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Abstract

This thesis focuses on developing a digital twin which can predict and avoid
collisions. The digital twin does this by using different machine learning
models that are trained on data from the SVL Simulator. By harnessing
the power of machine learning, the digital twin demonstrates promising abil-
ities in collision prediction and prevention. Additionally, a genetic search
algorithm is developed to generate specialized testing data, enabling com-
prehensive evaluation of the digital twin’s performance.

The central contribution of this research lies in exploring the viability of
utilizing test data that is generated by a genetic search algorithm to eval-
uate the performance of the digital twin. By employing the genetic search
algorithm to generate data resembling real collision scenarios, classified as
collisions, an interesting evaluation framework is established. Through the
evaluation process, which involves analyzing the number of accurately clas-
sified collisions by the digital twin, insights are gained into the model’s
effectiveness in predicting collisions.

This contributes to the ongoing efforts in enhancing the accuracy of colli-
sion prediction systems, ultimately leading to improved safety measures in
autonomous driving and intelligent transportation systems.
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Chapter 1

Introduction

This chapter initiates the thesis by presenting the motivation behind it.
Subsequently, a problem statement will be introduced, accompanied by re-
search questions. Finally, the thesis will be outlined, providing a clear
overview of its structure and content.

1.1 Motivation

The concept of digital twins has gained significant attention and relevance
in recent times. This thesis aims to delve deeper into the technology and
explore the process of creating a digital twin. The authors possess a genuine
interest in automobiles and have been actively involved with ION Racing in
the past. ION Racing is an organization focused on developing a formula
student car to participate in prestigious competitions like Formula Student.
Notably, Formula Student encompasses a branch dedicated to self-driving
cars, which adds an intriguing dimension to this thesis work. By delving
into the topic of digital twins, this thesis has the potential to contribute
to the advancement of autonomous cars—a pivotal aspect of the evolving
future global landscape.

1



1.2 Problem definition

1.2 Problem definition

In the rapidly advancing field of self-driving cars, reliable collision predic-
tion systems are essential for ensuring passenger and pedestrian safety. The
research focuses on developing a collision predicting Digital Twin using ma-
chine learning, and use genetic search algorithm to generate comprehensive
test data, enabling thorough evaluation and validation of the Digital Twin’s
performance.

1.3 Research questions

1. RQ1 : How can machine learning be utilized to develop a digital twin
that has the capabilities to detect and avoid collisions?

2. RQ2 : Given that RQ1 has a viable solution, how can a genetic search
algorithm be used to create testing data for a digital twin?

3. RQ3 : Is a genetic search based test dataset a viable way of evaluating
the collision prediction ability of the digital twin?

1.4 Outline

Chapter 1: Introduction

This chapter provide an introduction to the thesis, the problem and the
research questions.

Chapter 2: Background

This chapter serves to offer a comprehensive understanding of the tech-
nology itself and its various applications. It provides an overview of the
digital twin concept and explores its practical uses. Additionally, the chap-
ter delves into the simulator employed as the physical twin and explores its

2



1.4 Outline

functionalities. Furthermore, it discusses the creation of a dataset utilizing
this simulator, highlighting its relevance and potential applications.

Chapter 3: Solution approach

This chapter presents the proposed solution and highlights the technologies
utilized. It provides an overview of the key components and methodologies
employed, setting the stage for the subsequent chapters.

Chapter 4: Implementation

This chapter is dedicated to the detailed implementation of the solution.
It covers the integration of various algorithms, including machine learning
and genetic algorithms, and outlines how they are employed in conjunction
with the simulator.

Chapter 5: Results and discussion

This chapter presents the results of the conducted experiments that evalu-
ated the proposed solution. The obtained findings are thoroughly analyzed
and discussed in detail. This chapter provides insights into the performance
and implications of the solution, shedding light on its effectiveness and lim-
itations. At the end it answers the research questions.

Chapter 6: Conclusion

This chapter concludes the study by summarizing the findings and their
implications. The limitations of the solution are acknowledged, and poten-
tial areas for future research are suggested. This chapter provides a concise
overview and serves as the final reflection on the study.
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Chapter 2

Background

In this chapter, we explore the practical applications of digital twins and
provide an overview of their significance. The focus will be on the simulator
employed in this study, including its development process and potential uses.
Additionally, we delve into the dataset utilized for training and testing the
digital twin solution, highlighting its role in ensuring reliable and accurate
outcomes.

2.1 Digital twins

A digital twin serves as a digital representation of a physical asset. It acts
as a counterpart to the physical twin, allowing communication between the
two through data obtained from sensors and other sources. The digital
twin utilizes this data to simulate possible scenarios and provide recom-
mendations for optimizing the behavior of the physical twin. Moreover, the
digital twin can also analyze the data to detect any anomalies or undesired
occurrences that may require attention (Attaran and Celik, 2023).

What separates a digital twin to other similar models is its capabilities to
communicate back and forth with its physical twin. A normal model is just
a digital representations of something existing in the real world or a CAD
model of something being created. There is also a possibility that a digital
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2.1 Digital twins

model is getting information and data from a real object and processing
that in some way, but that model is not communicating that back to the
physical part. A digital twin will use continuously streamed data from the
physical twin in a way that enhances and makes both twins coexist to solve
a problem, detect one that might occur or speed up the production (Attaran
and Celik, 2023, p. 2).

Figure 2.1: Communication between a physical and a digital twin.1

Digital twins can and are being used in many different scenarios and work-
places. That be it in agriculture, smart cities, manufacturing or infrastruc-
ture (Attaran and Celik, 2023, p. 4). The use cases are many and it can
help with creating new and better solutions.

One of the first use cases of digital twins was NASA back in 1970 during
the Apollo 13 mission (Allen, 2021). When an oxygen tank exploded and at
the same time damaged the main engine, several simulations a lot of data
transmissions were used to come up with a solution, which in turn were
used to save the three people on board (Uri, 2020).

A digital twin can be used in multiple different scenarios, ranging from the
development of an aeroplane, to small processes in a factory to an architect
displaying a house to a customer virtually (Plank, 2019).

To illustrate the concept of digital twins within the context of a car man-
1Wilmjakob, August 30 2020, CC BY-SA 4.0

https://commons.wikimedia.org/wiki/File:Digital_Twin_Concept_of_Grieves_
and_Vickers.png
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2.2 Self-driving cars

ufacturer, Volvo’s approach can be used as an example. Volvo has utilized
the Unity game engine to facilitate collaboration and improve mutual un-
derstanding among different teams. By creating virtual environments and
scenarios, designers and engineers can visually demonstrate their ideas and
showcase how certain components or functionalities should work. This ap-
proach eliminates the limitations of verbal communication and allows for
a more accurate and intuitive representation of concepts, enhancing over-
all communication and efficiency within the development process. (Unity,
n.d.).

2.2 Self-driving cars

In recent years, self-driving cars have become a prominent topic of discus-
sion, both online and offline. But what exactly is a self-driving car?

A self-driving or autonomous vehicle refers to a car that has the ability to
operate and navigate without human intervention, similar to how a human
driver controls a vehicle. It can autonomously control essential functions
such as the throttle, brakes, and steering, essentially performing all the
tasks that a human driver would typically handle. The key distinction is
that a self-driving car operates without the need for direct human interven-
tion.(Synopsis, n.d.)

Autonomous vehicles are classified into various levels, ranging from 0 to 5,
each representing a different degree of autonomy. At level 0, the vehicle
relies entirely on human control, while at level 5, the vehicle possesses full
autonomy and can make independent decisions about its actions, regardless
of the driving conditions. In the intermediate levels, human intervention is
still possible, allowing individuals to take control of the vehicle if necessary,
but not mandatory for all driving situations. (Synopsis, n.d.)

The specifics of these levels are as follows:

• Level 0: No Automation - The vehicle operates with full human con-
trol, and there is no automation present.

• Level 1: Driver Assistance - Basic automation features, like cruise

6



2.3 SVL Simulator

control, are available to assist the driver.

• Level 2: Partial Automation - The vehicle can simultaneously control
certain functions, such as steering and acceleration, but the driver
must remain engaged and ready to take over when needed.

• Level 3: Conditional Automation - The vehicle can handle most driv-
ing tasks under specific conditions, but the driver must be prepared
to intervene when prompted by the system.

• Level 4: High Automation - The vehicle can operate autonomously in
most situations, but it may still require human intervention in certain
circumstances.

• Level 5: Full Automation - The vehicle is capable of complete au-
tonomous operation in all conditions and environments, with no hu-
man intervention required.

Currently, many manufacturers, including Tesla with its Autopilot system,
operate at Level 2, which involves partial automation. The significant dif-
ference lies in the levels beyond Level 2, where the vehicle may no longer
require human intervention. These higher levels raise important discus-
sions about certifications, rules, and ethics, but their detailed exploration
is beyond the scope of this thesis.(Autocrypt, 2023)

2.3 SVL Simulator

In this thesis, the simulator used is the LGSVL Simulator, developed by
LG Electronics America R&D Lab, formerly known as LG Silicon Valley
Lab, situated in Santa Clara, California. The simulator has since been
renamed as the SVL Simulator (Rong et al., 2020). The development of the
simulator began in late 2018, and LG Electronics made the decision to end
any further development at the beginning of 2022 (LG Electronics America
R&D, 2022).

This simulator also has an open source library with a lot of information
about how to use it. This also includes how to use different autonomous
driving frameworks with the simulator (LG Electronics America R&D, 2021).

7



2.3 SVL Simulator

Figure 2.2: Before starting a simulation with the Python API with the original
SVL Simulator.

The simulator was developed because there was a need for a platform where
autonomous vehicles or robots could be developed. Here, the simulation can
recreate real-life scenarios with high fidelity (Rong et al., 2020, p. 1). This
includes how the multiple sensor that are mounted on a vehicle perceives
what is around it to how traffic flows with multiple different vehicles like cars
and trucks to also pedestrians walking around. Another benefit of develop-
ing a simulator for use with an autonomous driving system is the increased
safety it provides compared to the real-world counterpart, where accidents
can have severe consequences. The simulator also has multiple maps to
use where many of them are digital twins of a real world location (Rong
et al., 2020, p. 6). When running the simulator, various parameters can be
adjusted to replicate desired weather conditions, such as time of day, rain,
fog, and road wear. Additionally, the SVL Simulator distinguishes itself by
allowing the creation of various vehicles with diverse sensor configurations.

The main vehicle in the simulator is called the ego vehicle, which can be con-
trolled by either an autonomous framework or the user. It is equipped with
various sensors and can be customized with different configurations. Other
moving objects, such as cars, trucks, buses, and pedestrians, are referred to
as NPCs (non-playable characters). NPCs populate the surrounding area
of the ego vehicle, adding complexity to the environment.

8



2.3 SVL Simulator

2.3.1 WISE

To utilize the simulator, SVL developed a web user interface called (WISE).
WISE enables users to create and launch various scenarios on a cluster where
the simulator is hosted. Leveraging cloud technology, WISE facilitates the
downloading of assets such as maps, vehicles, and sensors to the simulator.
Additionally, the interface provides the capability to view simulation results
and access relevant information pertaining to the simulations.

The WISE interface is designed to offer extensive customization options
for various settings, including weather conditions, traffic patterns, density,
and road networks. When it comes to vehicles, maps, and sensors, users
can either create them from scratch or customize existing ones to suit their
specific preferences. This versatility makes WISE an excellent tool for max-
imizing the potential of the simulator, allowing users to tailor the simulation
experience according to their needs and objectives.

Within this interface, users also have the option to select different templates
for the simulations they wish to run. These templates include random
traffic, visual scenario editor, Python API, or API only. In the context of
this thesis, the Python API template is utilized to manipulate the simulator
with a wide range of available options. When launching a template in WISE,
the corresponding settings are loaded into the simulator and the simulation
begins. In cases where internet access or the web interface is unavailable,
users can still choose and launch previously loaded scenarios/templates from
within the simulator, provided they were previously loaded and run with
WISE.

WISE also includes real-time visualization tools to monitor the simulation’s
performance as it happens and has the possibility to generate reports at the
end of the simulation.

As mentioned earlier, the development of the simulator was concluded in
2022. However, the team made efforts to ensure that WISE remained op-
erational for starting simulations. Initially, they had planned to maintain
it until at least mid-2022, but in practice, they continued to keep it up and
running for several weeks into 2023.

9



2.3 SVL Simulator

2.3.2 OSSDC-Sim

In the same message that the SVL team mentioned the discontinuation of
the WISE website, it was mentioned that the simulator source code could
maybe be forked to another project where the dependency to WISE was
not needed.

