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Abstract

In this study, the effect of lead acetate (PbAc) and sinapic acid (SNP) administration on

oxidative stress, apoptosis, inflammation, sperm quality and histopathology in testicular

tissue of rats was tried to be determined. PbAc was administered at a dose of

30 mg/kg/bw for 7 days to induce testicular toxicity in rats. Oral doses of 5 and

10 mg/kg/bw SNP were administered to rats for 7 days after PbAc administration.

According to our findings, while PbAc administration increased MDA content in rats, it

decreased GPx, SOD, CAT activity and GSH content. NF-kB, IL-1β, TNF-α, and COX-2,

which are among the inflammation parameters that increased due to PbAc, decreased

with the administration of SNP. Nrf2, HO-1, and NQO1 mRNA transcript levels

decreased with PbAc, but SNP treatments increased these mRNA levels in a dose-

dependent manner. RAGE and NLRP3 gene expression were upregulated in PbAc trea-

ted rats. MAPK14, MAPK15, and JNK relative mRNA levels decreased with SNP treat-

ment in PbAc treated rats. While the levels of apoptosis markers Bax, Caspase-3, and

Apaf-1 increased in rats treated with PbAc, the level of Bcl-2 decreased, but SNP inhib-

ited this apoptosis markers. PbAc caused histopathological deterioration in testis tissue

and negatively affected spermatogenesis. When the sperm quality was examined, the

decrease in sperm motility and spermatozoon density caused by PbAc, and the increase

in the ratio of dead and abnormal spermatozoa were inhibited by SNP. As a result, while

PbAc increased apoptosis and inflammation by inducing oxidative stress in testicles, SNP

treatment inhibited these changes and increased sperm quality.
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1 | INTRODUCTION

Toxic metals are among the most important causes of environmental

pollution.1–5 Lead (Pb) is among the environmentally polluting and

toxic metals.6–10 Humans and animals are exposed to Pb in ways such

as drinking water, ambient air, food, electronic waste, industrial mate-

rials, and anthropogenic activities, such as industrial sites and con-

sumer products.11,12 It is accepted that lead can cause health

problems in different body tissues such as kidney, lung, liver, brain,

and hematopoietic, nervous, and reproductive systems in animals and

humans.13–21 Lead-induced deterioration of male reproductive health

may occur.22 It is stated that Pb can reduce sperm quality, impair sper-

matogenesis by negatively affecting the hypothalamus-pituitary-testis

axis, inhibit testosterone release, trigger the formation of excessive

reactive oxygen species, and potentially affect spermatozoa viability,

motility, DNA fragmentation, and chemotaxis for spermatozoa-oocyte

fusion.23–25 Lead acetate (PbAc) causes various types of damage to

the testicular architecture of Kunming mice, resulting in irregularities

Received: 28 April 2023 Revised: 11 May 2023 Accepted: 6 July 2023

DOI: 10.1002/tox.23900

Environmental Toxicology. 2023;1–12. wileyonlinelibrary.com/journal/tox © 2023 Wiley Periodicals LLC. 1

https://orcid.org/0000-0003-4450-6540
https://orcid.org/0000-0002-8222-5515
https://orcid.org/0000-0001-6775-7858
mailto:serkan.akarsu@atauni.edu.tr
http://wileyonlinelibrary.com/journal/tox
http://crossmark.crossref.org/dialog/?doi=10.1002%2Ftox.23900&domain=pdf&date_stamp=2023-07-20


of the seminiferous tubules.26 It has been reported that the

hypothalamic–pituitary-testis axis of male rats administered lead ace-

tate is adversely affected, resulting in impaired steroidogenesis,

decreased sperm parameters and testicular antioxidant enzyme

activity.27,28

Oxidative stress occurs as a result of the interaction of lead with

critical biomolecules. Therefore, it is necessary to strengthen the anti-

oxidant defense of the cell.29–34 Sinapic acid (SNP) is an important

active ingredient in traditional Chinese medicines,35 that reduces the

effect of oxidants or scavenges excess free radicals.36 It is stated that

SNP has an anti-inflammatory effect in in-vivo37,38 and in-vitro

studies.39 In addition, SNP has antidiabetic,40 cardioprotective,41 anti-

anxiety,42 gastro protective,43 hepatoprotective,44 and neuroprotec-

tive effects.45 SNP inhibited inflammation and apoptosis by maintain-

ing the oxidant balance in ischemia/reperfusion injury of testicular

tissue in rats.46 In another study, it was stated that SNP administra-

tion against testicular toxicity caused by cisplatin improved testicular

histopathology and decreased apoptosis.47

The aim of this study was to determine the protective effects of

SNP on testicular toxicity caused by the environmental toxicant PbAc

by biochemical, histopathological and semen analysis.

