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ABSTRACT: Multiple linear regression models were developed for 1–3-day lead forecasts of maximum and minimum tem-
perature for two locations in the city of Lima, on the central coast of Peru (128S), and contrasted with the operational fore-
casts issued by the National Meteorological and Hydrological Service}SENAMHI and the output of a regional numerical
atmospheric model. We developed empirical models, fitted to data from the 2000–13 period, and verified their skill for the
2014–19 period. Since El Niño produces a strong low-frequency signal, the models focus on the high-frequency weather and
subseasonal variability (60-day cutoff). The empirical models outperformed the operational forecasts and the numerical
model. For instance, the high-frequency annual correlation coefficient and root-mean-square error (RMSE) for the 1-day
lead forecasts were 0.378–0.538 and 0.748–1.768C for the empirical model, respectively, but from around 20.058 to 0.248 and
0.888–4.218C in the operational case. Only three predictors were considered for the models, including persistence and large-
scale atmospheric indices. Contrary to our belief, the model skill was lowest for the austral winter (June–August), when the
extratropical influence is largest, suggesting an enhanced role of local effects. Including local specific humidity as a predictor
for minimum temperature at the inland location substantially increased the skill and reduced its seasonality. There were cases
in which both the operational and empirical forecast had similar strong errors and we suggest mesoscale circulations, such as
the low-level cyclonic vortex over the ocean, as the culprit. Incorporating such information could be valuable for improving
the forecasts.

SIGNIFICANCE STATEMENT: We wanted to compare the temperature of the operational forecast of the Mete-
orological and Hydrological Service, an atmospheric model, and persistence with the observed temperatures on
the Peruvian central coast. In addition, we generated an empirical forecast model considering both atmospheric
and local predictors. We got better results with this empirical model, considering the highest Pearson correlations
and the lowest RMSE values. These results will allow us to use this empirical model as the main tool to automate
the forecast on the central coast of Peru. Future work should be aimed at testing the skill of this model for forecast-
ing in other cities of Peru.

KEYWORDS: Synoptic climatology; Synoptic-scale processes; Regression analysis; Forecast verification/skill;
Numerical weather prediction/forecasting

1. Introduction

Daily weather forecasting is one of the most basic activities in
National Meteorological and Hydrological Services (NMHSs).
At the Servicio Nacional de Meteorologı́a e Hidrologı́a of Peru
(SENAMHI), forecasters do so by analyzing the evolution of
weather systems, aided by numerical model output. However,
human-modified forecast information has been lately found to
not necessarily outperform model systems, particularly as the
model skill continues to increase (Bosart 2003; Doswell 2004;

Novak et al. 2014). Thus, it is important for NMHSs to investi-
gate and identify the conditions and applications for which fore-
casters can provide the most added value.

Peru is a tropical country, and its weather predictability is
partly associated with tropical systems, such as the Bolivian
high, the summertime upper-level anticyclonic circulation asso-
ciated with moisture transport from the Amazon to the Andes
(Garreaud 1999) and equatorial convectively coupled waves
(Takahashi 2004; Huaman et al. 2020). Furthermore, El Niño
makes a substantial contribution to the temperature variability
on interannual time scales on the central coast (Takahashi and
Martı́nez 2017; Cai et al. 2020), while oceanic Kelvin waves
modulate it on subseasonal time scales (Illig et al. 2014). On the
other hand, extratropical phenomena have a large influence on
the Peruvian weather, e.g., cold surges in the Amazon region
(Espinoza et al. 2013), snowfall in the Andes associated with
cutoff lows (COLs) (Quispe Vega 2017), and the influence on
the coastal trade winds of the variability in the South Pacific sub-
tropical anticyclone (Dewitte et al. 2011; Illig et al. 2014).
Weather variability along the arid central coast of Peru is mild,
without severe weather events, and although it is influenced by
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large-scale conditions, the experience of the forecasters indicates
that local mesoscale circulations also play a role. Furthermore,
since a third of the population of Peru lives in this region, pri-
marily in its capital Lima and its adjacent port province Callao
(hereafter jointly referred to as city of Lima, ;128S), the fore-
casts for the city of Lima have high visibility to the public. These
conditions make weather forecasting for this region a challenge
to SENAMHI, particularly with respect to the day-to-day tem-
perature and cloudiness variability, even for lead times of one
day.

