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Abstract— Research and development efforts on sustainable and
intelligent transportation systems are accelerating globally as the
transportation sector contributes significantly to environmental pol-
lution and produces a variety of noise and emissions that impact
the climate. With the emergence of ubiquitous sensors and Internet
of Things (IoT) applications, finding innovative transport solutions,
including adequate climate change mitigation, will all be vital com-
ponents of a sustainable transport future. Thus, it is essential
to continuously monitor noise and exhaust emissions from road
vehicles, trains, and ships. As a contribution to addressing this
as part of an effort of the European Union project called “NEMO:
Noise and Emissions Monitoring and Radical Mitigation”, in this
paper, we propose the design and development of a real-time noise
and exhaust emissions monitoring for sustainable and intelligent
transportation systems. We report real-world field testing in some European cities where vehicle noise and exhaust
emissions data are gathered in the cloud-enabled Nautilus platform and evaluated using artificial intelligence (AI)
algorithms to determine their categorization into different classes of emitters and thereby enabling the infrastructure
managers to define logic and actions to be taken by high emitters in near real-time. We outline the creation of a complete
NEMO solution to monitor and reduce noise and emissions in real time for sustainable and intelligent transportation
systems.

Index Terms— Artificial Intelligence, Emission, Exhaust, Internet of Things, Monitoring System, Noise, Sensors, Smart
Cities, Sustainable, Transportation

I. INTRODUCTION

ENVIRONMENTAL noise is still one of the main
drivers of environmental pollution in Europe, although

several attempts have been made to lower the noise levels.
The European Environmental Agency’s most recent report
estimates that solely road traffic noise affects 113 million
people, but that transportation noise affects more than 20%
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of the European Union’s (EU) population in general [2].
According to a growing body of research, transport noise
may disrupt sleep, lead to cardiovascular illness, hormonal
imbalances, psychological issues, and even lead to early
mortality [3]–[5]. Studies on long exposure to noise have
found cognitive decline and a lower quality of life among
young children [6]. Moreover, compared to other energy
end-use sectors, the transport sector’s share of global energy-
related CO2 emissions has grown rapidly. In particular, the
transportation sector causes 29% of global CO2 emissions [7],
and reducing its impact is an important step in any climate
change mitigation plan. Therefore, transportation noise and
exhaust emissions are considered as one of the major threats
to people’s health and quality of life [8]–[10]. Indeed, vehicle
noise and exhaust emissions will continue to increase in
scale and intensity due to population expansion, urbanization,
and unprecedented growth associated with vehicle use if
there are no intelligent methods to monitor and detect these
pollutants [11], [12].

According to recent scientific studies, nearly 80% of the
pollution produced by road traffic is due to the highest emitter
vehicles [13], [14]. These small number of high-emitter road
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users who make excessive noise and exhaust emissions
are receiving more and more attention. Several European
municipalities have stated that they intend to use noise
measures to keep loud show-off vehicles and motorbikes
with illegal exhausts out of the city centre and off of scenic
backroads [15]. Cities are establishing Low-Emission Zones
(LEZ) to control access to older high-emission vehicles while
avoiding punitive measures against more recent automobiles
that are within the prescribed threshold limit of noise and
emissions [16]. LEZs are essentially metropolitan districts that
require certain types of vehicles, such as heavy goods trucks
(HGVs), delivery vehicles, buses, taxis, private automobiles,
etc., to meet certain emission standards in order to enter free
of charge or to avoid paying a fee [17]–[19]. Therefore, it is
necessary to regulate better the actual emissions generated
by vehicles in urban areas. Because of this, there is a great
interest in broadly identifying these high emitters in real
time in order to be prepared to control and reduce noise
and exhaust emissions. This class of high-emitting vehicles
must be adjusted; therefore, accurate measurements of their
noise and exhaust emissions under actual driving conditions
are required. Furthermore, for Europe to become the first
climate-neutral continent in the world, emissions from the
transportation sector must be monitored and reduced further
and quickly.

With the rapid advancement in the Internet of Things (IoT),
artificial intelligence (AI) and remote sensing technologies, it
is now possible to sense and analyze various environmental
events in real-time for a variety of Internet of Vehicles
(IoV) applications [20]–[23]. With the advent of advance AI,
IoT, IoV and remote sensing technologies, it is possible to
measure road traffic emissions on a large scale, effectively,
and inexpensively. With these technologies, communities may
more effectively and fairly enhance their noise and air quality
by identifying high-emitting individual vehicles and thereby
improving traffic decision-making. Leveraging cutting-edge
remote sensing technology and extensive real-time sensor data
analysis, researchers are now aiming to implement effective
monitoring and mitigation methods to significantly decrease
noise and exhaust emissions for all modes of transportation.

An assessment of remote sensing devices’ (RSD)
measurement performance to screen vehicle emissions
was carried out in [24]. The main focus was on gaseous
pollutants such as nitrogen oxide (NO), nitrogen dioxide
(NO2) and carbon monoxide (CO) from light-duty vehicles.
The findings suggested RSDs as a potential technique for
screening automobile emissions to determine which vehicle
types and which vehicles are high or low polluters under
a particular set of driving conditions. Similarly, it has also
been reported in [25] that using on-road remote sensing
equipment as part of an enforcement campaign to enhance
urban air quality can quickly, accurately, and affordably
identify high-emitting vehicles. Moreover, there have also
been some projects such as Life GySTRA1 that used RSDs
to detect high emitters on the road and then be checked
for accuracy at a well-equipped inspection station [13]. By

1https://lifegystra.eu/en/home/

taking such measures, their emissions may be brought down
to levels that are typical for vehicles, which would greatly
reduce overall road transport emissions and, in turn, the
health problems that air pollution brings about. Data-driven
analysis was used in [26] to assess how the electrification of
the city of Rome’s public transportation system and private
vehicle fleet will affect energy demand, climate change, and
air pollution emissions. However, all of these studies focused
on monitoring vehicles’ gaseous (exhaust) emissions and
identifying high emitters. Additionally, research has been
done on mapping, modelling, and measuring the amount of
traffic noise in urban areas such as [27]–[31].

Even though there is research on the noise and exhaust
emissions of vehicles, these systems are either ineffective
at measuring actual driving conditions or require a single
vehicle to be installed intrusively and used for a long period
to collect reliable data. Therefore, it is obvious that real-time
measurements of the different types of vehicle noise and
exhaust emissions are not readily available. This makes it
challenging to accurately analyze and estimate the noise
and exhaust emissions from various types of vehicles in
real time. In addition, real driving emissions (RDE) refer
to the emissions produced by vehicles in real-world driving
conditions. This type of testing accurately assesses vehicle
emissions on an individual basis while they are actually being
driven. Unlike traditional laboratory testing, RDE testing
evaluates vehicle emissions beyond controlled settings, taking
into account various factors like speed, payload, and driving
behaviour. The primary goal of RDE tests is to verify that
vehicles meet the emission standards as stated on paper when
operating on the road. Hence, there is a need for standardized
assessment techniques to improve the validity of the data
gathered and the efficacy of the ensuing awareness-raising
and mitigation measures. Systems built into the transportation
infrastructure can assist in identifying high-emitter vehicles
that are not respecting the prescribed limits and therefore
restricting their access to designated LEZs.

This work outlines the design and implementation of a real-
time monitoring system for noise and exhaust emissions for
intelligent and sustainable transportation systems, including
road vehicles and trains, as an effort of the EU project
called “NEMO: Noise and Emissions Monitoring and Radical
Mitigation”2. During the pilot testing in multiple European
cities such as Rotterdam (Netherlands), Barcelona (Spain),
Florence (Italy), and the Austrian village Teesdorf, real-world
sensor data from various vehicles and trains are monitored
and gathered to effectively test the NEMO system and
identify the high emitters (both in terms of noise and exhaust
emissions) in real-time. We have developed a complete
application that enables an analyst and infrastructure manager
to track real-time sensor data related to the noise and gaseous
emissions of road vehicles and trains. The data on individual
road vehicles and trains are collected in the cloud platform,
assessed, and classified as high, medium, low or normal
emitters using AI-enabled classification algorithms. Through
novel RSD technologies and NEMO system implementation,

2https://nemo-cities.eu/
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this paper aims to provide a holistic solution to identify high
emitters in real time to simultaneously monitor noise and
exhaust emissions for sustainable and intelligent transportation
systems.

A. Comparative Analysis

In our comparative analysis of the NEMO system, it is
important to highlight the novelty of our proposed solution.
We have conducted a comprehensive evaluation of existing
systems, and we have found that there are no comparable
alternatives to the NEMO system currently available. While
there are some solutions, such as the Hydra system developed
by Bruitparif [32], that share certain functionalities with the
NEMO system, it is essential to note the distinct capabilities
and limitations of each.

