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Abstract: In the present paper, we first study the Gaussian Leonardo numbers and Gaussian Leonardo
hybrid numbers. We give some new results for the Gaussian Leonardo numbers, including relations with
the Gaussian Fibonacci and Gaussian Lucas numbers, and also give some new results for the Gaussian
Leonardo hybrid numbers, including relations with the Gaussian Fibonacci and Gaussian Lucas hybrid
numbers. For the proofs, we use the symmetric and antisymmetric properties of the Fibonacci and
Lucas numbers. Then, we introduce the Gaussian Leonardo polynomials, which can be considered as
a generalization of the Gaussian Leonardo numbers. After that, we introduce the Gaussian Leonardo
hybrid polynomials, using the Gaussian Leonardo polynomials as coefficients instead of real numbers in
hybrid numbers. Moreover, we obtain the recurrence relations, generating functions, Binet-like formulas,
Vajda-like identities, Catalan-like identities, Cassini-like identities, and d’Ocagne-like identities for the
Gaussian Leonardo polynomials and hybrid polynomials, respectively.
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1. Introduction

The significance of special integer sequences extends beyond the confines of pure and
applied mathematics, transcending into various scientific domains such as physics and
engineering. The most famous integer sequence is the Fibonacci sequence, named after
the Italian mathematician Leonardo Pisano, more commonly known as Fibonacci. The
Fibonacci sequence starts with 0 and 1, and each subsequent number is generated by the
sum of the two preceding ones. The Fibonacci numbers of the Fibonacci sequence are given
by 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, and so on. The Fibonacci sequence finds extensive
application in various scientific fields such as mathematics, physics, and engineering.
On the other hand, one of the most important reasons why the Fibonacci sequence is so
interesting and mysterious, and of interest to many researchers is that Fibonacci numbers
are widely found in nature and appear in various biological phenomena, including the
arrangement of leaves on plants and the proportions of the human body. Fibonacci numbers
are also observed in living organisms. Many flowers exhibit a petal arrangement that
follows the Fibonacci numbers. Flowers, such as irises and lilies, frequently have a total
number of petals that corresponds to a number in the Fibonacci sequence. Sunflowers often
have a number of leaves that corresponds to a Fibonacci number, such as 55 or 89. The
arrangement of the seed heads also adheres to the Fibonacci spiral. Pineapples commonly
exhibit spiral patterns with a count of either 5, 8, 13, or 21, which are also Fibonacci numbers.
Moreover, the Fibonacci numbers are found in the family tree of a male honeybee. Male
bees, also known as drones, are the result of parthenogenesis, as they are produced from
an unfertilized egg laid by the queen. Therefore, male bees only have a mother and no
father. On the other hand, female worker bees have both a male (drone) and a female
(queen) as their parents. This reproductive pattern can be effectively illustrated by the
Fibonacci sequence. Furthermore, the majority of body parts adhere to the numerical
patterns of one, two, three, and five. For instance, humans possess a singular nose, a pair
of eyes, three segments in each limb, and five fingers on each hand. Additionally, the
proportions and measurements of the human body can be further categorized using the
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concept of the golden ratio. For more information, one can see Refs. [1,2] (see also the
studies cited within).

The golden ratio, often represented by the Greek letter φ (phi), is one of the most
famous and important ratios in mathematics and some other areas such as art and design.
The golden ratio, also known as the golden number, golden mean, golden section, golden
proportion, or divine proportion, is an algorithm of mathematical symmetry. The golden
ratio, which appears frequently in nature, is an irrational number 1 +

√
5

2 that approximately
equals to 1.618.

The sequence of Fibonacci numbers is defined recursively by the relation

Fn = Fn−1 + Fn−2, n ≥ 2 (1)

with initial conditions F0 = 0 and F1 = 1.
The Lucas numbers are closely related to the Fibonacci numbers. In a similar way, the

sequence of Lucas numbers is defined recursively by the relation

Ln = Ln−1 + Ln−2, n ≥ 2 (2)

with initial conditions L0 = 2 and L1 = 1.
The Binet formulas of the Fibonacci and Lucas numbers are given by

Fn =
αn − βn

α− β
(3)

and

Ln = αn + βn, (4)

respectively, where α = 1 +
√

5
2 and β = 1 −

√
5

2 are the roots of the characteristic equation
x2 − x− 1 = 0 of the recurrences (1) and (2). For details on Fibonacci and Lucas numbers,
we refer to Ref. [3].

When we look at the ratios of consecutive Fibonacci numbers, these ratios are strongly
related to the golden ratio. We have seen this number 1 +

√
5

2 in the Binet formula (3). It
must be noted that the Binet formula is used to find the nth term of the sequence.