In this study we document the skill of operational daily maxi-
mum and minimum temperature forecasts from SENAMHI in
10 locations of the central coast of Peru, including the city of
Lima, and propose empirical models to improve said forecasts.
Furthermore, we address two specific research goals: (i) to de-
velop empirical models based on multiple linear regression for
the daily prediction of maximum and minimum temperature;
and (ii) to assess and compare four different approaches to
forecast: SENAMHI’s operational forecast, regional numerical
model forecast, persistence forecast (based on the previous
day’s temperature), and the empirical model.

a. Climate on the central coast of Peru

The arid central coast of Peru is under the influence of the
cool eastern boundary coastal upwelling in the Pacific Ocean,
capped by a persistent low-level thermal inversion (Prohaska
1973; Enfield 1981; Arellano Rojas 2013) and isolated from
the Amazonian warm and moist conditions by the Andes
mountains (Takahashi and Battisti 2007). Thus, despite its
low latitude, this region has a mild climate and an annual cy-
cle modulated by the ocean (Takahashi 2004). The winters
feature low stratiform cloudiness, high relative humidity, and
drizzle that peaks in June–August, while summer is generally
sunnier, warmer, and has higher specific humidity, with the
highest temperatures in January–March, but also features
high cloudiness and some rain episodes associated with the
rainy season in the Andes (Prohaska 1973).

The main large-scale atmospheric circulation features
that affect the climate of the central coast are the southeast
Pacific anticyclone (SEPA) and the Bolivian high (BH). The
SEPA corresponds to the subtropical subsidence branch of
the Hadley circulation, affected by the presence of the Andes,
with contribution from the summertime monsoon in the Amazon
(Rodwell and Hoskins 2001; Takahashi and Battisti 2007). The
associated southeasterly trade winds along the coast of Peru
are responsible for the coastal ocean upwelling that maintains
the typically low sea surface temperature (SST), which is also
contributed by dry subsidence and the positive feedback from
stratiform clouds (Klein and Hartmann 1993; Takahashi and
Battisti 2007). The SEPA is more intense in austral spring, and
reaches its southernmost position (centered at 358S) during
summer and its northernmost position (center at 278S) during
fall and winter (Febre Pérez 2018). The winds of the SEPA flow
over cold water as they approach the coast, thus cooling and in-
creasing the relative humidity. These conditions are favorable
to the formation of stratiform cloudiness and fog on the sub-
tropical west coast of South America, mainly in austral winter

(Pinche Laurre 1986). The BH is a summertime upper-level
anticyclonic circulation centered above the altiplano that
favors the transport of moisture from the Amazon to the
Andes (Garreaud 1999) associated with a mixing ratio above
9–10 g kg21 at 600 hPa and over 4–5 g kg21 at 500 hPa (Rivas
Quispe 2019). The BH or, more generally, mid- and upper-
level easterly flow, may generate spillover from the Andes to-
ward the coast producing rain in the latter region (Rollenbeck
and Bendix 2011).

b. Subseasonal and interannual variability along the coast

Interannual climatic variability of the coast of Peru is domi-
nated by El Niño and La Niña (Cai et al. 2020; Capotondi et al.
2020) through the positive effect of local SST anomalies on air
temperature and, during the warmest months, the occurrence
of heavy precipitation and flooding that is also favored by
cool conditions in the equatorial central Pacific (Takahashi
and Martı́nez 2017). Extreme El Niño events, such as the
1983, 1998, and 2016 events, are much stronger than La Niña
in the eastern Pacific (e.g., Takahashi et al. 2011), although the
2016 event was associated with warming but not heavy precipi-
tation (L’Heureux et al. 2017). Although the large-scale
ENSO variability occurs on the interannual scale, the “coastal
El Niño” occurs on subseasonal to seasonal time scales associ-
ated with air–sea interactions in the far-eastern Pacific, such as
in 1891, 1925 and 2017 (Takahashi and Martı́nez 2017; Gar-
reaud 2018; Takahashi et al. 2018; Echevin et al. 2018; Peng
et al. 2019).

On subseasonal time scales, the Madden–Julian oscillation
modulates rainfall in northern Peru through its effect on the
Walker circulation. Furthermore, equatorial ocean Kelvin waves
and extratropical atmospheric variability also modulate the
coastal SST on subseasonal time scales through their effect on
local oceanic thermal advection and surface heat fluxes, with
weaker trade winds and downwelling Kelvin waves leading to
positive SST anomalies (Dewitte et al. 2011; Illig et al. 2014).

