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A B S T R A C T   

Study region: A total of 11,913 sub-catchments in Peru and transboundary catchments with 
neighboring countries in South America. 
Study focus: This paper aims to develop a national hydrological model using physiographic and 
climatic characteristics to identify donor and receptor sub-catchments (sub-zones). Therefore, we 
use the hydrometeorological PISCO dataset (0.1º x 0.1º) to drive a sub-catchment conceptual 
rainfall-runoff (ARNO/VIC) model and a river-routing (RAPID) model in thousands of river 
reaches. We identify 43 hydrological zones (with 122 sub-zones) to run the hybrid hydrological 
modeling framework (ARNO/VIC+RAPID) with previously calibrated and validated parameters 
with 43 fluviometric stations for 1981–2020. Simulated flow series show a higher performance at 
daily scale (KGE ≥ 0.75, NSEsqrt ≥ 0.65, MARE ≤ 1, and − 25% ≤ PBIAS ≤ 25%) for catchments 
located at the Pacific coast and the Andes-Amazon transition, and good representation (R≥0.75) 
of seasonal and interannual variability. 
New hydrological insights for the region: Increasing hydrological hazards such as floods highlight the 
importance of a systematic hydrological analysis and modeling at national level in gauged and 
ungauged catchments in Peru. This study introduces a new hydrological dataset of simulated 
daily flow series. The results are helpful for short-term flood risk scenario simulations and long- 
term water resource planning as the outcomes can provide valuable information for hydrologists 
and water resource managers in Peruvian regions with limited or no access to in-situ networks.   

1. Introduction 

Hydrological models represent an important alternative to provide spatially continuous water discharge simulations across large- 
scale domains (Zink et al., 2017) and provide valuable information on hydrological risk even in areas with limited ground observation 
data (Llauca et al., 2021a). Global hydrological models (GHMs) have been used in a wide range of applications such as the global 
reconstruction of naturalized river flow (Lin et al., 2019), flood forecasting (Lavers et al., 2019), climate change assessment (Hat-
termann et al., 2017), global water economy (Dolan et al., 2021) and ecosystem services (Janse et al., 2019). The implementation of 
GHMs has increased significatively since the explosion of global data availability from satellites in the last decades (Tang et al., 2009). 
Sood and Smakhtin (2015) suggest that GHMs should not aim to replace more locally focused modeling efforts where finer spatial 
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resolutions are needed. In that sense, national hydrological models (NHMs) are becoming an increasingly popular tool for providing 
information not only in gauged locations but also all ungauged river reaches. For instance, NHMs are currently applied for seasonal 
water forecasts in Sweden (Girons Lopez et al., 2021), climate change impacts on peak river flows in Great Britain (Kay et al., 2021), 
and assessing the risk of floods and droughts in New Zealand (McMillan et al., 2016). In Peru, the increasing hydrological risks (Huggel 
et al., 2015) and water use put pressure on water resources (Drenkhan et al., 2015) - combined with the larger country size (1,285,220 
km2), low density of fluviometric stations, and short flow data records (Llauca et al., 2021b) - have prompted hydrologists and decision 
makers to extend efforts for more systematic and nationwide water resource analyses. 

National scale modeling requires dealing with its own challenges. McMillan et al. (2016) mention that national model input data 
will depend on the country size, climate variability, and catchment characteristics. In a data scarcity context, many river reaches are 
poorly gauged or lack any observations and continuous flow data records are often economically and logistically unfeasible (Vereecken 
et al., 2008). 

Many of NHMs applications use physically-based and high-resolution hydrological models (e.g., WEP-CN, VIC, MIKE SHE, WRF- 
Hydro) that require a large number of inputs at huge computational costs (Rodriguez and Tomasella, 2016). Contrariwise, some 
studies in Peru (Lavado Casimiro et al., 2011; Llauca et al., 2021b; Saavedra et al., 2021) have shown that conceptual hydrological 
models such as the Framework for Understanding Structural Errors (Clark et al., 2008) and the Génie Rural rainfall-runoff models 
(Mouelhi et al., 2006) are also capable to adequately represent hydrological processes in catchments with different characteristic. The 
application of conceptual rainfall-runoff models in large-scale domains needs to be linked to river-routing models such as RAPID 
(David et al., 2011b), HYPERstream (Piccolroaz et al., 2016), mizuRoute (Mizukami et al., 2016) and others, to simultaneously 
compute water discharges in thousands of river reaches as is shown in Lin et al. (2019). In that sense, a hybrid modeling framework 
combining rainfall-runoff and river-routing models represents a low-resource alternative for operational national daily streamflow 
simulation in data-scarce countries such as Peru. 

Parameter selection for a national model requires procedures that can be applied to many catchments and ungauged catchments. 
The central premise is searching for similarities between catchments to identify homogeneous hydrological areas (Song and James, 
1992). A first way to deal with the extrapolation of hydrological information from a gauged catchment (donor) to an ungauged one 
(receptor) is by employing the spatial proximity criteria (Pagliero et al., 2014) where model parameters are transferred from a 
neighbor gauged catchment. Recent studies have introduced other methods for hydrological regionalization in large-scale hydrological 
models. For instance, (Beck et al., 2020) use the dissimilarity concept for transferring model parameters from donor to receptor 

Fig. 1. (a) Study domain boundaries that consider all catchments in the Pacific, Atlantic, and Titicaca slopes in Peru, and transboundary catchments 
with neighbors’ countries. Fluviometric stations are shown on the map as black dots. Zoom-in panels show (b) detail of sub-catchments employed for 
rainfall-runoff modeling, and (c) the river network used for river routing modeling. 
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catchments in a global model. Narbondo et al. (2020) apply a physical-based approach using the Richards-Baker Flashiness index to 
predict runoff in ungauged catchments. Rau et al. (2019) use the empirical relationship between geomorphological characteristics and 
conceptual model parameters. Pagliero et al. (2019) incorporate a partial least squares regression and clustering analysis for hydro-
logical regionalization. Kratzert et al. (2019) apply the Entity-Aware Long Short-Term Memory (EA LSTM) network for regional 
rainfall-runoff modeling and Bock et al. (2016) use the sensitivity analysis of the rainfall-runoff and runoff variability indices to 
identify national hydrological calibration zones. 

This study aims to develop a national hydrological model to investigate the following research questions: (a) how can similarity- 
based regionalization help to implement hydrological models in a data-scarce country?; (b) how can available national datasets be 
applied to simulate daily flow series in thousands of river reaches simultaneously?; (c) how does the national hydrological model 
perform in Peruvian catchments with different characteristics? For this purpose, we use cluster and dissimilarity approaches to identify 
pairs of donor and receptor sub-catchments across entire Peru. Furthermore, gridded meteorological datasets are used to drive a hybrid 
hydrological framework that combines a conceptual rainfall-runoff model and a river-routing model. Finally, we introduced a new 
hydrological dataset of daily flow series in 11913 river reaches in Peru. This new dataset is helpful for short-term flood risk scenario 
simulations and long-term water resource planning as the outcomes can provide valuable information for hydrologists and water 
resource managers in Peruvian regions with limited or no access to in-situ networks. 