The Fibonacci and Lucas numbers are generalized in a variety of ways by different
researchers. One of the generalizations of these numbers are Fibonacci polynomials, intro-
duced by Catalan in 1883, and Lucas polynomials, introduced by Bicknell in 1970. These
polynomials are defined by the recurrence relations

F0(x) = 0, F1(x) = 1; Fn(x) = xFn−1(x) + Fn−2(x), n ≥ 2

and

L0(x) = 2, L1(x) = x; Ln(x) = xLn−1(x) + Ln−2(x), n ≥ 2,

respectively.
There are some studies in the literature associated with the Fibonacci and Lucas

polynomials, for example, see Refs. [4–7], among others.
In this paper, we will consider the Leonardo numbers, which are closely related to the

Fibonacci numbers. The sequence of Leonardo numbers, denoted as A001595 in the On-Line
Encyclopedia of Integer Sequences (or OEIS) [8] (available at https://oeis.org/A001595
(accessed on 30 April 1991)) is defined by the recurrence relation

https://oeis.org/A001595
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Len = Len−1 + Len−2 + 1, n ≥ 2 (5)

with initial conditions Le0 = Le1 = 1 and Le2 = 3.
The sequence of Leonardo numbers is also defined by the relation

Len = 2Len−1 − Len−3, n ≥ 3. (6)

It must be noted that Catarino and Borges [9] used Len to denote the nth Leonardo
number instead of Ln (denoted the nth Lucas number) to avoid confusion. So, throughout
the paper we use the notation Len for the nth Leonardo number.

The Leonardo numbers are

1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177, 287, . . .

The properties of Leonardo numbers are similar to those of Fibonacci numbers, and
are connected to the Fibonacci numbers. The following relation between Fibonacci and
Leonardo numbers holds:

Len = 2Fn+1 − 1, (7)

where Fn+1 is the (n + 1)th Fibonacci number and Len is the nth Leonardo number.
The Binet formula of the Leonardo numbers are given by

Len =
2αn+1 − 2βn+1 − α + β

α− β
, (8)

where α = 1+
√

5
2 and β = 1−

√
5

2 .
In recent times, there has been a huge amount of interest in the Leonardo sequence.

In Ref. [9], Catarino and Borges gave some properties for the Leonardo sequence such as gen-
erating function, summation formulas, Catalan’s identity, Cassini’s identity, and d’Ocagne’s
identity. Then, in Ref. [10], Alp and Koçer obtained some new identities for this sequence,
and they gave some relations among the Leonardo, Fibonacci, and Lucas numbers.

Kürüz et al. [11] introduced a generalization of the Leonardo numbers called Leonardo
Pisano polynomials. These polynomials are defined by

Len(x) = 2xLen−1(x)− Len−3(x), n ≥ 3 (9)

with initial conditions Le0(x) = Le1(x) = 1 and Le2(x) = x + 2.
The first few Leonardo polynomias are: 1, 1, x + 2, 2x2 + 4x− 1, 4x3 + 8x2 − 2x− 1,

8x4 + 16x3 − 4x2 − 3x− 2, 16x5 + 32x4 − 8x3 − 8x2 − 8x + 1.
For some studies involving the Leonardo sequence, one can see, for example,

Refs. [12–16], among others.
Two-dimensional number systems, such as complex, hyperbolic, and dual numbers,

have found numerous applications in the fields of science and engineering. Let a and b
be two real numbers. A complex number is in the form a + bi, where i is the imaginary
unit satisfying i2 = −1. Hyperbolic numbers and dual numbers are similar to complex
numbers, but both hyperbolic and dual numbers differ from complex numbers because
of their hyperbolic and dual units, respectively. More clearly, a hyperbolic number is
in the form a + bh, where h is the hyperbolic unit satisfying h2 = 1 for h 6= ±1, and a
dual number is in the form a + bε, where ε is the dual unit satisfying ε2 = 0 for ε 6= 0.
The hybrid number system, which can be considered as a generalization of the complex,
hyperbolic, and dual number systems, is defined by Özdemir in Ref. [17]. The set of the
hybrid numbers is defined as
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K = {z = a + bi + cε + dh : a, b, c, d ∈ R, i2 = −1, ε2 = 0, h2 = 1, ih = −hi = ε + i.}.

Let z = a + bi + cε + dh be a hybrid number. Here, a is called the scalar part, and
bi + cε + dh is called the vector part.

From the relation ih = −hi = ε + i, the multiplication rules for the hybrid units i, ε, h
can be obtained as follows:

iε = 1− h, εi = h + 1, ih = ε + i, hi = −ε− i, εh = −ε, hε = ε. (10)

Let z1 = a1 + b1i + c1ε + d1h and z2 = a2 + b2i + c2ε + d2h be two hybrid numbers.
Then the addition of these two hybrid numbers is given by

z1 + z2 = (a1 + a2) + (b1 + b2)i + (c1 + c2)ε + (d1 + d2)h,

and the multiplication of these two hybrid numbers is given by

z1 × z2 = (a1a2 − b1b2 + b1c2 + c1b2 + d1d2) + (a1b2 + b1a2 + b1d2 − d1b2)i

+ (a1c2 + b1d2 − d1b2 + c1a2 − c1d2 + d1c2)ε

+ (a1d2 + d1a2 − b1c2 + c1b2)h.

Note that the operation of addition in the hybrid numbers is commutative and asso-
ciative, and the operation of multiplication in the hybrid numbers is associative but not
commutative. The set of the hybrid numbers form a non-commutative ring with respect to
the addition and multiplication operations. By defining the map ϕ : K→M2×2, where

ϕ(a + bi + cε + dh) =
(

a + c b− c + d
c− b + d a− c

)
for a + bi + cε + dh ∈ K, Özdemir [17] showed that the ring of the hybrid numbers K is
isomorphic to the ring of the real 2× 2 matrices M2×2. He also obtained several properties
of the hybrid numbers. For further information, we refer to Ref. [17].

