, Neta et al. 1997) 
on the sphere, which represent an approximation of the 
atmospheric dynamic over Earth. We use a modification 
of the Cartesian shallow water equations,

  ( ),th h= −∇ ⋅ ⋅u  (4.7)

( ) ( ) ,t f g h= − ⋅∇ − × − ∇u u u p u  (4.8)

under the constraint that the flow is confined to a 
spherical approximation to the Earth; the radius of the 
sphere is one spatial unit. Here, f is the Coriolis force, g is 
gravity, h is the height of the water, and p and u are the 
x, y, and z positions and velocities, respectively. We follow 
the radial basis function formulation in (Flyer and Wright 
2009) for the spatial discretization with 100 points, for 
a total state space dimension of n = 400. We take the 
order three Buhmann function (Buhmann 1998) with a 
Cartesian radius of r = 2 on the unit sphere (representing 
full coverage). We use a third order adaptive strong 
stability preserving method (Macdonald 2003) for time 
integration of this system.

We observe the height at ten locations over the 
domain; the velocities are unobserved. Observations are 
taken every Δt = 1 day over the assimilation window. The 
observation covariance is R = 100 I10, to simulate a noisy 
observation scenario.

We compare the localized variant of the stochastic 
shrinkage approach (see section 3.2), which we term 
the L-Shr-ETKF, against LETKF. We select a synthetic 
ensemble size M = 250. For localization, we use a great 
circle radius of r = π/5 spatial units, with the Gaspari-

Cohn decorrelation function, as this was found to be 
approximately optimal for the LETKF by manual tuning. 
The best inflation factors obtained by manual tuning are 
used, as follows: α = 1.001, and α = 1.05 for LETKF.

We run a total of three months of observations for 
January, February and March (90 days), discarding the 
first 31 days of January as spinup, and observing the 
analysis RMSE for a range of physical ensemble sizes, N 
∈ [4, 40]. Twelve total independent runs are taken to 
account for possible spurious results.

4.6. SWS RESULTS
The left panel of Figure 4 show the initial conditions, and 
observations for the shallow water equations. The initial 
conditions were chosen to be quasi-stable so that they 
would slowly diverge from a cyclic solution. The right 
panel shows the results comparing L-Shr-ETKF against 
the state-of-the-art LETKF. It can be clearly seen that 
even for large ensemble sizes up to 40, the LETKF error 
is higher than the observation error of 100. The LETKF 
also suffers from large variability in the error from various 
different initial ensembles. L-Shr-ETKF, on the other hand, 
matches the observation error for an ensemble size of N 
= 4 dynamical members, and has lower error than that of 
the observations for all larger dynamical ensemble sizes. 
The variability of the L-Shr-ETKF error is also substantially 
smaller than that of LETKF.

The results clearly demonstrate that, in a small-
ensemble high-observation-error regime where LETKF 
performs relatively poorly, the proposed L-Shr-ETKF 
algorithm provides robust analyses.

5. DISCUSSION

Shrinkage covariance matrix estimators were shown 
to greatly improve the performance of the EnKF (Nino-
Ruiz and Sandu 2015). This work extends the the idea 
of covariance shrinkage to the ensemble transform 

Figure 4 Left panel: initial condition of the water height with 
blue represented lower than average and yellow representing 
higher than average, and observation locations (red points). 
Right panel: analysis RMSE for the localized shrinkage ETKF, and 
the localized ETKF with the Gaspari-Cohn decorrelation function, 
with the error bars representing two standard deviations.
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Kalman filter. Instead of enhancing the covariance 
estimate, we propose enhancing the ensemble with a 
synthetic ensemble derived from the target matrix of 
the shrinkage approach. By applying the ETKF formulas 
to this enhanced ensemble, we develop the Shr-ETKF, 
whose internal representation of the Kalman gain is 
approximately based on the shrinkage estimate of the 
covariance.

We compare Shr-ETKF to the current state-of-the-
art LETKF algorithm on several test problems. Lorenz 
’96 model results indicate that the new filter performs 
worse in the under-sampled regime than the best ‘static’ 
shrinkage method, and performs better (in terms of less 
variance in the error) than an optimal dynamic shrinkage 
method for the sufficiently sampled case. Results with 
QG model indicate that our method could potentially be 
used to augment operational LETKF implementations, 
but not in the low-observation-error regime. Results with 
the shallow-water equation on a sphere model show 
that a localized stochastic covariance shrinkage ETKF 
can perform significantly better than the LETKF in a high-
observation-error regime.

These results indicate that L-Shr-ETKF can be 
potentially utilized in an operational framework to 
improve the performance of LETKF while keeping the 
dynamical ensemble size (the number of forecast model 
runs) small. Additional work is needed to devise better 
heuristic estimates of the shrinkage factor γ.
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