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Abstract. This article presents a novel approach to the acquisition, processing, and 
analytics of industrial food production by employing state-of-the-art artificial 

intelligence (AI) at the edge. Intelligent Industrial Internet of Things (IIoT) devices 

are used to gather relevant production parameters of industrial equipment and 
motors, such as vibration, temperature and current using built-in and external 

sensors. Machine learning (ML) is applied to measurements of the key parameters 

of motors and equipment. It runs on edge devices that aggregate sensor data using 
Bluetooth, LoRaWAN, and Wi-Fi communication protocols. ML is embedded 

across the edge continuum, powering IIoT devices with anomaly detectors, 

classifiers, predictors, and neural networks. The ML workflows are automated, 
allowing them to be easily integrated with more complex production flows for 

predictive maintenance (PdM). The approach proposes a decentralized ML solution 

for industrial applications, reducing bandwidth consumption and latency while 
increasing privacy and data security. The system allows for the continuous 

monitoring of parameters and is designed to identify potential breakdown situations 

and alert users to prevent damage, reduce maintenance costs and increase 
productivity.  
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1. Introduction 

Intelligent sensors, industrial process modelling and simulations, IIoT technologies, AI-

based autonomous systems, additive manufacturing, and edge computing systems are 

expected to affect food-processing industrial processes by enabling integration of AI-

based methods and techniques. 

Systems of connected IIoT devices, AI-based algorithms and data analytics support 

industrial food-production facilities in improving efficiency, quality and safety while 

reducing costs and time to market. The food industry is gradually implementing Industry 

4.0 concepts and exploring progression into Industry 5.0.  
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Industry 5.0 is the fifth industrial paradigm, where technology is created and 

developed for more intelligent, productive, sustainable, resilient, and energy-efficient 

manufacturing systems. Food processing operations have benefitted from Industry 4.0 

concepts by improving traceability and monitoring; controlling food quality; improving 

safety, manufacturing automation and preventive maintenance, while reducing loss and 

waste. To accelerate the green and sustainable industrial transformation, Industry 5.0 

concepts build on these developments to further advance intelligent autonomous systems, 

robotics, IIoT, connectivity and AI-based processes, methods, and techniques. 

Implementing intelligent edge IIoT networks and data analytics tools to improve 

business productivity and manufacturing sustainability is part of digital transformation 

in food production facilities. AI can enable further optimisation, automation, rapid 

industrial processes, and decision-making in all these implementations. 

PdM in the food processing industry benefits from advances in the integration of 

real-time edge IIoT, AI-based models and edge-based training, which enhances 

maintenance operations. Predicting specific equipment issues and downtimes with 

increasingly higher success rates enables maintenance personnel to replace fixed 

maintenance intervals with data-based predictions obtained from IIoT devices placed on 

industrial equipment/motors for measuring vibration, temperature, and electric current 

profiles. 

When implementing AI-based industrial systems, data-driven AI models require 

extensive data training and validation. ML and AI models’ data requirements involve 

consideration for scalability, multimodality, interoperability, and standardisation, which 

require qualified professionals engaged in food industrial processes. 

Edge IoT devices and their functions cover edge computing, communication, and 

data analytics capabilities. An edge IoT device is designed around the computing units 

(CPUs, GPUs, FPGAs, ASICs platforms, AI accelerators/processing, etc.), 

communication network, storage infrastructure and the applications or workloads that 

run on it.  

The edge IoT devices can be optimized based on different aspects, like processing, 

memory, energy, connectivity, size, cost, and their capabilities are constrained by these 

parameters. AI capabilities integrated into IoT devices or AI on edge significantly 

enhances their capabilities (e.g., functionality, performances, low latency, low power 

consumption, high processing power). The shift to processing data at the edge and the 

edge extended granularity covering micro-, deep- and meta-edge advances the use of AI-

based techniques across the edge processing continuum.  

Automated AI inspection processes in industrial production facilities use real-time 

information to divide decisions at the edge and transfer relevant data to on-premises 

meta-edge systems or the cloud for post-processing, analytics and new model 

development that extends IIoT edge-based decisions. 

2. Predictive Maintenance 

This article presents a real-time intelligent system for PdM for edge acquisition, 

processing and analytics for industrial food production based on the IIoT and AI methods. 