In the literature, hybrid numbers and their generalizations with different integer
sequence coefficients have been studied by many researchers. For example, in Ref. [18],
Szynal-Liana and Wloch defined the Fibonacci hybrid numbers, using the Fibonacci num-
bers as coefficients instead of real numbers in hybrid numbers. Kızılateş [19] defined the
q-Fibonacci hybrid numbers and q-Lucas hybrid numbers, which are defined by means
of the q-integer. Moreover, in Ref. [20], Tan and Ait-Amrane gave a generalization of Fi-
bonacci and Lucas hybrid numbers and investigated some of their properties. Szynal-Liana
and Wloch [21] introduced a new notion called the hybrinomials (alias hybrid polynomials).
The Fibonacci hybinomials that generalize the Fibonacci hybrid numbers are obtained by
using the Fibonacci polynomials as components of hybrid numbers. The authors stud-
ied the Fibonacci and Lucas hybrinomials and investigated some properties of them. In
Ref. [22], Ait-Amrane et al. introduced a new generalization of the Fibonacci and Lucas
hybrinomials.

In Ref. [23], Leonardo hybrid numbers are introduced and studied by Alp and Koçer.
The nth Leonardo hybrid number is defined by

HLen = Len + Len+1i + Len+2ε + Len+3h, (11)

where Len is the nth Leonardo number, and i, ε, h are the hybrid units that satisfy the
rules (10). Alp and Koçer also investigated some algebraic properties of these numbers in
their studies.
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Furthermore, as a generalization of the Equation (11), Kürüz et al. introduced the
Leonardo hybrid polynomials, called the Leonardo Pisano hybrinomials, in Ref. [11] by
the following:

HLen(x) = Len(x) + Len+1(x)i + Len+2(x)ε + Len+3(x)h,

where Len(x) is the nth Leonardo polynomial, and i, ε, h are the hybrid units which satisfy
the rules (10). The authors obtained some basic properties, including the generating function
and Binet-like formula, of the Lenardo Pisano hybrinomials.

Several studies related to hybrid numbers with different integer sequence coefficients
can be found in Refs. [24–32], among others. See also the studies cited by these papers.

Kara and Yılmaz [33], Taşçı [34], as well as Prasad et al. [35] studied the Gaussian
Leonardo numbers. Some basic properties related to Gaussian Leonardo numbers are
investigated separately by the authors in Refs. [33–35]. Furthermore, in Ref. [33], Kara and
Yılmaz obtained the n× n Hessenberg matrices whose permanents give the Leonardo and
Gaussian Leonardo numbers. The nth Gaussian Leonardo number is defined as

GLen = Len + Len−1i, (12)

where Len is the nth Leonardo number. The Gaussian Leonardo number sequence is defined
recursively by the relation

GLen = GLen−1 + GLen−2 + (1 + i), n ≥ 2 (13)

or

GLen = 2GLen−1 − GLen−3, n ≥ 3 (14)

with initial conditions GLe0 = 1− i, GLe1 = 1 + i, and GLe2 = 3 + i.
Furthermore, the following identities are true [34,36]:

GFn = Fn + Fn−1i, (15)

GLn = Ln + Ln−1i, (16)

GLen = 2GFn+1 − (1 + i), (17)

where Fn is the nth Fibonacci, Ln is the nth Lucas, GFn is the nth Gaussian Fibonacci, GLn
is the nth Gaussian Lucas, and GLen is the nth Gaussian Leonardo numbers.

Moreover, the Gaussian Leonardo hybrid numbers are studied by Kara and Yılmaz [33].
The recurerence relation, generating function, and Binet formula of the Gaussian Leonardo
hybrid numbers are obtained by the authors. The nth Gaussian Leonardo hybrid number is
defined by

HGLen = GLen + GLen+1i + GLen+2ε + GLen+3h, (18)

where GLen is the nth Gaussian Leonardo number, and i, ε, h are the hybrid units that
satisfy the rules (10).

In this study, we first obtain some new results for the Gaussian Leonardo numbers [33–35]
and Gaussian Leonardo hybrid numbers [33]. After that, motivated by the above mentioned
papers, we introduce a new notion called Gaussian Leonardo polynomials. Furthermore, by
the aid of the Gaussian Leonardo polynomials, we introduce the Gaussian Leonardo hybrid
polynomials. We also present and prove some results that relate the Gaussian Leonardo
polynomials and hybrid polynomials.
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2. Some New Results for Gaussian Leonardo Numbers and Related Hybrid Numbers

In this section, we first obtain some identities for the Gaussian Leonardo numbers,
including relations with the Gaussian Fibonacci and Lucas numbers. Then, we give some
results for the Gaussian Leonardo hybrid numbers, including relations with the Gaussian
Fibonacci and Lucas hybrid numbers.

Theorem 1. Let GLen be the nth Gaussian Leonardo number. Then the following identities hold:

GLen−1 + GLen+1 = 2GLn+1 − 2(1 + i), (19)

GLen+2 − GLen−2 = 2GLn+1, (20)

GLen + 2GFn = GLen+1, (21)

GLen + GFn + GLn = 2GLen + (1 + i), (22)

GLe2
n + GLe2

n−1 = 2Le2n−1 − 2Len−1(1− 2i(Ln − 1)). (23)

Proof. (19): By virtue of the Equation (12), we have

GLen−1 + GLen+1 = (Len−1 + Len−2i) + (Len+1 + Leni)

= (Len−1 + Len+1) + (Len−2 + Len)i

= (2Ln+1 − 2) + (2Ln − 2)i

= 2(Ln+1 + Lni)− 2(1 + i)

= 2GLn+1 − 2(1 + i).

