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The Internet of Things (IoT) and Cyber-Physical Systems (CPS) are the backbones of Industry 4.0, where data quality is crucial

for decision support. Data quality in these systems can deteriorate due to sensor failures or uncertain operating environments.

Our objective is to summarize and assess the research eforts that address data quality in data-centric CPS/IoT industrial

applications. We systematically review the state-of-the-art data quality techniques for CPS and IoT in Industry 4.0 through a

systematic literature review (SLR) study. We pose three research questions, deine selection and exclusion criteria for primary

studies, and extract and synthesize data from these studies to answer our research questions. Our most signiicant results

are (i) the list of data quality issues, their sources, and application domains, (ii) the best practices and metrics for managing

data quality, (iii) the software engineering solutions employed to manage data quality, and (iv) the state of the data quality

techniques (data repair, cleaning, and monitoring) in the application domains. The results of our SLR can help researchers

obtain an overview of existing data quality issues, techniques, metrics, and best practices. We suggest research directions that

require attention from the research community for follow-up work.

CCS Concepts: · Software and its engineering → Embedded software; Layered systems; · Information systems →

Database utilities and tools; Data compression; Data encryption; Information lifecycle management; Data analytics;

Online analytical processing; Process control systems; Computing platforms; · Computer systems organization→

Sensors and actuators; Embedded software; Sensor networks.

Additional Key Words and Phrases: data quality, IoT, CPS, Industry 4.0, systematic review

1 INTRODUCTION

The Internet of Things (IoT) and Cyber-Physical Systems (CPS) are among the signiicant driving forces behind
Industry 4.0 [153], in particular smart manufacturing [82]. They facilitate data acquisition from physical sensors
and devices on an unprecedented scale and employ Artiicial Intelligence (AI) techniques, e.g., Machine Learning
(ML), to exploit the massive interconnection and large volumes of data. AI-enabled CPS/IoT systems improve
decision-making and perform predictive maintenance (e.g., tool wear and product defect prediction in the
manufacturing domain) for industrial processes in Industry 4.0. The quality and continuity of data are the
bottlenecks for these systems. Many things may cause data quality to decline. For instance, CPS/IoT systems
may encounter sensor laws and failures (corrupted sensor measurements) due to various problems, such as
electromagnetic interference, packet loss, and signal processing faults. The faith and reliance on these Industry
4.0 systems are diminished by poor data quality. Furthermore, the growing neglect of data quality leads to the
accumulation of dark data (unstructured, untagged, and untapped data that has not yet been analyzed) [74]
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and the impregnation of biases [55]. It warrants the need for a detailed analysis of data quality problems/issues
and data quality management techniques (in short, data quality techniques), i.e., techniques improving and
maintaining data quality, that can run with CPS and IoT in various scenarios, which is the focus of this paper.
Addressing data quality issues/problems is not a new research idea. For various reasons, researchers from

diferent ields have already provided diferent interpretations of data quality and disconnected data quality
solutions. In the realm of relational databases, the notion of data quality concerns the normalization of data [79].
Most data quality issues in signal processing refer to a signal/noise ratio. The data science community has recently
provided numerous tools and methods to łcleanž data before feeding it into large ML pipelines. The importance of
data quality is łthe elephant in the roomž for CPS and IoT, but improving data quality for them is still challenging
and deserves special attention. First, sensor measurements are often corrupted or have missing values due
to several (unpredictable) reasons (e.g., electromagnetic interference, packet loss, or signal processing faults).
Second, CPS/IoT data often endure a long journey on the edge-cloud continuum: (i) sensor data obtained from
monitoring industrial processes is consumed by a rugged industrial computer (a programmable logic controller -
PLC) to control actuators; (ii) it is transferred to an edge device over wired/wireless communication channels
using industrial communication protocols (e.g., NMEA [134], Bluetooth); and (iii) it is aggregated on edge to
be transferred to the cloud using protocols (e.g., REST [135], RPC [121]). CPS/IoT systems need to detect and
manage data quality issues (e.g., erroneous values, missing values, noise, data drift) at diferent stages of this
journey and preserve data continuity on the edge-cloud continuum.

Although several surveys and Systematic Literature Reviews (SLR) study and classify data quality research for
CPS and IoT (see Table 1 for a summary), they do not provide a detailed account and uniied analysis of data
quality research based on the needs and problems (data quality deinitions, issues, and dimensions), the solutions
(data quality techniques), and the technological/implementation context (software engineering techniques used
for improving data quality). For instance, Zhang et al. [156] and Liu et al. [110] study the literature on data quality
based on quality issues, dimensions, and measures but exclude the data quality techniques (e.g., data repair) and
their solution domain (i.e., the abstract environment where the data quality technique is developed). The scope of
the SLR conducted by Alwan et al. [58] is limited to the data quality challenges and approaches for smart cities.
We answer three main research questions (ten sub-questions) to address data quality research for theoretical and
practical implications in a much broader scope for Industry 4.0.

RQ1:What is data quality for CPS and IoT in Industry 4.0?

RQ2:What data quality techniques are used for CPS and IoT in Industry 4.0?

RQ3:What software engineering solutions are used for data quality for CPS and IoT in Industry 4.0?

We implement a typical four-step SLR process [104, 130, 150]: (i) the deinition of research questions, (ii) a
search strategy including the selection of online repositories and search strings, (iii) inclusion and exclusion
criteria, and (iv) a data synthesis and extraction procedure. The search led to ifty-one (51) primary studies, which
we analyzed using our taxonomy of data quality in data-driven paradigms to address three research questions.
We also deliver a high-level summary of data quality for CPS and IoT in Industry 4.0. Researchers can use this
summary and the taxonomy to classify and compare future data quality studies.

• The main data quality issues addressed by the primary studies are outliers (isolated, erroneous values),
missing values, noise in data, data timeliness (freshness), high dimensionality, data inconsistency, and data
veracity. The studies do not address the implications of diferent computing architectures for data quality
issues for CPS and IoT. There is also little research discussing the reasons for data quality issues (RQ1).

• Although there is a large spectrum of data quality metrics, no study reports the adoption of these metrics
in industrial IoT systems as a common practice. Across primary studies, data repair techniques address
missing values, data veracity, and outliers. Most of these techniques are non-AI solutions having limitations
in the industrial CPS/IoT context. Most data cleaning techniques are domain agnostic and may not always
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Table 1. Recent systematic literature reviews and surveys on data quality in CPS and IoT for Industry 4.0.

Studies Karkouch
et al.
[100]

Wang
and Wang
[148]

Teh et al.
[144]

Liu et al.
[110]

Zhang
et al.
[156]

Alwan
et al.
[58]

This
study

Year of completion 2016 2019 2020 2020 2021 2022 2022
Systematic review? ✗ ✗ ✓ ✓ ✗ ✓ ✓

Number of databases used NA NA 3 6 NA 4 4
Manual search conducted? ✓ ✓ ✗ ✗ ✓ ✗ ✓

Number of primary studies 14 NA 57 45 NA 60 51
Time frame of primary
studies

12-16 NA 96-18 12-18 NA 14-20 11-21

Data quality (DQ) focused? ✓ partially ✓ ✓ ✓ ✓ ✓

DQ classiication schema? implicit ✗ implicit implicit ✗ ✗ ✓

IoT focused? ✓ partially ✓ ✓ ✓ ✓ ✓

IoT architecture discussed? ✓ ✗ ✓ ✗ ✓ ✗ ✓

Data security discussed? ✗ ✗ ✗ ✗ ✓ ✗ ✓

detect and clean domain-speciic data quality issues. The evaluation metrics are mainly used to assess the
impact of the data quality techniques on the performance of predictive analytics (RQ2).

• The existing data quality techniques address only particular quality management scenarios (online or
oline). They are not deployed on diferent IoT reference architecture layers for diverse scenarios depending
on the needs of the targeted IoT system. The programming languages, technologies, and models used to
manage data quality are highly subject to the solution domain (e.g., ML, data mining, semantic web). For
instance, Python is almost the de-facto programming language in the studies providing ML-based solutions.
There is no direct relation between the database technologies and the data quality techniques (RQ3).

The paper is structured as follows. In Section 2, we present our Systematic Literature Review (SLR) approach.
Section 3 describes our classiication schemes for the primary studies. We present the results of our SLR in
Section 4. Section 6 analyzes threats to the validity of our SLR. We discuss the related work in Section 5. Section 7
concludes the paper.

2 REVIEW PROCESS

This section discusses the steps of our review process using the popular guidelines [104, 130, 150]: (a) the
deinition of Research Questions (RQs), (b) a search strategy (selecting repositories and search strings), and (c)
study selection based on inclusion and exclusion criteria. We also provide a summary of the search results in this
section.

2.1 Research uestions

This SLR answers the three Research Questions (RQ)s presented in Section 1. We extend each one with sub-
questions.

RQ1 includes three sub-RQs.

• RQ1.1-What are the data quality issues for CPS and IoT in Industry 4.0?

• RQ1.2-What are the application domains for data quality research? What types of data are

collected?

• RQ1.3-What is the trade-of between data quality and data security?
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Table 2. Inclusion criteria.

Inclusion Criteria

IC1 The paper is written in English.
IC2 The paper addresses data quality in any aspect (directly or indirectly).
IC3 The paper is about collecting and processing data from CPS, IoT and Industry 4.0.
IC4 The paper has engineering approaches (software, ML, statistics, data optimization) for data processing.
IC5 The paper uses real (physical world) data, not simulated data.
IC6 The paper is a long paper (at least four-page double-column or six-page single column).
IC7 The paper is in a inal publication stage.
IC8 The paper is not a survey, a systematic literature review, or a systematic mapping.

RQ2 has four sub-RQs.

• RQ2.1-What are the data quality metrics for data quality monitoring?

• RQ2.2-What are the data repair techniques?

• RQ2.3-What are the data cleaning techniques?

• RQ2.4-How are data quality techniques evaluated?

RQ3 has three sub-RQs.

• RQ3.1-What programming languages and solutions are used to manage data quality?

• RQ3.2-What data storage solutions are used to manage data quality?

• RQ3.3-What IoT reference architecture layers are covered in the primary studies?

2.2 Inclusion and Exclusion Criteria

Considering the RQs and the basis of our study, we set the inclusion and exclusion criteria to reduce bias in our
search and selection approach. The primary studies must meet ALL the accompanying inclusion criteria (see
Table 2).

When more than one paper described diferent aspects of the same approach (e.g., the approach itself, an
empirical investigation, and an evaluation), we considered those papers part of the same approach. If multiple
papers detailed the same approach (not diferent parts) in diferent venues, we included only the most recent one
with the most description. We removed the ones not written in English, those not peer-reviewed, and those not
providing much content (less than four pages in double-column format or six pages in single-column format),
extended abstracts, posters, or presentations. We excluded surveys, SLRs, or systematic mapping papers. However,
we discussed them in the related work section (Section 5). We included all the papers in the search results without
setting any publication period.

2.3 Search and Selection Strategy

We employ two common methods to ind primary studies: database search [104] and manual search (snow-
balling) [150].

2.3.1 Database Search. Using online inquiry components of popular publication databases is the most notable
approach to scan for primary studies when directing supplemental studies [104]. We used four popular publi-
cation databases, i.e., IEEE Xplore (https://ieeexplore.ieee.org), ACM Digital Library (https://dlnext.acm.org),
ScienceDirect (https://sciencedirect.com/), and Scopus (https://scopus.com), to search for potential primary
studies. Scopus and ACM DL already index SpringerLink (https://www.springer.com) [145]. These databases
contain peer-reviewed articles and provide advanced search capacities. We deined our search keywords by
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Fig. 1. Overview of the search and selection steps.

following the guidelines from [104]. The search query was adapted to it the search engine of each publication
database.

("Internet of Things" OR "IoT" OR "Cyber Physical Systems" OR "Industry 4.0")
AND ("sensor data" OR "data completeness" OR "data quality" OR "data repair" OR "sensor calibration")
AND ("machine learning" OR "AI" OR "digital twin" OR "reference model")

Figure 1 gives an overview of the search and selection steps. We irst iltered the candidate papers based on
their titles and abstracts. When the titles and abstracts were not enough to decide whether to discard or keep the
papers, we continued to skim and scan through the contents of these papers. When a candidate paper appeared
in more than one database, we kept it, at irst, in multiple search results. Then, we consolidated the outcomes
with group discussions among the authors to acquire the irst set of primary studies with no duplicates.

2.3.2 Manual Search. It is unattainable to ensure that the database search covers all the primary studies. Thus,
we supplemented the database search with a manual search, as suggested by Wohlin [150]. We found eight more
primary studies. Please note that we kept candidate papers in doubt for further evaluation and cross-checking. Our
search and selection process ended with 51 primary studies at the end of 2021 for data extraction and synthesis.