2. Data and methods 

2.1. Study domain 

Peru is located in Northwest South America. The Andes mountain range creates a complex topography and determines hydro-
climatic variability along three main drainages: the Pacific, Atlantic, and Titicaca (Fig. 1). The Peruvian National Water Agency reports 
that the Pacific, Titicaca and Amazon drainages represent, respectively, 21.7%, 3.8% and 74.5% of the Peruvian territory. However, 
the accessibility of freshwater resources in Peru is the converse of population density; 88% of the population lives along the Pacific 
coast, around Titicaca and in the Andean zones of the Amazon basin, where only 2% of the freshwater resources are available (Lavado 
Casimiro et al., 2012). 

Peruvian hydroclimatology is influenced by the disruption of the large-scale circulation patterns caused by the Andes cordillera, the 
contrasting oceanic boundary conditions and the landmass distribution (Garreaud et al., 2009). Atmospheric moisture from the 
Atlantic ascends the Andean slope and leads to high orographic rainfall rates over the eastern divide (Amazon) (Lavado Casimiro et al., 
2011). Contrary, the weak rainfall along the Pacific coast (western divide) is related to the large-scale mid-tropospheric subsidence 
over the southeastern subtropical Pacific Ocean, enhanced by the coastal upwelling of cold water (Lavado Casimiro et al., 2012). 
Rainfall is highly variable in both space and time, arid conditions with low rainfall rates characterize coastal areas on the Pacific slopes 
(<~150 mm/year) while semi-arid conditions (<~400 mm/year) prevail in the western flanks of the Andes (Rau et al., 2019). The 
Atlantic and Titicaca divides are characterized by humid and semi-arid conditions, respectively, with high rainfall rates over the 
eastern Andean slopes (~1100 mm/year), at the Andes–Amazon transition (~3200 mm/year), and in the Amazon basin 
(~2550 mm/year) (Aybar et al., 2020). 

According to Lavado-Casimiro (2013), the rivers in the Pacific divide are characterized by steep slopes, they are not very long, and 
their rainfall and discharge peaks occur simultaneously. The rivers in Amazon divide are characterized by steep slopes in the Andes and 
near-zero slopes in the Amazon lowlands. The rainfall peaks occur two months before the discharge peaks in the Amazon plains and 
simultaneously in the Andes. The Titicaca endorheic drainage is characterized by mean slopes, and because it is in the highlands, the 
average response between rainfall and discharge peaks is one month. 

The study domain includes transboundary catchments shared with Ecuador, Colombia, and Brazil, with an approximate total 
drainage area of 1,480,620 km2 (Fig. 1). Given that the success of a similarity-based regionalization approach depends on the use of a 
large and highly diverse set of catchments (Beck et al., 2020), the study domain was divided into 11,913 sub-catchments with a mean 
size of 120 km2, following the same river network as the GEOGloWS ECMWF streamflow services (Sanchez Lozano et al., 2021). This 
spatial discretization considers a unique river stream per sub-catchment to compute water discharge. All catchments in the study 
domain - and its sub-catchments - were previously classified as gauged (73%) and ungauged (27%), considering the 43 fluviometric 
stations displayed in Fig. 1a. 

2.2. Data collection 

2.2.1. The PISCO dataset 
The Peruvian Interpolated data of the SENAMHI’s Climatological and hydrological Observations (PISCO) is a hydrometeorological 

dataset developed for the Peruvian territory, including transboundary catchments. It contains gridded sub-products of precipitation 
(P), air temperature (TA), and potential evapotranspiration (PET), with a 0.1º spatial resolution at daily and monthly time steps. 
Recently, Llauca et al. (2021b) incorporated a new sub-product of monthly streamflow simulations at the national level (PISCO_-
HyM_GR2M) in a vector river flowline format. The PISCO dataset has been widely used in recent studies to assess the hydrological 
processes in Peruvian catchments (Asurza-Véliz and Lavado-Casimiro, 2020; Fernandez-Palomino et al., 2021; Saavedra et al., 2021). 

The PISCOP,TA,PET sub-products are available from 1981 to 2016 (stable versions). However, an unstable version only for PISCOP is 
available from 1981 to the present, and it is daily updated for SENAMHI’s operational purposes. PISCOP (Aybar et al., 2020) is 
generated by using geostatistical and deterministic methods that include three precipitation sources: (a) the quality-controlled 
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national rain gauge dataset, (b) radar-gauge merged precipitation climatologies, and (c) the Climate Hazards Group Infrared Pre-
cipitation (CHIRP) estimates. Similarly, PISCOTA is obtained from: a) time series of maximum and minimum air temperature data, (b) a 
soil temperature product from the MODIS sensor (Moderate Resolution Imaging Spectroradiometer), and (c) geographic predictors (e. 
g., elevation, longitude, latitude and Topographic Dissection Index). PISCOPET is generated from the previous PISCOTA data following 
the methodology proposed by Hargreaves and Samani (1985). The PISCO dataset is freely available on the IRI Data Library website: 
http://iridl.ldeo.columbia.edu/SOURCES/. SENAMHI/. HSR/. PISCO. 

In this study, and for operational purposes, the mean-areal values of P and PET were calculated for each sub-catchment from 1 
January 1981–31 March 2020. The PISCOP unstable version was selected to extend the data baseline beyond 2016. At the same time, 
we used only daily climatological values of PISCOPET due to the lack of an unstable version similar to PISCOP. 

2.2.2. Discharge data 
The observed daily flow series of 43 fluviometric stations were selected from the common period of 1 January 1981–31 March 

2020. A total of 79% of the stations belong to the National Service of Meteorology and Hydrology of Peru (SENAMHI, https://www. 
gob.pe/senamhi). Precisely, in the Amazon region (Atlantic slope), most of the stations are monitored by the SENAMHI and by the 
French Institute for Sustainable Development (IRD) in the framework of the HYBAM Project (https://hybam.obs-mip.fr/). The detail of 
selected stations is summarized in Table 1, and their spatial distribution is shown in Fig. 1a. The selection processes consider: (a) daily 
flows series with quality control, (b) fluviometric stations with at least 40% (15 years) of record length for period 1981–2020; (c) 
streamflow gauges with stage-discharge rating curves with at least 10 streamflow measurements per year and distributed during dry 
and wet periods; and (d) stations strategically located in river streams with major drainage areas that are used for hydrologic 

Table 1 
Fluviometric stations selected for hydrological modeling at the national level. Coverage of flow data records [%] is considered from 1 January 
1981–31 March 2020.  