Here, we use the equation Len−1 + Len+1 = 2Ln+1 − 2 (see Ref. [10]).
(20): Using the equation Len+2 − Len−2 = 2Ln+1 (see Ref. [10]), the proof is similar to

Equation (19).
(21): From Equations (12) and (15), we have

GLen + 2GFn = (Len + Len−1i) + 2(Fn + Fn−1i)

= 2(Fn+1 + Fn)− 1 + 2(Fn + Fn−1)i− i

= 2(Fn+2 + Fn+1i)− (1 + i)

= 2GFn+2 − (1 + i)

= GLen+1.

Here, we use Equations (7) and (17).
(22): Using the following equation, Fn + Ln = 2Fn+1 (see Ref. [3]), the proof can be

done in a similar manner.
(23): Using Equation (12) and considering Equations Le2

n + Le2
n+1 = 2(Le2n+2 −

Len+2 + 1) and Len + Len−2 = 2Ln − 2 (see Ref. [10]), we have

GLe2
n + GLe2

n−1 = (Len + Len−1i)2 + (Len−1 + Len−2i)2

= (Le2
n + Le2

n−1)− (Le2
n−1 + Le2

n−2) + 4iLen−1(Ln − 1)

= 2Le2n−1 − 2Len−1(1− 2i(Ln − 1)).
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Theorem 2. Let HGLen be the nth Gaussian Leonardo hybrid number. Then the following identi-
ties hold:

HGLen−1 + HGLen+1 = 2HGLn+1 − 2(1 + 3i + 2ε), (24)

HGLen + HGLen+1 = HGLen+2 − (1 + 3i + 2ε), (25)

HGLen+2 − HGLen−2 = 2HGLn+1, (26)

HGLen + 2HGFn = HGLen+1, (27)

HGLen + HGFn + HGLn = 2HGLen + (1 + 3i + 2ε), (28)

where HGFn = GFn + GFn+1i+ GFn+2ε+ GFn+3h is the nth Gaussian Fibonacci hybrid number
and HGLn = GLn +GLn+1i+GLn+2ε+GLn+3h is the nth Gaussian Lucas hybrid number [37].

Proof. (24): By virtue of the Equations (18) and (19), we have

HGLen−1 + HGLen+1 = (GLen−1 + GLen+1) + (GLen + GLen+2)i

+(GLen+1 + GLen+3)ε + (GLen+2 + GLen+4)h

= (2GLn+1 − 2(1 + i)) + (2GLn+2 − 2(1 + i))i

+(2GLn+3 − 2(1 + i))ε + (2GLn+4 − 2(1 + i))h

= 2(GLn+1 + GLn+2i + GLn+3ε + GLn+4h)− 2(1 + i)(1 + i + ε + h)

= 2HGLn+1 − 2(1 + 3i + 2ε).

(25): By virtue of Equation (18) and using the relation GLen + GLen+1 = GLen+2 −
(1 + i) (see Ref. [34]), we have

HGLen + HGLen+1 = (GLen + GLen+1) + (GLen+1 + GLen+2)i

+(GLen+2 + GLen+3)ε + (GLen+3 + GLen+4)h

= GLen+2 + GLen+3i + GLen+4ε + GLen+5h− (1 + i)(1 + i + ε + h)

= HGLen+2 − (1 + 3i + 2ε).

Thus, the proof is completed.
Equations (26)–(28) can be obtained in a similar manner.

Example 1. If n = 1 for Equation (19), n = 2 for Equation (20), and n = 0 for Equation (22) in
Theorem 1, then we obtain

GLe0 + GLe2 = (1− i) + (3 + i) = 4

2GL2 − 2(1 + i) = 2(3 + i)− 2(1 + i) = 4,

GLe4 − GLe0 = (9 + 5i)− (1− i) = 8 + 6i

2GL3 = 2(4 + 3i) = 8 + 6i,

and

GLe0 + GF0 + GL0 = (1− i) + i + (2− i) = 3− i

2GLe0 + (1 + i) = 2(1− i) + (1 + i) = 3− i,

respectively.

Example 2. If n = 1 for Equation (24), n = 0 for Equations (25), (27), and (28) in Theorem 2,
then we obtain
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HGLe0 + HGLe2 = (1 + 3i + 6ε + 4h) + (5 + 15i + 18ε + 10h) = 6 + 18i + 24ε + 14h

2HGL2 − 2(1 + 3i + 2ε) = 2(4 + 12i + 14ε + 7h)− 2(1 + 3i + 2ε) = 6 + 18i + 24ε + 14h,

HGLe0 + HGLe1 = (1 + 3i + 6ε + 4h) + (3 + 9i + 10ε + 6h) = 4 + 12i + 16ε + 10h

HGLe2 − (1 + 3i + 2ε) = (5 + 15i + 18ε + 10h)− (1 + 3i + 2ε) = 4 + 12i + 16ε + 10h,

HGLe0 + 2HGF0 = (1 + 3i + 6ε + 4h) + 2(1 + 3i + 2ε + h) = 3 + 9i + 10ε + 6h

HGLe1 = = 3 + 9i + 10ε + 6h,

and

HGLe0 + HGF0 + HGL0 = (1 + 3i + 6ε + 4h) + (1 + 3i + 2ε + h) + (1 + 3i + 6ε + 3h)

= 3 + 9i + 14ε + 8h

2HGLe0 + (1 + 3i + 2ε) = 2(1 + 3i + 6ε + 4h) + (1 + 3i + 2ε) = 3 + 9i + 14ε + 8h,

respectively.

