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1Abstract—The current study investigates the stability 

analysis based on gain and phase margin (GPM) using 
fractional-order proportional-integral (FOPI) controller in a 
time-delayed single-area load frequency control (LFC) system 
with demand response (DR). The DR control loop is introduced 
into the classical LFC system to improve the frequency 
deviation. Although the DR enhances the system’s reliability, 
the excessive use of open communication networks in the 
control of the LFC results in time delays that make the system 
unstable. A frequency-domain approach is proposed to 
compute the time delay that destabilizes the system using GPM 
values and different parameter values of the FOPI controller. 
This method converts the equation into an ordinary polynomial 
with no exponential terms by eliminating the exponential terms 
from the system’s characteristic equation. The maximum time-
delay values at which the system is marginally stable are 
calculated analytically using the new polynomial. Finally, the 
verification of the time delays calculated is demonstrated by 
simulation studies in the Matlab/Simulink environment and the 
root finder (quasi-polynomial mapping-based root finder, 
QPmR) algorithm to define the roots of polynomials with 
exponential terms providing information about their locations. 
 

Index Terms—delay systems, frequency control, PI control, 
power system control, stability analysis. 

I. INTRODUCTION 

The load frequency control (LFC) system aims to 
maintain a consistent frequency profile and control power 
flow between regions at pre-programmed values through 
balancing power generation and demand [1]. Due to the 
ecological crisis and depletion risk of the non-renewable 
energy sources, integration of renewable energy (RE) 
resources into power systems may have a detrimental impact 
on the system's dynamic behavior and operating 
performance and cause difficulties in frequency control [2-
3]. Demand response (DR) is a critical instrument for next 
generation energy systems in reducing the negative impacts 
of renewable energy sources and regulating system 
frequency by resolving uncertainties in power generation 
and load demand fluctuations. That is owing to changing the 
consumption hours of demand-side controllable loads or 
controlling these loads through activating and deactivating 
them. Such a quick reaction capability enhances the 
dynamic performance of the LFC systems and the safety in 
the operation of the power system. As a result, fluctuations 
in load demand are reduced, and frequency deviations are 

fixed [4-7]. For the participation of the DR in the frequency 
regulation market, a considerable number of controllable 
loads are involved in frequency control through a company 
named Load Aggregator [8]. Thermostatically controlled 
loads such as HVAC, electric water heaters, refrigerators, 
freezers, and the fast-response vehicle-to-grid services may 
be given as examples of the controllable loads. 

 
 

In an interconnected power system, measurement data 
and control commands should be transmitted mutually 
among the control center, power plants, and the DR, and the 
communication infrastructure is required to meet the 
performance needs of the system. Time delays in 
communication, adversely affecting the dynamics and 
stability of the LFC-DR system, may occur during the 
transmission of the command signal between the control 
system and the responding loads [9-10]. 

PI controllers are widely used to zeroize the steady-state 
errors and improve dynamic response in LFC-DR systems 
[11]. Fractional-order proportional-integral (FOPI) 
controllers with higher performance features such as 
superior disturbance rejection, high-frequency noise 
immunity, and the elimination of the steady-state errors have 
become a popular control technology [12-13]. However, the 
FOPI controller has not been used in network-based 
communication and time-delayed LFC-DR systems [14-15]. 
In time-delayed LFC-DR systems, determining the 
maximum time-delay value at which the system will be 
marginally stable is also crucial in designing the controller 
and identifying the communication network type to achieve 
data transfer [16]. 

The maximum time delay of the LFC systems comprising 
a single-area electric vehicle collector (EV) in [17] and the 
microgrid frequency control system with a fixed 
communication delay in [18] was computed using the direct 
method proposed in the literature by Walton and Marshall 
[19]. In addition, the impacts of time delay in load 
frequency control for double-area LFC systems with DR in 
[20] and microgrid-based smart-power-grid-systems in [21] 
were calculated using the Rekasius substitution method [22]. 
The maximum time delay of LFC systems was also 
identified successfully using Lyapunov’s stability theory 
and linear matrix inequalities methodology [23]. Besides H∞  
sliding mode controller was proposed in a time delayed load 
frequency control systems [24]. The approaches were used 
in the research indicated above when the LFC systems 
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Figure 1. Block diagram of a time-delayed single-area LFC-DR system including a FOPI controller with added GPMT 

 

comprised the traditional PI controllers. However, the 
maximum time delay computations can be more complex 
and burdensome in fractional-order systems. Thus, the 
fractional-order system [25] is converted into a classical 
polynomial of integer-order through a conversion equation 
to avoid such difficulties. The maximum time delay of the 
system can be determined using the exponential elimination 
approach [17] and Rekasius substitution method [22] once 
the system is converted to a classical polynomial. The first 
noteworthy contribution of this study is the application of an 
analytical approach [26] to compute the maximum time 
delay at which a single-area LFC-DR system with a FOPI 
controller will be marginally stable. 