Slope Station Abrev. Latitude [º] Longitude [º] Catchment Total drainage area [km2] Coverage [%] 

Pacific El Tigre ETI -3.77 -80.46 Tumbes  4781.57  97.70 
El Ciruelo ECI -4.30 -80.15 Chira  7014.84  98.00 
Pte. Sanchez Cerro PSC -5.19 -80.62 Piura  7519.99  49.00 
Racarumi RRI -6.63 -79.32 Lambayeque  2439.92  99.80 
Salinar SAL -7.66 -78.96 Chicama  3660.22  92.50 
Condorcerro CCO -8.66 -78.26 Santa  10,382.31  98.70 
Malvados MAL -10.34 -77.63 Fortaleza  1393.97  31.00 
Santo Domingo SDO -11.38 -77.05 Chancay-Huaral  1850.99  66.20 
Obrajillo OBR -11.45 -76.62 Chillón  786.00  59.00 
Chosica CHO -11.93 -76.69 Rímac  2307.22  55.00 
Socsi SOC -13.03 -76.20 Cañete  5926.31  93.30 
Letrayoc LET -13.64 -75.72 Pisco  3089.68  89.10 
Huatiapa HUA -16.01 -72.48 Camaná  13,220.59  45.40 
Pte. Ocoña POC -16.42 -73.12 Ocoña  15,369.27  34.10 
Pte. Santa Rosa PSR -17.03 -71.69 Tambo  13,083.31  92.50 

Titicaca Pte. Huancané HNE -15.22 -69.79 Huancané  3388.79  79.90 
Pte. Ramis RAM -15.26 -69.87 Intercuenca Ramis  14,856.33  72.90 
Pte. Unocolla COA -15.45 -70.19 Coata  4448.09  74.90 
Pte. Ilave ILA -16.09 -69.63 Ilave  7623.49  72.70 

Atlantic Napo NAP -0.92 -75.40 Napo  27,351.88  40.30 
Bellavista BEL -3.48 -73.07 Napo  99,872.13  71.30 
Tamshiyacu TAM -4.00 -73.16 Amazonas  653,396.03  90.70 
Tabatinga TAB -4.25 -69.95 Amazonas  808,803.30  87.50 
Borja BOR -4.47 -77.55 Marañon  114,302.21  86.80 
San Regis SRE -4.51 -73.91 Marañon  293,078.73  53.50 
Requena REQ -5.03 -73.83 Ucayali  347,564.48  59.10 
Pte. Corral Quemado PCQ -5.76 -78.69 Marañon  8650.17  14.40 
Los Naranjos LNA -5.76 -78.43 Marañon  5793.89  18.40 
Cumba CUM -5.94 -78.66 Marañon  35,672.21  14.20 
Chazuta CHA -6.57 -76.12 Huallaga  68,708.21  41.90 
Picota PIC -6.95 -76.33 Huallaga  56,844.64  42.70 
Jesús Tunel JTU -7.22 -78.40 Crisnejas  910.21  98.20 
Pte. Tocache TOC -8.18 -76.51 Huallaga  23,173.35  58.90 
Pucallpa PUC -8.39 -74.53 Ucayali  260,243.86  43.20 
Tingo Maria TMA -9.29 -76.00 Huallaga  12,341.11  52.20 
Puerto Inca PUI -9.38 -74.97 Pachitea  22,325.21  43.60 
Lagarto LAG -10.61 -73.87 Ucayali  19,1192.56  23.60 
Puente Stuart PST -11.80 -75.49 Mantaro  9222.46  69.50 
La Pastora LPA -12.58 -69.21 Madre de Dios  56,242.24  24.30 
Egemsa km 105 EKM -13.18 -72.53 Urubamba  9653.03  86.20 
Paucartambo PAU -13.32 -71.59 Urubamba  2157.18  29.40 
Pisac PIS -13.42 -71.86 Vilcanota  7036.46  67.30 
Puente Cunyac PCU -13.56 -72.57 Apurimac  24,656.23  26.90  
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calibration. In strategic gauges with record lengths less than 40% (MAL, POC, PCQ, LNA, CUM, LAG, LPA, PAU and PCU), a continuous 
4-year record period within 1981–2020 was required to be considered for hydrologic model calibration. 

2.3. Similarity-based regionalization approach 

2.3.1. Predictor maps 
We used an a priori defined similarity criterion incorporating four climatic (P: precipitation; TA: air temperature; PET: potential 

evapotranspiration; AI: aridity index) and three physiographic (SLO: surface slope; CLAY: soil clay content; fTC: fraction of tree cover) 
characteristics which can be found in Table 2. According to Beck et al. (2015) and Barbarossa et al. (2018), these characteristics are 
strongly related to streamflow signatures. In this study, drainage area was not considered due to the high level of catchment dis-
cretization for semi-distributed modeling, and with sub-catchments of similar sizes near 120 km2. Also, the snow cover fraction was 
not taken into account as a predictor due to most Peruvian catchments being dominated by pluvial contribution (Aybar et al., 2020; 
Fernandez-Palomino et al., 2021). Maps of mean annual P, TA, and PET values were calculated for the period 1981–2010. AI was 
calculated from P and PET. In case of fTC, SLO, and CLAY, mean annual maps were computed from available data during 1981–2010. 
Finally, the mean areal values of each predictor were calculated for all sub-catchments (gauged and ungauged) across the study 
domain. 

2.3.2. Cluster analysis and dissimilarity assessment 
Hydrological models often rely on regionalization approaches to transfer information from gauged (donor) to ungauged (receptor) 

catchments. According to Beck et al., (2016, 2020), benefits of the similarity-based approach include: (a) its relative ease of imple-
mentation; (b) retainment of model parameter interaction because the entire parameter set is transferred and (c) the possibility of 
spatial variability in model parameters according to landscape characteristics, even in ungauged regions. 

This work uses a similarity-based approach (Fig. 2) since a previous study has found it outperformed well in the Pacific slope 
(Asurza-Véliz and Lavado-Casimiro, 2020) showing that it is possible to transfer calibrated parameter sets based on explicit consid-
eration of climatic and physiographic similarity. 

Before pairing donor-receptor sub-catchments, we apply a gauged sub-catchment classification procedure. As the main idea was to 
obtain more than one set of model parameters per catchment during model calibration and increase the number of donor candidates 
during parameter transfer, the final number of parameter sets by each gauged (calibrated) catchment will be equal to clusters in it. For 
this, we conduct a hierarchical cluster analysis using the predictor maps as descriptors. To avoid increasing parameter uncertainties 
during calibration, we adopted a maximum number of clusters per catchment of three. 

Seven climatic and physiographic descriptors at the sub-catchment level were computed from predictor maps (see Table 2). The 
dissimilarity between donors and receptors was computed using the following equation proposed by Beck et al. (2016): 

Si,j =
∑7

p=1

⃒
⃒Zp,i − Zp,j

⃒
⃒

IQRp
; (1)  

where S is the dissimilarity (− ), Z are the values of the respective descriptor, p denotes the descriptor, and i and j mean, respectively, 
the donor and the receptor sub-catchment in question, IQR is the interquartile range of the descriptor and represents the spatial 
variability in all descriptor. The division by IQR in equation [1] was necessary to equalize the data variability of descriptors. From 
equation [1] it follows that a similar sub-catchment yields an S value close to zero. 