2.4 Data Synthesis and Extraction Method

This section discusses the search results and extraction methods. We included 51 primary studies in our study.
We extracted related information from these studies according to our RQs (see Table 3).

There were 28 conference papers, 21 journal articles, and two workshop papers. We gathered papers from ACM
International Conference on Distributed and Event-Based Systems (DEBS), ACM Symposium on Information,
Computer and Communications Security (CCS), ACM Multimedia Systems Conference (MMSys), ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), IEEE International Symposium on
Parallel and Distributed Processing with Applications (ISPA), IEEE International Conference on Big Data, and
IEEE International Conference on Computer Communications and Networks (ICCCN). We also retrieved papers
from ACM Transactions on Cyber-Physical Systems, Computers in Industry, and Information Systems. They
are all well-known and credible publication venues for data quality, CPS, and IoT research. There is a growth in
publication numbers from 2011 to 2021, with a sharp increase after 2018 (92% of the primary studies are published
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Table 3. Data collection for each research question.

Research Question Type of Data Extracted

RQ1 Data quality issues, their sources, data types and application domains, data quality metrics.
RQ2 Data quality techniques and their reported strengths and limitations.
RQ3 Architectures, programming technologies and databases used for data quality.

after 2018). According to this trend, we can conclude that data quality research for CPS and IoT has been popular
in recent years.

3 A CLASSIFICATION SCHEMA / TAXONOMY

Kuhn deines a scientiic paradigm in his book "Structure of Scientiic Revolutions" [138] as "universally recognized
scientiic achievements that, for a time, provide model problems and solutions for a community of practitioners".
We are inspired by this deinition and use the term Data-driven Paradigm for systems that leverage large
streams/batches of data to control, manage, and optimize processes in diferent industrial sectors. The Data-driven
Paradigm is the root node of our taxonomy (as shown in Figure 2), which we extend for IoT and CPS that are
data-driven to a large extent. The Data uality Management Technique is the main entity in our taxonomy.

3.1 Data uality Management Techniques

A data-driven paradigm contains zero to many data quality management techniques. Data quality management
techniques (in short, data quality techniques) aim at improving and maintaining data quality across system
components. We identify three types of techniques:

• Data Monitoring: Data is monitored to detect data quality issues such as outliers and noise.
• Data Cleaning: It is a technique that entails removing corrupt and unusable data, e.g., those afected by
environmental noise or extreme operating conditions such as high temperature.

• Data Repair: It is a technique to restore data that has been lost, accidentally deleted, corrupted, or made
inaccessible, e.g., by using simulation data or data from redundant sources (other sensors).

Data quality techniques can be online (real-time at the data source) and ofline (for large historical datasets
on the cloud). They have zero to many quality standards and data quality metrics.
Quality Standards provide requirements, guidelines, or characteristics used to ensure that materials, prod-

ucts, processes, and services serve their purpose. An example standard is a documented agreement on data
representation, format, and deinition. Standardization organizations deine data quality standards (e.g., ISO8000
[87]).

Data Quality Metrics are the measurements by which you assess your data. They benchmark how complete,
valid, accurate, timely, and consistent the data is and help diferentiate between high-quality and low-quality
data.
A data quality technique has an Automation Level indicating whether it is fully Automated, Manual, or

supports a human operator with Assisted Decision Making.

3.2 Algorithms to Support Data uality Techniques

A data quality technique uses zero to many Algorithms to enable automation, manual inspection, and assisted
decision-making. Algorithms typically require one or more sources of Input Data and may generate zero to many
Output Data. We measure algorithm performance by using zero to many Performance KPIs. For instance, input
data can be time-series data from a sensor, output data can be an anomaly in the input data, and performance KPI
can be the classiication accuracy. We categorize algorithms that support data quality techniques as follows:
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Fig. 2. Taxonomy of data quality in data-driven paradigms.

Rules are declarative constraints input data need to satisfy for high quality. They can specify what is not
expected.
ML Algorithms [86] are for Supervised, Unsupervised, or Reinforcement learning. They are used to detect

data quality issues or clean and repair data. Supervised learning maps an input to an output based on example
input and labeled/classiied output pairs. Unsupervised learning identiies patterns in input data that are neither
classiied nor labeled. Reinforcement learning is based on rewarding desired actions and punishing undesired ones
through trial and error. Signal Processing Algorithms [127] analyze, modify, and synthesize sensor signals.
They support the storage, compression, and reconstruction of signals, separation of information from noise, and
feature extraction from signals. Statistical Algorithms entail the creation of a statistical model of the input data
and use statistical quantities such as min, max, median, standard deviation, and quartiles on the input data to
detect data quality.

3.3 Sotware Engineering Solutions to Support Data uality Techniques

Sotware Engineering Solutions (Data Storage Technologies, Programming Language, and Sotware Framework)
support data quality techniques. Being aware of multiple interpretations, we use the term software framework as
a software engineering solution (e.g., data pipeline, big data platforms) providing generic software functionality
that can be selectively changed by additional user-written code, thus providing application-speciic software.
These solutions are built on Architecture/Infrastructure Elements in the IoT architecture, such as Sensors,

Edge devices, Cloud infrastructure, and, in some cases, local Fog infrastructure. An Edge device connects sensors
or data sources in a local area network. It can also link the local area network to a wide area network or the
Internet. Cloud infrastructure ofers virtual resources for scalable and reliable computation and storage. It is
available on the Internet as Infrastructure as a Service (IaaS). Fog infrastructure consists of an IoT gateway within
the local area network of Edge devices and connects them to the Cloud.
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Data Storage Solutions: Figure 2 gives the list of data storage solutions in our taxonomy. Blockchain stores
data in blocks chained together in chronological order. The common blockchain application is a ledger for
transactions. Distributed file systems allow access to iles from multiple hosts sharing via a network, making it
possible for multiple users on multiple machines to share iles and storage resources. A database is an organized
collection of structured information, or data, usually controlled by a database management system (DBMS).
DBMS can be categorized into [88]: (i) relational DBMS, (ii) document-oriented DBMS, (iii) graph-oriented DBMS,
(iv) column family DBMS, (v) native XML DBMS, (vi) time series DBMS, (vii) Resource Description Framework
(RDF) stores and (viii) key-value Stores.

Programming Languages: Our taxonomy covers programming languages in three categories: Interpreted,
Compiled, and Markup. An interpreted language supports the execution of instructions without compiling them
to machine code.uery languages are interpreted languages for searching, viewing, and changing the content
of a database. Compiled languages translate source code to machine code as opposed to interpreted languages.
Hardware description languages are compiled languages that support the automated analysis and simulation of
electronic circuits. A Markup language is a system for annotating a document visually distinguishable from the
content.
Software Frameworks: Our taxonomy classiies software frameworks asML Frameworks, Data Pipelines,

Data Visualization,Data Analytics, and Big Data Frameworks.ML Frameworks enable MLmodels to be developed
without understanding the underlying algorithms. Data Pipelines process data in a sequence where the output
from one component becomes the input for the next component. Data Visualization frameworks support the
process of translating large data sets and metrics into charts, graphs, and other visuals. Search Engines help ind
the information by using keywords or phrases. Data Analytics frameworks enable data analysis in an organized
way. A Big Data Framework is an ecosystem of diferent components that process, handle and store large amounts
of data.
IoT Architecture: The IoT World Forum Reference Model [98] is one of the numerous IoT architectures

in the literature. It supports ine-grained granularity across various layers that make up an IoT system. Many
large-scale IoT systems have lately incorporated this architecture [75]. It has seven layers. L1 Physical Devices

and Controllers layer contains sensors, edge node devices, and other devices. L2 Connectivity layer enables
transferring data from the cloud to devices and vice-versa. L3 Edge Computing layer brings computation and
storage closer to where data are gathered. The protocol conversion, routing to higher-layer functions, and łfast
path" logic for low-latency decision-making are implemented here. L4 Data Accumulation layer converts
sensor data in motion to data at rest. It stores the data in an easy-access format and reduces it through iltering
and selective storing. L5 Data Abstraction layer focuses on rendering data and their storage in ways that enable
performance-enhanced applications. Information interpretation occurs at L6 Application layer. The software
interacts with L5 and data at rest. Thus, it does not have to operate at network speeds. L7 Collaboration and

Processes layer enables human interaction with all the other layers. A simpler IoT architecture adopted in the
literature (e.g., [44]) consists of three layers: data acquisition/perception (L1), network (grouping L2 and L3), and
data service/application (grouping L4, L5, L6, and L7).

4 RESULTS

With the three research questions (RQ1, RQ2, and RQ3), we have investigated the context, application, and
problem domains (data quality issues and sectors where data quality issues are addressed), solution domains
(data quality techniques, data quality metrics, and how these techniques are evaluated), and implementation
domains for solutions (programming languages, libraries, frameworks, and data storage techniques).
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4.1 RQ1 - What is data quality for CPS and IoT in Industry 4.0?

This research question provides an overview of typical data quality issues in CPS and IoT for Industry 4.0, their
sources, and the application domains for data quality research. To respond to RQ1, we address the following
three sub-questions:

4.1.1 RQ1.1: What are the data quality issues for CPS and IoT in Industry 4.0?

Once data is recorded by sensors, it is transformed in several stages until it arrives at the control room, where
a decision is made automatically or manually. Like any other IT system, the principle of garbage-in-garbage-out
is also valid here. Poor quality data may adversely afect the overall decision-making process. Therefore, data
has to be trustworthy throughout the data value chain. Eliminating data quality issues (data quality problems)
as early as possible, for example, when data are irst captured, is far more eicient than handling data quality
issues later in the data value chain [97]. This research question aims to identify data quality issues experienced
in CPS and IoT for Industry 4.0 applications. We expect to gain insights into the reasons for these issues and later
establish the connection among the data quality issues, solutions, methodologies, and application domains we
investigate in the following questions.

The reviewed papers address wide-ranging data quality issues. They include, amongst others, outliers (isolated,
erroneous values) [2, 8, 9, 12, 13, 15, 19, 28, 29, 34ś36, 40, 42, 43, 45, 47, 49, 50], missing values [1ś3, 6, 9, 14, 18, 19,
21, 25, 28, 32, 33, 35ś39, 43ś46, 50], duplicated records [9, 14, 19], noise in data [5, 19, 30, 33, 37, 42, 45, 48], data
drift [14], data discontinuity [17], data imprecision [25], data timeliness (freshness) [1, 3, 10, 16, 21, 22, 26, 38, 39],
high dimensionality [9, 19, 42, 43], data inconsistency [1, 3, 4, 6, 10, 25], and data veracity [6, 7, 11, 20, 23, 27, 31, 33,
38, 39]. Data quality issues are mainly addressed using data quality dimensions, i.e., attributes representing a single
aspect of the data quality [147]. One example data quality issue is data inconsistency, and data consistency is the
corresponding data quality dimension. Another one is missing values as the data quality issue of data completeness.
Some primary studies use data quality issues and dimensions interchangeably (e.g., data freshness [1]). Data
completeness refers to the degree to which all parts of the data are speciied with no missing information. Data
freshness implies that the sensed data are recent and no adversary replays old messages. The reader is referred to
Wang et al. [149] for the deinitions of all the other data quality dimensions.

Missing values are one of the most addressed data quality issues in the primary studies. It refers to cases when
one variable or attribute does not have any value. Another highly addressed data quality issue is outliers, i.e.,
extreme values that deviate from other observations on data. We observe that the most addressed data quality
issues are highly related to the types of data the most dealt with in the primary studies. Time series is the most
addressed data type (see RQ1.2), and missing values and outliers are common problems for time-series data sets,
e.g., due to sensor failures at high sampling frequency and network problems.
A usual CPS/IoT system includes many diversiied components such as sensors, actuators, backend, Web,

Cloud, and Web/mobile software. These components frequently interact on diferent computing architectures
(edge, fog, and cloud computing) and participate in various worklows. We analyze the computing architectures
presented in the primary studies and their relation to data quality issues (see RQ3.3). Here, we can briely state
that the studies in our review do not address the implications of these architectures for data quality issues and
techniques for CPS and IoT. For instance, edge-native systems have limited computing and storage capabilities;
ML applications require massive volumes of training data in high-dimensional feature space to ensure several
samples with the combination of possible values for each feature. ML applications running at the edge need the
high dimension in input data sets reduced to increase application performance. On the other hand, a crucial
but one of the least addressed data quality issues in our review is high dimensionality. It refers to data sets that
contain a large number of features [103].