Although identifying the maximum time delay for 
stability is sufficient, any minor disturbance in the system 
may lead to instability, as steady and undamped oscillations 
in the frequency occur in practice after any disturbing 
influence in the time-delayed system. In addition to the 
margin stability, the time delay may also be calculated by 
adding other design parameters such as gain and phase 
margin (GPM) to achieve the desired performance. The gain 
and phase margin for various control applications were 
determined using the Nyquist stability criterion in the study 
[27]. Accordingly, the GPMT is added as a ‘virtual 
compensator’ to the forward transfer direction of the time-
delayed LFC system model. The second significant 
contribution of this study is the calculation of the maximum 
time-delay values of a time-delayed single-area LFC-DR 
system with a FOPI controller for various fractional-order 
and controller parameter values using the exponential 
elimination method. The QPMR algorithm [28] and 
simulation tests in the time-domain [29] are used to verify 
the precision of the theoretical maximum time delays 
attained. Therefore, verifying the calculated GPMs-based 
maximum time-delay values with the QPMR algorithm is 
the third significant contribution of this study. The current 
study aims to investigate the impact of the FOPI controller 
fraction-order on the maximum time delay of the system and 
verify the theoretical results using simulation tests in the 
time-domain and the QPMR algorithm. When the fractional-
order of the FOPI controller is smaller than one (λ<1), it is 
bigger than the results for λ=1; however, when the 
fractional-order of the FOPI controller is bigger than one 
(λ>1), then it is smaller. These results reveal that if the FOPI 
controller is used in a time-delayed LFC system, the 
fractional-order shall be preferred as less than one to build 

up the system stability. The second section of the study 
examines the model of the time-delayed single-area LFC-
DR system comprising a FOPI controller with added GPMT. 
To calculate the time delay in the system, the details of the 
proposed method are given in the third section. The method 
is tested on a single-area LFC-DR control system in the 
fourth section, and the maximum time-delay values are 
computed for the diverse FOPI controller and fractional-
order values. The results of the simulation studies in the 
time domain are provided accordingly. Finally, the fifth part 
confines conclusions and recommendations. 

II. A TIME-DELAYED SINGLE AREA LFC-DR SYSTEM WITH 

A FOPI CONTROLLER 

Fig. 1 demonstrates the block diagram of a time-delayed 
single-area LFC-DR system comprising a FOPI controller 
with added GPMT. The system is modified by adding a 
time-delay and DR (dashed lines) to a standard single-area 
LFC system (continuous lines). In Fig. 1, A  and ϕ refer to 
gain and phase margins. In addition, a proportional-integral 
type controller (PI) was used on the DR side [23]. The 
symbols in Fig. 1 such as Δf, ΔPm ΔPg, ΔPDR, ΔPL, and ΔXg 
also denote the variations in system frequency, generator 
mechanical input power, generator output power, demand-
side management power, system load, and valve position, 
respectively. For the system parameters, however M, D, Tg, 
Tc, Tr, FP, β and R  refer to the moment of inertia for a 
generator, damping coefficient of a generator, time constant 
for speed regulator, reheat-turbine time constant, reheat-
turbine time coefficient, frequency orientation factor, and 
speed regulation coefficient, respectively. The participation 
factor coefficients indicated by a0 and a1 were used to 
identify the participation rate of the standard power 
generation unit and the DR control loop in the frequency 

