
Approved by the Dean 30 Sep 21
Faculty of Science and Technology

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme / specialisation:

Computer Technology: Reliable and
Secure Systems

The spring semester, 2023

Open / Confidential

Author:
Oddvar Nordbø Øksendal

Supervisor at UiS:
Ferhat Özgur Catak

Thesis title:
5G RF Spectrum-based Cryptographic Pseudo Random Number Generation for IoT
Security

Credits (ECTS):
30
Keywords:

Internet of Things
Random Number Generation
5G
Security

Pages:
65+ appendix:

Stavanger, June 15, 2023

Abstract

This thesis presents a novel approach for generating truly random num-
bers in 5G wireless communication systems using the radio frequency (RF)
spectrum. The proposed method leverages variations in the RF spectrum
to create entropy, which is then used to generate truly random numbers.
This approach is based on channel state information (CSI) measured at
the receiver in 5G systems and utilize the variability of the CSI to extract
entropy for random number generation. The proposed method has several
advantages over traditional random number generators, including the use
of a natural source of entropy in 5G wireless communication systems, min-
imal hardware and computational resource requirements, and a high level
of security due to the use of physical characteristics of the wireless chan-
nel that are difficult for attackers to predict or manipulate. Simulation re-
sults demonstrate that the proposed method generates high-entropy random
numbers, passes statistical randomness tests, and outperforms traditional
random number generators regarding energy consumption and computa-
tional complexity. This approach has the potential to improve the security
of cryptographic protocols in 5G networks.

i

Acknowledgements

I would like to thank my supervisor Ferhat Õzgur Catak for all the help
and guidance he has provided during my thesis, and for the opportunity to
provide and support a promising new direction to this field of research.

In addition I would like to thank my family for the possibility to spend time
working on this thesis.

ii

Terminology

• Random number generator/generation RNG

• Random bit generator RBG

• Deterministic Random Bit Generator DRBG

• Non-deterministic Random Bit Generator NRBG

• Pseudo random number generator PRNG

• Cryptographically secure pseudo random number generator CSPRNG

• Channel State Information CSI

• Internet of Things IoT

• National Institute of Standards Statistical Test Suite NIST STS

iii

Contents

Abstract i

Ackowledgements ii

Terminology iii

1 Introduction 1

1.1 Motivation . 3

1.2 Random number generation 3

1.2.1 Methods for random bit generation 4

1.2.2 The National Institute of Standards guidelines . . . 5

1.2.3 Methods explored . 5

1.2.4 Metrics for evaluation 8

1.2.5 Why random numbers in computers? 9

1.3 Thesis . 9

iv

CONTENTS

1.4 Background . 10

1.4.1 Programming language 11

1.4.2 NIST SP 800-22 Rev. 1a 11

1.4.3 NIST SP 800-90B . 14

1.4.4 Numpy . 17

1.4.5 Multi-objective optimization and NSGA2 19

1.4.6 Related works . 21

1.5 Outline . 24

2 System model and methodology 25

2.0.1 Computer specifications 27

2.1 Methodology . 27

2.2 Design of the thesis . 37

3 Results 38

3.1 Pre-optimization . 38

3.1.1 Comparison of NIST test suites 38

3.1.2 Shannon’s entropy 41

3.2 Execution times of the Experiments 41

3.2.1 Image generation . 42

3.2.2 Entropy generation 42

v

CONTENTS

3.2.3 RNG execution times 43

3.3 NIST SP 800-22 Rev. 1a results 44

3.3.1 Comparison . 44

3.4 NIST SP 800-90B Results 46

3.4.1 Comparison of entropy results 47

3.5 Generated data . 48

3.6 Optimization . 49

3.6.1 ASF, Pareto-front and pseudo weights 49

4 Discussion 51

4.1 Pre-optimization . 51

4.1.1 Comparison of NIST test suites 52

4.1.2 Preliminary tests . 52

4.1.3 Shannon’s entropy 53

4.2 Execution times . 53

4.2.1 Images . 53

4.2.2 Conditioning . 54

4.2.3 RNGs . 56

4.3 NIST SP 800-90B . 56

4.3.1 Comparison . 57

vi

CONTENTS

4.4 Optimization . 57

4.4.1 NIST SP800-22 Rev. 1a valid? 59

4.4.2 NSGA2 parameters 59

4.4.3 ASF, Pareto-front and Pseudo weights 60

4.4.4 Optimal frame size 60

4.5 Energy consumption . 62

4.6 Generated data . 62

4.7 Theoretical solution . 62

5 Conclusion 64

Bibliography 69

Appendices 69

A Program Listings 70

B Experimental results 71

vii

Chapter 1

Introduction

The proliferation of the IoT has led to an unprecedented increase in con-
nected devices, thus creating a need for secure communication channels.
With the development of fifth-generation (5G) wireless communication sys-
tems, the demand for secure communication channels has increased even
further. 5G technology offers higher bandwidth, lower latency, and higher
data rates, and it is expected to revolutionize how we interact with the inter-
net. However, deploying 5G networks in large, heterogeneous, distributed
environments presents a significant security challenge. To address this chal-
lenge, secure communication protocols are necessary to safeguard commu-
nication between nodes and defend against malicious attacks. One of the
critical challenges in 5G security is generation of secure random numbers.

Random number generation (RNG) is essential for ensuring cryptographic
security in various applications, including digital signatures, encryption pro-
tocols, password generation, game development, and data transfer. Crypto-
graphic applications require a source of high-quality randomness to gener-
ate keys and other secret parameters. Therefore, generating truly random
numbers is essential to ensuring the security of these applications. How-
ever, in 5G networks, the randomness of generated numbers is often unre-
liable due to many devices with low entropy sources that are susceptible
to attack or malfunction. The quality of random numbers plays a crucial
role in the security of cryptographic protocols, including the Elliptic Curve
Diffie-Hellman (ECDH) key exchange algorithms and Rijndael encryption

1

Introduction

algorithms, which are commonly used in 5G networks. Numerous cryp-
tographic protocols have been compromised due to the use of low-quality
random numbers. Therefore, developing a reliable RNG solution is vital for
ensuring higher security for communication protocols in 5G networks.

In the computer world, several ways of generating random numbers exist.
Depending on what the numbers are used for, there are different types of
generators. A random number generator (RNG) is the broad category that
all of these generators belong to. This broad definition of an RNG, also
known as a random bit generator (RBG), was introduced by the U.S. Na-
tional Institute of Standards and Technology (NIST). NIST has developed
a hierarchy of RNGs based on their level of security that classifies them into
two categories: Non-Deterministic Random Bit Generators (NRBGs) and
Deterministic Random Bit Generators (DRBGs). NRBGs are also known
as True Random Number Generators (TRNGs) and DRBGs are also known
as Pseudo-Random Number Generators (PRNGs). NRBGs are considered
most secure and within the category of NRBGs there are two main methods
of generating bits: Using physical processes (Considered most secure) as a
noise source, or using other sources of randomness such as user input. DR-
BGs differ in the way that they generate random bits using mathematical
algorithms. These may also rely on a seed value in order to generate bits,
which can be predictable if the seed is known.

In the context of 5G security, generating truly random numbers is essen-
tial for ensuring a communication channels’ confidentiality, integrity, and
availability. However, more than traditional RNGs may be required for the
requirements of 5G systems, as they may not be able to generate enough
entropy or may be vulnerable to attacks. Therefore, there is a need for new
and more robust RNGs that can provide the required level of security.

This thesis introduces a new and innovative technique for generating truly
random numbers in 5G wireless communication systems using the radio fre-
quency (RF) spectrum. The proposed method utilizes variations in the RF
spectrum to generate entropy, which is then used to create truly random
numbers. The proposed approach is based on channel state information
(CSI), which measures the quality of the wireless channel. In 5G systems,
CSI is measured at the receiver and sent to the transmitter to facilitate sig-
nal processing and beamforming techniques. The proposed method lever-
ages the variability of the CSI to generate random numbers. This novel

2

1.1 Motivation

approach represents a significant advancement in the field of random num-
ber generation and has the potential to address the challenge of unreliable
random number generation in 5G networks. These advances are: first, it
uses a natural source of entropy in 5G wireless communication systems.
Second, it requires minimal hardware and computational resources, reduc-
ing energy consumption and cost. Third, it provides a high level of security
since the randomness is generated based on the physical characteristics of
the wireless channel that are difficult for an attacker to predict or manipu-
late.

In this thesis, existing literature on RNGs and different approaches for gen-
erating random numbers will be reviewed. Then, the proposed approach
for generating random numbers using the RF spectrum in 5G wireless com-
munication systems will be presented. To evaluate the performance of the
proposed method simulations were conducted using a 5G system model,
metrics used include entropy, security, and energy consumption. Results in-
dicate that the proposed method generates high entropy random numbers
and passes statistical randomness tests.

1.1 Motivation

Generating random numbers is a fundamental trait for most computer se-
curity applications. Some NRGBs rely on extra pieces of hardware in order
to be used. This reduces the scalability in general and in particular for
the Internet of Things (IoT). The need for secure and easy implementable
NRBGs are a necessity.

1.2 Random number generation

Random number generation is a fundamental aspect of computer security.
Cryptographic algorithms, such as encryption, digital signatures, and se-
cure key exchange, rely on generating high-quality random numbers. The
quality of the generated random numbers is crucial to the security of these
applications. If the random numbers are predictable or biased, the entire
system’s security can be compromised. Therefore, generating truly random

3

1.2 Random number generation

numbers is essential to ensure the security of cryptographic applications.

Creating random numbers considered secure can be done in a multitude
of ways. These differ depending on what the numbers intended usage are,
and therefore there exists several types of generators. A random number
generator is the broad category that all of these generators belong to.

"A process used to generate an unpredictable series of numbers.
Also called a Random bit generator (RBG)" [23].

This broad definition of an RNG aka RBG from the U.S. National Institute
of Standards and Technology (NIST) could be attained to the top category
in Figure 1.1.

1.2.1 Methods for random bit generation

There are several methods for random bit generation, such as hardware-
based, software-based and hybrid solutions. Hardware-based methods rely
on physical processes such as radioactive decay or thermal noise to generate
randomness. These methods have been used for many years and are known
for their ability to generate random numbers with high entropy. However,
they are expensive and require specialized hardware, which gives them less
scalability.

Software-based approaches rely on mathematical algorithms to generate
random bits. These methods are less secure than hardware-based meth-
ods, as they may be vulnerable to attacks, but they are more cost-effective
and easier to implement. The generated bits may be predictable if the
algorithm is weak or if the seed value is known.

Hybrid solutions combine hardware-based and software-based solutions to
generate random numbers. They normally rely on a hardware-based entropy
source which in turn is used as a seed for a software-based PRNG. The
hybrid approach provide a good middle road providing both high entropy
and scalability.

4

1.2 Random number generation

1.2.2 The National Institute of Standards guidelines

Cryptographic standards and guidelines have been developed to ensure the
security of random number generation, such as the NIST Special Publi-
cation 800-90A. This publication defines two classes of random number
generators: Non-Deterministic Random Bit Generators (NRBGs) and De-
terministic Random Bit Generators (DRBGs).

NRBGs that use physical processes, such as radioactive decay or thermal
noise, to generate random numbers are considered the most secure, as they
generate truly random numbers. However, they are also expensive and may
not be practical for some applications.

NRBGs may use other sources of randomness, such as user input, hard
drive activity etc. DRBGs or PRNGs, on the other hand, generate ran-
dom numbers using mathematical algorithms. DRBGs that rely on a seed
value to generate a sequence of numbers are the least secure, which can be
predictable if the seed value is known.

Figure 1.1: Tree overview of different RNG types

1.2.3 Methods explored

Figure 1.1 displays two main categories: Numbers generated by computers
and numbers not generated by computers. In this thesis the focus lies solely

5

1.2 Random number generation

on the right side of the tree, numbers generated by computers. NRBGs and
DRBGs are Generators that fall into these two categories and are defined
as such by the NIST:

"A device or algorithm that outputs a random sequence that is
effectively indistinguishable from statistically independent and
unbiased bits. An RBG is classified as either a deterministic
RBG (DRBG) or an non-deterministic RBG (NRBG)." [7]

Pseudo randomness

Pseudo randomness is stated in the Merriam-Webster dictionary:

"being apparently rather than actually as stated : SHAM, SPU-
RIOUS" [18]

It is randomness that may appear to be random at a first glance, but if
analyzed, it reveals that it is not necessarily so.

To generate random numbers, computers use algorithms or processes known
as pseudo random number generators (PRNGs). These methods ensure
that the numbers appear random but are deterministic, meaning they will
produce the same output if given the same seed. A DRBG starts generating
values based on a seed, which is essential for statistical applications but not
cryptographic ones. If attackers know the seed, they could predict future
numbers and determine which ones have already been produced, making it
unsafe for cryptographic purposes.

Cryptographically Secure PRNG

A CSPRNG is a type of PRNG that is suitable for cryptographic appli-
cations. To meet the requirements of being a CSPRNG, it must pass the
next-bit test and be able to withstand a state compromise extension. This
definition is commonly used but could also be defined as passing only the

6

1.2 Random number generation

Next-bit test and being indistinguishable from a truly random source. In
this case, two subgroups would need to be specified, one with backtracking
resistance and one without.