2 | MATERIALS AND METHODS

2.1 | Animals

In this study, 35 male Sprague–Dawley rats with an average weight of

250–300 g, aged 10–12 weeks, obtained from Atatürk University

Medical Experiment Application and Research Center, were used.

During the study, animals were housed in standard laboratory condi-

tions (24 ± 1�C, 45 ± 5% humidity and 12/12 light/dark cycles). They

were fed standard feed and water ad libitum. Before the study, a

week of adaptation was provided for them to get used to.

In the study, 35 Sprague Dawley rats, 7 rat each group, were used

and the groups were formed as follows;

Control: Physiological saline was given to the rats by oral gavage

for 7 days.

SNP: SNP was administered to rats by oral gavage at a dose of

10 mg/kg for 7 days.

PbAc: 30 mg/kg PbAc was given to the rats by oral gavage for

7 days.

PbAc+ SNP 5: The rats were given 30 mg/kg PbAc via oral

gavage and 5 mg/kg SNP after 30 min for 7 days.

PbAC+ SNP 10: The rats were given 30 mg/kg PbAc via oral

gavage and 10 mg/kg SNP after 30 min for 7 days.

2.2 | Oxidative stress analysis

Testicular tissue was homogenized in a homogenizer (Tissue Lyser II,

Qiagen, The Netherlands) using 1.15% potassium chloride solution to

obtain a 1:10 (w/v) homogenate.48 Glutathione (GPx) activity was

determined by the method described by Matkovics.49 Superoxide dis-

mutase (SOD) activity was measured according to the method used

by Sun et al.50 Catalase (CAT) activity was evaluated by the method

specified by Aebi.51 Glutathione (GSH) content was determined by

the method used by Sedlak and Lindsay.52 Malondialdehyde (MDA)

levels were determined by Placer et al.53 The protein content of tes-

ticular tissues was measured by the method of Lowry et al.54

2.3 | RT-PCR analysis

Total RNAs were obtained from testicular tissues with QIAzol Lysis

Reagent (79 306; Qiagen). Total RNA concentrations were measured

with NanoDrop (BioTek Epoch) and the final RNA concentration of all

experimental groups was equalized to 1000 ng/μL. With the iScript

cDNA Synthesis Kit (Bio-Rad), cDNA synthesis was performed from

RNAs according to the manufacturer's user manual. The mRNA tran-

script levels of Nrf2, HO-1, NQO1, NF-κB, IL-1A, TNF-α, COX-2,

RAGE, NLRP3, MAPK14, MAPK15, JNK, Bax, Bcl-2, Apaf-1, and

Caspase-3 genes whose sequences are given in Table 1 were analyzed

using iTaq Universal SYBR Green Supermix (BIORAD) with cDNAs.

RT-PCR analyzes were performed on the Rotor-Gene Q (Qiagen)

instrument and under the conditions specified by the manufacturer.