Then, dissimilarity values compose a distance matrix (3367 receptors x 8546 donors) which characterizes the variability of the sub- 
catchments in the region of interest. We also incorporate the spatial proximity criterion selecting the most similar donor (with the 
lowest S value) from no more than 300 km distance. This was considered to avoid sub-catchment donors from too long distances and 
different drainage regions. 

Table 2 
The climatic and physiographic characteristics selected to quantify the similarity between catchments and their sub-catchments.  

Variable Units Variable Data source Resolution 

P mm/ 
year 

Mean annual precipitation PISCOP gridded data, mean of years from 1981 to 2010 (Aybar et al., 2020) 0.1◦

PET mm/ 
year 

Mean annual potential 
evapotranspiration 

PISCOPET (1981–2010) calculated from PISCOTA using the equation proposed by ( 
Hargreaves and Samani, 1985). 

0.1◦

AI - Aridity index Calculated as: AI=PET/P, where P is the mean annual precipitation and PET the mean 
annual evapotranspiration. Values were truncated with an upper limit of 10 to avoid 
extremely high values on the coast. 

0.1◦

TA ◦C Mean air temperature PISCOTA v1.1 gridded data, mean of years from 1981 to 2010. 0.1◦

fTC % Fraction of forest cover Landsat-based forest cover for the year 2000 (Hansen et al., 2013) 30 m 
SLO ◦ Surface slope HydroSHED SRTM (Lehner et al., 2008) 90 m 
CLAY g/Kg Soil clay content SoilGrids 2020 version (ISRIC), mean over all layers (0–100) (Poggio et al., 2021). 250 m  
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2.4. National hydrological modeling 

2.4.1. Hybrid modeling framework 
We conduct a hybrid framework to develop the sub-catchment national hydrological model (Fig. 2). First, meteorological data (P 

and PET) is used to drive a conceptual rainfall-runoff model which estimates runoff volumes (RU) at each sub-catchment. Then, 
rainfall-runoff outputs are inputs for a river routing modeling to generate daily streamflow (Q) across the river network. Details of both 
models are described as follows: 

2.4.1.1. Rainfall-runoff model. The Variable Infiltration Capacity (ARNO/VIC) model (Liang et al., 1994; Todini, 1996) was selected 
because of its flexibility and computational efficiency. Despite several simplifications, the model is designed to provide a relatively 
complete representation of the dominant hydrologic fluxes (Addor and Melsen, 2019; Lane et al., 2019). Here we select de ARNO/VIC 
model incorporated in the Framework for Understanding Structural Errors (FUSE) developed by Clark et al. (2008), using the ’fuse’ R 
package (Vitolo et al., 2016). The FUSE framework has 79 unique model structures by combining components of existing hydrological 
models. The ARNO/VIC structure has a single-state variable for the upper soil layer (S1). The lower soil layer (S2) can be defined by a 
single nonlinear baseflow reservoir of fixed size. Evaporation (e) is modeled in both soil layers and computed based on the relative root 
fractions in each soil layer. Percolation (q12) takes available water from wilting point (θwilt) to saturation (θwilt). The surface runoff 
(qsx) is conceptualized using the ARNO/VIC parameterization (upper zone control), and a gamma distribution is used for the time delay 
runoff. Readers can find more details about the model equations in Clark et al. (2008). 

2.4.1.2. River routing model. The Routing Application for Parallel Computation of Discharge (RAPID) - which uses a matrix-based 
version of the Muskingum routing scheme - was applied to compute water discharge in thousands of river reaches simultaneously 
(David et al., 2011b). RAPID is an open-source model available at https://github.com/c-h-david/rapid (David et al., 2011a; Follum 
et al., 2017; Lin et al., 2015; Salas et al., 2018; Tavakoly et al., 2017). The Muskingum method can be rearranged by introducing a 

Fig. 2. Framework for the sub-catchment national simulation of daily flow series applying a similarity-based regionalization to identify hydro-
logical zones and sub-zones, and a hybrid modeling framework for parameter calibration and streamflow simulation across the whole Peruvian river 
network. P: precipitation; PET: potential evapotranspiration; TA: air temperature; AI: aridity index; SLO: surface slope; CLAY: soil clay content; fTC: 
fraction of tree cover; RU: runoff; Qsim: simulated streamflow; Qobs: observed streamflow; θ: model parameters. 
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transboundary matrix T = (I-C1⋅N) as described by David et al. (2015) in the RAPID model: 

[I − C1 • (N − T) ] • Q(t+Δt) = b(t)+T • C1 • Q(t+Δt); (2)  

where t is time, Δt is the river routing time step, I is the identity matrix, N is the river network matrix, Q is a vector of outflows from 
each reach, and C1 is a diagonal parameter matrix for a given reach j. 

We use the connectivity information from the GEOGloWS ECMWF streamflow services (Sanchez Lozano et al., 2021) to create the 
network connectivity matrix N. Sub-catchment runoff is connected to the routing scheme at the upstream node of each river reach and 
flow output from the model represents flow at the downstream node.Table 3. 

2.4.2. Model calibration and validation 
We first execute the hybrid framework only for gauged sub-catchments to find optimal model parameters. The model was cali-

brated and validated for the period with simultaneously observed streamflow and input data. We choose 60% of available records for 
calibration and 40% for validation periods. The calibration strategy was the same as that used by Llauca et al. (2021b). We consider a 
unique calibration step for the Pacific and Titicaca drainages, and a stepwise calibration approach (seven steps) for the Atlantic slope 
due to the number of fluviometric stations and complexity of river network on the Amazon basin. The Shuffled Complex Evolutionary 
(SCE-UA) algorithm (Duan et al., 1993) was applied to optimize the model parameters. An artificial year (1980) of a warm-up period 
was used before computing performance metrics. This year was created using P and PET daily climatologies to avoid discarding model 
simulations since 1 January 1981. The Kling-Gupta efficiency (KGE) criterion (Gupta et al., 2009) evaluated over daily streamflow 
time series was used as objective function. Streamflow simulations were also assessed through the Nash-Sutcliffe squared efficiency 
(NSEsqrt) criterion (Chiew et al., 1993), the Mean Absolute Relative Error (MARE), and the Percent Bias (BIAS) to take into account 
different hydrograph aspects. The same selected statistical metrics (summarized in Table 4) were computed for calibration, validation, 
and the total simulation period. 