In comparison to the Hydra solution, which primarily fo-
cuses only on tracking excessively noisy road vehicles, our
NEMO system offers a more comprehensive approach. Unlike
the Hydra system, the NEMO system is designed to detect,
classify and analyze both noise and exhaust emissions from
road vehicles and also from trains. This distinction highlights
the significant advantage of the NEMO system over existing
competitors, as it provides a more comprehensive and accurate
understanding of the impact of road vehicles and trains’
noise and exhaust emissions. The NEMO system’s advanced
capabilities position it as an innovative and powerful tool
for different stakeholders in addressing noise and pollution
challenges in urban environments.
B. Paper Contributions

In summary, the major contributions of this paper can be
outlined as follows:

1) In pursuit of the EU’s commitment to monitoring noise
and exhaust emissions, we present the NEMO system,
a totally new autonomous remote sensing technology
to accurately and cost-effectively identify and classify
transgressing noisy and high exhaust emitter vehicles
(including road vehicles and trains) in near real-time to
control noise and air quality and mitigate detrimental
impacts on public health and the environment.

2) We have integrated different sensors to effectively mea-
sure noise and emissions of road vehicles and trains
in the existing infrastructures, which enable the NEMO
system to identify noise origin in a dense traffic stream
and localize high emitters in real-time.

3) Moreover, we have also created a complete software and
communication infrastructure, such as infrastructure-to-
infrastructure (I2I) and infrastructure-to-vehicles (I2V)
based on remote sensing data to enable different infras-
tructure integration options.

4) Data from real-world field testing of individual road
vehicles and trains in European cities such as Rotter-
dam and the Austrian village Teesdorf are collected in
the cloud platform and evaluated using our AI-based
classification algorithm to accurately detect and classify
them as high, medium, and normal emitters.

5) Finally, we present the development of a comprehen-
sive NEMO solution. The appropriate traffic regulating

agencies and stakeholders may use our NEMO system
to put notification systems in place to address noise and
pollution challenges in urban environments.

C. Paper Organization
The rest of this paper is organized as follows: Section II

describes the NEMO system model. The NEMO system’s
functional architecture is briefly presented in Section III. The
noise source detection and localization algorithm is described
in Section IV. The AI-enabled classification model is presented
in Section V. NEMO system deployment and its field testing
results are explained in Section VI. The NEMO CDS system
for real-time communication between the NEMO system and
vehicles is detailed in Section VII. Section VIII outlines the
NEMO system’s graphical user interface platform for road
vehicles and trains and provides the data analysis. Finally,
conclusions are drawn, and future works are proposed in
Section IX.

II. NEMO: NOISE AND EMISSIONS MONITORING AND
RADICAL MITIGATION SYSTEM MODEL

In this section, we present our NEMO system that can
measure noise and exhaust emissions from individual road
vehicles and trains and identify the high emitters in real-time.
By empirically evaluating individual vehicles and applying
customized tariffs on the most polluting vehicles, and blocking
their entry to LEZs, our NEMO system seeks to develop
cutting-edge RSD-based solutions to reduce emissions and
noise from the transportation industry. The NEMO monitoring
system model and its dataflow diagram are shown in Fig. 1.

Nautilus, an integral software infrastructure component of
the NEMO system model, seamlessly merges remote sensing
and data processing to effectively categorize the noise and
exhaust emissions of road vehicles and trains. Illustrated
in Fig. 1, Nautilus comprises four major components: the
Synchronizer, the Data Hub, the Classification Dialog System
(CDS), and the Analytics components. In the subsequent
section, we will delve into a comprehensive explanation of
each of these components and their respective roles.

To facilitate the measurement of noise and exhaust emis-
sions, remote sensing technology is strategically deployed at
various locations, such as tolling stations, roadsides, and rail-
way lines. At each site, the diverse sensor arrays capture raw
measurement data, which is subsequently synchronized by the
Synchronizer to obtain a holistic representation of the vehicle’s
noise and exhaust emissions. For illustrative purposes, we will
primarily focus on road vehicles throughout our discourse.
However, it is important to note that the design and interfaces
of the Synchronizer can be appropriately adapted for train-
specific applications by substituting relevant terminologies like
“road,” “rail,” “lane,” “wagon,” etc.

Upon successful synchronization of the raw data, the Syn-
chronizer interfaces with a comprehensive vehicle registry
database to retrieve crucial vehicle characteristics necessary
for the subsequent classification process. These characteristics
encompass aspects such as fuel type, noise emission type,
approval limits, and other pertinent details. Subsequently, this
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Fig. 1: NEMO monitoring system model

amalgamated dataset, comprising the sensor data and the
aforementioned vehicle characteristics, is transmitted from the
sensing site to a centralized Data Hub module. The transfer
process is facilitated through a mechanism known as the
“pass-by report,” which allows the Data Hub to diligently
store the pass-by report information, thereby generating a
comprehensive registry for each passing vehicle.

Using the power of AI, the Data Hub employs an AI-
enabled classification model, which is expounded upon in
Section IV, to categorize the noise and exhaust emissions
of vehicles. This classification process involves comparing
the emissions of each vehicle with those of similar vehicles,
as well as with the applicable type-approval limits or high-
emitting thresholds (based on type-approval or local emission
limits stipulated by the relevant authorities). Upon classifica-
tion, vehicles exceeding the defined thresholds are flagged as
high emitters. The classification logic employed in this process
can be customized to align with the specific requirements of
the site, road authority, or the legislative framework of the
respective jurisdiction. The resultant classifications are stored
within the Data Hub for future reference.

Following the classification process, the Data Hub promptly
notifies the Classification Dialog System (CDS), which sub-
sequently communicates the classification results back to the
remote sensing site (I2I). Additionally, the CDS conveys the
classification outcomes to the respective vehicle or owner
(I2V) through the high emitter (HE) message in near real-time.
Consequently, this streamlined flow of information ensures
that all relevant stakeholders are promptly informed of the
vehicle’s emission categorization.

Lastly, the Analytics component serves as an invaluable data
analysis platform, facilitating in-depth studies of the noise and
exhaust emissions. This enables infrastructure managers and

internal NEMO users to gain comprehensive insights, which
can be utilized to refine the criteria for identifying high-
emitting vehicles, particularly in the context of LEZs.

III. NEMO SYSTEM FUNCTIONAL ARCHITECTURE

In this section, we present a comprehensive overview of
the functional architecture of the NEMO system, focusing on
the Synchronizer, the design of the Data Hub, and the main
interfaces for the Nautilus platform components.

A. Synchronizer
The Synchronizer serves as a vital link between the

NEMO system and the sensors, enabling the acquisition of
sensor results. By establishing direct communication with the
sensors, the Synchronizer facilitates the retrieval of sensory
data related to passing vehicles. This interaction takes place
through various interfaces within the measuring infrastructure,
as illustrated in Fig. 1. Furthermore, the Synchronizer utilizes
internet sources, such as the vehicle registration database
(VRDB) service, to obtain vehicle characteristics based on
identification details such as license plates or train wagon
numbers, as depicted in Fig. 1. Once all the necessary data
is gathered, it is consolidated into a pass-by report and
transmitted to the Data Hub. The Synchronizer constitutes
a site-specific component of the Nautilus platform, tailored
to a specific type of transport (road/rail) and a particular
arrangement of sensors and their placement. While the
fundamental operation of the Synchronizer remains consistent
across various transport modes and measurement sites, this
paper focuses on describing the design and interfaces of the
Synchronizer for the test site in Teesdorf, Austria, where
Kapsch TrafficCom operates a test site. Thus, this design
serves as a reference for all sites. For the design and interfaces
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TABLE I: Synchronizer collected data

Name Sensor/System Data Provided Trigger Type
TollingModule System - Vehicle classification data Pushes data to Synchronizer

- DSRC transactions in case the vehicle is equipped with a DSRC OBU
- ANPR result
- Images

NoiseModule Sensor Sound measurements of a vehicle passage Triggered by Synchronizer
ExhaustModule Sensor Exhaust measurements of a vehicle passage Pushes data to Synchronizer
WeatherStation Sensor Weather data at the location Triggered by Synchronizer

V2XModule System Electronic vehicle registration document read out from the V2X OBU Pushes data to Synchronizer
VRDBService System Vehicle registration document data as queried from authority Triggered by Synchronizer

Fig. 2: Interactions between the various components of the Data Hub

TABLE II: Synchronizer matching criteria

Data Source Matching Criteria
ANPR Result TollingModule PassbyId

VehicleClassification TollingModule PassbyId
DSRC Transaction TollingModule PassbyId
NoiseModuleData NoiseModule PassbyId
ExhaustModule Sensor Time of

vehicle passage
WeatherStation Sensor PassbyId

V2XModule System Time, geo-location,
license plate number

VRDBService System PassbyId

of a railway-specific Synchronizer, terminologies such as
road, rail/train, lane, and car can be substituted accordingly.