At the end of the procedures, normalization was performed according

to B-actin using the 2�eltadeltaCT method.55

2.4 | Histopathological analysis

At the end of the experiment, rat testicles were fixed in 10% neutral

buffered formalin for 48 h. The fixed tissues were turned into blocks

after dehydration, cleaning with xylol and paraffin treatment by passing

through increasing grade alcohols. Sections of 5 μm thickness were

taken from the blocks by means of microtome and the sections were

stained with Hematoxylin–Eosin (H&E). The stained sections were

examined using a Binocular Olympus Cx43 light microscope (Olympus

Inc., Tokyo, Japan) and photographed with the EP50 brand camera

(Olympus Inc., Tokyo, Japan) attached to the microscope.48

2.5 | Semen analysis

After the rats were sacrificed, the excised testicular tissue was sepa-

rated from the epididymis. The cauda epididymis was trimmed in 5 mL

of physiological saline heated to 35�C and incubated for 5 min. The

obtained sperm fluid was used in semen analysis.56

To determine sperm total motility, a slide was placed on a light

microscope (Primo Star; Carl Zeiss) with a heating plate. 20 μL of the

obtained sperm liquid was dropped on the slide and covered with a

coverslip. At 400� magnification, three different microscope fields

were examined and the final score was scored as a percentage.57

For sperm density determination, after 10 μL of semen sample

was taken into an Eppendorf tube, 990 μL of eosin solution was

added and the mixture was vortexed at 1000 g for 15 s. 10 μL of the
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mixture was transferred to the Thomas slide. Sperm counts were cal-

culated using a light microscope (Primostar, Zeiss Co.) set at 400�
magnification.58

For the rate of dead spermatozoa and abnormal sperm rate,

10 μL of semen and 10 μL of eosin dye (5%) were mixed with a cover-

slip on a slide then the smear was taken and dried. For the rate of

dead spermatozoa, 200 spermatoza per slide were examined with a

light microscope. Sperm cells were classified as dead according to the

staining status of the head. For abnormalities of sperm cells, a total of

200 spermatoza were evaluated on the same slide and abnormality

rates were calculated as percentages.59

2.6 | Statistical analysis

Statistical analysis results of the data obtained from the study were

given as mean ± standard deviation. SPSS program (version 26.0;

SPSS, Chicago, IL) was used for data analysis. Analysis of the data was

performed with Tukey's post hoc test and one-way analysis of vari-

ance (ANOVA) for multiple comparisons. (P < .05) was considered sta-

tistically significant.

3 | RESULTS

3.1 | Analysis results of lipid peroxidation level and
antioxidant enzyme activities in testicular tissues

MDA level, GPx, CAT, and SOD activities and GSH levels in testicular

tissue are shown in Table 2. Compared with the control group, rats

given PbAc showed significantly increased MDA levels (p.001). How-

ever, the MDA level decreased in the SNP treatment groups. In addi-

tion, GSH level, SOD, CAT, and GPx activity were found to be lower

in the PbAc group compared to the control group (P < .001). However,

antioxidant activity increased in a dose-dependent manner in the SNP

treatment groups (P < .001).

