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Abstract 

Bluff bodies have extensive implementation in engineering. For instance, 

marine risers, jumpers, umbilicals, and bundle flowlines are the examples of the 

circular bluff bodies which are used in the field of offshore engineering. They can be 

designed both to be fixed or flexible supported and to be a single or tandem 

configurations. The subsea structures are subjected to the external hydrodynamic 

loads such as cyclic loads, vibrations, high pressure, etc.  For example, one of the 

commonly observed damaging flow features associated with hydrodynamics of the 

flexible supported bluff bodies is vortex shedding. Therefore, investigation of the 

instantaneous flow structures and the hydrodynamic forces acting on the bluff bodies 

at the operational conditions need to be performed to prevent the degradation 

mechanisms and increase service life of the subsea structures.  Nowadays, the modern 

techniques are used in order to analyse the flow field data with high efficiency. For 

example, neural networks (NNs) are trained with massive experimental or numerical 

simulation data to predict the spatial-temporal evolution of the dominant coherent 

structures of the flow field and structural behaviour can be considered as an alternative 

to the conventional computational fluid dynamics (CFD) simulations. In the present 

thesis, numerical investigations of the flow around cylindrical bluff bodies in the upper 

transition Reynolds number regime (𝑅𝑒 = 3.6 ∙ 106 )  are performed. Two pipeline 

operational conditions are considered. First one is tandem configuration of the two 

stationary pipelines subjected to steady flow. Second one is a pipeline undergoing the 

vortex-induced-vibrations (VIV) subjected to a steady current. Two-dimensional (2D) 

Unsteady Reynolds-Averaged-Navier-Stokes (URANS) equations combined with the 

standard k−w SST turbulence model are solved.  The open source CFD toolbox 

OpenFOAM v2012 is employed to perform the simulations.  The Reduced Order 

Models (ROMs) which can provide a low-dimensional representation of the simulation 

data with reduced computational time and cost are designed. Dynamic mode 

decomposition (DMD) and proper orthogonal decomposition (POD) techniques are 

implemented for the first and second cases, respectively. In addition, further 

development of the ROMs for the VIV cylinder case is done by implementing the long 

short-term neural network (LSTM-NN).  The neural network based model allows to 

make the predictions of the dominant hydrodynamic characteristics of the flow around 

the cylindrical bluff bodies subjected to a high Reynolds number flow at a future time 

instances with a reduced computational cost.  
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Chapter 1.  

Introduction 

1.1. Background and motivation 

Investigation of the flow structures around the bluff bodies has gained the 

essential attention during the past decades as the bluff bodies are widely used in 

engineering structures. For instance, cylindrical bluff bodies are extensively 

implemented in offshore engineering as production pipelines, power cables, jumpers, 

umbilicals, etc. They can be designed to be fixed or flexible supported and to be a single 

or tandem configurations subjected to a uniform or oscillatory flow. Subsea structures 

experience a high Reynolds number (𝑅𝑒 = 𝑈∞𝐷/𝜈, where 𝑈∞ is a free stream velocity,  

𝐷 defines cylinder diameter and 𝜈 is the kinematic viscosity) flow up to 107 as reported 

by Sumer and Fredsøe (1997) [1] and Ong. et al. (2009) [2]. In addition, there are 

external loads acting on the structures due to surrounding flow.  For example, vortex 

shedding of the separated from the cylinder surface shear layers can lead to a vortex 

induced vibrations of the body if the vortex-shedding frequency is synchronized with 

the natural frequency of the system. This phenomenon causes a fatigue degradation of 

the structures due to cyclic loads. Therefore, combination of the various impact factors 

leads to a significant reduction of the fatigue life of the subsea structures. Analysis of 

the hydrodynamic forces and flow features around the bluff bodies allows to 

understand the phenomena causing the degradation mechanisms and improve the 

design of the subsea structures.  A lot of experimental studies as well as computational 

fluid dynamics (CFD) simulations have been conducted previously to investigate the 

flow hydrodynamics around a single circular cylinder (Sumer & Fredsøe 1997 [1], 

Tritton 1959 [3], Dimopoulos & Hanratty 2006 [4]), tandem cylinder configuration 

(Zdravkovich et al., 1977 [5], Zhou 2004 [6], Alam 2011) [7]) as well as vortex-induced 

vibration (VIV) cylinder (Pan et al., 2007 [8], Pang et al., 2016 [9], Kang et al., 2019 

[10]).  

However, experimental investigations require expensive laboratory equipment 

to reproduce the real flow at high Reynolds numbers with a minimum instrumental 

error and solving the Navier-Stokes equations leads to enormous computational costs. 

Therefore, a modern approach based on the reduced-order model (ROM) is designed 

to analyse the flow data in an efficient way. To build the ROM for the flow system, a 
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modal decomposition of the flow data should be performed. The main idea of the 

decomposition techniques such as proper orthogonal decomposition (POD) and 

dynamic mode decomposition (DMD) is to extract the most dominant spatial-temporal 

coherent structures of the flow field to achieve the model reduction. POD (Janocha et 

al., 2022 [11], Eiximeno et al., 2022 [12]) and DMD (Jovanovic et al., 2014 [13], 

Janocha et al., 2021 [14]) methods were successfully implemented for investigation of 

the flow field around the bluff bodies under flow-induced vibrations. When the 

dominant modes containing most of the flow energy are extracted, a ROM based on 

that modes can be built to predict the future time instants of the flow systems. One of 

the approaches which allows to achieve it is the Galerkin Projection (GP) method. It 

gives an approximate description of the real flow dynamics developed in time. It was 

implemented by Rapun & Vega (2010) [15], Rowley et al. (2004) [16] and Carlberg et 

al. (2011) [17] for solving different milestone problems. However, it is difficult to 

achieve both accuracy and stability by solving the GP reduced order model as reported 

by Iollo et al. (2000) [18] who investigated the flow around an airfoil and a square 

cylinder. 

In order to overcome the disadvantages of the GP method, a promising approach 

based on deep learning is proposed to model the nonlinear systems, for example, 

turbulent flow. The advantage of the deep learning method is the ability to understand 

the correlations between the different parameters of the dataset and to predict their 

values purely based on data. There are various types of the neural network for different 

problems can be utilized: multi-layer perceptron (MLP) (Gardner & Dorling 1998 [19]), 

convolution neural network (CNN) (Cheng et al., 2021 [20]), recurrent neural network 

(RNN) (Zhang & Xiao 2000 [21]) and long-short-term memory neural network 

(LSTM-NN) (Rahman et al. (2019) [22]). 

Although the neural network based ROMs are fast developing nowadays, their 

application in the hydrodynamics analysis of the flow around the bluff bodies as well 

as fluid-structure-interactions is limited. Therefore, the main motivation of the 

master’s thesis project is to evaluate the effectiveness of the analysing the surrounding 

flow structures and hydrodynamic forces acting on the cylindrical bluff bodies at a high 

Reynolds number flow by using modal analysis and neural network techniques.  
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1.2. Objectives and methodology 

In the master’s thesis, two pipeline configurations subjected to a high Reynolds 

number uniform flow ( 𝑅𝑒 = 3.6 × 106 ) are considered and investigated. The first 

pipeline arrangement is two tandem fixed cylinders with the center-to-center spacing 

ratios (𝐿/𝐷) of 1.56, 1.8, 2.5, 3, 3.7, 4.  The second pipeline configuration is a flexible 

supported cylinder subjected to vortex-induced vibrations with a reduced velocity of 

𝑢𝑟 = 3, 6,  and 11. Two-dimensional (2D) Unsteady Reynolds-Averaged-Navier-Stokes 

(URANS) equations combined with the standard 𝑘 − 𝜔  SST turbulence model are 

solved to investigate the flow features of the two proposed cases.  The open source CFD 

toolbox OpenFOAM v2012 is employed to perform the simulations.  The ROMs are 

designed by means of the POD and DMD model reduction techniques. The number of 

modes is chosen individually for each case to capture the dominant flow dynamics. The 

LSTM-NN is applied to predict the evolution of the flow structures at the future time 

instances for the VIV cylinder case.  The LSTM-NN is designed based on the open-

source toolbox TensorFlow and Keras. 

The main objectives investigated within the scope of the first appended 

publication are defined as follow: 

 Analyse the influence of the relative distance between two tandem cylinders 

subjected to a high Reynolds number flow on the lift and drag coefficients as well as 

the instantaneous flow structures based on the hydrodynamic quantities, power 

spectral analysis of their fluctuation and instantaneous flow structures.    

 Create the ROMs based on the most dominant modes extracted by the SPDMD 

algorithm and confirm the ability of the designed SPDMD-ROMs to accurately 

reconstruct the surrounding flow and hydrodynamic properties by comparing the 

lift and drag force time-histories, obtained by the simulation results and the reduced 

order representations.  

The main objectives investigated within the scope of the second appended 

publication are defined as follow: 

 Design the ROMs based on the POD modes and implement the LSTM-NN for 

prediction of the POD temporal coefficients and streamwise and cross-flow 

velocities and displacements of the cylinder. 

 Implement the force partitioning method (FPM) to predict the hydrodynamic forces 

acting on the cylinder purely based on the surrounding flow field predicted by using 
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the POD-LSTM-NN ROMs. The predicted time-histories of the lift and drag forces 

are compared with the CFD simulation results.   

 

1.3. Thesis structure  

The content of each chapter is summarized as follow: 

Chapter 2: The chapter provides the theoretical review of the fundamental 

knowledge about the flow hydrodynamics around the circular bluff body, modal 

decomposition techniques and machine learning basic principles. 

Chapter 3: Numerical investigation of flow around two tandem cylinders in the 

upper transition Reynolds number regime using modal analysis.  

This chapter contains the paper which is published on Journal Marine Science and 

Engineering and also selected as the cover page paper. The influence of the center-to-

center spacing between the two tandem cylinders undergoing a high Reynolds number 

regime flow to the coherent structures around the bluff bodies as well as the acting 

hydrodynamic forces are investigated. Furthermore, ROMs are created based on the 

most dominant DMD modes extracted by using the sparsity promote algorithm. The 

time histories of the lift and drag force of the reduced-order representations are 

compared with those obtained by the CFD simulations. 

Chapter 4: A data driven reduced order model based on long short-term 

memory neural network for vortex-induced vibrations of a circular cylinder.  

This chapter contains a paper which is published in Physics of Fluids. The feasibility of 

the POD-ROM- LSTM-NN to predict the flow field evolution around a VIV cylinder 

subjected to a high Reynolds number flow is evaluated in this paper. Different values 

of the reduce velocities are considered. In addition, FMP is applied to estimate the 

hydrodynamic forces acting on the bluff body using the surrounding flow field 

predicted by the POD-ROM- LSTM-NN as well as the original flow field calculated by 

means of CFD.  

Chapter 5: The chapter provides the main conclusions of the master’s thesis 

research work as well as suggestions for further investigations. 
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Chapter 2. 

Theory 

2.1. Hydrodynamics around cylindrical structures 

2.2.1. Boundary layer  

According to Schlichting & Gersten 2016 [1], when a fluid flows over a stationary 

surface, the boundary layer is developed. It is a region where the flow adjusts from zero 

velocity at the wall to the free stream velocity in the mainstream zone.  The viscous 

effects  cannot be ignored in the boundary layer while the outer layer can be considered 

inviscid as reported by Cimbala & Cengel 2006 [2]. According to Kundu et al. (2012) 

[3], the boundary layer equations for two-dimensional (2D) and steady flow can be 

written as follow: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, 

(2.1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝑈

𝜕𝑈

𝜕𝑥
+ 𝑣

𝜕2𝑢

𝜕𝑦2
, 

(2.2) 

where 𝑈  denotes the free stream velocity; 𝑢  and 𝑣  are streamwise and cross flow 

velocity components, respectively. The flow separates from the surface at the point 

where the shear stress is zero and a pressure gradient changes from favourable to 

adverse: 

𝜏𝑤 = 𝜇 ∙
𝜕𝑢

𝜕𝑦
= 0, 

(2.3) 

where 𝜏𝑤 denotes the wall shear stress. Figure 2.1 shows the boundary layer separation 

from a circular cylinder surface. Starting from the stagnation point when the incoming 

flow hit the structures where the pressure is the highest, the boundary layer is 

subjected to a favourable pressure gradient and the flow is accelerated. However, due 

to the curvature of the cylindrical body surface, the flow will deaccelerate and will be 

subjected to an adverse pressure gradient due to the reduced flow velocity. Therefore, 

there is one location where the shear stress which balance the pressure gradient 

becomes zeros and the boundary layer is separated from the body surface to form a 

vortex. However, due to changing separation point at a high Reynolds number regime 
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flow, the vortex will grow faster from one side than the other side. As a result, the strong 

vorticity is cut off by the weak vortex from the other side and shed from the cylinder. 

This process will happen alternatively from the two sides of the cylinder.  

 

Figure 2.1.  Boundary layer separation from a circular cylinder. 

With increasing the Reynolds number, a transition from laminar to turbulent 

boundary layer occurs. The laminar boundary layer is characterized by the smooth 

paths in parallel layers of the fluid particles while the turbulent boundary layer is 

depicted by the appearance of the turbulent eddies. The turbulent boundary layer can 

be separated into viscous sublayer, buffer layer, log law and outer regions. The 

nondimensional parameters such as dimensionless velocity ( 𝑈+ ), dimensionless 

distance from the surface (𝑦+) and shear velocity (𝑢𝜏) are derived to define the various 

boundary layer regions: 

𝑈+ =
𝑈

𝑢𝜏
, 

(2.4) 

𝑦+ =
𝑢𝜏𝑦

𝑣
, (2.5) 

𝑢𝜏 = √
𝜏𝑤

𝜌
, 

(2.6) 

where 𝜏𝑤 is the shear stress and 𝜌 is the density of the flow. The viscous sublayer is 

located in a range from 𝑦+ = 0 to 𝑦+ = 5. The velocity profile of the viscous sublayer 

varies linearly and can be expressed as follow: 
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𝑈+ = 𝑦+. (2.7) 

When the 𝑦+  takes the values in a range of 5 < 𝑦+ < 30 , the buffer region 

dominates. The log low region following by the buffer region is located in the range of 

30 < 𝑦+ < 500. The velocity profile of the log low region can be defined as follow: 

𝑈+ =
1

𝜅
ln(𝑦+) + 𝐵, 

(2.8) 

where B is the constant which typical value is 5; 𝜅 is denoted as the von Karman’s 

constant which is equal to 0.41. The outer layer region is referred to the 𝑦+ > 500.  

2.2.2. Flow around a cylinder in a steady current 

According to Sumer & Fredsøe (1997) [4], depending on the Reynolds number 

values, the flow around a circular fixed cylinder experiences different flow regime 

subjected to a steady current. The classification of the flow regimes around a fixed 

circular cylinder in a steady flow published by the Sumer & Fredsøe (1997) [4] is shown 

in Table 2.1. 

Table 2.1. Flow regimes around a smooth circular cylinder in steady current. 

Reproduced from Sumer & Fredsøe (1997) [4]. 

 

No separation. 
Creeping flow 

𝑅𝑒 < 5 

 

A fixed pair of symmetric 
vortices 

5 < 𝑅𝑒 < 40 

 

Laminar vortex street 40 < 𝑅𝑒 < 200 

 

Transition to turbulence in 
the wake 

200 < 𝑅𝑒 < 300 

 

Wake completely turbulent. 
A: laminar boundary layer 

separation 

300 < 𝑅𝑒 < 3 × 105 

Subcritical 

 

A: laminar boundary layer 
separation 

B: Turbulent boundary layer 
separation; but boundary 

layer laminar 

3 × 105 < 𝑅𝑒 < 3.5 × 105 

Critical 

(Lower transition) 
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Table 2.1. Cont. 
  

 

B: Turbulent boundary layer 
separation; but boundary 
layer partly laminar partly 

turbulent 

3.5 × 105 < 𝑅𝑒 < 1.5 × 106 

Supercritical 

 

C: Boundary layer completely 
turbulent at one side 

1.5 × 105 < 𝑅𝑒 < 4.5 × 106 

Upper transition 

 

C: Boundary layer completely 
turbulent at two sides. 

4.5 × 106 > 𝑅𝑒 

Transcritical 

According to Table 2.1, at 𝑅𝑒 < 5, the creeping flow regime dominates. It is 

characterized by no separation of the shear layers from the cylinder surface. A fixed 

pair of vortices for the first time appears when the Reynolds number is in a range of         

5 < 𝑅𝑒 < 40. With a further increase in the Reynolds number, the phenomenon called 

vortex shedding appear. The pairs of the alternately formed vortices separate at either 

side of the cylinder at a certain frequency forming a vortex street in the wake region of 

the cylinder. At 40 < 𝑅𝑒 < 200, the vortex street is laminar and 2D as reported by 

Williamson (1989) [5]. The transition of the wake region to turbulence happens at  

200 < 𝑅𝑒 < 300. The wake region becomes fully turbulent only at 300 < 𝑅𝑒 < 3 × 105 

while keeping laminar boundary layer separation. The vortex shedding occurs in a well-

defined and regular pattern. For the Reynolds number range of 3 × 105 < 𝑅𝑒 < 3.5 ×

105, the boundary layer separation is turbulent at the one side of the cylinder and 

laminar at the other side. It causes the asymmetry in the flow behaviour. Due to 

constantly changing hydrodynamic forces on the cylinder surface the mean lift 

coefficient becomes non-zero. When Reynolds number is in a range 3.5 × 105 < 𝑅𝑒 <

1.5 × 106, the boundary layer separation is observed at both sides of the cylinder while 

the transition to turbulence in the boundary layer has not been completed yet. With a 

further increase in the Reynolds number (1.5 × 106 < 𝑅𝑒 < 4.5 × 106), the boundary 

layer becomes completely turbulent at the one side of the cylinder while it is partially 

turbulent partially laminar at the other side. The asymmetry in the formation of the 

vortices results in a disordered and irregular vortex shedding. The boundary layer 

becomes totally turbulent at both sides of the cylinder at Reynolds number larger than 

4.5 × 106 resulting in re-establishment of the regular vortex shedding formation.  
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2.2.3. Flow induced vibrations of a free cylinder in steady currents 

In a case of a flexibly mounted circular cylinder, the lift and drag forces acting 

on the cylinder surface can cause the cross-flow and in-line vibrations of the circular 

bluff body, respectively, as reported by Sumer & Fredsøe (1997) [4]. Figure 2.2 shows 

a schematic illustration of a frequency response of a flexibly mounted circular cylinder 

in air with regard to cross-flow vibrations. According to Figure 2.2, when the reduced 

velocity (𝑢𝑟 = 𝑈∞ 𝑓𝑛 ∙ 𝐷⁄ , where 𝑓𝑛  denotes the natural frequency of the system in a 

vacuum) is smaller than 4, the circular cylinder does not experience vibration. At that 

region, the vortex shedding frequency (𝑓𝑣 ) follows the stationary cylinder Strouhal 

frequency. At  𝑢𝑟 = 4, the vibrations begin to emerge as reported by Sumer & Fredsøe 

(1997) [4].  At  5 < 𝑢𝑟 < 7, the natural frequency (𝑓𝑛) of the system is synchronized 

with the vortex shedding frequency: 𝑓 = 𝑓𝑛 = 𝑓𝑣. This phenomenon is known as lock-

in. It is characterized by the large vibration amplitudes of the cylinder. With further 

increase in the 𝑢𝑟 values, the vortex shedding frequency unlocks the natural frequency 

and starts to follow a Strouhal low again. 