The Synchronizer process comprises several sub-processes,
namely:

1) Collect data
2) Synchronize collected data (to a pass-by report)
3) Provide a pass-by report to the Data Hub
4) Additional functionality and design considerations

These sub-processes are explained briefly in the following
subsections.
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1) Collect data: The sub-process of collecting data en-
tails the Synchronizer gathering information during a vehicle
passage. The Synchronizer’s responsibilities within this sub-
process include triggering sensors and systems to enable the
measurement and data collection of passing vehicles (particu-
larly in pilot tests where self-triggering of sensors is utilized,
synchronized based on time stamps). Additionally, the Syn-
chronizer receives data from autonomous sensors and systems.
Table I presents the sensors and systems that the Synchronizer
interfaces with, accompanied by a brief description of the data
they collect. The table also indicates whether the Synchronizer
is triggered by the sensor/system or if it triggers them.

To initiate the sensors and systems, the Synchronizer ini-
tially needs to be notified of the vehicle’s passage. The
TollingModule pushes the information about the vehicle pas-
sage, serving as the initial step in the data collection pro-
cess. Subsequently, depending on timing and vehicle type,
further data collection takes place. The minimum set of sensor
modules required to classify all vehicle emissions includes
the VehicleIdentificationModule (e.g., the TollingModule at
the Teesdorf test site), NoiseModule, ExhaustModule, and
VRDBService module.

2) Synchronize collected data: Within this sub-process, the
Synchronizer generates a single pass-by report for each pass-
ing vehicle and consolidates all the collected sensor and sys-
tem data into this report. The synchronization process employs
different criteria to match the data to the pass-by report of
the vehicle passage, depending on the specific sensor/system
and triggering type. The matching criteria used are outlined in
Table II.

3) Provide pass-by report: During the sub-process of pro-
viding the pass-by report, the Synchronizer transmits the
created pass-by report to the Data Hub. Additionally, the
Synchronizer sends a pass-by report to the Data Hub if one
of the following conditions is met: the pass-by report is
completed (i.e., all data is merged), or the pass-by report
time-out is reached. The time-out mechanism is necessary
since the Synchronizer lacks awareness of the functional state
of the sensors and systems it interfaces with. In the event
of an error with a sensor or system, the Synchronizer must
not wait indefinitely for a result. By adhering to the time-
out threshold, the Synchronizer ensures the timely provision
of pass-by reports to the Data Hub, avoiding any backlog.
Moreover, the time-out feature enables the realization of the
use case for vehicle-to-infrastructure (V2I) communication
within the constraints of the vehicle passage. The time-out
value is configurable within the Synchronizer.

4) Additional functionality and design considerations: In ad-
dition to the provisioning of pass-by reports, the Synchronizer
is capable of capturing additional information, such as images
or sound clips, during a vehicle passage. While not strictly
necessary to fulfill the NEMO use case, this data can assist op-
erators in error assessment and situational analysis at the mea-
surement site. The Synchronizer operates on hardware situated
at the measurement site, ensuring minimal network latency and
facilitating swift communication with road/trackside sensors
and systems. Furthermore, the Synchronizer incorporates a
data cleanup mechanism to comply with the General Data

Protection Regulations (GDPR). To achieve accurate matching
of sensor and system data, the Synchronizer and all sensors
and systems on the measurement sites synchronize their clocks
using a common network time protocol (NTP) service.

B. Data Hub
The Data Hub in the cloud provides support to the following

sub-processes:
1) Receive incoming pass-by reports
2) Store the pass-by reports
3) Classify the emission of the individual vehicle pass-by
4) Store the classification reports
5) Notify the CDS of a new classification report
6) Provide a query interface for analytics to access pass-by

and classification data
7) Receive incoming health messages from the different

modules
The Data Hub encompasses various modules responsible for
executing the sub-processes, as depicted in Fig. 2. Each
module’s role is elaborated upon in the following subsections.

1) Receive incoming pass-by reports: In this sub-process,
the Collector module receives the data. If vehicle information
is not available, the Pass-by Enricher module attempts to query
it from the Vehicle Registry. Subsequently, either the Collector
or the Pass-by Enricher forwards the pass-by report to the Pass-
by Queue for further processing. To ensure privacy, vehicle
registration data is pseudonymized, removing any sensitive
information.

2) Store the pass-by reports: Each pass-by report received
by the Pass-by Store module from the Pass-by Queue is stored
in the database for future retrieval. Separate storage areas exist
for road and rail pass-by reports.

3) Classify the emission of the individual vehicle pass-by:
Within this sub-process, the Emission Classifier module re-
ceives each pass-by report from the Pass-by Queue. Based on
the site identifier in the pass-by report, the Emission Classifier
applies the appropriate classification model and generates a
Classification Report. This report is then enqueued in the
Classification Queue for further processing.

4) Store the classification reports: The Classification Store
module receives each classification report from the Classi-
fication Queue and stores it in a database for later access.
Similar to pass-by reports, road and rail classifications are
stored separately.

5) Notify the Classification Dialog System (CDS) of a new
classification report: The Classification Notifier module re-
ceives each classification report from the Classification Queue
and forwards/pushes it to the CDS. The CDS, equipped with
various communication channels such as vehicle on-board unit
(OBU) (V2X OBU), email, SMS, and mobile application,
facilitates communication with multiple sites.

6) Provide a query interface for analytics to access pass-by
and classification data: The Query Interface module serves
as a gateway for external Analytics components to request
data. Upon receiving a data request, it retrieves the relevant
information from the Pass-by and/or Classification Stores and
provides it, subject to the requester’s appropriate access rights.
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TABLE III: Sensor- Synchronizer interfaces

InterfaceId From To Scope / Data Exchanged Technology
Transport Layer / Protocol Data Format

V2X-SYN-1 V2XModule Synchronizer Interface to provide vehicle registration ZMTP pub/sub Protocol buffers
data configured in V2X OBU.

TOL-SYN-1 TollingModule Synchronizer Interface to provide vehicle detection ZMTP pub/sub Protocol buffers
vehicle classification, ANPR result, images
and DSRC transaction data.

EXH-SYN-1 ExhaustModule Synchronizer Interface to provide measured emission ZMTP pub/sub Protocol buffers
data of a vehicle passage.

SYN-NOI-1 Synchronizer NoiseModule Interface to trigger the NoiseModule ZMTP pub/sub Protocol buffers
so it can start measurement.

NOI-SYN-1 NoiseModule Synchronizer Interface to provide measured sound data ZMTP pub/sub Protocol buffers
of a vehicle passage.

SYN-WEA-1 Synchronizer WeatherStation Interface to receive real-time weather ZMTP req/res Protocol buffers
information of the measurement site.

SYN-VRD-1 Synchronizer VRDBService Interface to request vehicle registration data. HTTP REST-based
VRD-SYN-1 VRDBService Synchronizer Interface to return requested vehicle HTTP REST-based

registration data.

TABLE IV: Synchronizer – Data Hub interface

From To Operation Scope / Data Exchanged Technology
Transport Layer / Protocol Data Format

Synchronizer Collector Report pass-by report and media. HTTP Post REST-based
Synchronizer Data Hub Report and images Provide the pass-by report and images HTTP REST-based

of a vehicle passage to the Data Hub.

TABLE V: Pass-by report handling interface

From To Operation Scope / Data Exchanged Technology
Transport Layer / Protocol Data Format

Collector Passby Queue enqueue pass-by report AMQP publish REST-based
Collector Passby Enricher enrich pass-by report HTTP (POST) REST-based

PassbyEnricher VRDB Service get vehicle info LicensePlate/UIC number HTTP (POST) REST-based
PassbyEnricher Passby Queue enqueue pass-by report AMQP publish REST-based
PassbyQueue PassbyStore store pass-by report AMQP subscribe REST-based

TABLE VI: Classifier interface

From To Operation Scope / Data Exchanged Technology
Transport Layer / Protocol Data Format

Passby Queue Emission Classifier Request classification pass-by report AMQP subscribe REST-based
Emission Classifier SoundClassificationModel classify in: pass-by report HTTP (POST) REST-based

out: ClassificationSound
Emission Classifier ExhaustClassificationModel classify in: pass-by report HTTP (POST) REST-based

out: ClassificationExhaust
Emission Classifier Classification Queue enqueue Classification report AMQP publish REST-based

TABLE VII: Classification report handling interface

From To Operation Scope / Data Exchanged Technology
Transport Layer / Protocol Data Format

Classification Queue Classification Notifier trigger Classification report AMQP subscribe REST-based
Classification Queue Classification Store store Classification report AMQP subscribe REST-based

TABLE VIII: Classification report notifying interface

From To Operation Scope / Data Exchanged Technology
Transport Layer / Protocol Data Format

Classification Notifier Classification Dialog System notify Classification report HTTP (POST) REST-based

TABLE IX: Querying interface

From To Operation Scope / Data Exchanged Technology
Transport Layer / Protocol Data Format

Analytics Querying interface query In: query request, access token HTTP (POST) REST-based
Out: a collection of PassbyReport and/or
collection of Classification Report
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7) Receive incoming Health messages: The Collector mod-
ule also receives health messages from different sensors. Each
sensor periodically sends messages indicating its current state,
whether healthy or degraded.