TABLE 1 Primer sequences.
Gene Sequences (50-30) Length (bp) Accession No

Nrf2 F: TTTGTAGATGACCATGAGTCGC

R: TCCTGCCAAACTTGCTCCAT

161 NM_031789.2

HO-1 F: ATGTCCCAGGATTTGTCCGA

R: ATGGTACAAGGAGGCCATCA

144 NM_012580.2

NQO1 F: CTGGCCAATTCAGAGTGGCA

R: GATCTGGTTGTCGGCTGGAA

304 NM_017000.3

NF-κB F: AGTCCCGCCCCTTCTAAAAC

R: CAATGGCCTCTGTGTAGCCC

106 NM_001276711.1

IL-1β F: ATGGCAACTGTCCCTGAACT

R: AGTGACACTGCCTTCCTGAA

197 NM_031512.2

TNF-α F: CTCGAGTGACAAGCCCGTAG

R: ATCTGCTGGTACCACCAGTT

139 NM_012675.3

COX-2 F: AGGTTCTTCTGAGGAGAGAG

R: CTCCACCGATGACCTGATAT

240 NM_017232.3

RAGE F: CTGAGGTAGGGCATGAGGATG

R: TTCATCACCGGTTTCTGTGACC

113 NM_053336.2

NLRP3 F: TCCTGCAGAGCCTACAGTTG

R: GGCTTGCAGCACTGAAGAAC

185 NM_001191642.1

MAPK14 F: GTGGCAGTGAAGAAGCTGTC

R: GTCACCAGGTACACATCGTT

170 NM_031020.2

MAPK15 F: TGTTTGAGTCCATGGACACC

R: GCATCCAATAGAACGTTGGC

169 NM_173331.2

JNK F: GAATCAGACCCATGCTAAGC

R: CCATGAGCTCCATGACTATG

149 NM_053829.2

Bax F: TTTCATCCAGGATCGAGCAG

R: AATCATCCTCTGCAGCTCCA

154 NM_017059.2

Bcl-2 F: GACTTTGCAGAGATGTCCAG

R: TCAGGTACTCAGTCATCCAC

214 NM_016993.2

Apaf-1 F: ACCTGAGGTGTCAGGACC

R: CCGTCGAGCATGAGCCAA

192 NM_023979.2

Caspase-3 F: ACTGGAATGTCAGCTCGCAA

R: GCAGTAGTCGCCTCTGAAGA

270 NM_012922.2

β-Actin F: CAGCCTTCCTTCTTGGGTATG

R: AGCTCAGTAACAGTCCGCCT

360 NM_031144.3
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3.2 | The expression profiles of Nrf2, HO-1
and NQO1

The expression profiles of NRF-2, HO-1, and NQO1 genes in testicu-

lar tissue in all experimental groups are shown in Figure 1. The group

receiving PbAc had reduced expression levels of NRF-22, HO-1, and

NQO1 compared to the control and SNP groups. Compared to the

SNP group, Nrf2, HO-1, and NQO1 gene expression levels were

higher in the PbAc + SNP 5 and PbAc + SNP 10 groups (P < .05).

3.3 | Effect of PbAc and SNP treatment on
inflammatory markers

The effects of PbAc and SNP treatment on mRNA transcript levels of

NF-κB, IL1B, TNF-6, and COX-2 in rat testis tissue are presented in

Figure 2. When the control group and SNP were compared, it was

seen that the gene expressions were almost identical. It was observed

that PbAc administration increased NF-κB, IL1B, TNF-6, and COX-2

levels, but SNP administration decreased these gene expression levels

in a dose-dependent manner (P < .001).

3.4 | Effect of PbAc and SNP treatment on RAGE
and NLRP3 mRNA transcription level

RAGE and NLRP3 gene expression levels are shown in Figure 3. In the

presented study, it was determined that PbAc exposure significantly

increased the levels of RAGE and NLRP3 gene expression and thus

the level of mRNA transcripts (P < .001). In addition, SNP administra-

tion after PbAc exposure decreased these gene expressions in testicu-

lar tissue.

TABLE 2 The effects of PbAc and SNP treatments on MDA and GSH levels and SOD, CAT, and GPx activities in testis tissue.

Parameters Control SNP PbAc PbAc+SNP 5 PbAc+SNP 10

MDA (nmol/g tissue) 26.96 ± 1.96 26.26 ± 2.18### 65.45 ± 2.86*** 54.24 ± 2.38***/###/✦✦✦ 44.64 ± 2.40***/###

GSH (nmol/g tissue) 2.36 ± 0.13 2.51 ± 0.10### 1.19 ± 0.08*** 1.47 ± 0.09***/###/✦✦✦ 1.92 ± 0.11***/###

GP � (U/g protein) 17.03 ± 1.45 18.15 ± 1.42### 9.37 ± 0.79*** 13.05 ± 1.06***/###/✦ 15.22 ± 1.02###

SOD (U/g protein) 14.65 ± 1.08** 16.18 ± 0.88### 4.75 ± 0.44*** 6.64 ± 0.55***/##/✦✦✦ 9.36 ± 0.73***/###

CAT (catal/g protein) 10.29 ± 0.92 11.06 ± 0.87### 2.85 ± 0.31*** 4.44 ± 0.54***/##/✦✦✦ 7.42 ± 0.68***/###

Note: Control versus others: *P < .05, **p < .01, ***p < .001, PbAc versus others: # P < .05, ## p < .01, ### p < .001, PbAc+SNP 5 versus PbAc+SNP 10:

✦ P < .05, ✦✦ p < .01, ✦✦✦ p < .001.