Data veracity refers to how accurate or truthful a data set may be and answers questions like how trustworthy
the data source, type, and processing are. We can distinguish it from data quality as it is sometimes considered a
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data security property [20]. We investigate the relationship between data security and other quality issues in a
separate research question (see RQ1.3). Most primary studies on data veracity address maliciously manipulated
sensor signals. For instance, Krotoil et al. [20] assume attackers can tamper with sensors to hide actual sensor
signals.

The primary studies have diferent classiications for some data quality issues. Noise is deined as irrelevant or
meaningless data [152]. Corrales et al. [9] classify missing values, outliers, high dimensionality, and duplicate
records as noise. Sanyal et al. [33] diferentiate gaussian noise and outliers as distinct data quality issues. Some
primary studies (e.g., [30, 45]) refer to noise as unwanted and wrong data that should be removed. Some of the
studies have diferent interpretations of outliers and anomalies. For instance, Huru et al. [15] use terminology that
maps outliers to measurement errors and anomalies to unusual events in time series data such as temperature and
humidity collected from sensors placed inside a greenhouse environment. Saybani et al. [35] deine anomalies
as sensor faults that lead to missing values and outliers in sensed data, while Kong et al. [19] use "abnormal
data" as the term for outliers. Yu et al. [48] treat anomalies as deviations diferent from noise, which is erroneous,
out of all potential values, and shows up as a spike. Anomalies represent system failures and slightly deviate
from common values but still occur inside the range. They change slowly as system failures take time to stop
machine operations. Based on this deinition, Yu et al. provide a noise ilter that removes noise and preserves
anomalies (see RQ2). Flick et al. [12] follow another deinition of outliers, noise, and anomalies. Outliers cover
both noise and anomalies and are observations that deviate so much from others (normal data). Noise represents
the semantic boundary between normal data and true anomalies. It is a weak form of outliers, focusing on a
single data point, whereas anomalies are inferred collectively from a set of data points.
Not many papers discuss the reasons for data quality issues (the reasons for data quality problems) and

their impact on the proposed solutions. The most mentioned reasons are heterogeneous multiple data sources
[4, 12, 30, 44, 50], sensor malfunctions [15, 31, 35], network problems (connection failures, communication delays)
[16, 37, 40], high sampling frequency [19], and cyber attacks for data tampering [7, 31]. Wang et al. [44] state that
dependable, raw time series (time series gathered from multiple sensors) are very likely to contain missing values,
which could harm the accuracy of data analytics. They use the reason (multiple data sensors) to devise their data
quality technique. To reconstruct missing data, they utilize the correlations between time series generated by
sensors working together.
Flick et al. [12] discuss that data from diferent sources lead to several data quality issues, such as missing

values, outliers, and missing or invalid time stamps. They provide a conceptual framework for data pre-processing
of diverse data sources. The framework deals with diferent or even not existing timestamps to merge data
from multiple data sources. It also deploys outlier treatment algorithms to detect outliers in multivariate data
sets. Another reason for low-quality data is cyber-physical attacks. Casado-Vara et al. [7] study incidents where
malicious data lead to poor data quality. They present a blockchain-based architecture to improve data security,
with an edge computing layer executing a new algorithm using game theory for false data detection.

Kong et al. [19] focus on duplicated data, missing values, and outliers caused by high sampling frequency and
the vast number of installed sensors. They use high sampling frequency to calculate the missing value based
on the average value of the previous and next data. If there is a wide range of missing data, missing values
are predicted from the data collected from other sensors observing a similar phenomenon. As seen in these
few studies, the reasons for data quality issues can be crucial in devising data quality management techniques.
Therefore, we need more research to investigate the dependency among data quality issues, their reasons, and
data quality management techniques.
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Fig. 3. Application domains of the data quality research for CPS and IoT in Industry 4.0.

Fig. 4. Data types of the data quality research for CPS and IoT in Industry 4.0.

RQ1.1 Conclusion. Data quality research for IoT and CPS mainly addresses missing values, outliers, and data
timeliness. The studies in our review do not address the implications of diferent computing architectures for
data quality issues and techniques for CPS and IoT. There is also little research discussing the reasons for
data quality issues (e.g., electromagnetic interference, high temperatures, loss of connectivity, and signal
processing errors). Future research should further investigate the reasons and the implications of computing
architectures for data quality issues to devise better data quality management techniques.

4.1.2 RQ1.2: What are the application domains for data quality research? What types of data are

collected in these application domains?

Various industries are concerned with questions and research around data quality. Figure 3 presents the
application domains of the primary studies in our review. A big part of the literature (55%) stems from research
for manufacturing industries (e.g., automotive, semiconductor). Healthcare, environmental research, agriculture,
and logistics follow manufacturing industries. The use of data analytics technologies in manufacturing industries
to ensure quality is getting more and more attention to increase performance and yield, reduce costs, and
optimize supply chains. It is known as manufacturing analytics and is part of Industry 4.0, where factories
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evolve into self-running and healing entities by adopting new technologies such as IoT. Therefore, most primary
studies on manufacturing industries propose manufacturing analytics frameworks and support data quality as
a preprocessing step for data analytics input. For instance, Weiss et al. [46] provide methods for continually
predicting manufactured product quality in semiconductor manufacturing. The proposed methods have a data
preprocessing step to predict missing input data. We can conclude that data quality is crucial to the manufacturing
business since manufacturing involves multiple sensors in harsh environments (e.g., a shop loor - the area of
a factory, machine shop), which may lead to various data quality issues. Please note that the most mentioned
reasons for data quality issues in RQ1.1, such as heterogeneous multiple data sources, sensor malfunctions, and
network problems, are likely to occur in such environments.

The data types in the reviewed literature are manifold (see Figure 4). Time-series data dominate the data types.
Most evaluations in the primary studies are conducted in a controlled research environment rather than in an
industrial setting. Only six of 51 studies present an evaluation in an industrial environment (e.g., a shop loor).

RQ1.2 Conclusion. Manufacturing industries are the predominant application domain in the primary studies,
while time series are the most collected data type in the application domains.

4.1.3 RQ1.3: What is the trade-of between data quality and data security?

Data security is to prevent unauthorized access to data. It can be considered part of data quality (see data
veracity in RQ1.1) since avoiding data corruption caused by unauthorized access improve data quality. Data
quality techniques, e.g., data cleaning or repair, necessitate lexible read and write access to all data. Security
problems may arise while running these techniques because data can be exchanged with other systems or used
by users with diferent access rights. Improving data security may limit the abilities of data quality techniques
and, in turn, reduce data quality.
The need for data security enforces certain restrictions on how data is accessed, stored, and analyzed. These

restrictions may negatively afect overall data quality and increase computational costs. For instance, data may
need to be anonymized or encrypted in a vault. Encryption techniques require diferent users to encrypt their data
with their keys; the identical data copies of diferent users lead to diferent ciphertexts, making data deduplication
impossible. Data deduplication eliminates redundant copies, signiicantly reduces storage capacity requirements,
and ensures data consistency. Some well-adapted strategies, e.g., centralized secret keys within a dedicated entity
that allow the deduplication process to decrypt data, can be employed to overcome conlicts between data quality
and security [143].
We have identiied only seven papers addressing both data quality and security for IoT and CPS. Four of

these papers [7, 11, 20, 31] investigate how data security solutions can improve data quality (in particular, data
accuracy). Krotoil et al. [20] propose a process-aware approach to detect when a sensor signal is maliciously
changed. Similarly, Russel et al. [31] present a sensor data validation method that employs sensory substitution
to mitigate common sensing errors and cyber-physical attacks, such as playback attacks. Two blockchain-based
approaches [7, 11] support the assessment of the trustworthiness of sensor observations and false data detection
to improve IoT data quality.

Only three papers [38, 39, 51] study the trade-of between data quality and security. Zellinger et al. [51] address
conidentiality protection in transfer learning (an ML approach focusing on storing knowledge gained while
solving one problem and applying it to a diferent but related problem). The idea is a module-based combination
of conidentiality-preserving noise-adding methods with robust transfer learning algorithms for intelligent
manufacturing applications. They discuss noise injection mechanisms achieving a good trade-of between data
privacy and accuracy.
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Sicari et al. [38, 39] propose a system architecture addressing data security and quality in IoT. The architecture
contains three layers: analysis, data annotation, and integration. The Analysis layer extracts the information about
the data (e.g., data source, data type, and data security and quality properties) to support other layers. Its task is
to evaluate whether the input data satisfy data security and quality requirements. The layer computes a score
for each security property (i.e., data conidentiality, data integrity, source privacy, and source authentication)
and data quality property (i.e., data accuracy, data precision, information timeliness, and completeness). These
scores inform IoT users and applications about the security and data quality levels. The Data Annotation layer
annotates the data with the computed scores; the Integration layer exploits the scores about security and quality
level to select the data resources for data integration. The evaluation of the proposed architecture reveals that
high-security scores may lead to low-level data completeness (the number of collected values over a given
time interval divided by the number of expected values). On the other hand, high-level data security positively
contributes to data accuracy (the degree of similarity of a measured quantity to its actual value), precision (the
degree to which further calculations return the same or similar results), and timeliness (the temporal validity of
data).

Diferent computing architectures (e.g., edge, fog, and cloud computing) have diferent security risks, afecting
the trade-of between data security and quality. For instance, edge applications pose particular security risks (e.g.,
the dependence on edge computing resources without proper security software) because IoT devices are designed
for low-cost and low-power usage and are unsuitable for complex technology. One technique to mitigate these
risks is to monitor all edge activity to limit data access rights of native edge applications, including data quality
techniques running on edge devices. Similar to our indings in RQ1.1, none of the primary studies mentioned
above discuss the implications of IoT computing architectures for the trade-of between data security and quality.

RQ1.3 Conclusion. Some primary studies focus on data quality and security separately or study how data
security can improve data quality and therefore do not address the trade-of between these two. Few papers
addressing the trade-of study data quality and security properties, but not how data quality and security
techniques afect or limit each other on diferent computing architectures. We need further research on the
implications of diferent IoT computing architectures for the trade-of between data security and quality.

4.2 RQ2 - What data quality techniques are used for CPS and IoT in Industry 4.0?

Data quality techniques include approaches and technologies identifying and correcting data quality issues. There
are diferent interpretations of data quality techniques. Some surveys mix data cleaning and repair under the
same category. Our SLR has a distinction between data repair and cleaning techniques (see Figure 2) and reports
them in two sub-questions (RQ2.2 and 2.3) since they difer in how they treat data quality issues. Data monitoring
(identifying quality issues in data) is a prerequisite and an integral part of data repair and cleaning. Therefore, we
investigate it as a sub-activity of data repair and cleaning. To respond to RQ2, we address four sub-questions:

4.2.1 RQ2.1: What are the data quality metrics for data quality monitoring?

Data quality metrics are the measurements used to assess data. They benchmark how beneicial and relevant
data is, and help diferentiate between high-quality and low-quality data. They can be employed to certify data
sources in IoT and CPS as it or not for speciic purposes. They can easily be related to data quality dimensions,
i.e., the measurement attributes of data, which we can assess, interpret, and improve.

We identiied 41 data quality metrics in the primary studies. Table 4 presents the data quality dimensions and
the corresponding metrics with their formulas/explanations. The metrics are either based on a mathematical
formula or computed by a program on structured data for an observation period. Accuracy, completeness, and
validity are the most data quality dimensions addressed by the quality metrics. We could not ind any metric for
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Table 4. Data quality metrics in the primary studies.

DQ Dimension Number Formula / Description Reference

Accuracy

M1

� = {�� |� ∈ � } is a time series process, and � is the number of observations. Degradation of accuracy is detected as

deviation in the following properties of � . Mean � = 1
�

∑�
�=1 �� . Standard deviation � =

︃

1
�−1

∑�
�=1 (�� − �)

2.

Kurtosis � =
1
�

∑�
�=1 (��−� )

4

�4 . Skewness �� =
1

�−1

∑�
�=1 (��−�

3 )

�3 . Sum of absolute values
∑�

�=1 |�� |.

Number of elements over the mean {�� ∈ � : �� > �}

[8]

M2
Test campaigns using human to detect data quality faults in facility management using cameras and sensors. � is
the occupancy count obtained from cameras and sensors. � > 50 in a 10 meter squared room indicates data error.
� > 0 outside working hours then the sensor is frozen.