This is exactly what was done by the people behind the Open Source Self
Driving Car Initiative. They called the "new" simulator for OSSDC-Sim:
An Autonomous Vehicle Simulator (forked from LGSVL Simulator). This
is almost the same as the original SVL Simulator, but this time without
the need for WISE. It is also worth mentioning that also this is an open
source library which can be found on GitHub (Open Source Self Driving
Car Initiative, 2022).

Figure 2.3: Before starting a simulation with the Python API with the original
SVL Simulator.

When starting the simulator, the only option now is to use the Python
API. When running the Python program, the simulator will automatically
download any required assets if they haven’t been downloaded before. After
that, the simulation will start with the predetermined settings.

10



2.3 SVL Simulator

Figure 2.4: Launching the simulator.

In other words, this is the simulator that is used in the thesis. If WISE was
not shut down, the OSSDC-Sim would not have been needed.

2.3.3 Python API

One of the primary motivations for utilizing this simulator in the thesis is the
availability of the Python API. The SVL Simulator’s Python API simplifies
the process of initiating a simulation by allowing the settings and options to
be defined using Python. The simulator’s development team has provided
a comprehensive documentation page that guides users on utilizing the API
and modifying settings and assets according to the programmers’ specific
requirements and preferences. (LG Electronics America R&D, 2020).

The API also incorporates numerous scenarios that can be launched in-
dividually, allowing users to experiment with the simulator and explore its
capabilities. These predefined scenarios serve as valuable resources for users
to gain hands-on experience and discover the range of possibilities offered
by the simulator.

11



2.3 SVL Simulator

The API establishes communication with the simulator (OSSDC-Sim) using
websockets, enabling the initiation of simulations and the exchange of mes-
sages. The "run()" function serves as a critical component within a Python
program that interfaces with the simulator. This function determines the
duration of the simulation in seconds and controls the sampling rate of the
simulator.

The simulator then sends messages back to the Python program through
"Callbacks" and in between calls of the "run()" function.

Figure 2.5: An overview over how the simulator and the API communicates.

12



2.3 SVL Simulator

Ego vehicle

The primary vehicle in the simulator is the ego vehicle, as previously men-
tioned. With the Python API, it becomes possible to control the vehicle
through various functions, either manually or by utilizing an autonomous
driving system. In terms of manual driving, it is feasible to automate a
significant portion of it by leveraging the vehicle’s multiple sensors and uti-
lizing the additional functions offered by the API. With the assistance of
the API, the vehicle can be transformed into a self-driving entity.

The vehicle is equipped with various sensors, with the main ones including a
camera, LiDAR, IMU, GPS, Radar, CanBus and VideoRecording. It is also
possible to create custom sensors, but this is not done in this thesis. From
the mentioned sensors, only the LiDAR sensor is used to a large degree.

About the LiDAR sensor

The LiDAR (Light Detection and Ranging) sensor is an essential component
that utilizes light to determine the distance to objects. In basic terms, it
emits a brief laser pulse, and if the light encounters an obstacle, it will
bounce back to the emitter. By measuring the time it takes for the light
to return, and knowing the constant speed of light, the sensor can calculate
the distance to the object, as depicted in 2.6 below. Although the LiDAR
sensor has additional applications beyond distance measurement, they are
not directly relevant to this thesis.

13



2.3 SVL Simulator

Figure 2.6: Explanation about how a LiDAR calculates the distance to an ob-
stacle.2

When figuring out the distances to everything around the sensor, it will
generate a three-dimensional image of its surroundings. It does this by
rotating fast around its own axis and using multiple lasers which are aligned
vertically with different angles. This results in a vertical field of view that
are rotated 360 degrees to create a the three dimensional image. How many
lasers in this vertical field of view and how many times each laser emits a
pulse per rotation will determine the resolution of the image. The resulting
file from this is also called a point cloud.

2RCraig09, May 1 2020, CC BY-SA 4.0
https://commons.wikimedia.org/wiki/File:20200501_Time_of_flight.svg
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2.3 SVL Simulator

Figure 2.7: A normal view from within the simulator. Here one can see the ego
vehicle and an NPC vehicle.

Figure 2.8: How the LiDAR sees the same image as in figure 2.7. Notice how
the sensor captures the back of the car and the closest tree.

Non playable characters

As mentioned, there is also NPCs that can be deployed and manipulated
in the simulator. There are multiple different available vehicle types and a

15



2.4 Deep Scenario

multitude of variations of a pedestrian. NPCs can be randomly spawned at
various locations within the environment, moving autonomously on their
own. However, they can also be extensively controlled, including their
spawn locations and intended destinations. Additionally, waypoints can
be created for NPCs to follow, specifying the desired paths and speeds at
which they should move towards specific points.

2.4 Deep Scenario

In this thesis, some data that are used is collected from the Deep Scenario
dataset (Lu et al., 2023). The data is created with different strategies and
driving conditions. This results in over 30,000 different scenarios where
about 1,000 of them is ending with a collision with either a car, pedestrian
or a different object. All the different scenarios are executed on the SVL
Simulator and are designed in a way that allows for their recreation later
using the Deep Scenario toolset.

2.4.1 Scenarios

The different scenarios are first split into three strategy branches, rl-based,
greedy and random, then further into the reward branches dto, ttc and
jerk. There are also four different roads and four different weathers. The
weathers are both night and day where they each have one occurrence of
rain and sun, or at least a clear sky. Each scenario also has each own
deepscenario-file, which is a file that is generated from the simulator. This
file has information about some of the setting on the simulation and the
position and speed of the multiple objects, both the ego vehicle and the
NPC’s that might be in the scenario. The speed and position is noted for
six timestamps for each object. The time between each timestamp is noted
at the top of each file and is 0.5 for all of them. This then means that the
time between each timestamp in the scenario is 0.5 seconds. Each scenario
is also represented as a row in a csv-file. The row consist of some attributes
that sum up how the scenario played out.

Each scenario has been driven with an autonomous driving system (ADS),
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more specifically with Apollo 5.0 and on version 2021.1 of the SVL Simula-
tor.

2.4.2 Features

Each scenario in the dataset has multiple features. The first three are "Exe-
cution", "Scenario_ID" and "Configuration_API_Description". The first
one is the execution ID. The second one is the identity of each scenario
(which can be used to collect the deepscenario-file 2.4.3), which also tells
which scenario it is and its execution number. The third one is a short
description of what happens. The final six features, are features that are
collected from the scenario itself. "Attribute[TTC]", time to collision, is a
safety measure that says something about how long time it is to a potential
collision. "Attribute[DTO]", distance to obstacles, tells how much distance
there is to an obstacle. "Attribute[JERK]", change in acceleration, is a mea-
sure that tells something about the passengers’ comfort. "Attribute[COL],
collision, is either true or false and is true if a collision has happened dur-
ing the scenario. "Attribute[COLT], collision type, describes which type
of object the ego vehicle collided with if that happened, that be it a car,
pedestrian or something else. "Attribute[SAC]", speed at collision, tells the
speed the ego vehicle had when and if a collision happened. These features
can be extracted from the csv-files and a peek at this data can be seen in
table 2.1.

Table 2.1: A peek at the data stored in the csv-files.
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2.4.3 Deep scenario XML-files

Each scenario also has its own .deepscenario file. This file is in an XML,
but with the ".deepscenario" extension instead of the normal ".XML". The
file consists of multiple elements, where the main ones are "environment",
"entities" and "storyboard".

Environment is the where and when of the scenario and entities says which
object that are spawned in, that being the ego vehicle and up to several
NPCs. In the storyboard element is where the rest of the information
is; where everything spawns and how they are moving around inside the
simulator. This information is given by the position in an x-, y-, and z-
coordinate and with a GPS position along with the rotation of the objects.
The velocity is noted in three different ways, that is the velocity in three
dimensions, the combined velocity as speed and the angular velocity. Each
of the just mentioned features are noted in six different "waypoint" elements
where they have a "timeStamp" value from one to six. All the objects that
are spawned in the scenario have these elements. An over

1 <DeepScenario timestep="0.5">
2 <FileHeader author="Greedy_Strategy" ...

date="2021-11-27T10:00:00" ...
description="DeepScenario Format" ...
simulatorVersion="2021.01"/>

3 <Environment>
4 ...
5 </Environment>
6 <Entities>
7 /// Spawn objects
8 </Entities>
9 <StoryBoard>

10 <Initialization>
11 <ObjectInitialization objectRef="Ego0">
12 /// Position information
13 </ObjectInitialization>
14 <ObjectInitialization objectRef="NPC0">
15 ///...
16 </ObjectInitialization>
17 </Initialization>
18 <Story name="Default">
19 <ObjectAction name="Act_Ego0">
20 <objectRef objectRef="Ego0"/>
21 <WayPoint timeStamp="1">
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22 <DynamicParameters>
23 ...
24 </DynamicParameters>
25 <GeographicParameters>
26 ...
27 </GeographicParameters>
28 </WayPoint>
29 ...
30 <WayPoint timeStamp="6">
31 ...
32 </WayPoint>
33 </ObjectAction>
34 <ObjectAction name="Act_NPC0">
35 </ObjectAction>
36 </Story>
37 </StoryBoard>
38 </DeepScenario>
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Chapter 3

Solution Approach

In this chapter it will be described what the different parts to answer the
research questions are. The chapter goes into more depth about what the
parts are, what can or has been done and why they are implemented.

3.1 Generated collision data

During the work on the thesis, it became clear that the data from the Deep
Scenario dataset was not detailed enough to train a model that can be used
for collision detection. This can for instance be seen by looking at the
correlation between Deep Scenario and the generated data in table 3.1.
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3.1 Generated collision data

DeepScenario Self-generated
Feature Correlation Feature Correlarion

Attribute[TTC] -0.1069 TTC1 -0.1012
Attribute[DTO] -0.01162 TTC2 -0.1771
Attribute[Jerk] 0.10521 TTC3 -0.2515

speed1 0.11594 TTC4 -0.3163
speed2 0.0979 DTO1 -0.0626
speed3 0.0371 DTO2 -0.1098
speed4 -0.0381 DTO3 -0.1573
speed5 -0.0985 DTO4 -0.2086
speed6 -0.1321 Speed1 0.1546

Speed2 0.1709
Speed3 0.1740
Speed4 0.1688

Table 3.1: The correlations for the multiple features and from both datasets
regarding collision. The feature type with an average below 0.1 is removed from
the table.

The data consists of the mentioned features in section 2.4.2. The difference
between the two datasets are the amount features back in time for each
feature. In Deep Scenario, the features are TTC, DTO, JERK and speed
and angular velocity six time steps back in time. Since it is difficult to pin
point exactly when the collision happened, it is just one collision value per
scenario.

In the generated collision data, all the features, TTC, DTO, JERK, speed,
angular velocity and collision have values n time steps back in time. Since
this data was generated during the writing of the thesis, it is possible to
register exactly when a collision happened, and because of this, it is possible
to note that the m time steps (or rows) which lead to a collision can be noted
as a collision as well. By creating the data in this way there are many more
collisions in regard to not a collision when comparing it with Deep Scenario.
This leads to less unbalanced data, which will we touched upon in section
4.4.1.

During the creation of the data, the ego vehicle were driven around in the
simulator and storing all the needed data. The car was driven for a total of
approximately 35 minutes, and had a total of 215 individual collisions.
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Table 3.2: Raw self-generated data. The processed data can be seen in table 4.1.

After the creation of the data, it had to be made usable for training the
models. This is explained in more detail in section 4.2.2.

3.2 Machine learning for collision prediction

A major part of our research focuses on collision prediction within the digi-
tal twin framework, and this section focuses on the foundations of machine
learning. By delving into these foundational concepts, a comprehensive un-
derstanding of the underlying techniques and methodologies is established,
allowing for a greater understanding in the decisions behind the collision
predicting digital twin.

3.2.1 Introduction to machine learning

Machine learning plays a crucial role in collision prediction within the digi-
tal twin framework. This section provides an overview of machine learning,
highlighting its importance in collision prediction. Machine learning, an
influential field of artificial intelligence, enables systems to learn and make
predictions without explicit programming. In the context of collision pre-
diction, it facilitates the automatic identification of patterns and extraction
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of insights from complex datasets. Consequently, it enables accurate pre-
dictions of collision events in autonomous driving scenarios.