3. The Gaussian Leonardo Polynomials

In this section, we first define the Gaussian Leonardo polynomials. Gaussian Leonardo
polynomials are a generalization of the Gaussian Leonardo hybrid numbers. Then we give
some properties of these polynomials.

Definition 1. The nth Gaussian Leonardo polynomial GLen(x) is defined by

GLen(x) = Len(x) + Len−1(x)i, (29)

where Len(x) is the nth Leonardo polynomial.

The first few Gaussian Leonardo polynomials are: 1 + (x− 2)i, 1 + i, x + 2 + i, 2x2 +
4x− 1 + (x + 2)i, 4x3 + 8x2 − 2x− 1 + (2x2 + 4x− 1)i, 8x4 + 16x3 − 4x2 − 3x− 2 + (4x3 +
8x2 − 2x− 1)i, 16x5 + 32x4 − 8x3 − 8x2 − 8x + 1 + (8x4 + 16x3 − 4x2 − 3x− 2)i.

Remark 1. If we put x = 1 in (29), then we obtain the nth Gaussian Leonardo number in
Refs. [33–35].

Theorem 3. Let n ≥ 3 be an integer. Then the recurrence relation of the Gaussian Leonardo
polynomial sequence is

GLen(x) = 2xGLen−1(x)− GLen−3(x) (30)

with initial conditions GLe0(x) = 1 + (x− 2)i, GLe1(x) = 1 + i, and GLe2(x) = x + 2 + i.

Proof. If n = 3, then using the Equation (29) we get

2xGLe2(x)− GLe0(x) = 2x(Le2(x) + Le1(x)i)− (Le0(x) + Le−1(x)i)

= 2x(x + 2 + i)− (1 + (x− 2)i)

= 2x2 + 4x− 1 + (x + 2)i

= Le3(x) + Le2(x)i

= GLe3(x).
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If n > 3, then using Equations (9) and (29) we get

GLen(x) = Len(x) + Len−1(x)i

= 2xLen−1(x)− Len−3(x) + (2xLen−2(x)− Len−4(x))i

= 2x(Len−1(x) + Len−2(x)i)− (Len−3(x) + Len−4(x)i)

= 2xGLen−1(x)− GLen−3(x).

This completes the proof.

Theorem 4. The generating function for the Gaussian Leonardo polynomial sequence is

g(x, t) =
1 + (x− 2)i + (1− 2x + (1 + 4x− 2x2)i)t + (2− x + (1− 2x)i)t2

1− 2xt + t3 . (31)

Proof. In order to find the generating function of the Gaussian Leonardo polynomial
sequence, we have to write the sequence as a power series in which each term of the
sequence corresponds to the coefficients of the series. Let g(x, t) be the generating function
of the Gaussian Leonardo polynomial sequence. Then we can write the following:

g(x, t) =
∞

∑
n=0

GLen(x)tn,

−2xtg(x, t) = −2x
∞

∑
n=0

GLen(x)tn+1,

t3g(x, t) =
∞

∑
n=0

GLen(x)tn+3.

Using the recurrence relation (30) of the Gaussian Leonardo polynomials, we obtain

(1− 2xt + t3)g(x, t) = GLe0(x) + (GLe1(x)− 2xGLe0(x))t + (GLe2(x)− 2xGLe1(x))t2.

Considering GLe0(x) = 1 + (x− 2)i, GLe1(x) = 1 + i, and GLe2(x) = x + 2 + i, the
desired result can be obtained.

Remark 2. If we put x = 1 in (31), then we obtain the generating function of the Gaussian
Leonardo numbers [33–35] as

g(t) =
1− i + (−1 + 3i)t + (1− i)t2

1− 2t + t3 .

Theorem 5. The Binet-like formula for the Gaussian Leonardo polynomial sequence is given by

GLen(x) = Ar1
n + Br2

n + Cr3
n, (32)

where r1, r2, and r3 are the roots of the characteristic equation t3 − 2xt2 + 1 = 0, and

A =
r1

2(1 + (x− 2)i) + r1(1− 2x + (1 + 4x− 2x2)i) + 2− x + (1− 2x)i
(r1 − r2)(r1 − r3)

,

B =
r2

2(1 + (x− 2)i) + r2(1− 2x + (1 + 4x− 2x2)i) + 2− x + (1− 2x)i
(r2 − r1)(r2 − r3)

,

C =
r3

2(1 + (x− 2)i) + r3(1− 2x + (1 + 4x− 2x2)i) + 2− x + (1− 2x)i
(r3 − r1)(r3 − r2)

.
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Proof. The characteristic equation f (t) = t3 − 2xt2 + 1 = 0 of the recurrence relation (30)
should have three distinct roots: r1, r2, and r3. Then 1

r1
, 1

r2
, and 1

r3
are the roots of the

equation f ( 1
t ) =

1
t3 − 2x

t2 + 1 = 0. Here, since t3 6= 0, we have 1− 2xt + t3 = 0.
By virtue of the generating function of the Gaussian Leonardo polynomial sequence,

we can write

1 + (x− 2)i + (1− 2x + (1 + 4x− 2x2)i)t + (2− x + (1− 2x)i)t2

1− 2xt + t3 =
A

1− r1t
+

B
1− r2t

+
C

1− r3t
.

