
Citation: Uguz, S.; Arsu, T.; Yang, X.;

Anderson, G. Multi-Criteria Decision

Analysis for Optimizing CO2 and

NH3 Removal by Scenedesmus

dimorphus Photobioreactors.

Atmosphere 2023, 14, 1079. https://

doi.org/10.3390/atmos14071079

Academic Editors: Zhangliang Han

and Zhiping Ye

Received: 31 May 2023

Revised: 17 June 2023

Accepted: 23 June 2023

Published: 27 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Multi-Criteria Decision Analysis for Optimizing CO2 and NH3
Removal by Scenedesmus dimorphus Photobioreactors
Seyit Uguz 1,* , Talip Arsu 2, Xufei Yang 3 and Gary Anderson 3

1 Biosystems Engineering, Faculty of Agriculture, Bursa Uludag University, 16240 Bursa, Turkey
2 Department of Tourism and Hotel Management, Vocational School of Social Sciences, Aksaray University,

68200 Aksaray, Turkey; taliparsu@aksaray.edu.tr
3 Department of Agricultural and Biosystems Engineering, South Dakota State University,

Brookings, SD 57007, USA; xufei.yang@sdstate.edu (X.Y.); gary.anderson@sdstate.edu (G.A.)
* Correspondence: seyit@uludag.edu.tr; Tel.: +90-530-284-18-02

Abstract: Numerous technologies have been investigated for mitigating air pollutant emissions from
swine barns. Among them, algal photobioreactors (PBRs) can remove and utilize air pollutants
such as CO2 and NH3 from barn exhaust. However, a challenge to PBR operation is that it involves
multiple system input parameters and output goals. A key question is then how to determine
the appropriate CO2 and NH3 concentrations in this case. Conventional statistical methods are
inadequate for handling this complex problem. Multi-criteria decision-making (MCDM) emerges as
a practical methodology for comparison and can be utilized to rank different CO2–NH3 interactions
based on their environmental and biological performance. By employing MCDM methods, producers
can effectively control the ratio of CO2 and NH3 concentrations, enabling them to identify the optimal
range of operating parameters for various housing types, ensuring efficient pollutant mitigation. In
this study, a multi-criteria decision-making (MCDM) approach was employed to support operation
management. Specifically, influent CO2 and NH3 concentrations were optimized for three scenarios
(the best biological, environmental, and overall performance), using a combination of two MCDM
techniques. This study is anticipated to facilitate the system analysis and optimization of algae-based
phytoremediation processes.

Keywords: CILOS; GRA; multi-criteria decision-making; swine barns; Scenedesmus dimorphus; algae

1. Introduction

Concentrated animal production results in significant air pollutant emissions that
contribute to environmental pollution and global warming issues. Various air pollutants,
such as NH3, H2S, CH4, and CO2, can originate from animal housing, manure storage, and
land application [1]. There is a need to mitigate these pollutants while sustaining animal
protein supplies. This mitigation will not only protect the environment but also improve
indoor air quality critical for animal health and welfare, as well as the safety and health of
farm workers [2,3].

Various mitigation technologies/practices have been researched, including air scrub-
bers, biofilters, tree barriers, diet manipulation, and improved manure management [4–6].
Among them, CO2 and NH3 fixation by microalgal photosynthesis has recently attracted
significant attention due to its eco-friendliness and potential economic benefits. Microalgae
have substantially higher cell growth and CO2 fixation rates (about 10–50 times) than
terrestrial plants [7]. They can be further valorised into biofuels, animal feed, nutrition
additives, cosmetics, and pharmaceuticals [8].

Numerous factors play a crucial role in effectively reducing air pollutants released from
animal barns using photobioreactor (PBR) systems. The concentrations of air pollutants
vary depending on the livestock breed, animal age, and barn type. Similarly, the growth
of microalgae in PBR systems differs in terms of their air pollutant reduction efficiency,
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biomass yield, and cell growth, which are influenced by the emitted CO2 and NH3 gas
concentrations from the barn. Therefore, to achieve optimal CO2 and NH3 gas reduction
efficiencies, it is essential to determine the gas concentrations at which microalgae exhibit
the best cell growth and biomass yield. The existing literature indicates that while the
highest cell growth, measured by cell counts, can occur at any CO2 gas concentration,
the maximum biomass yield may be obtained at a different gas concentration [9]. A
microalga that demonstrates the highest cell growth at a specific CO2 gas concentration
might exhibit lower cell growth at another CO2 concentration due to the presence of NH3
gas in the PBR system, where CO2 and NH3 gases coexist [10]. In other words, although
cell growth reaches its peak at a given CO2 gas concentration, the maximum biomass
yield may not be achieved at the same CO2 gas concentration. Therefore, for the most
effective mitigation of air pollutants released from animal barns using PBR systems, it is
crucial to collectively evaluate and analyze the biological and environmental parameters
that influence microalgae growth. By doing so, maximum efficiency can be obtained from
all parameters influencing algal growth, and identifying the air pollutant concentrations
at which the highest gas reduction efficiency can be achieved will enhance the system’s
effectiveness and economic viability.