 

Figure 2.2.  Schematic illustration of a frequency response of a flexibly mounted 

circular cylinder in air with regard to cross-flow vibrations. 

Wake topology depending on the reduced velocity for a two degree of freedom 

(2DoF) cylinder with a low mass ratio is splitted into the initial branch, the upper 

branch, and the lower branch as reported by Williamson & Roshko (1988) [6].         

Figure 2.3 shows the flow structures around 2DoF cylinder subjected to steady current 

at different branches. The initial branch is characterized by the formation of two single 

counter-rotating vortices (2S) per shedding cycle, similar to the von-Karman vortex 
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street observed behind a stationary cylinder as shown in Figure 2.3a. The cylinder 

undergoes a low amplitude of oscillation in streamwise and cross flow directions. With 

the increase in 𝑢𝑟, the upper branch starts to dominate. The main feature of the upper 

branch flow pattern is the separation of two triplets (2T) of vortices per shedding cycle 

as shown in Figure 2.3b. In the upper branch, the system reaches its higher oscillation 

amplitudes. Finally, the lower branch occurs at large 𝑢𝑟 . It is indicated by the 

separation of the two pairs (2P) of the counter-rotating vorticities per shedding cycle 

as shown in Figure 2.3c. The motion amplitude of the system at the lower branch is 

reduced in comparison with the upper branch.  

 
 

 

(a) (b) (c) 

Figure 2.3. Wake topology of the (a) initial branch (2S), (b) upper branch (2T), (c) 

lower branch (2P). Reproduced from Eiximeno et al. (2022) [7]. 

2.2. Decomposition techniques 

The reduced order modelling allows to represent a high-dimensional dynamical 

systems using a low dimensional subspace while keeping the relatively high accuracy 

of the simulated results and decreasing computational time. In order to build ROM of 

the non-linear dynamical system, the decomposition techniques can be utilized. The 

main idea of the various decomposition methods is to extract the dominant spatial-

temporal coherent structures of the flow field in order to achieve a model reduction. 

POD method is one of the most popular decomposition techniques. The main feature 

of the POD method is that spatial modes (𝜙𝑚) and their corresponding time coefficients 

( 𝑎𝑚(𝑡) ) are extracted based on the energy content of the flow. These modes are 

orthogonal to each other, and each POD mode contains continuous frequency spectral. 

A reduced order approximation of the flow field by using the most energetic POD 

modes can be represented as: 

𝑢(𝑥, 𝑦, 𝑡) ≈ ∑ 𝑎𝑛(𝑡) ∙ 𝜙𝑛(𝑥, 𝑦)

𝑁

𝑛=1

, 
(2.9) 
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where 𝑢(𝑥, 𝑦, 𝑧, 𝑡) is the data which consists of streamwise and crossflow velocities of 

the flow field at each time step; 𝑁 is the number of the dominant POD modes. 

Singular Value Decomposition (SVD) technique can be applied to decompose 

the flow field data presented in a form of matrix. A snapshot 𝒖𝑝  ∈ ℂ 𝑛   consists of 

samples of the flow field data with subscript 𝑝  indicating sampling at time 𝑡𝑝 :                                                   

𝒖𝑝 ≔ [𝒖(𝑥1, 𝑡𝑝) 𝒖(𝑥2, 𝑡𝑝) …  𝒖(𝑥𝑛, 𝑡𝑝)]
𝑇

, where 𝑛  denotes the spatial location. A time 

series of data, with 𝑚 measurement instances in time can be presented in a tall-skinny 

matrix X as usually 𝑛 ≫ 𝑚: 

𝐗 = [

 |  |
𝒖1 𝒖2

 |  |
…

 |
𝒖𝑚

 |
], 

(2.10) 

  SVD approach can be implemented to decompose the matrix 𝐗 ∈ ℂ 𝑛×𝑚 to the 

components: 

𝐗 = 𝐔𝚺𝐕𝐓, (2.11) 

where 𝐔 ∈  ℂ 𝑛×𝑛 and 𝐕 ∈  ℂ 𝑚×𝑚 are unitary matrices and 𝚺 ∈  ℂ 𝑛×𝑚 is a matrix with 

non-negative values on the diagonal. The matrix 𝐔 presents the eigenvalues of the 

modes, the matrix 𝐕 gives the time history evolution of each POD mode while the 

diagonal matrix 𝚺 shows the weighting of each mode relative to the others. 

The other decomposition technique which is widely implemented is DMD. The 

non-orthogonal DMD modes are characterized by their dynamics.  Each DMD mode 

has its own single frequency. The snapshots of the flow field data can be arranged into 

two data matrices, 𝐗  and 𝐗′: 

𝐗 = [

 |  |
𝒖1 𝒖2

 |  |
…

 |
𝒖𝑚−1

 |
], 

(2.12) 

𝐗′ = [

 |  |
𝒖2 𝒖3

 |  |
…

 |
𝒖𝑚

 |
]. 

(2.13) 

The DMD approach tries to find the best fit linear operator A which can connect 

the two snapshot matrices in time as reported by Brunton & Kutz (2022) [9]: 

𝐗′ ≈ A𝐗 (2.14) 
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The best-fit operator A can be defined as follow: 

𝐴 = argmin
𝐴

‖𝐗′ − 𝑨𝑿‖𝐹 = 𝑋′𝑋†, 
(2.15) 

where ‖. ‖𝐹  is the Frobenius norm and † is the pseudo-inverse. The more detailed 

explanation of the DMD approach can be found in Brunton & Kutz (2022) [9]. 

 2.3. Machine learning basic principles 

Machine learning is a sub-field of artificial intelligence. It refers to the idea that 

the computer programs can define correlations between the new impute data and learn 

them without human assistance. A sub-set of machine learning is Neural Network (NN) 

which is designed in analogy to the structure and functions of the brain’s neural 

network. The model used in NN is called Artificial Neural Network (ANN) which is the 

collection of connected units (neurons) that are organized into input, hidden and 

output layers as reported by Jung (2022) [8]. If ANN has more than one hidden layer, 

the ANN is considered as a deep ANN. Figure 2.4. shows the main components of the 

deep ANN.  

 

 

Figure 2.4. The diagram of the deep ANN architecture. 

According to Figure 2.4, each node is connected to every node in the next layer. 

Each connection between two nodes has an associated weight which represents the 
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connection strength between the two neurons. The input signal sent to the node of the 

input layer passes via a connection to reach the neuron of the following layer. The input 

signal will be multiplied by the weight assigned to that connection. The weighted sum 

of the following layer node is calculated as a sum of all incoming connection values. 

Then the weighted sum of the node is passed to an activation function. The activation 

function (Sigmoid activation function, ReLU activation function, Swish, etc.) allows to 

modify the sum to be a number between defined values. For example, the Sigmoid 

activation function transforms the input to be between zero and one.  

The training of the neural network is finding the most suitable values of the 

weights within the model. During the optimization process, the weights are updated 

iteratively and changed towards their optimal values. Therefore, the mean absolute 

scaled error (MASE) is used to evaluate how good the model is compared with the real 

data. The mean MASE is calculated as follow: 

                                    𝑀𝐴𝑆𝐸 =
1

𝑛
∑ |

𝐴(𝑖) − 𝐵(𝑖)

∑
𝐴(𝑗) − 𝐴(𝑗 − 1)

𝑛 − 1
𝑛
𝑗=2

|

𝑛

𝑖=1

, 

(2.16) 

where 𝑛 is the total number of the time instants; 𝐴(𝑖) denotes the real value at the time 

instant 𝑖; 𝐵(𝑖) is the forecasted value at the time instant 𝑖.  

Different datasets are used for training of the model and its testing. The training 

set is used only for the model training purposes. While the test data set is used to 

validate the performance of the designed neural network model. The two most 

common issues of the neural network are overfitting and underfitting. Figure 2.5 shows 

the schematic illustration of the models undergoing underfitting and overfitting, and 

balanced model. The overfitting problem occurs when the model exactly fits against its 

training data while it cannot perform accurately against unseen data as shown in 

Figure 2.5a. This issue can be solved if more data to the training set can be added, the 

complexity of the modal is reduced, or the data augmentation technique is applied. The 

underfitting model is the model which has quite low training accuracy and cannot 

classify the data properly as shown in Figure 2.5b. In order to overcome the 

underfitting issue, measures such as increasing the complexity of the model or adding 

more features to the input samples can be used. Figure 2.5c shows the balanced model 

with the optimally chosen parameters for data classification.  
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(a) (b) (c) 

Figure 2.5. Schematic illustration of the (a) overfitting model, (b) underfitting 

model and (c) balanced model. 
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Abstract  

Flow around two tandem cylinders at 𝑅𝑒 = 3.6 × 106  for different center-to-center 

spacing ratio (𝐿/𝐷) is investigated numerically using two-dimensional (2D) Unsteady 

Reynolds-Averaged Navier–Stokes (URANS) equations combined with a standard     

𝑘 − 𝜔 SST turbulence model. The instantaneous flow structures around the cylinders, 

hydrodynamic forces on the cylinders and Strouhal number (𝑆𝑡)  are analyzed and 

discussed. Dynamic Mode Decomposition (DMD) is used to extract the spatiotemporal 

information of the coherent flow structures in the wake regions behind the upstream 

(UC) and downstream (DC) cylinders. A sparsity-promoted algorithm is implemented 

to select the dominant modes which contribute the most to the dynamics of the system. 

Based on the dominant modes, a reduced-order representation of the flows is built. A 

comparison of the lift and drag force–time histories, obtained by simulation results 

and the reduced-order representations, shows a high capability of the latter to 

reproduce the surrounding flow and hydrodynamic properties of the tandem cylinders 

at the high Reynolds number. 
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3.1. Introduction  

Flow around tandem cylinders is of industrial and academic interest. In the field 

of offshore engineering, marine risers and subsea pipelines are usually subjected to a 

high Reynolds number flow in the order of 106  to 107  as reported by Sumer and 

Fredsøe (1997) [1] and Ong et al. (2009) [2]. When two cylinders are in proximity, there 

are complex hydrodynamic forces acting on the cylinders. The tandem configuration 

of the cylinders results in a complicated surrounding flow, due to the mutual 

interaction of the upstream cylinder (UC) and the downstream (DC) shear layers 

shedding from the cylinders. As a result, the impact of lift and drag forces becomes 

higher, compared with those for a single cylinder, and reduces the fatigue life of the 

cylindrical structures. Therefore, it is significant to explore the hydrodynamic forces 

and the instantaneous flow structures around cylinders subjected to a high 𝑅𝑒 flow to 

optimize the relative arrangement of the tandem cylindrical structures and increase 

their service life in the subsea environment. 

Plenty of studies have been conducted to investigate the flow around, and forces 

on, circular, rectangular (Nakaguchi et al., 1968 [3], Norberg 1993 [4], Ohya 1994 [5], 

Okajima et al., 1990 [6], Tian et al., 2013 [7]) and triangular (Dutta et al., 2015 [8], El-

Sherbiny et al., 1983 [9], Nakagawa 1989 [10], Cheng 2000 [11]) cylinders. Especially, 

the prediction of the flow separation around circular bluff bodies is a crucial topic for 

many researchers. The reason is the complexity of the separated flow caused by a 

constantly changing point of separation on the surfaces of the structures, due to the 

unsteadiness of the flow. Thus, comprehensive experimental studies have been 

conducted in the previous decades in order to get a deep understanding of the flow 

separation phenomenon. Tritton (1959) [12], Dimopoulos and Hanratty (2006) [13] 

investigated the flow around circular cylinders at low 𝑅𝑒  number experimentally. 

Trittion (1959) [12] conducted measurements of the drag force on the flow past a 

circular cylinder at 𝑅𝑒 = 0.5~100. Dimopoulos and Hanratty (2006) [13] employed 

electrochemical techniques to analyze the velocity gradient around the surface of a 

cylinder at 𝑅𝑒 = 60~360. They found that the values of the velocity gradient near the 

cylinder surface in the wake region are lower in comparison with that in the front part 

of the cylinder. 

However, experimental investigation of hydrodynamic quantities and 

instantaneous flow structures requires suitable laboratory equipment to reproduce real 
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flow conditions to achieve correct scaling of the dimensionless parameters, such as 𝑅𝑒, 

and also to minimize instrumental errors, which is difficult and expensive. Therefore, 

Computational Fluid Dynamics (CFD) has become increasingly popular, which allows 

the obtaining of full spatial and temporal information of the surrounding flow fields, 

including the flow velocities and pressures for engineering design. Park et al. (1998) 

[14] and Rajani et al. (2009) [15] numerically investigated the hydrodynamic 

coefficients and instantaneous flow patterns around cylindrical bluff bodies at low 𝑅𝑒 

number. Park et al. (1998) [14] studied flow around a circular structure at 𝑅𝑒 numbers 

up to 160 by employing high resolution unsteady simulations. He reported that the 

simulation results showed a reasonable agreement with previously published 

experimental data. Rajani et al. (2009) [15] investigated instantaneous flow structures 

around a circular cylinder at 𝑅𝑒 = 0.1~400 by using an implicit pressure-based finite 

volume algorithm. He reported that the 2D numerical simulations results were in good 

agreement with the measured data up to 𝑅𝑒 = 200. However, beyond the critical Re 

number, differences between the simulation results and experimental data were 

observed, due to three-dimensional (3D) effects. 

Investigation of the hydrodynamic quantities around tandem cylindrical bluff 

bodies has both practical and academic significance. A comprehensive review of the 

work on two cylinders in various arrangements was presented by Zdravkovich et al. 

(1977) [16] and Sumer et al. (2010) [17]. When a cylinder is placed in-line downstream 

of another cylinder, they are called a tandem arrangement. When two cylinders are 

placed in tandem, a complex flow structure is generated as a result of flow interference 

in the wake behind the upstream body. Flow around two tandem cylinders may be 

classified into three regimes based on the center-to-center spacing, 𝐿/𝐷, between the 

two cylinders, as reported in Zdravkovich et al. (1978) [18]: 1) an extended body regime, 

where 𝐿/𝐷 ranges from 1 to 1.5. The two cylinders are placed sufficiently close to each 

other such that the free shear layers separated from the UC overshoot the DC; 2) a 

reattachment regime, where 𝐿/𝐷  is between 1.5 and 4 (critical 𝐿/𝐷), and the shear 

layers reattach on the DC; 3) a co-shedding regime, where 𝐿/𝐷 is larger than a critical 

value and the shear layers from the two cylinders roll up alternately. A vortex street 

appears in the gap between, as well as behind, the cylinders. 

Hori (1959) [19], Huhe-Aode et al. (1985) [20], Nishimura et al. (1986) [21], Xu 

and Zhou (2004) [22] and Alam et al. (2011) [23] analyzed the flow pattern around 

tandem cylinders at high 𝑅𝑒  number experimentally. Hori (1959) [19] performed 
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measurements in a closed-circuit wind tunnel over 𝑅𝑒 = 800~4.2 × 104 and a cylinder 

center-to-center spacing of 𝐿/𝐷 = 1~15. His study confirmed the previous observation 

of a bi-stable flow between the reattachment and co-shedding regimes. Huhe-Aode et 

al. (1985) [20] investigated the wake flow structure behind two tandem cylinders at 

𝑅𝑒 = 100~1000  experimentally by using a hot-wire anemometer and flow 

visualization techniques. Nishimura et al. (1986) [21] analyzed the flow pattern around 

two cylinders in tandem at 𝑅𝑒 = 800~1 × 104. and the relative distance between two 

cylinders from 1.2 to 7.2, by using flow visualization techniques. Xu and Zhou (2004) 

[22] measured the dominant vortex frequencies in the wake region of two tandem 

cylinders by using two hot wires placed in tandem at 𝑅𝑒 = 800~4.2 × 104 and 𝐿/𝐷 =

1~15, which also showed the existence of a bi-stable flow regime. Alam et al. (2011) 

[23] did experiments to investigate the influence of the 𝐿/𝐷 ratio between cylinders on 

the hydrodynamic coefficients at 𝑅𝑒 = 9.7 × 103~6.5 × 104  in a low-speed, closed-

circuit wind tunnel. He proposed six different interaction mechanisms of the vortices 

between the cylinders which have different influence on the induced forces on the 

cylinders and 𝑆𝑡. 