Then we have

1 + (x− 2)i + (1− 2x + (1 + 4x− 2x2)i)t + (2− x + (1− 2x)i)t2

= A(1− r2t)(1− r3t) + B(1− r1t)(1− r3t) + C(1− r1t)(1− r2t).

If we take t = 1
r1

then we get

1 + (x− 2)i + (1− 2x + (1 + 4x− 2x2)i)t + (2− x + (1− 2x)i)t2 = A(1− r2

r1
)(1− r3

r1
)

and so

r1
2(1 + (x− 2)i) + r1(1− 2x + (1 + 4x− 2x2)i) + 2− x + (1− 2x)i = A(r1 − r2)(r1 − r3).

Then we obtain

A =
r1

2(1 + (x− 2)i) + r1(1− 2x + (1 + 4x− 2x2)i) + 2− x + (1− 2x)i
(r1 − r2)(r1 − r3)

.

In a similar manner, if we take t = 1
r2

and t = 1
r3

then we obtain

B =
r2

2(1 + (x− 2)i) + r2(1− 2x + (1 + 4x− 2x2)i) + 2− x + (1− 2x)i
(r2 − r1)(r2 − r3)

and

C =
r3

2(1 + (x− 2)i) + r3(1− 2x + (1 + 4x− 2x2)i) + 2− x + (1− 2x)i
(r3 − r1)(r3 − r2)

,

respectively.
Thus, we have

g(x, t) =
∞

∑
n=0

GLen(x)tn =
A

1− r1t
+

B
1− r2t

+
C

1− r3t

=
∞

∑
n=0

Ar1
ntn +

∞

∑
n=0

Br2
ntn +

∞

∑
n=0

Cr3
ntn

=
∞

∑
n=0

(Ar1
n + Br2

n + Cr3
n)tn.

Hence, we get GLen(x) = Ar1
n + Br2

n + Cr3
n, which completes the proof.

Theorem 6. (Vajda-like Identity) For any non-negative integers m, n, and r, we have

GLen+m(x)GLen+r(x)− GLen(x)GLen+m+r(x) = AB(r1r2)
n(r1

m − r2
m)(r2

r − r1
r)

+AC(r1r3)
n(r1

m − r3
m)(r3

r − r1
r) (33)

+BC(r2r3)
n(r2

m − r3
m)(r3

r − r2
r).
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Proof. By virtue of Equation (32), we have

GLen+m(x)GLen+r(x)− GLen(x)GLen+m+r(x)

= (Ar1
n+m + Br2

n+m + Cr3
n+m)(Ar1

n+r + Br2
n+r + Cr3

n+r)

−(Ar1
n + Br2

n + Cr3
n)(Ar1

n+m+r + Br2
n+m+r + Cr3

n+m+r)

= AB(r1
n+mr2

n+r + r1
n+rr2

n+m − r1
nr2

n+m+r − r1
n+m+rr2

n)

+AC(r1
n+mr3

n+r + r1
n+rr3

n+m − r1
nr3

n+m+r − r1
n+m+rr3

n)

+BC(r2
n+mr3

n+r + r2
n+rr3

n+m − r2
nr3

n+m+r − r2
n+m+rr3

n)

= AB(r1r2)
n(r2

r(r1
m − r2

m) + r1
r(r2

m − r1
m))

+AC(r1r3)
n(r3

r(r1
m − r3

m) + r1
r(r3

m − r1
m))

+BC(r2r3)
n(r3

r(r2
m − r3

m) + r2
r(r3

m − r2
m))

= AB(r1r2)
n(r1

m − r2
m)(r2

r − r1
r)

+AC(r1r3)
n(r1

m − r3
m)(r3

r − r1
r)

+BC(r2r3)
n(r2

m − r3
m)(r3

r − r2
r).

The following particular cases are obtained from the Vajda-like identity (33).

Corollary 1. (Catalan-like Identity) If we put m = −r in Equation (33), then we have

GLen−r(x)GLen+r(x)− (GLen(x))2 = AB(r1r2)
n−r(r2

r − r1
r)2

+AC(r1r3)
n−r(r3

r − r1
r)2

+BC(r2r3)
n−r(r3

r − r2
r)2.

Corollary 2. (Cassini-like Identity) If we put r = −m = 1 in Equation (33), then we have

GLen−1(x)GLen+1(x)− (GLen(x))2 = AB(r1r2)
n−1(r2 − r1)

2

+AC(r1r3)
n−1(r3 − r1)

2

+BC(r2r3)
n−1(r3 − r2)

2.

Corollary 3. (d’Ocagne-like Identity) If we put r = k − n and m = 1 in Equation (33), then
we have

GLen+1(x)GLek(x)− GLen(x)GLek+1(x) = AB(r1r2)
n(r1 − r2)(r2

k−n − r1
k−n)

+AC(r1r3)
n(r1 − r3)(r3

k−n − r1
k−n)

+BC(r2r3)
n(r2 − r3)(r3

k−n − r2
k−n).

4. The Gaussian Leonardo Hybrid Polynomials

In this section, we first define the Gaussian Leonardo hybrid polynomials. Then we
give some properties of these polynomials.

Definition 2. The nth Gaussian Leonardo hybrid polynomial HGLen(x) is defined by

HGLen(x) = GLen(x) + GLen+1(x)i + GLen+2(x)ε + GLen+3(x)h, n ≥ 0 (34)

where GLen(x) is the nth Gaussian Leonardo polynomial, and i, ε, h are the hybrid units.