In the context of collision prediction, various machine learning approaches
are applicable. This research specifically emphasizes the utilization of su-
pervised learning as our primary focus for achieving accurate predictions.
Supervised learning involves training models using labeled examples. These
examples consist of input data that represents driving scenario features,
accompanied by corresponding labels indicating collision occurrences. By
analyzing patterns and relationships within the labeled training data, super-
vised learning models can provide precise real-time predictions of potential
collisions.

In this research, the performance of various machine learning models for
collision prediction is investigated. Although these models were not explic-
itly designed for collision prediction, they have been extensively utilized
and proven effective in diverse machine learning applications. By evaluat-
ing these models and training them on a comprehensive dataset of labeled
collision scenarios, the aim is to assess their suitability and enhance collision
prediction within the digital twin framework.

3.2.2 Data preprocessing and feature engineering

Data preprocessing is a crucial step in preparing the dataset for collision
prediction analysis and modeling. It involves transforming raw data into
a suitable format that is compatible with machine learning algorithms and
enhances data quality.

By addressing noise, missing values, and inconsistencies, data preprocessing
improves the reliability and consistency of the dataset. Techniques such
as identifying and handling missing values, correcting inconsistencies, and
reducing noise contribute to a more reliable dataset. Additionally, data
preprocessing ensures compatibility with machine learning algorithms by
scaling numerical features, encoding categorical variables, and transforming
the data into a suitable format. These techniques enable efficient processing
and seamless integration with the chosen algorithms.

One of these techniques is Label Encoding, which transforms categorical
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variables into numerical values. This is necessary because machine learning
algorithms typically work with numerical data. By assigning a unique nu-
merical label to each category within a categorical variable, Label Encoding
enables the algorithms to process and analyze these features effectively.

To further enhance the preprocessing stage, Standard Scaling, also known
as feature scaling or normalization, is a technique commonly used to bring
numerical features onto a consistent scale. It rescales the values of the fea-
tures to a predefined range, such as between 0 and 1 or with a mean of 0
and standard deviation of 1. This normalization process prevents certain
features from dominating the model’s learning process due to their larger
magnitudes. By ensuring all features are on a similar scale, Standard Scal-
ing enables fair comparisons and promotes balanced learning within the
machine learning algorithms.

Another technique that was employed is undersampling. This technique
involves reducing the samples of the majority class to balance the class dis-
tribution, particularly useful in situations where the dataset is imbalanced.
By randomly selecting a subset of instances from the majority class, under-
sampling helps prevent the model from being biased towards the majority
class and encourages better learning of the minority class. It addresses the
issue of imbalanced data and improves the performance and reliability of
the machine learning models.

Overall, data preprocessing plays a vital role in optimizing the dataset for
collision prediction. By improving data quality and ensuring compatibility
with machine learning algorithms, it enhances the dataset’s quality, reliabil-
ity, and compatibility for accurate and effective collision prediction analysis
and modeling.

3.2.3 Machine learning models for collision prediction

Machine learning models are important for predicting collisions in the dig-
ital twin framework. They analyze large amounts of data from sensors and
sources to make accurate predictions about potential collisions. These mod-
els are great at finding patterns and relationships that traditional methods
might miss. This is crucial for understanding and reducing collision risks,
especially in complex driving situations. By handling complex and non-
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linear relationships, machine learning models provide valuable information
about collision risks, making autonomous driving systems safer and more
reliable.

In the following sections, an exploration of the machine learning models
employed for collision prediction within the digital twin framework will be
undertaken. We will explore the application of MLPClassifier, Random
Forest Classifier, SVM Classifier, and XGBoost Classifier, as these models
offer unique strengths and capabilities for accurate collision prediction.

Multilayer Perceptron

The exploration of machine learning models for collision prediction within
the digital twin framework began with the Multilayer Perceptron (MLP)
Classifier, a type of artificial neural network. This model, with its multiple
layers of interconnected nodes and the application of a nonlinear activa-
tion function, excels at identifying patterns within large, high-dimensional
datasets. This makes it well-suited to the collision prediction task, where
a multitude of factors such as vehicle specifics like speed, jerk, and angular
velocity, proximity to other objects, and environmental conditions, includ-
ing weather and lighting changes may interplay in complex ways. MLP’s
ability to model such intricate nonlinear relationships enhances its value in
this study (h20.ai, n.d.).

Random Forest

Following the MLP Classifier, we employed the Random Forest Classifier.
This model, an ensemble learning method, operates by integrating multiple
decision trees, thus offering a more comprehensive and robust output. The
Random Forest Classifier’s ability to process large datasets, its resistance
to overfitting, and its capacity to handle both numerical and categorical
data make it particularly useful for the collision prediction task (Javatpoint,
n.d.).
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Support Vector Machine

Continuing the exploration, the Support Vector Machine (SVM) Classi-
fier was incorporated into the study. The SVM Classifier is a powerful
algorithm known for its ability to handle complex datasets and effectively
capture nonlinear relationships. It works by mapping the input data into
a high-dimensional feature space and finding an optimal hyperplane that
separates different classes, maximizing the margin between them. By find-
ing the most discriminative hyperplane, the SVM Classifier can accurately
predict collision events based on input features such as vehicle attributes,
environmental conditions, and proximity to other objects. The robustness
of the SVM Classifier, coupled with its ability to handle both numerical and
categorical data, contributes to its effectiveness in the collision prediction
study (Scikit-learn, n.d.).

XGBoost

Lastly, the study incorporated the XGBoost Classifier. This machine learn-
ing framework, based on the gradient boosting decision tree algorithm,
has demonstrated remarkable efficiency and effectiveness in handling large
datasets and capturing complex data interactions. The XGBoost Classifier
leverages the power of gradient boosting to iteratively add decision trees to
the model, with each subsequent tree learning from the mistakes made by
the previous trees. This sequential approach enhances the model’s predic-
tive capabilities and enables it to effectively capture intricate patterns and
relationships within the collision prediction data. The XGBoost Classifier
brings a unique strength to our modeling approach, enhancing our strategy
and contributing to more accurate collision predictions. (Seif, 2019)

In summary, the machine learning models utilized in our collision predic-
tion study within the digital twin framework have shown promising results.
However, evaluating their performance using traditional metrics has posed
certain challenges, which we will delve into in the next section.
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3.2.4 Evaluation and performance metrics

This section focuses on key metrics that assess the performance of the mod-
els used in this study. These metrics, including the confusion matrix, accu-
racy, precision, recall, and the F1 score, serve as critical tools to evaluate
the effectiveness of the models. Each metric provides a different perspec-
tive on the model’s predictive abilities. By comprehending these metrics,
a deeper understanding of the model’s performance can be obtained. This
section will also shed light on a notable discrepancy observed between the
results of the evaluation metrics and the actual performance of the models.
A deeper dive into this interesting discrepancy is set to be the focus of the
following section.

A confusion matrix, often used in predictive analytics, is a table with two
rows and two columns that reports the number of true positives, false neg-
atives, false positives, and true negatives. This layout gives the matrix
the power to provide a more nuanced evaluation of a model’s performance
than simply noting the proportion of correct classifications, which is known
as accuracy. The importance of a confusion matrix becomes particularly
apparent when dealing with unbalanced datasets, where the distribution
of classes is uneven. In these cases, accuracy alone could be misleading,
making a confusion matrix a more reliable tool. The confusion matrix ac-
commodates four possible outcomes for every prediction made by the model.
A true positive (TP) is when the model correctly identifies a positive sam-
ple, while a true negative (TN) is when a negative sample is accurately
recognized. On the other hand, a false positive (FP) is when a negative
sample is incorrectly identified as positive, and a false negative (FN) is
when a positive sample is misclassified as negative. Each of these outcomes
contributes to a comprehensive understanding of the model’s performance,
offering valuable insights that can guide further refinement of the model
(Brownlee, 2016).

There are other metrics that can be derived from a confusion matrix, each
of which carries its own significance and utility.

One of the crucial metrics used in binary classification tasks is accuracy.
Specifically, it is the total number of correct predictions (both true positives
and true negatives) divided by the total number of predictions made. In
other words, accuracy gives us a straightforward idea of how often the model
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is correct in its predictions. The formula for calculating accuracy is:

accuracy =
TP + TN

TP + FP + TN + FN
(3.1)

True positives and true negatives are the cases where the model’s predictions
match the actual classes, while false positives and false negatives are the
instances where the model’s predictions don’t align with the actual classes
(Ping Shung, 2018).

The accuracy metric provides a general understanding of the model’s re-
liability in predicting collisions. High accuracy suggests that the model’s
predictions align well with actual outcomes. However, it’s important to
keep in mind that accuracy alone does not tell the whole story. It gives
an aggregate view of the model’s performance, but it does not provide in-
sight into how well the model performs on individual classes - collisions
and non-collisions. To gain a more nuanced understanding of the model’s
performance, we turn to precision.

Precision, also referred to as positive predictive value, is a critical metric
in the domain of machine learning.. It quantifies the ratio of relevant in-
stances among those instances identified by the model. In essence, precision
measures how many of the instances that the model classified as positive
were actually positive. It is calculated as the number of true positives di-
vided by the sum of true positives and false positives, as seen in equation
3.2. For example, if a model predicts that ten instances are positive and
eight of these predictions are correct, the precision would be 0.8, or 80%
(Ping Shung, 2018).

precision =
TP

TP + FP
(3.2)

Precision gauges the model’s ability to avoid false alarms. In other words,
it measures how many of the predicted collisions were indeed collisions. In
a traffic context, a high precision model is valuable as it minimizes unnec-
essary preventive measures that might otherwise disrupt the smooth flow
of vehicles. Yet, while precision concerns the model’s credibility when it
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predicts a collision, it does not account for collisions that the model fails to
predict. That’s where recall comes into play.

Recall, in the context of machine learning, measures the proportion of actual
positive instances that were correctly identified by the model. It is defined
as the number of true positives divided by the sum of true positives and
false negatives, and has the following formula:

recall =
TP

TP + FN
(3.3)

For instance, if there are ten actual positive instances and the model cor-
rectly identifies seven of them, the recall would be 0.7, or 70% (Ping Shung,
2018).

In the context of this thesis, recall assesses the model’s effectiveness in
capturing all potential collisions. High recall is vital to ensure safety as any
missed collision could lead to severe consequences. While both precision
and recall provide valuable insights, they focus on different aspects of the
model’s performance. Hence, a measure that combines these metrics is often
desirable. The F1 score fulfills this need. It provides a balanced view of
precision and recall, becoming particularly useful in scenarios like collision
prediction where both false positives and false negatives have significant
implications. The formula for F1 is seen in equation 3.4.

F1 = 2 · precision+ recall

precision · recall
(3.4)

Another important tool used in this thesis to evaluate the performance of
the collision prediction models is ROC - Receiver Operating Characteristic.
The ROC curve plots the true positive rate (sensitivity) against the false
positive rate (1-specificity) at various classification thresholds. This curve
provides a visual representation of the trade-off between true positive rate
and false positive rate, allowing for the selection of an optimal threshold
that balances the model’s sensitivity and specificity. (Brownlee, 2018)

In the context of this study, the ROC curve helps assess the model’s ability
to distinguish between collision and non-collision instances. Furthermore,

29



3.3 Genetic algorithm

the area under the ROC curve (AUC) is utilized as a summary metric to
quantify the overall performance of the model. A higher AUC value would
suggest a better ability of the model to correctly classify collision and non-
collision instances.

While these statistical metrics offer valuable insight into the model’s per-
formance, they do not necessarily capture all aspects of real-world function-
ality. Practical considerations, such as the timing of the collision prediction
and the model’s subsequent reaction, play a crucial role in determining the
model’s overall effectiveness. It’s observed that a model with the highest
score in a particular metric does not always translate into the best perform-
ing model in a real-world scenario. For example, a model with a lower recall
might outperform in practice compared to a model with a higher recall. To
complement these metrics, testing the model in a real-world simulator is of
utmost importance.

This additional evaluation step allows for a more comprehensive assessment
of the model’s performance, providing insights that closely resemble those it
will encounter in actual scenarios. This striking observation about the po-
tential discrepancies between statistical metrics and simulator performance
raises interesting questions that warrant further investigation in subsequent
section.

3.3 Genetic algorithm

In order to be able to generate more data for the model, a genetic algorithm
has been created and used. A genetic algorithm can be efficient in many
different fields and has en excellent ability to search and figure out the best
set of variables to solve a problem. Especially when going through every
possible solution is unfeasible, one such algorithm can find a close to optimal
solution. (Harman and Jones, 2001)

The algorithm itself is inspired by Charles Darwin’s evolutionary theory,
where the main point is that the most fit individuals will be the ones that
reproduce (Sivanandam and Deepa, 2008, p 15). This point also applies to a
genetic algorithm. Since the most fit individuals reproduce, this also implies
means that there is something that determines the fitness of the population,

30



3.3 Genetic algorithm

where the most fit individuals have the highest chance of passing their genes
down to the next generation.