The norm EN 13306 [1] defines maintenance as the combination of all technical, 

administrative, and managerial actions during the lifecycle of an item intended to retain 

it in or restore it to a state in which it can perform the required function, and identifies 

several types of maintenance, including PdM. 
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PdM is based on the continuous monitoring of equipment/motors using IIoT devices 

and prediction tools to detect trends in the health of a machine and identify when 

maintenance actions are needed to schedule maintenance activities. PdM uses ML 

methods, integrity factors, statistical inference approaches and engineering techniques to 

predict when failure occurs based on historical data. Equipment/motor conditions are 

monitored using multiple IIoT devices with multi-sensing capabilities, and real-time raw 

data are pre-processed for further analysis. 

IIoT, AI and edge-processing technologies enable new PdM functions to analyse 

various processes and related data based on condition monitoring. PdM can provide cost-

optimal maintenance solutions to achieve overall equipment effectiveness (OEE) [2] 

higher than 90% [3] by anticipating maintenance requirements and providing a high level 

of return on investment. Maintenance optimisation is a priority for soybean production, 

given that effective maintenance can significantly reduce costs by correcting failures of 

equipment/motors and manufacturing systems. Implementing PdM solutions increases 

an asset’s longevity, reduces maintenance costs and unnecessary inventory, and 

decreases a company’s overall downtime [5]. 

The technologies that drive PdM fall into different categories, such as IIoT devices, 

networks, integration, extended intelligent processing and analytics and enhanced 

intelligent behaviour. Intelligent IIoT devices are used to gather industrial 

motors/equipment parameters using built-in sensors in IIoT devices or environmental 

information with the implementation of external sensors. The network transfers data 

using Bluetooth, LoRaWAN, and Wi-Fi communication protocols. Technology 

integration allows for data management and data aggregation via the IIoT and intelligent 

gateways. Extended intelligence assists with data processing and data analytics. In 

addition, enhanced behaviour allows virtualisation, edge computing processing and 

services to assist maintenance personnel. 

The real-time intelligent system for PdM for edge acquisition, processing and 

analytics is used to monitor electric motors such as ABB HXR 315 4 B3/HXUR 638G2 

B3 (preparation/conditioning) with the following characteristics: 200 kW power, 

380/220 V, 360/624 A, 50 Hz, and ~1500 rpm. 

The vibration measurements in the range of 10 Hz - 1 kHz are performed using a 

smart sensor device connected via a Bluetooth IEEE 802.15.1-gateway operating in ISM 

band, 2.402-2.480 GHz. The sensor measures the radial, tangential and axial vibration 

and the motor skin temperature that is used for calculating other relevant statistical 

parameters to evaluate the state of health and detect abnormal patterns. 

3. Machine Learning with time-series  

ML is an AI-based method whose outcomes can be forecasted based on a model built 

and trained on past or historical input data and its output behaviour. ML uses computer 

science and statistical techniques to support learning on different processing units. The 

learning process can be supervised or unsupervised and depends on the data being used 

to provide inputs to the ML algorithms and thus can be categorized into several different 

types such as supervised, unsupervised and reinforcement learning (RL). ML categories 

are defined as classification, regression, and clustering. In unsupervised ML, there is no 

feedback from an external trainer or expert – rather, the algorithm identifies the clusters 

based on the existing data. Clustering, self-organizing maps, and association rules are 

the three main types of unsupervised learning. Supervised learning determines the 
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unknown classes of items by clustering and then classification. Data utilized by ML 

algorithms can be categorized into:  

� Real data collected from real industrial equipment/motors.  

� Simulated and synthetic data generated to meet specific needs (e.g., model 

validation in ML).  

In terms of PdM and manufacturing applications, ML algorithms have their 

advantages and limitations. Selecting the most appropriate and suitable ML algorithm 

can be a significant challenge for the requirements of the PdM problem. ML must be 

applied on different datasets, as each situation requires other data preparation and 

modelling methods. Datasets can be classified as univariate, multivariate, time-series, 

sequential, text, and domain-theory. The datasets used in this article are real datasets 

obtained from real motors and industrial production processes. 

Deep learning (DL) uses a complex structure of algorithms modelled on neural 

networks. DL algorithms are seen as the mathematically complex evolution of ML 

algorithms. DL describes algorithms that analyse data with a logic structure through 

supervised and unsupervised learning using a layered topology of artificial neural 

networks. DL requires large amounts of data and computing power. The development of 

transfer learning techniques – for example, using pre-trained models – can reduce the 

amount of data that are required. Feature extraction and classification in the DL 

algorithm are done in the same phase because the features are extracted automatically, 

and the algorithm learns from the errors. 