• Next-bit test

"We say that a sequence of bits passes the next bit test for
at any position i in the sequence, if any attacker who knows
the i first bits (but not the seed) cannot predict the (i +
1) with reasonable computational power." [34] [31]

• Backtracking resistance

"Backward security/Break-in recovery. Future output of
the generator looks random, even to an observer with knowl-
edge of the current state, provided that the generator is
refreshed with data of sufficient entropy." [3]

According to these definitions, the output of a CSPRNG should be impos-
sible to differentiate from a truly random output, even if someone knows
the internal state. The NIST online glossary does not have an entry for
CSRPNG, so it’s debatable whether a CSPRNG can be classified as NRBG
or DRBG. This thesis suggests categorizing certain CSRPNGs as NRBG as
long as they have ongoing access to an entropy source, as stated in quote
1.2.3.

Non-Deterministic Random Bit Generator

Where a PRNG use algorithms to appear random a TRNG take a physical
phenomena and extract it for use in a computer. Imagine it as having a die
connected to your computer. In reality what is used is easier to connect to
a computer than a regular die. Generating random numbers using physical
phenomena make them non-deterministic. NIST defines a NRBG or TRNG
as this:

"An RBG that always has access to an entropy source and (when
working properly) produces output bitstrings that have full en-

7

1.2 Random number generation

tropy. Often called a True Random Number (or Bit) Generator.
(Contrast with a deterministic random bit generator)." [7]

1.2.4 Metrics for evaluation

Various metrics can be used to determine the quality of randomly gener-
ated numbers, including entropy, statistical properties, and cryptographic
strength. Entropy measures the level of randomness in the generated num-
bers and is based on their uncertainty. Higher entropy indicates more un-
predictable numbers. Statistical properties, such as mean, variance, and
distribution, assess the uniformity and randomness of the generated num-
bers. Cryptographic strength evaluates the ability of the generated numbers
to resist attacks.

"The strength of a CSPRNG is directly proportional to the
source of entropy used for seeding it (and re-seeding it). We can
safely conclude that the security of a crypto-system depends on
configuring the highest level of entropy for seeding a CSPRNG
algorithm." [28]

Talking about entropy there are two distinct definitions. That is entropy,
and entropy source. They are defined as following by NIST:

• Entropy: "A measure of the disorder or randomness in a closed sys-
tem. The entropy of uncertainty of a random variable X with prob-
abilities pi, . . . , pn is defined to be H(X) = −

∑n
i=1 pi log pi. "

[20]

• Entropy source: "A physical source of information whose output ei-
ther appears to be random in itself or by applying some filtering/dis-
tillation process. This output is used as input to either a RNG or
PRNG." [20]

8

1.3 Thesis

1.2.5 Why random numbers in computers?

Random numbers are crucial in computer systems as they play a vital role
in cryptography. If the numbers produced can be easily calculated in a short
amount of time, then the security of the system is at risk. To emphasize
the importance of secure random numbers, potential attacks on the system
are discussed[9].

• Direct cryptanalysis attack

When an attacker obtains a significant amount of numbers from
the RNG, they can use this to analyze it and figure out how it
differs from a truly random stream of numbers.

• Input-based attacks

When an attacker use the input of an RNG to cryptanalyze it.

• State compromise extension attacks

The attacker has in some way learned about the internal state
of the RNG and then this can be used in several ways to further
compromise the RNG.

A real world example of an attack is when the website Hacker News was
hacked. [6] In this white hat attack, they managed to take control of login
IDs of other users and was able to impersonate them. This was possible
because of a low entropy in the seed for the RNG used. This made it possible
for the attacker to find the internal state where the seed was created and
replicate it.

1.3 Thesis

Lately, more people have been exploring using the RF spectrum to create
random numbers. The RF spectrum refers to the frequencies used for wire-
less communication, and its signal strength and noise variations can create
entropy for generating truly random numbers. Compared to traditional

9

1.4 Background

RNGs, RF-based RNGs offer greater entropy, enhanced security, and re-
duced energy consumption. However, challenges like calibration and attack
vulnerability must be addressed for successful implementation.

This thesis presents a new method of generating random numbers in 5G
wireless communication systems by utilizing variations in the RF spectrum.
This approach generates entropy and produces truly random numbers, po-
tentially surpassing the limitations of traditional RNGs. By evaluating the
performance of this approach using metrics such as entropy, security, and
energy consumption, its effectiveness can be determined in providing a more
secure and efficient way to generate random numbers in 5G systems.

The feasibility of methods proposed will be tested using tests from NIST
800-22 Rev. 1 and NIST SP 800-90B.

The test data was generated through a simulation package in Matlab [17].
To make it more user-friendly, images of the spectrum were created at a
specific point. The data from that point on the image was then processed
through bit-wise operations for conditioning. This resulted in entropy for
a NumPy package RNG in Python. The numbers were generated using an
RBG from the same NumPy package in Python.

To find a frame from the image with the high entropy a NSGA2 optimization
algorithm has been applied. Results indicate that it may be a promising
entropy source for IoT devices.

1.4 Background

In the background section, we will explain the technologies that were chosen.
Furthermore, we will also provide information on related works that focus
on entropy sources and the generation of random numbers through radio
frequency.

10

1.4 Background

1.4.1 Programming language

Choosing which programming language to use were based on these ranked
criteria:

1. Time to learn

2. Third party packages

3. Execution time

The chosen criteria were ranked based on the importance of time in complet-
ing the work efficiently. Having third-party packages or code repositories
that provide the necessary methods and tests for the thesis is crucial, as it
saves time that would have been spent learning a programming language.
While execution time is a valuable metric, it is less critical during this re-
search phase, as more work must be done before the novel approach can be
used.

After careful consideration, Python was chosen as the most suitable pro-
gramming language for the thesis project. This decision was made based on
the time-saving advantage of not having to create something that already
exists. Other languages, such as Golang and C++, were also considered
but ultimately ruled out. Golang required the use of third-party packages
for specific solutions. In contrast, C++ requires a significant amount of
time to learn and could cause more harm to the system due to its low-level
capabilities. However, if a real system were created, C++ could provide
better execution times.

1.4.2 NIST SP 800-22 Rev. 1a

NIST special publication 800-22 is a statistical test suite for RNG and
PRNGs for cryptographic applications. In this thesis this test suite were
chosen because it is a widely used and has good implementations already
available for free use. It is also a standard that has a well known and
trustworthy source. Further work is also being done to improve on the

11

1.4 Background

tests, but have not yet been included in the test suite. The newer work
consists among others of tests specific for an entropy source in NIST SP
800-90B. These tests will also be used in this thesis to supplement the
standard tests. That it is widely used gives many other publications and
results from tests done to compare our results with. These comparisons
grants a better foundation for conclusions and whether using the 5G radio
spectrum is viable.

There are multiple other test suites for verifying the randomness of an RNG
or PRNG where the diehard test suite is a valid option. It has not been
chosen as the implementation of the diehard test in python does not have
a working editon, and it is not used as an extra test suite at this stage.
Adding an extra test suite, may give more results to base a decision, but
depending on the implementation it may include having to format the data
specifically to the tests more. The extra work necessary for running another
battery of tests is considered greater than the rewards. Both the diehard
and the NIST test suite contain a few tests that are equal, by my count
that is 5. (diehard consist of 12 tests and NIST SP 800-22 Rev. 1a 15.)

Tests in NIST SP 800-22 Rev. 1a that are run is the following: [20]

1: Frequency (Monobits) Checks whether the proportion of ones
and zeroes for the sequence is approximately equal to that of a truly
random sequence. Assesses how close the fraction of ones are to a half
(0.5).

2: Frequency within a Block Focuses on the proportion of ones in
a M-bit blocks to be approximately M/2.

3: Runs Looks at the oscillation between ones and zeroes in a se-
quence, and determines whether it is too fast or too low.

4: Longest Run of Ones in a Block Determines whether the
length of longest run of ones within M-bit blocks of a sequence is as
expected from a random sequence.

5: Binary Matrix Rank Checks whether there is a linear depen-
dence between sub-matrices and the original sequence.

6: Discrete Fourier Transform (Spectral) Detects periodic pat-
terns in peak heights of the Discrete Fourier Transform of the se-

12

1.4 Background

quence.

7: Non-overlapping Template Matching Counts number of oc-
currences of pre-specified strings. For this and the Overlapping Tem-
plate Test an m-bit sliding window is used to search for the pre-
specified strings.

8: Overlapping Template Matching Counts number of occur-
rences of pre-specified strings. (Differs from the non-overlapping tem-
plate matching in the behavior when a match has been found.) For
this and the Non-overlapping Template Test an m-bit sliding window
is used to search for the pre-specified strings.

9: Maurer’s “Universal Statistical” Can the sequence be signif-
icantly compressed without loss of information. (Significantly com-
pressible sequences are considered non-random. [20])

10: Linear Complexity Determines whether or not the sequence
is considered complex enough to be considered random using a linear
feedback shift register. Random sequences have a longer feedback
register.

11: Serial Checks all M-bit sequences and that they are just as likely
to appear as any other M-bit sequence.

12: Approximate Entropy Check all adjacent M-bit sequences (M
and M+1) that they are as likely to appear as in a random sequence.

13: Cumulative Sums (Cusum) Defines random walks in the se-
quence and checks if the deviations from the expected random walk
is near zero.

14: Random Excursions Contain a total of eight tests that con-
clude by themselves. The tests looks at deviations from a cumulative
sum random walk.

15: Random Excursions Variant Contain a total of eighteen tests
that conclude by themselves. The tests looks at deviations from a
cumulative sum random walk.

13

1.4 Background

1.4.3 NIST SP 800-90B

NIST Special Publication 800-90B is a recommendation that states design
principles and requirements for entropy sources used by RBGs as well as
tests for validating entropy sources. The document outlines critical design
principles and requirements for entropy sources, including the amount of
entropy generated, the source, and the mechanisms used to extract and
test the entropy. It also specifies tests that can validate the quality of the
entropy source, such as the NIST Statistical Test Suite.

One of the critical goals of the NIST Special Publication 800-90B is to
ensure that cryptographic RBGs generate high-quality, unpredictable, and
statistically independent data that can withstand attacks by cryptanalytic
techniques. The document emphasizes the importance of the three compo-
nents - entropy source (NIST SP 800-90B), algorithm (NIST SP 800-90A),
and method to combine the first two (NIST SP 800-90C) - in creating a
secure cryptographic RBG.

By following guidelines in this publication, developers can enhance the secu-
rity and trustworthiness of cryptographic RBGs, and ensure that they meet
the requirements of various applications in which randomness is critical.

In summary NIST Special Publication 800-90B is an essential resource for
anyone involved in designing, implementing, and validating entropy sources
for cryptographic RBGs.

In validating an entropy source using the NIST Special Publication 800-
90B suite, two crucial steps are involved: track determination and entropy
estimation of the given data sequence. The determination of the track re-
quires a minimum of 106 samples of binary data, which are then classified
as IID (Independent and Identically Distributed) or Non-IID. In the case
of IID data, the entropy estimate is obtained using the MCV (Most Com-
mon Value) estimator. Conversely, if the data is classified as Non-IID, ten
(10) estimators are applied, and the minimum result of all the estimators
is returned as the sequence assessment. After the track is determined, a
further test is conducted to verify the given estimate. These tests ensure
that the generated random numbers meet the required level of randomness
and security for cryptographic applications.

14

1.4 Background

Entropy estimation strategy and data collection is displayed in figure 2 in
the NIST SP800-90B. [21]

Entropy Estimation strategy

Min-entropy is a conservative measure calculated based on the probability of
the most likely outcome. It is commonly used in cryptographic applications
to ensure that the level of uncertainty in the generated random numbers is
sufficient for their intended purpose.

min− entropy = −log2(pmax) (1.1)

Data collection

Data collection for the tests from SP 800-90B has to be done in a specified
order to be valid. Data used for our entropy source includes a non-vetted
conditioning component that is the chaotization algorithm. All these steps
have been ensued.

In Figure 1.2 in the NIST SP 800-90B a description of where the test suite
is to be tested and where the conditioning is applied is displayed.

1. A sequential dataset of at least 1 000 000 samples obtained directly
from the noise source.

2. If the entropy source includes a conditioning component not listed, a
conditioned sequential dataset of at least 1 000 00 samples needs to
be collected.

3. For the restart tests the entropy source must be restarted a 1000
times, and for each restart 1000 consecutive samples shall be collected
directly from the noise source.

15

1.4 Background

Determining the track

In order to determine whether the dataset is to follow the IID track or the
non-IID track four required steps need to be satisfied.

1. Submitter must make an IID claim based on an analysis of the design.
And provide rationale for the IID claim.

2. The raw sequential dataset must pass the IID statistical tests.

3. The restart dataset must pass the IID statistical tests.

4. If the data contains a non-vetted conditioning component, the condi-
tioned dataset must pass the IID statistical tests.

Restart tests

The restart tests are designed to ensure three aspects:

1. Noise source outputs generated are drawn from the same distribution
for every restart.

2. The distribution of samples are independent of the start position in
the sequence.

3. Knowledge of other restarts does not offer an advantage in predicting
the next.

To restart the noise source for data collection, a different seed was used for
a PRNG. This PRNG selected one of the 2016 images and determined the
frame size to use.