The present study focuses on prediction of flow structures around tandem 

cylinders at the upper transitional Reynolds number regime. To this date, the flow at 

this high 𝑅𝑒 has not been intensively explored. A prediction of hydrodynamic forces on 

cylinders, and the surrounding instantaneous flow structures, is challenging, due to the 

complexity of the flow at the high 𝑅𝑒. The flow around a circular cylinder at 𝑅𝑒 = 0.5 ×

106~4 × 106  was studied by Catalano et al. (2003) [24] by using both Large Eddy 

Simulations (LES) with a wall model and URANS simulations combined with the 𝑘 − 𝜀 

turbulence model. He pointed out that LES solutions capture the delayed separation of 

the boundary layer on the surfaces of the cylinder and reduced drag coefficients after 

the ‘drag crisis’ more accurately than those obtained by using RANS simulations. Ong 

et al. (2009) [2] numerically solved 2D Unsteady Reynolds-Averaged Navier–Stokes 

(URANS) equations with a standard high Reynolds number 𝑘 − 𝜀 turbulence model at 

𝑅𝑒 = 1 × 106, 2 × 106 and 3.6 × 106 to investigate the flow around a circular cylinder. 

It was found that the 2D simulations were capable of predicting the hydrodynamic 

coefficients at these high 𝑅𝑒 values. Hu et al. (2019) [25] analyzed the characteristics 

of the flow passing two tandem cylinders at both subcritical and supercritical Reynolds 
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numbers by using Improved Delayed Detached-Eddy Simulation (IDDES) for spacing 

ratio 2 ≤ 𝐿/𝐷 ≤ 5. 

In the analysis of the surrounding flow and the hydrodynamic forces on the 

cylindrical structures, statistics, such as the mean values, the root-mean-square values 

and spectra of the time histories of forces, were usually obtained. However, their 

relationship with the flow structures was not clearly revealed. Moreover, the turbulent 

wake flows were characterized by temporal and spatial multiscale vortical structures, 

which brought challenge to the analysis of the flow phenomena. Therefore, data-driven 

methods, such as Proper Orthogonal Decomposition (POD) and Dynamic Mode 

Decomposition (DMD), as well as their variations, allow the extraction of dominant 

flow features from time-dependent flow fields and the achievement of a deep 

understanding of the experimental, or simulation, results. In the present study, to 

reveal the spatiotemporal behaviors of the flow data, the DMD method was employed, 

which was proposed by Schmid (2010) [26] and is based on the Koopman operator 

theory of dynamical systems (Rowley et al., 2009 [27]). The development and use of 

modal decomposition techniques has gained increasing popularity in recent years due 

to its advantage in processing huge experimental and numerical simulations data, as 

reported by Taira et al. (2017) [28]. DMD decomposes flow data into the modes and 

their associated eigenvalues, which characterizes the frequencies and growth rates of 

the DMD modes. DMD has been used in a wide variety of applications, including the 

wake flows of circular cylinders, such as in the works by Bagheri et al. (2013) [29] and 

Hemati et al. (2017) [30], and for jet flow, such as in the work conducted by Schmid et 

al. (2011) [31]. 

The present study investigates the influence of the relative distances between 

two cylinders on the hydrodynamic coefficients and instantaneous flow structures in 

the upper transition Reynolds number regime. To obtain the flow data, two-

dimensional (2D) Unsteady Reynolds Averaged Navier–Stokes (URANS) equations, 

with the standard 𝑘 − 𝜔 SST turbulence model, are solved. The relationship between 

the dominant flow structures with the hydrodynamic forces were studied. The paper is 

organized as follows. Section 3.2 gives a brief introduction to the numerical method 

applied in the present study. The computational domain and the grid resolution 

convergence study are provided in Section 3.2. The validation study is performed by 

comparing the obtained hydrodynamic coefficients with the previously published data. 

In Section 3.3, the results and discussion, based on hydrodynamics quantities, power 
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spectra analysis of their fluctuations, and instantaneous flow structures, are presented. 

The DMD analysis is also performed. Finally, conclusions are presented in Section 3.4. 

3.2. Numerical Modeling 

3.2.1. Mathematical formulation 

The two-dimensional incompressible URANS equations of mass and 

momentum conservation are given by:  

where i, j = 1, 2; 𝑥1, 𝑥2 are the streamwise and cross-flow directions, respectively; 𝑢1 

and 𝑢2 are the corresponding mean velocity components; 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  is the Reynolds stress 

component where 𝑢𝑖
′ is the fluctuating part of the velocity; P is the dynamic pressure; 

𝜌 is the density of the fluid. The shear stress transport 𝑘 − 𝜔 SST turbulence model 

(Menter et al., 2003 [32]) was applied in the present study. It consists of the 𝑘 − 𝜔 and 

𝑘 − 𝜀 models. The 𝑘 − 𝜀 model is suitable for simulating the free-stream flow, while it 

performs poorly where there are adverse pressure gradients, boundary layer 

separations and strong streamline curvatures. The 𝑘 − 𝜔 model performs better under 

adverse pressure gradient conditions, and flow separations, compared with the 𝑘 − 𝜀 

model. Therefore, the adopted 𝑘 − 𝜔 SST model that is presented was selected because 

it can combine the advantages of the 𝑘 − 𝜀 model in the free stream outside the cylinder 

boundary layer and the advantages of the 𝑘 − 𝜔 model to predict the boundary layer 

separations in the near-wall regions. The transport equations for specific dissipation 

rate 𝜔 and turbulence kinetic energy 𝑘 are given by:  

𝐷𝑘

𝐷𝑡
=  𝑃�̃� − 𝛽∗𝑘𝜔 +

𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜎𝑘𝜈𝑡)

𝜕𝑘

𝜕𝑥𝑗
], (3.3) 

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0, (3.1) 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑃

𝜕𝑥𝑖
+ 𝑣

𝜕2𝑢𝑖

𝜕𝑥𝑗
2 −

𝜕𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅

𝜕𝑥𝑗
, (3.2) 
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𝐷𝜔

𝐷𝑡
=  𝛼𝑆2 − 𝛽∗𝜔2 +

𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜎𝜔𝜈𝑡)

𝜕𝜔

𝜕𝑥𝑗
] + 2(1 − 𝐹1)

𝜎𝜔2

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, (3.4) 

where 𝑃�̃� is a production limiter term given by the equation:  

The variable 𝜑1  represents any constant in the standard 𝑘 − 𝜔 model and 𝜑2 

denotes any constant in the standard 𝑘 − 𝜀 model. The blending function 𝐹1 is used to 

calculate the corresponding constant of the 𝑘 − 𝜔 SST model:  

 

where 𝑦  is the distance to the nearest wall, 𝐶𝐷𝑘𝜔 is the positive part of the cross-

diffusion term in Eq. (3.4). The turbulent eddy viscosity 𝑣𝑡 can be defined as:  

𝑣𝑡 =
𝑎1𝑘

max (𝑎1𝜔, 𝑆𝐹2)
, (3.9) 

where 𝑆 represents the strain rate invariant and 𝐹2 is a second blending function given 

by:  

𝐹2 = tanh [[max (
2√𝑘

𝛽∗𝜔𝑦
,

500𝑣

𝑦2𝜔
)]

2

]. (3.10) 

The model constants: 𝜎𝑘, 𝜎𝜔 , 𝛽, 𝛽∗, 𝛾 have standard values and can be found in 

Menter et al. (2003) [32].  

𝑃�̃� = min [𝜈𝑡

𝜕𝑢𝑖

𝜕𝑥𝑗
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) , 10𝛽∗𝑘𝜔]. (3.5) 

𝜑 = 𝐹1𝜑1 + (1 − 𝐹1)𝜑2, (3.6) 

𝐹1 = tanh [[min [max (
√𝑘

𝛽∗𝜔𝑦
,
500𝑣

𝑦2𝜔
) ,

4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝜔𝑦2
]]

4

], (3.7) 

𝐶𝐷𝑘𝜔 = max [2𝜌
𝜎𝜔2

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−10], (3.8) 
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3.2.2. Numerical Method  

The open source CFD toolbox OpenFOAM v2012 was used to perform all the 

simulations in the present study. The PIMPLE algorithm was used to solve the 

governing equations. It is a combination of the Semi-Implicit Method for Pressure 

Linked Equations (SIMPLE) and the Pressure Implicit with Split Operators (PISO) 

method. An implicit second order backward time integration scheme was applied. The 

divergence and gradient terms were discretized using the Gauss linear integration 

scheme. The Laplacian term was discretized using Gauss linear integration with 

limited non-orthogonal correction. All the used schemes were of second-order 

accuracy. 

3.2.3.  Computational domain  

The computational domain is shown in Figure 3.1. The center of the front 

cylinder is located at a distance 10𝐷 from the inlet boundary and 25𝐷 from the outlet 

boundary. The center of the back cylinder is located with a horizontal center-to-center 

offset 𝐿 from the front cylinder. The upper and lower boundaries are placed at the 

distance of 10𝐷 to the centers of both cylinders. 

 

Figure 3.1. The computational domain for the tandem cylinders. 

The boundary conditions used for the numerical simulations were set as follows: 

1. A uniform flow was specified at the inlet as: 
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𝑢1 = 𝑈∞, (3.11) 

𝑢2 = 0, (3.12) 

𝑘 =
3

2
(𝑢𝐼)2, (3.13) 

𝜔 =  
𝑘0,5

(𝐶𝜇)0,25𝑙
, (3.14) 

where 𝐶𝜇 = 0.09 is the model constant; 𝑙 = 0.045𝐷 is the turbulent length scale; 𝐼 =

1% is the turbulent intensity. 

2. At the outlet of the domain, the velocities, 𝑘 and 𝜔 were set as zero normal gradient 

condition and the pressure was set to be zero. 

3. At the top and bottom of the domain, the velocities, the pressure, 𝑘 and 𝜔 were set 

as zero normal gradient. 

4. A no-slip boundary condition was applied for the velocities on the cylinder surfaces 

with 𝑢1 = 𝑢2 = 0 . A standard wall function was used to resolve the near-wall 

boundary layer. Therefore, a criterion of 30 < 𝑦+ < 40 with 𝑦+ was used, defined as: 

              𝑦+ =
𝑢∗ℎ𝑝

𝑣
, 

(3.15) 

where 𝑢∗ is the friction velocity defined as: 

𝑢∗ = √
𝜏𝜔

𝜌
 

(3.16) 

and 𝜏𝜔 is the wall shear stress. 

3.2.4. Mesh convergence and validation studies 

The aim of the mesh convergence study was to determine the appropriate grid 

resolutions for the simulations. The convergence studies were conducted on three 

computational grids, shown in Table 3.1, with a different number of cells for the single 

cylinder case. An example of the mesh for the case M1 in Table 3.1 is shown in Figure 

3.2. The geometry of each grid was kept similar. The time step (∆𝑡) used in the mesh 

convergence study was chosen such that a maximum Courant number (defined as 𝐶𝑜 =

𝑢 ∙ ∆𝑡 ∆𝑥⁄  where 𝑢 is the velocity magnitude of the flow and ∆𝑥 is the computational cell 
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size) at each time step was below 0.5. The difference in the cell number was 

approximately 50% between cases. 

Table 3.1. Results of grid convergence study 

 

  

(a) (b) 

Figure 3.2. Example of the mesh M2 (a) an overall view and (b) a zoom-in view of 

the mesh close to the cylinder  

Table 3.1 presents the results of the grid convergence study of the single cylinder 

case. The results showed that the relative difference of the time-averaged drag 

coefficient (the drag coefficient 𝐶𝐷 is defined as 𝐹𝐷 (0.5𝜌𝐷𝑈∞
2 )⁄ , where the force acting 

on the cylinder in the streamwise direction per unit length and the time-averaged 

values was calculated as 𝐶�̅� =
1

𝑛
∑ 𝐶𝐷,𝑖

𝑛
𝑖=1 )  between cases, was lower than 2%. The 

relative difference of the root-mean-square values of the lift coefficient (the lift 

coefficient 𝐶𝐿 is defined as 𝐹𝐿 (0.5𝜌𝐷𝑈∞
2 )⁄ , where the force acting on the cylinder in the 

cross-stream direction per unit length and the root-mean-square value was defined as 

𝐶𝐿,𝑟𝑚𝑠 = √∑ (𝐶𝐿,𝑖 − 𝐶�̅�)2𝑛
𝑖=1 𝑛⁄ ), was lower than 5%, and the relative difference of the 

Strouhal number (defined as 𝑆𝑡 = 𝑓𝑣𝐷 𝑈∞⁄ , where 𝑓𝑣 is the vortex shedding frequency 

obtained by performing fast Fourier transform of the time histories of the lift force 

coefficient 𝐶𝐿 of the cylinder) was lower than 3% between cases. According to Table 3.1, 

the results suggested that for the computational grids with a cell number higher than 

Case No. of Cells �̅�𝑫 𝑪𝑳,𝒓𝒎𝒔 𝑺𝒕 

M1 74496 0.4657 0.1565 0.3227 
M2 113256 0.4706 0.1599 0.3293 
M3 171970 0.4639 0.1553 0.3221 
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approximately 113,000, a further grid refinement showed a slight influence on the 

obtained hydrodynamic quantities. Therefore, it could be concluded that the mesh of 

the case M2 could provide sufficient grid resolution for the simulations. 

The obtained hydrodynamic coefficients are compared with the previously 

published experimental and numerical simulation data in Table 3.2. Generally, the 𝐶�̅� 

predicted in the present simulation was within the range of the experimental data and 

in reasonable agreement with the numerical simulation results. However, the 𝐶𝐿,𝑟𝑚𝑠, 

which was more sensitive than the value of 𝐶�̅�, was different from the obtained value 

of 𝐶𝐿,𝑟𝑚𝑠  reported by Ong et.al. (2009) [2], where the 𝑘 − 𝜀  turbulence model was 

applied. However, the present predicted values were close to those reported by 

Porteous et al. (2015) [33] and Pang et al. (2016). The value of 𝑆𝑡 was higher than the 

value predicted by Porteous et al. (2015) [33] but close to the data reported by Ong et 

al. (2009), Pang et al. (2016) [34] and Janocha et al. (2021) [35]. To sum up, a general 

agreement with the published data could be achieved by the present numerical model. 

Therefore, the numerical model could be used for further investigation of the 

instantaneous flow structures and hydrodynamic properties around tandem cylinders. 

An example of the mesh used in the study for two tandem cylinders for 𝐿/𝐷 = 3 is 

shown in Figure 3.3. The mesh of the near cylinder wall region was refined to accurately 

predict the flow features in that area. Mesh distribution around the cylinders could be 

described by 𝑃𝐶 and 𝑃𝑅 parameters, which are presented in Figure 3.3b. The value 𝑃𝐶 =

220 is the total number of points in circumferential direction along the cylinder surface 

and 𝑃𝑅 = 41 is the number of nodes in radial orientation. 

Table 3.2. Numerical and experimental data of a fixed single cylinder at high 

Reynolds number regime. 

Source/Author Method 𝑹𝒆 �̅�𝑫 𝑪𝑳,𝒓𝒎𝒔 St 

Present study 2D URANS 𝑘 − 𝑤 𝑆𝑆𝑇 3.6 × 106 0.4706 0.1599 0.3293 
Ong et al. (2009) [2] 2D URANS 𝑘 − 𝜀 3.6 × 106 0.4573 0.0766 0.3052 
Porteous et al. (2015) [33] 2D URANS 𝑘 − 𝜔 𝑆𝑆𝑇 3.6 × 106 0.4206 - 0.1480 
Pang et al. (2016) [34] 2D URANS 𝑘 − 𝜔 𝑆𝑆𝑇 5.2 × 106 0.4570 0.1847 0.3210 
Janocha et al. (2021) [35] 2D URANS 𝑘 − 𝜔 𝑆𝑆𝑇 3.6 × 106 0.4616 0.1750 0.3204 
Jones et al. (1969) [36] Experiments (0.5 − 8) × 106 0.15-0.54 - - 
Shih et al. (1993) [37] Experiments (1 − 5) × 106 0.16-0.50 - - 
Schmidt (1996) [38] Experiments (0.3 − 8) × 106 0.18-0.53 - - 
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(a) (b) 

Figure 3.3. An example of the mesh for 𝐿/𝐷 = 3 (a) an overview of the mesh (b) a 

zoom-in view in the gap region. 

3.3. Results  

The effect of the center-to-center offset between two cylinders on the 

instantaneous flow structures, hydrodynamic quantities and 𝑆𝑡  were analyzed for                                                    

𝐿/𝐷 = 1.56, 1.8, 2.5, 3, 3.7, 4.  Furthermore, DMD was applied to the velocities and 

pressure data in the 2D XY-plane flow field to extract the spatiotemporal information 

of the coherent flow structures in the wake regions of the UC and DC. 

3.3.1. Hydrodynamic forces  

The hydrodynamics forces are analysed in this section in terms of the 

instantaneous drag and lift coefficients of the two tandem cylinders. 

Figure 3.4 presents the time histories of 𝐶𝐿  and 𝐶𝐷  for                                                                           

𝐿/𝐷 = 1.56, 1.8, 2.5, 3, 3.7 and 4 . As seen from Figure 3.4, the 𝐶𝐷  oscillated at a 

frequency which was twice the 𝐶𝐿 of the cylinders. The pressure distribution around 

the cylinder underwent a periodic change as the vortex shedding grew, resulting in 

periodic variation in the force. The drag force was always positive due to the stagnation 

point at the front surface of the cylinders, in comparison with the lift force which could 

be positive and negative. Two vortices of almost equal strength and opposite signs were 

shed each oscillation period in the wake of a cylinder. Each vortex contributed to the 

maximum positive value of 𝐶𝐷 and contributed to the maximum values with opposite 

signs of 𝐶𝐿. Therefore, two positive peaks of the 𝐶𝐷 and two negative and positive peaks 

per one cycle of vortex shedding were seen. It resulted in a period doubling of the 𝐶𝐷 

compared to the oscillation of the 𝐶𝐿. 



30 
 

   

(a) (b) (c) 

   
(d) (e) (f) 

Figure 3.4. Time histories of 𝐶𝐿 and 𝐶𝐷 for different distance ratios: (a) 𝐿/𝐷 = 1.56, 

(b) 𝐿/𝐷 = 1.8, (c) 𝐿/𝐷 = 2.5, (d) 𝐿/𝐷 = 3, (e) 𝐿/𝐷 = 3.7, (f) 𝐿/𝐷 = 4. 