[36]

M3 Binary logistic regression � (�� ) =
1

1+�−���
, where � (�� ) is the probability that the data point �� is noisy. [9]

M4 Accuracy score is between [0, 1] revealing proximity of values to correct (range of) values. �� =
��−��� (� )

��� (� )−��� (� )
[38]

M5
Accuracy is computed as 1 −�� /��, where �� is the number of tuples in a relation having one or more incorrect values

and �� the total number of tuples.
[6]

Artiiciality M6
���� = 1 if the sensor information originates from an individual IoT sensor, which is not aggregated or interpolated.
���� = 0 if data is from an unidentiied information source, which aggregates information with unidentiied algorithms.

[21]

Availability M7

Percentage of the time that there is an unexpired data object provided by the source for a given observation period.

������������ = 1 −
∑�

�=1��� (0,��−�
��� )

��
, where, for an observation period �� , �� is the interval between the ��ℎ

and the � + 1�ℎ updates, � is the total number of objects received in OP, and � ��� is the expiration time.

[22]

Completeness

M8 The MD5 hash serves as a binary metric for completeness and is used to verify if the source data iles are empty empty. [32]

M9
An aggregate quantity, i.e., occupancy count � (number of people in the facility), determines missing data, outliers, stuck
values, and noisy data. For instance, if � is zero during working hours, there may be missing data. (Related to M2)

[36]

M10 ���� = 1 −�����/���� , where����� is the sum of missing values, and���� is the sum of expected values. [21]
M11 Percentage of data ields that are associated with a proper value. [38],
M12 Packet Loss Rates in the NASA Turbofan dataset in order to mitigate the efects of wireless network degradation. [41]

M13
Completeness is quantiied as 1 −��/�� , where, for a relation �, �� is the number of tuples in � that have at
least one łNULLž value and �� is the total number of tuples in �.

[6]

Comprehensiveness M14

It is quantiied as conformance to a hierarchical model in ontological reasoning. Threshold is the only parameter class
used for each data variable. It can be a value or an interval.Its class has three properties: type, upper threshold and
lower threshold. If the type is a value, it is set to ł0ž and either upper or lower threshold is set. Otherwise, the type is
set to ł1ž and both upper and lower thresholds are set. Abnormal data is classiied based on three times threshold values.

[19]

Concordance M15

It is quantiied as the agreement between data source information and information of further independent sources.
���� =

∑�
�=1 �� · � (�0, �� ) , where � is the number of sensors, � (�0, �� ) ∈ [0, 1] is the share of measurements

witnessing sensor observation, � is a weight function �� (�0) =
1

� (�0,�� )
, if � (�0, �� ) ≠ 0, and � (��, ��) is

the propagation and infrastructure-based distance function between sensor locations �� and �� for sensors � and �

[21]

Conidentiality M16
Data conidentiality (a binary trait) is established as a consequence of using federated learning in lieu of central
data collection followed by machine learning.

[51]

Currency
M17

Currency is computed as statistical properties of data (as in M1) to observe degradation over long periods spanning
several days and months.

[8]

M18 Currency is the query spatial diference to measure object staleness in virtual objects in driving simulations. [16]

M19 �������� = (1 −
���

� ��� ) ∗ �
−���������� , � ��� ≥ ��� , see M41 for Volatility [22]

Privacy M21 Score between [0, 1] for privacy. Adoption of a privacy model and related privacy policies are associated to a high score. [38]

Redundancy
M22

Multi-collinearity to show high inter-correlations among two or more independent variables and removes attributes
whose values can be trivially predicted by a multiple regression model of the other attributes hence reducing

[8]

M23 Same approach as M3 but to classify data as redundant using logistic regression. [9]
M24 Same as M17 but statistical properties are used to compute redundancy. [8]

Reputation M25 Score between [0, 1] representing probability by which data are suitable to be included in a process providing value. [38]

Security M26
Score between [0, 1] for data security. Data authentication represents the need to identify users or objects authorized to
access data. A score is assigned to authentication and integrity levels.

[38]

Timeliness
M27

If a measured value is within bounds of age and frequency the reward increases otherwise it is punished. Timeliness is

given by �(�) = |�(� − 1) − 2 ∗ �� (�) |, where reward �� (�) = �� −1 (�−1)
� −1 −

�� −1+�������� (� )
�

,� is the
length of the sliding window, �� −1 denotes the number of measurements within the given interval,
�������� ∈ {0, 1} is the current reward/punishment decision (1 for a measurement within the interval or 0 otherwise).

[21]

M28
Score between [0, 1] is the extent to which data age is appropriate for the task at hand. The temporal validity of the
data is deined by age and volatility. Age is a measure of how old the information is, based on when it is recorded.

[38]

Trust M29 Trust �� for data stream � is �� = �1.�������� +�2.������������ + � . Related to M5 and M13. [6]

Uncertainty M30
Shannon entropy typically used to measure amount of information in a variable.
If the entropy is high then the chances of surprises is high and if the entropy is low the chances of surprises is low.

[33]

Validity

M31 Same as M17 but deviation from statistical properties are used to compute validity. [8]
M32 Data Validity from sensor data gathered every 5 minutes based on binary detection of Anomaly or not. [35]

M33
It is quantiied as Local Outlier Factor (LOF) value. The algorithm uses k-nearest neighbor on inserted data records
to instantly compute LOF value, i.e., the degree to which a record represents an outlier or an indicator of abnormality.

[47]

M34 Percentage of iltered data for rare events in the G-APD Cherenkov Telescope (FACT). [5]
M35 Information Gain Metric. Furthermore, outliers are detected if no information is gained and removed. [40]
M36 Metric is based on minimum accepted deltas using domain/user knowledge. [15]
M37 It is satisfaction of consistency rules using semantic reasoning and Non-Description Logic on a sliding data window. [4]
M38 Sensory substitution to compute number of false positives and negatives, and corroboration of true positives and negatives. [31]

M39
�������� = ∧�

�=1��� (�), where ��� is ��ℎ rule in a set of� rules, for data object � .
Validity for historical performance is ������

�
, where � is the number of updates, and ������ is the valid instances updated.

[22]

Volatility
M40 Score between [0, 1] is a measure of information instability, the frequency of change of the value for an entity attribute. [38]

M41 Probability of an update between the last one (time point 0) and the current time (age). � =

∫ ���

0
� ������ (�)�� [22]
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data orderliness, volume, auditability, consistency, accessibility, compliance, eiciency, precision, traceability,
understandability, portability, recoverability, and integrity. Data consistency among these dimensions is the
level to which values of an attribute adhere to some constraints. Data validity metrics (M31-M40) subsume this
deinition of data consistency.

Several data quality metrics in the primary studies are numerically bounded. Some metrics produce a normalized
score in the range [0, 1] as a binary value (M6, M16), percentage (M7, M11, M34), score (M4, M21, M25, M28,
M40), relative frequency (M5, M10, M13), and probability (M3, M41). The bounded metrics appear to be human-
understandable. However, due to diferences in their computation methods, the metrics are not standardized for
arithmetic comparison and numerical composition with each other. Nevertheless, there is one exception where
M29 on data trust is a weighted sum of data accuracy (M5) and data completeness (M13). Several metrics (M1,
M17, M24, M30) use statistical properties of batch data instead of statistical properties of reference high-quality
data. For instance, Sanyal and Zhang [33] compute data uncertainty (M30) as the Shannon entropy of batch data
without the need for cordoning reference data.

Data quality metrics are extensively studied in the literature but are not widely used by industrial IoT systems
having dark data [67]. Dark data is unstructured, untagged, and untapped data that has not yet been analyzed
or processed. IoT systems accumulate it for various reasons, including compliance and security obligations.
Beneicial data becomes outdated because of the lack of tools and processes to use data in a timely manner. Dark
data often represents lost opportunities (e.g., revenue, products) for a business as data content and quality is
unknown. Almost 90% of IoT data is dark data [83]. If computed promptly and presented as feedback to humans,
data quality metrics can instill a company culture to use data before it becomes dark. Furthermore, they can
improve data audibility and boost the acquisition of higher-quality data suitable for products based on ML/AI.

RQ2.1 Conclusion. We identiied a large spectrum of data quality metrics in the literature. However, we
could not ind any study reporting the adoption of these metrics in industrial IoT systems as a common
practice. We need research to facilitate using quality metrics in industrial IoT settings while addressing the
problem of dark data. In the future, it would be interesting to study the perception of human users when
AI-driven decisions made on data are presented alongside the data quality metrics.

4.2.2 RQ2.2: What are the data repair techniques?

As described in Section 3, data repair techniques restore data lost, accidentally deleted, corrupted, or made
inaccessible, while data cleaning techniques only remove corrupt or noisy data. We identiied ten primary studies
that provide or employ a data repair technique. We excluded studies that do not give any detail, e.g., Wei et al. [45]
proposing data interpolation without explaining how to apply it in the CPS/IoT context. Table 5 presents the
data repair techniques in the primary studies. The irst two columns provide the data quality issue and the data
repair technique before a brief description in the third column. The fourth and ifth columns indicate if the repair
technique is online (data repair at the data source in real-time) and evaluated. We classify it oline (data repair
for large historical datasets on the cloud) if the study does not report any deployment for online data repair.

Missing values are the most data quality issue addressed by the data repair techniques (ive primary studies).
These techniques use data imputation methods (i.e., replacing missing values with estimates and analyzing the
data set as if the imputed values were actual observed values) from statistics to repair missing values. Diferent
studies employ diferent imputation techniques (median-based [18], mean-based [46], average-value [19], and
matrix factorization [44]) for missing value repair. Corrales et al. [9] provide a guided process with data quality
techniques (data repair and cleaning). They assume that missing values are represented by special characters
such as ?, *, blank spaces, or special words (NaN, null). The user selects one of the imputation techniques ofered
(hot deck, imputation based on missing attributes, and imputation based on non-missing ones). Most of the repair
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Table 5. Data repair techniques in the primary studies.

DQ Issue Technique Description of the Technique Online Evaluated Reference

Missing
Values

Data Imputation
Missing values are calculated based on the average value of the previous and next data.
When there is a wide range of missing data, missing values are illed in according to
similar machining data in the manufacturing workshop.

No Yes
Kong et
al. [19]

Missing
Values

Median-based
Data Imputation

The median value is determined by arranging data in increasing order. Missing values
are illed in by the median value. This method underestimates the variance in the
dataset since the same median value is used for multiple missing values.

No No
Khan et
al. [18]

Missing
Values

Guided Process
for Data Repair
in Regression
models (DC-RM)
- Data Imputation

DC-RM provides a procedure for building data repair/cleaning process for regression
models. For each data quality issue in the data sets, a data quality task is suggested. In
DC-RM, three data imputation techniques are employed: hot deck (missing items are
replaced by using values from the same dataset), imputation based on missing values
(assigns a value to a missing one based on measures of central tendency), imputation
based on non-missing attributes (a regression/classiication model is performed).

No Yes
Corrales
et al. [9]

Missing
Values

Sensor-network-
regularization-based
Matrix Factorization
- Sensor Substitution
- Data Imputation

A correction engine (CE) uses a sensor-network-regularization-based matrix
factorization method (SnrMF) to predict missing values. The SnrMF method takes
advantage of the correlations among diverse sensors positively correlated. It is capable
of improving the performance of reconstructing missing data for a single time series.
Moreover, similarity functions are used to determine sensor correlations.

No Yes
Wang et
al. [44]

Missing
Values

Mean-based
Data Imputation

The approach repairs data of wafer (a collection of microprocessors) production. Some
wafers are temporarily split from their parent lots into child lots (a group of wafers
processed together in the production). The child lots may undergo single or multiple
processes at diferent times. Their means are used to estimate each wafer’s missing
values based on lot membership at each process.

No No
Weiss et
al. [46]

Data Veracity
Sensor Calibration
using Machine
Learning

ML methods can be used for calibrating low-cost sensors; adjusting measurements
to compare to concentrations from reference monitors. The approach determines the
factors afecting data quality for the given measurements, models their efects on
sensor’s response, and applies the model to correct the response.

Yes Yes
Okafor et
al. [27]

Data Veracity
Sensory
Substitution - Fog
based Analytics

The approach validates the initial sensed data with the additional sensed data to reduce
false positives and negatives. It focuses on fog-based analytic algorithms using (a) the
initial sensed data using cameras-speciically the processed output from the edge, and
(b) raw data from another ambient sensor.

Yes Yes
Russel et
al. [31]

Data Veracity
with Noise,
Outliers, and
Missing
Values

Data Aggregation
Schema based on
Shannon’s
Entropy

A data aggregation scheme for highly uncertain raw IoT sensor data reconstructs the
subspace using sample data and then tracks down the low-rank approximation of the
dominant space in the presence of high uncertainties at the fog server. The robust
dominant subspace is used to estimate a more reliable true sensor data matrix from
the highly uncertain raw IoT sensor data matrix.