At higher frequencies, the main synoptic systems that de-
termine the meteorological conditions on the central coast of
Peru are the low-level trade winds (850–1000 hPa) associated
with the SEPA and modulated by eastward subtropical transi-
ents (Dewitte et al. 2011; Rahn and Garreaud 2013), which
have more predominance in winter; and the zonal moisture
transport at midlevels (500–600 hPa) and short-wave troughs
at high levels (300–200 hPa), associated with BH variability,
predominantly in summer (Rivas Quispe 2019). The analysis
of such synoptic systems is the backbone of the conceptual
models considered for weather forecasting on the central
coast. Thus, in 2019, in a meeting with 10 weather forecasters
of SENAMHI, it was determined that the main large-scale
factors that regulate the temperatures on the central Peruvian
coast are the SST, the position of the APSO, the interaction
of winds at low levels off the Peruvian coast, i.e., northerly winds
at 850 hPa and southerly winds at lower levels (950–1000 hPa),
precipitable water on the coast, winds and moisture advection
from the east at medium levels (500–600 hPa), the BH location,
and the presence of high-level systems, such as a cutoff low
(COL) (Quispe-Gutiérrez et al. 2021) (Fig. 1).

WEATHER AND FORECAS T ING VOLUME 38556

Unauthenticated | Downloaded 04/19/23 01:58 PM UTC



c. Climate of the city of Lima

Climatically, the city of Lima can be divided into a western
and eastern zone. The western zone is near the sea and the east-
ern zone is more continental. This condition affects the temper-
ature due to the thermoregulatory effect of water. On the other
side, the main type of precipitation in Lima is drizzle, which oc-
curs from April to October, with more intensity and frequency
in winter (June–August), occurring during more than 90% of
days with drizzle in this period. The second type of precipitation
in Lima is rain, which occurs between November and March,
with more frequency in summer (January–March); however, it
is less frequent than drizzle, raining only between 5% and 10%
of the days of this period.

This behavior is evident when reviewing meteorological data.
According to the Callao meteorological station, which represents
the western zone (Fig. 2), the monthly mean maximum and mini-
mum temperature are 27.48C (February) and 14.68C (July), re-
spectively (Fig. 3); the drizzliest month is July with a mean
monthly amount of 1.8 mm of total precipitation, and the rainiest
month is January with 0.9 mm. On the other hand, the eastern
zone, where the La Molina meteorological station is located

(Fig. 2), the monthly mean maximum and minimum temperature
are 28.78C (February) and 13.88C (August), respectively, the
drizzliest month is August with 2.3 mm month21 of total precipi-
tation, and the rainiest month is November with a monthly mean
of 1.1 mmmonth21 (Fig. 3).

About the types of clouds in Lima, stratiform clouds are
the main type of cloudiness in Lima and are responsible for
the drizzle. They present in a saturated layer whose position
varies along the year. This layer is limited below by the level
of condensation and above by the base of the subsidence in-
version (Pinche Laurre 1986), which is higher in the winter
than in the summer Prohaska (1973). According to Albrecht
(1981) and Arellano Rojas (2013), the inversion is strongest
and most persistent during the austral winter with an aver-
age base height of ;700 m MSL and a bit weaker and shal-
lower during the fall, with a base pressure of around 350 m
MSL (Fig. 4).

On the other hand, rain in Lima is generated by the horizon-
tal advection of moisture and cloudiness from the eastern Cor-
dillera to the medium and high atmosphere of the occidental
highlands. Additionally, the convergence with the mountains

FIG. 1. Main large-scale variables considered by the SENAMHI meteorologists for the
temperature forecast on the central Peruvian coast. Sea surface temperature (SST; 8C;
shaded), the SEPA denoted by the “H” at the surface, wind at 850–900 hPa (U850–900),
wind at 950–1000 hPa (U950–1000), the Bolivian high (BH), and cutoff low (CL).
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of the low-level westerlies may help the triggering of convec-
tion by orographic lifting over the western slope of the Andes
(Takahashi 2004). Many times, these westerlies are associated
with a sea breeze, that is stronger in austral summer (Enfield
1981), or to synoptic winds. This concept changes a bit from
what was said by Prohaska (1973), that the occasional light
rainfalls in summer over Lima are mostly not of Pacific origin

but are a spillover of the intense precipitation in the Andes
and the Amazonian watershed.

d. Temperature variations in Lima

The daily temperature variation in Lima is normally
slight (around 18C), which makes the use of the previous
day’s temperature (persistence) a useful method in most

FIG. 2. Spatial locations of 10 stations on the central Peruvian coast (red points) and selected area for large-scale predictors (red box).

FIG. 3. Monthly climatology of temperature (lines) and precipitation (bars) at the La Molina
and Callao stations. The precipitation between April and October represents drizzle, and
between November and March, it represents rain.
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daily forecasts; however, there are some situations in which
there are very marked anomalies of the synoptic systems or the
presence of mesoscale systems that generate a sudden variation
in temperature from one day to the next. One of these meso-
scale systems is the low-level cyclonic vortex (VCNB, for its
acronym in Spanish) which we will describe later.