modulation unit in the LFC system [30]. Also, KP, KI, and λ 
refer to the FOPI controller gain values and the fractional-
order value of the integral controller. It should be noted that 
a fractional-order PI controller is obtained in the cases of     
λ<1 and λ>1, whereas a standard integer-order PI controller 
is acquired in the case of λ=1. In the standard LFC system 
with the DR added, time-delays may arise in the system 
during data transfer from the control center. Thus, a time 
delay is considered as much as the τ value during the 
measurements and data transmissions in the LFC-DR 
system, and it is denoted as e-sτ in Fig. 1. The characteristic 
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equation of the time-delayed single-area LFC system 
comprising a FOPI controller with added GPMT is given 
below in (1). 
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It should be noted that the e-sτ time-delay expression 

changes to in (1). Along with the s=jωc, the system 
root of the imaginary-axis at the maximum time-delay value, 

the is given as e-jΦ phase margin and  the sum of the 
exponential term in (3).  

GPMse 

GPMse 

GPM
c

 


      (3) 

There is no GPMT block diagram in the practical control 
systems. It is utilized as a virtual expression in the control 
system model to only analyze the system's dynamic 
performance at the desired GPM levels [27]. In (1), when 
the values are set to A=1 and, ϕ=0º the original 
characteristic equation is calculated, in which the gain and 
phase margin has no effect in the system. When assessed (1) 
in terms of the GPM, three different states defined. These 
are: a) when A=1, only the effect of phase margin (ϕ) is 
observed, b) when, ϕ=0º the characteristic equation can only 
be assessed by considering the gain margin, and c) the effect 
of both parameters on the system can be studies via 
changing both the gain and the phase margin in the system. 

III. CALCULATION OF GPM-BASED TIME DELAY IN A TIME-
DELAYED SINGLE-AREA LFC-DR SYSTEM WITH FOPI 

CONTROLLER 

The method to calculate the time-delay values 
corresponding to the roots on the imaginary axis of the 
characteristic equation of a single-area LFC-DR system with 
added GPMT (Fig. 1) is described in detail in this section. In 
Fig. 1, if the roots crossing the imaginary-axis are denoted 
as s=±jωc in the GPMT-added system, the values of the 
time-delay corresponding to these roots are designated as 
τGPM. The τ also specify the time-delay values that produce 
the desired gain and phase margin. It is possible to analyze 
the stability of the system demonstrated in Fig. 1 by the 

in (1). For any value of time delay, all roots of a system 
must be on the left half-plane of the imaginary axis in order 
for it to be asymptotically stable. A time-delayed single-area 
LFC-DR system has infinite roots due to the exponential 
term in (1), and calculating such infinity is a difficult task. 
However, if the characteristic equation given in (1) has roots 
on the imaginary axis, these roots are much easier to 
compute, and thus it allows the maximum time delay of the 
system to calculate. Considering that there is a root 
imaginary axis on s=jωc equity for some finite values of 
Δ(jωc+τGPM)=0, then the Δ(-jωc,τGPM)=0 equation will have 
s=-jωc root for the same finite value due to the complex 
conjugative states of the roots. Thus, the calculation 
problem of the maximum time delay may be reduced to 
merely calculating the τGPM value using both Δ(jωc,τGPM)=0 
and Δ(-jωc,τGPM)=0 equations [20-23]. For this purpose, the 
calculation of the time delay of the fractional-order 
characteristic equations with time-delay can be achieved as 
follows [26]. 

position of the roots of the characteristic polynomial given 

( , ) 0a
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Figure 2. Stability domain in the  plane of the fractional-order system 

main 
de

 

Based on this transformation, the stability do
fining the v plane shown in Fig. 2 and the new 

characteristic polynomial of the system are given in (5) and 
(6), respectively [24].  

2
v


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a
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(7) is derived from (6) using the conjugate expression v . 
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a
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 or 2j
cs e  GPM R   is the complex root

a result of th nsformation

s of (4). As 

e tra  process, the roots of (4) are 
derived as follows [24]. 

2j a
cv s   e      (8) 

(9) without exponential terms is derived from (6) and (7) 
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to eliminate the exponential terms.  
( ) '( ) '( ) '( ) '( )W v P v P v Q v Q v  0   (9) 

If there is a solution of (4) in s=jωc

so
, it will also yield a 

lution for (9). (10) with ω is derived when j av ( e )v  
and 2j aa

cv e   equities are used in (9) [28].  
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Thus, the exponential term in (4) is removed by
ex

e 
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 the system will 
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 the 
ponential term elimination approach, as shown in (10). 