Yes Yes
Sanyal and
Zhang [33]

Data Veracity
Dependent-
Computation
Replay Technique

This approach łrepairsž corrupted data from its origin through its computational
dependencies in a distributed IoT setting. It tracks causal data dependencies and replays
dependent computations in event-driven IoT deployment frameworks. It uses histories
of persistent storage updates and their causal relationships to update corrupted or
approximated data structures with corrected values at the historical point in an
application state update sequence at which they occurred. It replays all dependent
computation from that point forward.

Yes Yes
Lin et
al. [23]

Outlier
(Erroneous
values)

Clustering and
Regression
Modeling

It is high-dimensional and prediction based outlier detection, using a generalisation of
(full dimensional) clustering and (full-data) regression modelling. First, the data set is
clustered (using K-means, Within Cluster Sum of Square, and Total Sum of Square)
to identify the relationships among the data set attributes. Random Sample Consensus
(RANSAC) is applied together with the Median Absolute Deviation (MAD) to identify
the outliers in the clusters. The new values for the outliers are determined using the
overlow, overweight, substitution value, and algebraic sign calculations.

No Yes
Flick et
al. [12]

techniques use data from the same sensor to predict missing values. However, it is not convenient to use the same
dataset when there is a wide range of missing values. Kong et al. [19] discuss using data from similar sensors
but do not provide any implementation. Wang et al. [44] use correlations among sensors to reconstruct missing
values in a single time series. They provide only oline repair.

As mentioned in RQ1.1, data veracity is the accuracy or truthfulness of a dataset and is sometimes considered
a data security property. Four studies [23, 27, 31, 33] provide techniques that repair "corrupt" data and increase
its accuracy. Three of them [27, 31, 33] use reference sensors/monitors or sample data to improve sensor data
accuracy. For instance, Russel et al. [31] present an approach that repairs the initial sensed data from cameras
(the processed output from the edge) with the raw data from an ambient sensor. It uses sensory substitution to
increase the data robustness, resilience, and dependability. Lin et al. [23] are diferent from these three studies and
repair corrupted data from its origin through computational dependencies in a distributed IoT setting. They replay
all the dependent computations to correct data degraded throughout its life cycle due to hardware malfunction,
software bugs, or network partitions.
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ML has the potential for online and oline data repair in CPS/IoT as correlations among various data sources
(sensors) can be learned to substitute one sensor with another sensor and predict missing values or new data
that replace corrupt data. Non-AI techniques have diferent constraints limiting their applicability. For instance,
Lin et al. [23] require all dependent data computations in the application state history, which are not always
available. ML can support more generic repair solutions for IoT systems having multiple sensors that can replace
each other. However, we revealed only two studies [12, 27] applying ML to data repair. Flick et al. [12] use ML
(K-means for clustering and regression modeling) only to detect outliers in the clusters, not to predict data
replacing outliers. They employ the overlow, overweight, substitution value, and algebraic sign calculations to
calculate replacing data. Okafor et al. [27] use linear regression and neural networks to correct sensor output.
Their approach determines the factors afecting data quality, models their efects on the sensor response, and
applies the calibration model to calibrate sensors. It merges data from multiple sensors into the calibration
equation to ensure consistent and accurate information for the model.

The full potential of ML for data repair still needs to be explored with the challenges of integrating ML models
and components related to the data and model evolution. Manufacturing is the dominant application domain
of data quality research for CPS and IoT (see RQ1.2). Although manufacturing processes produce the same
products or parts repetitively, there might be occasional, minor modiications to product speciications and
process parameters (e.g., the need to ramp up production) that can render ML models obsolete. Therefore, we
need solutions that investigate continual learning [114] and domain adaptation [62] in conjunction with the
continuous deployment of ML models [133].

One challenge for data repair research is to create real-time (online) data repair services (e.g., quality monitors
and repair services on edge gateway) for IoT systems. However, we identiied only four primary studies [23, 27,
31, 33] addressing online data repair. The techniques proposed by these studies detect and repair "corrupt" data at
the edge/fog devices close to the data source where computation resources are limited. Only one technique [27]
is an ML-based repair solution. It does not address diferent deployment and versioning scenarios of ML models
on edge and cloud. An ML-based data repair technique should be invoked either on edge or cloud to create ML
models based on the availability of training data. The models should be containerized as online repair services
and deployed on edge for real-time data repair or on the cloud for oline repair.
Only two data repair techniques [18, 46] in our SLR have not been evaluated. They are part of data analytics

frameworks. Therefore, the focus of the evaluation in their studies is the data analytics frameworks, not the
outcome of the data repair techniques. One study [31] reports the experience with its repair technique and does
not quantitatively assess its performance. We investigate the details of the evaluation of the data repair techniques
in RQ2.4.

RQ2.2 Conclusion. Across primary studies, data repair techniques address missing values, data veracity,
and outliers. Most of these techniques are non-AI solutions having limitations in the industrial CPS/IoT
context. ML can support more generic (online and oline repair) repair solutions for IoT systems having
multiple sensors that can replace each other. Future research should explore the full potential of ML for data
repair and address the challenges of integrating ML models and components related to the data and model
evolution.

4.2.3 RQ2.3: What are the data cleaning techniques?

Data cleaning techniques detect and remove corrupt and unusable data, e.g., those afected by environmental
noise or extreme operating conditions. They do not attempt, for instance, to restore any data deleted or corrupted.
Table 6 presents data cleaning techniques in the primary studies. The table structure is similar to the one in
Table 5. Table 6 does not include studies that do not give any detail (e.g., Saranya and Sivakumar [34]).
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Table 6. Data cleaning techniques in the primary studies.

DQ Issue Technique Description of the Technique Online Evaluated Reference

Outlier
DBSCAN-based
Outlier Detection

It is a hybrid prediction model that consists of Density-Based Spatial Clustering
of Applications with Noise (DBSCAN)-based outlier detection and Random Forest
classiication. DBSCAN [81] was used to separate outliers from normal sensor
data, while Random Forest was utilized to predict faults.

Yes Yes
Syafrudin et
al. [40]

Outlier
Clustering
Algorithms

Distance measure and clustering algorithms detect and remove outliers. No No Wei et al. [45]

Noise Smoothing Filter
The use of smoothing ilters [140] is proposed for denoising manufacturing data.
The details of how a smoothing ilter can be applied are not explained.

No No Wei et al. [45]

Outlier
Domain Knowledge-
based Heuristic

Some production cycles in the data are not actual production measures but test
cycles. The cycle length deciles are used to remove those in the irst or last decile.

Yes No
Cerquitelli et
al. [8], Proto
et al. [29]

High
Dimensionality

Guided Process
using a Machine
Learning-based
Model

A reduced representation of time series is obtained by dimensionality reduction
techniques (e.g., Chebyshev polynomial approximation, polynomial regression).
An ML-based model combines reduction techniques with extracted features from
time series to recommend the most suitable reduction technique.

No Yes
Villalobos et
al. [42, 43]

Noise Guided Process
An engineer determines if input time series must be denoised. A technique
(Frequential Filtering [120] or Moving Average Filter [126]) is automatically
proposed based on the input data properties (The automation is not explained).

No No
Villalobos et
al. [42, 43]

Outlier
Domain Knowledge-
based Heuristics

Domain speciic rules are deined. For example, if the machine speed is lower than
8000, all data are discarded. The machine is supposed to be shut down at 8000.

Yes No Yu et al. [49]

Missing Values
Domain Knowledge-
based Heuristic

Trajectory data from an agricultural monitoring system is cleaned. The track data
of machinery are recorded in equal time. When time diference between adjacent
track points is greater than the time interval of isochronal recording, data loss is
detected. The lost data location is written into an abnormal data table.

No No Hui et al. [14]

Duplicated
Records

Domain Knowledge-
based Heuristic

If the data recording time of two adjacent track points is the same, these
adjacent track points are duplicated records. Data in one of the points is deleted.

No No Hui et al. [14]

Data Drift
Domain Knowledge-
based Heuristic

Data drift is detected when the position coordinates of the track point deviate
from the real position due to the problem of receiving signals from the location
equipment. The data record is deleted and written into an abnormal data table.

No No Hui et al. [14]

Noise Noise Filters
Two noise ilters are employed to remove noise and preserve anomalies. They are
deined as the distance between two moving window units (computation units).
The irst noise type happens in a short time, and the second one lasts for a while.

Yes No Yu et al. [48]

Noise

Filtering using
Decision Trees and
Random Forest
Classiication

Sensor data iltering is perceived as a binary classiication problem. Multiple
decision trees are combined in a random forest. Decision trees are trained on
unnormalized data to ilter out unwanted events based on raw data.

Yes Yes
Buschjager
and Morik [5]

Outlier
Decision Tree
Algorithm

A decision tree algorithm is used to deal with unusual values (outliers). Data
outside of minimum and maximum range is discarded. How decision trees are
used for data cleaning is not explained in detail.

No Yes
Saybani et
al. [35]

Outlier

Guided Process
for Data Cleaning
in Regression
Models (DC-RM)

DC-RM provides a procedure for data cleaning in regression models. A data
cleaning task is suggested for each data quality issues found in the datasets.
Candidate outliers are identiied and removed through approaches based on
Clustering (e.g., DBSCAN [81]) or Distance (e.g., LOF: Local Outlier Factor [66]).

No Yes
Corrales et
al. [9]

Duplicated
Records

Guided Process
for Data Cleaning
in Regression
Models (DC-RM)

DC-RM uses the Standard Duplicate Elimination algorithm [65] to detect
duplicate records. The records are removed by performing an external merge-
sort and scanning the sorted data set.

No Yes
Corrales et
al. [9]

High
Dimensionality

Guided Process
for Data Cleaning
in Regression
Models (DC-RM)

DC-RM supports dimensionality reduction with four approaches: ilter (features
selected based on discriminating criteria), wrapper (features maintained or
discarded based on error measures), embedded (features selected when the
regression model is trained), and projection (projection of the original space to
space with orthogonal dimensions - principal component analysis [53]).

No Yes
Corrales et
al. [9]

High
Dimensionality

Principal
Component
Analysis

Attribute reduction is applied where there are too many unrelated attributes
(kind of data) for an application. The principal component analysis [53] is
proposed to be used to ilter out irrelevant attributes.

No Yes
Kong et
al. [19]

Noise
Sample
Reduction

For the state prediction of machine tools, there is a small proportion of nearly-
failure state during machine tools’ operation. Data imbalance afects the results
of a classiication algorithm. Part of the running state data is sampled to obtain a
smaller set, whose data amount is comparable to that of the nearly-failure data.

No Yes
Kong et
al. [19]

Outlier is the most data quality issue addressed by the data cleaning techniques (seven primary studies). These
techniques difer in detecting outliers, while the cleaning task is standard (i.e., removing the detected outliers
from the dataset). They use clustering algorithms [9, 40, 45], domain knowledge [8, 29, 49], decision trees [35],
or distance metrics [45] to detect outliers. Syafrudin et al. [40] and Corrales et al. [9] use Density-Based Spatial
Clustering of Applications with Noise (DBSCAN)-based outlier detection [81] to separate outliers from normal
sensor data. Speciic rules detecting outliers are deined based on domain knowledge (manufacturing domain).
For example, Yu et al. [49] discard all the data points for the machine speed value lower than 8000 since the
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machine is supposed to be shut down at that speed. Cerquitelli et al. [8] use the cycle length deciles to detect test
cycles of the manufacturing machines and remove the data of these test cycles from the dataset.
Five primary studies [5, 19, 42, 45, 48] provide data cleaning techniques that address data noise. Four of

them [5, 42, 45, 48] use iltering to clean noise. For instance, Yu et al. [48] apply noise ilters (i.e., the distance
between two computation units) to remove two types of noise (the long and short duration of noise). Kong et
al. [19] employ sampling to remove noise in the datasets used for the state prediction of machine tools. Data
imbalance (a small proportion of nearly-failure state during machine tool operation) afects the prediction results
(classiication). Part of the running state data is sampled to constitute a smaller data set, whose data amount is
comparable to that of the nearly-failure data.
As we noted in RQ1.1, high-dimensionality is crucial, especially for ML applications at the edge, but one of

the least addressed data quality issues in our review. Only three data cleaning techniques [9, 19, 42] address
high dimensionality. Two techniques [9, 19] employ the principal component analysis [53] to ilter out irrelevant
attributes. Villalobos et al. [42, 43] provide a guided process using an ML-based model that combines reduction
techniques with extracted features from time series to recommend the most suitable reduction technique. The
three techniques are oline, and none of them provide online support for reducing high dimensions in input data
sets for real-time ML applications.
All the data cleaning techniques employing clustering algorithms [9, 40, 45], decision trees [35], distance

metrics [45], noise ilters [5, 42, 45, 48], sampling [19], or the principal component analysis [9, 19] are domain
agnostic. They may not always detect and clean domain-speciic data quality issues (e.g., removing data of
machine test cycles [8], data of the machine having a speed value lower than 8000 [49], or trajectory data from
an agricultural monitoring system when the data recording time of two adjacent track points is the same [14]).
Therefore, we need guided processes using both domain-agnostic data quality monitoring and domain knowledge-
based heuristics to detect data quality issues. The existing ones [9, 42, 43] employ only domain-agnostic techniques.
Corrales et al. [9] propose the Guided Process for Data Cleaning in Regression Models (DC-RM) that suggests a
data cleaning task (e.g., removing outliers) for data quality issues found through a domain-agnostic monitoring
technique (e.g., DBSCAN [81]).