According to SP 800-90B these data need to simulate the restart process
expected in a real-world use. In a real-world use this could be done in at
least three ways and all of them would start by restarting the 5G unit itself.
In list 3 these three ways to simulate the restart process are described.

16

1.4 Background

1. Choosing the frame size used to extract entropy from the 5G spectrum
at random.

2. Using the previous frame size that has been found using optimization
to extract entropy from the 5G spectrum.

3. Running the optimization algorithm to find a new optimal frame size
to extract entropy from the 5G spectrum.

Out of the three methods for restarting in list 3 we have simulated the first
one. We have a limited amount of samples (2016), and we do not have
access to a physical device. Knowing that this may not be the desired way
to generate the data it may still provide information whether using this
noise source is worth looking into. Seeing that if we had a physical tests
rig, we would have chosen method three as it is harder for an attacker to
determine the output of the optimization algorithm than it is to keep an
already discovered value and reusing it.

1.4.4 Numpy

In this thesis we needed to do some array calculations and also have RNGs
that can be seeded from the 5G entropy source. Numpy is a wrapper of a
library implemented in C which makes the runtimes of methods and func-
tions faster. All the different RNGs implemented, from Numpy [10] are
listed and explained briefly below: All the generators provides doubles and
unsigned 32 and 64-bit integers that must be consumed by a Generator
object.

PCG64 Is a 128-bit implementation of O’Neill’s permutation congru-
ential generator.

PCG64XSDM Is a 128-bit implementation of O’Neill’s permutation
congruential generator. Uses a stronger DXSM output function.

MT19937 Mersenne Twister. Not cryptographically secure if one
observes a sufficient amount of iterations. (624) If that is done further
operations can be predicted.

17

1.4 Background

Philox A 64-bit PRNG that uses a counter based design. It is based
on weaker and faster versions of cryptographic functions.

SFC64 Is a 256-bit implementation of Chris Doty-Humphrey’s Small
Fast Chaotic PRNG. Distinct seeds will not run into each other for at
least 264 iterations.

These PRNGs are not necessarily cryptographically secure, but if they are
reseeded and input an entropy source often enough, predicting further out-
comes becomes improbable. "An RBG that always has access to an entropy
source and (when working properly) produces output bitstrings that have
full entropy. Often called a True Random Number (or Bit) Generator.
(Contrast with a deterministic random bit generator)." [7] This definition
can be stated as such, because many RNGs that in itself are not secure.
May only be misused if enough random numbers are generated with the
same seed. Thus if we always reseed the RNG with a source that has high
entropy. To cryptanalyze the data, or find a way to replicate or predict
future numbers would require an unlikely amount of resources. Addition-
ally if the method for producing the seed was discovered by an attacker, it
would be improbable for the attacker to discover the seed value.

Even though using PRNGs with an always available entropy source, may
make them secure enough. Tests were run on a different set of PRNGs that
are cryptographically-based. Although they are cryptographically based it
is only stated that SPECK128 is suitable for usage in encryption. These are
all implemented in RandomGen [27] and the RandomGen package synergies
well with Numpy.

AESCounter A 64-bit PRNG that use a counter-based design based
on AES-128.

ChaCha A 64-bit PRNG that use a counter-based design based on
the ChaCha cipher.

HC128 Developed by Hongjun Wu. [32] Produces a keystream suit-
able for encryption. States that it is the fastest software-only encryp-
tion quality bit generator.

SPECK128 A 64-bit PRNG that use a counter-based design based
on the SPECK-128 cryptographic function.

18

1.4 Background

ThreeFry A 32 or 64-bit PRNG that uses a counter based design,
based on cryptographic functions.

1.4.5 Multi-objective optimization and NSGA2

Multi-objective optimization (MOO) is a method used to find the best pos-
sible solution to problems with multiple objectives. It is a part of multi-
criteria decision-making. In this study, MOO was used to find the optimal
entropy source in a digital image. The optimal solution was based on all
fifteen tests from the NIST test suite. However, decision-making becomes
challenging when multiple essential objectives need to be optimized. MOO
may result in complex non-polynomial problems, so an approximation of
the solution is necessary.

Solutions from a multi-objective optimization are called nondominated or
Pareto optimal. A pareto optimal solution is a solution where the values
of any single objective cannot get better without the value from another
objective getting worse.

There are several options for implementing MOO and NSGA2 s.a: Pymoo,
Gurobi, Pyomo, PulP, etc. Out of these Pymoo was found to be the best fit.
Using Gurobi requires a license, they do provide academic licenses for a sin-
gle user and single computer, but that reduces the scalability. Pyomo and
PulP was not chosen for the reason that it requires a more detailed knowl-
edge to implement NSGA2. In pymoo NSGA2 is already implemented, all
that needs to be defined is the specific problem that is to be solved.

For this thesis pymoo [4] was chosen to implement multi objective optimiza-
tion.

NSGA2 (Non-dominated Sorting Genetic Algorithm 2) is a widely used
algorithm for solving multi-objective optimization problems. NSGA2 main-
tains a population of solutions and uses a non-dominated sorting approach
to evaluate the quality of the solutions. The algorithm uses a crowding dis-
tance operator to support diversity in the population and avoid premature
convergence to a local optimum. NSGA2 effectively solves many real-world
problems, such as multi-objective engineering design and financial portfolio
optimization.

19

1.4 Background

In NSGA2, the optimization problem is represented as follows:

min
x

F (x) = (f1(x), f2(x), ..., fk(x)), (1.2)

where x is the decision variable vector, and F (x) is the vector of the objec-
tive functions f1(x), f2(x), ..., fk(x). The objective functions are subject to
constraints g(x) ≤ 0, and h(x) = 0, where g(x) and h(x) are the inequality
and equality constraints, respectively.

NSGA2 uses a non-dominated sorting approach to evaluate the quality of
the solutions. The non-dominated sorting approach divides the population
into different fronts, where the first front contains the non-dominated so-
lutions. The crowding distance operator is used to maintain diversity in
the population and avoid premature convergence to a local optimum. The
crowding distance operator measures the density of the solutions in a front,
and it is used to select the solutions for the next generation.

Crowding distance in NSGA2 is the Manhattan distance in the objective
space. Manhattan distance is the shortest distance between two points that
is possible to follow.

Figure 1.2: © Kartverket [13]: Section of a map to illustrate the manhattan
distance.

As can be seen in figure 1.2 the black line is the shortest, but the red line
would be the Manhattan distance between point A and B.

NSGA2 has several advantages over other algorithms for multi-objective

20

1.4 Background

optimization. It is easy to implement and has a fast convergence rate. It
also provides a good balance between exploration and exploitation, which
is essential for finding a diverse set of solutions.

1.4.6 Related works

Generating random numbers is an essential aspect of securing communi-
cation protocols. Various methods have been suggested in the literature
to produce random numbers, such as hardware-based, software-based, and
hybrid solutions.

Hardware-based methods are called random number generation techniques
based on physical phenomena like thermal noise [15], quantum tunnelling
[30], and radioactive decay [24]. These methods have been used for many
years and are known for their ability to generate random numbers with high
entropy. However, they are expensive and require specialized hardware,
which gives them less scalability.

Software-based random number generation techniques rely on algorithms to
generate random numbers. These algorithms utilize pseudo-random number
generators (PRNGs) to generate random numbers based on a seed value.
While these techniques are cost-effective and scalable, their randomness
may be predictable and vulnerable to cryptographic attacks.

Hybrid solutions combine hardware-based and software-based solutions to
generate random numbers. These solutions typically use hardware-based
sources of entropy to seed software-based PRNGs, which generate random
numbers. The hybrid approach provides the best of both worlds, ensuring
high entropy generation capabilities and scalability.

Rădoi et al. [26] propose a reconfigurable hardware approach for generat-
ing random numbers in wireless sensor nodes, which is crucial for ensuring
secure communication. The authors perform a randomness analysis of the
generated data using the The National Institute of Standards and Technol-
ogy (NIST) methodology to validate their proposed design. They show that
using a Field Programmable Gate Array (FPGA) design that utilizes data
collected from onboard sensors can lead to faster and more versatile ran-
dom number generation, despite consuming more energy than traditional

21

1.4 Background

microcontrollers.

Xu et al. [33] proposed an efficient authentication mechanism for smart,
collaborative networking on high-speed trains (SCN-R), which relies on a
novel chaotic, RNG design based on two logistic maps. The proposed RNG
is used to generate and validate one-time passwords (OTPs) of different
lengths to support different authentication applications. The authors ad-
dress the authentication vulnerabilities caused by fast-moving objects by
introducing this efficient authentication mechanism that demonstrates fea-
sibility and effectiveness under real-world conditions.

Hossain et al. [11] proposed a randomized pulse-based data encoding scheme
for secure and high-speed wireless communication. They encode 4-bit data
as a symbol using 16 distinct orthogonal pulses and modulate the bit stream
randomly to ensure security. The pulses are randomized using Ferroelec-
tric Random Access Memory (FRAM)-based high-quality random num-
bers. The proposed scheme provides physical-layer security and supports
M = 2k ∗ k bits data by N p = 2k different orthogonal pulses. Using MAT-
LAB simulation, the authors verified the power requirements of individual
pulses defined by the Federal Communication Commission (FCC). The re-
sults demonstrate the feasibility and effectiveness of the proposed scheme
for secure wireless data communication.

A number of TRNGs today are DRAM based, Khaled Humood et al. [12]
propose a novel approach based on controlling the word line voltage supply
part of the DRAM chip during random number mode. The results are
considered a milestone towards low cost and high effecient secure hardware
for IoT applications. Their method provide random numbers with no post
processing that passes the complete NIST STS.

Bikram Paul et al. [25] proposes two PRNGs: BluXor and MPCG. Both
made by combining/modifiying Blum-Blum-Shub(BBS) with Xorshift and
Permuted Congruential PRNGs respectively. These are tested against most
of the tests in the NIST STS and passes the tests run.

Sanu K. Mathew et al. [16] has created µRNG, a TRNG that is created
for IoT and wearable platforms. It compines the entropy of multiple inde-
pendent sources to generate an output bitstream. Three independent self-
calibrating all-digital entropy sources, coupled with XOR feedback shift-

22

1.4 Background

register, with low energy consumption and high throughput of numbers.
This passes all tests in the NIST STS, and has a lower bound min-entropy
greater than 0.99.

Yingnan Sun et al. [29] proposes using outputs of Inertial Measurement
Units (IMU) worn by users as an entropy source. Their method divides these
signals into gait cycles and generete bits by comparing energy differences
between sensor signals in a gait cycle and the averaged IMU signals in
multiple gait cycles. The numbers generated was testen on the NIST-STS
and passed the tests run.

The requirement for secure and low-cost encryption techniques is essen-
tial in the Internet of Things (IoT) devices. Ansari et al. [2] a low-cost
True Random Number Generator (TRNG) circuit that can generate ran-
dom keys for encryption using non-deterministic signals from sensors. The
proposed TRNG employs a simple hardware setup consisting of an Arduino
Uno board, LDR sensor, and sound sensor. The processing algorithm uses
a modular equation and EXOR logic. The generated random numbers pass
all the randomness tests given in the NIST-STS test. The proposed TRNG
can be used in applications such as cryptocurrency wallets, video games,
and other IoT devices requiring true random numbers. This work provides
a simple and cost-effective solution for generating secure random numbers.
Another study proposed a light-weight implementation of a previously pro-
posed latch-based TRNG using FPGA while maintaining the quality of the
generated random numbers [8]. The proposed TRNG with only 16 latches
passes the NIST SP 800-22 test suite by accumulating the generated ran-
dom numbers fifteen times with an XOR operation for each output word. In
contrast, the original TRNG required 248 latches. The paper highlights the
improvement in the quality of the random sequence by XOR-ing temporally
interleaved series of bits.

Researchers have recently investigated various methods of generating ran-
dom numbers using wireless communication channels, such as Wi-Fi and cel-
lular networks. These techniques utilize the inherent variability of wireless
communication channels to generate random numbers. One such approach
is using channel state information (CSI) to generate random numbers.

23

1.5 Outline

1.5 Outline

A brief outline of main chapters in the thesis and contributions of the thesis.

The contributions of the thesis summarized are the following:

• Giving an example of how 5G RF signals can be used to improve
security of IoT devices

• Providing data, and test results as well as an analysis of the data.

• Show that usage of an optimization algorithm for finding an optimal
entropy source provides good results.

• Displays a list of several runs of the results with different RNGs to
be analyzed side by side, as well as compared to results from other
relevant works.

Chapter 1: Introduction Explains the general ideas behind the thesis
and background for why certain technologies have been chosen.
Chapter 2: System model and architecture Describes the system ar-
chitecture and model with tables and figures.
Chapter 3: Results All results from experiments done in the thesis are
displayed using tables, plots and figures.
Chapter 4: Discussion The results from experiments in the results chap-
ter will be discussed with pros and cons. In addition an outline of a the-
oretical solution to how the results can be used in a real system will be
discussed.
Chapter 5: Conclusion A conclusion to wrap up the report as a whole
as well as a section on future works.