The positive real-root ωc>0 of (10) is equal to the root of (4) 
on the imaginary axis s=±jωc. The following results may 
outcome based on the roots acquired from solving (10). 
 The polynomial given by (10) may have no positiv

real-root for all τGPM≥0 finite values. This means that 
there is no root on the imaginary axis of the single-area 
LFC-DR system with added GPMT given in (4), and 
the system proves that all roots in the characteristic 
equation in (4) are in the left half-plane of the 
imaginary axis. The time delay does not affect the 
system stability in this case, and the system is always 
stable and independent of time delay for all τGPM≥0 
finite values of time delay.  

 (10) may have at least one po
that the characteristic equation in (4) has at least a pair 
of s=±jωc complex conjugate roots on the imaginary 
axis. In this scenario, the stability of single-area LFC-
DR system with added GPMT varies depending on the 
time delay, and the system is stable at τGPM value with 
the maximum time delay at the margin. 

The maximum time-delay values at which
 stable are calculated using (11) via the positive real ωc 

values attained from the solution of (10).  
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(10) specifies that the new characteristic polynomial must 
have a finite number of positive real-roots for all 

GPM  . (12) provides the set of these real-roots.  
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time-delay value ωcm, 
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pe

In th  iteration 
 riod. As a result, the maximum time-delay value of the 

control system with a GPMT is the minimum value in the 
time-delay set in (14) (τGPMm, m=1,2,…,q). 
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After computing the maxim
tim

um time-delay value of the 
e-delayed control system with a GPMT, (15) may be 

used practically to calculate the time-delay value that the 
original control system will have the desired gain and phase 
margin.  
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In this equation, while ϕ denotes the desired phase 
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IV. SIMULATION AND RESULTS 

Th stem at the 
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imaginary-axis. 

e time-delay values of the LFC-DR sy
sired GPM values and varying gain and fraction-order 

values of the FOPI controller were determined in this 
section using the approach described in Chapter 3 while 
keeping the other system parameters constant. In addition, 
the accuracy of the proposed method and the outcomes were 
demonstrated using the QPMR algorithm, which is a 
numerical approach identifying the positions of the poles 
and zeros of the characteristic equation of any time-delayed 
system on the complex plane. The equations from Chapter 3 
were used stepwise below to compute the time delay. The 
system parameters are as follows [31]: 
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value and s=jωc equity; thus, the following formulation is 
conceivable. 
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Step 3: To solve the new characteristic equation obtained 

in Step 2, the transformation equation 10v s  was used as 
in (6). Furthermore, this transformatio so performed 

for the complex conjugate 

n is al
10v s  . 
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v
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Step 4: ( , ) 0GPMv    and ( , ) 0GPMv    equities 

attained by (20) and (21) in Step 3 eliminated the 
exponential term as given below.  

59 10 118 49 10 98

39 10 78 29 10 58

49 20 49 20 10 40
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(0.332 ) (11.971 )

(73.254 ) (-11.927 )

( -0.394 ) (-1.889 )

(1.504 ) (-0.098 )

(-0.472 )

j j

j j

j j

j j

j

W v P v P v Q v Q v

e v e v

e v e v

e v e v

e v e v

e

 

 

 

 



 

 

 

 



 

 

 

 







20 4 9 10 18(4.7603 10 ) 0jv x e v  

 (22) 

Step 5: By using (10), The equation below may be 

achieved if 20 2010 j
c cv e e   j  (as 10

c c   ) 

expression given in (22) in Step 4 is operated.  

         

118 98 78

58 49 40 38
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



 (23) 

Accordingly, 118 roots were calculated from the solution 
of the polynomial given by (23) above. Among 118 roots, 
however, only two positive real-roots as 0.9351 /c rad s   

and 0.0317 /c rad s   were calculated. Since there was 

10
c c    relationship, the system’s root crossing the 

imaginary-axis was calculated as ωc1=0.5112 rad/s, 
ωc2=1.0247x10-15 rad/s. 

Step 6: Using the attained ωc1=0.5112 rad/s and 
ωc2=1.0247x10-15 rad/s positive real-roots in (11) and 

employing 2010 0.5112 jv e  , 10 15 201.0247 10 jv x e   
conversions, the time-delay values in the system are 
calculated as τGPM1=1.0438s, τGPM2=3.2192x1015s. Among 
these, the τGPM=τGPM1=1.0438s, which is the minimum time-
delay value, is the maximum time-delay value of the system.  

