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Abstract

1

Data assimilation is an important tool in many geophysical applications. One of many key elements of data assimilation
algorithms is the measurement error that determines the weighting of the data in the cost function to be minimized. Although
the algorithms used for data assimilation treat the measurement uncertainty as known, it is in many cases estimated or set based
on some expert opinion. Here we treat the measurement uncertainty as a hyperparameter in a fully Bayesian hierarchical model
and derive a new class of iterative ensemble methods for data assimilation where the measurement uncertainty is integrated
out. The proposed algorithms are compared with the standard iterative ensemble smoother on a 2D synthetic reservoir model.

Keywords Measurement uncertainty - Ensemble methods - Bayesian inversion - Data assimilation - History matching -

Hierarchical models

1 Introduction

Data assimilation is the process of combining model pre-
dictions with real measurements for estimating unknown
parameters and states of a model. In statistics, estimating
the hidden (random) states of a model is commonly known
as filtering or smoothing, whereas the parameter estima-
tion problem is known as inversion or inverse problem in
mathematical literature. The parameter estimation problem
can be formulated either as a (regularized) maximum like-
lihood problem, or as a Bayesian inversion. In petroleum
engineering, the inverse problem is commonly referred to as
history matching [16]. There are multiple ways to address
data assimilation, and here we focus on a particular approx-
imate Bayesian approach known as the iterative ensemble
methods [2, 18] since exact Bayesian methods such as e.g.
MCMC methods are too expensive for large scale models.
The iterative ensemble methods are well suited for large scale
data assimilation since they treat the model as a black box
and do not require the model to be differentiated.

In addition to a numerical model and the data itself,
Bayesian data assimilation algorithms require prior informa-
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tion in terms of the prior distribution for both the parameters
and states of the model as well as the likelihood function for
the data, i.e. the measurement bias (if any) and uncertainty.
For most standard Bayesian methods the prior distribution, as
well as the likelihood, is assumed to be known. In many situ-
ations these parameters, often denoted hyperparameters, are
unknown and can be modelled using hierarchical Bayes [8].
In principle there are several ways to handle hyperparameters
with the largest class being the empirical Bayesian methods
[3] where the hyperparameters are estimated from the data
either by some point estimates or by some iterative proce-
dure that alternates between computing the posterior of the
parameters and states given the hyperparameters and com-
puting the posterior of the hyperparameters given the states
and parameters. The first approach typically ignores some
of the uncertainty in the posterior while the latter requires
multiple applications of the data assimilation method. The
fully Bayesian hierarchical analysis, however, is to integrate
out all the hyperparameters to obtain the full posterior. This
approach often involves approximation of integrals via nested
Laplace transformation (see e.g. [22]), but in some cases
the integral can be solved analytically. The focus here is on
the measurement uncertainty and since the likelihood is fre-
quently assumed to be Gaussian in data assimilation methods,
we can choose prior densities such that the likelihood can be
analytically integrated over the measurement error variances.

The error of a measurement typically stems from model
error or representation error and not necessarily from the
measurement instrument alone. The are many sources of
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measurement error, but regardless of how they are derived,
(almost) all methods used for data assimilation have one thing
in common: they all assume that the true uncertainty is speci-
fied. Naturally this is a strong assumption in many real world
applications. Several techniques to estimate unknown errors
online are available, such as adaptive filtering [14, 15]. How-
ever, the assumptions required are usually not satisfied in real
applications. Robust approaches such as Hy, filters [23] or
Levy filters [24] serve as alternative methods, but the appli-
cation in data assimilation setting is very limited to the best
of our knowledge.

In geophysical models, it is quite often difficult to estimate
the measurement error due to simplified physics, simplified
parameterization or lack of knowledge of the measurement
process [21]. Most approaches within atmospheric science
are based on the work of [5, 6, 10], and [7], using the differ-
ence between observation and error forecasts (see e.g. [4]).
Other approaches such as e.g. [1] use multiple data sets in
combination with theory from [9]. A Bayesian approach is
presented in [26] where the measurement uncertainty is esti-
mated by maximizing an approximate log-posterior at each
time step. [12] estimate the covariance of a water balance
model in a weak constrained ENKF, where a variational
Bayesian approach is used in a second update step of the
algorithm, and an online approach for estimating colored
observation noise has recently been introduced in [19].