24

Chapter 2

System model and
methodology

Figure 2.1 illustrates the proposed system model. Pilot signals are collected
from the wireless communication channel and are used to compute the mag-
nitude of the selected frequency band. The magnitude values are normalized
and used to generate a spectrogram, from which the entropy is estimated.
The entropy values are then used as a seed to generate a sequence of random
numbers.

Figure 2.1: Architecture of 5G SRNG

25

System model and methodology

Once a spectrogram is generated, the next step is to extract entropy from
the entropy source. This involves measuring the unpredictability of the
magnitude of the spectrum, which is used to create a sequence of random
numbers. These numbers must pass multiple randomness tests to ensure
they are high quality and suitable for cryptographic protocols. The pro-
posed algorithm 1 provides a secure and efficient way of generating random
numbers in IoT devices by utilizing the pilot signals already available in
wireless communication systems. This approach can significantly enhance
the security of cryptographic protocols by providing high-quality random
numbers to generate secret keys.

Figure 2.1 portrays a IoT light bulb as a IoT device that is to implement the
5G spectrum extraction method. In a live system this could have been any
5G enabled IoT device. Noise sources that can be a multitude of things that
affect the 5G Radio spectrum that is to be extracted such as; people with
5G cellphones walking by, weather conditions and other wireless devices
within the same spectrum.

As all physical devices were emulated using the 5G toolbox in Matlab, the
architecture model has been modified accordingly. Figure 2.2 depicts the
complete architecture with the changes made from the original architecture
shown in Figure 2.1.

Figure 2.2: Architecture of the system for the thesis.

26

2.1 Methodology

2.0.1 Computer specifications

The computer used for the experiments is a 5 years old laptop with the
following specifications:

Component Make/Model
Operating system 64-bit Windows 10 Home
Processor Intel(R) Core(TM) i5-7300HQ CPU @

2.50GHz
Memory 16 GB RAM
Graphics NVIDIA GeForce GTX 1050
Storage HGST HTS721010A9E630: 1 TB

7200RPM

Table 2.1: Specifications for the computer used to run experiments

2.1 Methodology

In summary it can be explained that signals from the 5G Radio spectrum has
been generated, and then converted to images. These images are further
conditioned to increase the randomness. The conditioned images is used
to seed a random number generator that is used in a optimization using
NSGA2 to optimize the results from a NIST test suite. A brief analysis of
the results are done using plots and algorithms supplied by Pymoo.

The next subsections show how the thesis have been executed in general,
by following the steps from figure 2.2.

Spectrum generation

The dataset used was synthesized using the MATLAB 5G Toolbox. This
dataset consisted of frames that were 40 milliseconds long, and each frame
was randomly shifted in the frequency domain. It was assumed that the 5G
signals were within the specified frequency band range, and the network’s
performance was evaluated based on the varying random bands. The sam-
pling rate of 61.44 MHz was considered sufficient to process the 5G signals

27

2.1 Methodology

effectively. To generate the corresponding RGB spectrogram images of size
169 × 369, the complex baseband signals were transformed using a Fast
Fourier Transform (FFT) with a length of 4096.

The parameters for generating all the data is given in tables 2.2, 2.3 and
2.4.

Although there exist other simulation software for 5G, this package was cho-
sen as it consisted of all the data necessary and it was ready for use. It has
also been used in a wide range of other papers. A search on scholar.google.com
with the query: 5g simulation "matlab" gives over 2000 results for articles
published after 2023 (59 000 for anytime).

Creating all of the data for the thesis could also have been done using a
physical setup, although it was not a feasible approach at the current state
of research.

5G NR Parameter Value Units
Bandwidth [10 15 20 25 30 40 50] MHz
Sub-Carrier Spacing (SCS) [15 30] kHz
SSB Period [20] ms

Table 2.2: 5G Near Radio Parameters

Channel Parameter Value] Units
SNR [40 50 100] dB
Doppler [0 10 500] Hz

Table 2.3: Channel parameters for 5G

Generation start data Value Units
Number of Frames 2048 Integer
Image size 612 x 14 integer x integer
Number of subframes 40 correspond to ms
Sample rate 61.44 MHz

Table 2.4: Parameters for the generation of data

28

2.1 Methodology

Converting spectrum data to images

The spectrum data was converted into images using the matplotlib package
in Python. The data was split into train and validation datasets, with
2016/32 data points allocated to each. The train data was used for all
further tests as they relied on most of the generated images. To ensure that
the resulting images did not contain large white spots, the data was plotted
and zoomed in before conversion to images, which were then saved in PNG
format. The resulting images had a size of 169× 369 pixels.

To use these images as an entropy source, they must be loaded into an array,
from which a selected frame size is used for conditioning the data to create
the entropy source. Figure 3.1 shows example images.

Conditioning entropy based on image

The proposed 5G-SRNG algorithm by Catak et al. previous work [5] is
utilized to condition the extracted entropy from the spectrogram using a
specified frame size.

Algorithm 1 Proposed 5G-SRNG [35]
Require: 5G Spectrogram : D ∈ Rmxn, framesize : c,k
1: xstart, ystart ← random(0,m− c), random(0,n− k)
2: xend = min(xstart + c)
3: xend = min(ystart + k)
4: frame← D[xstart : xend, ystart : yend].f latten()
5: seed← 0 ▷ Initialize seed with 32-bit float representation of 0
6: for t ∈ frame do
7: seed← seed⊕ t ▷ XOR operator
8: seed← seed⊕ seed << 13 ▷ Shift-left the previous seed value 13

bits, then perform XOR operator
9: seed← seed⊕ seed >> 17 ▷ Right-right the previous seed value 17

bits, then perform XOR operator
10: seed← seed⊕ seed << 5 ▷ Shift-left the previous seed value 5 bits,

then perform XOR operator
11: end for
12: return seed

29

2.1 Methodology

Algorithm 1 shows the pseudocode of the proposed 5G-SRNG. Here m was
defined as the size of the 5G Spectrogram’s (D) rows, n as the size of the
columns and frame as a smaller D. Both xstart, ystart was defined as two
starting points to select the random part (i.e. convolution) of D. Both
xend, yend was defined as two endpoints of the selected frame. xstart, xend,
ystart and yend are random entries of D. Here frame was defined as a
smaller fixed-size D from 5G Spectrogram. frame contains c× k elements
(i.e. pixels) from D with c ≥ 1 and k ≥ 1. framei,j is the substantial
single element (i.e. pixel) of frame. seed is the main contribution of
5G-SRNG. The iterations was defined (t) as the loop through the selected
frame’s pixels. ⊕ is a simple operator. << and >> represent the left
and right shifts, respectively. seed contains the total value of the XORed
frame’s pixels. c and k are the variables we can control the randomness
of the output by changing the size of c and k. Increasing the size of c
and k will increase the number of elements in frame, possibly increasing
the output’s entropy. The entropy of the output can be measured using
standard randomness tests, such as the NIST Statistical Test Suite. If the
output passes these tests, it can be used as a reliable source of random
numbers in cryptographic protocols.

The proposed 5G-SRNG algorithm could be implemented on IoT devices
with minimal hardware requirements. The algorithm uses only basic arith-
metic and logical operations, which can be efficiently implemented using
hardware or software. The algorithm also requires minimal memory, as it
only needs to store a single value (i.e., seed) during its execution.

Given a spectrogram D with dimensions m × n, a frame size c, k, and a
randomly selected frame frame of size c× k, we can represent the starting
position (xstart, ystart) as two random variables X and Y , respectively, with
uniform distributions over the ranges [0,m− c] and [0, n− k], respectively.

Then, we can represent the ending positions xend and yend as:

xend = xstart + c

yend = ystart + k
(2.1)

Next, we can represent the selected frame frame as a one-dimensional array
of size c× k, which can be flattened into a vector f of length ck. Then, we

30

2.1 Methodology

can represent the seed value as a 32-bit float variable S, which is initialized
to zero. Finally, we can represent the iteration over the frame as a loop
that iterates through the elements of the vector f. For each element t in f,
we can update the seed value S as follows:

S ← S⊕ t S ← S⊕(S << 13) S ← S⊕(S >> 17) S ← S⊕(S << 5) After
the loop completes, the final value of the seed S is returned as the generated
random number. Note: ⊕ denotes the bitwise XOR operation, << denotes
the left-shift operation, and >> denotes the right-shift operation.

The complexity of the algorithm is O(c × k), as it performs one iteration
for each element in the flattened frame. The memory requirements are
minimal, as only a single value (the seed) needs to be stored during the
execution of the algorithm.

The execution environment is shown in Table 2.1.

Generate Random numbers

In this thesis, a total of ten types of RNGs and CSPRNGs were employed
to generate random numbers using a conditioned seed. Specifically, we used
PCG64, PCG64XSDM, MT19937, Philox, SFC64, ChaCha, AESCounter, HC128,
SPECK128, and ThreeFry.

The algorithm for generating random numbers is presented in Algorithm 2,
which ensures that the generated data fits the test requirements and is op-
timized for use with the pymoo optimization framework. The numberOfEle-
ments and size is chosen to satisfy the minimum requirement of 1’000’000
numbers for the Universal statistical test in the NIST test suite. Specifically
it is is the Universal statistical test that requires at least 1’000’000 numbers
for the test to run. The generated numbers were tested using the NIST SP
800-22 test suite with a total of ten distinct PRNGs and CSPRNGs, ensur-
ing a comprehensive evaluation of the randomness of the generated data.
Including Line 9 in Algorithm 2 is necessary to meet the test requirements
and optimize the generated data for use with pymoo.

31

2.1 Methodology

Algorithm 2 Random number generation
Require: Generator and seed
1: Generator ← Generator(SeedSequence(seed)) ▷ Initialize the chosen

generator with the seed.
2: size← 2012
3: arr← []
4: for i ∈ size do
5: arr.extend(Generator.generate(low, high, numberOfElements))

6: bin_arr← []
7: for i ∈ arr do
8: bin_arr.append(Binary(String(arr[i])))

9: bin_data ← "".join(bin_arr)
10: return bin_data

Optimization

To find a near optimal frame size for the entropy extraction, NSGA2 opti-
mization was used. The NSGA2 algorithm and problem parameters are cru-
cial in defining the optimization problem and conducting the optimization
process. For an optimization problem the problem parameters define the
variables, objectives, and constraints. Mutation, crossover, and sampling
parameters determine how the population evolves, while the termination
criterion specifies when the optimization process should stop.

NSGA2 Problem Pa-
rameter

Value

Sampling Integer random sampling
n_var 2
n_obj 16
n_ieq_constr 16
xl [1,1]
xu [369,169]

Table 2.5: Parameters for the NSGA2 optimization problem.

Table 2.5 provides the parameters for defining the problem for optimization
with pymoo. In this case, the NSGA2 algorithm was used to optimize
the frame size of the image, which is a discrete variable problem. The

32

2.1 Methodology

problem has two variables, x and y, representing the frame size of the image.
The constraints were defined based on the requirement that the results be
more significant than 0.01 and were reflected in the number of inequality
constraints, n_ieq_constr. The goal is to maximize all 16 objectives in
the NIST test suite, which were included in the problem as objectives to
be maximized. Specifically for pymoo which only has a minimize function
objectives needed to be multiplied by −1.

It is essential to set a termination criterion for an optimization algorithm
to avoid running indefinitely and unnecessarily consuming computational
resources. The termination criterion specifies when the algorithm should
stop searching for a better solution based on specific criteria, such as a
fixed number of iterations, reaching a certain threshold for the objective
function, or when the change in the solution has become small enough. All
of the default criteria are displayed in table 2.6.

Criteria definition Value
xtol Movement in the design space 1e-8
cvtol convergence in the constraint 1e-6
ftol convergence in the objective space 0.0025
period the number of generations part of

the sliding window
30

n_max_gen max number of generations 1000
n_max_evals max number of evaluations 100000

Table 2.6: Default NSGA2 termination criteria

In this case, the number of generations was set as the termination criterion
for the NSGA2 optimization algorithm. This means the algorithm stopped
after generating a fixed number of candidate solutions (three in this case).

Parameters used for the NSGA2 algorithm and problem definition were care-
fully selected based on the requirements of the problem and the example
provided by Pymoo. The termination criterion was set to three generations
as a test criterion, and the population size and number of offspring were
determined based on the variables included in each generation. The mu-
tation, crossover, and sampling parameters were also determined based on
the example provided by Pymoo for discrete variable problems.

To ensure the feasibility and effectiveness of the optimization, the objective

33

2.1 Methodology

NSGA2 Algorithm Pa-
rameter

Value

Population size 3
Number of offspring 3
Number of generations 3

Table 2.7: Parameters for the NSGA2 optimization algorithm.

function values were constrained within the range of the image size produced
by the method, which was 169× 369. The lower and upper bounds for the
variables were determined by the variables xl and xu, respectively. Notably,
the optimization required that the first x value in the array had a boundary
of 369, while the second x value had a boundary of 169 to enable the
optimization to function accurately.

Furthermore, specifically for the random excursion test from the NIST 800-
22 test suite, the inequality constraints was defined based on the average
results of all subtests, which were required to be greater than 0.01.