   
 

-1 2010
10

(v)) (v))1

(v)) (v))  
j

GPM c

( P' ( Q'
tan v e

( P' ( Q'v
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v

(25) 

Step 7: The time-delay value calculated by (24) in Step 6 
stands for the time-delay value of the LFC-DR system with 
a GPM. To find the time-delay value corresponding to the 
desired phase margin, the positive real-root ωc1=0.5112 
rad/s

 
calculated in Step 5 and the time-delay value in the 

desired gain-phase margin of the original LFC-DR system 
acquired by the time-delay value corresponding to this 
positive real-root in Step 6 can be formulated as follows 
while considering the phase margin as Φ=20º=0.3491 rad. 

0 3491
1 0438 0 3609

0 5112

. rad
.

. rad / s
    . s  (26) 

For the desired GPM values and for a fractional-order 
controller in a time-delayed single-area LFC-DR system, 
stability analysis was performed in this study by following 
the processes outlined above.  

This section analyses were done in three ways, as detailed 
below. Initially, the maximum time-delay values in the 
system were calculated for varying gain values and 
fractional-order values of the FOPI controller in the case of 
A=1, ϕ=0º. For this purpose, the aforementioned steps were 
executed at three different fractional values, λ=0.9, λ=1 and 
λ=1.1, by selecting the proportional controller gains as 
Kp=0.1–0.5 and the integral controller gains as KI=0.1–0.5. 
Tables I, II, and III shows the calculated time-delay values 
for λ=0.9, λ=1 and  λ=1.1, respectively. It was noteworthy 
that the classical integer-order PI (λ=1) controller was used 
in the system, according to Table II. When Table I for λ=0.9 
compared to Table II for λ=1, the maximum time-delay 
values in all gain values of the PI controller were larger at 
λ=0.9 than at λ=1. This proved that the system stability was 
influenced positively at the λ=0.9 value, and the time-delay 
values that the system could tolerate after any disturbance 
effect are very high. However, when Table III for λ=1.1 and 
Table II for λ=1 were compared, lower time-delay values 
were found for all gain values of the PI controller in Table 
III among all PI controller gain-values. Therefore, it is 
conceivable to say that the system stability is negatively 
affected by the maximum time-delay values calculated for 
λ=1.1.  

TABLE I. MAXIMUM TIME DELAYS FOR 0.9   ( , 1A  0   ) 

*( )s  IK  

PK  0.1 0.2 0.3 0.4 0.5 

0.1 29.2429 9.7222 3.4331 1.7654 1.0857 

0.2 29.4449 9.6720 3.4556 1.8940 1.2277 

0.3 29.2047 9.2795 3.3728 1.9831 1.3353 

0.4 28.4798 8.3789 3.2385 2.0326 1.4221 

0.5 27.2195 6.6193 3.0657 2.0444 1.4838 

 

TABLE II. MAXIMUM TIME DELAYS FOR  ( , 1  1A  0   ) 

*( )s  IK  

PK  0.1 0.2 0.3 0.4 0.5 

0.1 19.2605 6.4331 2.3169 1.1373 0.6104 

0.2 19.9402 6.6808 2.5272 1.3373 0.7859 

0.3 20.3789 6.7078 2.6638 1.5065 0.9392 

0.4 20.5229 6.4322 2.7238 1.6320 1.0722 

0.5 20.3297 5.7621 2.7214 1.7280 1.1799 

 

TABLE III. MAXIMUM TIME DELAYS FOR 1.1   ( 1A  , 0   ) 

*( )s  IK  

PK  0.1 0.2 0.3 0.4 0.5 

0.1 13.2415 4.2191 1.4608 0.5851 0.1683 

0.2 14.0930 4.6511 1.7659 0.8223 0.3595 

0.3 14.7898 4.9444 2.0154 1.0345 0.5398 

0.4 15.3225 5.0733 2.2037 1.2180 0.7033 

0.5 15.6475 4.9859 2.3327 1.3743 0.8542 

       43
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Subsequently, the time-delay values for the desired GPM 
were calculated in the time-delayed LFC-DR system 
comprising a FOPI controller and with GPMT added in Fig. 
1. The FOPI controller gain values in this scenario ranged 
between Kp=0.1–0.5 and KI=0.1–0.5. In addition, λ=0.9 
value was taken into account for the PI controller. First, the 
phase margin was kept constant at the ϕ=0º value to assess 
the effect of the gain margin for the λ value indicated in the 
system, and the time-delay values of the gain margin A=1, 
A=1.5 and A=2 were given in Tables I, IV, and V. When 
compared to these tables, it was identified that the time-
delay values decreased noticeably as the gain margin values 
A=1, A=1.5 and A=2 increased. 