For petroleum application there is not a lot of discussion
of the measurement error of production data. It can in prin-
ciple be obtained from the measuring instrument, but this
would require a perfect model. For time-lapse seismic obser-
vations the noise can be estimated from the difference in data
between different surveys in domains where the seismic sig-
nal is expected to be unchanged. [13] used techniques from
image de-noising such as local and non-local moving average
and sparse wavelet representation of the observations. When
combining production data and seismic data, specifying the
uncertainty becomes even more troublesome as there are two
or more data terms in the likelihood function. Furthermore,
due to imperfect models and pre-processing of certain data,
the observation error is more than just noise related to the
survey equipment (see [17] and references therein).

Regardless of how the measurement error is estimated or
specified, and whether or not bias correction is included, the
uncertainty in the estimate should be taken into account when
applying Bayes’ rule. This is commonly neglected in the
data assimilation literature. From a Bayesian point of view,
it is possible to incorporate the measurement uncertainty as a
hyperparameter, and as far as the data assimilation algorithm
is concerned, the measurement error variances can be con-
sidered like any of the physical model parameter. However,
despite the interdependence (in the sense that the distribu-
tion of one is conditioned on the other), thereis no obvious
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hierarchical relationship to the physical parameters, unlike,
e.g., hyperparameters of the prior. Instead, they could, or
perhaps should, be considered ‘nuisance parameters’, i.e.
parameters that are of no inherent interest but must be taken
into account with their uncertainties in order to determine
the physical model parameters of interest. Importantly, it is
not necessary to reconstruct the probability distribution of
the nuisance parameters, as long as their impact on the phys-
ical model parameters is accounted for. Here, an iterative
ensemble smoother (iES) is proposed, where the likelihood
function is marginalized over the measurement error. That is
compliant with the fully Bayesian approach discussed above
where the hyperparameters are integrated out of the hierar-
chical model. The resulting algorithm, denoted marginalized
iterative ensemble smoother (miES), requires only a few
modifications of iES algorithm. The theory is presented for a
single measurement variance, but the more general case with
several data types is briefly discussed and also presented in
an example.

In the next section we define the data assimilation and
inverse problem and give a short summary of the subspace
version of the iES. The marginalized version is introduced in
Section 3 and in Section 4 we provide examples and compar-
ison with iES. The paper is concluded with a summary and
discussion of further work.

2 Bayesian framework

Our quantity of interest, X, is considered as an unknown
random variable with a prior probability density, fx(x). The
observation, Y, is linked to X via the likelihood function
frix(ylx). The conceptual solution of the inverse problem
is given by the posterior density

frix(y1x) fx (x)
J frixOlx) fx(x)dx’

Sxjy(xly) =

We have omitted any potential time dependence for sim-
plicity.

2.1 Data assimilation

In most data assimilation algorithms, and ensemble based
methods in particular, it is common to assume that both the
prior (after a possible transformation of variables) and the
likelihood function are Gaussian and that the observations
are given as a nonlinear mapping of X with additive noise

Y = H(X) +e.
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The posterior is then known up to the normalizing constant

1 1
—log(fxiy (x1y) = 5 lIx = pllp + 5 ly = HWIg + C,
O

where u is the prior mean, P is the prior covariance matrix,
Y. is the observation error covariance matrix and C is the
logarithm of the normalizing constant. The iterative ensem-
ble methods discussed in later sections seek to minimize the
objective function Eq. 1 or a stochastic version of it. When X
is uncertain, this will be reflected in the posterior and hence
the objective function to be minimized.

2.2 Marginalizing the likelihood

In the following, we assume that the measurement error
covariance matrix is known up to a constant, although the
more general situation with block matrices with unknown
variances is also presented. The measurement error is
assumed to be Gaussian with a covariance matrix ¥ = o 2R,
where R is a known M x M matrix. The likelihood function,
given o, is

frixGlx, 0%) = @ro?) MR e PO ()

In a Bayesian framework, it is natural to view o2 as
a hyper parameter with a prior density f(,z(oz) and then
marginalize the likelihood w.r.t. o2 [25]. If no informa-
tion is available, a non-informative prior on o defined by
fs2 (62) = o2 can be used. This is known as Jeffrey’s
prior and represents the state of no prior information on the
scale parameter o [11]. With this choice we can analytically
compute f frix(lx, o) p(e?)do? to get the marginalized
likelihood (see e.g. [25])

—M)2
Frixol) o (Iy =H@IR) 3)

with corresponding log-likelihood given by

M
eyl = =3 log (Ily = HE IR ) )

More often than not, the measurement error is specified
either from an expert opinion or from some type of estima-
tion. In either case it is uncertain, and this uncertainty should
be accounted for.