NIST Test suite

The NIST test suite is a widely-used benchmark for evaluating the perfor-
mance of cryptographic hash functions. This thesis implemented the suite
using the code base developed by Steve Ang [1]. The code base provides
two distinct methods for executing the tests: one involving a graphical user
interface (GUI) and the other requiring a command-line interface. To carry
out the optimization, the latter method was employed, and only the tests
were imported into the objective functions, while other features of the code
base were not utilized. This approach enabled the researcher to streamline
the optimization process and focus solely on the objectives of interest with-
out any unnecessary overhead. Using the NIST STS in this thesis ensured
that the optimized image size would have improved cryptographic proper-
ties, thereby contributing to the development of more secure cryptographic
systems.

34

2.1 Methodology

Preliminary tests

To ensure the effectiveness and accuracy of the optimization process, pre-
liminary tests were conducted to identify suitable optimization parameters
and assess the 5G spectrum’s suitability as an entropy source. The NumPy
package’s default random number generator, PCG64, was utilized for these
tests, with entropy obtained from the 5G spectrum serving as the seed. A
total of 2012 images were processed during the tests, with each image pro-
ducing 2048 random numbers. In total, 4, 120, 576 random numbers were
generated and evaluated, providing a robust parameter optimization and
testing dataset.

Furthermore it follows a few steps:

1. Create numbers for eight (8) different frame sizes. (10 × 10, 20 ×
20, · · · , 80× 80)

2. Same numbers in a separate file for each frame size.

3. Run the NIST test suite on each file, and save results.

4. Compare results from each single test with all other frame sizes.

• Save the top result in an array

5. Create an array of the total average of all results for each frame size.

6. Return an array of the top results, and the total averages.

Analysis

The optimization results were analyzed using the open-source optimization
library pymoo [4]. The solutions obtained through the optimization process
represent a set of non-dominated solutions, adhering to the principle that
no objective can be improved without sacrificing another objective within
the solution set. Pareto optimality was employed to evaluate these non-
dominated solutions generated by the optimization.

35

2.1 Methodology

Pareto fronts, which depict the optimal non-dominated solutions, are of-
ten utilized to identify the most favourable solutions. However, since the
exact Pareto front for the specific problem under investigation is currently
unknown, it must be incorporated into the graphs presented in this thesis.

To further explore and evaluate the generated solutions, two methods were
employed based on the getting started guide from the Pymoo library:

ASF: Augmented Scalarization Function [4]

– A decomposition method: transforms multi objective problems
into many single objective optimization problems.

Pseudo weights. [4]

– A method that calculates the normalized distance to the worst
solution regarding each objective.

The augmented ϵ-constraint method is a multi-objective optimization tech-
nique that involves fixing one of the objectives as the primary objective
and treating the rest as constraints. The ϵ value represents the amount
by which the objective function can be violated for the constraint to be
satisfied. This method was used to analyze the non-dominated solutions
obtained from the NSGA2 algorithm by fixing each of the 16 objectives as
the primary objective and treating the rest as constraints.

On the other hand, the Pseudo-weights approach is a multi-objective op-
timization technique that involves assigning weights to each objective and
transforming the problem into a single-objective optimization problem. The
transformation is achieved by minimizing a weighted sum of the objectives,
where the weights assigned to each objective reflect their relative impor-
tance.

This thesis used the Pseudo-weights approach to obtain a single optimized
solution that best balances all 16 objectives. Equal weights were assigned to
all objectives in this thesis since there was no prior knowledge or indication
of any objective being more or less important than the others.

36

2.2 Design of the thesis

2.2 Design of the thesis

This thesis has been sectioned into four distinct sections. The first sec-
tion focuses on the data generation process. The second section involves
the application of a previously developed implementation to condition the
data. In the third section, the conditioned data is input to an optimization
algorithm to determine the optimal frame size. Finally, the fourth section
presents a thorough analysis of both the data and the results obtained from
the optimization tests.

Code for the thesis is in a github repository. 1

1All the code for this thesis can be found in a github repository in Appendix A

37

Chapter 3

Results

In this chapter, we will present all the results obtained from the optimization
process, preliminary experiments, and their comparisons.

3.1 Pre-optimization

Pre-optimization results were conducted as a preliminary evaluation of the
optimization problem. The main goal was verify the correctness of the im-
plementation and to explore possible alternative solutions. Moreover, the
pre-optimization results helped select appropriate parameters and imple-
mentations for the optimization algorithm. These preliminary tests pro-
vided valuable insight into the suitability of the 5G spectrum as an entropy
source and the ability to generate random numbers from it. The results from
the pre-optimization tests served as a baseline for comparing and evaluating
the optimization results.

3.1.1 Comparison of NIST test suites

As part of the preliminary test, a test run was conducted using two distinct
implementations of the NIST 800-22 test suite. The aim of running this

38

3.1 Pre-optimization

test was done in order to provide insight into which implementation to use
for optimization, hence execution time was the main metric.

The test set consisted of eight .txt files consisting of approximately 4.1
million 9 bit numbers. The test numbers were generated using frame sizes
in the range of: 10x10→ 80x80.

In list 3.1.1 names of the packages and execution time results are relayed.

• NistRng by Luca Pasqualini - SAILab - University of Siena [22]

– Execution time: 8 minutes and 54.8 seconds.

• NIST Randomness Testsuit by Steven Kho Ang [1]

– Execution time: 12 hours, 55 minutes.

Conducting the same operations using these distinct implementations re-
sulted in execution times with a large difference. To ensure that differences
in execution times were heavily anchored in the implementations itself all
timings related to preliminaries were exempted.

A curiosity for the comparison of these test results is that when the package
by Steven Kho Ang ran only a single of the 8 test files fail, but when the
package by Luca Pasqualini ran all 8 test files failed.

39

https://github.com/InsaneMonster/NistRng
https://github.com/stevenang/randomness_testsuite

3.1 Pre-optimization

Preliminary tests

During the preliminary tests, all eight test files from the NIST STS was
evaluated using an average over all tests and comparing the performance of
different frame sizes for each test. It was aimed to verify the code’s correct-
ness and explore possible alternative solutions to the problem. Additionally,
these results served as a basis for selecting suitable parameters and imple-
mentations for the optimization algorithm. It was found that only the tests
with a frame size of 70 × 70 failed, and specifically, these failures were ob-
served in the Random Excursion Variant test. Table 3.1 summarizes the
experimental results. The results on display for each row is: tests number
from the NIST SP 800-22 Rev 1a test suite, the frame size with the highest
value results (0 - 1) and the value.

NIST test num-
ber

Frame
Size

Value

1 60× 60 0.978
2 10× 10 0.950
3 10× 10 0.935
4 70× 70 0.991
5 30× 30 0.831
6 60× 60 0.819
7 50× 50 0.965
8 70× 70 0.989
9 40× 40 0.998
10 80× 80 0.894
11 60× 60 0.919
12 40× 40 0.807
13 20× 20 0.816
14 10× 10 0.462
15 50× 50 0.845

Table 3.1: Results for each test from the preliminary test run. Test numbers can
be found in the list of the NIST test suite in chapter 1.4.2.

The highest average over all the test for a single frame size was 60x60 with
the average at: 0.6404969122334114.

40

3.2 Execution times of the Experiments

3.1.2 Shannon’s entropy

Shannon’s entropy is a measure of uncertainty or randomness of a ran-
dom variable and was first introduced in information theory. In this thesis,
Shannon’s entropy was employed in order to evaluate the quality of the
proposed entropy source. The efficiency of the entropy source was inves-
tigated by testing four distinct RNGs with and without seeding from the
5G-SRNG. For each RNG, 200 numbers were generated in the range of 0 to
32. The frequency distribution of each number was then recorded in tables,
and Shannon’s entropy was calculated based on the proportion of each num-
ber’s count to the total count. The maximum value of Shannon’s entropy in
this setup is log2(32) = 5, which is the upper limit for the expected entropy.

The experimental results for the four different RNGs are presented in Ta-
ble 3.2. Here it is shown that the Shannon entropy with a seed from the
suggested method using 5G is akin to results from known secure random
number generators such as windows SystemRandom.

RNG and parameters Value
Numpy random (No seed) 4.926832205583327
Windows SystemRandom 4.8836097014479884
ChaCha and 5G SRNG
seed

4.919273194563815

PCG64 and 5G SRNG seed 4.8494091755251345

Table 3.2: Results from calculating Shannons entropy using different RNGs and
seeds.

3.2 Execution times of the Experiments

All results for execution times were recorded and are displayed in this sec-
tion.

41

3.2 Execution times of the Experiments

3.2.1 Image generation

Creating 2016 images using method provided in the github repository in
appendix A took 15 hours 11 minutes and 23.4 seconds. The creation of a
single image took approximately 27 seconds.

All images was generated with an aspect of 0.05. Setting the aspect ratio
to 0.05 in this context for the matplotlib package in Python translates to
1 unit of y-data being 0.05 times the displayed size of 1 unit of x-data. A
initially square pixel would end up being 1 pixel high and approximately 20
pixels wide.

An example of the differences of these three aspects are presented in figure
3.1. In figure 3.1b and figure 3.1c pixels that originally also appear in
figure 3.1a have been expanded in a single direction (width). They have
been expanded by a factor of 0.05 and a factor of approximately 1

62 . This
expanding may alter the amount of entropy an image provides.

(a) Aspect set to square.
Image size: 8× 369(W ×H)

(b) Aspect set to 0.05. Im-
age size: 169× 369(W ×H)

(c) Aspect set to auto. Im-
age size: 496× 369(W ×H)

Figure 3.1: Images with different aspects

3.2.2 Entropy generation

Some experiments using a version of the code to get the entropy source
was run to create a large number of entropies. Running this on a standard
free bundle on google Colab indicated that using matplotlib for reading the
images would result in approximately 100 it/s and using cv2 it resulted in
130 it/s.

To generate a dataset for the NIST SP800-90B test suite at least 1, 000, 000

42

3.2 Execution times of the Experiments

samples was required. That would lead to a runtime of over two (2) hours
for generating all samples using this approach. Thus tests were conducted
to find the limits of the current conditioning algorithm. The tests used
twenty (20) distinct images, and ran in two instances, one with images
with a minimum frame size (1,1) and the other with a maximum frame size
(369,169). The execution times are presented in the list below:

• Execution times are for an experiment with conditioning 20 different
images.

• Best case (c, k) = (1, 1) : 0− 0.5 seconds

• Worst case (c, k) = (369, 169) : 24 minutes and 12.4 seconds

3.2.3 RNG execution times

The total execution times for NSGA2 optimization with parameters from
table 2.7 and table 2.5 are presented in table 3.3. At the left the ten (10)
distinct RNGs are named and the execution time for each are presented.
The latter five (5) RNGs in table 3.3 are all RNGs based on cryptographic
algorithms.

All the non cryptographically based algorithms had a runtime of approxi-
mately 5 hours and 15 minutes, whereas the cryptographically based took
approximately 7 hours and 30 minutes.

43

3.3 NIST SP 800-22 Rev. 1a results

RNG Execution time (hh:mm:ss)
PCG64 05:16:05
PCG64XSDM 05:14:34
MT19937 05:14:47
Philox 05:22:11
SFC64 05:09:56
ChaCha 07:34:10
AESCounter 07:33:58
HC128 07:50:37
SPECK128 07:29:33
ThreeFry 07:28:41

Table 3.3: Execution times for the optimization using different RNGs.

3.3 NIST SP 800-22 Rev. 1a results

The NIST SP 800-22 Rev 1a test suite and optimization algorithms were
employed to evaluate the performance of the RNGs in this thesis. The
tests were conducted for a single test (Spectral) and the entire test suite.
Execution times for each RNG using the complete test suite are presented
in Table 3.3. A total of 60 runs using the optimization algorithm were
conducted, and all tests were passed in each run. During the preliminary
tests, only one out of the eight tests failed. Therefore, the overall pass
rate for the entire NIST test suite was 67/68, indicating high reliability and
robustness in the RNGs under consideration.

3.3.1 Comparison

This section presents the combined results of the optimization and prelim-
inary tests, along with comparing the best results obtained using a PRNG
and a CSPRNG with those reported in other research papers. Table 3.4
provides an overview of these results. It is worth noting that the actual
value of one test for SF64 was 0.99687395, but it is presented as 1.00 in the
table.

44

3.3 NIST SP 800-22 Rev. 1a results

Test No. DTRNG [12] BluXor [25] MPCG [29] µRNG [16] RNG IMU [29] SFC64 Philox* ThreeFry SPECK128*
1 0,58 0,51 0,11 0,59 0,02 0,58 0,91 0,84 0,86
2 0,06 0,48 0,04 0,94 0,3 0,81 0,3 0,58 0,98
3 0,59 0,49 0,29 0,27 0,2 0,92 0,73 0,94 0,75
4 0,89 0,44 0,06 0,68 0,78 0,68 0,74 0,87 0,58
5 0,47 0,44 0,15 0,29 0,88 0,8 0,87 0,87 0,94
6 0,85 0,46 0,42 0,59 0,12 1 0,82 0,9 0,76
7 0,59 0,8 0,01 0,65 0,54 0,98 0,8 0,68 0,25
8 0,56 0,55 0,32 0,09 0,85 0,32 0,16 0,33 0,38
9 0,28 0,45 0,24 0,11 0,74 0,94 0,29 0,97 0,63
10 0,66 0,54 0,22 0,36 0,38 0,63 0,79 0,74 0,18
11 0,25 0,5 0,03 0,07 0,68 0,5 0,44 0,68 0,9
12 0,46 - - 0,27 0,42 0,67 0,78 0,21 0,94
13(F) 0,05 0,55 0,07 0,96 0,88 0,7 0,73 0,55 0,88
13(B) 0,17 - - 0,71 0,66 0,72 0,83 0,74 0,72
15 0,61 0,28 0,42 0,35 - 0,42 0,46 0,45 0,55
16 0,79 0,4 0,39 0,48 - 0,52 0,4 0,4 0,42
Execution time: - - - - - 05:09:56 05:34:04 07:28:41 04:56:35

Table 3.4: Comparison of the two best results from tests run compared to results from various research papers. Results have
been rounded to contain 2 significant figures. ∗ uses a modified conditioning method.