According to Figure 3.4, the value of 𝐶𝐷 of the UC increased when the distance 

between UC and DC  reduced. In contrast, the value of 𝐶𝐷  for the DC underwent a 

nonmonotonic change with shortening of the space between the two cylinders due to 

shielding effect. At 𝐿/𝐷 = 1.56, 𝐶𝐷 of the DC was negative, as presented in Figure 3.4a. 

This was related to the cavity flow in the gap between UC and DC. In addition, 𝐶𝐷 

fluctuation amplitude of the DC was higher in comparison with the UC for distance 

ratios 𝐿/𝐷 = 1.8, 2.5, 3, 3.7  and 4,  as shown in Figure 3.4. The UC shear layers 

reattached to the DC surface and contributed to the pressure distribution around the 

DC. However, at 𝐿/𝐷 = 1.56, the values of 𝐶𝐷 of the UC and DC were approximately 

constant, as shown in Figure 3.4a. A possible reason was that the shear layers of the 

UC overshot the DC. Therefore, the two cylinders behaved as an extended body at 

𝐿/𝐷 = 1.56. 

According to Figure 3.4b–d, the fluctuation amplitudes of 𝐶𝐿  were large in 

comparison with other cases. This might have been connected with the reattachment 
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flow regime which triggered strong interaction of shear layers between UC and DC. A 

small angle of the UC shear layers reattachment to the front part of the DC caused 

strong vortex shedding behind the DC, and vice versa, which influenced the values of 

𝐶𝐿 . In addition, at 𝐿/𝐷 = 1.8, the shape of the oscillating time history of 𝐶𝐿  was not 

sinusoidal, which indicated a strong modulation of the 𝐶𝐿 for both cylinders, as shown 

in Figure 3.4b. For 𝐿/𝐷 = 3.7 and 4, the fluctuation amplitudes of 𝐶𝐿 were smaller in 

contrast to 𝐿/𝐷 = 1.8, 2.5 and 3. The reason might have been connected with a change 

of the flow pattern around the tandem cylinders caused by the increasing distance 

between the two cylinders. 

Table 3.3 represents the values of 𝐶𝐿,𝑟𝑚𝑠  and 𝐶𝐷
̅̅̅̅  for different distance ratios. 

According to Table 3.3, the value of the 𝐶𝐷
̅̅̅̅  of the DC was smaller in comparison with 

UC for all distance ratios. The DC was located in the wake region of the UC. Therefore, 

the shielding effect caused by the UC influenced the flow pattern around the DC. 

However, the values of 𝐶𝐷
̅̅̅̅  of the DC achieved maximum values at 𝐿/𝐷 = 1.8 and 3, as 

presented in Table 3.3. This might have again been connected with the transitions of 

the instantaneous flow structures between 𝐿/𝐷 = 1.8 and 𝐿/𝐷 = 2.5, and 𝐿/𝐷 = 2.5 

and 𝐿/𝐷 =  3. 

Table 3.3. The values of 𝐶𝐿,𝑟𝑚𝑠 and 𝐶𝐷
̅̅̅̅  for different distance ratios. 

𝑳/𝑫 
𝑪𝑳,𝒓𝒎𝒔 𝑪𝑫 ̅̅ ̅̅  

UC DC UC DC 
1.56 0.0271 0.0283 0.4279 −0.1376 
1.8 0.8352 1.1848 0.5845 0.3969 
2.5 0.7512 1.5898 0.5456 0.2740 
3 0.5234 1.3160 0.4707 0.3106 

3.7 0.1447 0.4911 0.3031 0.1875 
4 0.1394 0.3580 0.2169 0.2120 

As shown in Table 3.3, the values of the 𝐶𝐿,𝑟𝑚𝑠 for both UC and DC became large 

when the distance between two cylinders reduced. At 𝐿/𝐷 = 2.5, the value of the 𝐶𝐿,𝑟𝑚𝑠 

of the DC achieved a maximum value. This might have been related to the dominance 

of the front reattachment (FR) flow regime, which caused strong vortex shedding 

behind the DC. However, the value of the 𝐶𝐿,𝑟𝑚𝑠 of both cylinders decreased drastically 

at 𝐿/𝐷 = 1.56. The possible reason was that the overshoot flow regime dominated at 

𝐿/𝐷 = 1.56 and the interaction of UC and DC shear layers was minimized. 
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Figure 5 shows the mean pressure coefficient around the UC and DC for 𝐿/𝐷 =

1.56. According to Figure 3.5, the front surface of the DC had a low negative pressure, 

which was almost the same as the corresponding value of the base pressure of the UC. 

This fact was an indication that the flow in the gap between UC and DC was almost 

stagnant. Furthermore, the negative pressure coefficient on the front side of the DC 

exceeded that on its back surface. Therefore, the DC experienced a negative drag force. 

 

Figure 3.5. The pressure coefficient distribution for 𝐿/𝐷 = 1.56 .                                                      

𝑐𝑝 =  (�̅� − 𝑝0)/(
1

2
𝜌𝑈2), where 𝑝0 is the pressure in the far field. 

3.3.2. Strouhal Number and Flow Structures 

The relationship between 𝑆𝑡  and flow structures around tandem cylinders is 

analysed in this section. Figure 3.6 presents the PSD (Power Spectral Density) 

functions 𝐸𝐶𝐿1
and 𝐸𝐶𝐿2

 of 𝐶𝐿  for 𝐿/𝐷 = 1.56, 1.8, 2.5, 3, 3.7 and 4  of the UCs and DCs, 

respectively. For all considered cases, the values of 𝑆𝑡, and its harmonics of the DC, 

dominated at the same frequency as measured for the UC. This was explained by Meyer 

et al. (2011) [39] as follows: when 𝐿/𝐷 is less than 8 the vortices of the UC can trigger 

the vortex shedding from the DC, leading to a lock-in of UC and DC vortex shedding. 

According to Figure 3.6a,b, the value of 𝑆𝑡 decreased from 0.336 to 0.180 when 

𝐿 𝐷⁄  increased from 1.56 to 1.8. The decrease was connected to change in the flow 

structure. Instantaneous contours of the spanwise vorticity for 𝐿/𝐷 =  1.56  are 

presented in Figure 3.7a. At 𝐿/𝐷 =  1.56, where over-shoot flow regime dominated, as 

shown in Figure 3.7a, the value of 𝑆𝑡 was close to that of an isolated cylinder (≈ 0.329, 
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as presented in Table 3.2). When the over-shoot regime dominated, the DC was located 

inside the recirculation region behind the UC. The separated shear layers of the UC 

overshot the DC without reattachment before rolling up into a Karman vortex street, 

as shown in Figure 3.7a. Therefore, only one 𝑆𝑡 was observed, shown in Figure 3.6a. 

 

 

 

(a) (b) (c) 

 

 

 

(d) (e) (f) 

Figure 3.6. The PSD 𝐸𝐶𝐿1
and 𝐸𝐶𝐿2

: (a) 𝐿/𝐷 = 1.56 , (b) 𝐿/𝐷 = 1.8 , (c) 𝐿/𝐷 = 2.5 ,                       

(d) 𝐿/𝐷 =3, (e) 𝐿/𝐷 = 3.7, (f) 𝐿/𝐷 = 4. 
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(a) (b) 

 

(c) 

Figure 3.7. Instantaneous contours of the spanwise vorticity for (a) 𝐿/𝐷 = 1.56; (b) 

𝐿/𝐷 = 3.7; (c) 𝐿/𝐷 = 4. 

The spanwise vorticities for 𝐿/𝐷 =  1.8  at different time steps are shown in 

Figure 3.8. Meyer et al. (2011) [39] suggested a division of the cylinder surface to the 

following zones: front ( 𝜃 =  0°~60° ), front-side ( 𝜃 = 60°~90° ), rear-side (𝜃 =

90°~120°) and rear (𝜃 = 120°~180°) (𝜃 is presented in Figure 3.9). According to the 

surface division, front-side reattachment regime dominated at 𝐿 𝐷⁄ = 1.8, as shown in 

Figure 3.8a. Three peaks, including the third and fifth harmonics of 𝑆𝑡, were observed 

in the PSD, as shown in Figure 3.6b at 𝐿/𝐷 =  1.8. The first 𝑆𝑡 was connected to the 

vortex shedding. The multiple peaks in the PSD were due to the reattachment of the 

shear layer on the DC. The lower shear layer of the UC reattached on the upper part of 

the DC at the front-side surface, as seen in Figure 3.8a. Then, the reattached shear layer 

split into two vortex slices going through the lower and upper part of the DC. The upper 

reattached vortex slice went to the upper side of the DC and further separated from its 

surface. It did not seem to influence the negative vortex behind the DC, as shown in 

Figure 3.8b. At the same time, a positive vortex began to grow and was about to move 

up, as denoted by the arrow in Figure 3.8b. Then, this positive vortex would go down 

to merge the split reattached vortex slice from the UC, as shown in Figure 3.8c. This 

flow pattern also happened with the opposite vortex signs, as shown in Figure 3.8d, 

and this might have been associated with the third harmonic of 𝑆𝑡, in Figure 3.6b. 
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(a) (b) 

  

(c) (d) 

Figure 3.8. Instantaneous contours of the spanwise vorticity for 𝐿/𝐷 = 1.8  at:                           

(a) 𝑡𝐷/𝑈∞ = 278.5, (b) 𝑡 𝐷/𝑈∞ = 279.5, (c) 𝑡𝐷/𝑈∞ = 280, (d) 𝑡𝐷/𝑈∞ = 282. 

 

Figure 3.9. The division of the cylinder surface to the zines depending on the angle 𝜃. 

Four peaks, including the second, third and fourth harmonics of 𝑆𝑡,  were 

observed in the PSD, as shown in Figure 6c at 𝐿/𝐷 = 2.5. As shown in Section 3.3.1, 

𝐶𝐿,𝑟𝑚𝑠 of the DC achieved a higher value at 𝐿/𝐷 = 2.5, compared with 𝐿/𝐷 =  1.8 and 3. 

It meant that the shear layers reattached on the surface of the DC at a smaller 𝜃 at 

𝐿/𝐷 = 2.5 in comparison with that for 𝐿/𝐷 = 1.8 and 3. Therefore, the flow pattern 

changed from front-side reattachment (FSR) to FR at 𝐿/𝐷 = 2.5 . The spanwise 

vorticities for 𝐿/𝐷 = 2.5 at different time steps are shown in Figure 3.10. According to 
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Figure 3.10a, the shear layer of the UC reattached on the front surface of the DC at 

𝐿/𝐷 = 2.5 and divided into the upper and lower vortex slices. The upper vortex slice 

would interact with the negative vortex shedding from the DC, as shown in Figure 3.10b. 

At the exact same time, a positive vortex began to grow behind the DC and also moved 

up to interact with the negative vortex, as denoted by the arrow in Figure 3.10b. This 

interaction between three vortices might have been associated with the second 

harmonics of 𝑆𝑡, as shown in Figure 3.6c. Then, after the negative vortex separated, the 

positive vortex behind the DC went down and merged with the reattached lower 

positive vortex slice from the UC, as shown in Figure 3.10c. The flow pattern was the 

same as that shown for 𝐿/𝐷 = 1.8  and occurred with the opposite vortex signs, as 

shown in Figure 3.7d. Again, this flow pattern was related to the third harmonics of 𝑆𝑡. 

  

       (a)                                  (b) 

 

 

         (c)                                 (d) 

Figure 3.10. The contours of the spanwise vorticities for 𝐿/𝐷 = 2.5: (a) 𝑡𝐷/𝑈∞ =

279.5; (b) 𝑡𝐷/𝑈∞ = 281; (c) 𝑡𝐷/𝑈∞ = 280; (d) 𝑡𝐷/𝑈∞ = 281. 

At 𝐿/𝐷 = 3, two peaks, including the third harmonic of 𝑆𝑡, were observed in the 

PSD, as shown in Figure 6e. At 𝐿/𝐷 = 3, the flow pattern changed from FR to the FSR. 

This was indicated by the decreasing 𝐶𝐿,𝑟𝑚𝑠 at 𝐿/𝐷 = 3 in comparison with 𝐿/𝐷 = 2.5. 

The reason was that at 𝐿/𝐷 = 3, the shear layers reattached to the surface of the DC at 

a bigger 𝜃  compared to those at 𝐿/𝐷 = 2.5  and produced weaker Karman vortices 
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behind it. A detailed development of vorticity structures for 𝐿/𝐷 = 3 at different time 

steps is shown in Figure 3.11. 

The lower shear layer of the UC reattached on the front-side surface of the DC, 

as presented in Figure 3.11a. After that, the reattached shear layer split into two into 

two vortex slices moving through the lower and upper parts of the DC, as shown in 

Figure 3.11b. The upper vortex slice went upper side of the DC and then separated from 

its surface. It seemed that the upper vortex slice did not contribute to the development 

of the negative vortex behind the DC, as shown in Figure 3.11b. Simultaneously, the 

positive vortex was growing and moving up, as depicted by the arrow in Figure 3.11b. 

Furthermore, the positive vortex would move down and merge with the lower vortex 

slice from the reattached shear layer of the UC, as presented in Figure 3.11c, and this 

might have been associated with the third harmonic of 𝑆𝑡 in Figure 3.6d. This flow 

pattern also repeated with the opposite vortex signs, as shown in Figure 3.11d. 

Therefore, the evolution of the flow pattern around tandem cylinders at 𝐿/𝐷 = 3 was 

similar to the development of the vortical structures around UC and DC at 𝐿/𝐷 = 1.8. 

  

          (a)                                 (b) 

 

 

          (c)                                (d) 

Figure 3.11. Instantaneous contours of the spanwise vorticity for 𝐿/𝐷 = 3  at: (a) 

𝑡𝐷/𝑈∞ = 285.5; (b) 𝑡𝐷/𝑈∞ = 286; (c) 𝑡𝐷/𝑈∞ = 287; (d) 𝑡𝐷/𝑈∞ = 288. 

𝑆𝑡 was again about 0.329 for 𝐿/𝐷 = 3.7, indicating that the flow pattern changed. 

Alam et al. (2011) proposed that at 𝑅𝑒 = 9.7 × 103  and 𝑅𝑒 = 6.5 × 104  a bi-stable 
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regime exists between the FR and co-shedding flows at the distances of 3.5 < 𝐿/𝐷 <

3.9 and 3.9 < 𝐿/𝐷 < 4.2, respectively. Therefore, it could be concluded that 𝐿/𝐷 = 3.7 

and 4, shown in see Figure 3.7b,c belonged to the bi-stable flow regime as the present 

investigation was performed for 𝑅𝑒 = 3.6 × 106. In line with Figure 3.6e,f, two peaks 

were observed in the PSD. The second peak, which was characterized by a small 

amplitude, was the third super-harmonic of the first one. The influence of the third 

super-harmonic was negligible for 𝐿/𝐷 = 3.7 and 4. 

Figure 3.12 presents the time-averaged flow streamlines and pressure field. The 

cavity flow indicated by the strong recirculation motions appeared in the gap between 

the two cylinders, as shown in Figure 3.12a. The low pressure at the surface of the DC 

caused a dramatic change in its 𝐶�̅� , which has been explained in Section 3.3.1. 

According to Figure 12b,c, the two recirculation motions behind the DC disappeared, 

resulting in an attached flow around the DC for 𝐿/𝐷 = 1.8 and 2.5. The probable reason 

was that the high transverse interactions of the shear layers resulted in a delayed 

separation point, which suppressed the two recirculation motions. However, the 

recirculation bubbles reappeared for 𝐿/𝐷 ≥ 3, as shown in Figure 3.12d–f. A possible 

reason was that the influence of the UC shear layers was not sufficient to influence the 

separation point in the boundary layer of the DC. The behaviour of the DC boundary 

layer became close to that of a single cylinder. 

  

(a) (b) 

       Figure 3.12. Cont. 
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(c) (d) 

  

(e) (f) 

Figure 3.12. The time-averaged flow streamlines and pressure field for different 

distance ratios: (a) 𝐿/𝐷 = 1.56 , (b) 𝐿/𝐷 = 1.8 , (c) 𝐿/𝐷 = 2.5 , (d) 𝐿/𝐷 = 3 ,                                 

(e) 𝐿/𝐷 = 3.7, (f) 𝐿/𝐷 = 4. 

As a summary, the values of 𝑆𝑡 for different distance ratios are presented in 

Table 3.4. At 𝐿/𝐷 =  1.56  and 3.7  the value of  𝑆𝑡  was close to that of an isolated 

cylinder ( ≈ 0.329). It was related to the change of the flow regime, as discussed 

previously and presented in Table 3.4. At 𝐿/𝐷 = 1.8, this distance ratio created a longer 

length of the combined tandem structure which caused a reduction of the 𝑆𝑡 value, 

compared with that at 𝐿/𝐷 =  1.56. According to Table 3.4, the value of 𝑆𝑡 gradually 

became close to the value of a single cylinder case with further enlargement of the 

distance between the two cylinders. 

Table 3.4. Summary of the 𝑆𝑡 values and different flow regimes. 