The objective of this article is to detect, through an auto-
mated empirical forecast, these sudden changes in temperature
from one day to the next.

2. Data and methodology

a. Data

1) OPERATIONAL FORECAST DATA

In this study, in order to evaluate the performance of the
operational forecast, we use the daily forecast data made
by SENAMHI for 10 localities: Callao, Pisco, Huarmey, Para-
monga, Fonagro Chincha, and Alcantarilla for the west zone,
and La Molina, Buena Vista, Socsi Cañete, and Huayan for
the east zone, for 1–3-day leads. This forecast is submitted
and published on the SENAMHI web page (https://www.
senamhi.gob.pe/?p=pronostico-meteorologico) every day at
1900 local time (LT). It is based on the expert analysis by
the forecaster, which considers the atmospheric patterns
and their behavior predicted by numerical models, station
data, soundings, and satellite imagery.

2) ETA—SENAMHI MODEL

The ETA model has been widely used as a weather fore-
casting tool at NCEP and at other national services and re-
search institutions (Janjić 1984; Mesinger 1984; Mesinger et al.
1988; Black 1994). At SENAMHI, it has been run operation-
ally with the current configuration since 2009, in support of
weather forecasts. It has two domains with grid spacings of
32 km (ETA32) and 22 km (ETA22), and both of them pro-
vide forecasts at 6-h temporal resolution. The 32-km domain

covers the South America region and has 50 vertical levels, and
the 22-km is a domain that covers Peru and has 38 pressure
levels. The physical parameterization schemes used in these
domains include the Kain–Fritsch cumulus parameterization
scheme, the Mellor–Yamada 2.5 planetary boundary layer
(PBL) scheme, and the Geophysical Fluid Dynamics Labora-
tory (GFDL) radiation scheme. The model is initialized daily
at 0000 UTC and the data from the Global Forecast System
(GFS) model are used as lateral boundary conditions. In this
study, we used temperature at 2 m from the ETA22 model
data (1200 and 1800 UTC).

3) OBSERVATIONAL DATA

Daily maximum and minimum temperatures registered from
January 2000 to January 2019 at the representative meteorolog-
ical stations for the 10 forecast points of the central coast of
Peru (Fig. 2) were selected and used. We also considered
specific humidity from all stations except in Callao and Pisco
(according to availability).

For the period from 2000 to 2019, daily temperature series
from 10 stations along the central coast of Peru were carefully
selected and quality controlled. A quality control software
developed at SENAMHI was employed in combination
with a visual inspection to identify and remove measure-
ment errors. Additionally, these time series were homoge-
nous and had sufficient data, with less than 30% of daily
missing values.

4) REANALYSIS DATA

We employed daily SST and mean sea level pressure, wind,
temperature, and relative humidity at different pressure levels
for 0000, 0600, 1200, and 1800 UTC as potential predictors
(Table 1) from ERA5 reanalysis. This dataset has global
gridded information on 37 pressure levels (from 1000 to 1 hPa)
and the surface with 0.258 3 0.258 spatial resolution, hourly, and
from 1979 to the present.

FIG. 4. Monthly variability of the thermal inversion layer in Lima. Gray and green lines repre-
sent the altitude of the Callao and La Molina stations, respectively. The top and the base of the
inversion layer are shown in orange and blue, respectively. Adapted from Arellano Rojas (2013).
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b. Methodology

1) DATA FILTERING

Since our main purpose is to evaluate and improve the daily
forecast, it is important to improve the accuracy in forecasting
the high-frequency variability. To do this, an eighth-order But-
terworth low-pass filter using a cutoff period of 60 days was first
applied to remove the seasonal and lower-frequency variability
of all datasets.

2) IDENTIFICATION OF POTENTIAL PREDICTORS

The procedure to identify and select the predictors from
the large-scale atmospheric variables is as follows (Fig. 5).
We first calculated the daily correlation between the high-
pass-filtered series of predictands (T′pred) and the potential
large-scale predictors (X′) (Table 1). Then we constructed
potential predictor indices from the spatial average of the
atmospheric fields over the areas that had the highest corre-
lations and that were physically related to the atmospheric
circulation of the Peruvian central coast.

Additionally, we considered the previous day (persistence)
high-pass filtered station temperatures (T′ obs

t21 ) in the predictor
suite.

For Tmin La Molina we also considered the station specific
humidity from the previous night (q′ obst21 ) as a potential predic-
tor, which was motivated by a prior exploratory statistical
analysis that showed a high positive correlation (Fig. S1).