Processing the real-time data from IIoT devices connected to industrial equipment 

using ML algorithms that extract phenomena such as trends (long-term perspective) and 

seasonality (short-term perspective), as well as noise and anomalies, is extremely useful. 

Such algorithms can be used for forecasting of operational and health parameters and 

anomaly detection and thus for increasing the efficiency of PdM industrial applications.  

In this article, the proposed solution is that data via several IIoT devices are collected 

for PdM, referred to here as multivariate time-series data, and ML is applied to key 

parameters; it runs the model inference on the edge devices that aggregate the data. The 

approach applies a decentralized ML solution for industrial applications, reducing 

bandwidth consumption and end-to-end latency. ML is combined with pre-processing 

techniques, such as fast Fourier transform (FFT), denoising and dimensionality reduction. 

FFT relies on variations in the frequency to isolate faulty conditions and the successful 

combination of FFT and ML for fault detection and diagnosis of induction motors has 

been reported in [21].  

There are several approaches to finding anomalies in data and forecasting by using 

the time-series IIoT device data. 

DL algorithms such as Deep Neural Networks (DNNs), Recurrent Neural Networks 

(RNNs), and Convolutional Neural Networks (CNNs) have been widely used for time-

series analysis and forecasting and PdM in particular [23], due to several advantages over 

statistical approaches (such as less pre-processing needed). When combined with long 

short-term memory (LSTM) as hybrid solutions, the benefits of using DL for time-series 

are even more tangible. Nevertheless, the recently developed ML model Prophet [19] 

attracts attention due to the motivation behind its development – namely to facilitate 

accurate and realistic forecasting– and its robustness to outliers, missing values and 

sudden changes in the time-series forecasting. Successful applications of Prophet have 

been reported in the literature, either as a single model or as a hybrid model, for example, 

combined with LSTM [22], yielding better performance and prediction accuracy.  

O. Vermesan et al. / AI-Based Edge Acquisition, Processing and Analytics158



Several implementations of the Prophet ML models for time-series forecasting have 

been employed for motor vibration analysis and forecasting, which are reported in this 

article. Experiments have also been performed with NeuralProphet [20], which is the 

successor of Prophet, retaining all of Prophet’s advantages while improving its accuracy 

and scalability by including neural network modules. In future research to be conducted, 

the intention is to fuse the latest advances in DL into the Prophet time-series components 

that have been developed, thus contributing to forecasting with an eye to improving PdM 

beyond its state-of-the-art functionality. 

 

4. Architecture of the experimental setup and workflows 

Food processing requires extensive resources for motors/equipment monitoring, 

which results in many time-series measurements of relevant parameters. These 

measurements may exhibit occasionally anomalous behaviour indicating the presence of 

issues or problems that are difficult to detect manually or prior to failure. To address this 

issue, we propose an AI-based approach for training ML models on these measurements 

to predict and alert the anomalous behaviour. The approach is based on time-series 

predictions about the future and the identification of impending events. That information 

is subsequently used for planning maintenance and other actions. Based on those 

predictions, adaptable alerts can be defined. In contrast to static alerts, adaptable alerts 

can self-adjust to the context and changes in the context in the future.  

The ML model can be scheduled to retrain periodically to automate the whole 

monitoring and alerting process. These intelligent and adaptable alerts reduce the need 

to have an operator continuously watching dashboards or to maintain static thresholds. 

In addition, the more advanced alerting capabilities allow for a wide range of intelligent 

alerts to be configured and set for various scenarios and use cases.  

The employment of ML in the prediction equips the model to detect false alerts by 

effectively grasping new ways to understand the measurements being produced, thus 

improving continuously on the notion of what constitutes anomalous behaviour. The 

learning and inference process is transparent, which permits human validation and 

eventual correction. 

Since ensuring that models remain trained and up to date with the latest actual data 

may be a resource-consuming endeavour, not all measurements need to be used for 

prediction.  

For the soybean production PdM use case, the axial, radial and tangential vibrations 

are key measurements for the health status of the motors and are therefore continuously 

monitored and used for prediction. Experimental results confirm that the prediction is 

even more accurate when using conglomerated and aggregated data. Thus, the overall 

vibration velocity (e.g., RMS) is also monitored and used for prediction.  

The vibration root-mean-square velocity (RMS velocity) technique determines the 

vibration signal trend over time. As machines wear, their vibration velocity increases, 

and monitoring RMS velocity trends provides an indicator of wear that is compared to 

pre-determined thresholds to identify a need for maintenance. Acceleration is compared 

to pre-determined thresholds to detect bending or breakage in mechanisms for motors. 