𝑳/𝑫 
𝑺𝒕 

Flow Regime 
UC DC 

1.56 0.3357 0.3357 Overshoot 
1.8 0.1800 0.1800 FSR 
2.5 0.2650 0.2650 FR 
3 0.2750 0.2750 FSR 

3.7 0.3200 0.3200 Bi-stable 
4 0.3650 0.3650 Bi-stable 
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3.3.3. Dynamic Mode Decomposition Analysis 

The DMD method proposed by Schmid (2010) [40] was implemented in the 

present study to get a good understanding of the spatial distribution of the coherent 

structures related to the dominant frequencies, shown in Section 3.3.2. The method 

allows approximation of the flow fields obtained by numerical simulations or 

experiments using a linear combination of the DMD modes and further develops a 

reduced order representation of the dynamical system as: 

𝚿𝟎 = [𝐮𝟏, 𝐮𝟐, 𝐮𝟑, . . . , 𝐮𝐍] ≈ 𝚽𝐃𝛂𝐕and = 

[𝛗𝟏, 𝛗𝟐, 𝛗𝟑, . . . , 𝛗𝐍] [

𝛼1 … …
… ⋯ …
… … 𝛼𝑁

] [
𝜇1

0 ⋯ 𝜇1
𝑁−1

⋮ ⋱ ⋮
𝜇𝑁

0 ⋯ 𝜇𝑁
𝑁−1

], 
(3.17) 

where 𝚿𝟎 is a matrix consisting of flow fields 𝐮𝐢 (𝑖 = 1,2, … 𝑁) at each time step and 𝐮𝐢 

stores flow data, such as the flow velocities and pressure at each spatial point; 𝚽 

represents the matrix consisting of the spatial DMD modes 𝛗𝑖, 𝐃𝛼 = diag(𝛼1, . . . , 𝛼𝑁) 

represents the amplitudes of the corresponding modes within the time span and 𝐕and 

denotes the Vandermonde matrix, which contains the temporal variations of each 

mode during the investigated time span. Schmid (2010) [26] states that Im(log (𝜇𝑖)/Δ𝑡) 

represents the frequency and Re(log(𝜇𝑖)/Δ𝑡) demonstrates the amplification rate of the 

mode. 

A key problem in the DMD method is the selection of a small subset of DMD 

modes which can provide a reduced order approximation of the original dynamical 

system. However, the contribution of each DMD mode to the dynamic system is 

difficult to quantify, due to the lack of information of its energy obtained through the 

original DMD algorithm. Therefore, Jovanovic et al. (2014) [40] proposed a sparsity-

promoting DMD (SPDMD) method to select a finite number of dynamically important 

modes within the time span. To achieve this, a positive regularization parameter 𝛾 is 

used to maintain a balance between the approximation error and the number of 

selected dominant DMD modes. An optimization problem is solved to obtain the 

unknown elements of the matrix 𝐃𝛼: 

                             min
𝛼

‖𝚿0 − 𝚽𝐃α𝐕𝐚𝐧𝐝‖𝐹
2 + 𝛾 ∑|𝛼𝑖|,

𝑁

𝑖=1

 (3.18) 
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where ‖… ‖𝐹  is the Frobenius norm of a matrix. Usually, a large value of 𝛾  will 

introduce a high limitation on the number of non-zero elements in 𝐃𝛼 =

diag(𝛼1, . . . , 𝛼𝑁). Therefore, the SPDMD algorithm removes the modes which are only 

of influence for a short time in the early stages of the time evolution and are damped 

rapidly and also the modes with small amplitudes, as reported in Jovanovic et al. (2014) 

[40]. As a result, the DMD modes which contribute the most to the dynamic system are 

retained. Various applications of this method can be found in Yin & Ong (2020, 2021) 

[41], [42] and Janocha et al. (2021) [35]. 

The present analysis was performed on the velocity and pressure data obtained 

in the computational domain. The number of the snapshots was 𝑁 = 260 with a time 

step of ∆𝑡𝐷/𝑈∞ = 0.5 for 𝐿/𝐷 = 1.8, 2.5 and 3. The distance ratios were chosen to show 

how the second and third harmonics of 𝑆𝑡 influenced the mode pattern. 

Figure 3.13 shows the DMD eigenvalues for 𝐿/𝐷 = 1.8, 2.5 and 3. The modes 

which were located inside the unit circle were damped within the temporal evolution 

of the dynamical system because of their negative growth rate. Most of the eigenvalues 

lay on the unit circle, indicating that they were ‘neutrally stable’ with almost zero 

growth/decay rate. This was because of the statistically stationary state of the wake 

flow, as reported in Schmid (2010) [26], Jovanovic et al. (2014) [40] and Pan et al. 

(2015) [43]. 

   

(a) (b) (c) 

Figure 3.13. The DMD eigenvalues. The black circles denote the eigenvalues obtained 

using the original DMD and the red crossings denote the eigenvalues obtained using 

the SPDMD: (a) 𝐿/𝐷 = 1.8, (b) 𝐿/𝐷 = 2.5, (c) 𝐿/𝐷 = 3. 

Figure 3.14 shows the DMD spectra obtained using the DMD algorithm and the 

modes selected by using the SPDMD algorithm. The total number of the selected 
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modes corresponded to 𝑁𝑠𝑝 = 7, 9 and 7  for 𝐿/𝐷 = 1.8, 2.5 and 3 , respectively. 

According to Figure 3.14, among the chosen modes, by using the SPDMD algorithm, 

the most dominant mode corresponded to the time-averaged flow with a zero 

frequency. The rest of the modes determined the large-scale fluctuating flows, which 

appeared in pairs with positive and negative oscillation frequencies. 

 
 

 

(a) (b) (c) 

Figure 3.14. The DMD spectrum for different distance ratios. The black circles denote 

the eigenvalues obtained using the original DMD and the red crossings denote the 

eigenvalues obtained using the SPDMD: (a) 𝐿/𝐷 = 1.8; (b) 𝐿/𝐷 = 2.5; (c) 𝐿/𝐷 = 3. 

Table 3.5 provides the ratios of the energy contribution of the DMD modes 

selected by using the SPDMD algorithm to the total energy of the system for 𝐿/𝐷 =

1.8, 2.5 and 3. According to Table 3.5, the SPDMD algorithm allowed the capturing of 

a few of the most dominant modes which contained more than 94% of the system 

energy and almost reflected the entire spatial distribution of the flow structure in the 

flow field. 

Table 3.5. Energy levels of the DMD modes and their respective contributions to the 

total energy. 

𝑳/𝑫 
Mode 1 Mode 2 Mode 3 

Cumulative Energy, % 
1.8 85.70 92.85 95.35 
2.5 87.10 93.55 94.02 
3 93.60 96.33 98.17 
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A comparison between the PSD of the 𝐶𝐿 of the DC and the DMD spectrum was 

performed, as indicated in Figure 3.15. Modes chosen by using the SPDMD algorithm 

could correspond well to the different frequency peaks in the PSD. According to Figure 

3.15b, more modes were required to completely reproduce the dynamic information of 

the coherent flow structures in the wake regions behind both UC and DC for distance 

ratio 𝐿/𝐷 =  2.5, due to the flow complexity compared with the other two cases. As has 

been explained in Section 3.2, there are strong interactions between the shear layers 

with large amplitudes of transverse oscillation behind the UC and DC. Therefore, 

several peaks were observed in PSD at 𝐿/𝐷 = 2.5. 

 

 

 

(a) (b) (c) 

Figure 3.15. The DMD modes obtained by the SPDMD algorithm and the PSD 𝐸𝐶𝐿
 for 

DC: (a) 𝐿/𝐷 = 1.8; (b) 𝐿/𝐷 = 2.5; (c) 𝐿/𝐷 = 3. 

The modes are supposed to display spatial distribution and length scale features 

of the flow structures. Figures 3.16, 3.17 and 3.18 show the spatial structures of velocity 

modes selected by the SPDMD method for 𝐿/𝐷 = 1.8, 2.5  and  3 . The streamwise 

velocities of Modes 1 and 3 revealed a top–bottom mirrored symmetry with respect to 

the centreline of the cylinders, while the cross-flow velocities displayed asymmetry. 

The two velocity components of Mode 2 showed reverse symmetry properties 

compared with Modes 1 and 3. In addition, with the increasing frequency and 

decreasing amplitude of the higher order modes, the length scale of the structures 

became smaller. Especially for Mode 3, the energetic streamwise velocity structures 

were located near the shear layers in the wake regions behind the UC and DC indicating 

the oscillating features of the shear layers. 
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(a) (b) (c) 

 

 

 

(d) (e) (f) 

Figure 3.16. The spatial distribution of velocities for 𝐿/𝐷 = 1.8 : the streamwise 

velocity for (a) Mode 1; (b) Mode 2; (c) Mode 3 and the cross-flow velocity for (d) Mode 

1; (e) Mode 2; (f) Mode 3. 

 

 

 

(a) (b) (c) 

 

 

 

(d) (e) (f) 

Figure 3.17. Spatial structures of velocities for 𝐿/𝐷 =  2.5: the streamwise velocity 

for (a) Mode 1; (b) Mode 2; (c) Mode 3 and the cross-flow velocity for (d) Mode 1; (e) 

Mode 2; (f) Mode 3. 
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(a) (b) (c) 

 

 

 

(d) (e) (f) 

Figure 3.18. Spatial structures of velocities for 𝐿/𝐷 = 3: the streamwise velocity for 

(a) Mode 1; (b) Mode 2; (c) Mode 3 and the cross-flow velocity for (d) Mode 1; (e) 

Mode 2; (f) Mode 3. 

Figure 3.19 shows the spatial structures of pressure modes selected by the 

SPDMD method for 𝐿/𝐷 = 1.8, 2.5 and 3. For the pressure distribution of the modes, 

there were positive and negative regions around the two cylinders, indicating a periodic 

changing of forces acting on the cylinders. In the cross-flow direction, if the positive 

and negative regions formed a pair, as indicated by the red circle in Figure 3.19, it 

would contribute to the lift force at the corresponding frequency of the mode. However, 

Mode 2 for 𝐿/𝐷 = 1.8  and 3.0 had similar distribution of the pressure, especially 

around the DC, as shown in Figure 3.19b,h. It had negative pressure regions around 

both the two sides, which had no contribution to the lift force. Therefore, although 

Mode 2 was identified by SPDMD, there was no peak in the frequency spectra at the 

second harmonic of St. For 𝐿/𝐷 = 2.5, on the contrary, there were both positive and 

negative pressure regions around the DC, which contributed to the lift force at the 

second harmonic of St. 
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(a) (b) (c) 

   

(d) (e) (f) 

 

 

 

(g) (h) (i) 

 

Figure 3.19. The spatial structures of the pressure of Mode 1, Mode 2 and Mode 3 for 

𝐿/𝐷 = 1.8, 2.5 and  3: (a) Mode 1, 𝐿/𝐷 =  1.8, (b) Mode 2, 𝐿/𝐷 =  1.8, (c) Mode 3, 

𝐿/𝐷 = 1.8; (d) Mode 1, 𝐿/𝐷 =  2.5, (e) Mode 2, 𝐿/𝐷 =  2.5, (f) Mode 3, 𝐿/𝐷 =  2.5, (g) 

Mode 1, 𝐿/𝐷 =  3, (h) Mode 2, 𝐿/𝐷 =  3, (i) Mode 3, 𝐿/𝐷 =  3. 

By using the extracted dominant DMD modes, a reduced-order representation 

of the flow field could be reconstructed. The snapshots of the vorticity at              

∆𝑡𝐷/𝑈∞ = 280 for the original numerical simulations and reconstructed flow fields are 

presented in Figure 3.20 for 𝐿/𝐷 = 1.8, 2.5 and 3. The DMD mode shapes, with their 

corresponding amplitudes and frequencies, obtained by the SPDMD algorithm were 

used to create the reduced-order representations. The velocity and pressure at a point 

(𝑥, 𝑦) and 𝑡 =  𝑡𝑛 were reconstructed by: 

𝑢(𝑥, 𝑦, 𝑡𝑛) =  ∑ 𝛼𝑖𝜑𝑖(𝑥, 𝑦)𝜇𝑖
𝑛−1

𝑁𝑠𝑝

𝑖=1

, 
(3.27) 
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𝑝(𝑥, 𝑦, 𝑡𝑛) =  ∑ 𝛼𝑖𝜑𝑖(𝑥, 𝑦)𝜇𝑖
𝑛−1,

𝑁𝑠𝑝

𝑖=1

 (3.28) 

where 𝑁𝑠𝑝  is the total number of SPDMD modes. As shown in Figure 3.20, in 

comparison with the original flow fields, it was evident that the SPDMD method could 

successfully reconstruct the main flow features, although the investigated flow was 

complicated at a high Reynolds number. The reconstructed flow field had some 

differences in the wake region of the DC for 𝐿/𝐷 = 2.5,  where there were strong 

interactions of shear layers in the flow, as shown in Figure 3.20d. The noisy structures 

in the reconstructed wake flow behind the DC could be removed by including more 

DMD modes. 

 
Original flow Reconstructed flow 

  

(a) (b) 

  

(c) (d) 

 

        Figure 3.20. Cont. 
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(e) (f) 

Figure 3.20. A comparison of instantaneous contours of the spanwise vorticity of 

original simulation and reconstructed flow field using SPDMD modes: (a,b) 𝐿/𝐷 = 1.8; 

(c,d) L/D = 2.5; (e,f) 𝐿/𝐷 = 3. 

Figures 3.21 and 3.22 show the time histories of the lift and drag coefficients of 

the UC and DC obtained by the numerical simulations and the reduced-order 

representations. It can be seen that the reduced-order representations with a 

considerably small number of modes could correctly reproduce the time histories of 

the lift and drag coefficients. Thus, the frequencies and amplitudes of the dominant 

DMD modes, which contributed the most to the dynamics, were obtained accurately 

by the SPDMD algorithm. 

 
 

 

(a) (b) (c) 

 

  

(d) (e) (f) 

Figure 3.21. Time histories of (a–c) the UC lift coefficient and (d–f) drag coefficient 

obtained by the simulation results and reconstructed by using the selected DMD modes 

for 𝐿/𝐷 = 1.8, 2.5 and 3: (a,d) 𝐿/𝐷 = 1.8; (b,e) 𝐿/𝐷 = 2.5; (c,f) 𝐿/𝐷 = 3. 
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(a) (b) (c) 

 

 

 

(d) (e) (f) 

Figure 3.22. Time histories of (a–c) the DC lift coefficient and (d–f) drag coefficient 

obtained by the simulation results and reconstructed by using the selected DMD modes 

for 𝐿/𝐷 = 1.8, 2.5 and 3: (a,d) 𝐿/𝐷 = 1.8; (b,e) 𝐿/𝐷 = 2.5; (c,f) 𝐿/𝐷 = 3. 

Conclusions 

The flow around two tandem cylinders with different horizontal offsets of     

𝐿/𝐷 = 1.56, 1.8, 2.5, 3, 3.7 and 4 was investigated numerically at a Reynolds number of 

3.6 × 106. The 2D URANS equations with a standard 𝑘 − 𝜔 SST turbulence model were 

solved. Verification and validation studies were performed for the flow past a single 

cylinder and showed that the present numerical model could provide satisfying results 

compared with the previously published data. Then, the numerical model was used to 

study the hydrodynamic characteristics of tandem cylinders subjected to high 𝑅𝑒 

incoming flow. Analysis of instantaneous flow structures, hydrodynamic coefficients, 

𝑆𝑡 and vortical structures were demonstrated in the present study. In addition, the 

SPDMD algorithm was implemented to extract dominant modes which contributed the 

most to the inherent dynamics, and to construct a reduced-order representation of the 

flow field. The main conclusions can be summarized as follows: 

1. With the increasing 𝐿/𝐷 , flow structures at 𝑅𝑒 = 3.6 × 106  changed in terms of 

overshoot, FSR, FR, FSR and bi-stable. This relates to the reattachment point of the 

separated UC shear layers to the surface of the DC. 

2. The lower vorticity slice of the reattached shear layer to the surface of the DC 

contributed to the evolution of the positive vorticity behind the DC. It explains the 

existence of the third super-harmonic for the cases considered. However, the second 
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harmonic observed in the spectra of the lift forces was only for the case of 𝐿/𝐷 = 2.5. 

This relates to assistance of the upper vorticity slice of the reattached shear layer to 

the development of the negative coherent structure behind the DC. 

3. The values 𝐶𝐿,𝑟𝑚𝑠, 𝐶𝐷
̅̅̅̅  and 𝑆𝑡 were influenced by 𝐿/𝐷 such that 𝐶𝐷

̅̅̅̅  decreased with a 

decreasing 𝐿/𝐷 between two cylinders and achieved a negative value for the DC at 

𝐿/𝐷 = 1.56 . The negative 𝐶𝐷
̅̅̅̅  value corresponded to a low pressure at the front 

surface of the DC caused by the cavity flow between UC and DC at 𝐿/𝐷 = 1.56. 

Increasing amplitudes of 𝐶𝐿 fluctuation were found at 𝐿 𝐷⁄ = 2.5,  and this relate to 

FR flow, which causes significant interaction of shear layers. At 𝐿/𝐷 ≥ 1.8 , the 

reattachment flow regime (FR) dominated. It creates a longer after-body length of 

the combined UC and DC body leading to a sudden reduction of the 𝑆𝑡 value. 

4. The SPDMD algorithm was used to extract a few dominant modes which contributed 

the most to the flow dynamics. It was found that Mode 2 for 𝐿/𝐷 = 1.8 and 3 did not 

contribute to the lift force. Therefore, there was no peak in the frequency spectra of 

the lift force at the second harmonic of 𝑆𝑡 for these two cases, although Mode 2 was 

identified by using SPDMD. In addition, the reduced-order representations of the 

flow field, which consist of the finite SPDMD modes number, can correctly 

reconstruct the wake flow at the investigated high Reynolds number. 
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Abstract  

 A data-driven reduced-order model (ROM) based on long-short-term memory neural 

network (LSTM-NN) for prediction of the flow past a circular cylinder undergoing two-

degree-of-freedom (2DoF) vortex-induced vibration (VIV) in the upper transition 

Reynolds number regime with different reduced velocities is developed. The proper 

orthogonal decomposition (POD) technique is utilized to project the high-dimensional 

spatiotemporal flow data generated by solving the two-dimensional (2D) unsteady 

Reynolds-averaged Navier-Stokes (URANS) equations to a low-dimensional subspace. 