Figure 3.1: How the different parts of a genetic algorithm follow each other. In
this case the stopping criteria is either that the population is fit enough or that
the generation limit is reached.

3.3.1 Simple implementation example

There are many different versions of the algorithm, but the primary parts
are the starting population, fitness evaluation, selection, crossover and mu-
tation.

At the beginning, the individuals in the population are created. Each in-
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dividual consists of a set of variables, or genes as they are known within
this algorithm. At the start each gene is set to be a random value between
an upper and a lower limit. After that, each individual is sent through
the fitness functions and gets a score, then the most fit individuals gets to
reproduce and the least fit individuals ceases to exist in the selection part.
To be able to produce the next generation, there is a function known as the
crossover function that determines which genes from the parents that are
being sent down to the child. The next step is the mutations part, where
there is a chance that one or more of the genes of the child is mutated and
gets a new value. Because of the mutation, new genes gets introduced to
the gene pool and the population keeps a certain diversity. Together this
might be helping the population’s top individuals to reach an even higher
fitness score or that some individuals with a lower score to reproduce so
that the next generations gets better. (Kour et al., 2015)

Eventually, the algorithm will have created the maximum number of gener-
ations or a certain fitness score has been reached. The top individuals can
then be retrieved and used.

3.3.2 Variations of the algorithm

What is mentioned above is a very basic version of a genetic algorithm.
There are many different variations of each part of the algorithm.

Population

The initialization of the population can happen in multiple ways. One of
them is as mentioned in the simple implementation 3.3.1, that all the genes
in each individual is randomized. This grants a large diversity in the gene
pool, but the downside is that the algorithm can use a long time to find the
best solution to a given problem. (Syberfeldt and Persson, 2009)

A different method of populating the population can be in a heuristic man-
ner. That means that the genes in for each individual can be something
that one can believe might be close to the solution and in that way try to
make the algorithm converge in less time. The downside of this can be that
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a lot of the individuals are very close to each other regarding the genes,
which again says something about the diversity in the gene pool. Another
thing that might happen is that the algorithm might have a premature con-
vergence, which means that it returns a solution before the best solution is
found. The next generations is also not able to produce offspring that is
superior to the one before it. This scenario is also known as a local minima.
(Shyalika, 2019)

By using a heuristic approach at the start of the algorithm one might also
get good and fast results, especially if the genetic algorithm uses few gen-
erations. Something to know when using this method of initialization is
that it might be difficult to find those good starting values REF smash. If
it is planned to have a large number of generations, the results of a good
heuristic starting population will have less effect than if the there are few
generations. (Syberfeldt and Persson, 2009)

Fitness evaluation

To be able to find out if an individual is good or not, a fitness function is
needed to figure that out. This function is very specific to each problem
a genetic algorithm is used for. There are also several things one should
think of when creating a fitness function. A fitness function should be easy
to understand and to get the gist of why it evaluates what it is. Since the
function is used a lot, one time per individual per generation, it should be
fast to calculate and not use too many resources. Therefore, how fast the
genetic algorithm is, is influenced quite a bit by the time the function uses to
calculate. The results from the function should also be easy to understand,
for example that a low number should equal a bad score and that a high
number should equal a good score or vice versa. (Mallawaarachchi, 2017)

Selection

There are multiple ways of determining which parents that should be able
to reproduce for the next generation. What often is the point with this
function is to give the individuals with the highest fitness score the highest
probability to reproduce. Another thing to think about is that the most fit
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individual might be in a local minima, so it is important to give the other
individuals a chance at pass on their genes as well (Shukla et al., 2015). It
is also possible to create offspring with more than two parents.

One of the ways to select the parents, is with a use of a roulette wheel. There
the individual with the highest fitness score will have the largest section of
the wheel, the second fittest will have the second largest section and so
on. By implementing the selection in this way, all individuals will have a
chance to become a parent, but the individuals are rewarded by having a
good fitness score. The probability of being chosen is then the individuals
fitness score divided by the total sum of all fitness scores in the current
generation (Shukla et al., 2015) and can be seen in equation 3.5 below.

Psel(ai) =
f(ai)
n∑

i=1
f(aj)

; j = 1, 2, . . . , n (3.5)

Figure 3.2: Showing the distribution of the individuals in a roulette wheel.

Another way of implementing the function is to use rank of the individuals
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in stead if the fitness score directly. In this way all the individuals gets a
score and they are then sorted based on that where the most fit individual
gets the best rank. The rank is then used to select a parent either in a linear
or a exponential way. If linearity is chosen, the ranks are used so that the
chance of picking a parent gets linearly worse the longer down the ranks
you get. In contrary to the exponential way where the chances of getting
picked gets exponentially lower the worse rank the individual has. (Shukla
et al., 2015)

A third method of implementation is by picking a parent with a tournament
selection, where the winner is the parent. This is one of the most popular
methods to use, as it is both efficient and easy to implement. To begin,
a predefined number of individuals gets picked at random from the entire
population. Then the most fit of those individuals is picked as the parent
Shukla et al., 2015. It is often used just two participants in a tournament,
this will also give a linear distribution of the parent, as seen in figure 3.3
together with some other amount of participants.

Figure 3.3: Distribution of which rank is picked when different number of par-
ticipants are used.

By choosing good parents with a good selection method, the algorithm gets
the best use of its population. A good method will also keep the gene pool
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diverse and thus keep a lot of potential good genes still a chance to combine
and become fit individuals.

Crossover

Crossover is as mentioned a method that is suppose to mix the genes from
the parents to produce offspring. A good crossover function should do this
in a way that the produced children can have a chance to be better than
its parents, even though the child can get an unfortunate combination from
the parents.

There are also here multiple ways to do this. The common point crossover
is one of them. There both parent’s chromosome gets a slice in the middle,
where child A receives part one from parent A and part two from parent
B. Child B will then get part 1 from parent B and part two from parent A.
It is also possible to use multiple of these splits to shuffle the genes a bit
more. (Umbarkar and Sheth, 2015, p. 1083)

Another crossover function is the uniform crossover. In this function each
gene is chosen by a uniform random number, either 1 or 0. If the number
is 1, child A gets the gene from parent A and child B gets the gene from
parent B or vice versa. This then repeats until all the genes are distributed.
(Umbarkar and Sheth, 2015, p. 1084)

There is also an option to choose a function that takes the average value
of each gene from two parents. This function produces only one child from
two parents, so it is needed to find twice as many parents to reach the
population limit in contrary to the crossover functions mentioned above.
(Umbarkar and Sheth, 2015, p. 1084)
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Figure 3.4: Three different crossover functions, single point, uniform and average.

Mutation

The mutation function has the responsibility to bring new genes into the
gene pool. This contributes to keep the diversity and also creates new
genes that might make the population more fit. Mutation can also make the
population exit potential local minimums and premature convergence (Siew
et al., 2017, p. 10). A mutation does not happen to every individual, usually
there is a predetermined chance of a mutation to happen, for example 40%.

One method of mutation is bit-flipping. In this case each individual consists
of a number of bits, 0 or 1, where there is a chance that one or more random
bits are flipped. If a bit is flipped, the 0 is changed to a 1 or a 1 to a 0
(Siew et al., 2017, p. 10).

Figure 3.5: An individual gets two of its bits flipped.

Another method is by assigning the new values with a Gaussian distribution
or a uniform distribution between an upper and a lower limit. When using
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the first method, the new value will not often deviate too much from the
original value, but will still bring something new to the gene pool. With the
latter, the values will have a larger distribution, but the downside will be
that it can change already good genes to something not so good. (De Falco
et al., 2002, p. 286)

The mutation chance also has to be taken into account. A high mutation
chance will help the algorithm to reach a higher fitness early on, but can also
mutate away good solutions. An idea regarding this is to have a variable
mutation rate to be able to have the best of both worlds. Here the mutation
chance can be relatively high at the beginning and gradually decrease as
a higher number of generations has been reached (De Falco et al., 2002,
p. 287).
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Chapter 4

Implementation

In this chapter it will be explained how the different applications have been
made and how they are tied together. Below in figure 4.1 is it possible to see
how the different parts of the thesis is built together. The code developed
for this thesis can be found in appendix A.

Figure 4.1: A simple overview of how the different parts are tied together.
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4.1 Generating the self generated data

4.1 Generating the self generated data

In this section how the self-generated data has been made. This includes
how the multiple features have been collected from the simulator and how
they have been processed to create new features.

To be able to create the data, the simulator was used. The Simulation()
class was used for this as well, but it was inherited in a new class called
GenerateData(). This class uses multiple methods from the parent class,
where the primary ones are spawnRandomNPCs() and calculateTTC(). The
spawnRandomNPCs() method can spawn a predefined number of vehicles
and pedestrians. It spawns multiple different vehicles, that be it a sedan,
truck, school bus or one of the other available vehicles. The pedestrians
that are spawned also has multiple variations on how they look.

The heart of this class is the generateDataWithSim method. This method
runs the simulation in the same way as the previously mentioned Simula-
tion.runSimulation() in section 4.5.2. Both methods are built in the same
way, i.e., configuring the needed variables and then a while-loop which runs
the simulation one updateInterval at the time. Both methods also use the
ReadLidar() class, but there is no prediction in this case. In this case the
method writes down the values after each sim.run() call, namely DTO,
TTC, JERK, speed and the three angular velocities. It also writes down
the time used for each row in the generated data along with if the ego ve-
hicle collided with an obstacle or not. When the time limit is reached, the
while-loop is exited and the method calls another method called storeData-
Generated() to write down the generated values to a csv-file.

4.2 Feature engineering

Feature engineering is a crucial step in machine learning that involves trans-
forming raw data into a format that is more suitable and informative for
predictive modeling. It encompasses a variety of techniques, including se-
lecting relevant features and creating new ones. By carefully engineering
features, machine learning algorithms can better capture patterns and re-
lationships within the data, ultimately improving the accuracy and perfor-
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mance of predictive models.

This section delves into the feature engineering process implemented on
the datasets to enhance the data quality. The primary objective was to
augment the existing dataset by incorporating additional relevant details.
For the Deep Scenario data, the information was enriched by integrating
supplementary data from the corresponding scenario files 2.4.2. Similarly,
to enhance collision prediction capabilities, the Self-Generated Data was
augmented by rearranging its structure. This reorganization was specifically
aimed at optimizing the data for improved collision prediction accuracy.

4.2.1 Deep Scenario

As mentioned in section 2.4.3, the deep scenario data consisted of several
scenario files. These files needed to be combined to create a single source
of data. This was done by first combining the deep scenario data generated
by the different generation techniques (Lu et al., 2023) to a single csv-file.

1 STRATEGIES = ["greedy", "random", "rl_based"]
2

3 def Load_Files(strategy: str = "greedy") -> ...
List[Tuple[str, str, List[str]]]:

4 return [( path, path.split("/")[-1].split("-")[1], ...
file, strategy)

5 for path, subdir, files in ...
os.walk(DATASET_PATH + ...
f'{strategy}-strategy/')

6 for file in glob(os.path.join(path, EXT))]
7

8 def Load_Data(strategy: str = "all") -> DataFrame:
9 df = None

10 try:
11 if strategy == "all":
12 datafiles = []
13 for s in STRATEGIES:
14 _files = Load_Files(s)
15 print(f"Loaded {len(_files)} files for {s} ...

strategy")
16 datafiles.extend(_files)
17 else:
18 ...
19
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20 for path, reward, file, strat in datafiles:
21 road, scenario, _, _ = ...

file.split("\\")[-1].split("-")
22 f = path + "/" + file.split("\\")[-1]
23 if df is None:
24 df = pd.read_csv(f)
25 Add_Meta_Data(df, reward, road, strat, ...

scenario)
26 else:
27 temp = pd.read_csv(f)
28 Add_Meta_Data(temp, reward, road, strat, ...

scenario)
29 df = pd.concat([df, temp], ignore_index=True)
30 except Exception as e:
31 print("Error", e)
32 finally:
33 return df

Listing 4.1: Loading Deep Scenario data.

As shown in listing 4.1, the data was combined by traversing the directory
structure and loading all files into a list of tuples. The tuples contained the
path to the file, the reward used, the file name, and the strategy used to
generate the data. The list of tuples was then used to load the data into a
Pandas DataFrame, with the structure seen in table 2.1:

Once this was done the newly created dataset was supplemented with ad-
ditional data from the different scenario files 2.4.2. These files contained
information about scenario features such as speed and angular velocity. This
was firstly done by using a similar approach as when loading the raw Deep
Scenario data, where the features were extracted from the XML-files and
saved as a csv-file.