Both the estimate of measurement error and its uncertainty
can easily be incorporated into a prior distribution. To this
end, a frequently used prior for the variance in Bayesian
statistics is the scale inverse x 2 distribution defined by

f02(02) - (02)—v/2—1e—m2/(252), (5)

where s is the estimate of the measurement error variance
0% and v is the degrees of freedom. In this case the marginal
likelihood is proportional to

Frixlx) oc (ly — H@x) IR /(vs?) + 1)~ HHF0/2] (©6)

which is a multivariate t distribution with t = ||y — H(x) II%{
/s? and v degrees of freedom. The log-likelihood is then

+v

M
ylx) = — log(lly — H(x) g /(vs?) + 1). (7

The two marginalized likelihoods Eqgs. 3 and 6 can easily
be extended to K data types of dimension M with different
variance, the log likelihood is then

K
1 2
L PILL (Iy = HWIR,)

®)

for the non-informative prior and

K
1
L(Y1, Y2, s YKIX) = ) ];(Mk + ve) log

(ly = H@I, /xsD +1), @)

for the scale inverse x? prior. The marginalized likelihoods
can be used in Bayes’ formulation for filtering, data assimi-
lation and Bayesian inversion. Here we focus on large scale
inversion, but the algorithms can also be directly imple-
mented for sequential data assimilation as they are presented.
In the following, we develop a subspace square root iES algo-
rithm [2]. For the ease of notation we focus on the single data
type case, but some examples presented later contains mul-
tiple data types.

2.3 The new objective functions

Since solving the fully Bayesian inversion problem is too
computationally costly for large scale models, we seek
an approximate solution via maximization of the posterior
(MAP) with the associate uncertainty provided by the inverse
of the approximate Hessian matrix [2]. The cost function to
be minimized in the miES is defined as the negative log pos-
terior density. Hence, for Jeffrey’s prior we have

1 1
J@) =5 I —ulp+5Miog (Iy —HWIR). (10
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The gradient and approximate Hessian (using a first order
model expansion) are given by

VIx) =P '(x —p) — XKHIR—I(y — H(x)). (11)

M
C, =P '+ X—HXTR*‘HX, (12)
y

where x, = ||y — H(x) ||% and H, is the tangent linear oper-
ator of H evaluated at x.

For the case with scale inverse x 2 prior, the cost function
is

1 1
J@) = 3 lx = ullg + 5 (M +v)log (Iy = HEIR /05 +1)
(13)

with corresponding gradient and approximate Hessian

M
VI =P — ) — L TR (y — H(x)),
Xy T vs
(14)
M +v
C,=P '+ — —_H'R'H,, 15
. TR Hy (15)

where x, = ||y — H(x)llf{ and H is the tangent linear oper-
ator of H evaluated at x. A quasi Gauss-Newton algorithm
for minimizing the cost functions is given by

X1 = xx — Cr VI (), (16)

where k is the iteration index. If there are several data types,
the likelihood term of the gradients in Eqs. 11 and 14 are
replaced by a sum of gradient terms derived from Egs. 8 and
9. In the next section an ensemble subspace approximation
of the quasi Gauss-Newton scheme is presented.

2.4 Ensemble subspace formulation

In most applications of ensemble methods, the dimension of
the state, M, is greater than the number of ensembles N. In
this case we can use the simplified subspace ensemble version
of iES with the new cost functions which avoids computing
the pseudo inverse of matrices of dimension M x N [2, 18].
Let X be the matrix of prior ensemble anomalies (samples
with the mean subtracted from each column). The variable x
can then be expressed in the ensemble subspace as

x(w) =x + Xo, (17

where X is the initial ensemble anomalies, x is the ensemble
mean and w is the N x 1 weight vector initially set to O.
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Inserting the change of variables into the Jeffery’s prior
gives the following objective function

1
Jn(@) = = [lw]|*

1 = 2
lol |+ 3 Mlog(y = HE +Xo)lg .