Challenges exist to effective CO2 and NH3 gas mitigation with microalgae due to the
complexity of the relevant processes. For example, CO2 and NH3 fixation efficiencies can
be affected by many operating parameters, such as gas loading rates, gas concentrations,
pH, light intensity, and temperature. Numerous studies have been conducted to examine
the effects of these parameters [8,11–13]. In nearly all these studies, different parameters
were examined separately. However, interactions between the parameters should not be
neglected. For example, Kang and Wen [14] reported that the solubility and uptake of
CO2 by algae were affected by the presence of NH3 in PBRs. Moreover, algal PBRs for air
pollutant mitigation (and other phytoremediation purposes) often involve multiple system
input parameters (e.g., CO2 concentrations, pH, and temperature) and multiple output
goals (e.g., biomass yield and NH3 removal efficiency), making it challenging to make
management decisions concerning algal PBR operation. Previous studies have highlighted
the challenge of CO2 concentration when utilizing microalgae for pollutant capture. Tradi-
tional statistical methods may not be adequate for addressing the complexities associated
with determining suitable CO2 and NH3 concentrations for algal growth. Therefore, priori-
tizing the options for mitigating pollutants through CO2 and NH3 concentration requires
a multi-criteria approach. One practical methodology for comparison in this regard is
multi-criteria decision-making (MCDM). In this paper, a multi-criteria assessment model is
proposed which combines grey relational analysis (GRA) and criterion impact loss (CI-LOS)
techniques. This model allows for the ranking of different CO2–NH3 interactions based on
their environmental and biological performance. By applying the CI-LOS method, objective
determination of weights can be achieved for parameters such as cell number, biomass
yield, and others that monitor microalgae growth, as well as parameters indicating gas
reduction efficiency. Subsequently, using the GRA method and considering these weights,
the optimal CO2 and NH3 gas concentrations can be determined.

Advancements in decision-making sciences have made MCDM methods increasingly
accessible and accepted recently. MCDM refers to decision-making in the presence of
multiple criteria that are inconsistent or even contradictory [15]. It is particularly useful for
systems with multiple criteria and alternatives. The development of MCDM methods is
motivated by not only various real-life problems requiring the consideration of multiple
criteria but also by advances in mathematical optimization, scientific computing, and
computer technology [16]. A fundamental task of MCDM is to evaluate a set of alternatives
with a set of criteria. This involves the determination of the criteria that can be organised
according to the expectation of a decision to be made for possibly solving a problem and
other alternatives [17].

MCDM has been used in solving various problems in social sciences such as supplier
selection [18–20], financial performance [21,22], and cyber security [23,24], as well as
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in engineering and science problems such as geographic information systems [25,26],
construction equipment evaluation [27,28], and machine tool selection [29,30]. This method
has been applied successfully in environmental research areas, from optimising waste
management systems [31] to selecting gas mitigation methods [32,33]. Only a few reports
are available concerning its applications for algal research, with the majority focusing on
harvesting technologies [34,35]. Others include the identification of the best microalgae
strain for biodiesel production [36], the best areas for microalgal cultivation [37], and the
best algal wastewater treatment systems [38]. To our knowledge, no application of MCDM
for algal PBR operation has been reported.

This study presents the first such attempt to identify optimal NH3 and CO2 concentra-
tions for algal PBR operation. The primary aim of using the multi-criteria analysis is to find
the relative importance of the factors and the criteria that affect cultivation of S. dimorphus
with gas concentrations typical of pig house exhaust air. As a restriction, the specified
concentrations must be within the typical concentration range of swine barn exhaust.
The optimization was conducted to maximize the (1) biological, (2) environmental, and
(3) overall performance of algal PBR systems. For each of the system output goals (sce-
narios), multiple performance indicators were considered. Specifically, the biological per-
formance (i.e., algal growth) was measured by algal cell concentration, dry algal biomass,
maximum specific growth rate, and cell weight; the environmental performance (i.e., pollu-
tant mitigation) was measured by CO2 fixation rate, NH3 fixation efficiency, CO2 removal
efficiency, and NH3 removal efficiency; and the overall performance was measured by all
the indicators stated above. Sixteen experimental data sets were analyzed with two MCDM
methods (criterion impact loss (CILOS) and grey relational analysis (GRA)) following the
multi-step procedure outlined in Figure 1. Such optimization cannot be performed with
regular statistical tools.
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2. Materials and Methods
2.1. Experimental Prodecure

Scenedesmus dimorphus (S. dimorphus) strain UTEX 1237 was cultivated in 1 L Er-
lenmeyer flasks containing 100 mL of Bold’s basal medium with the composition of
Uguz et al. [24]. This strain was used because of its efficient CO2 and NH3 removal [24].
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The prepared BBM was sterilised and placed in the autoclave for 20 min at 121 ◦C. The
cultures were doubled weekly and then transferred to 5 L PBRs when they reached the
5 L working volume for testing. The PBRs were built from acrylic plastic sheets sized
35 cm (height) × 50 cm (length) × 10 cm (width). Figure 2 shows the PBR experiment
in operation.
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Figure 2. PBRs operating in the experiment.