8) Additional functionality and design considerations: To en-
sure scalability, the Data Hub is designed as a collection
of loosely coupled modules capable of interacting through
simple protocols like hypertext transfer protocol (HTTP)3 and
advanced message queuing protocol (AMQP)4. This design
allows individual modules to be containerized using Docker5

and deployed through container orchestration platforms like
Kubernetes6.
C. Interfaces

This sub-section elucidates the principal interfaces utilized
in the Nautilus platform. The underlying data model and
interfaces shared by all modules are described using the
OpenAPI7 specification.

1) Sensors to Synchronizer: This sub-section elaborates
on the interfaces between the Synchronizer and the sen-
sors/systems responsible for gathering data related to vehicle
passages. The Synchronizer interfaces aim to standardize com-
munication technologies, minimizing operational costs. Details
regarding these interfaces are presented in Table III, including
interface identification, communicating entities, and a brief
description of the scope and data exchanged. The interface
naming convention follows the pattern: “3-letter abbrevia-
tion sender system” - “3-letter abbreviation receiver system”
- “Interface identifier” (e.g., SYN-DAH-1). Two different
technologies are employed for data exchange. The sensors
and systems at the measurement site employ the ZeroMQ
message transport protocol (ZMTP)8, while the central system
components utilize a REST9-based data format over HTTP.

2) Sensor Fusion: In the sensor fusion process, the Syn-
chronizer receives image triggers from the roadside station and
subsequently requests weather and noise measurement data
from the corresponding stations and modules. The VRDB-
Service is queried for vehicle registration information based
on the license plate, which is then added to the road pass-
by report upon receiving the image result (automatic number
plate recognition (ANPR)). The Exhaust and V2X modules
independently provide their data, triggered by their respective
systems. Once all data is fused and added to the report, or a
sensor timeout occurs, the road pass-by report is sent to the
Data Hub.

3) Synchronizer to Data Hub: The interface from the Syn-
chronizer to the Data Hub is specified using the OpenAPI
document. Table IV provides an overview of the Synchronizer
and Data Hub interface. Once the Synchronizer synchronizes
the sensor data for a pass-by on-site, all relevant pass-by data
is posted to the Data Hub as a JavaScript object notation

3https://developer.mozilla.org/en-US/docs/Web/HTTP
4https://www.amqp.org/
5https://www.docker.com/
6https://kubernetes.io/
7https://www.openapis.org/
8https://rfc.zeromq.org/spec/23/
9https://www.ibm.com/cloud/learn/rest-apis

(JSON)10 document. The Data Hub’s Collector API exposes
POST interfaces for vehicle pass-bys, and a generic interface
for sending media files related to pass-bys. Additionally, an
interface is available for sensors to send their health informa-
tion.

4) Pass-by Report Handling: Table V presents the pass-
by report handling interface. Pass-by reports are stored in a
PostgreSQL11 database, which supports JSON format. This
allows querying of pass-by reports based on their individual
attributes.

5) Interaction with Classifier: A Classifier interface is out-
lined in Table VI. The Emission Classifier module manages
all processes related to emission classification. It receives new
pass-bys from the Passby Queue and autonomously initiates
the sound and exhaust classification processes. Once com-
pleted, the classifications are gathered, and a classification
report is generated and sent to the Classification Queue.

6) Classification Report Handling: The classification report
handling interface is provided in Table VII. When a new
classification report becomes available in the classification
queue, it is processed by the classification notifier. Similar
to pass-by reports, classifications are stored in a PostgreSQL
database, enabling searching based on individual classification
characteristics.

7) Data Hub to the CDS: The Classification Notifier informs
the CDS about new classifications. The classification report
handling interface is presented in Table VIII.

8) Data Hub and Analytics Interaction: The Query Interface
module facilitates the receipt of pass-by and classification
reports from the Data Hub. It utilizes GraphQL12 to define
and respond to queries flexibly. The Query Interface directly
retrieves data from the PostgreSQL databases. Table IX pro-
vides an overview of the Query Interface module.

IV. NOISE SOURCE DETECTION AND LOCALIZATION
USING MICROPHONE ARRAY IN DENSE TRAFFIC

STREAMS

In this section, we present an algorithm designed to address
the accurate identification and localization of high-emitting
vehicles within dense traffic streams. Our approach utilizes
a microphone array comprising two side microphones per
lane strategically placed in close proximity to the vehicles.
The primary objective is to leverage these microphones to
detect and locate vehicles emitting high levels of noise. The
algorithm, referred to as “Noise Source Detection and Local-
ization using Microphone Array in Dense Traffic Streams,” is
outlined in Algorithm 1. The algorithm begins by employing
a beamforming technique to detect the primary sound source
and estimate the position of the vehicle [33]. Specifically,
the side microphones, positioned at a height with a distance
of approximately 20 cm in the driving direction, play a
key role in localizing the vehicles. The determination of
the source direction is derived from the signals captured by
the microphones. These microphones are positioned along a

10https://www.json.org/json-en.html
11https://www.postgresql.org/
12https://graphql.org/
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Algorithm 1: Noise Source Detection and Localization
using Microphone Array in Dense Traffic Streams
Input : Microphone data: A sequence of audio

samples collected from the microphone array
Output: Corrected peak sound pressure level: A

numerical value representing the corrected
peak sound pressure level

Start
Initialization:
• Initialize the microphone array and configure the

beamforming algorithm;

Data Collection:
• Collect audio data from the microphone array

and store it in the variable audioData;

Position Estimation:
• Estimate the position of the vehicle using the

beamforming algorithm on audioData;
• Store the estimated position in the variable
estimatedPosition;

Pass-by Trajectory Calculation:
• Calculate the pass-by trajectory angle based on

the estimatedPosition;
• Store the pass-by trajectory angle in the variable
passByTrajectory;

Noise Interference Removal:
• Obtain a list of surroundingPeakLevels;
for each surroundingPeakLevel in
surroundingPeakLevels do

if the peak of interest value is at least 6
decibels below the smallest value in-between
peak of interest and
surroundingPeakLevel then

• Retrieve the model curve corresponding
to the vehicleSpeedCategory from
the pre-trained dataset;

• Overlay the neighbouring peak with the
model curve for the specific vehicle speed;

• Determine the contribution of the model
curve at the peak of interest;

• Subtract the contribution from the
surroundingPeakLevel to obtain the
corrected peak of interest level;

return correctedPeakLevel;
end

end

Stop

horizontal array that is designed to encompass the horizontal
plane. Let sm0,l represent the measured sound signal of the
first microphone in the lth frame, l = 1, 2, · · ·L, and s∗m1,l

represent the complex conjugate of the measured sound signal
of the second microphone in the lth frame, l = 1, 2, · · ·L.
Now, the cross-correlation of the lth frame is computed by

the summation, as elaborated in Equation (1).

cl =


∑N

n=1 sm0,l(n+ k−(N−1)) · s∗m1,l
(n)

...∑N
n=1 sm0,l(n+ k(N−1)) · s∗m1,l

(n)

 (1)

In Equation (1), k represents the time shift between two
signals, and n pertains to the running index inside the specific
frame of the microphone, n = 1, 2, · · ·N , and k = (−(N −
1), · · · (N−1). Now, the algorithm performs the maximization
of cl in Equation (1) over all the values of k and applies the
following transformation to obtain the direction of the sound
source as the horizontal angle:

αl = arcsin
(

dτ
dmic

)
, l = 1, 2, · · ·L (2)

where dτ = l
fsl

· c0, c0 = 343 m/s is the speed of sound, fsl
is the “sampling frequency” denoting how many frames are in
one second, dmic is the distance between the two microphones.

In Equation (2), this angle αl of the source signal resembles
the arctan() function, spanning a range from -90° to 90°. The
algorithm estimates the position by processing this angle, com-
monly known as the “pass-by trajectory”. In this context, an
angle of 0° signifies the position directly in front of the array,
while angles of -90° and 90° represent the scenario where the
vehicle is located at a far-away distance. However, an inherent
challenge arises due to the potential interference caused by
nearby vehicles, which can impact the accurate measurement
of noise levels. To address this issue, our algorithm introduces
a method called “peak level correction” [34]. This method
adopts a data-driven approach to correct the measured noise
levels of individual vehicles by considering the contributions
of nearby vehicles. The algorithm collects data from single
pass-bys and generates characteristic mean level-time curves
corresponding to different vehicle speed categories to achieve
this. These curves serve as models to estimate nearby vehicles’
contribution and correct the measured noise levels accordingly.
Let’s denote the model curve for a specific vehicle speed
category as M(v), where v represents the speed category of
the vehicle (e.g., 30 km/h, 50 km/h, 75 km/h) etc.

The peak level correction method is applied by examining
the behaviour of the noise level towards surrounding peaks. Let
P be the set of detected peaks and pi represents the i-th peak
in P . Initially, the algorithm checks if the noise level exhibits
a decrease of at least 6 decibels (dB) from the peak of interest
pi towards the minimum in between pi and any surrounding
peak pj . Let ∆S(pi, pj) represent the difference in sound level
between peaks pi and the corresponding minimum of the pair
(pi, pj), where pj is a surrounding peak.