Preliminary test vs Optimization

A single run and frame size are selected to compare the performance of
preliminary tests against optimization runs. The results with the best total
average are chosen for both approaches. The optimization approach yields
the highest total average of ≈ 0, 699, while the preliminary tests yield the
highest total average of ≈ 0.641.

Table 3.5 presents the results for each of the 15 tests conducted in both
the preliminary test and optimization approaches. The results show that,
in general, the optimization approach yields higher scores compared to the
preliminary test approach. Specifically, the highest scores achieved by the
optimization approach are 0.9969 (for test 6), 0.9789 (for test 7), and 0.9393
(for test 9), while the highest scores achieved by the preliminary test ap-
proach are 0.9777 (for test 1), 0.9189 (for test 11), and 0.8185 (for test 6).
Overall, the optimization approach yields a higher total average of approx-
imately 0.699 compared to the preliminary test approach, which yields a
total average of approximately 0.641. According to table 3.5 and compar-
ing the two best results against each other we get the following result:

• Optimization: 8 / 15

• Preliminary test: 7 / 15

45

3.4 NIST SP 800-90B Results

NIST test num-
ber

Optimization re-
sults

Preliminary test
results

1 0,57550922 0,97766215
2 0,80669584 0,79911961
3 0,92277767 0,44486678
4 0,68061125 0,78530007
5 0,80478141 0,15645192
6 0,99687395 0,81854581
7 0,97891873 0,48349724
8 0,32135038 0,71522095
9 0,93929601 0,30765173
10 0,63298786 0,45322080
11 0,5046433 0,91889769
12 0,66691474 0,80322810
13 0,70854764 0,69609688
14 0,41786676 0,56532833
15 0,51913499 0,62676566

Table 3.5: Results for each test from the preliminary test run. Test numbers can
be found in the list of the NIST test suite in chapter 1.4.2.

3.4 NIST SP 800-90B Results

Table 3.6 displays the results of various NIST SP 800-90B entropy source
tests, including IID permutation tests, chi-square tests, LRS tests, and
restart tests. These tests evaluate the entropy source’s ability to produce
truly random and unpredictable data that can be utilized for cryptographic
key generation. From the table we can see that all tests have passed, and
moreover that the concluding min-entropy is approximately 0.2136.

Test name Raw entropy Conditioned entropy
IID Permutation tests Pass Pass
Chi square tests Pass Pass
LRS test Pass Pass
Restart Test Pass Pass
Min-Entropy Estimate 0.214516375 0.37823625
Conditioning test h_out 0.2136096580726153692825

Table 3.6: NIST SP 800-90B Entropy source test results

46

3.4 NIST SP 800-90B Results

3.4.1 Comparison of entropy results

A primitive comparison of the results from the NIST SP 800-90B a com-
pression of the data files using CMIX [14] was conducted. Table 3.7 exhibits
the results from both a conditioned dataset and a dataset consisting of raw
data from the entropy source. Results are presented using min-entropy
estimation from both CMIX and NIST SP 800-90B.

Dataset SP800-90B CMIX
Conditioned 0.37823625 0.553125
Raw 0.214516375 0.299875

Table 3.7: Comparison of reported min-entropy for NIST SP 800-90B vs CMIX
compression tool

47

3.5 Generated data

3.5 Generated data

A selection of three sequential images that have been created based on
the 5G RF spectrum data is displayed in presented in figure 3.2. These
three images were chosen to emphasize two noticeable appearances. Where
the first appearance is negative in terms of entropy whereas the second is
positive. The first appearance are visualized by comparing the left image
and the middle image. These two are quite similar in both color and where
the colors appear. Second appearance is how dissimilar both the middle
and left image are compared to the right image. It is these images that we
take a frame of and use in further methods before it is used as a seed to
different RNGs.

Figure 3.2: Images created from the generated data, these images are what is
further used as an entropy source.

48

3.6 Optimization

3.6 Optimization

In the optimization section, the results for a simple Pareto-front and the re-
sults based on ASF and pseudo weights are presented. To evaluate whether
an optimal frame size was found, pymoo code was used to analyze all the
results. Pymoo provided a set of non-dominated solutions, which cannot
be improved in one criterion without worsening another criterion. The
documentation from pymoo’s getting started guide provided the basis for
creating plots and performing multi-criteria decision-making. All results
presented here are present in the excel-sheet in the github repository for
this thesis in appendix A.

3.6.1 ASF, Pareto-front and pseudo weights

The results depicted in Figure 3.3 illustrate the frame sizes obtained from
60 optimization runs. Figure 3.3a presents three different colors: blue,
indicating the frame sizes that were not selected by either ASF or pseudo
weights; orange indicating the ones chosen by ASF; and green, indicating
the ones specified by pseudo weights. In Figure 3.3b, a red color is added
to represent the frame sizes that are the best according to the Pareto-
front. Results in figure 3.3 display all of the frame sizes returned from 60
optimizations runs.

The layers in the plot have the following order where a higher number is
more to the front of the image. (Lies on top of the other layers):

1. Blue: All frame sizes

2. Orange: ASF

3. Green: Pseudo weights

4. Red: Pareto-front

X values range from 0 → 369 and Y values 0 → 169. These represent the
pixels in the images used in optimization.

49

3.6 Optimization

(a) All solutions with ASF in orange and
pseudo Weights in green.

(b) Same plot with Pareto-fronts in red
added to see differences.

Figure 3.3: Scatter plots of frame sizes.

NSGA2 no termination criteria

Running a single test from the test suite took approximately 8 minutes with
3 generations and with no termination criteria set it spent 55 generations,
3 hours 35 minutes and 48 seconds.

50

Chapter 4

Discussion

Results that have been described and displayed in chapter 3 will be reviewed
and analyzed in this chapter. Whether the results are good, and whether
tests have been performed in good environments will be be a part of the
discussion. This chapter means to discuss advantages and disadvantages,
and be truthful to whether the implementations done in this thesis are
acceptable, or if they have improvements that need to be addressed.

Results will be looked at in mostly the same order as they appear in chapter
3.

4.1 Pre-optimization

For the pre-optimization results, they show that different choices could have
been made and different metrics could have presented a change in the con-
clusion. Thoughts on what is good about the way things are done, and
what could have been made better will be described.

51

4.1 Pre-optimization

4.1.1 Comparison of NIST test suites

The two implementations of NIST’s test suite was very different in their
implementation. Thus several parameters could have been changed in order
to better the execution time for either of the two implementations. That
change could have been to optimize the data for either of the tests in some
way. As the data are now, they are most likely better suited for Steven Kho
Ang’s implementation.

Since the execution times between the two implementations had such a large
difference, the choice as to which to use was clear. Although the execution
times could be different with another setup for the computer and data. It
is not very likely that that change would lead to a big enough change in
terms of execution times to alter the conclusion.

Failed tests in Luca Pasqualini’s implementation, may be because the data
was not modified in order to work optimally with this implementation.
In the documentation it states that there are utility functions to pack a
provided sequence of data in 8-bits. Since the data is 9-bits that may have
provided an issue for passing the tests using this implementation. Still
the main reason for not choosing this implemenation was the difference in
execution times.

4.1.2 Preliminary tests

In table 3.1 all the 8 different frame sizes are represented. A single frame
size is represented at most three times and at least once. What can be
deduced from these results?

One deduction from the results is that there seems to be no frame size that
is optimal. Does that mean that it is impossible to find an approximation
to an optimal frame size? Or is the tests executed in a way that makes
improbable to find an optimal frame size? These questions will be answered
in later sections where results from the optimization have been discussed.

Can the average be used as a metric to find the optimal frame size be better.
Is this a metric that has support from the NIST? In SP 800-22 Rev. 1a [20],

52

4.2 Execution times

they give no such number as to say how one can sum up the results from all
tests to compare them to another. Thus it has not been a major inclusion
to the discussion, although it may be an interresting aspect to analyze.

In my opinion the average could be used as a metric, but not alone. If it
were to be combined with several other metrics like the median, the lowest
result, top three and bottom three. Then I think it could provide a simple
guide as to compare one result with another. Why then have not all these
been included in the thesis? Mostly because to compare the results, other
reports or papers would have needed to use the same metrics. Although all
these metrics can be gathered from a table of results if they are provided in
a paper, this has not been prioritized.

4.1.3 Shannon’s entropy

In table 3.2 the results indicate that using an entropy source produced from
the 5G RF is good. Which RNG is used may not matter in order to get a
higher value. Although choosing a different RNG matters for other metrics,
such as whether it is to be used for cryptographic applications or not.

Results for Shannon’s entropy and the average of the results from the NIST’s
test suite are both results that in itself provides little value. Still both of
them provide a larger basis for any conclusion to whether using the 5G radio
spectrum as an entropy source is valid or not.

4.2 Execution times

Whether providing and registering execution times are important, and what
they can be used as a further input to will be discussed in this section.

4.2.1 Images

The documentation for matplotlib states that setting the aspect correct is
relevant for images, since it determines whether a pixel is square or not. In

53

4.2 Execution times

figure 3.1 three different aspects were presented and in both 3.1c and 3.1b
pixels are not square. How this would change the entropy result relies in
different aspects.

In terms of execution time for the conditioning, it would make a difference
with the algorithm presented, because the execution time is O(n × m) a
change in the image size would also be reflected in higher execution times.

Generating images with the method in this thesis took approximately 27
seconds per image. This process most likely has several ways of being
optimized, because in the data generation some images are also generated
and this may be done in a faster and more elegant way. Making the image
generation process faster is most likely beneficial, at least as long as the
quality of generated images are not reduced.

Changing the image generation process would most likely affect the results
from the NIST STS, but how it would change is hard to determine. Most
likely it would lead to a change in the entropy provided by a single image.
Because if a single point of data has been stretched over several pixels the
increase in entropy is most likely equal to zero since no new data has been
introduced. The only difference lies in that a single point of data in the
x direction now exists in approximately 20 more pixels. Hence a change
in the aspect would be an interesting subject to alter and verify if it is a
positive modification. In order to verify this tests run with a new set of
images would be necessary.

4.2.2 Conditioning

Based on the results from chapter 3.2.2, there are improvements that could
be done in terms of execution time. The execution time of the algorithm
could be changed in order to get a execution time that is closer to O(n)
instead of O(n ×m). That would lead to a faster entropy extraction and
reduce time spent waiting for a new entropy source.

What then would a change in the algorithm to reduce the execution time
do to the entropy? If it would lead to the entropy being not good enough to
pass the tests, then a decrease in execution times would not be beneficial.
Is it possible that a change that reduces execution times also increases or

54

4.2 Execution times

at least not reduces the entropy such that it is not useful anymore? If we
imagine a Rubik’s cube that is completed as a start, and that there are no
known algorithms for solving it. Whether ten or a thousand permutations
are done to it before you start solving it is not essential to the entropy.

All this would only be possible if the starting point is actually a known
position, which is unlikely when using the 5G RF spectrum because these
images can be extracted with very low intervals (40 ms for this thesis), and
each image contains slight variations. In other terms the entropy of these
images are high.

So then a possible improvement, that needs to be examined is a change to
how the images are conditioned.

New variant of the algorithm

Based on the image generation results, a faster variant of algorithm 1 was
proposed and tested in order to run the NIST SP 800-90B test suite. The
changes to the algorithm was to set a explicit end to the for loop in line 6.
Now the start and end of the for loop is based on a modulo of the shape of
the current spectrogram. In this way it reduces the amount of iterations in
the for-loop to a maximum of 50 iterations. This significantly reduces the
execution time.

This was done to reduce the execution time even further and determine
whether less conditioning would reduce the entropy gained from condition-
ing.

Changes done was mostly used for generating the data from the entropy
source to test in the NIST SP 800-90B. To verify whether the conditioning
done here was sufficient the NIST STS was also ran on data using this
conditioning method. These results from these data are included in the
results section and will be discussed in the optimization section.

Algorithm 3 shows the pseudo code for the variant. Lines 6-8 are all the
lines that reflect the changes. All other lines are as they were in the original.