We identiied ive online cleaning techniques [5, 8, 29, 40, 48, 49]. As indicated in RQ2.2, ML has the potential
for developing online solutions (and oline solutions too). Two online data cleaning techniques use ML solutions
(DBSCAN - an unsupervised learning method utilized in ML algorithms [40] and decision trees and random
forest classiication [5]). They do not address the ML model deployment and versioning challenges for online
data cleaning. Their primary studies do not report on model deployment and versioning scenarios on edge and
cloud (see RQ3.1).
Half of the data cleaning techniques [8, 14, 29, 42, 43, 45, 49] in our SLR have not been evaluated. They are

part of predictive maintenance or smart manufacturing [8, 29, 45, 49] and agriculture machinery monitoring
systems [14]. Therefore, the focus of the evaluation in the primary studies is not the outcome of the data cleaning
techniques. We investigate the evaluation details of the data cleaning techniques in RQ2.4.

RQ2.3 Conclusion. Existing cleaning techniques address outliers, noise, high-dimensionality, duplicated
records, data drift, and missing values. Most of these techniques are domain agnostic and may not always be
able to detect and clean domain-speciic data quality issues. Further research is needed to propose guided
processes using both domain-agnostic data quality monitoring and domain-knowledge-based heuristics.
There is also a need for online data cleaning support to reduce high dimensions in input data sets for real-time
ML applications.

4.2.4 RQ2.4: How are data quality techniques evaluated?
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Table 7. Metrics used to evaluate data quality techniques.

Evaluation Metrics Context Generic Evaluation Target References

MAE, RMSE, �2 Repair Yes Data repair approach (regression models) Okafor et al. [27]

Accuracy Repair Yes Classiication Models for Tool Wear Prediction Kong et al. [19]

RMSE Repair Yes Data repair approach Wang et al. [44]

Sensor Data Estimation Error Repair No Data repair approach Sanyal and Zhang [33]

MAE, MSE, RMSE, �2 Cleaning Yes Regression Models for RUL Prediction Saranya and Sivakumar [34]

MAE Cleaning Yes Regression Models Corrales et al. [9]

Precision, Recall, Accuracy Cleaning Yes Classiication Models for Fault Prediction Syafrudin et al. [40]

Table 9. Precision, recall, and accuracy metrics for classification models.

Metric Description Formula

Precision The ratio of true positive to the total predicted positive TP/(TP + FP)

Recall The ratio of true positive to the total actual positive TP/(TP + FN)

Accuracy The ratio of correct predictions to total observations (TP + TN)/(TP + TN + FP + FN)

In this section, we discuss the evaluation metrics used and reported in the selected papers, their calculation
methods, and their strengths and drawbacks.

Table 8. Confusion matrix of a classifier.

Classiied as "Yes" Classiied as "No"

Actual "Yes" True Positive (TP) False Negative (FN)
Actual "No" False Positive (FP) True Negative (TN)

Eight metrics have been used to assess data quality tech-
niques. They can be categorized as classiication and regres-

sion metrics. The former includes precision [40], recall [40],
and accuracy [19, 40]. The latter contains Mean Absolute
Error (MAE) [9, 27, 34], Mean Squared Error (MSE) [34], Root
Mean Squared Error (RMSE) [27, 34, 44], coeicient of deter-
mination (�2) [27, 34], and the true sensor data estimation
error [33].
Table 7 lists the metrics used to evaluate data quality techniques. These metrics have been mainly used to

evaluate the data quality techniques by using predictive analytics output (e.g., fault and remaining useful life
prediction). The main goal is to assess the impact of the data quality techniques on the performance of the
classiication and regression models. For instance, Kong et al. [19] use the accuracy metric to show that the data
processed by the proposed data quality technique improves the classiication accuracy for tool wear prediction.

Classiication Metrics. As seen in Table 8, classiication models have four possible outcomes. True positive
(TP) and true negative (TN) denote the correctly classiied points. False positive (FP) represents the points
incorrectly classiied as łyesž (positive) when they are actually łnož (negative). And false negative (FN) refers
to the points incorrectly classiied as łnož (negative) when they are actually łyesž (positive). According to the
deinitions of TP, TN, FP, and FN, Table 9 presents the precision, recall, and accuracy metrics.
Syafrudin et al. [40] calculate the precision, recall, and accuracy of classiication models predicting faults

with and without removing outliers (data cleaning). Although we can use precision and recall to assess the
performance of data cleaning solutions (e.g., the number of correctly removed outliers over all the data points
removed), we did not ind any study using these metrics for that purpose. The accuracy metric uses all TP, TN,
FP, and FN in Table 8 and is adequate for only balanced data sets. IoT and CPS data sets obtained from sensors
are imbalanced; they usually have more normal data points than erroneous ones, and the class distribution is not
even in these data sets. Therefore, the accuracy metric is unfair while assessing data quality techniques on sensor
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data sets. It might be why the primary studies ([19, 40]) use the accuracy metric only to evaluate the impact of
data quality techniques on the performance of classiication models.

Regression Metrics. The MAE, MSE, RMSE, and �2 metrics have been mostly used to assess the performance
of the data quality techniques on the regression models (see Table 7). MSE is the average squared diference
(error) between the predicted and observed values. It gives more weight to big diferences. It might underestimate
the model’s accuracy as one big diference might increase the MSE signiicantly. RMSE is the square root of MSE
and is more interpretable. MAE is the average of the absolute diferences. Unlike MSE or RMSE, it is less sensitive
to big diferences since it does not take the square of the errors. R-squared (�2) represents the proportion of the
variance for a dependent variable explained by an independent variable(s) in a regression model. It can be more
informative than MAE, MSE, and RMSE, as it can be described as a percentage, whereas MAE, MSE, and RMSE
have arbitrary ranges.

Corrales et al. [9] compare the MAE of the regression models trained with the data set not cleaned versus those
trained with the same data set cleaned by their data cleaning approach. They show that the results achieved by
the trained models with the cleaned data set are better than or equal to that with the same data set not cleaned.
Saranya and Sivakumar [34] use the MAE, MSE, RMSE, and �2 to assess the impact of the proposed data cleaning
technique on the prediction of Remaining Useful Life (RUL). They calculate and compare the metrics for the RUL
prediction with and without outliers. Diferent from these two works mentioned above, Okafor et al. [27] employ
the MAE, RMSE, and �2 metrics to assess the performance of their proposed data repair technique. They compare
the sensor measurements before and after data repair to reference measurements using these three metrics. Wang
et al. [44] use the RMSE to evaluate the performance of missing value prediction. They compare the RMSE of
their proposed data repair approach and of the competing methods (e.g., non-negative matrix factorization [106]
and support vector machine [139]). Sanyal and Zhang [33] propose a specialized metric for sensor data estimation
error to compare their data repair approach with Principal component analysis (PCA) [53], i.e., a classical tool for
low dimensional linear subspace approximation, as a baseline algorithm in the presence of high Gaussian noise
with outliers and missing values. This metric is similar to RMSE as it is the square root of the sum of the squares
of the coordinates of the vectors of the estimated and observed sensor data from each IoT node.
As mentioned above, only three studies (i.e., [27, 33, 44]) use regression metrics to assess the performance of

data quality techniques, not their impact on the performance of classiication/regression models. They evaluate
data repair approaches predicting missing or corrupted data. Therefore, they use regression metrics, i.e., MAE,
RMSE, and �2, that quantify the diference in the estimated and observed values. Although not found in the
primary studies, precision and recall can assess the performance of data cleaning techniques. We could not identify
a single study evaluating both the performance of a data quality technique and its impact on the performance of
a data analytics solution.

RQ2.4 Conclusion. Across primary studies, the metrics are standard and have been mostly used to assess
the impact of the data quality techniques on the performance of predictive analytics (e.g., fault and remaining
useful life prediction). Few studies assess the performance of data quality techniques. No study evaluates
both the performance of a data quality technique and its impact on the performance of predictive analytics.

4.3 RQ3: What sotware engineering solutions are used for data quality for CPS and IoT in Industry

4.0?

Software is the heart and soul of any IoT system and CPS, especially for analyzing data and its quality. Software
engineering solutions for CPS and IoT systems often span the edge-fog-cloud continuum; various software design
choices are made based on the requirements for real-time and historical data processed by these systems. To
better understand the role of software engineering in data quality, this research question investigates software
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engineering solutions in the primary studies. We use the term software engineering solution to cover any software
engineering technique (including data storage technologies, programming languages, libraries, and platforms)
used to implement data quality techniques for CPS and IoT. To respond to RQ3, we address the following three
subquestions:

4.3.1 RQ3.1: What programming languages and solutions are used to manage data quality?

Nineteen papers (out of 51 papers considered in our survey) mention a programming language or solution
(e.g., programming platforms, libraries, and models). Table 10 presents the programming languages and solutions
used to manage data quality in the papers. Nine of these papers (i.e., [2, 15, 17, 29, 34, 40, 49ś51]) propose a data
analytic solution as part of a CPS or IoT system. Their main goal is not to provide a data quality technique. They
support data quality as a pre-processing step of their data analytics solution. Since these solutions attempt to
quantify uncertainty and reason with incomplete and inconsistent data, more right data generally results in a
better output of such solutions [88]. Python, Java, and R are used to implement data analytics in the studies. ML
libraries TensorFlow [52], Weka [91], MLLib [118], scikit-learn [129], and Keras (high-level API of TensorFlow
2) [89] provide a proper abstraction to facilitate the development of the proposed data analytics solutions.

Only ten papers mentioning programming languages and solutions (i.e., [4, 5, 9, 10, 21, 23, 26, 27, 35, 39]) address
data quality techniques for CPS and IoT applications as their primary goal. For instance, Lin et al. [23] propose a
new approach for repairing corrupted data in IoT applications. It automatically tracks causal data dependencies
and replays dependent computations across multi-tiered IoT deployments. It combines the function-as-a-service
(FaaS) programming model with versioned, persistent storage and causal event tracking to facilitate data repair.
The approach extends an open-source, distributed, FaaS runtime system called CSPOT [151]. CSPOT runs over
various devices (e.g., microcontrollers, edge, and public clouds) and makes data repair possible in a distributed
IoT setting.

Semantic technologies have been investigated to enable the integration and interoperability of data produced by
heterogeneous IoT devices. Bambgboye et al. [4] present a layered software framework using semantic technologies
to maintain the consistency of data streams produced by physical sensors. The framework applies semantic
modeling and reasoning to validate data stream consistency while highlighting the temporal characteristics of the
stream. The framework has four layers: the sensing, modeling, reasoning, and application layers. The sensing layer
receives data from sensors and prepares the data for the upper layer. It contains a stream service module that
ensures the continuous transfer of data streams with Java infrastructure Apache Camel [68]. The modeling layer
provides an ontology to integrate and enhance reasoning for sensor streaming data available as raw numeric
data. Semantic reasoning achieves the continuous validation of the sensor stream. The reasoning layer validates
sensor readings within a time window against prevailing disturbances with data validation policies and other
related sensor readings. To this end, the framework layers the Jena rule language [69] with the C-SPARQL query
engine [64] for continuous queries over RDF data streams.