∆S(pi, pj) ≥ 6 dB ∀pj (3)

If such a decrease is observed as represented in Equation (3),
it suggests that the nearby vehicles’ contribution is insignif-
icant, and no further correction is necessary. However, when
the decrease is below the specified threshold of 6 dB, the
algorithm overlays the neighbouring peak pj with the corre-
sponding model curve based on the specific vehicle’s speed.
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Let Oj(pi,M(v)) represent the overlaid curve of the model
curve M(v) on peak pj surrounding the peak of interest pi.
To calculate the contribution of the model curve M(v) at
peak pi, we find the difference between the overlaid curve
Oj(pi,M(v)) and the actual sound level curve s(ti) at the
peak time ti of pi. Let Cj(pi,M(v)) represent the contribution
of the overlaid curve Oj(pi,M(v)) at peak pi. The corrected
sound level at peak pi, denoted as CS(pi), is obtained by
subtracting the contribution Cj(pi,M(v)) from the sound level
s(ti) at peak time ti. Hence, the correction calculation can be
expressed as:

CS(pi) = s(ti)−
∑
j

Cj(pi,M(v)) (4)

As shown in Equation (4), this correction process is performed
for all surrounding peaks contributing to the disturbance,
resulting in a corrected maximum sound pressure level in
identifying high-emitting vehicles within dense traffic streams.
The proposed algorithm has been applied successfully during
our testing in Rotterdam and Teesdorf (explained in Section
VI).

V. AI-ENABLED CLASSIFICATION MODEL IN THE DATA
HUB

The classification of vehicles as high emitters or not is
achieved using an AI-enabled model. This model tackles a
supervised learning problem, where each vehicle measurement
must be labelled during training. However, such labels are not
readily available in the data configuration. Moreover, existing
regulations do not provide a straightforward assessment of ex-
cessive noise based on a single pass-by measurement. A sound
expectation model (SEM) has been developed to overcome
this, leveraging available data and making certain assumptions
to predict the expected noise level for each vehicle pass-by.

The fundamental principle underlying the SEM is character-
ized as follows: through the utilization of measured parameters
encompassing noise levels, vehicle velocity, and engine speed
during both cruising (crs) and acceleration (acc) phases, three
distinct constituents are computed. These components encom-
pass the expected tire-road surface noise level (LTR EXP ), the
expected powertrain noise level (LPT EXP ), and the expected
dynamic noise level (LDYN EXP ).
Expected Tire Road Surface Noise Level:This component
pertains to the noise generated as a result of the interaction
between the vehicle’s tires and the road surface. It considers
factors such as the speed of the vehicle and the characteristics
of the road, contributing to the estimation of the noise pro-
duced by the tire-road interface.
Expected Powertrain Noise Level: This component relates
to the noise that originates from the powertrain of the vehicle,
including the engine and other relevant mechanical compo-
nents. It takes into account the engine speed and potentially
other powertrain parameters to predict the noise produced by
these elements.
Expected Dynamic Noise Level: This component captures
the dynamic noise variations that occur due to changes in
the vehicle’s operational conditions, such as acceleration. It
accounts for the dynamic aspects of the vehicle’s movement
and how they influence noise generation.

The collective interplay of these three facets results in an
overall projected noise level. Of particular significance within
the SEM framework are two pivotal components contribut-
ing to generating vehicle-specific outcomes. Primarily, the
calculated parameters, as delineated, are uniquely tailored to
each vehicle category and characterized by their own distinct
parameter set. Secondly, a key aspect entails the incorpora-
tion of two discrete engine speed values: one relevant to a
stable vehicular velocity scenario and another corresponding
to acceleration conditions. This dichotomy arises due to the
fact that the tire-road surface sound component is ascertained
under constant vehicle speed conditions, while the powertrain
sound component is derived during acceleration episodes.

The determination of the expected tire rolling sound com-
ponent, denoted as LTR EXP , is contingent upon the attained
vehicle speed (vmeas) during measurement. Specifically, for
vehicle speeds equal to or below a reference velocity (vref ),
L−
TR EXP is evaluated using the formula:

L−
TR EXP = θTR LO × log

(
vmeas

vref

)
+ Lref TR (5)

where vref = 50 km/h, Lref TR = 10 × log(x ×
100.1×Lmeas crs), Lmeas crs is measured sound pressure level,
x refers to a parameter applicable to tire rolling sound energy
fraction of Lmeas crs, and θTR LO is low tire rolling sound
slope parameter and is taken in accordance with the relevant
vehicle characteristics.

For vehicle speeds exceeding Vref , the L+
TR EXP is com-

puted as:

L+
TR EXP = θTR HI × log

(
vmeas

vref

)
+ Lref TR (6)

where θTR HI is high tire rolling sound slope parameter.
The projected powertrain base mechanical sound compo-

nent, denoted as LPT EXP , hinges upon the attained engine
speed (ηmeas) during measurement. Specifically, for engine
speeds equal to or below a critical engine speed (ηmeas crs),
L−
PT EXP is computed as follows:

L−
PT EXP = θPT LO × log

(
ηmeas + ηSHIFT PT

ηmeas crs + ηSHIFT PT

)
+

Lref PT

(7)

where Lref PT = 10× log((1−x)×100.1×Lmeas crs), θPT LO

is low powertrain sound slope parameter and ηSHIFT PT is
the form factor for the logarithm function of the mechanical
sound model.

Similarly, for engine speeds exceeding ηmeas crs, L+
PT EXP

is computed as follows:

L+
PT EXP = θPT HI × log

(
ηmeas + ηSHIFT PT

ηmeas crs + ηSHIFT PT

)
+

Lref PT

(8)

where θPT HI is high powertrain sound slope parameter.
The expected base dynamic sound component LDYN EXP

is calculated dependent on the achieved engine speed ηmeas
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during the measurement. For engine speeds up to and inclusive
ηmeas acc, L−

DYN EXP is calculated by:

L−
DYN EXP = θDYN LO × log

(
ηmeas + ηSHIFT DYN

ηmeas acc + ηSHIFT DYN

)
+

Lref DY N

(9)

where Lref DY N = 10 × log((1 − x) × 100.1×Lmeas acc),
θDYN LO is low dynamic sound slope parameter and
ηSHIFT DYN is the form factor for the logarithm function
of the dynamic sound model.

Similarly, for engine speeds exceeding ηmeas acc,
L+
DYN EXP is computed as follows:

L+
DYN EXP = θDYN HI × log

(
ηmeas + ηSHIFT DYN

ηmeas acc + ηSHIFT DYN

)
+

Lref DY N

(10)

where θDYN HI is high dynamic sound slope parameter.
The dynamic delta sound component, denoted as

∆LDYN EXP , is calculated through the equation:

∆LDYN EXP = ∆LDYN + 0.3 (11)

where ∆LDYN = 10 dB.
The outcome of each component’s calculation contributes

to determining the expected sound level for a particular
measurement. This anticipated sound level is subsequently
compared to the maximum measured sound pressure level. The
methodology employed in this sound expectation model draws
inspiration from the formulas utilized in the new draft-type
approval test for vehicle noise under real driving conditions,
part of the Additional Sound Emission Provisions (ASEP) in
UNECE Regulation 51 [35]. To establish a reference noise
level for “normal” vehicles, we adopt an approach based on
the vehicle’s speed and acceleration. We aim to determine
the reference noise level, denoted as LAmax,ref , by fitting a
function to the data. The function is defined by Equation (12):

LAmax,ref (v, a) = c0 + cv · v + ca · a (12)

where v represents the vehicle speed in km/h, a represents
the acceleration in m/s2, and c0, cv , and ca are coefficients
specific to each vehicle category (such as M1, N1, etc.).
By finding the appropriate values for these coefficients, we
can establish a reliable reference noise level that accounts
for the vehicle’s characteristics and contribute to the accu-
rate identification and categorization of vehicles based on
their noise emissions. This computational scheme produced
a calculation model based on laws governing vehicle noise
as a function of vehicle characteristics and driving parameters
(speed, acceleration and engine speed), including tyre/road and
propulsion noise separately. Each pass-by is given a label by
comparing the expected level with the actual measured sound
level, i.e. if the difference between the measured and expected
sound level is more than 8 dB(A), the pass-by is considered
a high emitter. Hence, the available data can then be used to
create and train a supervised AI-enabled classification model
using this labelling of high emitters. Please refer to [15] for

Fig. 3: Maximum noise level (LA,max) vs. speed for individual
vehicle pass-bys. Colors indicate engine speed (rpm). Vehicles
classified as high emitters are indicated with stars

more details on the sound expectation model used for our
NEMO system.