The LSTM-NN is applied to predict evolution of the POD temporal coefficients and 

streamwise and cross-flow velocities and displacements of the cylinder based on the 

low-dimensional representation of the flow data. This model is referred as POD-LSTM-

NN. In addition, the force partitioning method (FPM) is implemented to capture the 

hydrodynamic forces acting on the cylinder using the surrounding flow field predicted 

by the POD-LSTM-NN ROM and the predicted time-histories of the lift and drag forces 

are compared with the CFD simulations.   
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4.1. Introduction  

Investigations of wake flow dynamics behind the circular bluff bodies subjected 

to high Reynolds number flow has received essential attention during the past decades 

due to their wide applications in engineering. For example, in the field of offshore 

engineering, marine risers, power cables, umbilicals, jumpers and pipelines are the 

examples of the flexible slender bluff bodies which are subjected to high Reynolds 

number flows. Vortex shedding is one of the commonly observed flow features 

associated with hydrodynamics of the bluff bodies. For a circular cylinder, shear layers 

separate from the surface and generate clockwise and counterclockwise vorticities in 

the wake region. The periodic vortex shedding causes oscillatory lift and drag forces on 

the bluff body. If a slender structure is flexible or elastically supported, under certain 

conditions, the vortex-shedding frequency can be synchronized with the natural 

frequency of the system. This phenomenon is called lock-in which leads to a vortex-

induced vibration (VIV) of the body. It is significant to investigate the flow behaviour 

around the VIV bluff bodies to design devices to mitigate the cyclic loadings and extend 

fatigue life of the structures. Therefore, extensive studies have been conducted. For 

example, experiments on VIV of cylinders subjected to a turbulent flow were conducted 

by Moe et al. (1994) [1], Vikestad (1998) [2], Ding et al. (2004) [3] and Bernitsas & 

Raghavan (2008) [4]. In addition, numerical studies on VIV bluff body were performed 

by Hassanpour et al. (2022) [5], Jiang et al. (2023)[6], Verma & De  (2022) [7] and 

Serta et al. (2021) [8] using computational fluid dynamics (CFD). However, 

investigations of highly chaotic turbulent flows and the flow induced vibration of the 

structures via the full-order model by numerically solving the Navier-Stokes equations 

and the equations of structural motions leads to enormous computational costs. 

Nowadays, one of the most active research topics in the modelling and prediction of 

the turbulent flows is the development of accurate algorithms with low complexity and 

reduced computational costs. 

The reduced order modelling (ROM) proposes an approach for representing and 

understanding high-dimensional dynamical systems using a low-dimensional 

subspace while keeping the relatively high accuracy of the modelling results with a 

decreasing computational time. There are tremendous number of procedures to build 

ROM of nonlinear dynamical systems. All these approaches have the common idea to 

extract the most dominant spatial-temporal coherent structures in the flow field to 

achieve the modal reduction. For example, proper orthogonal decomposition (POD) 
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which was proposed by Lumley (1967) [9] is one of the widely used technique for 

reduced order modelling of the fluid flow since POD modes are mathematically optimal 

for any given data sets. The main feature of the POD technique is that dominant modes 

are extracted based on the energy content of the flow. These modes are orthogonal to 

each other and each POD mode contains continuous frequency spectral. For 

applications in fluid-structure-interaction (FSI) problems, Janocha et al. (2022) [10] 

analysed the flow around one degree of freedom (1DoF) VIV cylinder at 𝑅𝑒 = 3900 

(𝑅𝑒 = 𝑈∞𝐷 𝜈⁄ , where 𝑅𝑒 denotes Reynolds number, 𝑈∞ is the free stream flow velocity, 

𝐷 is the cylinder diameter and  𝜈 is a kinematic viscosity) and 𝑢𝑟 = 3, 5 and 7 (𝑢𝑟 =

𝑈∞ 𝑓𝑛 ∙ 𝐷⁄ , where 𝑢𝑟 is reduced velocity, 𝑓𝑛 denotes the natural  frequency of the system 

in a vacuum) based on multiscale proper orthogonal decomposition (mPOD) proposed 

by Mendez et al. (2019) [11]. The dominant flow characteristics such as vortex shedding, 

its super harmonics and the low-frequency modulation of the wake were captured by 

the mPOD modes. Schubert et al. (2022) [12] implemented spectral proper orthogonal 

decomposition (SPOD) for analysing the data from particle image velocimetry 

measurements of a 1DoF VIV cylinder at 𝑅𝑒 = 4000 with 𝑢𝑟 = 8.75. Eiximeno et al. 

(2022) [13] investigated the instantaneous flow structures and the wake dynamics of 

two degree of freedom (2DoF) VIV cylinder by means of POD at 𝑅𝑒 = 5300 with 𝑢𝑟 =

3 and 5.5. They mentioned that different POD modes have been found in the initial and 

super-upper branches. Moreover, it was explained that the energy dispersion of the 

high-order modes is attributed to the cylinder movement in the inline and cross-stream 

directions. Another popular technique for analysing flow is dynamic mode 

decomposition (DMD) which was introduced by Schmid (2010) [14]. The extracted 

DMD modes are characterized by their dynamics and each DMD mode has its own 

frequency in comparison with other modal decomposition methods. Jovanovic et al. 

(2014) [15] introduced a sparsity promoting DMD (SPDMD) procedure to select a finite 

number of dynamically important modes within the time span. Janocha et al. (2021) 

[16] analysed the coherent structures around vibrating isolated and piggyback 

cylinders at 𝑅𝑒 = 200 and 3.6 × 106  with 𝑢𝑟 = 5. They found that for the single VIV 

cylinder case, the most dynamically important mode is associated with the 

fundamental shedding frequency. Menon and Mittal (2020) [17] proposed a modified 

DMD method with a moving frame and applied it for the flow over a sinusoidally 

pitching airfoil. Yin et al. (2022) [18] investigated hydrodynamic forces acting on the 

cylinders subjected to VIV with a force partitioning analysis using SPDMD algorithm 
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combined with a moving frame at 𝑅𝑒 = 200 and  3.6 × 106  with 𝑢𝑟 = 5, 6, 7 and  12 . 

They concluded that at high Re number flow and 𝑢𝑟 = 6 the chaotic behaviour of the 

drag and lift coefficients cannot be represented using only a few dominant modes. 

When the dominant modes of the flow are extracted, the most important task is 

to build a ROM based on these selected modes to predict the temporal evolution of the 

flow states. To achieve this, Galerkin Projection (GP) approach can be utilized. Barone 

et al. (2009) [19] summarized that Galerkin approach consists of two steps. The first 

step is the extraction of the most dominant coherent structures from the flow field by 

means of POD or DMD. The second step is to project the full-order system dynamics 

to the selected dominant modes. The result of GP approach gives an approximate 

description of the real flow dynamics involving in time. The advantage of the discussed 

method is a saving of computational time and costs as reduced order model is applied. 

The GP approach has been implemented among different milestone problems (Frère 

A. et al., 2017 [20], Qi et al., 2023 [21], Carlberg et al., 2011 [22]). Nevertheless, the 

disadvantages of the GP algorithm exist. For instance, Rempfer (2000) [23] states that 

the phase space of the POD-Galerkin model may be different from the one of the real 

flow, even if the POD modes can capture the velocity field with high accuracy. Akhtar 

et al. (2009) [24] used POD modes of the flow around a fixed cylinder in a Galerkin-

projection to obtain the temporal evolution of a nonlinear dynamical system. They 

mentioned that solution of the original GP approach can drift to some erroneous state 

even it is initialized with a correct periodic state. Iollo et al. (2000) [25] investigated 

the reduced order simulation of the Navier-Stokes equations for flow around an airfoil 

and a square cylinder by implementing the POD-GP. They showed that the accuracy of 

numerical schemes based on simple Galerkin projection is insufficient and a numerical 

stabilization is needed. Thus, GP models cannot be equivalent to the solutions of the 

original Navier-Stokes equations as some features of the flow dynamics may not be 

captured accurately by using this type of models.   

With the development of modern data-driven techniques, a promising 

alternative method to the GP technique is a neural network based approach to model 

complex and nonlinear systems, especially turbulent flows (Wang et al., 2022 [26], 

Maulik & San, 2017 [27], Zhu et al., 2018 [28]). The proposed technique has a crucial 

benefit to understand and learn correlations between different variables of the dataset 

with the goal to predict their evolutions. There are neural networks such as multi-layer 

perceptron (MLP) (Gardner & Dorling, 1998 [29], Orhan et al., 2011 [30]), convolution 
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neural network (CNN) (Gao et al., 2021 [31], Tong  et al., 2019 [32]), recurrent neural 

network (RNN) (Maulik et al., 2021 [33], Qin et al., 2017 [34]) and long-short-term 

memory neural network (LSTM-NN) which can be utilized for different purposes. For 

instance, the CNN can be used to transfer a high-dimensional data into a latent space 

with low-dimension. The LSTM-NN is able to learn the time series of the data with the 

strength to overcome the stability issue such as vanishing gradient as outlined by 

Mohan & Gaitonde (2018) [35]. Therefore, LSTM is a robust method to predict highly 

chaotic sequential time series as reported by Yeo & Melnyk (2019) [36]. Rahman et al. 

(2019) [37] developed a LSTM-ROM by using POD to extract dominant modes of a 2D 

quasigeostrophic turbulence. They showed that LSTM-ROM has significantly higher 

accuracy in comparison with GP-ROM. Nakamura et al. (2021) [38] constructed ROM 

based on combination of a three-dimensional convolutional neural network 

autoencoder (CNN-AE) and LSTM for a turbulence channel flow at 𝑅𝑒𝜏 = 100. They 

discussed that the large number of latent modes are needed to reproduce the original 

data with a high accuracy. To tackle this issue, they proposed to use hierarchical 

autoencoder developed by Fukami (2020) [39] which can achieve a more efficient low-

dimensionalization than the conventional AE and POD. Bukka et al. (2021) [40] 

proposed two hybrid data-driven reduced-order models for prediction of unsteady 

fluid flow over a single cylinder and the flow past side-by-side cylinders at low Re 

number: POD-RNN and convolution recurrent autoencoder network (CRAN). They 

explored two types of RNN which are closed-loop and encoder-decoder RNNs. The 

LSTM-NN has been utilized for their work to address the issue of long-term 

dependency in the data. It was reported that CNN-RNN has a good performance for a 

broader range of nonlinear fluid flow in comparison with POD-RNN. Yousif & Lim 

(2022) [41] designed POD-LSTM and POD bidirectional LSTM (BLSTM) to predict the 

temporal evolution of the POD time coefficients of flow around a finite wall-mounted 

square cylinder at 𝑅𝑒 = 12000. They investigated that the POD-BLSTM model is more 

accurate for prediction of a complex wake flow behind the finite wall-mounted obstacle 

in comparison with POD-LSTM. Furthermore, it was mentioned that the error of the 

POD time coefficients increases as the prediction time window becomes larger.  

Despite the fast development of the neural network-based ROMs, their 

applications in analysis of FSI are still limited. The objective of the present study is 

designing a novel POD-LSTM-NN ROM for prediction of the temporal behaviours of 

the flow around a 2DoF VIV cylinder at a high 𝑅𝑒 = 3.6 × 106  with a potential to 
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replace long-time CFD simulations. To obtain the train data, two-dimensional (2D) 

Unsteady Reynolds-Averaged-Navier-Stokes (URANS) equations combined with the 

standard 𝑘 − 𝜔 𝑆𝑆𝑇 turbulence model, are solved with 𝑢𝑟 = 3, 6,  and 11. The values of 

the reduced velocities are chosen in a way to cover the three major VIV branches 

(Initial Branch (IB), Upper Branch (UB) and Lower Branch (LB)). The mass ratio is set 

as 𝑚∗ = 2 and the damping ratio as 𝜁 = 0 for all cases to allow maximum amplitude 

oscillations. The predicted streamwise and cross-flow velocities and displacements of 

the moving cylinder are used to evaluate the performance of the designed ROM. 

Furthermore, the designed ROM is used to estimate the lift and drag forces on the 

cylinder by using a force partitioning method (FPM) proposed by Chang (1992) [42].   

The paper is organized as follows. Section 4.2 provides the information about 

the case geometry and a brief introduction to the numerical method utilized in the 

present study to generate the training and test data sets. In addition, methodology of 

creating POD-LSTM-NN model is explained. In Section 4.3, the application of the 

POD-LSTM-NN ROM for the flow over 2DoF VIV cylinder is discussed. The force 

partitioning method for estimation of the drag and lift forces is performed also. Finally, 

conclusions are presented in Section 4.4. 

4.2.  Methods 

4.2.1. Mathematical formulation 

The 2D incompressible URANS equations of mass and momentum conservation 

are given by: 

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0, 

(4.1) 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑃

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
−

𝜕(𝑢𝑖
′𝑢𝑗

′)̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑥𝑗
, 

(4.2) 

where 𝑖, 𝑗= 1, 2; 𝑥1, 𝑥2 are the streamwise and cross-flow directions, respectively; 𝑢1 

and 𝑢2 are the corresponding mean velocity components; 𝑢𝑖
′𝑢𝑗
′̅̅ ̅̅ ̅̅ ̅̅  is the Reynolds stress 

component; 𝑢𝑖
′ is the fluctuating part of the velocity components; 𝑃 is the dynamic 

pressure; 𝜌 is the density of the fluid; 𝜈 denotes the kinematic viscosity of the fluid. The 

Reynolds stress tensor is resolved by applying 𝑘 − 𝜔 𝑆𝑆𝑇 turbulence model (Menter et 

al., 2003 [42]) which is a combination of the 𝑘 − 𝜔 and 𝑘 − 𝜀 models. The 𝑘 − 𝜔 𝑆𝑆𝑇 

turbulence model incorporates the advantages of the  𝑘 − 𝜔  model to predict the 

separation of the shear layers in the near-wall regions under adverse pressure gradient 
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conditions and 𝑘 − 𝜀  model to simulate the free-stream flow. The 𝑘 − 𝜔 𝑆𝑆𝑇 

turbulence model has been successfully implemented by Serta et al. (2021) [8], Nieto 

et al. (2015) [43], Pang et al. (2016) [6] and Janocha & Ong (2021) [44].  

The 2DoF VIV cylinder is modelled as a system elastically supported by dampers 

and springs in the present study. The cylinder is free to oscillate in the in-line (x-axis) 

and cross-flow (y-axis) paths. The structural stiffness (𝑘 = 89.3, 22.3, 6.6 𝑘𝑁/𝑚 for the 

three investigated 𝑢𝑟 respectively) and damping ratio (𝜁 = 0) are assumed to be the 

same in both directions. A sketch of the physical system is presented in    Figure 4.1.  

 

Figure 4.1. Sketch of the modelled physical system. 

 

 Gsell et al. (2016) [45] described the physical system of 2DoF VIV cylinder as 

follow:  

�̈�𝑖 +
4 ∙ 𝜋 ∙ 𝜁

𝑢𝑟
𝜉�̇� + (

2 ∙ 𝜋

𝑢𝑟
)

2

𝜉𝑖 =
𝐶𝑖

2 ∙ 𝑚∗ 
 , 

(4.3) 

where the non-dimensional cylinder displacement, velocity and acceleration in the 𝑖-

direction (x or y) are denoted as 𝜉𝑖, 𝜉�̇� and �̈�𝑖  , respectively; the force coefficient in 𝑖-

direction is defined as 𝐶𝑖 = 𝐹𝑖 0.5𝜌𝐷𝑈∞
2⁄ , where 𝐹𝑖 is the force acting on the cylinder in 

streamwise or cross-stream directions, 𝜌 is the flow density.   

4.2.2. Computational overview 

The open source CFD toolbox OpenFOAM v2012 is utilized to conduct all 

simulations in the present study. The PIMPLE algorithm is implemented to solve the 

governing Eq. (4.1) and (4.2). The PIMPLE algorithm is a combination of the Semi-

Implicit Method for Pressure Linked Equations (SIMPLE) and the Pressure Implicit 

with Split Operators (PISO) method. The second-order Crank-Nicolson time 

integration scheme is used. The divergence and gradient terms are discretized using 

the Gauss linear integration scheme. In addition, Gauss linear integration with limited 

non-orthogonal correction 0.5 is used to discretize the Laplacian term.  
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The computational domain is shown in Figure 4.2. The centre of the cylinder is 

located at a distance 10 D from the inlet boundary and 30 D from the outlet boundary. 

The upper and lower boundaries are placed at the distance 10 D to the centre of the 

cylinder. The computational domain is shown in Figure 4.1.  

 

Figure 4.2. The computational domain for the single cylinder configuration. 

The boundary conditions for the numerical simulations are given as follow: 

1. A uniform flow at the inlet boundary is specified as follow: 

𝑢1 = 𝑈∞ (4.4) 

𝑢2 = 0, (4.5) 

𝑘 =
3

2
(𝑈∞𝐼)2, (4.6) 

𝜔 =  
𝑘0,5

𝑙
 

(4.7) 

where turbulence intensity 𝐼 = 1% and the turbulent length scale 𝑙 = 𝐷. 

2. At the outlet boundary of the domain, streamwise and cross-flow velocities, 𝑘 and 𝜔 

are set as zero normal gradient condition, while the pressure is zero. 

3. At the upper and lower boundaries, zero normal gradient is imposed for the 

velocities, the pressure, 𝑘 and 𝜔. 

4. At the cylinder surface, the no-slip condition is applied (𝑢1 = 𝑢2 = 0). A standard 

wall functions are used to resolve the near-wall boundary layer. Therefore, a 

criterion of 30 < 𝑦+ < 40  is used (where 𝑦+ = ℎ𝑝 ∙ 𝑢∗ 𝜈⁄ ). The standard wall 

functions are specified: 

                         𝑘 =
𝑢∗

2

√𝐶𝜇
, 

(4.8) 
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                                            𝜔 =  
√𝑘

√𝐶𝜇
4 𝜅ℎ𝑝

 
(4.9) 

where 𝑢∗ is a friction velocity, the modal constant 𝐶𝜇 = 0.09, the Karman constant is 

𝜅 = 0.41 and ℎ𝑝 is the distance between the cylinder surface and the centre of the first 

cell adjacent to the cylinder wall. An example of the mesh used in the present study is 

shown in Figure 4.3. The mesh near the cylinder surface is refined to accurately capture 

the separation of the shear layers.  