Following the cultivation, 16 experiments were conducted in the laboratory under
controlled conditions. In brief, algal PBRs were filled with a 5 L cultivation medium, fed
with CO2-laden air at an airflow rate of 5 L min−1, and illuminated at a 60–65 µmol s−1 m−2

light density. CO2 concentration in the influent air (Table 1) was regulated using rotameters
(Cole Parmer, Vernon, IL, USA) with needle valves. For NH3, due to its strong adsorption
along tubings and adaptors, no rotameter-dilution method was used. Instead, ammonium
chloride (NH4Cl) was added daily to the cultivation medium as an alternative NH3 source.
It was calculated that the NH4Cl daily doses of 0, 19, 39, and 78 mg L−1d−1 would be
equivalent to the aerial NH3 concentrations of 0, 12, 25, and 50 ppm, respectively, in the
influent air. Other parameters, such as pH, temperature, and lighting, were constant
throughout the cultivation experiments. The experiments were performed in triplicate,
with control PBRs (fed with no NH3 or CO2) available for comparison. CO2 and NH3 gas
concentrations were monitored using an INNOVA 1314i photoacoustic multi-gas monitor
1314i (LumaSense Technologies A/S, Ballerup, Denmark).

2.2. Analytical Methods

A detailed description can be found in Uguz et al. [39]. In brief, algal samples har-
vested from the sixteen experiments were analyzed for cell concentration (cells L−1), dry
algal biomass concentration (mg L−1), cell weight (mg cell−1), specific growth rate (d−1),
CO2 fixation efficiency (mg L−1 d−1), NH3 fixation efficiency (mg L−1 d−1), CO2 removal
efficiency (%), and NH3 removal efficiency (mg L−1 d−1). The cell concentration was
measured using haemocytometers under an Olympus optical microscope. The dry algal
biomass concentration was gravimetrically determined by vacuum-filtering a known vol-
ume of an algal sample and weighing the filter after being dried in a laboratory oven
at 80 ◦C for 3 h [40,41]. The cell weight was calculated by dividing a dry algal biomass
concentration by its corresponding cell concentration. The specific growth efficiency was
calculated by normalizing a cell concentration increase with the initial cell concentration.
The NH3 and CO2 fixation efficiencies of the algae were calculated by multiplying the
growth rate of algal biomass by nitrogen and carbon contents (%wt) in S. dimorphus. The
NH3 and CO2 removal efficiencies were calculated by dividing their fixation efficiencies
(mg L−1 d−1) by their loading rates (mg L−1 d−1) to the PBRs.
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Table 1. Criteria and key performance indicators to evaluate the performance of algal PBRs.

Criteria Key Performance Indicators
(Kpis) Definition

Biological
Performance

C1 Cell count
Indicating algal cell concentrations
grown with NH3 and CO2 typical of
the barn exhaust air

C2 Dry biomass
Indicating algal dry biomass
concentrations grown with NH3 and
CO2 typical of the barn exhaust air

C3 Cell weight
Indicating average algal cell weight
grown with NH3 and CO2 typical of
the barn exhaust air

C4 Growth rate
Indicating specific algal growth rate,
i.e., a ratio of algal cell increase to the
initial cell concentration.

Environmental
Performance

C5 CO2 fixation rate
Indicating CO2 uptake by algae—an
estimate from algal biomass and its
carbon content

C6 NH3 fixation rate
Indicating NH3 uptake by algae—an
estimate from algal biomass and its
nitrogen content

C7 CO2 removal rate Indicating the fraction of CO2 in PBR
influents taken up by algae

C8 NH3 removal rate Indicating the fraction of NH3 in PRB
influents taken up by algae

Overall
Performance C1, C2, C3, C4, C5, C6, C7 and C8

2.3. Multi-Criteria Analyses

In the study, sixteen experiments with different combinations of CO2 and NH3 gas
concentrations were conducted. At the end of each experiment, cell number, dry weight,
cell weight, growth rate, CO2 and NH3 fixation and removal rates were calculated to
monitor algal growth and CO2 and NH3 mitigation efficiencies. These parameters were
chosen as criteria for the MCDM analysis of the experiments. Then, the weights of each
criterion were determined using the CILOS method. Figure 1 shows the weight of each
selected criterion in CILOS method. The derived weight numbers then served as input to
GRA. As aforementioned, the analyses compared three scenarios/output goals, with each
scenario involving multiple performance indicators (Table 1). The indicator data derived
from algal cultivation experiments (sixteen batches) are summarized in Table 2.