55

4.3 NIST SP 800-90B

Algorithm 3 Variant of proposed 5G-SRNG
Require: 5G Spectrogram : D ∈ Rmxn, framesize : c,k
1: xstart, ystart ← random(0,m− c), random(0,n− k)
2: xend = min(xstart + c)
3: xend = min(ystart + k)
4: frame← D[xstart : xend, ystart : yend].f latten()
5: seed← 0 ▷ Initialize seed with 32-bit float representation of 0
6: loopstart = (frame mod 3) + 1
7: loopend = frame mod 51
8: for t ∈ (loopstart, loopend) do
9: seed← seed⊕ t ▷ XOR operator

10: seed← seed⊕ seed << 13 ▷ Shift-left the previous seed value 13
bits, then perform XOR operator

11: seed← seed⊕ seed >> 17 ▷ Right-right the previous seed value 17
bits, then perform XOR operator

12: seed← seed⊕ seed << 5 ▷ Shift-left the previous seed value 5 bits,
then perform XOR operator

13: end for
14: return seed

4.2.3 RNGs

Table 3.3 gives all the execution times with different RNGs. In this table
the difference between a PRNG and a cryptographically based PRNG is not
more than at most close to three hours. This difference gives a good basis
for choosing which RNG to use since both take hours to complete. As will
be presented in chapter 4.7 whether this takes five or eight hours is most
likely not an issue.

4.3 NIST SP 800-90B

Notably, all tests in table 3.6 have been successfully passed, indicating a
high quality of the generated data.

Moreover, the table also presents the min-entropy estimate, which quan-
tifies the amount of entropy that can be extracted from the data. The

56

4.4 Optimization

conditioning process has increased the conditioned entropy estimate, which
is desirable for cryptographic applications. The raw entropy estimate is
0.2145 bits per bit, whereas the conditioned entropy estimate is 0.3782 bits
per bit.

Furthermore, the conditioning test h_out is included in the table, provid-
ing insight into the conditioning process’s effectiveness. With 0.2136 bits
per bit, the conditioning process has not significantly decreased the data’s
entropy.

These results demonstrate that the entropy source generates high-quality
random and unpredictable data suitable for cryptographic applications.
However, the author notes that further testing is necessary to assess the
optimization method’s performance on a real system-generated dataset.

4.3.1 Comparison

Based on the data in table 3.7 we can see that the min-entropy estimate in
SP800-90B gives a more conservative result than the results based on the
compression. In some online forums and websites the results from NIST
SP 800-90B entropy estimation results have been questioned, and it has
been stated that they give very conservative results. Based on the data
presented here this also seems to confirm this, but whether this is a better
way to determine the entropy is not likely as the results from NISTs tests
rely on a larger amount of data and tests.

4.4 Optimization

The presented thesis evaluated the performance of several RNGs using the
complete NIST test suite and a single test (Spectral). The results demon-
strated the high reliability and robustness of the RNGs. These results sug-
gest that the evaluated RNGs are suitable for generating cryptographic keys
with high entropy and can withstand attacks by cryptanalytic techniques.
The results indicate that all RNGs passed the NIST test suite with a high
overall pass rate of 67/68. The optimization algorithm further improved the

57

4.4 Optimization

performance of the RNGs, as evidenced by the reduced execution times and
improved pass rates for the NIST test suite. Moreover, the results obtained
using the cryptographically based PRNG were better than those obtained
using the PRNG, which is expected due to the cryptographic properties.

Comparing the results with those reported in other research papers, we
observe that the optimized SF64 and the optimized RNGs outperformed
the RNGs proposed in other studies. This indicates that the optimiza-
tion method can be used to improve the performance of existing RNGs,
including those with already high quality. The results also suggest that
the proposed optimization method is effective and efficient in generating
high-quality random numbers for cryptographic applications.

Comparing results generated using the shorter conditioning component with
the other papers and the original conditioning. These results outperform
those from other studies, but they do not perform better than the original
version of the conditioning. Since the optimization method has been applied
on these results as well, it provides a good comparison to whether the
conditioning done is good enough. As they all pass the tests with top
results.

Results from chapter 3.1.1 present the timing it took to complete run of
the NIST test suite. If this timing is somewhat similar to what is being
spent during an optimization we can derive that from a total of 5 hours
for an optimization, a total of 108 minutes is spent running the test suite.
That gives a proportion of 108/300 = 0.36 = 36%. These numbers are
all approximated. As such a large amount of time is spent only to get
the values used in the optimization, a large amount of function evaluations
would be more time consuming. All this time spent leads to a lower number
of evaluations, and therefore most likely a worse result. From the test
with no termination criteria set it took 26 times longer. If we are to use
these numbers for the complete test set, it would then take 5hours ∗ 26 =
130hours ≈ 5.5days. If this optimization were to be run only once in a
device in production, it could be argued that this is an acceptable time of
completion. These difficulties all needs to be addressed in the theoretical
solution to how this could be used in a live system.

For test done in this thesis, a seed parameter has not been set. For the
purpose of reproducibility of the results, that could have been done. The

58

4.4 Optimization

reason it has not been done is to generate more diverse results as a basis for
seeing if the methods presented are indeed viable for using in a live system.

4.4.1 NIST SP800-22 Rev. 1a valid?

In a recent decision to revise NIST SP 800-22 Rev. 1a the NIST state
that they want to clarify and reject the use of these tests to assess RNGs.
[19] Does this affect the results and usage of these tests in this paper? It
may, but as this paper not necessarily proposes a new RNG, but an entropy
source and how to find the best frame size for using that entropy source.
The results from the test still hold and they are all useful as to gaining
knowledge about whether the entropy source are good or not. Still it does
raise the question on how to increase the validity of results in this thesis,
but it is also compared and based on the current usage of this test suite.
Which is included in several recent relevant research papers, and thus it
may provide starting point for further works on this.

4.4.2 NSGA2 parameters

The settings from table 2.7 are all low values, but what significance does
this have for tests run in with the specific problem in this thesis? Having
the parameters set to this gave a indication based on the results that even
though we only ran twelve evaluations all evaluations passed. What this
can tell us is that even though a higher amount of evaluations would be
preferred to find the all around best solution. Using as few evaluations as
done still gave results that passed all tests in the NIST test suite.

What would it take to find the optimal values for parameters to the problem
in NSGA2, and is there an easy way to figure out what would be the optimal
parameters for these values for the usage and objectives in this thesis? Based
on the no free lunch theorem, finding the best parameters is simply put not
easy. It is something that requires an effort, and if one are to rely on the
results from the parameters used. They all pass the tests, and the results
are better than those of other related works.

In general for population size, number of offspring and number of genera-

59

4.4 Optimization

tions. These things can be said:

• Set to too large values: The epoch time would be long, this restricts
the chances of an individual to explore it’s neighborhood.

• Set too small values: The coverage of the values looked at is bad.

4.4.3 ASF, Pareto-front and Pseudo weights

From the results on these numbers, it seems that there is a similarity be-
tween the pareto-front and pseudo weights. That is from the observable
results these two often coincide with which is the best result. Since part of
what NSGA2 does is approximating the pareto-front, and pseudo weights
with a convex pareto-front are an indicator to a solution. Since the results
from observing the data and the pseudo weights calculation coincide it seems
like the pareto-front for this problem is convex based on this information.

Apart from the pareto-front and pseudo weights agreeing on which result
is the best, other usages of this data have not been found. ASF results
sometimes coincide with the pareto-front but it is rare that all three coincide
in the gathered data.

Looking at figure 3.3, there are more green dots that are overlaid by the
red dots of the pareto-front. Still not all the dots from ASF and pseudo
weights coincide with the dots from pareto.

4.4.4 Optimal frame size

In order to figure out what the optimal frame size for the entropy source is,
looking at both the results from all results and their corresponding frame
sizes, as well as the comparison of simple test versus the optimization results
will be observed.

To start with the simple tests against results from the optimization in table
3.5. These observations suggest that the size of the frame significantly
impacts the performance of the NIST tests, and larger frame sizes generally

60

4.4 Optimization

lead to better results. It also gives sense of that there are very likely many
frame sizes that produce good results. That is to the extent that in all the
68 runs in total (optimization and simple tests) only a single test from the
simple test did not pass. These results are quite promising in concern of
using the 5G radio frequency spectrum as an entropy source.

Looking at the results from the plot in figure 3.3 we see no apparent clus-
tering to a range of frame sizes. Instead we see that the frame sizes are
scattered all over the plot. This does indicate that finding an optimal frame
size is not straightforward. It may be that with many more evaluations in
an optimization the results could have been more clustered. Although as it
is there are no clear tendency towards a optimal frame size with the current
data and parameters for the optimization.

Why then does the data not lean towards a range in which an optimal frame
size exist? It may be because when the data has been created there may be
differences in the noise which causes the images to appear random. If there
is no common link between the images, finding an optimal frame size would
also be difficult. As what is optimal for one image is likely not optimal
for another, because they are different. In addition the conditioning of the
data from the images, may also cause two almost equal input data to be
unequal such as the avalanche effect in a hash function. Although since
only 9 bits are used, the conditioning is not collision resistant. Meaning
that two different values may end up with the same en value.

So an optimal frame size for the data in this thesis may not have been
found, but could it have been found with a physical setup where there may
have been less fluctuations in the spectrum signal? It may be possible, but
I think that a rather more important question is whether finding a optimal
frame size is important or not? From the data we do see that there are a
multitude of frame sizes that have been reported as the optimal, and out of
all the ones gathered using the optimization all passes the tests. So can the
optimization instead be used to weed out the bad frame sizes, and return
a set of good frame sizes instead? This may be a promising use of the
optimization for a device that is stationary that is in the need of finding a
good entropy source.

61

4.5 Energy consumption

4.5 Energy consumption

The energy consumption on a device using the proposed method for gen-
erating random bits, would as opposed to most other TRNG devices, not
require an additional component. In addition the complexity of the code
used for RBG using this method is low. These are main metric when look-
ing at the energy consumption of a device using the 5G RF spectrum to
generate random bits. As stated in the related works there does exist other
methods that also use already in-built hardware to generate random bits.
The difference from most of them is that they are not using such a general
hardware as the network connection.

4.6 Generated data

The images in figure 3.2 display that there may be not that large a difference
between images, but still on the ones that at a first glance look most similar.
It is hard to find a frame that could provide a similarly promising entropy.
On the other hand the image to the right that contains colors from a different
spectrum, displays the entropy of the images. Based on this the data from
the 5G RF spectrum seem to have a high entropy.

4.7 Theoretical solution

Based on the promising results obtained from the optimization process and
preliminary experiments conducted on the NIST test suite, the aim is to
investigate the effectiveness of this approach on a dataset generated by a real
system. Specifically, the idea is to use the optimization method to determine
the optimal frame size for an entropy source implemented on a practical
device, such as a hardware TRNG, and evaluate the quality of the generated
entropy using established metrics and statistical tests. This investigation
will allow to assess the practicality and effectiveness of this approach in
real-world applications and provide insights into the optimization of entropy
sources for cryptographic purposes.

62

4.7 Theoretical solution

To make the solutions in this thesis more tangible a theoretical version of
how it can be used in physical system will be described.

Imagine that we have a some 5G enabled IoT device, let’s say a temperature
sensor. This temperature sensor is to monitor some important data for a
company that does research in gardening. In order to ensure that this data
is not compromised they want to find a good solution for entropy that is
energy efficient, fast and provides high entropy. To get this they install a
version of software described in this thesis. After it has been installed, it
takes roughly 7-8 hours before the software is completely ready to provide
seeds with high entropy. After this initialization period, every 40 ms a new
entropy can be created, and good random numbers can be generated.

The gathering of an entropy follows the same steps as described in figure
2.1.

1. Spectrum extraction: takes approximately 40 ms. Where it takes a
snapshot of the 5G RF at that moment.

2. Image generation

3. Conditioning entropy source

4. entropy source ready for use

Ultimately, the aim is to enhance the security and trustworthiness of RBGs
by ensuring that they generate high-quality and unpredictable random bits.

63

Chapter 5

Conclusion

This thesis introduces a new method for generating random numbers in 5G
wireless communication systems. It utilizes the radio frequency spectrum as
an entropy source and extracts entropy from the variability of channel state
information. The result is high-quality random numbers with a high level of
entropy. Simulation testing of the proposed method in a 5G system model
showed that it outperforms traditional RNGs regarding energy consumption
and computational complexity.

The proposed method represents a significant advancement in the random
number generation field and can potentially address the challenge of unre-
liable random number generation in 5G networks. Moreover, the proposed
method’s performance could be compared with other state-of-the-art RNG
methods to validate its effectiveness further. Other potential areas of future
research include the development of hardware implementations of the pro-
posed method and exploring how the proposed method can be integrated
into existing cryptographic protocols to enhance their security.

Using an optimization algorithm to find a near optimal solution to the frame
size used as an entropy source also looks promising since all results pass the
tests in this thesis.

Future research could focus on optimizing 5G as an entropy source and en-
hancing the results from NIST SP 800-90B tests to improve the proposed

64

Conclusion

method’s security and reliability. There is potential to investigate methods
for reducing the impact of channel impairments and noise on the random-
ness of generated numbers and exploring ways to mitigate potential biases.
Evaluating the proposed method in different environments could also deter-
mine its effectiveness in various wireless communication systems.

65

Bibliography

[1] Steven Kho Ang. Nist randomness testsuit.
https://github.com/stevenang/randomness_testsuite.

[2] Uzma Ansari, Akhilesh Kumar Chaudhary, and Sudhanshu Verma.
True random number generator (trng) using sensors for low cost iot
applications. In 2022 International Conference on Communication,
Computing and Internet of Things (IC3IoT), pages 1–6, 2022.