(18)

where N is the ensemble size and 7y is the identity matrix of
size N. The gradient and first order Hessian approximation
is

VJ(w) = (N — Do — X%XTHIR_I(y—H(i+Xw)), (19)
y

M
Co=(N— DIy + X—XTHXTR‘IHXX. (20)
y

Let E be the matrix with ensemble member i as its i’th
column and let x denote the column mean. The ensemble
anomaly matrix X is defined by X = E — 17, where 1
is the N-dimensional column vector of ones. The ensemble
can be written E = x17 + XW, where W is initially set to
the identity matrix of dimension N x N. For each ensemble
member, i.e. each column of E, the forward model is run and
the output is collected in the matrix denoted H(E). The lin-
earization we use to linearize H using the ensemble is given
by Y = HE)W ', where T = Iy — 117 /N, Ly is the
N-dimensional identity matrix. This implementation avoids
using the chain rule by direct regression of the composite
function H(x(w)). For more details on the linearization we
refer to [18]. We approximate Eq. 19 using the ensemble with
Jeffrey’s prior as

Y =HEW I} (1)
b= s - Tw,
ijlklhd — _YTX%R—I[)} . W] (23)
Vo JPIOT = (N — 1§a) (24)
C, = X%YTR*‘Y + (N = DIy (25)

y

Finally, the ensemble subspace formulation of Eq. 16, at
iteration k, is then given by

Wkt = o — YCy [V JP + ¥, J M) (26)
X1 = X + Xg41 27
Wit = (Co/(N — 1) 1/2 (28)
Eri1 = x11" +XWiy (29)

where yx is the step size. Often step size is not implemented
in Gauss Newton, however, since we are using so many
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approximations in our scheme, we have seen that there can
be advantages of not taking a full step (y<1) in some cases.

For the inverse x? prior the objective function (with the
change of variables) is given by

J@) = 3l -+ 5+ ) log(ly
—H(E + Xo) g/ (vs) + 1). (30)
VI@) = (N - Do — > XTHTR(y — H(0)),
Xy +vs
3D
M+

Co=0N—-DIy+ —2XTH'RHX. (32
Xy + vs?

The following defines our subspace formulation marginal-
ized iterative Ensemble smoother with an inverse x 2 prior.

Y =HE)W I} (33)
2

% = |y - HE| 69

M _

v,,JKihd _ —YT——H}QR” [yl — H(E)] (35)
Xy T s

V,, JPU = (N — Do (36)

M+v orn-i

Co=——Y R'Y+WN-DI 37

0= + (N = DIy (37)

o1 = 0 — YiCop [V TP + Vo JH) (38)

Xk+1 = X + Xwgy1 (39

Wit = (Co/(N — 1)) 1/2 (40)

Eri1 = X117 + XWig . (41

Remark 1 The gradient and Hessian approximations involves
terms of the form (y — H (X 4+ Xw)). Since we run the ensem-
ble, and not the ensemble mean, this quantity is not available

Fig. 1 True permeability field

Truthpermx at layer 1

to us. There are two ways to deal with this issue. First, it is
possible to run N — 1 ensemble members and the mean to
obtain the desired quantity without increasing the computa-
tional cost, alternatively we can approximate H (X +Xw) with
H(E), as is done in [2]. The latter approach is implemented
here.

In the next section the two algorithms are tested on a
synthetic reservoir model and compared with a square root
implementation of the iES.

3 Reservoir example

The test case is a 2D reservoir of 60 x 60 grid cells with
a two phase flow consisting of oil and water operated with
six producing wells and one injection well. There are three
different data types: oil production rates, water production
rates and water injection rates, so the log likelihood for the
miES is a sum of three terms (K = 3 in Eqgs. 8 and 9). We
assume that the porosity is known (fixed at 0.2) and that the
permeability field is unknown and modeled using a Gaus-
sian prior distribution with a constant mean of 5, a constant
variance of 1, and with a spherical variogram of range 30,
anisotropy of 0.33, and with an angle of —45 degrees. The
true permeability field is a realization from the prior shown
in Fig. 1 along with the prior mean.