The data collected, processed, and exchanged at each stage of CPS and IoT applications might have a diferent
structure, format, and velocity and be stored in data silos not available to all the system users but only to
some users. Cui et al. [10] propose a systematic approach, i.e., Data Control Module (DCM), that uses state-of-
art big data software to manage data silos in manufacturing. A data silo concerns timely monitoring of data
changes, redundancy, inconsistency, and insecurity. DCM employs big data software (Apache NiFi [125], Apache
Phoenix [131], and Apache Kafka [99]) to implement functions addressing these concerns. The DCM architecture
consists of DCM Cloud and several DCM Edge systems. Apache NiFi takes responsibility for data monitoring
at the DCM edge and data collection and allocation at the DCM cloud. It provides a data provenance function
to trace data history and check data consistency. Apache Kafka is a high-throughput, low-latency messaging
framework. Therefore, it transmits control messages (including data information such as source location, data
source computer, expected location, and target data computer) between the DCM Cloud and Edge.
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RQ3.1 Conclusion. The programming languages and solutions used to manage data quality (e.g., TensorFlow,
Keras, MATLAB’s fuzzy logic toolbox, Jena, C-SPARQL) highly depend on the solution domain (e.g., ML, data
mining, semantic web). For instance, Python is almost the de-facto programming language in the studies
providing ML-based solutions. Not many papers mention a programming language, but Python, Java, C++,
and R are used to implement data quality techniques in the approaches we studied in our survey. Big data
software platforms such as Apache Kafka and Phoenix are suitable for implementing data quality concerns
for high-velocity data, such as the timely monitoring of data changes, data redundancy, data inconsistency,
and data insecurity.

4.3.2 RQ3.2: What data storage solutions are used to manage data quality?

Data storage support depends on data type, where data is stored (Local/Edge/Cloud), and in which context
data is processed. We analyze the relationship between data storage support (e.g., time-series database systems,
NoSQL, or a blockchain solution) and data quality. We expect to gain new insights into essential data storage
solutions in CPS, IoT, and Industry 4.0 applications and their impact on data quality techniques such as data
cleansing and repair. These new insights will help organizations choose appropriate data storage for data quality.

Twenty papers (i.e., [1, 2, 7, 10, 11, 14ś17, 19, 23, 24, 26, 32, 37, 39, 40, 42, 44, 49]) mention data storage support,
e.g., database, ile system, or a blockchain solution, where data storage is mostly part of data analytics frameworks.
Three papers [1, 7, 11] employ the blockchain to ensure data security, such as the trustworthiness of sensor
observations, while the blockchain is also a storage medium. There is an explicit dependency between the data
storage solution and the data quality support (i.e., ensuring data security) in these two works. Mohammed et
al. [26] employ a cloud-based solution, i.e., the google cloud environment, to store IoT data. Some papers refer to
some domain-speciic database systems (not any well-known database system) without detailed information,
such as agricultural telematics [14] or operation management database [16]. They do not provide any insight
into database technologies, how data is managed in what format and quality, and the impact of the database
technologies on the data quality techniques.

Data warehouses and distributed ile systems are ideal mediums for storing data for big data systems [32, 48, 49]
that receive data from multiple data sources. Such data systems require data cleansing before data gathered
from various sources are integrated. They may use data warehouses and distributed ile systems combined with
databases in a layered fashion where each layer has its data cleansing. For instance, Santos et al. [32] propose data
storage layers having diferent components used in various contexts: (a) data streams are stored in a real-time
fashion in a NoSQL database in the real-time data storage layer; (b) the Staging Area and Big Data Warehouse
components save data in a more historical perspective in the historical data storage layer. In the Staging Area
component, the Hadoop distributed ile system stores data that are available for further use for a limited time.
Shah et al. [37] propose a plug-and-play solution to use the data storage layers as an interface to data storage. This
decoupling enables the data storage technologies (e.g., data warehouses, relational databases, and distributed ile
systems) to be easily replaced based on the type of stored data. However, replacing the data storage component
accessed through the layer may require changes in the data quality techniques (e.g., data cleansing) due to the
data quality support the new component provides.

The papers do not report a direct relationship between the database technologies and the data quality techniques.
Table 11 gives a classiication of database systems and the solutions using these systems. We use the database
management system taxonomy provided by Gudivada et al. [88]. In addition to the database classes in Table 11,
Gudiva et al. mention Native XML, RDF Stores, and Key-Value Stores database classes which none of the papers
in our survey report. Most papers report the use of column-family database systems (i.e., HBase and Cassandra)
since these systems support heterogeneous data and tolerate network failures and temporal data inconsistency. A
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Table 11. A classification of database systems in the primary studies.

DB Class Used DBs References Description of the DB Class by Gudivada et al. [88]

Column
Family

HBase
Kong et al. [19], Huru et al. [15],
Wang et al. [44], Cui et al. [10]

Ideal for storing sparse, non-transactional, and heterogeneous data and retrieving partial records;
accommodate lexible and evolving database schema; tolerance to both network failures and
temporary data inconsistency; increased processing power through horizontal scalability.Cassandra

Villalobos et al. [42],
Apiletti et al. [2]

Document
Oriented

MongoDB
Villalobos et al. [42],
Syafrudin et al. [40],
Sicari et al. [39]

Ideal for managing semi structured, arbitrarily nested hierarchical document data organised
in the form of key-value pairs in JSON format; support lexible schema evolution;
accommodate high data variability among data records.

Relational
DBMS

sqllite Kufner et al. [17] Two subclasses: row- and column-oriented. Row-oriented: optimised reads and writes for online
transaction processing; enforces strong data integrity; provides transaction support, data
distribution and replication, and ine-grained access control. Column-oriented: optimised reads
for online analytical processing; enforces data integrity and provides distributed data analytics.

Apache Phoenix Cui et al. [10]
a cloud-based
relational DB

Liu et al. [24]

Time-series
DBMS

InluxDB Villalobos et al. [42]
Ideal for storing and retrieving time series data, which is data indexed by time; eicient execution
of range queries; performance at scale; support for age-based data retention and archival.

Graph-
Oriented

Neo4J Villalobos et al. [42]
Ideal for storing and lexible querying relationship-rich data; powerful operators for graph
traversals and identifying subgraphs and cliques based on relationship types

column family is a NoSQL database containing columns of related data. The column-family database systems
such as HBase and Cassandra also support time-series data.

RQ3.2 Conclusion. We derived the following insights into essential data storage solutions in CPS, IoT, and
Industry 4.0 applications and their impact on data quality techniques: (i) blockchain is an ideal solution to
ensure data security as part of data quality; (ii) big data systems gathering data from various sources combine
multiple data storage solutions, which require a layered data storage architecture where each layer may
require its own data quality technique; (iii) there is no direct relation between the key database technologies
and the data quality techniques; and (iv) the column-family database systems are highly preferred since they
support heterogeneous data and tolerate network failures and temporal data inconsistency.

4.3.3 RQ3.3: What IoT reference architecture layers are covered in the primary studies?

Data can be processed/stored at diferent levels of the IoT reference architecture (see Section 3.3). These
architecture levels can help understand how and where data is analyzed and processed for quality issues. We have
identiied twenty primary studies that refer to the IoT architecture layers (see Table 12 and L1-L7 in Section 3.3).

Five primary studies [1, 14, 26, 42, 44] focus on data quality management in the cloud-based architecture layers
(L4, L5, and L6). Three of these studies [14, 42, 44] propose data quality management techniques (data repair and
cleaning) running on the cloud. These techniques are oline, e.g., data repair for large historical datasets on the
cloud. Sensor data in motion are converted for long-term storage and stored in an easily accessible format on the
cloud to be further processed, e.g., for historical data validation. For instance, Villalobos et al. [42] focus on the
layers L4 and L5 for time series data captured by machine sensors and accessed using a REST API via a gateway.
The remaining two primary studies present a cloud-based approach to measure IoT data freshness [26] and a
distributed architecture using blockchain and smart contracts for data quality in logistics traceability [1].
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Table 12. IoT reference architecture layers in the pri-

mary studies.

Primary Study IoT Architecture

Perception Network Application

L1 L2 L3 L4 L5 L6 L7

Villalobos et al. [42] ✓ ✓ ✓

Wang et al. [44] ✓ ✓ ✓

Hui et al. [14] ✓ ✓ ✓ ✓

Mohammed et al. [26] ✓ ✓ ✓

Ahmed et al. [1] ✓ ✓ ✓

Tham et al. [41] ✓ ✓

Kufner et al. [17] ✓ ✓ ✓

Casado-vara et al. [7] ✓ ✓ ✓

Dedeoglu et al. [11] ✓ ✓ ✓

Guo et al. [13] ✓ ✓

Buschjager et al. [5] ✓ ✓

Yu et al. [49] ✓ ✓ ✓ ✓ ✓ ✓

Liu et al. [24] ✓ ✓ ✓ ✓ ✓ ✓

Cerquitelli et al. [8] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bamgboye et al. [4] ✓ ✓ ✓ ✓

Lin et al. [23] ✓ ✓ ✓ ✓

Syafrudin et al. [40] ✓ ✓ ✓ ✓ ✓

Jeong et al. [16] ✓ ✓ ✓ ✓ ✓ ✓

Cui et al. [10] ✓ ✓ ✓ ✓ ✓

Sanyal et al. [33] ✓ ✓ ✓ ✓ ✓

Total (✓): 20 7 16 14 13 7 3

✓ = the contribution speciies the IoT architectural aspects from the taxonomy

Six primary studies [5, 7, 11, 13, 17, 41] focus on data qual-
ity management in edge-based architecture levels (L2 and L3).
Only one study [5] provides a data quality technique running
on edge (L3). It is an online data cleaning technique that uses
ML (decision trees and random forest classiication) to ilter
out unwanted events on raw data on the edge before further
processing data on the cloud. One study [7] proposes a game
theory algorithm running on edge (L3) to detect fraudulent
data. Dedeoglu et al. [11] use gateways (L2, L3) to calcu-
late trust for sensor observations. Guo et al. [13] distribute
portions of large volumes of data from machines (L1) to the
edge (L3). Kufner et al. [17] combine signal acquisition and
concurrent analysis techniques in a distributed edge-based
structure (L2, L3) to achieve vertical data continuity.
Nine primary studies [4, 8, 10, 16, 23, 24, 31, 40, 49]

cover edge-cloud orchestration for data processing (not
necessarily data quality management). Four of these stud-
ies [23, 31, 40, 49] provide a data quality management tech-
nique (data cleaning and repair) in the architecture layers
from L1 to L7. They are all online techniques and implement
data monitoring and cleaning/repair across the edge-cloud
continuum. For instance, Syafrudin et al. [40] incorporate
distributed gateways (L3) that obtain sensor data and appli-
cation layers (L4, L5, and L6) used for detection/removal and
fault prediction. The remaining ive primary studies mention data quality as part of data analytics support or
data management frameworks. Therefore, they cover almost all the IoT architecture layers while addressing data
quality management in a subset of these layers.

Our observation is that the ubiquitousness, complexity, and size of IoT systems pose fundamental challenges
and limitations in deploying data quality techniques across the IoT reference architecture layers. IoT systems
may run on several IoT device types (e.g., smart camera, thermostat, smart tv, force sensors, vibration sensors)
having diferent operational environments (e.g., industrial, enterprise, consumer). These devices may operate on
several protocols (MQTT, CoAP, AMQP) and connection types (device-to-device, device-to-gateway, gateway-
to-data systems) with diferent data acquisition systems. Having several device and protocol conigurations for
IoT systems obtaining diferent kinds of data in diferent operational environments leads to several resource
constraints and data quality management scenarios (online and oline). For instance, we deploy a data repair
technique on the cloud for the historical (oline) repair of high-frequency manufacturing data stored in the cloud
infrastructure. The same technique may also be deployed on edge to perform in-motion (online) data repair
for real-time predictive maintenance. We need highly-conigurable data management techniques deployed on
diferent layers of the IoT reference architecture for diferent scenarios, e.g., on a standalone machine, edge
device, or the cloud, with access to a long or short-term database or an API provided by a data acquisition system.
However, the current data repair and cleaning techniques we summarized above address particular scenarios
(online or oline). They are not deployed on diferent architecture layers in the edge-cloud continuum for diferent
quality management scenarios based on the needs of the targeted IoT system.
As we mentioned in RQ2.2 and 2.3, data quality monitoring is part of data cleaning and repair. However,

there might be cases where the data repair or cleaning technique should run together with several data quality
monitoring techniques deployed on diferent architecture layers. For instance, the same repair technique may
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predict values for missing values identiied by a data monitoring approach on edge and values replacing erroneous
data identiied by another monitoring approach in the cloud as part of historical data validation. Applying
decentralized ML architectures to data quality management might address all these challenges and limitations
of the existing techniques related to their deployment on the architecture layers depending on the quality
management requirements and scenarios. We can distribute the ML model training for data repair and cleaning
and containerize the trained models to be deployed on a standalone machine, edge, or the cloud for diferent
quality management scenarios. On the other hand, we need research to address the data and model evolution
challenges and limitations caused by integrating ML models and components (see Section 4.2.2).