3) SELECTION OF PREDICTORS

To select the best sets of predictors, we established a Pearson
correlation matrix between the potential predictor indices, and
selected only those with a correlation less than 0.5 with the rest
to avoid multicollinearity. With this, we removed highly corre-
lated potential predictors.

Then, to select the best model of predictors for each predic-
tand, we used the cross-validation method (Wilks 2006). For
that, we divided the data in subsets to develop the empirical
models, considering this formulation:

T′pred
t 5 boT

′ obs
t21 1 ∑

N

i51
biX

′
i,t, (1)

where Tt is the temperature for the time t, Xi,t is the large-scale
predictor, N is the total number of large-scale predictors, and

b are the parameters for the regression model. The “pred” and
“obs” terms represent the predicted and observed temperature,
respectively, in Eq. (1). It is important to mention that the prime
symbol (′) in the variables means the high-frequency component.

After this, we divided the observations randomly into k
groups of approximately the same size. Next, an iterative pro-
cess began with k cycles in which

• The best model for each size (1 predictor, 2 predictors, … ,
n predictors) was identified using as a training set| the obser-
vations of all k groups except one and evaluating them ac-
cording to the lowest residual sum of squares (RSS).

• We estimated the test error and stored it for each of the se-
lected models using the observations of the group that was
excluded in the previous step.

• We repeated the process k times, excluding a different group
from the training set in each iteration.

• We calculated the average of the k test errors [mean squared
error (MSE)] for each model size. This average value is known
as the mean cross-validation test error estimate (lower values
indicate better predictive accuracy).

• We identified the model size that achieves the smallest mean
cross-validation test error. But, according to the principle of
parsimony, if several models have similar test cross-validation
error values, the simplest of them (fewer predictors) should
be chosen.

4) DESIGN OF THE EMPIRICAL FORECAST MODEL

The empirical forecast model (EMP) is based on multiple lin-
ear regression. The model was fitted for every season separately
(DJF, MAM, JJA, SON). Based on the available observed
data, we considered 2000–13 as the calibration period, and
2014–19 as the validation period, for all cases.

For minimum temperature, we considered an alternative
formulation of the model (EMPq) that includes the specific
humidity observed during the previous night (1900 LT) as a
predictor. Although most of the selected stations had humidity
data in the period 2000–19, some key stations such as Callao
and Pisco did not have this data, so for consistency we consid-
ered 2010–13 for the calibration of the EMPq models.

We used the same equation and predictors of LaMolina for the
other points located in the eastern zone (Buena Vista, Socsi
Cañete, and Huayan), and the same equation and predictors of
Callao for the points located in thewestern zone (Pisco,Huarmey,

TABLE 1. Predictors identified after correlation matrix analysis and forward selection. PersTmax: maximum temperature value
of the previous day; PersTmin: minimum temperature value of the previous day; PersQ: specific humidity value of the previous
night; V1000_00z: meridional wind at the 1000-hPa isobaric level at 0000 UTC; T850_00z: temperature at the 850-hPa isobaric
level at 0000 UTC; T925_18z: temperature at the 925-hPa isobaric level at 1800 UTC; Q1000_00z: specific humidity at the 1000-hPa
isobaric level at 0000 UTC.

Predictand Selected predictors Calibration period Validation period

Tmax-Callao PersTmax, V1000_00z, T850_00z 2000–13 2014–19
Tmin-Callao PersTmin, Q1000_00z, V1000_00z 2000–13 2014–19
Tmax-La Molina PersTmax, T925_18z, V1000_00z 2000–13 2014–19
Tmin-La Molina (EMP) PersTmin, Q1000_00z 2000–13 2014–19
Tmin-La Molina (EMPq) PersTmin, PersQ 2010–13 2014–19
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Paramonga, Fonagro Chincha, and Alcantarilla). According to
our experience in forecasting, the effect of synoptic variables on
the Peruvian central coast is similar across the board; however,
there is a marked difference between the west coast and the east
coast, due to the location of the thermal inversion layer, which
has a greater effect in thewest and less in the east.

5) VERIFICATION OF FORECASTS

In total, we evaluated five forecast sets of Tmin and Tmax in
Callao and LaMolina: 1) the operational forecast of SENAMHI
(operational), 2) numerical weather prediction using the operational

ETA22 model (ETA22), 3) persistence of the previous day
(Pers1d), 4) persistence using the mean of the previous 3 days
(Pers3d), and 5) the empirical model (EM).

The skill scores used were the Pearson correlation and
root-mean-squared error (RMSE).