As a rule, the measurements to be used for prediction are those of parameters with 

service level objectives that are of key relevance for the soybean production process. 
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Such parameters also tend to exhibit predictable patterns and are thus particularly suited 

to prediction.  

The architecture of the experimental setup is depicted in Figure 1. 

 

Figure 1. Architecture of the experimental setup 

The architecture uses a five-item software stack: Node-RED [16] to collect 

measurements from IIoT devices and provide a development environment with ML 

functionalities, InfluxDB [10] and Prometheus [14] for storage, monitoring and alerting, 

Python [15] framework for forecasting and Grafana [13] to create visualisations of actual 

and predicted data in the form of charts, graphs and more. Additionally, the 

implementation uses a Grafana ML to run in validation mode.  

The Node-RED collects all data in real time from various sensors, wiring together 

IIoT devices, APIs, and services. It has the flexibility to connect to a broad range of 

existing IIoT sensors and devices, supporting standard-based protocols such as MQTT 

[16][11], HTTP and telemetry protocols such as OPC-UA [12]. It also actively pushes 

the data into the InfluxDB server and exposes the data to a Prometheus server.  

InfluxDB is an essential component in the IIoT data architecture, with capabilities 

to acquire, store, enrich and analyse a large amount of time series from IIoT devices at 

the edge. While both InfluxDB and Prometheus are time-series which can store data, 

InfluxDB is mainly utilised for managing, analytically pre-processing, and storing IIoT 

data from sensors in real time, while Prometheus is used predominantly for monitoring 

and alerting.  

Prometheus uses a pull model and a scheduler to scrap metrics from all systems 

being monitored, each running an exporter to expose sensor data in an HTTP endpoint. 

It has an advanced alerting system, allowing to track metrics at all edge levels.  

Visualizations and alerting are powered by PromQL queries.  

The forecasting agent is performing predictions with various time-series forecasting 

models (e.g., linear regression, Prophet, FFT, etc.). The agent is a clustered system of 

components equipped with query and storage capabilities as well as statistical algorithms 

and ML techniques to generate predictions based on historical data.  

One such component, a Python client, is interacting with both InfluxDB, and 

Prometheus. It generates Flux queries to extract data from InfluxDB, sends the data to 

ML algorithms and FFT, and then generates a PromQL query to expose the predictions 

to the Prometheus instance for create/update the alerts.  

g
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The predicted measurements are scraped by the Prometheus instance and used to 

configure intelligent and adaptable alerts. 

Both actual and predicted measurements can be visualised on a Grafana standalone 

server installed on the meta-edge.  

The Grafana dashboards are connected to both InfluxDB and Prometheus and can 

be used interactively to visualize the health and operational status of the motors.  

 

 

Figure 2. Grafana dashboard powered by Flux queries over real-time sensor data. 

Figure 2, Figure 3, Figure 4, and Figure 5 show various snapshots from dashboards 

designed to display partial or overall health of soybean production motors/equipment.  

Figure 2 shows a Grafana dashboard powered by Flux queries over real-time sensor 

data. The dashboard can be used interactively, by selecting the motor being monitored 

as regard to operational and health parameters. 

Figure 3 shows a Prometheus dashboard powered by PromQL queries over scrapped 

key measurements, visualizing in a graph. Prometheus user interface does not offer all 

the features necessary to display the overall health of the motors/equipment, so that 

Grafana is mostly used for this purpose. 

 

 

a) Skin temperature from two motors. 
 b) Vibration (Axial, Radial, Tangential) from one 

motor. 

   
Figure 3. Prometheus dashboard powered by PromQL queries over scrapped key measurements. 

Figure 4 shows the vibration measurements along X, Y, Z axis at sampling 

frequency (Hz); 2050.3188 and their FFT values. Frequency-domain parameters offer 

additional information for health conditioning [4]. The vibration signals are transformed 

by applying the FFT, decomposing the signal into its different frequencies.  
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a) Vibration measurements along X, Y, Z axis at 

2050 Hz sampling frequency, input to FFT. 
b) FFT on vibration measurements along X, Y, Z 

axis at 2050 Hz sampling frequency. 

Figure 4. Vibration measurements and FFT. 

Figure 5 shows vibration measurements, actual and predicted, from the Prophet 

workflow, part of the forecasting agent.  