After this was done, the data was combined with the original dataset by
using scenario id, road, reward, scenario and strategy as keys.

1 def ExtractAvData(self):
2 # we have 6 columns av1, ..., av6, containing a list ...

of angular velocities (x,y,z). want to split each ...
av into 3 columns, exp. av1x, av1y, av1z, av2x, ...
av2y ...

3 av = ["av" + str(i) for i in range(1,7)]
4 av_ = [f"{col}{av}" for col in av for av in ["x", "y", ...
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"z"]] # av1x, av1y, av1z, av2x ...
5

6 angular_velocities = self._data[av].apply(lambda x: ...
list(map(float, sum(map(lambda y: ...
y.strip("[]").split(","), x.values), []))), axis=1)

7 self._data[av_] = angular_velocities.values.tolist()
8 self._data = self._data.drop(av, axis=1)
9

10 def addFromXML(self, filename: str="") -> None:
11 """
12 Reads more data from XML files, as of now, only speeds ...

at six different timstamps.
13

14 Params:
15 filename: str, name of file read from
16 """
17 try:
18 xmlDf = pd.read_csv(filename, index_col=0)
19 except:
20 raise FileNotFoundError(f"The file does not exist.")
21 if isinstance(self.data, pd.DataFrame):
22 self._data = self.data.merge(xmlDf, how="inner", ...

on=["ScenarioID", "road", "reward", ...
"scenario", "strategy"], copy=False)

23 self.ExtractAvData()
24 self.UpdateSpeedAtCollision()
25 else:
26 print("Something went wrong in 'addFromXML()'!")

Listing 4.2: Extrancftion of additinal scenario data.

As shown in code snippet 4.2 the data is loaded into DataFrames and
merged. Additionally, the angular velocity data is extracted from a sin-
gle list to three separate columns, one for each axis.

1 def UpdateSpeedAtCollision(self):
2 random.seed(1)
3 res = self._data.copy()
4

5 SAC = "Attribute[SAC]"
6 speeds = [f"speed{i}" for i in range(1,7)]
7 for idx, row in ...

self._data.loc[self._data["Attribute[COL]"] == ...
True].iterrows():

8

9 _sac = row[SAC]
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10 if row[speeds[-1]] - _sac > 0:
11 continue
12

13 for speed_idx, speed in enumerate(speeds[::-1]):
14 if len(speeds) - speed_idx == 0:
15 break
16

17 if row[speed] - _sac < 0:
18 continue
19

20 speed_to_keep = res.loc[idx, ...
speeds[:len(speeds) - ...
speed_idx]].values.tolist().copy()

21 speed_new = []
22 last_speed = speed_to_keep[0]
23 for i in range(len(speeds) - len(speed_to_keep)):
24 calculated_speed = last_speed + ...

random.uniform(-1, row[speed] / 10)
25 if calculated_speed < 0:
26 calculated_speed = last_speed
27 speed_new.append(calculated_speed)
28 last_speed = speed_new[-1]
29

30 res.loc[idx, speeds] = speed_new + speed_to_keep
31 break
32 self._data = res

Listing 4.3: Update speed features to use SAC as final speed.

An other important part of the feature engineering was augmenting the
speed data. As shown in 4.3, the code iterates over the dataset, filtering
rows that meet a specific condition. The condition requires the last speed
value among the six available speed values to be greater than the SAC -
Speed At Collision value.

In cases where the condition is not met, the code reverses the order of the
speed values in the selected row and checks the same condition again. Once
a speed value greater than the SAC value is found, that speed value, along
with all preceding values, is retained and shifted towards the end of the list.

The remaining speed values are then calculated by using the first speed
value from the retained values and adding a random value between -1 and
the original speed value, based on the current iteration. Subsequently, the
entire row is updated with the new speed values, which include the newly
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calculated values as well as the values from the original row.

The modifications introduced above were necessary to address the prob-
lem of delayed collision predictions. By adjusting the speed values in the
dataset, particularly by identifying the last speed value that surpasses the
SAC (Speed At Collision) threshold, the code aims to improve the timing of
collision predictions. This adjustment ensures that the model predicts col-
lisions earlier, providing more accurate and timely information for collision
prediction.

Lastly, some ordinary machine learning preprocessing was done. This in-
cluded dropping some columns that were not needed, label encoding cate-
gorical features, scaling the data and lastly undersampling the non-collision
data.

4.2.2 Self-generated data

The raw self-generated data contains no information about the previous
rows when looking at each row independently. To be able to make the rows
usable for a classifier this has to be fixed. It was then decided that each
row should have values that have information about what happened from
two seconds (four time steps) before it. Another important thing is that
the rows that is noted to be a collision also have an impact on the rows
that lead to that being a collision. Another important that was decided,
was that a collision should have an influence on the rows before itself. As
the classifier is suppose to predict a collision before it happens, the original
collision row is removed to not have an impact during the training of the
classifier.

After the data has been generated, it goes through another method to make
it usable for training and testing the classifier. The makeDataUsable()
method (listing 4.4) processes the data to make it usable for training. It does
this by receiving the saved csv-file and loading it as a pandas DataFrame
(pandas development team, 2023). It is then possible to create the new
features for each row. These features then contain information about what
happened before it, as seen when comparing table 3.2 with table 4.1.

To be able to collect the needed rows, the method utilizes several for-loops.
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At first, the first few rows are skipped until it can have the needed rows back
in time. It then iterates through the rows in the DataFrame and appends
to the list behind the correct key in the dictionary (dataDict) that holds
the data. It then appends the time for the row before it enters the second
for-loop which keeps track of the row IDs that were before the current row.
The row an values furthest away in time is then appended to the correct
place inside the dictionary. For example if the row ID is 798, the values from
row 795 to 798 is to be placed inside this entry. In this case the TTC value
from row 795 is placed in TTC1, the value from row 796 is placed in TTC2
and so on. By doing this for each column, each row that is generated now
has 7 ·4 = 28 columns excluding the collision ("COL") and the "toRemove"
columns. Further down in the listing at lines 17-21, the collision value for
the rows before a potential collision is changed to be a collision as well. The
if-check at line 20 checks if there exist enough data back in time that can
be changed to be a collision.

1 def makeDataUsable(df: DataFrame, pastImportance: int=4, ...
rowsBeforeCol: int=5, removeCol: bool=True) -> DataFrame:

2 colsToUse = ["TTC", "DTO", "JERK", "Speed", "asX", ...
"asY", "asZ"]

3 columns = ["Time"]
4 columns += [f"{c}{i}" for c in colsToUse for i in ...

range(1, pastImportance+1)]
5 columns += ["COL", "toRemove"]
6 rowsToRemove = []
7 dataDict = {col: [] for col in columns}
8 for i, row in df.iterrows():
9 if row["Time"] < pastImportance-1:

10 continue
11 dataDict["Time"].append(row["Time"])
12 for j, k in enumerate(range(i-pastImportance+1, ...

i+1), start=1):
13 for c in colsToUse:
14 dataDict[f"{c}{j}"].append(df.iloc[k][c])
15 dataDict["COL"].append(row["COL"])
16 dataDict["toRemove"].append(row["COL"])
17 if row["COL"] == 1:
18 rowsToRemove.append(i-1)
19 available = int(row["Time"]-pastImportance+2)
20 amount = int(rowsBeforeCol) if available ≥ ...

rowsBeforeCol else available
21 dataDict["COL"][-amount:] = [1]*amount
22 df = DataFrame(dataDict)
23 df = df[df["toRemove"] == 0] if removeCol else df
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24 df.drop("toRemove", axis=1, inplace=True)
25 return df

Listing 4.4: Making the generated data usable.

After the generated data has been sent through the method, the resulting
DataFrame has the wanted features and can now be used as training and
testing data for a classifier after it has been preprocessed. The mentioned
method is also made so it is possible to change the number of rows it looks
at back in time (pastImportance) as well as how many rows is decided to
have lead to a collision (rowsBeforeCol).

Table 4.1: The processed data after being made into usable data. When com-
paring with table 3.2, notice how the time steps 15.0 and 15.5 has been removed
as they are actual collision rows and that the four rows above now is a collision.

Finally a last preprocessing step was performed, including dropping some
features, scaling and undersampling the non-collision data. Then only re-
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maining task was to split the data into a training and test set. The training
set was used to train the model, while the test set was used to evaluate the
model. The test set was not used in any way during the training process,
and was only used to evaluate the model after it was trained.

4.3 Implementation of the features

As discussed in section 2.4.2, various features are utilized in this thesis.
This section focuses on how these features are collected from the physical
twin and utilized. Specifically, the time to collision (TTC) and distance
to obstacle (DTO) features play a significant role in this thesis and are
extensively calculated and utilized. While the Deep Scenario documentation
(Lu et al., 2023) provides a description of what these features are, it offers
limited information on how they are determined. The following section will
elaborate on the methodology employed to derive these features.

4.3.1 Distance to obstacle

The attribute DTO is as mentioned earlier a feature that says something
about the distance to another obstacle. It is not obvious from Deep Scenario
if this is measured in a general direction or if it is just in front the vehicle,
another uncertain thing is the feature itself, but it is assumed it is in meters.

During the development of the digital twin, the initial approach to obtain
the Distance to Obstacle (DTO) from the ego vehicle involved collecting the
x, y, and z coordinates of all vehicles and pedestrians within the simulation.
To be able to calculate the distances between the ego vehicle and all other
potential obstacles the formula for Euclidean distance were used. The core
of this formula is the Pythagoras theorem:

c2 = a2 + b2 (4.1)

When calculating the Euclidean distance, the a and b part gets exchanged
with the distances along the x-coordinate and the y-coordinate. Here the z-
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coordinate is not mentioned because this is for a two-dimensional distance.
The exact same formula is used when there are three dimensions, it is just
to add the difference between the z-coordinates and square it. This then
ends at the formula:

c2 = (x1 − x0)
2 + (y1 − y0)

2 + (z1 − z0)
2

c =
√
(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2

(4.2)

The positive part about this method is that it is fast to calculate and it gets
the distance to all NPCs in the simulation. The downside is that is does
not register buildings, trees, poles and other potential obstacles. Another
thing is that is dependent on information from the simulation itself, which
is a bad thing if this were to be used in a real life scenario, it would simply
not get the coordinates of anything.

The solution was to use one of the many sensors on the ego vehicle. More
specifically the LiDAR sensor. There are also other sensors on the vehicle
that maybe could have been used, like the radar, but these were not easily
available within the Python API.

The type of LiDAR the ego vehicle possesses, works as mentioned in section
2.3.3. The sensor have 32 lasers aligned vertically and each measures 360
times per rotation. This results in a horizontal field of 41.3 degrees, which
means that the angle between each laser is around 1.3 degrees. The total
resolution of the point cloud will then be 32 · 360 = 11520 points. The
rotation frequency is 10 Hz. In the simulator the resulting point cloud can
be stored as a pcd-file which then later can be used by a program. The
maximum distance this LiDAR can measure is 100 meters and the closest
is 0.5 meters.

To be able to calculate the DTO, the point cloud from the LiDAR sensor
is used. One point cloud is saved every so often, so it keeps getting an
updated version to use and process. To be able to process the pcd-file there
is a Python library called Open3D (Zhou et al., 2018). This library can
be used to load and visualize a point cloud, as seen in figure 2.8. It can
also load the point cloud as an array, which then can be easily processed
by some code. This array consists of all the points from the point cloud
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where each point has an x-, y-, and z-coordinate where the origin of that
coordinate system is the LiDAR sensor itself, which is placed on top of the
ego vehicle. The coordinate system is a right handed system, where the x-
axes is going forwards, the y-axes is going to the left and the z-axis is going
up, all in respect to the orientation of the vehicle. The points in the array
is then stored after each other, so all points the most bottom laser produces
in one rotation is indexed first in the array, then the next 360 points from
the laser above is indexed and so on. The result is one array consisting of
up to 11520 smaller arrays that contain the x-, y-, and z-coordinates.