3. Results

a. Identification of potential predictors

The annual mean of the daily spatial correlation maps
between the potential predictor atmospheric variable fields

FIG. 5. Diagram of the methodology to selection of predictors and design of the empirical
temperature forecast model.
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(Table S1 in the online supplemental material) and the station
temperatures with the highest correlations are shown in Fig. 6.
In general, Tmax has a negative correlation with meridional
wind at 1000 hPa (V1000) and temperature at 850 hPa (T850)
off the Peruvian coast, and with mean sea level pressure
(MSLP) and meridional wind at 600 hPa (V600) over the Pa-
cific off the Chilean coast; it has a positive correlation with
temperature at 925 hPa (T925), zonal wind at 925 hPa (U925),
and with specific humidity at 850 hPa (Q850) off the Peruvian
coast. On the other hand, Tmin has lower values of correlation
than Tmax, showing a positive correlation with specific humid-
ity at 1000 hPa (Q1000), temperature at 1000 hPa (T1000),
U925, and specific humidity at 600 hPa (Q600); it has a nega-
tive correlation with V1000 and T850 off the Peruvian coast,
and meridional wind at 600 hPa (V600) and 200 hPa (V200)
over the Pacific off the Chilean coast.

These relationships show why higher maximum temperatures
in Lima are associated with high specific humidity and high tem-
perature at low levels near the coast (Q850 and T925), as well
as with weak southerly trade winds along the coast of Peru
(V1000), which is related to a weakened SEPA (MSLP). The
positive correlation between U925 and Tmax reflects the anti-
clockwise circulation over the Pacific associated with the SEPA,
which is observed in the negative correlation with V1000. That
is, if the easterly wind in the Pacific at low levels intensifies, the
southern winds at low levels also intensify, and therefore the
Tmax decreases.

On the other hand, higher minimum temperatures are associ-
ated with high specific humidity at medium and low levels
(Q600 and Q1000), and high temperature at low levels (T1000)
close to the coast. This happens because higher midlevel humid-
ity triggers more midlevel clouds in the east zone of Lima, and
so, the heat stored during the day is not lost at night and the
minimum temperature increases. Furthermore, higher humidity
and temperature in low levels mean increased Tmin.

The indirect relationship between the Tmin and T850 can be
explained by the dynamically heated layer above the marine
layer (Prohaska 1973), which is warmer if the subsidence is
larger and, for that, the inversion is more intense and the tem-
perature over the surface is cooler. On the other hand, the me-
ridional wind at medium (V600) and high levels (V200) near the
Chilean coast would reflect the formation of troughs or COLs
with cyclonic circulation and that would generate an increase of
both Tmin and Tmax.

The annual mean of the daily spatial correlation maps show
that the lowest correlation corresponds to austral winter
(JJA) and the highest correlation are in summer (DJF) and
fall (MAM) in all the cases (Figs. S2–S5).

After a spatial correlation, we added local variables of a pre-
vious day, which were called persistence. Thus, we had in total
five predictors for Tmin in Callao, six for Tmax in Callao, eight
for Tmin in La Molina, and seven predictors for Tmax in La
Molina (Table S2).

b. Selection of predictors

After the Pearson correlation matrix, with which we removed
highly correlated potential predictors (Fig. S5); we applied the

cross-validation method, with which we identified the smallest
model size that has the smallest mean cross-validation test er-
ror. In Fig. 7 we show the better model size selected in each
case (red point), and the predictors in each size were selected
according to the lowest RSS considering all observations. The
results of selected predictors for each predictand are in Table 1.

c. Empirical forecast model

The proposed empirical forecast models are defined as
follows:

Tpred
t 5 bo 1 b1T

′obs
t21 1 ∑

N

i51
bi11X

′
i,t 1 T

obs
t , (2)

Tpred
t 5 bo 1 b1T

′obs
t21 1 b2q

′obs
t21 1 ∑

N

i51
bi12X

′
i,t 1 T

obs
t , (3)

where Tt is the temperature for the time t, Xt is the large-scale
predictor i, N is the total number of large-scale predictors,
and b are the parameters for the regression model. The over-
bar in Eqs. (2) and (3) indicates the low-frequency signal of
the variable and the prime (′) indicates the high-frequency
signal. The second regression model in Eq. (3) has the predic-
tor qt21, which is the specific humidity of the previous night
and was used only for the minimum temperature of La
Molina.

To have empirical models for 2- and 3-day lead forecasts,
additional calibrations were performed considering the same
predictors for day t 2 1 but using the observed temperatures
for days t1 1 and t1 2 as predictands.

d. Forecast verification

Results of the empirical model, as well as of the other types
of forecasts, were contrasted against the observed data be-
tween 2014 and 2019. Figures 8–11 show Pearson correlation
and RMSE results between the high-frequency of all forecasts
and the observed data at the annual and seasonal scale.