In order to optimize the performance of the AI-enabled clas-
sification model, data preprocessing and filtering techniques
were employed to separate relevant data from irrelevant data.
After evaluating eleven different AI models and considering
their scores, advantages, and disadvantages in terms of accu-
racy and computation time, it was decided to proceed with
a neural network, specifically a Multi-layer Perceptron classi-
fier [36]) as an AI model for classification. This was done over
continuous testing of AI models with the data. More details on
the evaluation of different classification models and selecting
the AI-enabled classification model can be found on [15]. The
TensorFlow API13 was utilized to develop the final model,
which was rigorously assessed using separate training and
test data to mitigate overfitting. Hyperparameter tuning was
also conducted to further reduce the risk of overfitting. The
resulting AI-enabled classification model was deployed in the
Nautilus cloud platform, demonstrating accurate classification
of high noise emitters. It should be noted that this model
specifically addresses high noise emitters and does not encom-
pass exhaust emissions. Furthermore, it is site-specific and can
be customized based on regulations governing vehicle noise,
pavement type, the influence of nearby reflecting objects, and
exhaust emissions.

Fig. 3 illustrates the outcomes of vehicle classification
using AI algorithms based on measurements conducted in
Rotterdam. The findings in this figure unveil a noteworthy
trend: vehicles tend to be categorized as illicit high emitters
when operating at reduced and lower engine speeds. This
occurrence can be attributed to the type approval system,
which grants vehicles the leeway to generate amplified noise
levels at elevated engine speeds. However, if the objective

13https://www.tensorflow.org/
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Fig. 4: Overview of the deployment of the NEMO Nautilus platform with different modules at Teesdorf

is to evaluate and subsequently modify driver behaviour, an
alternative classification methodology can be employed. This
approach not only recognizes vehicles as high noise producers
due to aggressive driving styles but also endeavours to influ-
ence drivers towards adopting a more considerate approach on
the road.

VI. NEMO SYSTEM DEPLOYMENT & TESTING

In order to test the NEMO system to identify the high-
emitters, the system was successfully deployed in Rotterdam,
Florence and Teesdorf. Owing to space constraints and for the
sake of brevity, we only explain here the deployment of the
NEMO system in Teesdorf. However, the deployment of the
NEMO system will be more or less the same in other testing
locations as well, subject to the adjustments of placement of
cameras, microphones and installations of different sensors.

The NEMO Nautilus platform was deployed partly on-
site and partly in the Google cloud14. The measurement-
specific parts, such as the sensor-communication modules
and Synchronizer, are deployed at the sensing site. These
components need to be deployed on-site to ensure low-latency
communication. The Data Hub is also deployed on the Google
cloud. The VRDB service that interfaces between the Synchro-
nizer and the vehicle registry databases of various authorities
are also deployed as a cloud solution. A simplified overview
of the deployment for the Teesdorf (Austria) test setup with
different modules is shown in Fig. 4.

The Synchronizer services are deployed on a dedicated
computer system on the measurement site. The Data Hub
module (including the VRDBService module) is a collection
of Linux Docker containers orchestrated via Kubernetes. The
communication between the on-site and cloud components
within Nautilus is done via a site-to-site virtual private network
(VPN). This adds a layer of security and obviates the need
for an extra layer of authentication and authorization between

14https://cloud.google.com/

different modules. The Analytics module provides access to
the data inside the Data Hub. The Analytics module handles
the authentication and authorization of users, and the Data Hub
trusts the Analytics module. An NTP server is made available
for time synchronization between on-site sensors and systems.

A. Teesdorf Hardware Setup
A hardware setup illustration and a Teesdorf test site setup

for testing the NEMO system are shown in Fig. 5. The figure
clearly shows the planned hardware setup that illustrates the
required equipment and rough location. Next to hardware
equipment, the figure shows configured trigger lines for ve-
hicle detection and the zone for V2X vehicle data readout.
It also represents the NEMO installation integrated into an
enforcement station for a highway installation. The station
spans three lanes, two driving lanes and one hard shoulder.
The hard shoulder is not subject to testing and is not fully
equipped with NEMO or tolling sensors. For safety reasons,
the road is delimited with concrete jersey barriers. To support
motorcycle use cases, rear cameras are needed to read the
license plates. The equipment installed at the Teesdorf test
site for testing the NEMO system is outlined in Table X.

B. NEMO System Testing
Several tests were executed at the Teesdorf test site in

Austria to check the performance of our NEMO system in
identifying high emitters and communicating the classification
message in real time. For instance, tests were performed for
a road pass-by car with a vehicle speed of 70 km/h and 50
km/h honking. In the first test case, the passenger car was
equipped with a V2X OBU and passed the test gantry at
a speed of 70 km/h, where we tested the vehicle for high
noise and high exhaust emission. The test was done to check
if our NEMO system could detect and perform the correct
classification for the vehicle. The test case is considered passed
as a V2X message with a resultId of 3 was received. Please
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Fig. 5: NEMO system hardware and Teesdorf test site setup

TABLE X: Teesdorf hardware setup list

Equipment Abbreviation Quantity Description Needed for
Exhaust Sensor E1 1 Exhaust measuring unit and reflector unit for all lanes. ExhaustModule

RIS Module V2X1 1 Module communicating with V2X OBUs for all lanes. V2XModule
DSRC Transponder DSRC1/2 2 DSRC module communicating with DSRC OBUs for specific lane. TollingModule
Overview Camera OC1R/F 2 Overview camera capturing vehicle entering and leaving the TollingModule

Front and Rear measurement site for all lanes.
Vehicle Classification nVDC1/2 2 Sensor capturing vehicle passage throughout the measurement TollingModule

Sensor site and classifying vehicles for specific lane.
Front Camera FC0/1/2 3 Front camera reading license plate number for specific lane. TollingModule
Rear Camera RC0/1/2 3 Rear camera reading license plate number for specific lane. TollingModule

Top Noise Sensor N1/2 2 Top mounted microphone collecting noise from specific lane. NoiseModule
Side Noise Sensor NOL/R 2 Side mounted microphone collecting noise from all lanes. NoiseModule

Weather Sensor W 1 Weather station measuring weather conditions for the measurement site. WeatherStation
Noise Cabinet - 1 Cabinet containing processing units for noise measurement. NoiseModule
RSS Cabinet - 1 Cabinet containing processing units for data collection. TollingModule

Synchronizer
I2V-

CommunicationModule

refer to Table XI for different resultId and their corresponding
descriptions. The resultId ‘3’ was part of the solution space
and indicated a high noise and high exhaust emission. This
was correctly reflected by the V2X OBU screen, as shown
in Fig. 6(a). In the second test case, the passenger car with
a V2X OBU passed the test gantry with a 50 km/h speed.
The car accelerated to the target speed and rolled through the
gantry. Thus, no engine exhaust emissions nor engine noise
emissions were generated. Only rolling noise was generated.
To generate additional noise, honking throughout the passage
was performed. The expected result was a high noise emit-
ter message. The test case is considered passed as a V2X
message with a resultId of 1 was received, matching the
expectation. The resultId ‘1’ was also part of the solution space
and indicated a high noise. The V2X OBU screen correctly
reflected this, as shown in Fig. 6(b). Similarly, several other
test cases were executed with passenger cars and motorcycles
under different driving conditions to test the NEMO system
for correctly detecting and identifying high emitters (both in
terms of noise and exhaust emissions) and their corresponding
classification data were recorded in the Data Hub for further
analysis. The pilot testing of the NEMO system at Teesdorf
and Rotterdam successfully detected and identified the high
emitters in real time under different driving conditions. Also,

real-time classification messages from the CDS system were
tested and are explained in the next section.

VII. CLASSIFICATION DIALOG SYSTEM (CDS)

The main aim of the CDS is to inform the results of the pass-
by classification to the vehicle owner or directly to the driver
in real time. The communication’s ultimate goal, whether
it be purely informative or regulatory (such as a message
restricting entrance to a LEZ), is a political decision and
is therefore outside the scope of this paper. The appropriate
traffic regulating agencies and different stakeholders may use
these developments to put notification systems in place for any
purpose they see necessary.
A. General Considerations for CDS

The CDS system aims to promptly notify vehicle owners of
real-time pass-by classification results. To achieve this, a CDS
server based on NodeJS15 has been deployed on the Google
Kubernetes Engine (GKE). When the vehicle classification
results reach the CDS classification endpoint, it triggers an
emitter message for V2X OBU communication. Additionally,
a separate communication channel has been established for
mobile applications, email, and mobile messages to receive

15https://nodejs.org/en/
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(a) Road pass-by car with high noise and high exhaust emission (b) Road pass-by car with high noise only

Fig. 6: Testing and identification of different types of high emitters in real-time using NEMO system

TABLE XI: resultId and their corresponding description

resultId Description
0 Noise classification is low, and Exhaust classification is low
1 Noise classification is high, and Exhaust classification is low
2 Noise classification is low, and Exhaust classification is high
3 Noise classification is high, and Exhaust classification is high

the classification and emitter messages from the CDS in real-
time.

The CDS system also considers tolling fee calculations
based on vehicle emission classifications, which are com-
municated via email and mobile messages. The following
conditions serve as an example for tolling fee calculation and
communication in real-time:

1) If the vehicle is classified as a High Emitter for both
noise and exhaust emissions, then CDS will calculate
tolling fees of 3C.