2.4.3. Leave-one-out cross-validation 
The similarity-based hydrological regionalization approach is used in this study to transfer model parameters from gauged to 

ungauged catchments. Thus, the uncertainties surrounding the regionalization procedure should be evaluated by applying a cross- 
validation procedure to assess the regionalization skill (Wang et al., 2021). Leave-one-out cross-validation (LOOCV) was conducted 
to assess the quality of transferring parameters. For this, each catchment is in turn considered as pseudo-ungauged while the 
regionalization approach is applied to estimate its flows (Parajka et al., 2005). Then, the remainder gauged catchments are candidates 
of donors and regionalization procedure was applied to transfer model parameters from the catchments with the least dissimilarity 
index. Finally, the simulated streamflow at the pseudo-ungauged catchment is then compared with observation and statistical metrics 
(KGE, NSEsqrt, MARE and BIAS) are computed. LOOCV was only applied to 15 catchments in the Pacific drainage (see Table 1) and 
statistical metrics obtained with LOOCV was compared with the independent model calibration (for total period). 

2.4.4. Streamflow simulation across the country 
First, we transfer optimal parameters from donor to receptor sub-catchments considering a unique set of model parameters for each 

hydrological sub-zone. Then, a new model run was computed for all catchments and the respective gauged and ungauged sub- 
catchments to simulate daily flow series (1981–2020) across the national river network (Fig. 2). Also, monthly and yearly flow se-
ries were computed to assess the seasonal (September - August) and interannual (1990–2019) representation of flows in fluviometric 
stations. For this, we compute the Pearson correlation coefficient (R) and the Root Mean Square Error (RMSE) between observed and 
simulated time series. Fig. 3. 

A large body of studies assesses hydrological signatures to characterize streamflow time series and to predict some hydrological 
processes in ungauged catchments (Addor and Melsen, 2019; McMillan et al., 2017, 2016; Tyralis et al., 2021). We compute nine 
hydrological signatures (summarized in Table 5) to assess model predictions. Some of the selected indices are hydrological signatures 
introduced by Addor et al. (2018). We choose the 5% flow quantile, mean daily discharge, 95% flow quantile, baseflow index, slope of 
the flow duration curve, average duration of high-flow events, frequency of high-flow events, average duration of low-flow events, and 

Table 3 
ARNO/VIC model parameters and defined upper and lower bounds.  

Parameter Description Units Lower bound Upper bound 

MAXWATER1 Depth of upper soil layer mm  25  500 
MAXWATER2 Depth of lower soil layer mm  50  5000 
FRACTEN Fraction total storage in tension storage -  0.05  0.95 
RTFRAC1 Fraction of roots in the upper layer -  0.05  0.95 
PERCRTE Percolation rate mm/day  0.01  1000 
PERCEXP Percolation exponent -  1  20 
BASERTE Baseflow rate mm/day  0.001  1000 
QB_POWR Baseflow exponent -  1  10 
AXV_BEXP ARNO/VIC b exponent -  0.001  3 
TIMEDELAY Time delay runoff days  0.01  7 

Source:Adapted from (Lane et al. (2019). 
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frequency of low-flow events. We calculate model errors in four observed data coverage intervals (0–25%, 25–50%, 50–75%, 
75–100%) to compare predicted and observed signatures in different fluviometric stations across the country. The median of errors was 
computed, and standard error was calculated in each interval by dividing the standard deviation by the squared root of the sampling 
data. Error bars were built using the median values + /- the standard error. 

Table 4 
Statistical metrics and their corresponding equations used for evaluating the hydrological performance of the ARNO/VIC+RAPID model.  

Statistical Metric Equation Units Min, Max, 
Optimal 

Emphasis 

Kling-Gupta Efficiency 
(KGE) 

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (α − 1)2

+ (β − 1)2
√

r =
∑n

i=1 [(Xi − X)(Oi − O) ]
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Xi − X)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(Oi − O)

2
√ α =

σX

σO
; β =

μX
μO 

- -∞ ,1,1 High flows 
Medium flows 
(Mizukami et al., 2016) 

Nash-Sutcliffe squared 
(NSEsqrt)  

NSEsqrt = 1 −

∑n
i=1

( ̅̅̅̅̅
Oi

√
−

̅̅̅̅̅
Xi

√ )2

∑n
i=1

( ̅̅̅̅̅
Oi

√
−

̅̅̅̅
O

√ )2 

- -∞ ,1,1 General flows 
(Chiew et al., 1993) 

Mean Absolute Relative 
Error (MARE)  

MARE =
1
n
∑n

i=1
|Xi − Oi|

Oi 

- 0,+ ∞,0 Relative error 
Low flows 
(Ferreira et al., 2020) 

Percent Bias (PBIAS)  

PBIAS = 100
∑n

i=1(Oi − Xi)
∑n

i=1Oi  

% -∞ ,+ ∞,0 Average tendency of the 
simulated data 
(Ferreira et al., 2020) 

Note: n, number of samples; Oi, observed streamflow; Xi, simulated streamflow. 

Fig. 3. Structure of the ARNO/VIC model with a single-state variable for the upper soil layer (S1) and a single lower soil layer (S2) defined by a 
single nonlinear baseflow reservoir of fixed size. 
Adapted from Clark et al. (2008). 

Table 5 
Hydrological signatures selected in this study and computed from 1 September 1990–31 August 2019.  

Attribute Description Units 

Mean daily discharge Mean daily discharge. mm/day 
5% flow quantile 5% flow quantile (low flow). mm/day 
95% flow quantile 95% flow quantile (high flow). mm/day 
Baseflow index Baseflow as a proportion of total flow, calculated as 7-day mean annual low flow divided by mean flow. - 
Slope of the flow duration curve Slope between 33 and 66 percentiles of flow duration curve calculated on daily data. - 
Average duration of high-flow events Number of consecutive days > 9 times the median daily flow. days 
Frequency of high-flow events Frequency of high-flow days (>9 times the median daily flow). days/year 
Average duration of low-flow events Number of consecutive days < 0.2 times the mean daily flow. days 
Frequency of low-flow events Frequency of high-flow days (<0.2 times the mean daily flow). days/year  
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3. Results 

3.1. Selection of donor and receptor sub-catchments 

The left side of Fig. 4 displays the spatial variability of four climatic (P, TA, PET, AI) and three physiographic (SLO, fTC, CLAY) 
characteristics. High mean annual rates of P and PET can be found in the Atlantic and Titicaca slopes, while the Pacific coast is 
characterized by very high AI values (with low P and high PET). TA is lower over the Andes and higher in the northeastern Amazon 
basin and seems to be inversely related to SLO values. CLAY tends to be relatively homogeneous across the study domain, with 
maximum values in the Amazon basin. fTC is also considerably higher in the Atlantic divide than in the Pacific and Titicaca drainages. 

Overall, 73% of total sub-catchments are donors while the remaining 27% are receptors. It means that just a few parts of national 
model parameters and streamflow simulation are generated by the hydrological regionalization procedure. The Pacific slope has the 
major percentage of receptor sub-catchments per divide (38%), followed by Titicaca (29%) and Atlantic (16%) slopes. 