In the second scenario, the time-delay values for ϕ=0º, 
ϕ=10º, and ϕ=20º were calculated while keeping the gain 
margin A=1 constant to examine the effect of the phase 
margin on the time-delays for λ=0.9. The time-delay values 
for ϕ=0º, ϕ=10º, and ϕ=20º at λ=0.9 were presented in 
Tables I, VI, and VII. When these tables were analyzed, it 
was discovered that the time-delay values of all FOPI 
controller gain margin values decreased while the phase 
margin values increased. However, it was clear that the gain 
margin was more effective than the phase margin on the 
time-delay values, and the gain margin lowered the time-
delay values more, according to the tables studied.  

Finally, time-plane simulation studies were used to 
demonstrate the accuracy of the maximum time-delay values 
calculated when using a fractional-order controller in the  

 
TABLE IV. MAXIMUM TIME DELAYS FOR  ( ,0.9  1.5A  0   ) 

*( )s  IK  

PK  0.1 0.2 0.3 0.4 0.5 

0.1 16.1050 3.4554 1.4403 0.7806 0.4432 

0.2 15.9031 3.3728 1.6109 0.9537 0.5958 

0.3 14.8309 3.1574 1.7097 1.0853 0.7265 

0.4 11.8497 2.8900 1.7544 1.1818 0.8317 

0.5 4.7308 2.6423 1.7549 1.2446 0.9137 

 
TABLE V. MAXIMUM TIME DELAYS FOR 0.9   ( ,2A  0   ) 

*( )s  IK  

PK  0.1 0.2 0.3 0.4 0.5 

0.1 9.6720 1.8940 0.8403 0.4164 0.1865 

0.2 8.3789 2.0326 1.0438 0.5985 0.3470 

0.3 4.9268 2.0373 1.1818 0.7448 0.4824 

0.4 3.4979 1.9696 1.2573 0.8500 0.5913 

0.5 2.8394 1.8704 1.2916 0.9241 0.6754 

 

TABLE VI. MAXIMUM TIME DELAYS FOR 0.9   ( , ) 1A  10  

*( )s  IK  

PK  0.1 0.2 0.3 0.4 0.5 

0.1 26.6601 8.7015 2.8870 1.3293 0.6989 

0.2 26.9419 8.7010 2.9311 1.4669 0.8459 

0.3 26.8101 8.3815 2.8745 1.5666 0.9604 

0.4 26.2237 7.5857 2.7671 1.6282 1.0549 

0.5 25.1338 5.9774 2.6210 1.6534 1.1251 

 

LFC-DR system, and the dynamic performance of the LFC-
DR system at the desired GPM values was investigated in 
the system. 

TABLE VII. MAXIMUM TIME DELAYS FOR 0.9   ( 1A  , ) 20  

*( )s  IK  

PK  0.1 0.2 0.3 0.4 0.5 

0.1 24.0774 7.6807 2.3409 0.8933 0.3121 

0.2 24.4389 7.7301 2.4065 1.0399 0.4641 

0.3 24.4156 7.4834 2.3761 1.1501 0.5855 

0.4 23.9677 6.7924 2.2956 1.2238 0.6876 

0.5 23.0480 5.3356 2.1762 1.2623 0.7664 

 