Remark 3. If we put x = 1 in the Equation (34) then we obtain the nth Gaussian Leonardo hybrid
number in [33].
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Theorem 7. Let n ≥ 3 be an integer. Then the recurrence relation of the Gaussian Leonardo hybrid
polynomial sequence is

HGLen(x) = 2xHGLen−1(x)− HGLen−3(x) (35)

with initial conditions

HGLe0(x) = 1 + (2x + 1)i + (2x + 4)ε + (2x2 + 4x− 2)h,

HGLe1(x) = x + 2 + (2x2 + 5x + 2)i + (4x2 + 8x− 2)ε + (4x3 + 8x2 − 3x− 3)h,

HGLe2(x) = 2x2 + 4x− 1 + (4x3 + 10x2 + 2x− 1)i + (8x3 + 16x2 − 4x− 2)ε

+(8x4 + 16x3 − 6x2 − 7x− 1)h.

Proof. If n = 3, then using the multiplication rules of the hybrid units we get

2xHGLe2(x)− HGLe0(x)

= 2x[2x2 + 4x− 1 + (4x3 + 10x2 + 2x− 1)i + (8x3 + 16x2 − 4x− 2)ε

+(8x4 + 16x3 − 6x2 − 7x− 1)h]

−[1 + (2x + 1)i + (2x + 4)ε + (2x2 + 4x− 2)h]

= 4x3 + 8x2 − 2x− 1 + (8x4 + 20x3 + 4x2 − 4x− 1)i + (16x4 + 32x3 − 8x2 − 6x− 4)ε

+(16x5 + 32x4 − 12x3 − 16x2 − 6x + 2)h

= [2x2 + 4x− 1 + (x + 2)i] + [4x3 + 8x2 − 2x− 1 + (2x2 + 4x− 1)i]i

+[8x4 + 16x3 − 4x2 − 3x− 2 + (4x3 + 8x2 − 2x− 1)i]ε

+[16x5 + 32x4 − 8x3 − 8x2 − 8x + 1 + (8x4 + 16x3 − 4x2 − 3x− 2)i]h

= GLe3(x) + GLe4(x)i + GLe5(x)ε + GLe6(x)h

= HGLe3(x).

If n > 3, then using Equations (30) and (34) we get

HGLen(x) = GLen(x) + GLen+1(x)i + GLen+2(x)ε + GLen+3(x)h

= (2xGLen−1(x)− GLen−3(x)) + (2xGLen(x)− GLen−2(x))i

+(2xGLen+1(x)− GLen−1(x))ε + (2xGLen+2(x)− GLen(x))h

= 2x(GLen−1(x) + GLen(x)i + GLen+1(x)ε + GLen+2(x)h)

−(GLen−3(x) + GLen−2(x)i + GLen−1(x)ε + GLen(x)h)

= 2xHGLen−1(x)− HGLen−3(x).

Thus, the proof is completed.

Remark 4. If we take x = 1 in the Equations (34) and (35), then we obtain the nth Gaussian
Leonardo hybrid number as

HGLen = GLen + GLen+1i + GLen+2ε + GLen+3h,

and the recurrence relation of the Gaussian Leonardo hybrid number sequence as

HGLen = 2HGLen−1 − HGLen−3

with initial conditions HGLe0 = 1 + 3i + 6ε + 4h, HGLe1 = 3 + 9i + 10ε + 6h, and HGLe2 =
5 + 15i + 18ε + 10h, respectively (see Ref. [33]).
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Theorem 8. The generating function for the Gaussian Leonardo hybrid polynomial sequence is

G(x, t) =
HGLe0(x) + (HGLe1(x)− 2xHGLe0(x))t + (HGLe2(x)− 2xHGLe1(x))t2

1− 2xt + t3 . (36)

Proof. Since the proof is very similar to Theorem 4, we omit it.

Remark 5. If we put x = 1 in the Equation (36) then we obtain the generating function of the
Gaussian Leonardo hybrid numbers [33] as

g(t) =
HGLe0 + (HGLe1 − 2HGLe0)t + (HGLe2(x)− 2HGLe1)t2

1− 2t + t3

=
1 + 3i + 6ε + 4h + (1 + 3i− 2ε− 2h)t + (−1− 3i− 2ε− 2h)t2

1− 2t + t3 .

Theorem 9. The Binet-like formula for the Gaussian Leonardo hybrid polynomial sequence is
given by

HGLen(x) = Ar1
∗r1

n + Br2
∗r2

n + Cr3
∗r3

n, (37)

where r1
∗ = 1 + r1i + r1

2ε + r1
3h, r2

∗ = 1 + r2i + r2
2ε + r2

3h, r3
∗ = 1 + r3i + r3

2ε + r3
3h,

and A, B, C are defined as in Theorem 5.

Proof. By virtue of the Equations (32) and (34), we have

HGLen(x) = GLen(x) + GLen+1(x)i + GLen+2(x)ε + GLen+3(x)h

= (Ar1
n + Br2

n + Cr3
n) + (Ar1

n+1 + Br2
n+1 + Cr3

n+1)i

+(Ar1
n+2 + Br2

n+2 + Cr3
n+2)ε + (Ar1

n+3 + Br2
n+3 + Cr3

n+3)h

= Ar1
n(1 + r1i + r1

2ε + r1
3h) + Br2

n(1 + r2i + r2
2ε + r2

3h)

+Cr3
n(1 + r3i + r3

2ε + r3
3h)

= Ar1
∗r1

n + Br2
∗r2

n + Cr3
∗r3

n.