The colored areas on the right side of Fig. 4 correspond to 43 gauged catchments in the study domain. The zoom-in panel shows 
details of hydrological zones and sub-zones for the Central Pacific slope. In this case, gauged catchments (colored polygons) were 
classified into one (OBR-1), two (CHO-1 and CHO-2) or three (SDO-1, SDO-2, SDO-3) clusters. Then, model parameters are transferred 
from donors (colored areas) to receptors (white areas) at sub-catchment level. Sub-catchments labeled with the same station name (e.g. 
CHO) belong to the same hydrological zone while the number next to the names distinguishes the sub-zone (e.g. CHO-1 or CHO-2). 
Furthermore, we identify a total of 43 hydrological zones and 122 sub-zones. 

3.2. Evaluation of the national model performance 

We conduct the daily national model for period 1981–2020. Fig. 5 depicts the spatial distribution of four metrics. In terms of KGE 

Fig. 4. On the left side: climatic (P: precipitation; TA: air temperature; PET: potential evapotranspiration; AI: aridity index) and physiographic (SLO: 
surface slope; CLAY: soil clay content; fTC: fraction of tree cover) predictor maps. On the right side: colored areas represent gauged catchments and 
sub-catchments (donors of model parameters), and white areas correspond to ungauged sub-catchments (receptors of model parameters). Points in 
black correspond to fluviometric stations. The zoom-in panel shows details of hydrological zones (e.g. SDO) and their respective sub-zones (e.g., 
SDO-1, SDO-2 and SDO-3) for three catchments in the Central Pacific slope. 
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and NSEsqrt (Fig. 5a-b), the model performs well (KGE ≥ 0.75 and NSEsqrt ≥ 0.65) during calibration and validation periods for stations 
located in the Pacific, Titicaca, and the Andes-Amazon transition. Fluviometric stations in the Amazon lowlands (northeast) present 
low performance (≤0.5 in both metrics). We note that in this group of gauges, KGE and NSEsqrt values slightly increase from calibration 
to validation period. In terms of MARE and PBIAS (Fig. 5c-d), good model performance (MARE ≤ 1 and − 25% ≤ PBIAS ≤ 25%) can be 

Fig. 5. (a-d) Spatial distribution of metrics for the national hydrological model performance assessment during calibration, validation, and total 
period (1981–2020). Each metric is focused on a specific aspect of hydrographs (KGE: middle-high flows; NSEsqrt: general flows; MARE and PBIAS: 
model error and bias). Colored points represent gauges’ performance. 
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found for both periods for most stations. Only two gauges present higher MARE values (~8) and for the Pacific drainage, negative 
values of PBIAS increase from calibration to validation. 

Overall, for the total period, the national hydrological model performs well with high KGE and NSEsqrt values for 71% and 68% of 
all stations, respectively. The spatial behavior of both indices shows better model performances in the Pacific and Titicaca drainages 
than in the Atlantic slope (low performance prevails in the Amazon lowlands). In this study, high KGE and NSEsqrt values show a good 
representation of high-middle and general flows, respectively, for most gauges. MARE is a good index for low data values considering 
that it is less sensitive to high flow values (Ferreira et al., 2020). That means that 95% of stations with lower relative error values also 
confirm a good representation of low flows for total period. The model performance shows lower negative PBIAS, indicating a slight 
tendency for model overestimation (Table 4), except for the northern Pacific coast where the model generally underestimates water 
discharges. 

3.3. Cross-validation in the Pacific slope 

Fig. 6 displays results of the cross-validation procedure in all gauged catchments for the Pacific drainage. Panels present scatter 
plots between statistical metrics before and after cross-validation. Green boxes denote areas with good model performance (KGE ≥
0.50, NSEsqrt ≥ 0.50, MARE ≤ 1, and − 25% ≤ PBIAS ≤ 25%). In terms of KGE, most gauges located in the central and south Pacific have 
good skills (points inside the green box) after LOOCV. Hence, it seems that regionalization’s procedure is still a challenge in northern 
catchments for high-middle flows where model performance highly decreases. In terms of NSEsqrt, general daily flows are good rep-
resented after transferring parameters, but northern gauges present low performances (NSEsqrt ≤0.5). In the case of MARE, major 
points have values less than 1, following the same performance as individual model calibration. Finally, gauges located in the south 

Fig. 6. (a-f) Leave-One-Out Cross Validation (LOOCV) experiment for 15 catchments in the Pacific slope. Each catchment is in turn considered 
pseudo-ungauged while the regionalization approach was applied to try and estimate its flows. Then, statistical metrics (KGE, NSEsqrt, MARE and 
PBIAS) were computed (LOOCV subscript) and compared with metrics for total period evaluation after individual calibration (Model subscript). 
Green boxes display areas with good model performance (KGE ≥ 0.50, NSEsqrt ≥ 0.50, MARE ≤ 1, and − 25% ≤ PBIAS ≤ 25%). 

H. Llauca et al.                                                                                                                                                                                                         



Journal of Hydrology: Regional Studies 47 (2023) 101381

12

Pacific present lower biases and we note that most catchments with negative biases in model calibration have positive biases after 
cross-validation. 

3.4. National simulation of flow series 

Fig. 7 displays simulated and observed flow time series for the six gauges with the highest record length. Comparison between 

Fig. 7. (a-f) Comparison between observed (blue) and simulated (gray) flow series at daily [mm/day], monthly [mm/month] and yearly [mm/ 
year] time scales for six fluviometric stations with the highest record length during 1981–2020. 
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daily, monthly (seasonal), and annual flow series show that model outputs are capable to reproduce streamflow behavior at different 
time scales. Simulations can represent the high variability of daily flows, including daily peak flows. Seasonal streamflow variability is 
well represented in many cases (with exception of SAL station), so wet (December - April) and dry seasons (June - September) are 
replicated by simulations. Model outputs perform well at annual scale, and simulated interannual variability follows a similar pattern 
to observed values; however, some extreme years (e.g. 1982/1983 and 1997/1998) are overestimated by the model. 

The comparison between observed and simulated flow series in terms of R and RMSE metrics for different time scales is shown in  
Table 6. There are not seem to be a strong relationship between flow data coverage and R and RMSE values. For instance, streamflow 
gauges with low record length (e.g., CUM – 14.2%) can get higher R values than those with more observed information (e.g., PSR – 
92.50%). In many gauges, simulations have a strong correlation (R≥0.75) with observed values at daily, monthly, and annual time 
scales. RMSE values are slightly heterogeneous in space. Higher model errors are present in gauges of the Amazon lowlands (e.g. 
TAM=14710.2 mm/year, BEL=974.91 mm/year, TAB=737.95 mm/year). 