In most cases, the forecasts based on the empirical model
present the highest correlations followed by the Pers1d fore-
cast and the lowest correlations are found for the ETA22
forecast. Therefore, it is possible that persistence performs
better than the SENAMHI forecast. At the seasonal level,
correlations in austral autumn are higher for all cases and the
lowest correlation results are found in austral winter.

Correlations between the empirical model and the observed
data are acceptable for both Tmax and Tmin (Figs. 8 and 9).
The correlations between the observed and predicted high-
frequency series of Tmax are in the range of 0.38–0.53 for
the empirical model, while the correlations with the opera-
tional forecast show values between 0.02 and 0.21. In the case
of Tmin, correlations are in the range of 0.28–0.52 for the em-
pirical model. However, the performance improves notably
with EMPq in the majority of the stations. A possible explana-
tion for this improvement is that some stations such as La
Molina are further from the sea and surrounded by hills. As a
consequence, the daily Tmin could be more associated with
local-scale factors, such as geography and specific humidity.
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FIG. 6. Annual correlation maps between the station (dot) temperature and the large-scale variables. Seasonal and
lower-frequency variabilities were removed in all datasets.
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An analysis of correlation between the Tminobs and the Qobs

at 1900 LT of the previous day in La Molina (Fig. S1) suggests
that lower Tmin values are associated with drier local conditions.
This kind of analysis might be relevant to select local-scale pre-
dictors which could contribute to the skill of empirical models.

Results of RMSE show that EMP has smaller errors than the
ETA22. In general, forecasts based on empirical models for La
Molina present larger errors compared to Callao. Meanwhile
Tmax presents the largest errors of any variable in both stations
(values of RMSE greater than 0.768C), with La Molina having
the most remarkable errors for EMP (Fig. 10). In contrast,

Tmin shows a slight improvement in La Molina for EMPq. In
the case of Callao, the Tmin has the smallest errors (Fig. 11).

Figure 12 presents results of correlation and RMSE for the
forecasts of days t, t 1 1, and t 1 2. For the empirical model,
correlations decline for days t 1 1 and t 1 2 but these are still
higher than the other forecasts. The ETA22 model has the
lowest correlations for day t but maintains its performance for
days t 1 1 and t 1 2, being superior to the persistence and op-
erational forecast on those lead times. Regarding the RMSE,
results indicate increases for days t 1 1 and t 1 2 in most of
the forecasts. The empirical model presents the lowest RMSE

FIG. 7. Mean cross-validation error for different model sizes (number of predictors) for each predictand, using data of
the calibration period. Selected model sizes are in red.
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values in all cases, while the ETA22 model has the highest
values in most cases. The largest errors are seen for Tmax-La
Molina which are above 1.48C, while Tmin-Callao presents
the lowest values which are in the range of 0.68–1.08C.

To evaluate the improvement of the empirical model against
the SENAMHI operational forecast of daily temperatures in La

Molina and Callao, Fig. 13 clearly shows the largest errors in the
operational forecast.

4. Discussion

Empirical models were developed for 1–3-day lead forecasts
of maximum and minimum temperature for two locations in
the city of Lima (central coast of Peru at 128S), and the results

FIG. 8. Annual Pearson correlations between observed maxi-
mum temperatures and the results of forecast methods (x axis) for
10 stations (y axis) using data of validation period. Seasonal and
lower-frequency variabilities were removed in all datasets.

FIG. 10. As in Fig. 8, but for RMSE.

FIG. 11. As in Fig. 9, but for RMSE.FIG. 9. As in Fig. 8, but for minimum temperature.
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were compared with the operational forecasts issued by the
National Meteorological and Hydrological Service}SENAMHI
and the output of the operational regional numerical atmospheric
model (ETA22) of SENAMHI.

The results of the empirical model have better results with the
highest Pearson correlations and the lowest RMSE values for all
predictands: Tmax-Callao, Tmin-Callao, Tmax-La Molina, and
Tmin-La Molina (EMP and EMPq), showing a correct selection
of both atmospheric and local predictors.