  

(a) (b) 

Figure 4.3. The mesh used in the present study (a) an overall view and (b) a zoom-

in view of the mesh close to the cylinder. 

Detailed mesh and time step convergence studies to determine the optimal grid 

and time step resolutions and the validation of the numerical model for the presented 

above computational domain and boundary conditions have been performed by Serta 

et al. (2021) [8]. Therefore, these studies are not repeated in detail here. According to 

Serta et al. (2021) [8], the mesh with 104536 elements and Comax = 0.5  provide 

sufficient grid and time step convergence. These settings are applied for the numerical 

simulations in the present study. 

4.2.3. POD-LSTM-NN based ROM 

In the present study, a POD-LSTM-NN based ROM is designed for 2DoF VIV 

cylinder. It is a combination of POD and LSTM approaches for the prediction of the 

temporal evolution of the flow field. The POD technique is widely used in fluid 

dynamics to extract the most dominant coherent flow structures of the flow field and 

to create low-dimensional subspace for the flow data. The POD method represents the 

flow field velocity components in terms of spatial orthogonal modes 𝜙𝑚  and their 

corresponding time coefficients 𝑎𝑚(𝑡). The most energetic modes which capture the 
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main features of the flow field are extracted and analysed. Therefore, a reduced order 

approximation of the flow field by using the most energetic modes can be represented 

as: 

𝑢(𝑥, 𝑦, 𝑡) ≈ ∑ 𝑎𝑛(𝑡) ∙ 𝜙𝑛(𝑥, 𝑦)

𝑁

𝑛=1

, (4.10) 

where 𝑢(𝑥, 𝑦, 𝑧, 𝑡) denotes the spatial-temporal flow data with the added values of the 

cylinder velocities and displacements at each time step, and 𝑁 is the number of the 

chosen modes. 

The temporal evolution of the time coefficients of the dominant modes extracted 

by the POD approach can be predicted by using the LSTM-NN. LSTM-NN is one of the 

most successful RNN which can train a model based on temporal sequential histories 

of time series and predict the future evolutions of the time series. Compared with other 

RNNs, the LSTM-NN can avoid the problems of vanishing gradient. The basic 

architecture of the LSTM network is briefly outlined in Figure 4.4a. The input vector 

that contains the sequential data 𝑥 is received by the hidden layer which creates an 

output vector of hidden state ℎ. Based on the new input data and the information from 

the previous time steps (the previous hidden state and the cell state (𝐶)), the hidden 

state is maintained and renewed by the hidden layer each iteration. The main feature 

of the LSTM network is that LSTM cell contains three gates: the input (𝑖), the output 

(𝑜) and the forget gates (𝑓). The LSTM cell architecture is presented in Figure 4.4b. 

The input and output gates are responsible for the input and output information of the 

LSTM cell, respectively. The forget gate allows to minimize the problem of over-fitting 

by deciding which information from the previous time step should be abandoned. Gers 

et al. (1999) [46] outlined the equations which are used to compute the outputs of the 

gates: 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑖 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖), (4.11) 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑖 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓), (4.12) 

𝐶�̃� = tanh(𝑊𝐶𝑥𝑡 + 𝑈𝐶ℎ𝑡−1 + 𝑏𝑐), (4.13) 

𝐶𝑡 = 𝑖𝑡⨂𝐶�̃� + 𝑓𝑡⨂𝐶𝑡−1, (4.14) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜), (4.15) 

ℎ𝑡 = 𝑜𝑡 ⊗ tanh(𝐶𝑡), (4.16) 
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where 𝑊𝑖, 𝑊𝑓 , 𝑊𝐶  and 𝑊𝑜  are the weights that map the input to each of the gates; 

𝑈𝑖, 𝑈𝑓 , 𝑈𝐶 and 𝑈𝑜 are the weights related to the hidden state at the previous time step; 

𝐶�̃� is the updated cell state. A more detailed information about LSTM architecture can 

be found in Mohan & Gaitonde (2018) [34] and Yousif & Lim (2022) [40].   

 

Figure 4.4. Architecture of the (a) LSTM NN and (b) LSTM cell.              

The procedure applied in the present study to build the POD-LSTM-NN ROM is 

shown in Figure 4.5 and outlined as: 

1. The POD analysis is performed on the datasets of the numerical simulations to 

define the spatial orthogonal modes 𝜙𝑛 and their temporal coefficients 𝑎𝑛(𝑡). The 

number of selected dominant modes 𝑁 which capture the main flow features should 

be chosen for future work. Since 𝑁 is much smaller than the dimension 𝑀 of 𝜙𝑛 ∈

𝑅𝑀 (where 𝑀 is the number of flow data to represent the flow field), the subspace 

expanded by 𝜙𝑛  ( 𝑛 = 1,2 … 𝑁 ) can be regarded as the low-dimensional 

representation of the flow field. The obtained 𝑎𝑛(𝑡) are datasets for training in the 

LSTM-NN. 

2. The time series of the temporal coefficients 𝑎𝑛(𝑡)  are divided into several time 

windows and each time window is further splitted into input (last 0.1s) and output 

(last 0.1s) parts. 

3. The time coefficients of the dominant POD modes should be splitted into the 

training (70%) and the test (30%) datasets. The test data are used to validate the 

time coefficients predicted by LSTM.  

4. The LSTN-NN needs to be trained. The idea of the training strategy is to teach the 

neural network the general relationships between the input and output pairs. 
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5. The validation of the LSTN-NN should be performed afterwards as follow: the 

predicted time coefficients of the future time steps are compared with the test 

datasets gained by the POD analysis at the same time steps using the numerical 

simulations results. 

6. The flow field can be further reconstructed by using the dominant POD modes and 

the predicted time coefficients obtained by LSTM-NN by applying Eq. (4.10). 

In the present study, the LSTM-NN is designed based on the open-source 

toolbox TensorFlow and Keras. The LSTM-NN parameters are presented in Table 4.1. 

An ADAM optimizer is applied to obtain the parameters in each LSTM cell. The total 

number of snapshots used for the cases with 𝑢𝑟 = 3, 6 and 11 are 1145 (lasting 22.9s), 

1752 (lasting 35.04s) and 1200 (lasting 24s), respectively.  

Table 4.1. Parameters of LSTM-NN. 

Batch 

size 

Number of 

hidden 

layers 

Number 

of cells 

Epoch Learning 

rate 

Input 

size 

Output 

size 

32 1 250 40 0.0001 5 5 

  

Figure 4.5.  The procedure of building the POD-LSTM-NN ROM. 
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4.3. Results 

The objective of the present section is to build POD-LSTM-NN ROMs for the 

flow over 2DoF VIV cylinder at 𝑅𝑒 = 3.6 × 106 with 𝑢𝑟 = 3, 6,  and 11 (𝑢𝑟 = 𝑈∞ 𝑓𝑛 ∙ 𝐷⁄ , 

where 𝑢𝑟  is reduced velocity, 𝑈∞  is the free stream flow velocity, 𝐷  is the cylinder 

diameter, 𝑓𝑛 denotes the natural  frequency of the system in a vacuum) to predict the 

instantaneous flow structures as well as the cross-flow and streamwise velocities and 

displacements of the cylinder. Furthermore, FPM is applied to define the lift and drag 

forces acting on the cylinder by using the flow field predicted by the POD-LSTM-NN 

ROMs.   

It is worth mentioning that the application of the POD-LSTM-NN ROM for the 

flow field around a 2DoF cylinder has more challenges than for the flow over a fixed 

cylinder case. Firstly, when applying the POD technique, there is difficulty in dealing 

with the moving boundary of the flexible supported cylinder as reported by Yin et al. 

(2022) [18]. Secondly, the flow field around a 2DoF cylinder is more complicated in 

comparison with the flow structures around a fixed bluff body. Initial, upper and lower 

branches which are characterized by the various flow topologies are considered for the 

moving cylinder. Therefore, a large number of POD modes should be used to achieve a 

high-quality model for the prediction of the flow field over a VIV cylinder. This has 

been shown through a comparison of the mode behaviour and the evaluation of the 

reconstruction flow field by using the modes for a VIV and stationary cylinder in 

Janocha et al. (2021) [16].  

4.3.1. Proper Orthogonal Decomposition Analysis 

The goal of the POD method is to create a low-dimensional representation of the 

data while still keeping the dominant information such as the coherency and a large 

portion of the total energy of the full model. The singular value decomposition (SVD) 

is used to decompose the flow field data into the spatial modes which represent the 

coherent structures and their temporal coefficients. In the present study, the POD 

analysis is applied for datasets consisting of the flow velocities and the structural 

velocities of the cylinder obtained by using the CFD simulations for flow over a 2DoF 

VIV cylinder with 𝑢𝑟 = 3, 6  and 11  at 𝑅𝑒 = 3.6 × 106 . To achieve a high-quality 

representation of the chaotic and irregular surrounding flow, the number of modes 

which contains 90% of the total energy are chosen to build the ROMs. 
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Figure 4.6 shows the contribution of the energy of each mode to the total energy 

and the cumulative energy of the POD modes for 𝑢𝑟 = 3, 6  and 11 . According to           

Figure 4.6a, the first mode which corresponds to the time-averaged flow contributes 

the most to the total kinetic energy. The distribution of the eigenvalues for 𝑢𝑟 = 11 has 

more rapid decay in comparison with 𝑢𝑟 = 3 and 6. It indicates that the lower number 

of modes are needed to capture the main flow features for 𝑢𝑟 = 11 than for the other 

two cases. A possible reason is that the flow field for 𝑢𝑟 = 11 is characterized by more 

organized large-scale flow structures compared with the vorticity features of the flow 

fields for 𝑢𝑟 = 3 and 6. Therefore, fewer POD modes are required to capture the same 

level of energy for 𝑢𝑟 = 11 than for two other cases. This has also been reported in Yin 

et al. (2022) [18]. Table 4.2 provides the number of modes which are used to build the 

ROMs with up to 90% of the flow energy for 𝑢𝑟 = 3, 6 and 11. 

  

(a) (b) 

Figure 4.6. POD of the flow field past 2DoF VIV cylinder: (a) energy contribution by 

each mode and (b) cumulative energy. 

Table 4.2. The number of modes used to build ROMs to capture 90% of total flow 

energy. 

 𝒖𝒓 = 𝟑 𝒖𝒓 = 𝟔 𝒖𝒓 = 𝟏𝟏 

Number of modes 229  208 42  

Figure 4.7 shows the spatial structures and the length scale features of the 

crossflow velocity extracted by the POD approach for 𝑢𝑟 = 3 which refers to the initial 

branch of VIV lock in. The cumulative energy of each mode is also shown in Figure 4.7. 

The initial branch is characterized by the formation of two single counter-rotating 

vortices (2S) per shedding cycle, similar to the von-Karman vortex street observed 
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behind a stationary cylinder. Modes 1 and 2 contribute to the formation of the main 

flow behaviour where separated shear layers are aligned with the wake centreline. The 

contribution of the small-scale flow structures which represent the nonlinear nature of 

the flow can be captured by increasing the number of pair modes.  According to Figures 

4.7f and 4.7g, a large number of the small vorticity structures are located close to the 

bluff body near its front and back surfaces. Such compact arrangement of the coherent 

structures causes a suppression of the high cylinder vibration amplitudes.   

  
  

(a) (b) (c) (d) 

   

(e) (f) (g) 

 

Figure 4.7. Spatial structures of the cross-flow velocity for  𝑢𝑟 = 3: (a) Mode 1 

(19%), (b) Mode 2 (24%), (c) Mode 3 (28 %), (d) Mode 4 (31%), (e) Mode 38 (60%), 

(f) Mode 118 (80%), (g) Mode 228 (90%). 

      Figure 4.8 shows the cross-flow velocities of the POD modes for 𝑢𝑟 = 6 

which belongs to the upper branch of the VIV lock-in. The main distinctive property of 

the upper branch flow pattern is the separation of two triplets (2T) of vortices per 

shedding cycle which causes a highly chaotic flow around the cylinder. The obvious 

difference between the initial and upper branches which can be depicted from the 

contour plots shown in Figure 4.8 is that spatial structures are in a broader distribution 

away from the wake centreline due to a larger vibration amplitude of the cylinder. 

Nevertheless, the number of modes to capture 90% of the flow energy for 𝑢𝑟 = 6 (208 

modes) is a slightly lower than for 𝑢𝑟 = 3 (228 modes). The possible reason is that 

coherent flow structures of the upper branch are comparatively more spatially 

organized compared with the initial branch.   
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(a) (b) (c) (d) 

   

(e) (f) (g) 

 

Figure 4.8. Spatial structures of the cross-flow velocity for  𝑢𝑟 = 6: (a) Mode 1 

(25%), (b) Mode 2 (32%), (c) Mode 3 (35%), (d) Mode 4 (38%), (e) Mode 30 (60%), 

(f) Mode 108 (80%), (g) Mode 208 (90%). 

The spatial structures of the cross-flow velocity component for 𝑢𝑟 = 11 which is 

referred to the lower branch of the VIV lock-in are shown in Figure 4.9. The lower 

branch is indicated by the separation of the two pairs (2P) of the counter-rotating 

vorticities per shedding cycle. According to Figure 4.9, the spatial structures of the 

lower branch are placed narrower around the cylinder centreline in comparison with 

the upper branch. Furthermore, the highly energetic coherent structures of the lower 

branch occupy larger space in a far wake region in comparison with a near wake area. 

The near-wake region is characterized by the tightly distributed spatial structures 

largely placed near the back cylinder surface as shown in Figure 4.9f.  
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(a) (b) (c) (d) 

  

              (e)                         (f) 

 

Figure 4.9. Spatial structures of the cross-flow velocity for 𝑢𝑟 = 11: (a) Mode 1 

(48%), (b) Mode 2 (57%), (c) Mode 3 (60%), (d) Mode 4 (63%), (e) Mode 20 (80%), 

(f) Mode 42 (90%). 

4.3.2. Implementation of the POD-LSTM-NN ROM 

The temporal coefficients of the POD modes defined in the previous section are 

used to train the LSTM-NN. In the present study, a direct approach to train the LSTM-

NN is used, i.e., each POD mode has its own LSTM-NN model. Therefore, if 𝑛 

dominant POD modes are chosen to build the ROM, 𝑛 LSTM-NN models are needed 

to be created. The same parameters to train the LSTM-NN models for all selected POD 

modes are used to save computational time. When the designed LSTM-NN model is 

tested, the input parameters for the model should be chosen from the temporal 

coefficients of the relevant mode from the test dataset. The LSTM-NN model predicts 

the values of the temporal coefficients which follow directly after chosen input samples.  

 The comparison of performances of the LSTM-NN models for the train and test 

datasets for the cases with 𝑢𝑟 = 3, 6  and 11  are presented in Table 4.2. The mean 

absolute scaled error (MASE) allows to evaluate how good the model is compared with 

the real data. The mean MASE is calculated as follow: 

𝑀𝐴𝑆𝐸 =
1

𝑛
∑ |

𝐴(𝑖) − 𝐵(𝑖)

∑
𝐴(𝑗) − 𝐴(𝑗 − 1)

𝑛 − 1
𝑛
𝑗=2

|

𝑛

𝑖=1

, 

(4.17) 
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where 𝑛 is the total number of the time instants; 𝐴(𝑖) denotes the real value at the time 

instant 𝑖; 𝐵(𝑖) is the forecasted value at the time instant 𝑖. If the value of MASE is close 

or lower than one, the model can be considered as a high-quality model. Otherwise, if 

MASE is larger than one, it means that the model gives poor representation of the real 

data. According to Table 4.2, the first order mode of each case gives the greatest mean 

and STD MASE for both train and test datasets. Since the first mode is the most 

energetic it leads to higher negatively impact the flow field accuracy. For example, the 

mean MASE of the first mode of the train/test datasets is 8.3/11.9, 23.6/17.4 and 

42.0/27.4 for 𝑢𝑟 = 3, 6 and 11, respectively.  

Table 4.2. Performance of LSTM-NN model for 𝑢𝑟 = 3, 6 and 11 for train and test 

datasets. 

 Mean MASE 
Train/Test 

STD MASE 
Train/Test 

Accuracy 
Train/Test 

Final loss 
Train/Test 

𝑢𝑟 = 3 
Mode 1 (19%) 8.3/11.9 7.7/15.2 0.3132/0.3109 0.0013/0.0011 
Mode 2 (24%) 1.7/1.7 2.7/2.4 0.8264/0.8534 0.0029/0.0024 
Mode 3 (28%) 1.2/1.3 1.8/1.7 0.8465/0.8152 0.0027/0.0028 
Mode 4 (31%) 1.6/2.1 1.6/2.9 0.7918/0.7507 0.0023/0.0016 

Mode 38 (60%) 2.9/2.3 2.9/1.9 0.4893/0.4487 0.0112/0.0084 
Mode 118 (80%) 2.2/1.8 4.7/1.3 0.4403/0.4076 0.0207/0.0207 
Mode 228 (90%) 1.5/1.5 1.2/1.0 0.3723/0.3988 0.0217/0.0196 

𝑢𝑟 = 6 
Mode 1 (25%) 23.6/17.4 60.5/28.7 0.1803/0.3021 0.0004/0.0004 
Mode 2 (32%) 3.5/1.2 8.5/1.1 0.7738/0.8279 0.0016/0.0014 
Mode 3 (35%) 1.7/1.2 2.1/1.3 0.7975/0.8432 0.0023/0.0024 
Mode 4 (38%) 1.7/1.5 2.4/2.2 0.7598/0.7533 0.0021/0.0017 

Mode 30 (60%) 2.3/2.1 2.3/2.2 0.6230/0.6577 0.0058/0.0056 
Mode 108 (80%) 2.5/2.4 2.1/1.7 0.4189/0.4073 0.0123/0.0124 
Mode 208 (90%) 1.7/1.8 1.7/1.5 0.4074/0.4340 0.0169/0.0158 

𝑢𝑟 = 11 
Mode 1 (48%) 42.0/27.4 60.5/29.3 0.2209/0.2067 0.0004/0.0004 
Mode 2 (57%) 6.5/2.9 15.6/4.8 0.6711/0.8324 0.0011/0.0011 
Mode 3 (60%) 2.8/2.5 3.9/4.7 0.8163/0.8212 0.0018/0.0017 
Mode 4 (63%) 1.3/0.88 1.5/1.0 0.8307/0.7151 0.0016/0.0013 

Mode 20 (80%) 1.1/0.8 1.2/1.7 0.8427/0.8128 0.0037/0.0033 
Mode 42 (90%) 1.8/1.7 2.9/2.4 0.6639/0.6201 0.0086/0.0069 

There is a tendency of decreasing the mean and STD MASE and increase of the 

model accuracy up to 85% with increasing the rank of the POD mode. For instance, the 

mean MASE of the fourth mode of the train/test datasets are 1.6/2.1, 1.7/1.5 and 

1.3/0.88 for 𝑢𝑟 = 3, 6 and 11, respectively. However, when the POD mode order is 

high, the LSTM-NN with the set parameters cannot represent the temporal coefficient 
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fluctuation properly. For example, Modes 118, 108 and 42 of 𝑢𝑟 = 3, 6 and  11 , 

respectively, have enragement of the mean MASE up to 2.2/1.8, 2.5/2.4 and 1.8/1.7 for 

train/test datasets. The gap between the training and test datasets is a clear indication 

of over-fitting (training accuracy is large than the test accuracy) or under-fitting 

(training accuracy is smaller than the test accuracy) behaviour of the LSTM-NN model. 