Since DTO is a single measure, it is assumed to apply only to obstacles in
front of the ego vehicle. This is because the ego vehicle is usually moving,
and it is easier to handle and compute potential collisions with objects
ahead of it rather than those on its sides, as seen in figure 4.3

The first problem was to figure out which points were in front of the vehicle.
Because each laser produces 360 points per rotation and the following points
from the next lasers are stored after each other, it is possible to iterate
through the array and only keep those points in front of the vehicle by
looking at the indexes. The indexes should be corresponding to one degree
difference horizontal, and when the 360th point is reached, the next 360
points are from a laser that is aiming some degrees further up and so on
until it reaches the 32nd laser, as seen on the "circles" in figure 4.2.

To be able to not only look at the one degree straight in front, it was first
tried to also look at n points from each laser. This resulted in horizontal
field of view of 1.3n degrees.
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Figure 4.2: A top down view of the point cloud, the ego vehicles is at the center.
Each "circle" is from a different laser looking 1.3 degrees further up. The direction
of the ego vehicle is to the right.

The next problem was to figure out what each point is, whether it repre-
sented an obstacle or the ground. Since the origin of the coordinate system
is the LiDAR itself, which as mentioned is placed on the roof, the ground the
that the vehicle drives on has a constant negative z-coordinate of approx-
imately -2.30 when driving on a flat surface. This means that everything
that has a z-coordinate value that is higher than that can potentially be
collided with. Points that have a positive z-values will then be at the same
height as the sensor, thus it is assumed the if the value is above 0 is not
going to collide with the ego vehicle. If the vehicle is accelerating, the car is
going to be tilted either up or down. This will affect the coordinate system
as the car rotates slightly. Now the z-coordinate is no longer the constant
-2.30, but it will be a flat plane that is non parallel with the x and y plane.
To compensate for this it is either possible to calculate what this plane is
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by finding the points that are corresponding to the ground, or to make the
z-value that should be the ground to have a higher constant. The latter of
these two alternatives are chosen in this thesis, as it is easier to implement
and this also has a side effect that it does not register small bumps in the
road or other objects that can be driven over.

Another thing is that since the LiDAR is placed approximately at the cen-
ter of the vehicle, the distance to an obstacle in front is going to be the
distance between the front bumper of the car and the distance between the
LiDAR and the front bumper. Because of this, the latter distance needs
to be figured out and subtracted from the distance from the LiDAR to an
obstacle to find the correct DTO. This distance was figured out by running
the simulator and colliding with a building, in that way it was possible to
use the LiDAR to get the distance to the building, which also would be
approximately the length between the sensor and the vehicle’s bumper. By
doing this, it is possible to be very close to the exact distance to an ob-
stacle that is in front by subtracting this value from the x-coordinate. The
distance to the bumper was measured to be 2.87.

When driving around, it was noticed some weird DTO values. By manually
checking the corresponding point cloud, it was notices that it used values
that it should not have used. Some points were scattered around the vehicle
in all directions, when it should have only seen points that are directly in
front of the vehicle. The solution to this was to change the way these points
were found. Instead of looking at the indexes of the points, it was looked at
the coordinates themselves. This was a viable solution because the y-axis
goes directly in front of the vehicle. By checking if the y-coordinate was
above or below a certain value, it could be determined if that point could
be something that it is possible to collide with.
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Figure 4.3: What the LiDAR sees when the same NPC vehicle is located at
different distances from the ego vehicle. The bottom part of each section is the
same point cloud from a top down view.

In the implementation of the DTO, only the coordinates that fall within a
threshold is looked at. The x-coordinates has to be greater than the length
of the distance from the LiDAR to the front bumper, 2.30. The y-coordinate
has to be greater then -1.0 and less then 1.0. In this case, the LiDAR scans
the area that is in front of the vehicle and within the width of the vehicle.
It also take into account that the z-coordinate is greater than -1.9. This
means that the blue points in figure 4.3 are not taken into consideration, but
every other point is. The resulting DTO will then be as noted in the figure.
When there is no such points in the point cloud, the resulting DTO will be
100. 100 meters is also the maximum distance the LiDAR can measure.

4.3.2 Time to collision

The next attribute to figure out was the time to collision (TTC). In the
documentations this is as mentioned a value that says something about
the time it would take for a collision to happen. The scenario here is that
the ego vehicle is driving forwards and has a direction towards an obstacle
and is going to collide with this obstacle if no action is taken, that is that
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either the ego is turning or decelerating or that the obstacles moves out
of the way. To calculate this, the main parameters are the DTO and the
speed of both the ego vehicle and the obstacle. It is also possible to use
the acceleration of both of these objects as well, but it was determined that
this was not important as the function assumed that the accelerations were
constant. Because of this, the function could say that the vehicles would
reach a speed that it would not realistically reach, for example that it would
start going backwards or reach a very high speed eventually. It could be
possible to create a function that would take this into consideration, but it
was deemed as not necessary.

To calculate the time it would take to collide, the first parameters are
already collected, but the obstacles speed is more of a challenge to get. To
get the obstacle’s speed one could simply get the speed from the simulator,
but this would not be possible in a real life scenario, so the speed has to be
gotten from somewhere else.

To be able to calculate the obstacle’s speed, the obstacle’s change in dis-
placement is needed, and to get that, two pairs of the DTO and the ego
vehicle’s speed are needed, as well as the time interval between the pairs.
When these are collected, equation 4.3 can be used to get the displacement
dobs, and this again can be used together with the time interval to get the
speed, as seen in equation 4.4 below. Together the obstacle’s speed can be
obtained with formula 4.5. Here the ego vehicles speed, is the average of
the speed when the two distances are measured.

dego = t · v1 + v0
2

dobs = dego + dto1 − dto0 (4.3)

vobs =
dobs
t

(4.4)

vobs =

(
t · v1 + v0

2
+ d1 − d0

)
· t−1 (4.5)

=
v1 + v0

2
+

d1 − d0
t

(4.6)

The next step is to use one of the functions of motion (equation 4.7) to
derive a function (equation 4.8) that can be used to get the TTC value. At
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first the acceleration was also used as a way to get more information into
the function, but as the DTO is quite large sometimes, it would influence
the speed of the vehicle in the function to be either unreasonable high or
low as the acceleration is not constant at all speeds. Thus, it was more
accurate to not use it in the calculation.

d = vt+
1

2
at2, a = 0 (4.7)

d = vt

↪→ t =
d

v

−→ tTTC =
d

v
=

dobs
vrel

, vrel = vego − vobs (4.8)

The resulting formula in equation 4.8 is using the relative speed difference
between the ego vehicle and the obstacle, that is because it only needs to
calculate the time it uses to catch up to the obstacle.

After using the formulas above, it was noticed eventually that the calcu-
lation could and should be shortened. The calculation is shown below in
equation 4.9.

tTTC =
dobs

vego − vobs

Substitute in for vego and vobs

tTTC =
d1

v1+v0
2 − (v1+v0

2 + d1−d0
t )

= t · d1
d0 − d1

(4.9)

As a result, the formula is more precise as it now do not need many of the
previously used parameters as they cancel each other out. If the resulting
value is above 50 or if d1 is higher then d0, the resulting TTC will have a
value of 50.
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4.3.3 Jerk

Jerk is a measure that says something about the comfort for the passengers.
When looking up what jerk is, it comes up as the change in acceleration and
it’s metric is m/s3. Jerk is a relatively unknown and unused measure. Jerk
is often experienced as uncomfortable, for instance when the driver of a car
steppes on the brakes and when the brakes are suddenly released. Jerk is
one of the derivatives of change in position and time. The more common
measures derived from this is velocity (m/s) and acceleration (m/s2), where
velocity is the first derivative and acceleration is the second derivative. Jerk
is then the third derivative. There are also more derivatives like snap,
crackle and pop. (Eager et al., 2016)

To calculate jerk from the acceleration values, it is needed the currents
acceleration value and the most previous one. The formula will then be as
follows in equation 4.10:

jerk =
a1 − a0

t
(4.10)

From this formula, jerk can both be positive and negative, but by looking
at the values in the Deep Scenario dataset, jerk is a value that is always
positive. It is then assumed that one can just take the absolute value of it
and use that.

4.4 Implementation of the model

This section focuses on the essential steps undertaken in preparing the data
and implementing the collision predicting models. The implementation de-
tails of the preprocessing steps, such as label encoding, feature selection,
and data scaling, are explored. Additionally, the chapter delves into the
machine learning aspects of this thesis, and specifically the implementation
of them.
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4.4.1 Preprocessing

As discussed in the section on feature engineering (section 4.2), a series of
essential preprocessing steps were conducted to prepare the data for model
training and testing. These steps encompassed various tasks, such as label
encoding categorical features, feature selection by dropping certain vari-
ables, data scaling, and under-sampling the non-collision instances. This
section will delve into the implementation details of these preprocessing
techniques, highlighting their significance in preparing the data for subse-
quent analysis and model development.

1 # undersample
2 self._data = ...

pd.concat([self._data[self._data["Attribute[COL]"] == ...
False].sample(sampleSize, random_state=1), ...
self._data[self._data["Attribute[COL]"] == True]])

3 ...
4 def preProcess(x, y):
5 ...
6 x[cols] = x[cols].apply(LabelEncoder().fit_transform)
7 ...
8 y.replace(False, 0, inplace=True)
9 y.replace(True, 1, inplace=True)

10

11 for c in x.columns:
12 if x[c].dtype != float:
13 x = x.drop(c, axis=1)
14 ...
15 if not self._fitScaler:
16 self.scaler.fit(x)
17 self._fitScaler = True
18 x = self.scaler.transform(x) # Scaling the data
19 ...
20 return x, y
21 ...

Listing 4.5: Condensed preprocessing implementation

The provided code listing 4.5 showcases a shortened version of the pre-
processing method used in this thesis. The preProcess() method performs
several preprocessing steps.

Firstly, an undersampling technique applied to the dataset. By selectively
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extracting a subset of data, the code ensures a balanced representation
of non-collision and collision instances. Specifically, the code combines a
randomly sampled portion of non-collision instances with all the available
collision instances, creating a balanced dataset for further analysis and mod-
eling.

The initial step of the preprocessing method involves label encoding of se-
lected columns in the dataset. By applying the LabelEncoder() function
from the scikit-learn library (Pedregosa et al., 2011), the categorical data in
the specified columns is transformed into numerical representations, making
it easier for machine learning algorithms to process.

Next, the code removes non-numeric columns from the dataset. This step
ensures that the data consists only of numeric features, which is often a
requirement for many machine learning algorithms. Any column with a
non-float data type is dropped from the dataset, thus retaining only numeric
features for subsequent analysis.

Then finally some feature scaling of the data is performed. This ensures
that the data have zero mean and unit variance, which usually is crucial for
many machine learning algorithms.

4.4.2 Machine Learning Models

As mentioned in section 3.2.3 the machine learning models employed where
MLP Classfier, Random Forest Classifier, SVM Classifier and XGBoost
Classifier. All of these models were implemented using the scikit-learn li-
brary Pedregosa et al. (2011). Scikit-learn is a popular Python library for
machine learning. It provides a wide range of tools and algorithms for vari-
ous tasks, including classification, regression, clustering, and dimensionality
reduction. With its user-friendly and consistent API, scikit-learn simplifies
the process of implementing machine learning models and evaluating their
performance.

Besides these models, a wrapper class was implemented which had the MLP
classifier as a base model. This class had the model which was going to
be used as a parameter, which made it easy to switch between models.
This class also had some additional functionality, such as the ability to do
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some preprocessing, save and load the model, as well as some other general
functionality.

1 # Random Forest Classifier
2 rf_clf = ...

DTPredictor(RandomForestClassifier(n_estimators=100, ...
max_depth=10, random_state=1))

3 rf_trainX, rf_trainY = rf_clf.preProcess(trainX.copy(), ...
trainY.copy())

4 rf_testX, rf_testY = rf_clf.preProcess(testX.copy(), ...
testY.copy())

5

6 rf_clf.fit(rf_trainX, rf_trainY)
7

8 rf_pred = rf_clf.predict(rf_testX)
9 rf_score = rf_clf.getScore(rf_testY, rf_pred)

10

11 model_score = f"{rf_score[0][0]}-{rf_score[0][1]}-..."
12 rf_clf.saveModel(f"RandomForestClassifier_{MODEL_PREFIX}", ...

accuracy=model_score)

Listing 4.6: Model implementation structure

Now training, evaluating and saving the model was as simple as, seen in
listing 4.6. The wrapper class DTPredictor() takes in the model as a pa-
rameter, then does some preprocessing, trains the model and evaluates its
performance. Lastly the model is saved using these scores as a part of the
name. The same was done for each of the other models, making it easy to
quickly try out different models.