Table 2. Decision matrix for multi-criteria analyses.

Scenarios

NH3-CO2 Combinations

Overall Performance

Biological Performance Environmental Performance

Criteria Aspects Max Max Max Max Max Max Max Max

Criteria/Indicators C1 C2 C3 C4 C5 C6 C7 C8

EXP1 0 ppm NH3-350 ppm CO2 0.54 0.60 0.31 3.39 0 0 0 0
EXP2 12 ppm NH3-350 ppm CO2 1.15 1.12 0.44 0.96 99.5 22.3 5.48 76.6
EXP3 25 ppm NH3-350 ppm CO2 1.27 1.20 0.6 2.08 81.8 18.3 4.5 36.1
EXP4 50 ppm NH3-350 ppm CO2 1.23 1.24 0.45 2.26 71.0 15.9 3.9 15.6
EXP5 0 ppm NH3-1200 ppm CO2 0.69 0.72 0.05 1.28 0 0 0 0
EXP6 12 ppm NH3-1200 ppm CO2 1.78 1.80 0.35 1.01 193.0 12.6 10.6 94.4
EXP7 25 ppm NH3-1200 ppm CO2 1.95 2.00 0.62 0.53 364.8 23.8 20.1 85.3
EXP8 50 ppm NH3-1200 ppm CO2 1.41 1.45 0.26 1.2 128.7 8.4 7.09 28.4
EXP9 0 ppm NH3-2350 ppm CO2 0.85 0.88 0.28 1.73 6.30 0.41 0.34 0
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Table 2. Cont.

Scenarios

NH3-CO2 Combinations

Overall Performance

Biological Performance Environmental Performance

Criteria Aspects Max Max Max Max Max Max Max Max

Criteria/Indicators C1 C2 C3 C4 C5 C6 C7 C8

EXP10 12 ppm NH3-2350 ppm CO2 1.76 1.77 0.34 1.06 163.8 5.46 9.02 80.0
EXP11 25 ppm NH3-2350 ppm CO2 2.04 2.16 0.43 0.58 432.2 14.4 23.8 99.8
EXP12 50 ppm NH3-2350 ppm CO2 1.32 1.33 0.35 0.73 252.9 8.43 13.9 55.7
EXP13 0 ppm NH3-3500 ppm CO2 1.17 1.19 0.31 1.26 54.4 1.21 2.99 0
EXP14 12 ppm NH3-3500 ppm CO2 2.21 2.22 0.49 0.75 267.3 5.98 14.7 97.2
EXP15 25 ppm NH3-3500 ppm CO2 1.56 1.53 0.83 1.58 105.8 2.36 5.83 46.7
EXP16 50 ppm NH3-3500 ppm CO2 1.21 1.23 0.51 1.23 105.6 2.36 5.81 23.3

All criteria in the decision matrix were maximization-oriented criteria for all three scenarios. Each NH3-CO2
combination corresponded to a unique set of input and output data.

2.3.1. Criteria Impact Loss (CILOS)

The CILOS method, the theoretical background created by Mirkin (1974) and the
detailed algorithm presented by Zavadskas and Podvezko [42] are among the most promis-
ing approaches to determining the objective weight. The CILOS method considers each
criterion’s loss of importance (impact) when one of the other criteria achieves the optimal
maximum or minimum value. The stages and calculation algorithm of the CILOS method
are briefly described below [42–46]:

Step 1. Creating a decision matrix
The CILOS method starts with a decision matrix. The decision matrix of m × n size,

which includes m criteria and n alternatives, is named Z and shown in Equation (1). Here,
r12 denotes the 2nd criterion value of the 1st alternative, while r21 denotes the 1st criterion
score of the 2nd alternative.

Z =


r11 r12 . . . r1m
r21 r22 . . . r2m
...

...
. . .

...
rn1 rn2 . . . rnm

 (1)

Step 2. Converting cost criteria into benefits
Since the CILOS method only provides solutions for maximization-oriented criteria,

Equation (2) is used to transform the minimization-oriented criteria into maximization-
oriented (best). There is no minimization-oriented criterion for algal growth in this paper.

−
r ij =

minirij

rij
(2)

where rij is the cost-oriented criterion showing the i alternative value of the j criterion. On

the other hand,
−
r ij is the cost-oriented criterion transformed into a benefit-

oriented criterion.
Step 3. Normalization
Equation (3) is applied to each criterion value for normalization. After normalization,

a new matrix X is obtained.
−
x ij =

rij

∑n
i=1 rij

(3)

where, x∗i is the normalized criterion value
Step 4. Creating a square matrix (A)
After obtaining the normalized X matrix, a square matrix (A) is derived with

Equations (4) and (5). The row containing the max
i

rij element with the maximum value in
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each column is processed as in Equation (5) to form a square matrix. That is, the square
matrix is obtained by taking the row with the maximum element in the ith column of the
normalized decision matrix as the new matrix ith row.

aj = max
i

rij = aki j (4)

aij = aki j and ajj = aj (5)

where aki j specifies the maximum values of jth criteria, which are taken from the decision
matrix with ki rows to form a square matrix, aij = aki j and ajj = aj [47].