F IGURE 1 The effects of SNP and PbAc applications on Nrf-2, HO-1 and NQO1 mRNA expression levels in testicular tissue. (A) Nrf-2 mRNA
transcript levels, (B) HO-1 mRNA transcript levels, (C) NQO1 mRNA transcript levels. The different symbols in the columns differ statistically. One
symbol (P < .05), two symbols (P < .01) three symbols (P < .001).
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3.5 | Effect of PbAc and SNP administration on
MAPK14/MAPK15/JNK pathway in testicular tissue

The results of mitogen-activated protein kinase 14 (MAPK14),

mitogen-activated protein kinase 15 (MAPK15) and c-Jun N-terminal

kinase (JNK) analysis results are presented in Figure 4. The obtained

data showed that PbAc triggered MAPK14, MAPK15, and JNK

expressions. SNP treatment appeared to suppress the expression of

related genes in the pathway (P < .001).

3.6 | Status of apoptosis markers after PbAc and
SNP treatments

Relative mRNA transcript levels of Bax, Bcl-2, Caspase-3, and Apaf-1

biomarkers were analyzed for detection of apoptotic status in testicu-

lar tissue. According to the results shown in Figure 5, PbAc up-

regulated the expression of Bax, Caspase-3, and Apaf-1 in testicular

tissue and down-regulated the expression of Bcl-2. On the other

hand, it was determined that Bax, Caspase-3, Apaf-1, and JNK

F IGURE 3 The effects of PbAc and SNP applications on RAGE and NLRP3 gene levels in testicular tissues. (A) RAGE mRNA transcript level, (B) NLRP3
mRNA transcript level. The different symbols in the columns differ statistically. One symbol (P < .05), two symbols (P < .01) three symbols (P < .001).

F IGURE 4 Effects of PbAc and SNP administrations on inflammation in testis tissues (A) MAPK14 mRNA transcript level, (B) MAPK15 mRNA
transcript level, (C) JNK, mRNA transcript level. The different symbols in the columns differ statistically. One symbol (P < .05), two symbols
(P < .01) three symbols (P < .001).
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expressions were suppressed and Bcl-2 expression was triggered in

rats given SNP (P < .001).

3.7 | Histopathological result

When the control and SNP groups were examined in H&E stained tes-

ticular sections, it was observed that smooth-looking seminiferous

tubules, narrow interstitium, germinal epithelium and basal membrane

preserved their normal histomorphological order. It was observed that

there were a large number of sperm in the lumens of the seminiferous

tubules and the spermartogenic cell lineage preserved its normal

structure (Figure 6Aa,Bb). After administration of lead acetate to the

rats, it was determined that the normal structure of the testis was

impaired. Particularly, the seminiferous tubules exhibited amorphous,

wide and irregular appearance, and the germinal epithelium was

observed to be disrupted. In this group, no sperm cells were observed

in most tubule lumens and desquamation was observed in the series

of germ cells. Areas with vacuoles in the seminiferous tubules were

particularly striking (Figure 6Cc). When the groups given SNP after

PbAc were examined, it was seen that SNP could prevent the damage.

In the PbAc+SNP5 and PbAc+SNP10 groups, the pathological

changes were decreased, the seminiferous tubules preserved their

morphological integrity and the germinal epithelium was regular. In

these groups, germ cells were regularly distributed and sperm cells

were increased in the tubule lumens. In addition, the formed vacuole

areas were found to be minimal (Figure 6Dd,Ee).

3.8 | Reproductive parameters analysis results

The results of reproductive parameters of all experimental groups are

shown in Table 3. According to these results, no statistical difference

was found between the groups in terms of testicular weights. While

the total motility value was the lowest in the PbAc group, the highest

value was seen in the SNP group (P < .001). In addition, the total

motility value increased in the PbAc groups in a dose-dependent man-

ner. While the rate of dead sperm was highest in the PbAc group, it

was the lowest in the SNP group (P < .001). Head and tail abnormal

sperm ratio was similarly highest in the PbAc group (P < .05). While

semen density had the highest value in SNP group, it had the lowest

value in PbAc group. Sperm density increased in a dose-dependent

manner in the treatment groups (P < .001).