 

Figure 5. Actual and predicted values for Axial (left), Radial (middle), Tangential (right) Vibration from the 

Prophet workflow. 

The above components are part of the development flow. The experimental 

architecture allows for an additional flow in which real-time data are processed in Node-

RED by an exporter and scraped by another Prometheus instance. This instance is 

configured to push real-time measurements to Grafana ML for forecasting and 

configuring alerts. Grafana ML allows for the creation of forecasts based on the Prophet 

algorithm. The ML models are trained on real-time data to perform time-series 

forecasting. This flow is mainly used for validation purposes. Both actual and predicted 

measurements can be queried with PromQL, and the query results can be visualised in 

Grafana. This is shown in Figure 6.  

The shaded area between the upper and lower bounds represents the confidence 

interval for the prediction. The alerts are set to detect when the time-series is outside of 

the confidence interval. The criteria for alerting can be based on a percentage or an 

absolute difference from the predicted values rather than using static thresholds. 

  

 

Figure 6. Actual and predicted values from Grafana ML for Vibration (Axial, Radial, Tangential) powered 

by PromQL. 

An important feature of the proposed architecture is that it can incorporate all three 

micro-, deep- and meta-edges, allowing the full range of functionality (storage, analysis, 

ML, analytics, dashboard, and alerting) to be embedded where needed. Anomaly 
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detection, classification and forecasting can be deployed not only on the meta-edge on 

historical data, but also on the deep-edge on real-time data.  

For instance, Node-RED can be deployed at deep-edge, i.e., gateway, or at meta-

edge, i.e., on premises edge server. While it collects data in real time from various 

sensors, incorporating ML into the flow is another key component. The Node-RED ML 

nodes can be used to perform classification and outlier detection and can be programmed 

to retrain the models periodically based on new measurements. Several flows have been 

implemented that employ ML algorithms based on decision trees, K-nearest-neighbour, 

support vector machines, random forest, and neural networks.  

A sub-flow is dedicated to vibration analysis using FFT, while another sub-flow uses 

OPC-UA to control communication between the SCADA software and OPC server. 

ML workflows are automated, allowing them to be easily integrated into more 

complex flows that implement the full range of functionalities mentioned above.   

5. Summary 

The article presents a new AI-based edge acquisition, processing, and analytics for 

industrial food production. This framework first extracts the time-series signal from the 

tri-axial IIoT device. Then, the acquired signal is processed using statistical methods and 

ML techniques to generate the condition motor indicators. As demonstrated in the 

experiments, vibration feature extraction techniques play a critical role in the fault 

diagnosis of industrial motors. 

Time-domain techniques include raw signals, filter-based signals, and stochastic and 

model-based methods. The statistical values such as RMS, mean, kurtosis and crest 

factor are compared with a threshold value for fault detection in industrial motors. 

Frequency domain features are used effectively to detect faults through the utilization of 

FFT techniques on real-time vibration signals.  

This article describes the real-time intelligent system for PdM for edge acquisition, 

processing and analytics for industrial food production based on the IIoT and AI 

methods. The approach uses a decentralised ML solution for industrial applications that 

reduces bandwidth consumption and end-to-end latency. The datasets used in this article 

are real datasets obtained from real motors and industrial production processes.  

When edge devices communicate with each other, they may run into several known 

connectivity issues, such as bandwidth consumption and latency; thus, adding AI 

capabilities to these devices may pose further challenges. Traditional approaches involve 

sending the data from the devices to a server to perform ML calculations and sending the 

results back to the devices for appropriate action. The decentralized approach proposed 

in this article differs substantially from traditional approaches as it entails incorporating 

ML into devices across the edge continuum and powering them with predictors, 

classifiers, anomaly detectors and neural networks, considering the 

capabilities/limitations of each type of device. The solution developed implies that ML 

is applied to vibration signals; it runs the model inference on the edge devices that 

aggregate the data.  

For the soybean production PdM use case, the axial, radial and tangential 

accelerations are key measurements for the health status of the motors and are therefore 

continuously monitored and used for prediction. The experimental results confirm that 

the forecast is even more accurate when using conglomerated and aggregated data. 
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The soybean production is implemented as a linear process, and the motors and 

equipment are part of the critical elements, as there are no redundant motors and 

equipment that may take over their functions in case of malfunction or failure. This 

increases the need for advanced PdM solutions to prevent motor failures and reduce 

unplanned or accidental downtime, thus avoiding any overall system failures that may 

be caused by single points of failure. 
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