Step 5. Calculating a relative loss of impact matrix (P)
The values in the square matrix A are processed by Equation (6) to form the relative

loss of effect matrix P =
∥∥pij

∥∥.

pij =
ajj − aij

ajj
, (pii = 0; i, j = 1, 2, 3, . . . , m) (6)

In matrix P, pij represents the loss of effect in the jth criterion when the ith criterion is
selected as the best.

Step 6. Determining a weight system matrix (F)
The F matrix in Equation (7) is formed by finding the sum of each column of the P

matrix and writing the negative values of these sums on the diagonals of the P matrix.

F =



−
m
∑

i=1
pi1 p12 . . . p1m

p21 −
m
∑

i=1
pi2 . . . p2m

...
...

. . .
...

pm1 pm2 . . . −
m
∑

i=1
pim


(7)

Step 7. Calculation of weight of each criterion
The final criterion weights ( q = q1, q2, . . . , qm) are determined by solving Equation (8)

(using Excel 2016 or Matlab 9.13).
FqT = 0 (8)

The weights q of the criteria are obtained by solving the equation FqT = 0. Since this
system of equations has infinite solutions, the weight vector is determined by normalizing
the values so that ∑m

i=1 qi = 1.

2.3.2. Grey Relational Analysis (GRA)

Grey system theory, a control theory first proposed by Deng [48], has significantly
impacted numerous fields of engineering and management. The theory enabled the de-
velopment of grey relational analysis (GRA), a powerful tool that can effectively resolve
complex relationships between multiple performance characteristics through the optimiza-
tion of grey relational degrees [49].

As in almost all MCDM methods, GRA problem solving starts with a decision matrix
consisting of the values of decision criteria. Since the decision matrix is created in the same
way as CILOS (Equation (1)), no further explanation is given in this section. The problem
solving procedure of GRA is summarized below [49–53]:

Step 1. Creating a comparison matrix
Equation (9) is used to calculate a reference series in the comparison matrix (for

criteria comparison).

xo = (x0(1), x0(2), . . . , x0(j)) j = 1, 2, . . . , n (9)
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where X0(j) represents the optimal value of the jth criterion within the normalized values.
This series is obtained by taking the best value of each criterion in the decision matrix.

Step 2. Normalization and creating of normalized decision matrix
Decision problems, by their nature, consist of criteria with different units and objec-

tives. Therefore, a normalization process is adopted while solving the decision problems.
There are three possible situations for normalization in the GRA method.

i. The Larger-The-Better Case: If the criterion used is of the highest appropriateness for
the purpose, normalization is performed using Equation (10).

x∗i =

xi(j)−min
j

xi(j)

max
j

xi(j)−min
j

xi(j)
(10)

ii. The Smaller-The-Better Situation: If the criterion used is of the smallest appropriate-
ness for the purpose, normalization is performed using Equation (11).

x∗i =

max
j

xi(j)− xi(j)

max
j

xi(j)−min
j

xi(j)
(11)

where, x∗i is the normalized criterion value, and xi(j) is the value of the jth criterion in the
initial decision matrix.

iii. The Closer-To-The-Desired-Value-The-Better Situation: If the criterion used is of
the optimal appropriateness (the most suitable) for the purpose, normalization is
performed using Equation (12).

x∗i =
|xi(j)− x0b(j)|

max
j

xi(j)− x0b(j)
(12)

where x0b(j) is the determined optimal value, and jth indicates the target value of the
criterion. This optimal value can take a value in the range min

j
xi(j) ≤ x0b(j) ≤ max

j
xi(j).

After completion of the normalization process, a normalized decision matrix is obtained.
The normalized decision matrix (X∗) of m × n size, which includes m criteria and n
alternatives, is shown in Equation (13).

X∗ =


x∗1(1) x∗1(2) . . . x∗1(n)
x∗2(1) x∗2(2) . . . x∗2(n)

...
...

. . .
...

x∗m(1) x∗m(2) . . . x∗m(n)

 (13)

Step 3. Calculating an absolute value matrix
The normalized values of the decision matrix are subtracted from the normalized val-

ues of the reference series (Equation (14)) to form an absolute value matrix
(Equation (15)).

∆0i = x∗0(j)− x∗i (j) (14)

∆0i =


∆01(1) ∆01(2) . . . ∆01(n)
∆02(1) ∆02(2) . . . ∆02(n)

...
...

. . .
...