In Fig. 3, the LFC-DR system frequency response at the 
ΔPd=0.1pu load variation was compared when there was no 
GPMT in the system (A=1, ϕ=0º) at the λ=1.1 fractional-
order of the controller, and the controller gains set as 
Kp=0.3, KI=0.3. In addition, the configuration of the system 
roots at the specified time-delay values and the alteration in 
the system frequency response may be assessed using the 
QPMR algorithm in Fig. 3. The hypothetically calculated 
maximum time-delay value for λ=1.1, Kp=0.3, and KI=0.3 
was τ=2.0154s. According to Fig. 3a, it was deduced from 
the configuration of the system roots that there was a 
complex root pairs in the left half-plane of the imaginary 
axis when lowered the time-delay value to τ=1.8s<2.0154s. 
Hence, the simulation studies verified the system stability, 
damping the oscillations in the system response. When Fig. 
3b was examined, there was a complex root pair of the 
system at τ=2.0154s value on the imaginary axis. In this 
case, the system was stable at the margin, and undamped 
oscillations occurred in the frequency response. In Fig. 3c, 
however, the complex root pairs of the system were 
observed to be in the right half-plane of the imaginary axis, 
and there were undamped oscillations in the system 
response when increased the time-delay value to 
τ=2.1s>2.0154s. 

The dynamic performance of the system was studied at 
the λ=0.9 fractional-order of the FOPI controller by taking 
the GPM into consideration. The maximum time-delay 
value for Kp=0.3, KI=0.3 controller gain values of the 
single-area LFC-DR system at the fractional-order λ=0.9 of 
the PI controller was computed as τ=1.9831s for A=1, ϕ=0º, 
as provided in Table I. This unit was the delay-value at 
which the oscillations in the system’s frequency response 
were not damped and remained stable at the margin. 
However, such oscillations in frequency variation are 
intolerable in practical systems. The delay-value limit was 
set by adding the GPMT to the system to damped such 
amplitudes of oscillations in a short time and reach a steady 
state in the system. As demonstrated in Tables V and VII, 
the GPM-based time-delay values were calculated as 
τ=0.7448s and τ=1.1501s for A=2, ϕ=0º  and A=1, ϕ=20º 
respectively. In addition, the simulation study of these delay 
values calculated in the GPMT parameters was given in Fig. 
4. In contrast to the time-delay value derived by A=1, ϕ=20º 
a state in Fig. 4, the oscillations in the frequency response 
were damped in a short time in the case of only phase 
margin (A=1, ϕ=20º). Similarly, the system oscillations 
were damped in a substantially shorter time when there was 
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only the gain margin (A=1, ϕ=0º). Furthermore, the 
oscillations in the selected gain margin were damped in a 
shorter period than the phase margin. These simulation 
studies proved that the gain and phase margin should be 
considered when computing the maximum time delay to 
improve the dynamic performance of the time-delayed LFC-
DR systems. 

 
(a) 1.8s  : Stable 

 
(b) 2.0154s  : Marginally stable 

 

(c) 2.1s  :Unstable 
Figure 3. Location of the characteristic equation roots and frequency 
response of LFC-DR system for (A=1, ϕ=0º) λ=1.1 

  
Figure 4. Effect of gain and phase margin on damping of the LFC-DR 
system frequency response for (A=1, ϕ=0º

 ), (A=1, ϕ=20º), (A=2, ϕ=0º), 
λ=0.9, Kp=0.3, and KI=0.4  

V. CONCLUSIONS 

This study used a single-area LFC-DR system with a 
communication delay FOPI controller to perform stability 
analysis by taking the GMP into account. An analytical 
method was used in the system to calculate the time delay 
for various fractional-orders of the controller and GPM 
parameters. Furthermore, simulation studies and the QPMR 
algorithm used widely in the literature demonstrated that the 
current method generated precise results. However, it may 
be more accurate to analyze the study findings under two 
different groups. 

The maximum time delay results attained were greater 
than the results of the integer-order PI controller λ=1 when 
the fractional-order of the FOPI controller was less than one 
(λ<1); however, it was smaller when it was λ>1. These 
findings suggested that the fractional-order should be less 
than one to increase system stability when using a FOPI 
controller in a time-delayed LFC-DR system. 

It may be sufficient to anticipate the maximum time delay 
information in the system. However, it is critical that the 
system operates beyond the stability margin and 
demonstrates the desired dynamic performance. The delay 
margin was calculated for the desired GPM parameters of 
the system by the proposed approach via adding the GMP 
parameters to the system. Therefore, the acquired results 
suggested that the system had a better dynamic performance 
at the desired GPM parameters. 

In conclusion, this research results contributed to the 
literature by focusing on improving the system's dynamic 
performance and analyzing the effect of fractional-order 
controllers on the system’s operating performance. 
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