4.5 Using the simulator

In this section it will be explained how to use the simulator and also how
to create and implement both of the digital and physical twin.
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4.5.1 Getting started

One of the first objects of this thesis was to run the SVL Simulator. To be
able to do so, one have to download the simulator from OSSDC’s GITHUB
page1. The next step is to follow the steps in the Python API documentation
to be able to use the simulator through the API.

4.5.2 Creation of the twins

To be able to crate the physical twin the Simulation class has to be made.
This class is going to launch the simulation, set the parameters for the
environment, load the map, spawn the NPCs and of course the physical
twin, also known as the ego vehicle. It is also going to calculate and utilize
other classes to calculate the correct values for the multiple features.

Initialization

On initialization, the class sets up the environment and connects to the
simulator through the correct ports. It also loads in the map and spawns
the ego vehicle. Following the initialization it is possible to use the run-
Simulation() method. This method starts the simulation, but it also sets
the needed parameters that are going to be used. The most important in-
put parameters to the method are simDuration, how long the simulation us
going to last, updateInterval, how often the digital twin receives updates,
window, how many meters to the left/right the LiDAR is looking for ob-
stacles and model, specifying the machine learning model (see section 3.2.3
the digital twin is going to use for its collision detection. Another useful
parameter is scenario, this decides if the simulation is going to run with one
of the predefined scenarios or if the ego vehicle is going to be controlled by
a keyboard.

1 from environs import Env
2 import lgsvl
3 class Simulation():

1OSSDC’s GitHub page: https://github.com/OSSDC/OSSDC-SIM
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4 def __init__(self, map: str="bg") -> None:
5 self.env = Env()
6 self.sim = lgsvl.Simulator(
7 self.env.str("LGSVL__SIMULATOR_HOST",
8 lgsvl.wise.SimulatorSettings.simulator_host),
9 self.env.int("LGSVL__SIMULATOR_PORT",

10 lgsvl.wise.SimulatorSettings.simulator_port)
11 )
12 ...
13 self.ego = self.sim.add_agent(
14 self.env.str("LGSVL__VEHICLE_0",
15 lgsvl.wise.DefaultAssets.
16 ...ego_lincoln2017mkz_apollo5),
17 lgsvl.AgentType.EGO, self.state
18 )
19 ...

Listing 4.7: Initialization of Simulation(), found in usingSim.py.

Inside the mentioned runSimulation() a lot is going on. The first thing
that happens is to load the correct model with the Predicter() class (either
the one made for the data from Deep Scenario or for the self generated
data). Following that the ReadLidar() class is initialized with the correct
parameters.

Getting the features

After the needed variables and classes are loaded, the simulation can be-
gin. This happens inside a while loop which starts by calling self.sim.run(
updateInterval). This will run the simulation for the duration of (updateIn-
terval, before it will continue down the loop to read the currents speed of
the ego vehicle and calculate the needed features. Among those are DTO
and TTC. To be able to calculate both of those feature, the LiDAR has
to be used. This happens in the mentioned ReadLidar() class. Before that
class can do what it does, the point cloud from the LiDAR sensor has to
collected, this can be seen in listing 4.8 below.

1 class Simulation():
2 ...
3 def runSimulation(self, ...)
4 ...
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5 lidar = ReadLidar(window, 35)
6 ...
7 while True:
8 self.sim.run(updateInterval)
9 self.ego.get_sensors()[2].save(PATH + ...

"/data/lidarUpdate.pcd")
10 dtoList.append(lidar.updatedDTO)
11 ...

Listing 4.8: A part of runSimulation()

After the point cloud is saved, the mentioned class can do what is needed.
Inside the class, the point cloud is loaded when the property updatedDTO is
called. After the loading, the class can figure out the distance to a potential
obstacle in front of the ego vehicle, as explained in section 4.3.1.

Following this, the next steps are to collect the speed of the ego vehicle.
When this is done, the rest of the features can be calculated with what is
now collected, namely acceleration, jerk and TTC. Then the three angular
velocities are collected

Predicting

The next step is to start predicting. The loaded classifier is either trained
with the data from Deep Scenario or with the generated data. Since the
features used are different for the two, this is accounted for so the correct
one is used. Before a prediction is made, the features are preprocessed in
the same matter as the trained data and is then used to predict a collision.
If the classifier predicts a collision, the digital twin tells the physical one to
apply the brakes and turn on the hazard warning lights. After a couple of
seconds, the brakes are lifted and the vehicle can continue to drive.

Visualizing the scenario

There are also an additional method, namely plotting(). This method is
plotting how a simulation went and its development (see figure 4.4). This
method is also able to store the parameters used in a csv-file, so the data
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can be looked at at a later time, which allows for measuring how well the
classifier did on an actual driving scenario at real time.

Figure 4.4: The plot generated after running scenario 1 with the XGB classifier
as the brains of the digital twin. In this scenario, the ego vehicle stopped right
before colliding with another vehicle. The scenario is explained in section 5.1.

The moment the ego vehicle has predicted a collision and the digital twin
has told its physical counterpart to apply the brakes, can be seen below in
figure 4.5.
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Figure 4.5: The ego vehicle manages to stop in time when the digital twin tells
the physical twin to apply the brakes.

4.6 Implementation of the genetic algorithm

In the implementation of the genetic algorithm, several iterations of each
method were created, but not all of them gave results that were usable. In
this implementation, a class called GeneticAlgorithm() is created and it has
several different input parameters; populationLimit, maxGenerations, min-
Values, numberOfVariables, tmParticipants, variation, mutationChance, fit-
nessGoal, toKeep. These will be explained below together with how it is
made.

4.6.1 Population

At initialization, the parameters are set and the starting population is gen-
erated. Both the parameters populationLimit and numberOfVariables are
integers, where the first one decides how many individuals each generation
consists of and the other one is the amount of genes per individual. The
other two parameters are lists that determine the minimum and maximum
values each gene can have, i.e., the nth gene has to be a value the is between
the nth element of minValues and the nth element of maxValues. By popu-
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lating the individuals in this way, each individual consists of genes that may
be found within the actual dataset. In this case, the genetic algorithm is
made to have 28 genes per individual and a total of 1000 populations which
produces up to 10,000 generations.

4.6.2 Fitness

The next step is to figure out the fitness of the population. Here each
individual is sent through the fitness function to get a score. This score is
calculated by:

fitness =
1∑4

i=1 abs
(
ttci · speedi − dtoi +

ttc2i
dtoi

− speedi
2 · wi

)
where w = 0.1, 0.15, 0.25, 0.5

(4.11)

By looking at the formula (equation 4.11), the closer the bottom part is to
zero, the higher the fitness will be. There is also a check which makes sure
that there will be no division by zero error when running the code. If the
bottom part is zero, the resulting fitness is determined to be very high.

There is also the class parameter fitnessGoal, which is a relatively large
integer. This parameter makes the algorithm return the current generation
if the most fit individual has a fitness that is higher than the mentioned
parameter.

The goal of the fitness function is to find the best individuals, and it does this
by the mentioned fitness function. The function is though out by knowing
that the TTC, DTO and speed features have a high impact on whether a
collision is predicted or not. After knowing this, the part with ttc · −dto is
suppose to be zero, as time multiplied by speed should equal distance. The
other part with ttc2

dto − speed
2 is more derived from testing. Finally, this part

of the equation is multiplied by a weight. This is to give the older values a
lower impact on the final score.
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4.6.3 Selection

In the selection, two parents are chosen by a tournament selection as de-
scribed in section 3.3.2 and the distribution between the number of partic-
ipants can be seen in figure 3.3. In this case, the number of participants is
chosen by the integer class parameter tmParticipants.

There is also a check if the two parents are diverse enough to each other.
This check is made to look at the nth gene of each parent and finding out if
they are within 0.01 of each other. If there exists one such gene, the parents
are to be picked again. This function is also recursive.

Since there is a small chance that the best performing individuals are not
chosen during the selection process, the integer class parameter toKeep can
ensure that at least some are. It does this by taking the toKeep most fit
individuals and placing them straight into the next generation to force those
genes to be a part of the next generation.

4.6.4 Crossover

In the crossover function, the genes from the two parents are mixed to make
two children. The genes of the parents are mixed in a uniform distribution,
as seen in figure 3.4 under the uniform headline and explained in section
3.3.2.

4.6.5 Mutation

After a child has been produced, there is a certain chance that the child is
mutated, this chance is given by the class parameter mutationChance. This
parameter is a floating number between 0 and 1. If a child is to be mutated,
an average one fourth of these genes are mutated. If a gene is mutated, its
new value is going to be a chosen at random to be within a range of its old
value plus and minus variation. If either one of the end points in the range
are outside of the minimum or maximum value determined in minValues or
maxValues, the new value is either the minimum or maximum value.
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4.6.6 Running the algorithm

When all the needed methods have been made, the algorithm can start.
The run() method starts by a for-loop that can go for up to maxGenera-
tions. Then inside, the method sends the current generation through the
fitness function to get a score, the generation is then sorted in an ascending
order based on the fitness. If the most fit individual is greater than fitness-
Goal the algorithm returns the sorted list of the current generation and the
individuals fitness score.

If the algorithm does not exit, the reproduction of the next generation starts.
First the toKeep most fit individuals is sent through, then the algorithm
makes use of the selection, crossover and mutation methods to produce
children until the populationLimit is reached.

When running, the algorithm also prints to the console the best individual
for every 100th generation as well as its score. When finished, the algo-
rithm returns the same sorted list and also prints the best individual to the
console.
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Chapter 5

Results and discussion

In this chapter, the implementation is tested out and a result is given. This
is for digital twins trained with data from either Deep Scenario or the self-
generated one. The genetic search algorithm is also tested. The results are
also discussed and reasoned around. Finally the research questioned are
answered.

5.1 Digital twin

To measure if the created digital twins are any good, each model has been
sent through the same scenario. The models were also evaluated during the
training and testing period. In that period each model that is based on the
data from Deep Scenario has the same test, train split from the data. The
same can also be said about the models based on the self-generated data.
Below in table 5.1, the confusion matrix of each model can be seen.
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Table 5.1: Confusion matrix for each model that is either trained with data
from Deep Scenario of the self-generated one. The values are from predicting with
the test data from each dataset. Top left represents the true negatives, top right
represents the false positives, bottom left represents the false negatives and the
bottom right represents the true positives.

The evaluation of the classifiers, as discussed in section 3.2.4, plays a cru-
cial role in assessing their performance using key metrics such as accuracy,
precision, recall, and AUC. These metrics provide valuable insights into
the models’ predictive capabilities and overall effectiveness. However, it is
equally important to bridge the gap between the metrics and real-world per-
formance by considering the models’ behavior in driving scenarios within the
simulator. During our evaluation, we observed notable differences between
the metrics and the models’ actual performance.

For instance, the MLP classifier demonstrates a high accuracy of 0.94 and
precision of 0.89, indicating overall strong performance. However, upon
examining the driving results, it becomes evident that the MLP classifier
fails to classify collisions early enough, resulting in collisions.

Similarly, the Random Forest classifier demonstrates a high accuracy of
0.9469 and precision of 0.9439, indicating its overall effectiveness. How-
ever, when assessing its performance in the driving simulator, we observed
instances where the model still resulted in collisions.

In contrast, the SVM classifier, despite having a comparatively lower AUC
score of 0.78 and other metrics, demonstrated the best performance in the
driving simulator. Although its accuracy of 0.8704 and precision of 0.8889
were not the highest among the evaluated models, the SVM classifier con-
sistently predicted collisions earlier than other models. This proactive ap-
proach potentially allowed for more time to initiate braking or other pre-
ventive measures, leading to a higher chance of collision avoidance.
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So to be able to compare all the different models, a common scenario all can
be evaluated on had to be created. This scenario is actually a combination
of two scenarios. In the first one, the ego vehicle is starting around 5 meters
behind an NPC vehicle going 8 m/s and the throttle is set to 0.5 on the ego
vehicle. This means that at the first seconds, the NPC is driving away from
the ego, before the ego eventually caught up to it because is drives faster.
In the second scenario, an NPC vehicle is spawned 95 meters in front of
the ego vehicle. The ego then accelerates with full throttle until a speed of
approximately 18.5 m/s is reached. It then coasts until it collide with the
NPC. These two scenarios are then combined into one, where the splice is
directly after the collision of scenario 1. The DTO and when the collisions
happened in the scenario can be seen at the top two rows of both figure
5.1 and in figure 5.2. Also note that the DTO starts at around 90 before it
goes up to 100 and then goes down to 60. In reality, the vehicle were always
closing in on the NPC. This happens because the LiDAR sensor do not have
a high enough resolution to cover the area the NPC is in at these time steps.
In other words, the LiDAR has a blind spot somewhere between 60 and 80
meters away. If the vehicle were taller, this might not have happened.
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Trained with data from Deep Scenario

Figure 5.1: Comparing the prediction collision with the actual collisions. Here
each model has been trained with data from the Deep Scenario dataset. 1 repre-
sents a collision prediction and 0 for not a collision.