∆0m(1) ∆0m(2) . . . ∆0m(n)

 (15)

where ∆0i represents the values of the absolute value matrix.
Step 4. Creating a grey relational coefficient matrix
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Equation (16) is used to create the grey relational coefficient matrix in which ∆max and
∆min are calculated with Equations (17) and (18), respectively.

γ0i(j) =
∆min + ζ.∆max

∆0i(j) + ζ.∆max
(16)

∆max = max
i

max
j

∆0i(j) (17)

∆min = min
i

min
j

∆0i(j) (18)

where γ0i(j) represents the values of the grey relational coefficient matrix. The “discrim-
inant coefficient” or “contrast control coefficient” ζ in Equation (14) is a value in the
range of [0, 1]. To be consistent with the literature, ζ = 0.5 was taken in this study for
relevant analyses.

Step 5. Calculating grey relational degrees
The grey relational degree is a measure of the geometric similarity between the x∗i

series in a grey system and the reference series x∗0 and allows the series to be compared. A
large grey relational degree indicates a strong relationship between the comparative and
reference series. If the two series being compared are identical, the grey correlation degree
is 1.

The calculation of grey relational degrees differs according to the weight status of the
criteria. When criteria weights are all equal, the grey relational degrees are calculated with
Equation (19), while Equation (20) is used when criterion weights differ.

Γ0i =
1
n

n

∑
j=1

γ0i(j) (19)

Γ0i =
n

∑
j=1

[wi(j).γ0i(j)] (20)

where Γ0i refers to the grey relational degrees, and wi(j) is the weight of the jth criterion.
The sum of the criterion weights must be equal to 1 (∑n

j=1 wj = 1).

3. Results and Discussion
3.1. Biological Performance

When evaluating the biological performance of the PBR systems at different NH3 and
CO2 concentration levels (Scenario 1), four parameters were considered. Table 2 provides
the criteria involved in the assessment and a description of the performance parameters.
The high dry biomass concentration appeared to be the most dominant factor according
to the weights and weight system matrix of the biological performance criteria calculated
using the CILOS method (Table 3). The second most dominant factor was cell concentration.

Table 3. Criteria weights for all scenarios.

Criteria/Scenario Scenario 1 Scenario 2 Scenario 3

q1 0.2687 0.1860
q2 0.2710 0.2130
q3 0.2066 0.1347
q4 0.2537 0.1318
q5 0.2885 0.0801
q6 0.1138 0.0504
q7 0.2880 0.0801
q8 0.3098 0.1238
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S. dimorphus showed the highest normalized cell number (2.21 ± 0.14, p < 0.01 com-
pared with other test conditions) with 12 ppm NH3 and 3500 ppm CO2 (EXP 14). The
maximum specific growth rate of S. dimorphus occurred on the second day of the experiment;
the highest rate was 0.83 d−1 with 25 ppm NH3 and 3500 ppm CO2 (EXP15). Dry biomass
concentration was significantly higher (1.16 ± 0.08 g L−1, p < 0.01) with 25 ppm NH3 and
2350 ppm CO2 (EXP 11) than that of other test conditions. The maximum values of perfor-
mance parameters differed with NH3 and CO2 concentrations. The biological performance
must stay at the optimum level to reduce the air pollutants released from pig houses. The
MCDM method allows one to include different NH3-CO2 concentration combinations in a
decision-making process and provides an opportunity to simultaneously evaluate multiple
biological factors such as cell number, dry weight, cell weight, and maximum growth rate.
Optimal CO2 and NH3 concentrations for algal growth to reduce air pollutants from animal
feeding operations are the most significant factor controlling mitigation efficiencies, and
thus directly affect the indoor air quality of barns and environmental pollution.

The experimental conditions that resulted in the best biological performance were
those in EXP 14. EXP11 and EXP7 ranked second and third, respectively. The worst-
performing experiments were found to be EXP13, EXP9 and EXP5. Table 4 presents the
ranking of the sixteen experiments by biological performance, as determined using the
GRA method (Equations (7)–(18)).

Table 4. Grey Relational Coefficient Matrix and Ranks for Scenario 1 and 2.

Experiments/Criteria

Scenario 1 Scenario 2

Grey Relational
Coefficient Matrix

Criteria Weights
Differ

Grey Relational
Coefficient Matrix

Criteria Weights
Differ

C1 C2 C3 C4 Γ0i Rank C5 C6 C7 C8 Γ0i Rank

EXP1 0.333 0.333 0.429 1.000 0.522 7 0.333 0.333 0.429 1.000 0.567 5
EXP2 0.441 0.424 0.500 0.370 0.431 13 0.441 0.424 0.500 0.370 0.434 12
EXP3 0.470 0.443 0.629 0.522 0.509 8 0.470 0.443 0.629 0.522 0.529 6
EXP4 0.460 0.453 0.506 0.559 0.493 9 0.460 0.453 0.506 0.559 0.503 9
EXP5 0.355 0.351 0.333 0.404 0.362 16 0.355 0.351 0.333 0.404 0.363 16
EXP6 0.660 0.659 0.448 0.375 0.544 5 0.660 0.659 0.448 0.375 0.511 7
EXP7 0.763 0.786 0.650 0.333 0.637 3 0.763 0.786 0.650 0.333 0.600 3
EXP8 0.511 0.513 0.406 0.395 0.460 10 0.511 0.513 0.406 0.395 0.445 11
EXP9 0.380 0.377 0.415 0.463 0.407 15 0.380 0.377 0.415 0.463 0.415 15