Fig. 8 depicts errors between predicted and observed signatures related to 5% flow quantile, mean daily discharge, 95% flow 
quantile, baseflow index, slope of the flow duration curve, average duration of high-flow events, frequency of high-flow events, 
average duration of low-flow events, and frequency of low-flow events. Points in magenta are median errors for each interval of data 
coverage while vertical bars correspond to + /- standard error. Positive error values correspond to overestimation of predicted sig-
natures while negative ones mean underestimation. Median values in flow magnitude signatures (Fig. 8a-c) are the most positive and 
error bars increase from low (5% quantile) to high (95% quantile) flows. Error in baseflow index signature (Fig. 8d) is very low in all 
stations. The median of slope of flow duration curves errors (Fig. 8e) is negative and decreases when record length grows. Median 

Table 6 
Pearson linear correlation coefficient (R) and Root Mean Square Error (RSME) between observed and predicted flows at daily, monthly, and annual 
time scales, in all fluviometric stations selected in this study.  

Station Coverage [%] Daily Monthly Annual 

R RMSE [mm/day] R RMSE [mm/month] R RMSE [mm/year] 

RRI  99.80  0.83  0.77  0.97  9.84  0.81  103.65 
CCO  98.70  0.90  0.51  0.99  3.53  0.87  69.43 
JTU  98.20  0.74  0.79  0.98  4.22  0.59  110.76 
ECI  98.00  0.57  1.68  0.87  16.85  0.68  284.17 
ETI  97.70  0.73  2.73  0.98  23.51  0.90  388.33 
SOC  93.30  0.81  0.62  0.99  5.54  0.74  81.00 
SAL  92.50  0.87  0.76  0.99  6.05  0.94  68.70 
PSR  92.50  0.63  0.39  0.98  3.22  0.69  32.29 
TAM  90.70  0.60  4.29  0.58  128.51  0.18  1471.02 
LET  89.10  0.75  0.98  1.00  8.63  0.69  90.63 
TAB  87.50  0.49  2.85  0.98  31.53  0.29  737.95 
BOR  86.80  0.45  1.82  0.96  9.05  0.38  379.11 
EKM  86.20  0.89  0.49  0.97  6.90  0.63  61.36 
HNE  79.90  0.84  0.42  0.98  4.21  0.75  40.90 
COA  74.90  0.83  0.60  0.98  4.87  0.75  67.09 
RAM  72.70  0.88  0.27  0.98  3.02  0.73  32.52 
ILA  72.70  0.71  0.61  0.95  10.69  0.65  100.79 
BEL  71.30  0.40  3.30  0.91  43.94  0.23  947.91 
PST  69.50  0.74  0.97  0.93  11.11  0.47  173.05 
PIS  67.30  0.80  0.42  0.99  3.86  0.26  74.10 
SDO  66.20  0.87  0.43  0.99  2.56  0.79  49.12 
REQ  59.10  0.79  1.28  0.94  18.30  0.44  227.69 
OBR  59.00  0.83  0.35  0.99  3.00  0.39  60.92 
TOC  58.90  0.75  1.69  0.98  13.09  0.60  267.59 
CHO  55.00  0.88  0.34  0.97  4.02  0.66  53.01 
SRE  53.50  0.66  1.50  0.97  24.35  0.39  364.09 
TMA  52.20  0.75  1.83  0.99  18.22  0.00  260.73 
PSC  49.00  0.87  1.42  0.99  4.44  0.99  85.23 
HUA  45.40  0.84  0.36  0.99  3.79  0.90  37.37 
PUI  43.60  0.66  5.44  0.95  58.33  0.55  643.53 
PUC  43.20  0.91  0.94  0.99  9.19  0.68  129.60 
PIC  42.70  0.78  1.52  0.98  13.18  0.48  173.66 
CHA  41.90  0.79  1.36  0.98  12.23  0.81  117.15 
NAP  40.30  0.34  3.21  0.83  62.11  0.36  472.68 
POC  34.10  0.79  0.41  0.99  1.70  0.78  32.73 
MAL  31.00  0.84  0.49  0.96  6.12  0.46  71.48 
PAU  29.40  0.84  0.89  0.99  6.97  0.39  110.19 
PCU  26.90  0.87  0.48  0.99  3.36  0.77  56.63 
LPA  24.30  0.84  2.16  0.99  19.25  0.60  265.99 
LAG  23.60  0.81  1.51  0.97  14.55  0.82  55.81 
LNA  18.40  0.74  0.92  0.93  10.95  0.91  53.32 
PCQ  14.40  0.85  3.77  0.94  65.54  0.91  626.42 
CUM  14.20  0.85  0.59  0.96  8.42  0.89  46.92  
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errors in duration and frequency of low and high flow events are positive (Fig. 8f-i). Errors in duration signatures tend to increase when 
data coverage grows while the inverse behavior occurs for frequency signatures. 

Fig. 9 displays the qualitative classifications of national daily streamflow simulations in gauged catchments based on KGE (Thiemig 
et al., 2013) and NSEsqrt (Moriasi et al., 2015) ranges. In terms of KGE ratings (Fig. 9a), with emphasis on high-middle flows (Mizukami 
et al., 2019), simulations are “good” (green areas) in catchments of the south, central-south, and northwest of the country. Ratings 

Fig. 8. (a-i) Standard error bars between nine predicted and observed hydrological signatures in gauged catchments. Standard error was computed 
in four intervals of observed flow record coverage (0–25%, 25–50%, 50–75%, and 75–100%) for 1981–2020. Points in magenta represent the 
median for each interval. 
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decrease in the central-north (“intermediate”, blue areas) and northeast (“poor”, yellow areas). In terms of NSEsqrt ratings (Fig. 9b), 
with emphasis on general flows (Chiew et al., 1993), simulations with “very good” (green areas) and “good” (blue areas) and 
“satisfactory” (yellow areas) ratings cover the majority of catchments. However, “unsatisfactory” (red areas) simulations in the 
country’s northeast correspond to the Amazon lowlands. 

This paper introduces a new hydrological dataset of simulated daily flow series in Peru for 11913 river reaches. This dataset named 
PISCO_HyD_ARNOVIC is available at https://www.hydroshare.org/resource/f723d6c762ca45b6936dd9489bc44842/. Flow series 
extraction for a specific river stream can be done by searching its COMID (users can find COMIDs at https://hllauca.github.io/ 
map_product/Identificar_COMID.html). In an operational version (1981–present day), the PISCO_HyD_ARNOVIC dataset is now 
contributing to an improved understanding of past and current hydrological analysis. Furthermore, is used as crucial input for climate 
services such as the Monitoring and Forecasting of Potential Floods in the National Service of Meteorology and Hydrology of Peru 
(please visit: https://harold-llauca.shinyapps.io/sonics/). 

4. Discussion 

4.1. Findings in the similarity-based regionalization 

Several procedures can be cited in the literature to perform stream flow prediction in an ungauged catchment. As the spatial 
proximity method has the optimal performance in catchments with a high density of gauges (Parajka et al., 2013), in data-scarcity 
domains physical similarity approach shows higher performance than other methods (Wang et al., 2021), so here we use a simple 
combination of both approaches (section 2.3) to classify donor and receptor sub-catchments. 