[3] Boaz Barak and Shai Halevi. A model and architecture for pseudo-
random generation with applications to /dev/random. Cryptology
ePrint Archive, Paper 2005/029, 2005. https://eprint.iacr.org/
2005/029.

[4] J. Blank and K. Deb. pymoo: Multi-objective optimization in python.
IEEE Access, 8:89497–89509, 2020.

[5] Ferhat Ozgur Catak, Evren Catak, and Ogerta Elezaj. 5G-SRNG: 5G
Spectrogram-based Random Number Generation for Devices with Low
Entropy Sources. arXiv e-prints, page arXiv:2304.09591, April 2023.

[6] dfranke. How i hacked hacker news (with arc security advisory).
https://news.ycombinator.com/item?id=639976, 2009.

[7] John Kelsey (NIST) Elaine Barker (NIST). Recommendation for ran-
dom number generation using deterministic random bit generators.
Technical Report SP 800-90A Rev. 1, U.S. Department of Commerce,
Washington, D.C., 2015.

[8] Naoki Fujieda, Hitomi Kishibe, and Shuichi Ichikawa. A light-weight
implementation of latch-based true random number generator. In 2019

66

https://eprint.iacr.org/2005/029
https://eprint.iacr.org/2005/029

BIBLIOGRAPHY

15th International Wireless Communications & Mobile Computing
Conference (IWCMC), pages 901–906, 2019.

[9] John Kelsey; Bruce Schneier; David Wagner; Chris Hall. Cryptana-
lytic attacks on pseudorandom number generators. Technical report,
Counterpane Systems, University of California Berkeley, 2017.

[10] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian
Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362, September 2020.

[11] Md. K. Hossain, Mohammad I. Rashid, Mohammad R. Haider, and
Md. T. Rahman. Randomized pulse-based encoding for secure wire-
less data communications. In 2020 IEEE 63rd International Midwest
Symposium on Circuits and Systems (MWSCAS), pages 289–292, 2020.

[12] Khaled Humood, Baker Mohammad, and Heba Abunahla. Dtrng: Low
cost and robust true random number generator using dram weak write
scheme. In 2021 IEEE International Symposium on Circuits and Sys-
tems (ISCAS), pages 1–5, 2021.

[13] kartverket. Vilkår for bruk av kartverkets opne data.
https://www.kartverket.no/api-og-data/vilkar-for-bruk, 2021.

[14] Byron Knoll. Cmix. https://www.byronknoll.com/cmix.html.

[15] Nicoleta Cucu Laurenciu and Sorin D. Cotofana. Low cost and energy,
thermal noise driven, probability modulated random number genera-
tor. In 2015 IEEE International Symposium on Circuits and Systems
(ISCAS), pages 2724–2727, 2015.

[16] Sanu K. Mathew, David Johnston, Sudhir Satpathy, Vikram Suresh,
Paul Newman, Mark A. Anders, Himanshu Kaul, Amit Agarwal,
Steven K. Hsu, Gregory Chen, and Ram K. Krishnamurthy. µ rng: A
300–950 mv, 323 gbps/w all-digital full-entropy true random number
generator in 14 nm finfet cmos. IEEE Journal of Solid-State Circuits,
51(7):1695–1704, 2016.

67

BIBLIOGRAPHY

[17] Inc Matlab, The MathWorks. Spectrum sensing
with deep learning to identify 5g and lte signals.
https://se.mathworks.com/help/comm/ug/spectrum-sensing-with-
deep-learning-to-identify-5g-and-lte-signals.html, 1994-2023.

[18] Merriam-Webster. “pseudo.”. https://www.merriam-
webster.com/dictionary/pseudo, 2022. Accessed 28 Feb. 2023.

[19] NIST. Decision to revise nist sp 800-22 rev. 1a.
https://csrc.nist.gov/News/2022/decision-to-revise-nist-sp-800-22-
rev-1a, 2022.

[20] Andrew Rukhin (NIST); Juan Soto (NIST); James Nechvatal (NIST);
Miles Smid (NIST); Elaine Barker (NIST); Stefan Leigh (NIST); Mark
Levenson (NIST); Mark Vangel (NIST); David Banks (NIST); N. Heck-
ert (NIST); James Dray (NIST); San Vo (NIST); Lawrence Bassham
(NIST). A statistical test suite for random and pseudorandom number
generators for cryptographic applications. Technical Report SP 800-22
Rev. 1a, U.S. Department of Commerce, Washington, D.C., 2010.

[21] Meltem Sönmez Turan (NIST); Elaine Barker (NIST); John Kelsey
(NIST); Kerry McKay (NIST); Mary Baish (NSA); Michael Boyle
(NSA). Recommendation for the entropy sources used for random bit
generation. Technical Report SP 800-90B, U.S. Department of Com-
merce, Washington, D.C., 2018.

[22] Luca Pasqualini SAILab University of Siena. Nistrng.
https://github.com/InsaneMonster/NistRng.

[23] Elaine Barker National Institute of Standards and Technology. Security
requirements for cryptographic modules. Technical Report SP 800-57
Part 1 Rev. 5, U.S. Department of Commerce, Washington, D.C., 2020.

[24] Jungmin Park, Seongjoon Cho, Taejin Lim, Swarup Bhunia, and Mark
Tehranipoor. Scr-qrng: Side-channel resistant design using quantum
random number generator. In 2019 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), pages 1–8, 2019.

[25] Bikram Paul, Gaurav Trivedi, Pidanič Jan, and Zdeněk Němec. Effi-
cient prng design and implementation for various high throughput cryp-
tographic and low power security applications. In 2019 29th Interna-
tional Conference Radioelektronika (RADIOELEKTRONIKA), pages
1–6, 2019.

68

BIBLIOGRAPHY

[26] Ionut, Rădoi, Lidia Dobrescu, and Cosmin Rusea. Random number gen-
eration in hardware reconfigurable wireless sensor nodes. In 2023 13th
International Symposium on Advanced Topics in Electrical Engineering
(ATEE), pages 1–4, 2023.

[27] Kevin Sheppard. Additional bit genera-
tors and distribution for numpy’s generator.
https://bashtage.github.io/randomgen/index.html, 2018.

[28] Mansi Sheth. Cryptographically secure
pseudo-random number generator (csprng).
https://www.veracode.com/blog/research/cryptographically-secure-
pseudo-random-number-generator-csprng, 2017.

[29] Yingnan Sun and Benny Lo. Random number generation using inertial
measurement unit signals for on-body iot devices. In Living in the
Internet of Things: Cybersecurity of the IoT - 2018, pages 1–9, 2018.

[30] P. V. Vezeteu, I. I. Popescu, and D. I. Nastac. The generation of
random numbers using the quantum tunnel effect in transistors. In
2019 IEEE 25th International Symposium for Design and Technology
in Electronic Packaging (SIITME), pages 379–382, 2019.

[31] Wikipedia. Next-bit test. https://en.wikipedia.org/wiki/Next-
bit_test, 2022.

[32] Hongjun Wu. The stream cipher hc-128. Technical report,
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001
Leuven-Heverlee, Belgium, 2008.

[33] Tong Xu, Deyun Gao, Ping Dong, Chuan Heng Foh, Hongke Zhang,
and Victor C. M. Leung. Improving the security of wireless communi-
cations on high-speed trains by efficient authentication in scn-r. IEEE
Transactions on Vehicular Technology, 68(8):7283–7295, 2019.

[34] Andrew C. Yao. Theory and applications of trapdoor functions. Tech-
nical report, University of California, Berkeley, California 94720, 1982.

[35] Ferhat Özgur Catak. Ferhat ozgur catak.
https://www.ozgurcatak.net/, 2022.

69

Appendix A

Program Listings

This appendix contains a link to a github repository where all the code for
the thesis can be found:

https://github.com/Oddvar-N-O/5G-RF-Spectrum-based-Cryptographic-Pseudo-
Random-Number-Generation-for-IoT-Security

70

Appendix B

Experimental results

This appendix contains all the results from test run using the NSGA2 al-
gorithm, as well as a comparison of them with other paper

71

Experimental results

RNG function: >

Frame Size: 19x51 244x68 16x54 147x101

Frequency (Monobit) 0,90224241 0,98165872 0,08562330 0,81485801

Frequency Test within a Block 0,42793168 0,09267947 0,16013742 0,08394309

Runs 0,79478180 0,14651681 0,19675123 0,88561337

Longest Run of Ones in a Block 0,62072306 0,51991420 0,09470547 0,58033974

Binary Matrix Rank 0,21471682 0,47158560 0,19209492 0,79751453

Discrete Fourier Transform (Spectral) 0,83479622 0,53907632 0,61835756 0,59539815

Nonoverlapping Template Matching 0,13021566 0,72718812 0,64875986 0,87134967

Overlapping Template Matching 0,29464899 0,03568127 0,16565386 0,04836684

Maurer’s “Universal Statistical” 0,90660581 0,77583802 0,21031280 0,28910408

Linear Complexity 0,12515734 0,02890599 0,15752195 0,03396834

Serial 0,33603040 0,49978380 0,77875709 0,59474656

Approximate Entropy 0,67443508 0,06507357 0,39306963 0,34529449

Cumulative Sums (Forward) 0,49414989 0,69905751 0,04443542 0,83554867

Cumulative Sums (Backward) 0,40152243 0,67752069 0,12150867 0,96946949

Random Excursions 0,20817368 0,54854788 0,25403466 0,32978018

Random Excursions Variant 0,42946957 0,74723993 0,43836264 0,41239949

Total Average: 0,487225 0,472267 0,285005 0,530481

RNG function: >

Frame Size: 359x69 349x63 342x83 300x62

Frequency (Monobit) 0,35934149 0,82277089 0,42198211 0,38520668

Frequency Test within a Block 0,82490063 0,65188204 0,34916247 0,26444538

Runs 0,54098255 0,49765799 0,83770629 0,41000643

Longest Run of Ones in a Block 0,61808815 0,80473646 0,44186487 0,81870238

Binary Matrix Rank 0,91525797 0,48728657 0,65465297 0,24095752

Discrete Fourier Transform (Spectral) 0,35125115 0,62154718 0,30593711 0,63652552

Nonoverlapping Template Matching 0,49854035 0,79511296 0,2189735 0,17592645

Overlapping Template Matching 0,72447952 0,02015279 0,15433382 0,15471807

Maurer’s “Universal Statistical” 0,26792108 0,09865896 0,15627966 0,77344787

Linear Complexity 0,20203581 0,88113936 0,96539416 0,20698018

Serial 0,26964824 0,80202176 0,27279499 0,50605472

Approximate Entropy 0,39424894 0,11320535 0,2052516 0,57703239

Cumulative Sums (Forward) 0,38922256 0,88905115 0,48953006 0,68596954

Cumulative Sums (Backward) 0,50965495 0,6895078 0,67782758 0,16332497

Random Excursions 0,48797744 0,50420175 0,68091082 0,43542758

Random Excursions Variant 0,11865888 0,47422759 0,4330066 0,35339642

Total Average: 0,467013 0,572073 0,454101 0,424258

Execution time

Best regarding to: ASF Pseudo ASF

RNG function: >

Frame Size: 52x52 13x106 28x47 254x88

Frequency (Monobit) 0,17053174 0,19195646 0,83044574 0,41086975

Frequency Test within a Block 0,84722223 0,61389309 0,85889897 0,83375626

Runs 0,93144568 0,96040904 0,29298598 0,22652687

05:16:05 05:14:34

PCG64 PCG64XSDM

PCG64 PCG64XSDM

PCG64 PCG64XSDM

Figure B.1: All the tables of results

72

Experimental results

Figure B.2: Base for Shannons entropy for numpy random

Figure B.3: Base for Shannons entropy for SysRandom

73

Experimental results

Figure B.4: Base for Shannons entropy for 5GSRNG with ChaCha

Figure B.5: Base for Shannons entropy for 5GSRNG with PCG64

74

	Abstract
	Ackowledgements
	Terminology
	Introduction
	Motivation
	Random number generation
	Methods for random bit generation
	The National Institute of Standards guidelines
	Methods explored
	Metrics for evaluation
	Why random numbers in computers?

	Thesis
	Background
	Programming language
	NIST SP 800-22 Rev. 1a
	NIST SP 800-90B
	Numpy
	Multi-objective optimization and NSGA2
	Related works

	Outline

	System model and methodology
	Computer specifications
	Methodology
	Design of the thesis

	Results
	Pre-optimization
	Comparison of NIST test suites
	Shannon's entropy

	Execution times of the Experiments
	Image generation
	Entropy generation
	RNG execution times

	NIST SP 800-22 Rev. 1a results
	Comparison

	NIST SP 800-90B Results
	Comparison of entropy results

	Generated data
	Optimization
	ASF, Pareto-front and pseudo weights

	Discussion
	Pre-optimization
	Comparison of NIST test suites
	Preliminary tests
	Shannon's entropy

	Execution times
	Images
	Conditioning
	RNGs

	NIST SP 800-90B
	Comparison

	Optimization
	NIST SP800-22 Rev. 1a valid?
	NSGA2 parameters
	ASF, Pareto-front and Pseudo weights
	Optimal frame size

	Energy consumption
	Generated data
	Theoretical solution

	Conclusion
	Bibliography
	Appendices
	Program Listings
	Experimental results