EXP10 0.650 0.643 0.443 0.380 0.537 6 0.650 0.643 0.443 0.380 0.506 8
EXP11 0.831 0.931 0.494 0.337 0.663 2 0.831 0.931 0.494 0.337 0.592 4
EXP12 0.484 0.476 0.448 0.350 0.441 12 0.484 0.476 0.448 0.350 0.431 13
EXP13 0.445 0.440 0.429 0.402 0.429 14 0.445 0.440 0.429 0.402 0.426 14
EXP14 1.000 1.000 0.534 0.351 0.739 1 1.000 1.000 0.534 0.351 0.665 1
EXP15 0.562 0.540 1.000 0.441 0.616 4 0.562 0.540 1.000 0.441 0.648 2
EXP16 0.455 0.450 0.549 0.398 0.459 11 0.455 0.450 0.549 0.398 0.464 10

3.2. Environmental Performance

There are many factors affecting environmental performance, such as species-related
and environmental influence on CO2 and NH3 fixation and the product yield of the
microalgae. In the second scenario of the study, the environmental performance of
microalgae grown in the PBR system at different NH3 and CO2 concentration levels
was investigated. The environmental performance parameters were determined as CO2
fixation, NH3 fixation, CO2 removal efficiency, and NH3 removal efficiency (Table 2).
NH3 removal efficiency appears to be the most dominant factor for the environmental
performance, and the second dominant factor was CO2 fixation. The CILOS method
processing steps (Equations (1)–(6)) for the weights and weight system matrix of the
environmental performance criteria are shown in Table 3.
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S. dimorphus showed the maximum CO2 fixation (432.24 ± 41.09 mg L−1d−1) in
EXP 11 (25 ppm NH3 and 2350 ppm CO2), while the maximum CO2 removal efficiency
(23.84 ± 2.73%) was achieved in EXP 7 (25 ppm NH3 and 1200 ppm CO2). This is
because the amount of CO2 supplied to the system in EXP 7 was 1200 ppm, while
the amount of CO2 supplied in EXP 11 was 2350 ppm. Similar results were observed
for the NH3 fixation and removal efficiencies. While the maximum NH3 fixation was
23.8 ± 2.26 mg L−1d−1 in EXP 11 (25 ppm NH3 and 2350 ppm CO2), the maximum NH3
removal efficiency (100 ± 6.95%) was achieved at 12 ppm NH3 at all CO2 concentrations.

The main purpose of reducing the air pollutants released from livestock farms by
microalgae is to reduce both NH3 and CO2 gases in the barn environment most effectively.
However, according to the results of the experiments conducted at 16 different NH3-CO2
concentrations, the reduction amounts of ammonia and carbon dioxide gases do not
change proportionally in all experiments. For example, the CO2 and NH3 removal
efficiencies vary independently for different gas concentrations. Ryu et al. [54] reported
that Chlorella sp. had higher cell concentrations with increased CO2 concentrations, but
CO2 fixation efficiency was lower at elevated CO2 concentrations. When the results
obtained in the study are analyzed statistically, the results identify the experiments in
which the highest values of environmental parameters were obtained independently
from each other. However, determining the optimum condition by considering all the
environmental parameters together would allow more efficient reduction in the gases
released from barns.

According to the results of Scenario 2, the first-ranked experiment was EXP14
which had 12 ppm NH3 and 3500 ppm CO2 gas concentrations. This experiment was
followed by EXP15, EXP7 and EXP11. The worst-performing experiments were found to
be EXP5, EXP8 and EXP13. Table 4 presents the ranking of the 16 experiments in terms of
environmental performance, as determined using the GRA method (Equations (7)–(18)).

Aerial pollutants (NH3 and CO2) emitted from animal feeding operations affect
the air quality of the environment, the neighborhood, and the health of both animals
and workers. These air pollutant emissions are currently being regulated by national
regulations and international protocols that aim to reduce air pollutant emissions from
intensive livestock farming [55]. Reducing air pollutant concentrations to acceptable
levels for human and environmental quality is the main objective of every environmental
protection agency or regulatory body in developed or developing countries [56]. Mi-
croalgae can be used to remove these air pollutants and produce valuable products in
bio-mitigation.