The historical production data are obtained by running
the The Open Porous Media Flow simulator [20] on bottom
hole pressure control . The measurements are generated by
adding a zero mean Gaussian measurement error to the oil
production rates and water production rates in the six pro-
ducers as well as the water injection rates in a single injector
every 150 days for a total of 12000 days (80 observation time
points) except for producer 4 which opens after 6000 days
and producers 5 and 6 which open after 9000 days. The stan-
dard deviation of the measurement error is set to 10, 20 and

Prior permx at layer 1
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(a) True permeability

(b) Prior mean
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Fig.2 Oil production rates, wopr initial forcast, at Well: pro-1
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Fig.4 Water injection rates, prior and posterior, for injector 1
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Fig.5 Posterior permeability Posterior permx at layer 1 Posterior permx at layer 1
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Fig.6 Posterior standard
deviations
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30, for oil production, water production and water injection
respectively.

We run seven different cases with three different ensemble
methods. The iES and miES with inverse y 2 prior are run with
three different inputs (the standard deviation for iES and s
for the miES). Once with the correct values for the standard
deviations (10,20,30), once with a lower value (+/40) for all
three data types and once with a higher value (+/1000) for
all three data types. In all runs the degrees of freedom in
miES, v, is set equal to the number of measurements (80).
Since the miES with Jeffrey’s prior does not require any input
it is only run once. The ensemble size is 100. In addition,
we run the iES with the correct standard deviations for the
measurement error and an ensemble size of 1000 that will
serve as a reference solution. That is, all results should be
compared with the result from this run as it is the best solution
we can get for an iES algorithm.

Normally some type of localization should be applied
when using ensemble methods, but for the sake of compar-
ison of the impact of the different methods and inputs, we
did not apply any localization in this example. In Figs. 2,3,4
the prior and posterior oil and water production is shown for
the first producer as well as the water injection for the injec-
tor. All the methods provide a fairly good match with the
data, with the exception of the iES when the measurement
error standard deviations are set to a lower value than the true
standard deviations.

Figure 5 shows the mean of the posterior permeability
fields, where we particularly notice the robustness of the
miES in the sense that the end results are very similar irre-
spective of the input for the measurement variance, unlike the
iES where the results are much more sensitive to the input.
Finally in Fig. 6 the posterior standard deviations in each
grid cell are shown. Again we notice the similarity for the
miES results, as well as the high sensitivity of iES to the input
values. The results clearly demonstrate the advantage of the
miES: it is by construction far less sensitive to the input than
the iES, yielding a more robust algorithm for real field cases.
From the results it seems as the miES has a ’localization’
effect on the ensemble when compared with the iES with
1000 members.

4 Summary and future work

This paper has presented a new class of iterative ensemble
methods called the marginalized iterative ensemble smoother
(miES). The new algorithms are derived from maximiza-
tion of the posterior density where the measurement error
variance parameters in the likelihood are treated as hyper-
parameters and integrated out. Two different priors for
the hyperparameters were studied. The first was the non-
informative or Jeffrey’s prior, which requires no user input.

Hence the miES algorithm requires no input for the mea-
surement error variances. The second was the scaled inverse
chi-square prior where an offline estimate or an expert opin-
ion can be used as input. The resulting miES algorithm
can then be used with the same input as the standard iES
algorithm. A test on a synthetic reservoir model clearly
demonstrated potential advantages of the new method when
compared to the iES. The solution is less sensitive to the
input and produced solutions that were more in line with the
iES with an ensemble size of 1000 and correctly specified
standard deviations than the iES with 100 ensemble mem-
bers. The miES can handle different variances for different
datatypes and it is also possible to use different priors for
different data. The algorithm is of the same complexity as
the standard iES.

In situations where the measurements are correlated,
but with unknown correlation structure, further work is
required to use the miES. A direct generalization using non-
informative or an inverse Wishart prior density is possible
assuming that the entire measurement error covariance is
unknown, but this may lead to a very uncertain likelihood
function and it is perhaps more interesting to study a known
correlation structure with unknown parameters. Both these
topics will be investigated in future research.
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