Theorem 10. (Vajda-like Identity) Let m, n, and r be non-negative integers. Then we have

HGLen+m(x)HGLen+r(x)− HGLen(x)HGLen+m+r(x)

= AB(r1r2)
n(r1

m − r2
m)(r1

∗r2
∗r2

r − r2
∗r1
∗r1

r)

+AC(r1r3)
n(r1

m − r3
m)(r1

∗r3
∗r3

r − r3
∗r1
∗r1

r) (38)

+BC(r2r3)
n(r2

m − r3
m)(r2

∗r3
∗r3

r − r3
∗r2
∗r2

r).

Proof. By virtue of Equation (37), we have

HGLen+m(x)HGLen+r(x)− HGLen(x)HGLen+m+r(x)

= (Ar1
∗r1

n+m + Br2
∗r2

n+m + Cr3
∗r3

n+m)(Ar1
∗r1

n+r + Br2
∗r2

n+r + Cr3
∗r3

n+r)

−(Ar1
∗r1

n + Br2
∗r2

n + Cr3
∗r3

n)(Ar1
∗r1

n+m+r + Br2
∗r2

n+m+r + Cr3
∗r3

n+m+r)

= AB(r1
∗r2
∗r1

n+mr2
n+r + r2

∗r1
∗r1

n+rr2
n+m − r1

∗r2
∗r1

nr2
n+m+r − r2

∗r1
∗r1

n+m+rr2
n)

+AC(r1
∗r3
∗r1

n+mr3
n+r + r3

∗r1
∗r1

n+rr3
n+m − r1

∗r3
∗r1

nr3
n+m+r − r3

∗r1
∗r1

n+m+rr3
n)

+BC(r2
∗r3
∗r2

n+mr3
n+r + r3

∗r2
∗r2

n+rr3
n+m − r2

∗r3
∗r2

nr3
n+m+r − r3

∗r2
∗r2

n+m+rr3
n)

= AB(r1r2)
n(r1

m − r2
m)(r1

∗r2
∗r2

r − r2
∗r1
∗r1

r)

+AC(r1r3)
n(r1

m − r3
m)(r1

∗r3
∗r3

r − r3
∗r1
∗r1

r)

+BC(r2r3)
n(r2

m − r3
m)(r2

∗r3
∗r3

r − r3
∗r2
∗r2

r).
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Corollary 4. (Catalan-like Identity) If we put m = −r in Equation (38), then we have

HGLen−r(x)HGLen+r(x)− (HGLen(x))2 = AB(r1r2)
n−r(r1

r − r2
r)(r2

∗r1
∗r1

r − r1
∗r2
∗r2

r)

+AC(r1r3)
n−r(r1

r − r3
r)(r3

∗r1
∗r1

r − r1
∗r3
∗r3

r)

+BC(r2r3)
n−r(r2

r − r3
r)(r3

∗r2
∗r2

r − r2
∗r3
∗r3

r).

Corollary 5. (Cassini-like Identity) If we put r = −m = 1 in Equation (38), then we have

HGLen−1(x)HGLen+1(x)− (HGLen(x))2 = AB(r1r2)
n−1(r1 − r2)(r2

∗r1
∗r1 − r1

∗r2
∗r2)

+AC(r1r3)
n−1(r1 − r3)(r3

∗r1
∗r1 − r1

∗r3
∗r3)

+BC(r2r3)
n−1(r2 − r3)(r3

∗r2
∗r2 − r2

∗r3
∗r3).

Corollary 6. (d’Ocagne-like Identity) If we put r = k − n and m = 1 in Equation (38), then
we have

HGLen+1(x)HGLek(x)− HGLen(x)HGLek+1(x)

= AB(r1r2)
n(r1 − r2)(r1

∗r2
∗r2

k−n − r2
∗r1
∗r1

k−n)

+AC(r1r3)
n(r1 − r3)(r1

∗r3
∗r3

k−n − r3
∗r1
∗r1

k−n)

+BC(r2r3)
n(r2 − r3)(r2

∗r3
∗r3

k−n − r3
∗r2
∗r2

k−n).

5. Conclusions

In this study, at first, some new identities involving the Gaussian Leonardo numbers
and the Gaussian Leonardo hybrid numbers are given. Then a new polynomial sequence,
called the Gaussian Leonardo polynomial sequence, is introduced and studied. Moreover,
several properties, including the recurrence relation, Binet-like formula, generating func-
tion, and some identities, such as Vajda-like identity and Catalan-like identity for these
polynomials, are derived. After that, a new hybrid sequence with Gaussian Leonardo
polynomial coefficients, called the Gaussian Leonardo hybrid polynomial sequence, is
studied. Furthermore, some properties of these hybrid polynomials are investigated.

The sequence of the Gaussian Leonardo polynomials is a generalization of the sequence
of the Gaussian Leonardo numbers. Similarly, the sequence of the Gaussian Leonardo
hybrid polynomials is a generalization of the Gaussian Leonardo hybrid numbers. There-
fore, if we replace x = 1 in the nth Gaussian Leonardo polynomial GLen(x), we obtain
the nth Gaussian Leonardo number GLen in Refs. [33–35]. If we replace x = 1 in the nth
Gaussian Leonardo hybrid polynomial HGLen(x), we obtain the nth Gaussian Leonardo
hybrid number HGLen in [33].
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