3.3. Overall Performance: Selection of the Optimal CO2 and NH3 Concentrations

The biological and environmental performance of the PBR system was evaluated in
Scenarios 1 and 2, respectively. EXP 14 was ranked first for biological and environmental
performance according to the MCDM methods. In the third scenario, the overall perfor-
mance including all the biological and environmental parameters was investigated. The
weights and weight system matrix of the overall performance criteria calculated using
the CILOS method processing steps (Equations (1)–(6)) are shown in Table 3. Figure 3
shows the criteria weights for all scenarios.

According to the biological and environmental performance, EXP 14 was ranked one
(Figure 4). However, the experiment ranking changed when all performance parameters
were analyzed together. EXP11 was identified as the most optimal experiment for overall
performance (Figure 4). EXP14 and EXP7 were the second and third ranked, respectively.
The worst-performing experiments were found to be EXP13, EXP9 and EXP5. Table 5
presents the ranking of the 16 experiments in terms of overall performance.
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3.4. Sensitivity Analysis

Sensitivity analysis is a procedure performed to test the consistency and measure the
power of decision problem results. In this study, sensitivity analysis was performed to
test the consistency and measure the power of the results obtained with CILOS and GRA.
The results of the third scenario, including all the criteria, and the results of other MCDM
methods were compared. For the sensitivity analysis, Weighted Aggregated Sum Product
Assessment (WASPAS), Multi-Attribute Ideal-Real Comparative Analysis (MAIRCA), Addi-
tive Ratio Assessment (ARAS), Multi-Attributive Border Approximation Area Comparison
(MABAC) and The Complex Proportional Assessment (COPRAS) methods were used. The
weights used in all methods were those calculated by the CILOS method. The correlations
between the methods listed above and the results of the GRA method were tested with
Spearman’s rho rank correlation. The results are shown in Table 6.

Table 6. Spearman’s Rho correlation values between methods.

Method WASPAS MAIRCA ARAS MABAC COPRAS

GRA 0.988 * 0.991 * 0.991 * 0.991 * 0.991 *
* A significant data difference methods.

When Spearman’s Rho values are examined, excellent correlations are observed be-
tween the rankings obtained by all other MCDM methods and the rankings obtained
by the GRA method. These results prove that GRA is a consistent method with high-
measuring power.

4. Conclusions

This study demonstrated the use of a multi-criteria analysis methodology combined
with different CO2 and NH3 levels to improve the CO2 and NH3 fixation ability of
S. dimorphus. The MCDM results show that for both the biological and environmental
performance, the optimal combination of CO2 and NH3 concentrations is 12 ppm NH3
and 3500 ppm CO2. However, the optimal CO2 and NH3 concentrations for the overall
performance were 25 ppm NH3 and 2350 ppm CO2. The results of this study allow produc-
ers to determine the maximum mitigation of CO2 and NH3 concentrations and optimise
the operating parameters of PBRs for various housing types, such as dairy, poultry, and
pig barns.

For example, in the poultry sector, air pollutants released from poultry houses vary
depending on the breeding period of the chickens. While the air pollutant concentrations
released from hen houses are low in the first days of the production period, they increase
towards the end of production. Meanwhile, engineering options are available to adjust
the CO2 and NH3 concentrations in the exhaust air from animal barns and the PRB’s
algal growth. For the exhaust air, the CO2 and NH3 concentrations that feed into a PBR
can be regulated by changing ventilation/heating configuration or settings, installing
pre-scrubbers, and so on. For the algal broth, the concentrations can be adjusted by
amending the liquid with carbonate or ammonium salts that are readily available on
most farms. Therefore, knowing the gas concentrations at which the most effective CO2
and NH3 reductions can be achieved can facilitate the setup and operation of the PBR
system. This study indicates that such information can be generated from MCDM analyses.
Although still technically intimidating to most producers, the selected MCDM methods
are far simpler and require less computing power than artificial intelligence methods (e.g.,
machine learning). Therefore, they can be translated into Web calculators or MS Excel-based
tools that are easily adopted by producers, or implemented in animal barn controllers to
automate the facility operation.

Overall, this study presents clear results that can guide decision-makers in choosing the
best PBR operating parameters. This MCDM method will aid future algal phytoremediation



Atmosphere 2023, 14, 1079 14 of 16

research for enhancing CO2 and NH3 mitigation and minimizing the environmental impacts
of animal feeding operations.

In light of the above conclusions, the following tasks are recommended for
future research:

• Additional MCDM methods should be explored to broaden the scope of the multi-
criteria decision-making process in air pollutant mitigation using PBR systems.

• The significance of the carbohydrate, protein, and fat values of microalgae as cri-
teria should be further investigated. The analysis would facilitate a multi-criteria
assessment not only regarding reducing air pollutants emitted from barns but also in
evaluating the potential utilization of the obtained biomass in sectors such as animal
feed, biodiesel, and others.

• It is advisable to develop an evaluation tool utilizing the MCDM methods examined
in this study. Such a tool would simplify the air pollutant mitigation process and
facilitate the comparison of the applicability of microalgae in various sectors.
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