Results of high-frequency correlation coefficients and root-
mean-square error reveal the empirical models have the best
performances compared to the operational forecast and numer-
ical model. The highest annual correlations for the 1-lead day
operational forecast were obtained by the empirical model with
values of around 0.38–0.53 for Tmax and 0.28–0.52 for Tmin.
Annual values of RMSE are smaller with the empirical models,

around 0.768–1.768C and 0.578–1.698C for Tmax and Tmin, re-
spectively. The skill of the model is lower in the austral winter,
which would indicate the low contribution of large-scale predic-
tors during this period. Therefore, it is necessary to consider more
local-scale predictors that could better contribute to the forecast.
For example, the observed specific humidity was considered as a
local scale predictor. As a result of this, the performance of the
empirical model improved substantially in all seasons and espe-
cially in austral winter. We observed that the empirical forecast,
on average for the 10 forecast points, considering the specific
humidity as a predictor, improves by 47% compared to the opera-
tional forecast of SENAMHI, and by 5%, compared to the em-
pirical forecast without considering the specific humidity.

On the other hand, the performance of the empirical models de-
clines as lead time increases; however, it is still more skillful than the
other forecasts. Although the decreases in correlations and increases

FIG. 12. (left) Correlation and (right) RMSE between observed temperature and the five forecast methods for
1–3-day lead forecast.
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in RMSE for the 2- and 3-day forecast suggest a decline in
performance of the empirical model, it is still more skillful
than the other forecasts. Furthermore, it should be noted that
large-scale predictors for day 1 were maintained, but these
results could be improved if numerical forecasts for 2–3-day
lead, for example from the NOAA Global Forecast System
(GFS), were used for the large-scale predictors in the empi-
rical model, i.e., applying the model output statistics (MOS;
Glahn and Lowry 1972) approach, in which large-scale predic-
tors from models such as the GFS will be tested as predictors in
order to improve the accuracy of these forecasts.

Apart from the analyzed predictors, the weather forecasters
state that cloud cover affects the behavior of temperatures,
mainly in the eastern part of the Peruvian coast. A cloudy day
means lower maximum temperature, due to less shortwave ra-
diation reaching the surface; in contrast, a clear night means
lower minimum temperature, due to the rapid loss of heat
gained during the day.

Just as there are cases in which the empirical model is much
better than the operational forecast, there are situations in which

neither of them performs well, generating an error of more than
38C in both cases (Fig. 14). In 33% of these cases, a low-level cy-
clonic vortex (VCNB) (SENAMHI 2021) occurs, such as the
one that formed on 24 December 2018 (Fig. 15), which gener-
ated cloudy coverage throughout the day and generated an error
in the forecast of Tmax of 6.68 and 4.48C, for the operational and
empirical model, respectively, in La Molina.

As long as the VCNB generates a layer of clouds in the coastal
strip of central Peru, regardless of where its core is located, fore-
cast temperatures will be overestimated, such as what happened
on 24 December 2018 (Fig. 15). On the other hand, there are iso-
lated situations in which the formation of the vortex makes it
possible to clear the central coastal strip and generates
an underestimation of the forecast, such as what happened on
17 September 2016 and 25 June 2018 (Fig. 14).

This vortex is a mesoscale system formed by the low-level
confluence of south and north winds over the coast of Lima,
and it is possible that the topography of the central coast of
Peru is responsible for the formation of this vortex; it is typi-
cally found between May and December. We recommend

FIG. 13. Daily variation of the errors of SENAMHI operational forecast (blue) and of the empirical model (red) from January 2014
to January 2019.
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deepening the studies in this regard, considering the auto-
matic identification of VCNB.

The ETA-SENAMHI model is capable of simulating the oc-
currence of low-level cyclonic vortex events. One perspective
emerging from this research is to perform numerical model ex-
periments at finer resolutions in order to improve pattern simu-
lation accuracy.

On the other hand, Fig. 14 shows that in 67% of cases where
the error is greater than 38C in both cases (operational forecast
and empirical model) do not correspond to the presence of the
VCNB, and instead, we found that the anomalies of 1000-hPa

wind parallel to the Peruvian coast in the most extreme cases,
where the absolute error is greater 58C, were more intense
from the north (underestimation) or south (overestimation).
The meaning of this finding could be the objective of a future
study.

5. Conclusions

Empirical models were developed for 1–3-day lead forecasts
of maximum and minimum temperature for 10 locations in the
city of Lima (central coast of Peru at 128S), and the results were

FIG. 14. Dates with errors of more than 38C, both in the empirical model and the operational forecast for the valida-
tion period. Orange colors indicate underestimation of the observed temperature; blue colors indicate overestimation
of the observed temperature. Dates marked in purple represent days with identified VCNBs.
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compared with the operational forecasts issued by the National
Meteorological and Hydrological Service}SENAMHI and the
output of the operational regional numerical atmospheric
model (ETA22) of SENAMHI.

The empirical model has better results with the highest
Pearson correlations and the lowest RMSE values for all pre-
dictands, showing a correct selection of both atmospheric and
local predictors.
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