2) If the vehicle is classified as a Low Emitter for noise
and a High Emitter for exhaust emission, then CDS will
calculate tolling fees of 2C.

3) If the vehicle is classified as a High Emitter for noise
and a Low Emitter for exhaust emission, then CDS will
calculate tolling fees of 1C.

4) If the vehicle is classified as a Low Emitter for both
noise and exhaust emissions, then CDS will calculate
tolling fees of 0C.

For V2X OBU communication, the CDS sends the emitter
message containing the corresponding resultId as soon as
classification messages are received. The resultId and their
descriptions implemented in the CDS for the Teesdorf test
site are listed in Table XI.

B. I2V Communication

The NEMO classification outcome is communicated directly
to the vehicle through the I2V communication channel. The
CDS determines the feasibility of I2V communication based
on the presence of a V2X OBU passage indicated in the road
pass-by report. When the I2V communication channel is avail-
able, the CDS generates the emitterMessage, which includes
an identifier and the corresponding resultId as specified in

Table XI. The identifier is a temporary V2X OBU ID extracted
from the road pass-by report being classified.

The CDS identifies the target roadside station for delivering
the emitterMessage and transmits it to the I2V communication
module. From there, the emitterMessage is passed to the
V2X module, which in turn sends it to the V2X OBU. The
V2X OBU, upon receiving the emitterMessage, searches for
customized pictograms and text associated with the result code
and presents the classification outcome to the driver through a
display. To display the message correctly, the V2X OBU relies
on the resultId provided. Fig. 6 illustrates a successful test of
the I2V communication from the CDS at the Teesdorf test site,
demonstrating the practical implementation and functionality
of the system.

C. Email and SMS Communication Channel
Email and mobile SMS are widely recognized and com-

monly used digital communication methods. In our system,
vehicle owners receive timely updates via email and SMS,
including relevant vehicle information, tolling fees, and clas-
sification results from the CDS. To facilitate this communica-
tion, we have implemented an email server using Nodemailer16

in NodeJS, enabling the successful delivery of detailed in-
formation from the CDS through emails. Additionally, the
CDS NodeJS server utilizes the Twilio17 API to send real-
time notifications via mobile SMS to vehicle owners as soon
as classification results are received.

The successful testing of the email and real-time mobile
message (SMS) communication path at the Teesdorf test site
demonstrates the effective functioning of these communication
channels. When classification data reaches the CDS classi-
fication endpoint, an email is promptly sent to the vehicle
owner, and a near real-time SMS notification is also dispatched
from the CDS. This ensures that vehicle owners are promptly
informed of the relevant information related to their vehicles.

D. Mobile Application
A mobile application specifically designed to relay clas-

sification results, particularly for vehicles identified as High

16https://nodemailer.com/about/
17https://www.twilio.com/
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Emitter, has been developed. The mobile app notifies the
vehicle owner when their vehicle has been classified as a high
emitter. Consequently, the owner will be informed that entering
certain zones is prohibited. Additionally, the owner will be
prompted to inspect their vehicle for any malfunctioning
components, such as through a periodical technical inspection
(PTI) check.

Considering the legal restrictions on reading phone mes-
sages while driving, the mobile app utilizes mobile messages
as a non-real-time communication channel between the vehicle
owner and the driver. This ensures that important information
can be conveyed without compromising safety regulations.

Fig. 7: NEMO dashboard

Fig. 8: Analytics module with different options for the vehicle
dashboard

Fig. 9: Vehicle - Road data results (medium-high emitters)
from the Rotterdam test-site

VIII. NEMO GRAPHICAL USER INTERFACE (GUI)
The Analytics component of the NEMO system serves

as a powerful data analysis platform for both internal use
and the infrastructure manager. It enables the comprehensive
examination of recorded noise and emission levels stored in
the Data Hub. This functionality proves valuable for local

Fig. 10: Vehicle - Road data results from the Teesdorf test-site

Fig. 11: Vehicle – classification results based on site id and
high emitters

Fig. 12: Comparison of LA,max for normal-medium-high
emitters against the speed of the vehicle at Rotterdam site

transport authorities and councils, as it allows them to establish
appropriate thresholds for high-emitting vehicles.

In compliance with the European General Data Protection
Regulations (GDPR), the NEMO system has implemented
measures to safeguard privacy during both system implemen-
tation and Roadside Sound Disturbance (RSD) measurements.
Close collaboration with privacy specialists from city coun-
cils and the NEMO project’s privacy officer resulted in the
following steps:

• The Automatic Number Plate Recognition (ANPR) de-
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(a) Comparison of normal-medium-high emitters at Rotterdam (b) Comparison of normal-medium-high emitters at Teesdorf

Fig. 13: Comparison of different classes of emitters

Fig. 14: Doughnut chart for comparison of high emitter
vehicles based on fuel type at Rotterdam site

vice employs real-time text recognition on camera photos,
ensuring that original video images are not retained. This
approach prevents the identification of vehicle drivers or
any other individuals.

• Audio recordings are subjected to direct evaluation using
various metrics such as dB levels, spectra, and promi-
nence. The original recordings are promptly deleted to
prevent inadvertent capture of private audio information,
including speech.

The NEMO system’s NAUTILUS platform supports the analy-
sis of noise and exhaust emissions from both road and rail ve-
hicles. To access pass-by and classification data, the Analytics
module verifies the credentials provided by the query interface.
This interface, implemented using Hasura GraphQL18, requires

18https://hasura.io/

Fig. 15: Comparison of high emitter vehicles based on differ-
ent vehicle models at the Rotterdam site

the retrieval of an initial token by the analytics module. The
Data Hub employs OAuth 2.019 authorization with bearer
tokens, which are provided by auth0.com. An automated
machine-to-machine authentication process facilitates secure
communication between the Analytics module and the query
interface.

For user access to the Analytics user interface, a dashboard
with a login page and protected routes has been developed.
Only authorized NEMO infrastructure managers or expert
users are given credentials, such as a pre-defined username
and password, to gain entry into the NEMO GUI dashboard.

19https://oauth.net/2/



RAUNIYAR et al.: NEMO: REAL-TIME NOISE AND EXHAUST EMISSIONS MONITORING FOR INTELLIGENT TRANSPORTATION SYSTEMS 17

Fig. 16: NEMO train site setup

Fig. 17: Comparison of LA,EQ for normal-low-medium-high
emitters against the speed of train

Fig. 18: 3D Pie-chart for comparison of normal-low-medium-
high emission rating for train vehicles

A. Graphic User Interface for Road Infrastructure

As shown in Fig. 7, the NEMO expert user can click on
the vehicle dashboard to view the results related to vehicle
data after successfully logging in. The expert user can learn

the high noise and exhaust emission vehicle classification by
using the querying interface with different vehicle attributes.
The query’s outcome will be returned, and the outcomes will
be shown in the form of tables and charts. An expert user
such as an infrastructure manager has different options, for
example, based on normal/high/medium emitters, site id and
so on, to choose from to view the classification results as
shown in Fig. 8.

For instance, data pertaining to medium-high emitters at
the Rotterdam test site from 2022-02-22 to 2022-02-25 are
displayed in a table format for enhanced visualization (see
Fig. 9). The table shows the first ten rows, but additional
data can be accessed by clicking the ‘Next’ button. Sorting
the table can be done by clicking on the column headers,
providing direct insights into the classification of high emitters.
Moreover, the table data can be downloaded as a comma-
separated values (CSV) file, enabling infrastructure managers
to perform further analytics and visualizations. The CSV
format facilitates analysis using tools such as Microsoft Excel,
MATLAB, and Python.

The dashboard tables offer the infrastructure manager the
ability to query specific data using search fields. For example,
Fig.10 presents data from the Teesdorf test site, where the
infrastructure manager can view information solely on vehicles
fueled by diesel. The table in Fig.11 showcases data filtered
by site ID and high emitter classification for both noise and
exhaust emissions. This table provides a clear overview of high
emitters within the Teesdorf test site.

Additionally, real-time vehicle data can be displayed using
charts. For this, Chart.js20, a free and open-source JavaScript
library, is employed. It offers various chart formats, such as
bar charts, line charts, and 3D charts, along with animations.
Fig.12 illustrates the initial vehicle test classification trials,
comparing LA,max (Y-axis) for normal-medium-high emitters
against vehicle speed (X-axis) at the Rotterdam test site.
It is important to note that the classification criteria for
low, medium, and high emitters can be adjusted based on
guidelines set by relevant authorities, such as city councils or
transportation and environment ministries. Therefore, Fig.12
serves as an illustrative example of the comparison between
LA,max values for different emitter classes and vehicle speed.