RQ3.3 Conclusion. Most existing research focuses only on data processing in (indirect) relation to data
quality without considering other aspects within the IoT architecture. We found very few studies discussing
all the layers of IoT architecture where data low from IoT devices, via edge, to the cloud. The existing data
quality techniques do not cover diferent combinations of IoT reference architecture layers for diferent
scenarios depending on the needs of the targeted IoT system. We need further research on data quality
techniques that can run on a standalone machine, edge device, or the cloud, with data access to support
online and oline data repair and cleaning.

4.4 Summary of Data uality for CPS and IoT in Industry 4.0

Figure 5 summarizes the results related to our RQs. It shows the data quality issues for CPS and IoT, the sources
of these quality issues, the data quality metrics, the data quality techniques, the metrics used to evaluate the
techniques, and the software engineering solutions to manage data quality. It can be used with the taxonomy of
data quality in data-driven paradigms (see Figure 2) to classify future data quality research for CPS and IoT in
Industry 4.0.

5 RELATED WORK

Several works study the literature on CPS and IoT. The focus of most of the surveys for CPS is on security and
privacy (e.g., [84, 85, 93, 96, 102, 112, 113, 119, 124]). Some of them [84, 96, 102] survey the literature for CPS
security from a more general perspective; some others focus on specialized security topics such as intrusion
detection systems [119], deep learning-based anomaly detection [113], physics-based attack detection [85],
diferential privacy [92], and model-based security engineering [124] for CPS. Gunes et al. [90] and Chen et
al. [71] conduct secondary studies on the applications and challenges of CPS. Dey et al. [77] focus on the
research for CPS in the medical domain. Xu et al. [154] survey the literature on the intersection between
CPS and big data in Industry 4.0. Like the secondary studies for CPS, various studies for IoT address security
and privacy (e.g., [54, 56, 59, 70, 72, 73, 93, 94, 108, 115, 117, 122, 146]). Some other studies are specialized in
interoperability for Industrial IoT (IIoT) [95], IoT protocols, technologies, and applications along with related
issues [57, 61, 73, 78, 107, 123, 137], IoT applications in blockchain systems [105], applications of blockchain
technologies to IoT [158], IoT big data [63], data analytics for IoT [141], IoT-based smart cities [60], IoT for
agriculture [80], IoT for healthcare [101], and IoT in industries [76]. Some secondary studies (e.g., [153]) survey
the works for CPS and IoT in the context of Industry 4.0. Some other studies (e.g., [109, 111, 128, 136, 155, 157])
mainly focus on the literature for Industry 4.0, where CPS and IoT are considered building blocks of Industry 4.0.

None of the works mentioned above address data quality for CPS and IoT. We have identiied only three SLRs
and three surveys focusing on data quality in the context of CPS and IoT, as briely presented in Table 1. For each
related work in the table, the symbol ’✓’ indicates that the work provides the feature, the symbol ’✗’ indicates
that it does not provide the feature, and ’NA’ indicates that the required information is unavailable.
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Data Quality for CPS, IoT, and Industry 4.0
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Fig. 5. Summary of data quality in CPS and IoT for Industry 4.0.

Karkouch et al. [100] surveyed fourteen papers published between 2012-2016. Their paper selection was random
without a systematic search and selection process of systematic reviews [104, 130, 150]. Moreover, we could not
ind any information on how the authors chose the discussed aspects of data quality for IoT (DQ classiication
schema). Karkouch et al. listed four data quality challenges for IoT data: (i) the scalability of cleaning methods
in distributed systems, (ii) the heterogeneity of data sources requiring complex approaches, (iii) the automated
veriication without human interaction, and (iv) the fail-safe distributed architecture. They highlighted the need
for an abstraction level that supports data quality assessment independent from data types.
Wang and Wang [148] reviewed the state-of-the-art for time series data cleaning and classiied time series

errors. They mentioned four challenges related to time series data cleaning: (i) a large amount of data with a
high error rate (esp. in industrial settings), (ii) ambiguous reasons for errors, (iii) continuous nature requiring
online analysis, (iv) minimum modiication principle. They identiied the need for research for analyzing error
types deined rather broadly. They highlighted the lack of multivariate cleaning algorithms and the potential for
utilizing ML for data cleaning.
Zhang et al. [156] compared twenty-one IoT data quality frameworks and ive related standards. The diver-

sity in data quality frameworks and various deinitions of data quality dimensions and metrics hampered the
comparability of the survey. The survey revealed the need for a more user-friendly data quality assessment
methodology based on existing generic frameworks. Teh et al. [144] presented a recent SLR on sensor data quality
problems. They mainly investigated the error types of sensor data and sensor data error detection and correction
methods. Unlike our SLR, their SLR did not study the application domains for data quality research for IoT, the
trade-of between data quality and security, and software engineering solutions used to manage data quality. Teh
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et al. reported several methods proposed to detect and correct sensor data errors. 90% of the studies in the SLR
provided proper validation, and 68% used not publicly available or reproducible data. Teh et al. highlighted that
the methods are not comparable without further ado since variations of a common idea are utilized in many cases
with a varying research methodology (e.g., labeling, error injection, or preprocessing method). They revealed the
need for a benchmark system to compare data quality techniques.
Liu et al. [110] conducted an SLR on data quality in IoT based on 45 empirical studies from 2012 to 2018.

Contrary to our study, their SLR is limited to data quality problems (issues), dimensions, and measures. It does
not cover topics such as data quality techniques, their evaluation, application domains for data quality research,
and software technologies for managing data quality, which are the main points of our SLR. Liu et al. established
links among data quality dimensions, manifestations of data quality problems, and methods utilized to measure
data quality. They identiied the potential areas for future work: (i) developing guidelines for deining speciic
data quality dimensions of IoT data, (ii) addressing data quality problems based on diferent IoT layers, and (iii)
constructing data quality frameworks in the IoT context.

More recently, Alwan et al. [58] conducted another SLR to investigate data quality challenges in smart cities as
large-scale CPSs and identify the most common techniques used to address these challenges. The scope of the
SLR is limited to the data quality challenges for CPSs, the data quality techniques to overcome these challenges,
and the efectiveness of these techniques. The SLR does not cover data quality metrics, data security, or software
engineering solutions to manage data quality. Similar to the results we reported (see Subsection 4.1.1), Alwan
et al. revealed that data quality issues occur in large-scale CPSs because of sensor malfunctions, calibration issues,
poor sensor node quality, environmental efects, external noise, and networks or communication errors. They
categorized the data quality solutions into three primary groups: data mining, technical models, and mathematical

models. Data mining methods (i.e., anomaly detection, classiication, clustering, and predictive analysis) are the
most widely used compared to others.

In comparison with the SLRs and surveys mentioned above, our SLR investigates exclusively three aspects of
data quality for IoT, CPS, and Industry 4.0: (i) data quality problems (including data quality issues, their resources,
application domains, data types, and data quality and security trade-of), (ii) data quality techniques to overcome
the problems (metrics to monitor data quality, approaches for data repair and cleaning, and evaluation of these
approaches), and (iii) software engineering solutions for data quality (architectures, programming languages,
and data storage solutions). Existing SLRs focused on one or two aspects with a limited scope. For instance,
Liu et al. [110] studied the literature on data quality problems based on quality dimensions and measures. We
approach data quality research for theoretical and practical implications in a much broader scope. We also report
some research directions.

6 THREATS TO VALIDITY

Our systematic literature review addresses a wide range of approaches and domains. Our review process had
automated (e.g., search queries) and manual (e.g., data extraction) parts. Therefore, some relevant studies and
information might have been uncovered. In the following, we summarize several measures taken to mitigate this
issue.

6.1 Internal Validity

Search queries.We aimed to ind as many relevant publications as possible by using general terms related to
data quality in our search queries. We used our inclusion and exclusion criteria to select the papers. It is still
possible that we should have included more research in the inal selection of primary studies. To mitigate this
risk, we conducted a manual search to limit the possibility of missing studies throughout the database search
process. We discovered most of the primary studies through our database search. The search features provided
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by these online publication databases are not always the same, which may lead to misleading search results. To
mitigate this risk, we adapted our search string for the built-in search features of each database.
Study inclusion and exclusion. Even though we have well-deined inclusion and exclusion criteria, including
or excluding a study could still be subjective, especially when its contribution is indirect to data quality (e.g.,
some studies support data quality as a preprocessing step of data analytics). To mitigate this risk, we conducted
cross-checks between at least two authors and then group discussion to remove papers that did not have enough
scientiic contribution according to our selection criteria.
Data extraction.Missing and misinterpreting information is a risk of manual information extraction. To mitigate
this risk, we distributed the primary studies to the authors for data extraction. They later validated the data
extraction for each other. One co-author reviewed the data extraction and its validation to identify and summarize
the data extraction inconsistencies. We settled all the conlicts during meetings with the authors.

6.2 External Validity

The online repositories we used in our SLR restrict our review results. To mitigate this risk, we employed
repositories that well-known venues have been included in and that previous survey papers have extensively
used.

6.3 Conclusion Validity

The primary studies have a variety of application domains, and some of them have primary goals diferent than
data quality (e.g., data analytics), which made it diicult to determine direct contributions to data quality and
draw decisive conclusions. To mitigate this issue, we categorized the primary studies based on goals (e.g., data
quality as a primary/secondary goal in Table 10) for our research questions.

6.4 Reliability Validity

The readers can replicate our systematic literature review study if they follow the steps of our review process.
It is still possible to have some inconsistent results because of potential diferences in the manual steps of the
review process, such as data extraction and synthesis. To mitigate this risk, we provided the details of our review
process (see Section 2) and a summary of data quality research (Figure 5) that can be used with our taxonomy of
data quality (Figure 2) in data-driven paradigms to classify and compare future primary studies.

7 CONCLUSIONS

This paper presented the results of our systematic literature review (SLR) regarding data quality research for CPS
and IoT in Industry 4.0. Obtaining data from IoT and CPS for decision support is crucial to improving eiciency
and competitiveness in many industrial sectors and application domains. Data quality techniques ensure the
input quality for decision support and become an inherent component of data-centric CPS and IoT applications.
We followed the common SLR steps (i.e., the deinition of research questions, a search strategy, inclusion and
exclusion criteria, and data synthesis and extraction method) to conduct our review.

Our systematic search and selection process yielded 51 primary studies published between 2011 and 2021 (and
three SLRs and three surveys). The growing number of studies in recent years indicates an increasing interest
in data quality research for CPS and IoT. Our objective was to analyze how data quality has been treated for
data-centric CPS and IoT applications and evaluate what the proposed data quality techniques have done for those
applications. We investigated data quality issues and their sources for CPS and IoT, data quality metrics, data
quality techniques (including data quality monitoring, data repair, and data cleaning), and software engineering
solutions for handling data quality. To answer three RQs (ten sub-questions), we obtained and synthesized data
from the primary studies. From our SLR, we conclude the following:
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(a) The primary studies address a variety of data quality issues. Outliers, missing values, and data veracity are
the three main ones. Not many studies discuss the source of data quality issues and the implications of
diferent computing architectures for data quality issues. Future research should further investigate the
reasons and the implications of computing architectures for data quality issues to devise better techniques.

(b) We could not ind any study reporting the adoption of data quality metrics in industrial systems. We need
research to facilitate using quality metrics in industrial settings.

(c) Non-AI data repair solutions have limitations in the industrial CPS/IoT context (e.g., requiring dependent
data computations in the application state history, which are not always available). Future research should
explore machine learning for online and oline data repair while addressing model deployment and
evolution.

(d) Most data cleaning techniques are domain agnostic and may not always detect and clean domain-speciic
data quality issues. Further research should address guided processes that use domain-agnostic data quality
monitoring and domain-knowledge-based heuristics. Real-time machine learning applications need online
data cleaning support to reduce high dimensions in input data sets.

(e) Existing data quality management techniques do not support deployment on diferent IoT layers for online
and oline scenarios. Future techniques should be able to run on a standalone machine, edge device, or the
cloud, with data access to support online and oline data repair and cleaning on the edge and in the cloud.

(f) The programming languages and solutions for managing data quality (e.g., TensorFlow, Keras, MATLAB’s
fuzzy logic toolbox) highly depend on the solution domain (e.g., ML, data mining). Big data software
platforms are suitable for addressing data quality concerns for high-velocity data (e.g., the timely monitoring
of data changes, data redundancy, data inconsistency, and data insecurity).

(g) We could not reveal any direct relation between the database technologies and the data quality techniques.
On the other hand, big data systems gathering data from various sources combine multiple data storage
solutions that require a layered data storage architecture where each layer may require its own data quality
technique.
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