In figure 5.1 above, the different classifiers are trained with data from the
Deep Scenario dataset. By looking at the different classifiers for scenario
1, all of them starts predicting at the same time, but the difference is that
the MLP classifier do not believe that the actual collision is a collision
itself, whereas the other ones does. The data they are trained on, only
has one DTO and JERK value and six speed values. It is assumed that
the collision happened after the last speed value, but there are something
strange regarding when the collision happens, as mentioned in section 4.2.1.

For the second scenario, MLP, Random Forest and XGB predicted only
that the last point is a collision, which is the truth, but the vehicle would
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not manage to brake and avoid the collision if they were used. The SVM
classifier predicts a collision quite early, and then changes its mind before a
more appropriate prediction is made. If the brakes were applied at the first
prediction, it would have braked to early and the latter prediction would
probably be okay. When comparing the result with the confusion matrix in
table 5.1, it is easy to see that the SVM classifier would predict before an
actual collision, as its number of false negatives is quite high.

By looking at the results, the Random Forest and the XGB classifier are the
most true to the actual collisions. The reason for why they are predicting
the same collisions might be because they are both based on decision trees.
The classifier with the highest chance of avoiding a collision in this scenario
would be the SVM classifier.
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Trained with the self-generated data

Figure 5.2: Comparing the prediction collision with the actual collisions. Here
each model has been trained with the self-generated data. 1 represents a collision
prediction and 0 for not a collision.

In the figure above (figure 5.2), the different classifiers are trained with
data from the self-generated dataset. Something to remember here is that
all these classifiers are trained with data that have four time steps for each
feature (pastImportance=4), the rowsBeforeCol parameter is set to 5 and
then the collision row is removed from the training data (see section 4.2.2
for more information).

By looking at the results in the figure, all the classifiers are predicting that
a collision is going to happen for the first scenario, the difference is when.
Both the MLP classifier and the Random Forest classifier predicts that
a collision will happen quite early. If this was a real scenario, the vehicle
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would stop way too soon. The other two models predicts that a collision will
happen a bit later, end would end up stopping closer to the NPC vehicle if
the brakes were applied. A more detailed plot of the scenario with the XGB
classifier can be seen in figure 4.4, here the brakes were actually applied. In
the second scenario, the MLP and the Random Forest classifiers predicts
that a collision is going to happen. Regarding the first one, it predicts a 1
(collision) when the DTO is still high, which is a strange behaviour. For the
latter classifier, it predicts a collision when in the moment the DTO drops,
this also has a direct impact on the TTC value. In this moment it could be
possible that the classifier believes that a vehicle is coming towards it with
a high speed. Also remember the LiDAR’s blind spot mentioned earlier,
so this might not have been predicted if the LiDAR resolution was higher.
About the SVM and the XGB classifiers, they start to predict collisions at
the same time in this scenario. Since the speed is higher in this scenario,
applying the brakes early might be the right call. The other two classifiers
might be just correct at their second predictions, but it could be very close
to colliding with the NPC.

Additional comments

As seen in the figures and by driving manually with a loaded classifier
in the simulator, the prediction is not always the best. There could be
many reasons for this, that be it the LiDAR’s blind spot, too few features,
for instance, the LiDAR should potentially have a wider field of view and
account for the ego vehicle’s direction, for instance while turning. The
classifiers for digital twins could also have had more training data to account
for more scenarios the vehicle can find itself in. Another note about the
LiDAR is the maximum distance it can measure, which is only 100 meters.
This can be a rather large issue when driving at high speeds, especially
when the braking distance can reach such lengths.

Modern cars also have many different sensors, and so do the ego vehicle.
It has the potential to use them to generate more data, which can lead to
a better understanding for what is going to happen. One can think that
there is a reason that they are there.

Something else to mention, is that the collisions should maybe have been a
regression task and not a classification. The self-generated data could have
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had a percentage of risk, so for example if the vehicle has a speed of 5 m/s,
it has a more time to process the environment than if it had a speed of 20
m/s. In that case the chance of a collision is higher, just because of the
less time the digital twin has to react in case of a car suddenly decides to
stop, drive onto a road or another something else a car might do. If the
ego vehicle scans the environment as well, it might find the higher speed to
be acceptable. The vehicle could for instance be on a tight city road where
it should have a lower speed to account for unforeseen circumstances that
could end in a collision. The difficult part regarding this, could be how to
determine the collision value.

By looking at the results, the best digital twin out of these, would be the
one using the XGB classifier to predict collisions that is trained with the
self-generated data.

5.2 Genetic algorithm

The goal of the genetic search algorithm is as mentioned in research question
2, to create testing data for the digital twin. All the generated data is
suppose to be a row that can lead to a collision. To evaluate this, the data
was sent through to the digital twin and the data was also compared to
actual collision data to find out how realistic the data is.

When running the genetic algorithm the parameters are as follows in table
5.2 below. To produce a certain amount of fit individuals, the algorithm
was run five times, where the top 20 individuals from each run were stored
for evaluation at a later time.
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Parameters to the Genetic algorithm
populationLimit 1000
maxGenerations 1000
maxValues [max value per gene]
minValues [minvalue per gene]
tmParticipants 3
variation 5
mutationChance 0.4
fitnessGoal 1000
toKeep 2

Table 5.2: The input parameters to the genetic algorithm.

When running the algorithm, the evolution of the average fitness and the
most fit individual for one of the runs can be seen below in figure 5.3.

Figure 5.3: Evolution of the fitness, for the most fit individual and the population
average. Note that the y-axis for the two lines are different.

As seen in the figure, the average fitness is gradually increasing. The most
fit individual is also increasing in fitness, and it is almost possible to see in
which generation that individual was created. This could imply that the
algorithm is not finding a new most fit individual for each new generation
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it is creating and that the toKeep parameter is ensuring that the most fit
individual is kept in the population.

For evaluation, the combined top 20 individuals from all the runs, 100 in
total, were taken into account. Below in figure 5.4 one can see the score,
TTC, DTO and speed a run from the algorithm.

Figure 5.4: How the top 5 individuals from the genetic algorithm can look like.
The features about angular velocity have been removed in the figure to make it
more readable.

When comparing the generated individuals to actual collision data, the
matches for each run is seen in table 5.3. Here the score is calculated
by the formula in equation 5.1. To calculate the score, just the features
about TTC, DTO and speed is sent through the equation. The reason for
this is that the fitness function only looks at these genes when finding fit
individuals, and thus the only "good" genes are within these feature. The
max(Genes) and min(Genes) values are the maximum and minimum value
for each feature from the actual collision data. The reason for using this is
to measure how far away the row feature and the individual feature is to
each other in respect to the value range of the particular feature. A lower
is then better then a higher one.
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score =
nFeatures∑

f=0

abs(rowf − indf )

max(Genes)−min(Genes)
· 100 (5.1)

In the table, the average score is the average of each row that is found to
have a match with a row that is a collision (COL = 1), and the opposite
on the right side of the table (COL = 0). To find the matches, the most
fit individual gets to find a match first, then that row is excluded from the
available rows that the next individual can choose from.

COL = 1 COL = 0
Run Amount Avg score Amount Avg score

1 6 60.8 14 59.5
2 9 54.8 11 60.3
3 9 59.2 11 56.0
4 8 52.6 12 58.9
5 10 53.3 10 52.1

Total 42 56.1 58 57.4

Table 5.3: The matches from the genetic algorithm with actual collision data.

When running the 100 mentioned through the different classifiers of the
digital twin, the results are as follows in table 5.4 below:

MLPC RFC SVMC XGBC
56/100 55/100 0/100 19/100

Table 5.4: Predictions that are a collision from the 100 best individuals from five
different runs of the genetic algorithm, top 20 from each.

These results are not the very best, especially when looking at the SVM
and XGB classifiers. The first one did not believe that a single individual
could lead to a collision, whereas the other one only thought 19 if them
could. The MLP and RF classifiers thought more of them were a collision,
but only a little over 50%.

By looking at the combined results, the individuals generated are maybe
not the most realistic ones. There could be multiple reasons for this. One
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of them could be the lack of data to compare against to find a good match.
Another one can be that the different parts of the algorithm are not good
or tweaked enough to be able to find good results. The most likely reason
can be that the fitness function inside the algorithm simply is not effective
enough to evaluate how good an individual is. Other parts of the algorithm
could also be an issue, but they are not as likely as the fitness evaluation,
as that is the part which tells if an individual is good or not.

5.3 Answering the research questions

Research question 1

This question is about how machine learning can be used to make a digital
twin that can predict collision and avoid them. A digital twin has been
created during the work on this thesis and it can indeed avoid a collision
by braking. It might not do this under any circumstances, for instance if a
vehicle pulls out in front of the vehicle and the distance is too short to be
able to slow down.

Research question 2

About RQ2, data was generated with a genetic search algorithm which
tried to search for data that could lead to collisions. By following what is
mentioned in section 4.6 this was done, but the fitness function can have
an update to make the results better.

Research question 3

The last research question is about finding out if a genetic search algorithm
can be used to evaluate the digital twin regarding the collision prediction.
To do so, the data that is created has to be realistic and that it can represent
a situation where a collision is imminent. This was done to a certain extent,
as a little under half of the produced individuals matched with a collision
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row, as seen in table 5.3. That being said, if the generated data would have
matched better to actual collision data and made sure that it is realistic, the
data could potentially be used to further evaluate the digital twin’s collision
predicting capabilities.
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Chapter 6

Conclusion

In this thesis there has been developed multiple digital twins for a vehicle.
Here the physical twin is the ego vehicle in the SVL Simulator and the
digital twins are the multiple classifiers that has been created.

From the results, the classifiers that are created with the Deep Scenario
dataset usually detects that a collisions is about to happen, but it also detect
it too late, i.e., the vehicle starts to brake, but there is not enough distance
and time to avoid a collisions. There could be multiple reasons for that,
but the main reason is most likely that the collisions in the dataset have
just one value per collision, where the models trained with the generated
dataset have multiple collision values before the actual collision. Because
of this, those models do not collide, but they are a bit too cautious.

Regarding the genetic algorithm, the results show that the generated data
can be used to create testing data, but the data itself might not be the best.
When matching the data with actual collision data, a little under half of
the data found the best match with actual collision data. When finding a
match, the most fit individual gets to find a match from the data first. The
matched row is then excluded for the remaining individuals.

When sending the generated data to the classifiers (or the digital twins),
the MLP and RF classifiers predicted that half of them were a collision,
whereas the SVM predicted that none of them were a collision and the
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Conclusion

XGB classifier only predicted 19 out of the 100 individuals.

Future work

To further enhance the capabilities of the digital twins developed in this
thesis, there are several potential areas for improvement. One key aspect
is the refinement of the machine learning models used in the classifiers,
aiming for improved collision prediction. Based on the results obtained,
it is evident that the models trained with the Deep Scenario dataset of-
ten detect an impending collision but do so too late to prevent it. This
issue might be attributed to the nature of the dataset itself, which primar-
ily consists of single collision values, whereas the generated dataset utilized
in training contains multiple collision values preceding the actual collision.
Consequently, the trained models tend to be overly cautious. By exploring
alternative approaches, such as incorporating more diverse collision scenar-
ios or modifying the training process, it is possible to enhance the different
model’s ability to accurately predict collisions.

Another avenue for future work involves the improvement of the genetic al-
gorithm utilized in generating testing data. Although the algorithm demon-
strated the potential to create testing data, the quality of the data itself
could be enhanced. One way would be to make the improve the fitness
function. The function could maybe be generated by a machine learning
model which can understand the different parts of the function better than
a human, and therefore produce a better fitness function. Furthermore, ex-
ploring adjustments and enhancements to the genetic algorithm itself can
lead to the creation of more effective testing data, which can be reliably
classified as collisions.

By focusing on these areas of improvement, the machine learning models
can be enhanced to provide more accurate collision predictions, and the
genetic algorithm can be optimized to generate testing data that better
aligns with actual collision scenarios. These advancements will contribute
to the ongoing development and refinement of the digital twins, enabling
more robust simulations and analysis of collision scenarios.
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Appendix A

Source Code

The source code for the development can be found on GitHub at:

https://github.com/SigurdGH/MasterThesis
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