The GUI also allows the infrastructure manager to view and
analyse the information in the form of different charts, such
as pie-chart and doughnut charts. A comparison of different
classes of emitters from Rotterdam (query period:2021-10-
08 to 2022-08-10) and Teesdorf (query period:2022-04-22 to
2022-07-01) test sites is shown in Fig. 13. From Fig. 13, we
can see that out of nearly 315000 vehicles at the Rotterdam test
site, 74% vehicles were classified as normal emitters, and 7%
and 19% of the vehicles were classified as high and medium
emitters, respectively. However, at the Teesdorf test site, out
of nearly 250 passby of test vehicles, 58% of them were
classified as high emitter vehicles as we intentionally tested the
vehicles to be high emitters and tested them for real-time V2X
communication from the CDS system. Similarly, a comparison
of high-emitter vehicles based on different fuel types can also

20https://www.chartjs.org/
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TABLE XII: Train sound emission rating classifications

(a) Wagon type and threshold level

Wagon Type Threshold dB(A) Level
Freight wagon 83

Passenger coach 79
Locomotive 85

Multiple Unit 81
(b) Criteria and ratings

Criteria Ratings
Measured Level < Threshold Level - 3 dB(A) Low

Threshold Level - 3 dB(A) < Measured Level ≤ Threshold Level Normal
Threshold Level < Measured Level ≤ Threshold Level + 3 dB(A) Medium

Measured Level > Threshold Level + 3 dB(A) High

Fig. 19: Train data results from the NEMO test site

be intuitively visualized in the form of a doughnut chart, as
shown in Fig. 14. It can be seen that 55.4% of high emitter
vehicles were of petrol type, 37.7% were of diesel type, 6.3%
were of a hybrid type and so on. This entire collection of data
provides a thorough overview of the classification findings on
the NEMO GUI dashboard.

Moreover, the dashboard also gives the option to the in-
frastructure manager to sort the data of high emitters based
on different types of vehicle models. A comparison of high-
emitter vehicles based on different vehicle models for the
Rotterdam test site (query date: 2022-02-22 to 2022-02-25)
is shown in Fig. 15. This type of analytics can be further im-
proved or modified as desired. For instance, in the LIFE GyS-
TRA project, a methodology to define high-emitting vehicle
models has been proposed. They proposed the “High-Emitter
Tendency”, a ratio that calculates how many times a vehicle
model is a high-emitter divided by the share of that vehicle
model in the analysed fleet. This eliminates the bias that the
more a vehicle model is measured, the more high emitters
there are. Other similar statistics can also be calculated with
this NEMO Analytics dashboard GUI platform, showing it
can be scaled and customized for any application or potential
customers.

B. Graphic User Interface for Rail Infrastructure

A site for measuring train noise emissions has been built to
test the NEMO system, as indicated in Fig. 16, similar to how
road infrastructure is set up. The train measurements are also
recorded on the Nautilus platform. The NEMO expert user can
query the rail data and analyse the information by clicking on
the Railway Dashboard as shown in Fig. 7. At the time of
writing this paper, sound classifications based on ratings such
as high, medium, low, and normal were made available on the
Data Hub. Currently, each train wagon’s recorded noise levels
are compared to the threshold limit as defined in Table XII to
determine its sound emission rating.

In Fig. 19, the train data with different available parameters
from the NEMO train site ‘nemo1’ for the query period 2021-
12-05 to 2021-12-13 is displayed in the form of a table for
analysis in the NEMO dashboard GUI. Similar to NEMO road
infrastructure GUI, the train data can also be sorted based
on the ’Emission Rating’, ’Train Type’, ’Wagon Type’ and
so on, and the respective data can be visualized as shown in
Fig. 19. A comparison of LA,EQ values of different classes of
emitters against the speed of the train is shown in Fig. 17. It
should be noted that most trains with high and medium noise
ratings have LA,EQ values exceeding 85 dB(A) and travel at
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speeds between 90 and 100 km/h. Similarly, for more intuitive
visualization, a 3D pie-chart for comparison of normal, low,
medium, and high emission ratings for train vehicles is shown
in Fig. 18 where we can observe that 16% of the trains were
rated as high emitters while 46% were rated as low emitters
according to our NEMO classification model for trains. The
train authority, railway ministry, and environmental protection
agencies can utilize these details to establish rules relating to
the various types of emissions from train vehicles.

In addition to the vehicle dashboard and railway dash-
board, the expert user or infrastructure manager also has the
option to see different sensors’ health information, such as
their degraded or healthy state. The expert user or infras-
tructure manager can also communicate with the vehicle’s
owner through registered email and mobile messages from the
NEMO dashboard, as indicated in Fig. 7.

IX. CONCLUSIONS & FUTURE WORKS

A sustainable transportation future will depend on finding
new and intelligent transportation solutions, including effective
climate change mitigation. Therefore, it is imperative to con-
stantly monitor train and vehicle exhaust emissions and noise
levels. Real-time access to comprehensive measurements of
different vehicle noise and emission types remains challeng-
ing, impeding accurate analysis and estimation. Therefore, to
accurately and affordably identify transgressing noisy and high
emitter vehicles (including road vehicles and trains) in near
real-time, in this paper, we proposed and outlined the design
and implementation of the NEMO system as part of an EU
effort.

Our proposed NEMO system is a new autonomous remote
sensing technology to accurately and cost-effectively identify
and classify transgressing noisy and high emitter vehicles,
which enables the NEMO system to identify noise origin
in a dense traffic stream and localize high emitters in real-
time. We explained the development of the cloud-enabled,
highly adaptable Nautilus platform of the NEMO system that
collects data from internet sources such as VRDB service,
individual road vehicles and trains. The NEMO system has
been thoroughly tested for I2I and I2V communication in
the field in European cities like Rotterdam and the Aus-
trian village Teesdorf; that uses our AI-based classification
algorithms on real-time sensors data for noise and exhaust
emissions to evaluate and accurately classify the vehicles and
trains as high, medium, and normal emitters. The developed
NEMO GUI served as a good visualization platform to analyze
classification results of road pass-by vehicles and trains that
can help infrastructure managers and stakeholders to develop
policies on the high emitters. In addition, real-time communi-
cation of classification results from the developed CDS system
via different communication channels, such as V2X OBUs,
email, SMS and mobile application, serve to communicate
the classification results in real-time. We also describe the
creation of an all-encompassing NEMO solution that can
be integrated with already-existing intelligent transportation
systems. We hope that the NEMO system will serve as a tool
for enforcement against high emitters in Low-Emission Zones
and other sensitive regions.

As part of our future work, we plan to explore the applica-
tion of the NEMO system in analyzing noise and emissions
from ships. Innovative machine learning and edge computing
enabled-data processing and decision-making solutions at the
edge of the network, as well as using future sixth-generation
(6G) communication technology further to reduce latency and
notification time to the vehicle, are potentially interesting for
our future works.
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based real-time noise and emissions monitoring system for smart cities,”
in Proceedings of 2022 IEEE 12th Sensor Array and Multichannel Signal
Processing Workshop (SAM), Trondheim, Norway. IEEE, 2022, pp.
206–210.

[2] “Environmental noise in europe,” 2020. [Online]. Avail-
able: https://op.europa.eu/en/publication-detail/-/publication/ed51a8c9-
6d7e-11ea-b735-01aa75ed71a1/language-en

[3] L. Tangermann, D. Vienneau, J. Hattendorf, A. Saucy, N. Künzli,
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in 2011. After a glimpse into test automation, he
shifted his attention to Tolling Solutions. He has
been employed at Kapsch TrafficCom, Austria,
since 2012. He started as a System Engineer
managing requirements and specifying inter-
faces. He later became the Solution Architect of
the GNSS-based tolling solutions. Since 2015,
he has been a Lead System Engineer, managing

the design and delivery of various national tolling solutions.

BERT PEETERS is a senior consultant and re-
searcher at M+P since 2003, working mainly on
road, rail and air traffic noise with an additional
focus on air quality and sustainability aspects.
Bert has a master’s degree in applied physics
and is skilled in acoustics and engineering, with
his largest expertise in road noise abatement at
the source: vehicles and tyres. His day-to-day
activities cover a wide range, from data science
and modelling to legislation and health impacts.
Also, he is experienced in noise policy on a

national and international (EU) level. Bert is a member of the Noise
Expert Group of the European Commission DG Environment, a member
of the Dutch Acoustical Society, and a lecturer on the road, rail and air
traffic noise for post-academic students.

Erik van Gils is a senior consultant at M+P
Netherlands, an engineering firm that studies
and develops noise, vibration and air quality
solutions. He received his Bachelor of Applied
Science degree from Fontys University of Ap-
plied Sciences in 2008. He works on projects
that require expertise in both noise and software
development. In the NEMO project, he was in-
volved in the development of the DataHub, a sys-
tem that facilitates the storage, data enrichment,
classification and near-real-time querying of the

measurements.

Nikolas Kirchhoff is a Consulting Engineer and
System Developer at Müller-BBM Industry So-
lutions GmbH, Germany. He received his Bach-
elor’s and Master’s Degrees in Electrical Engi-
neering and Information Technology from the
Technical University of Munich, Germany. His
specialization roots in classical signal process-
ing, while his competence expands to acoustic
signal processing and psychoacoustics.
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