4 | DISCUSSION AND CONCLUSION

As a result of industrial activities, the release of lead, which is toxic to

organisms and the environment, is increasing.60–63 Lead has a toxic

effect on the female and male reproductive systems.64,65 In this study,

the effects of SNP on PbAc-induced testicular toxicity were investi-

gated by semen analyses, oxidative stress, inflammation, ER stress,

apoptosis, and histopathological examinations.

Antioxidant enzymes and compounds maintain the oxidant/

antioxidant balance in the organism.66 As a result of the decrease in

antioxidant activity in the organism, cells are exposed to reactive

F IGURE 5 Apoptotic markers in testis tissue. (A) Bax mRNA transcript level, (B) Bcl-2 mRNA transcript level, (C) Caspase-3 mRNA transcript
level, (D) Apaf-1 mRNA transcript level. The different symbols in the columns differ statistically. One symbol (P < .05), two symbols (P < .01) three
symbols (P < .001).

TUNCER ET AL. 7

 15227278, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/tox.23900 by A

ksaray U
niversity, W

iley O
nline L

ibrary on [10/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



oxygen species and increase oxidative stres.67,68 PbAc suppresses the

antioxidant defense system and causes an increase lipid peroxidation

in testicles.24,65,69 It has been reported that Pb reduces the activities

of antioxidant enzymes by binding to SH- groups, decreases the level

of GSH, which is a non-enzymatic antioxidant, and increases MDA,

the end product of lipid peroxidation.70 In our study, it was deter-

mined that the antioxidant defense system was weakened and the

MDA content, which is a marker of lipid peroxidation, increased in

the testicular tissue of rats treated with PbAc. SNP, known for its anti-

oxidant properties, is a compound that maintains the oxidant balance

in the testicles.46 When our findings were examined, a dose-

dependent decrease in MDA content and an increase in GPx, SOD,

CAT activity and GSH levels were observed in the groups treated with

PbAc+SNP (P < .05).

NRF-2 is a primary transcription factor activated by increased oxida-

tive stress.71 An increase in NRF-2 expression regulates oxidative and

inflammatory responses through the induction of phase II detoxification

enzymes such as HO-1 and NQO1.66,72 In the present study, PbAc sup-

pressed the NRF-2, HO1, and NQO1 genes. This is evidence that PbAc

is suppressed after increased oxidative stress in testicular tissue. The sig-

nificant decrease in NRF-2, HO-1, and NQO-1 mRNA expressions in the

testes of SNP-treated rats can be interpreted as protecting endogenous

antioxidants by reducing free radicals induced by PbAc.

The enhanced glycation end products receptor (RAGE) has an

important role in the inflammatory process.73 NLRP3 is activated in

response to exogenous stimuli, resulting in the release of proinflam-

matory cytokines.74 In our findings, the increase in RAGE and NLRP3

gene expression in the PbAc group was an indicator of inflammation,

and SNP administration downregulated the expression of these

inflammatory genes.

Inflammation in testicular tissue is an important factor in decreas-

ing fertility.24,75 Increased oxidative stress triggers inflammation in the

TABLE 3 Reproductive parameters analysis results.

Control SNP PbAc PbAc+SNP 5 PbAc+SNP 10

R. T. W. 1464.57 ± 73.62 1488.42 ± 122.18 1434.28 ± 61.36 1508.57 ± 103.95 1571.42 ± 82.75

L. T. W. 1457.57 ± 77.22 1441.57 ± 96.65 1416.71 ± 79.80 1506.14 ± 118.46 1539.71 ± 83.03

Total motility 80.44 ± 3.56b 83.31 ± 3.31b 66.16 ± 4.90a 74.87 ± 3.03a 82.84 ± 6.21b

Dead spermatozoa rate 11.86 ± 2.61b 9.28 ± 1.11a 17.01 ± 1.15c 11.71 ± 0.95b 11.85 ± 0.69b

Head anomaly spermatozoa 5.42 ± 0.79a 5.14 ± 0.69a 7.57 ± 0.97b 7.57 ± 0.78b 7.01 ± 0.82b

Tail anomaly spermatozoa 5.57 ± 0.78ab 5.01 ± 0.82a 7.14 ± 0.69c 6.29 ± 0.49ab 6.01 ± 0.82bc

Density 71.14 ± 3.93ab 79.86 ± 5.18c 69.43 ± 5.53a 78.28 ± 4.92bc 83.57 ± 3.59c

Note: a-c; Values indicated by different letters in the same column are significantly different from each other (P < .05). Abbrevations: LA, Lead Acetate; L.T.