The efficiency of regionalization is dependent on the regionalization method, number of catchments and catchment area. As 
regionalization performance tends to increase with an increasing number of sub-catchments, we use ~12 thousand sub-catchments 
across the study domain. Other studies have similarly found that the efficiency of regionalization increases significantly with 
increasing drainage area (Merz et al., 2009; Nester et al., 2011); hence, we do not consider drainage areas as regionalization de-
scriptors because the small sub-catchments sizes (~120 km2) could increase hydrological variability across the country. In that sense, 
we choose only the best global runoff predictors proposed by Beck et al., (2020, 2016, 2015), and used in a global application of the 
VIC+RAPID model (Lin et al., 2019). 

The number of hydrological zones found here increased drastically compared with a previous regionalization study for the same 
domain (Llauca et al., 2021b). In this paper, hydrological zones (and sub-zone) boundaries are not continuous in space. That means 

Fig. 9. Qualitative ratings of daily flow simulation on gauged catchments in the study domain based on (a) high and middle flows and (b) general 
flows performances in the national hydrological model. 
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that sub-catchments from the same zone (and sub-zone) might not necessarily be proximal to neighbor catchments. Furthermore, the 
similarity-based regionalization approach is not restricted by gauges location as it is in a sensitivity analysis regionalization procedure 
(Bock et al., 2016). These differences help us to increase catchment variability representation across the country - 43 zones instead 14 
presented in Llauca et al. (2021b) - especially in a context of limited or no access to in-situ networks. 

We select just the best parameter set with the least dissimilarity index in a 300 km searching radius due to computational limi-
tations and the small number of ungauged sub-catchments in the study domain (27% of the total area). However, this choice might 
increase regionalization uncertainties in ungauged catchments. For instance, Beck et al. (2015), proposed transferring parameters from 
the best ten donor candidates. In our case, cross-validation results show heterogeneous regionalization performances using the only 
best donor in the Pacific divide, so findings suggest that increasing the number of donor candidates could improve results. Future 
studies will raise the number of candidate donors and assess the impact on regionalization performance. 

4.2. Limitations of flow simulation at the national level 

Quantifying flows in Peru is a challenging task, given the large physiographic (Zevallos and Lavado-Casimiro, 2022), climatic (Son 
et al., 2020), and hydrological (Lavado Casimiro et al., 2012) heterogeneities across the territory. There are few recent large-scale 
hydrological modeling experiments in Peru providing simulated water discharges. Most of these have focused only on specific di-
vides. For instance, (Asurza-Véliz and Lavado-Casimiro, 2020) and Rau et al. (2019) conduct daily and monthly models, respectively, 
for the Pacific drainage using regionalization techniques in a data-scarce context. Zubieta et al. (2021) and Satgé et al. (2019) assess 
climate change impacts and precipitation products in the Lake Titicaca catchment using GRs conceptual models. In the Peruvian 
Amazon Basin, local studies have performed hydrological models in the Andes-Amazon transition (Baltazar et al., 2023; Chancay and 
Espitia-Sarmiento, 2021) while large-sample hydrological applications have assessed the entire Amazon Basin using GHMs for 
detecting peak flows (Towner et al., 2019), and global datasets such as GRACE gravity satellites for runoff estimation (Chen et al., 
2020). In that sense, the results present here build upon hydrological model simulations using the ARNO/VIC+RAPID modeling 
framework and PISCO dataset set as forcing inputs showing a spatial performance variability similar to reported in those studies. 

The meteorological data are the critical input for hydrological modeling. Singh and Reza Najafi (2020) depict that the propagation 
of gridded climate datasets biases has strong implications in the simulation of extreme events. Thus, the unsatisfactory modeling 
results found in northeastern Peru may reflect two main issues: first, the significant uncertainty of spatial rainfall distribution in the 
Marañón, Ucayali, and Huallaga catchments reported by Fernandez-Palomino et al. (2021) and Zubieta et al. (2017), and second, 
higher PISCOP (unstable version) uncertainties due to the lack of rainfall estimates in equatorial regions (Aybar et al., 2020). 
Furthermore, as evapotranspiration plays a crucial role in hydrological processes in the Amazon catchment (de Oliveira et al., 2021), 
daily PET climatologies might be increasing forcing uncertainties and water balance in the Amazon lowlands. 

Overall, we demonstrate the feasibility to implement a sub-catchment hybrid hydrological modeling framework (ARNO/ 
VIC+RAPID) for generating flow simulations in Peru, similar to national hydrological applications in other study domains using 
physical-based and conceptual models such as S-HYPE (Girons Lopez et al., 2021), WEP-CN (Liu et al., 2020), TopNet (McMillan et al., 
2016), and HBV (Veijalainen et al., 2010). In addition, because large-scale hydrological modeling is complex in data-scarce sites, the 
following assumptions might be impacts in model results: a) streamflow gauges with shorter records might influence model calibration 
due to insufficient information available for discharge uncertainty distribution estimation (Westerberg et al., 2020); thus this work 
incorporate a flow data coverage assessment; b) we estimate naturalized river flows across the country even in the Pacific divide which 
has the largest population and major infrastructure of water regulation (Stensrud, 2019); c) we conduct a mono-objective function with 
emphasis on high-middle flow calibration (Mizukami et al., 2019) used in national water balance applications such as Vásquez et al. 
(2021); d) due to floodplain playing an essential role in the Amazon basin flow routing (Wongchuig Correa et al., 2017), uncertainties 
in channel geometry information could affect simulations in the Atlantic drainage more than Pacific and Titicaca slopes. 

5. Conclusions 

In this study, a hybrid modeling framework and a similarity-based regionalization approach were described for running a national 
hydrological model across an extensive river network. The methodology proposed allows us to build daily simulations of flow series in 
the Peruvian catchments. The national hydrological model performance is good in most parts of the country and simulations follow 
observed daily flow series, especially for catchments located on the Pacific coast and in the Andes-Amazon transition of Peru. 
Moreover, the model can represent streamflow seasonal and interannual variability and main hydrological signatures across the 
country. 

Low model performance was observed in northeastern Peru (Amazon lowlands), where simulations tend to overestimate the 
observed water discharges. This might be related to forcing data uncertainties due to the low density of ground meteorological ob-
servations in the Amazon basin and biases in operational gridded meteorological products. Also, the limited number of fluviometric 
stations in the Amazon slope could be increasing parameter, states, and outputs uncertainties, due to error propagation from head 
basins to downstream in the Andes Amazon transition. Hydrological regionalization proved to be a useful tool to estimate daily 
streamflow series in ungauged catchments and to deal with the problem of data scarcity in Peru. Future studies will incorporate 
different conceptual model structures and donor candidates. 

Ongoing research focuses on the implementation of a national hydrological model for Peru. The main application is the generation 
of a new operational hydrological dataset of daily flow series from 01 January 1981 to the present day. This dataset will also be used to 
include future risk scenario simulations in often poorly gauged catchments, climate change impacts on water resources and the 
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implementation of climate services in Peru such as the Monitoring and Forecasting of Potential Floods in the National Service of 
Meteorology and Hydrology of Peru. 
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