W, Left Testis Weight; R.T.W, Right Testis Weight; SA, sodiumm Arsenite.

F IGURE 6 Photomicrographs of histological changes in testis tissue (H&E staining, original magnifaction; top row 100 μm; bottom row
20 μm). Control group (A,a); s: seminiferous tubule in normal morphology, Sinapic acid group (B,b); Pb group (C,c); arrowhead: vacuolization, d:
desquamation, at: amorphous seminiferous tubule, g*: irregular germinal epithelium, sg*: loss of spermatogonium, sd*: spermatid loss, is*: irregular
interstitial space, Pb + SNP5 group (D,d); Pb + SNP10 group (E,e).
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testicles.6 Excessive ROS production activates the MAPK14 signaling

pathway, a potent NF-κB activator.76 The proinflammatory cytokines

activated by NF-κB are IL-1β, TNF-α, and IL-6.77 When our findings

were examined, PbAc caused inflammation by increasing MAPK14,

MAPK15, JNK, NF-κB, IL-6, TNF-α, and COX mRNA transcript levels

in testis tissue. SNP administered in the treatment groups decreased

the expression of these genes in a dose-dependent manner. This con-

firms that the SNP has anti-inflammatory properties.

Apoptosis is a type of programmed biological cell death required

to maintain homeostatic balance.78–81 Pro-apoptotic proteins, such as

Bax, Caspase-3 and anti-apoptotic proteins, such as Bcl-2 regulate

apoptosis.82 PbAc triggers apoptosis by activating Caspas-3 protein

levels.24,83,84 In another study, PbAc increased the expression of Bax

and Caspase-3 in the testicles, while it decreased the expression of

Bcl-2.85 In the present study, we evaluated apoptotic Bax, Caspase-3,

and Apaf-1 and anti-apoptotic Bcl-2 genes by q RT-PCR method for

the evaluation of apoptosis. In our study, the fact that PbAc adminis-

tration increased the levels of apoptotic factors Bax, Caspase-3, and

Apaf-1 in testicular tissue, while decreasing the levels of the antiapop-

totic factor Bcl-2 is proof that PbAc induces apoptosis. SNP adminis-

tration to the treatment group caused a decrease in Bax and

Caspase-3 levels and an increase in Bcl-2 levels. This shows that the

SNP has antiapoptotic properties and supports the view that flova-

noids are antiapoptotic.86

It is known that there is a positive correlation between lead

exposure and male reproductive dysfunction.27,87 It is stated in a

study that PbAc causes a decrease in testicular weight in rats.88–90

In the present study, no significant difference was found between

the experimental groups in terms of testicular weights. Epididymal

sperm count was used as an important indicator giving information

about testis.91 In our study, the epididymal semen density was

found to be the lowest in the PbAc group. It is thought that this

condition originates from the affected seminiferous tubules in the

histologically deteriorated testicular tissue. Motility is one of the

main parameters used to determine sperm quality.92 Previous stud-

ies report that PbAc reduces sperm motility in rats.24,90,93 In our

study, after PbAc administration, it was determined that sperm total

motility decreased significantly, and the percentage of dead and

abnormal sperm increased significantly compared to other groups. It

was observed that SNP administration improved these values. Dead

sperm rate and abnormal sperm rate increased in rats treated with

PbAc similarly in our study. It was interpreted that this situation

might be caused by the deterioration of the seminiferous tubules

and desquamization.

In conclusion, the results of this study determined that PbAc

administration decreased sperm quality in male rats by causing oxida-

tive stress, upregulating apoptosis, inflammation, endoplasmic reticu-

lum stress. However, it was observed that SNP treatment significantly

inhibited PbAc-induced male reproductive toxicity. Therefore, accord-

ing to the results of our study, it was suggested that SNP is a protec-

tive alternative treatment method against PbAc-induced male

reproductive toxicity.
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