According to Table 4.2, there are slight deviations between the train and test accuracies 

at the different POD modes. The possible solution to overcome over- and under-fitting 

is to set different LSTM-NN parameters for low and high order POD modes. The 

training loss indicates how well the model is fitting the training data while the test loss 

indicates how well the model fits new data. According to Table 4.2, there is a trend of 

increasing final loss values with rising order POD mode for both train and test datasets. 

Nevertheless, the final loss is less than 0.1 for all presented cases, which proves that 

the LSTM-NN model performance can be accepted.  

Figures 4.10-4.12 show the comparison of the temporary coefficients obtained 

by the CFD simulations and predicted by the LSTM-NN models for 𝑢𝑟 = 3, 6 and 11. 

LSTM-NN can still show a good performance for prediction of the low order POD 

modes up to Mode 38 as shown in Figures 4.10e, 4.11e and 4.12e. However, the trained 

LSTM-NN underestimates the real data and cannot accurately capture the original 

fluctuation of the high rank POD mode temporal coefficients for 𝑢𝑟 = 3  and   6 as 

shown in Figures 4.10f-g and 4.11f-g. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

 

(g) 

 

Figure 4.10. The real and predicted temporary coefficients for 𝑢𝑟 = 3: (a) Mode 1 

(19%); (b) Mode 2 (24%); (c) Mode 3 (28%); (d) Mode 4 (31%); (e) Mode 38 (60%); 

(f) Mode 118 (80%); (g) Mode 228 (90%). 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

 

(g) 

 

Figure 4.11. The real and predicted temporary coefficients for 𝑢𝑟 = 6: (a) Mode 1 

(25%); (b) Mode 2 (32%); (c) Mode 3 (35%); (d) Mode 4 (31%); (e) Mode 30 (60%); 

(f) Mode 108 (80%); (g) Mode 208 (90%). 
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(a) (b) 

   

(c) (d) 

  

(e) (f) 

 

Figure 4.12. The real and predicted temporary coefficients for 𝑢𝑟 = 11: (a) Mode 1 

(48%); (b) Mode 2 (57%); (c) Mode 3 (60%); (d) Mode 4 (63%); (e) Mode 20 (80%); 

(f) Mode 42 (90%). 

 

When the LSTM-NN models are trained and the temporal coefficients for each 

chosen POD mode are calculated, then the flow field can be reconstructed by using Eq. 

(4.10). The cross-flow velocity obtained by using CFD simulations and predicted by the 

POD-LSTM-NN ROMs are shown in Figure 4.13 for 𝑢𝑟 = 3, 6  and 11 . The 

instantaneous predicted flow fields using the POD-LSTM-NN ROMs which capture 

60%, 80% and 90% of the total energy are compared. An increasing accuracy of the 

predicted flow is achieved by using more POD modes to build the POD-LSTM-NN 

ROMs. The including of high order POD modes allows to capture the contribution of 

the small-scale flow structures, which can be clearly seen from Figures 4.13f, 4.13i and 
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4.13l. However, there is need to find a balance between the quality of the ROM LSTM-

NN and its complexity, i.e., the number of modes used to build ROM, to save 

computational resources.  

The original flow obtained by using CFD simulations 

   

(a) (b) (c) 

The predicted flow obtained by using the POD-LSTM-NN ROMs 

   

(d) (e) (f) 

   

(g) (h) (i) 

   

(j) (k) (l) 

 

Figure 4.13. A comparison of the cross-flow velocity of the  original CFD 

simulations and the predicted flow field using POD-LSTM-NN ROM at 𝑢𝑟 = 3: (a) 

the CFD simulations, (d) sum of 39 modes – 60% of the total energy, (g) sum of 118 

modes – 80% of the total energy, (j) sum of 229 modes – 90% of the total energy;  

𝑢𝑟 = 6: (b) the CFD simulations, (e) sum of 30 modes – 60% of the total energy, (h) 
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sum of 108 modes – 80% of the total energy, (k) sum of 208 modes – 90% of the 

total energy;  𝑢𝑟 = 11: (c) the CFD simulations, (f) sum of 3 modes – 60% of the total 

energy, (i) sum of 20 modes – 80% of the total energy, (l) sum of 42 modes – 90% 

of the total energy. 

Figure 4.14 shows the comparison of the instantaneous contours of the spanwise 

vorticity of the original CFD simulations and the flow fields predicted by the POD-

LSTM-NN ROMs with 90% of the flow energy. It can be seen that the dominant large-

scale features of the coherent flow structures are successfully reconstructed by the 

POD-LSTM-NN ROMs for 𝑢𝑟 = 3, 6 and 11. Nevertheless, there is a small-scale noise 

in the wake region for the predicted flows which can be eliminated by adding more high 

order POD modes as shown in Yin et al. (2022) [18].  To further explain this, the 

reconstructed flow fields using different number of POD modes for 𝑢𝑟 = 11  are 

selected as an example. Figure 4.15 shows the comparison of the instantaneous 

contours of the spanwise vorticity reconstructed by the POD-LSTM-NN ROMs using 

42, 90 and 170 POD modes at 𝑢𝑟 = 11. According to Figure 4.15, with an increasing 

number of high order POD modes, the small-scale noisy structures in the wake region 

can be progressively eliminated since high order modes allow to capture the small-scale 

structures. Adding more high order modes will increase the reconstruction accuracy of 

the spatial-temporal coherent structures. 

The original flow obtained by using CFD simulations 

   

(a) (b) (c) 

 

Figure 4.14.   Cont. 
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The predicted flow obtained by using the POD-LSTM-NN ROMs 

   

(d) (e) (f) 

 

Figure 4.14. A comparison ot the instantenous contours of the spanwise vorticity 

of the  original CFD simulations and the predicted flow field using POD-LSTM-NN 

ROM at 𝑢𝑟 = 3: (a) the CFD simulations, (d) sum of 229 modes – 90% of the total 

energy;  𝑢𝑟 = 6: (b) the CFD simulations, (e) sum of 208 modes – 90% of the total 

energy;  𝑢𝑟 = 11: (c) the CFD simulations, (f) sum of 42 modes – 90% of the total 

energy. 

   
(a) (b) (c) 

 

Figure 4.15. A comparison ot the instantaneous contours of the spanwise vorticity 

of the flow fields predicted by using POD-LSTM-NN ROMs with different numbers 

of POD modes for 𝑢𝑟 = 11: (a) sum of 42 modes – 90% of the total energy,  (b) sum 

of 90 modes – 95% of the total energy,  (c) sum of 170 modes – 98% of the total 

energy. 

Figure 4.16 shows the time histories of the streamwise and cross-flow velocities 

of the 2DoF cylinder obtained by the CFD simulations and predicted by the POD-

LSTM-NN ROMs which represents 90% of the total flow energy. The coefficients of the 
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determination (𝑅2)  are used to define how good the predicted time histories 

approximate the actual data. 𝑅2 can be calculated as follow: 

𝑅2 = 1 −
∑ (𝐴(𝑖) − 𝐵(𝑖))

2𝑛
𝑖=1

∑ (𝐴(𝑖) − ∑ 𝐴(𝑖)𝑛
𝑖=1 𝑛⁄ )2𝑛

𝑖=1

, (4.18) 

where 𝑛 is the total number of the time instants; 𝐴(𝑖) denotes the real value in the time 

instant 𝑖; 𝐵(𝑖) is the forecasted value in the time instant 𝑖. The parameter takes the 

values between 0 (poor approximation) and 1 (good approximation). According to 

Figure 4.16, the values of the determination coefficients are close to 1 for 𝑢𝑟 = 3, 6 and 

11 . It confirms a high capability of the POD-LSTM-NN ROMs to predict cylinder 

motions subjected to the highly chaotic turbulent flow. 

 
 

(a) (b) 

  
(c) (d) 

Figure 4.16.   Cont. 
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(e) (f) 

Figure 4.16.  The time histories of (a, c, e) the streamwise and (b, d, f) the cross-

flow velocities of the cylinder obtained by the CFD simulations and predicted by the 

POD-LSTM-NN ROMs for (a, b) 𝑢𝑟 = 3, (c, d) 𝑢𝑟 = 6 and (e, f) 𝑢𝑟 = 11. 

Furthermore, the comparison of the streamwise, cross-flow displacements and 

the trajectories of the cylinder obtained by the CFD simulations and the POD-LSTM-

NN ROMs are also shown in Figure 4.16.  In general, the POD-LSTM-NN ROMs predict 

the cross-flow displacement of the cylinder better than the streamwise displacement 

for all considered cases. According to Figure 4.17, the prediction of the cylinder 

displacement in both directions is the most accurate for the case with 𝑢𝑟 = 11 which is 

confirmed by the relatively high values of the determination coefficients. The cylinder 

trajectory for 𝑢𝑟 = 11 is also more organized in comparison with 𝑢𝑟 = 3 and 6.   

  
(a) (b) 

Figure 4.17.   Cont. 
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(c) 

 
 

(d) (e) 

 
(f) 

Figure 4.17.   Cont. 
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(g) (h) 

 
(i) 

Figure 4.17.   The (a-c) streamwise, (d-f) cross-flow and (g-i) 2DoF cylinder 

displacements obtained by original CFD simulations and POD-LSTM-NN ROM for (a, 

d, g) 𝑢𝑟 = 3, (b, e, h) 𝑢𝑟 = 6 and (c, f, i) 𝑢𝑟 = 11. 

4.3.3. Force Partitioning method 

The FPM was widely adopted to estimate the lift and drag forces acting on the 

body by solely using the surrounding flow field instead of a direct integration of the 

pressure and viscous stresses on the body surface (Yin et al. (2022) [17], Menon & 

Mittal (2021) [47], Moriche et al. (2017) [48]).  The first step of the FPM is to define 

the auxiliary potential field, 𝜙𝑖. It is only determined by the instantaneous position and 

the shape of the immersed body as well as the outer domain boundary. The potential 

field 𝜙𝑖 satisfies the Laplacian equation and boundary conditions as: 

In the fluid domain: ∇2𝜙𝑖 = 0, (4.19) 

At the surface of the immersed body: ∇𝜙𝑖 ∙ 𝑛 = 𝑒𝑖 ∙ 𝑛, (4.20) 



84 
 

At the outer boundaries of the fluid domain:  ∇𝜙𝑖 ∙ 𝑛 = 0, (4.21) 

where 𝑛 is the normal vector towards the body surface and 𝑒𝑖 denotes a unit vector; 𝑖 =

1 and 2 correspond to the streamwise and cross-flow directions, respectively.  

The second and third steps of the FPM are to project the original Navier-Stokes 

equation onto the gradient of the auxiliary potential and integrate over the volume of 

the fluid domain.  According to Chang (1992) [41], the force acting on the oscillating 

body in a constant stream can be found by using the following equation: 

  

 

(4.22) 

where 𝒖 and  𝝎 are the velocity and vorticity of the flow field, respectively; 𝑑𝐴 denotes 

the surface area of the cylinder; 𝜈 is a kinematic viscosity. 

The first term (𝐼)  of Eq. (4.22) represents the contribution of the body 

acceleration while the second term (𝐼𝐼) indicates the contribution of the body kinetic 

energy. The third (𝐼𝐼𝐼)  and fourth (𝐼𝑉 ) terms are induced by the influence of the 

surrounding flow within the whole flow field and the body surface, respectively. The 

term which is related with Reynolds shear stress in not included in Eq. (4.22) as its 

contribution is negligible for the high Reynolds number flow as reported in Yin et al. 

(2022) [17]. In the present study, FPM is applied to estimate the lift and drag forces 

acting on the 2DoF VIV cylinder at high 𝑅𝑒 number using the predicted surrounding 

flow and the cylinder motion by the POD-LSTM-NN ROMs. Figure 4.18 shows the 

comparison of the time histories of the lift and drag coefficients predicted by the POD-

LSTM-NN ROMs and the original CFD simulations by using the sum of the 𝐼 related to 

the body motion and 𝐼𝐼𝐼 terms related to the surrounding flow of Eq. (4.22). The 𝐼𝐼 and 

𝐼𝑉 terms of Eq. (4.22) are not included into consideration as their contribution is much 

smaller in comparison with two other components. According to Figure 4.18, the POD-

LSTM-NN ROMs with 90% of the flow energy can predict the fluctuation amplitudes 

of the lift and drag coefficients with a high accuracy. The calculated values of the 

determination coefficients confirm it. The more precise reconstruction of the lift and 

drag coefficient time histories is obtained for 𝑢𝑟 = 3 and 6. These two cases distinct by 



85 
 

the edgy and high fluctuation amplitudes of the lift and drag coefficients in comparison 

with  𝑢𝑟 = 11 

   

(a) (b) 

  

(c) (d) 

 
 

(e) (f) 

Figure 4.18.  Time histories of (a-c) the lift and (d-f) drag coefficients obtained by 

means of the force partitioning method by using sum of the 𝐼  and 𝐼𝐼𝐼  terms of               

Eq. (4.22) for the flow field predicted by POD-LSTM-NN ROM and the original CFD 

simulations for (a, b) 𝑢𝑟 = 3, (c, d) 𝑢𝑟 = 6 and (e, f) 𝑢𝑟 = 11. 

Moreover, to further reveal the ROM predicted wake flow and uncover the 

correlation between the dominant flow structures and the hydrodynamic forces on the 

vibrating cylinder, a close inspection of the predicted term III, 𝐶𝐿,𝐮×𝛚, using modes with 

90% of the flow energy for 𝑢𝑟 = 11 and the predicted wake flow structures at three 
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representative time steps corresponding to the peak and zero values are displayed in 

Figure 4.19. Both the contours of the predicted spanwise vorticity and the force density 

are shown. The alternative vortex shedding process denoted as vortex A, B, C in Figure 

4.19b, as well as the vortices pairs (denoted in Figure 4.19b) and the meandering vortex 

street in the far-wake is well-captured. It can be seen from the contours of −(𝐮 × 𝛚) ∙

∇𝜙𝑦  ( 𝜙𝑦  is the lift potential) that near-wake flow structures make a dominant 

contribution to 𝐶𝐿,𝐮×𝛚 and the contributions from the shedding vortices are quickly 

dissipated.  At the two peak values of 𝐶𝐿,𝐮×𝛚, the vortex from one side begins to grow 

and draw the vortex from the other side. Both the two vortices make positive 

contributions to 𝐶𝐿,𝐮×𝛚  and suppress the negative contribution from the shedding 

vortex from the previous cycle (denoted as C in Figure 4.19c). At the zero value of 

𝐶𝐿,𝐮×𝛚, the shear layers from the two sides are almost of similar strengths and there is 

an opposite contribution from the regions between the two shear layers (denoted as D 

in Figure 4.19e), which leads to the zero value of 𝐶𝐿,𝐮×𝛚. In addition, it is obvious that 

the influences of small-scale noisy structures (denoted in Figure 4.19d as an example) 

resulting from the mode truncation can be only observed around the shear layer. 

However, their net contributions to the 𝐶𝐿,𝐮×𝛚 values are canceled due to their equal 

strengths of positive and negative signs. 

 

 

(a) 

Figure 4.19.   Cont. 
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(b) (c) 

  

(d) (e) 

  

(f) (g) 

Figure 4.19. (a) Three representative time steps corresponding to two peak values (𝑡1 

and 𝑡3) and a zero value of 𝐶𝐿,𝐮×𝛚 (𝑡2); (b, d, f) the contours of the spanwise vorticity at 

𝑡1, 𝑡2, 𝑡3, respectively; (c, e, g) the contours of the force density −(𝐮 × 𝛚) ∙ ∇𝜙𝑦.   

 

Conclusions 

The ROMs based on LSTM and POD analysis are designed in the present study to 

predict the instantaneous wake flow evolution of a 2DoF VIV circular cylinder in the 

upper transition Reynolds number regime (𝑅𝑒 = 3.6 × 106) with 𝑢𝑟 = 3, 6 and 11. The 

datasets of the flow field for training are generated by solving the 2D URANS equations 

with the standard 𝑘 − 𝜔 𝑆𝑆𝑇 turbulence model. The POD analysis is applied for the 

flow field generated by the CFD simulations to extract the dominant modes and their 
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temporal coefficients. Then, the LSTM-NN is built to predict the instantaneous POD 

coefficients for future time steps. As a result, the combination of the POD modes and 

the temporal coefficients predicted by the LSTM-NN allowed to create a reduced-order 

representation of the high-dimensional datasets and to predict the evolution of the 

coherent flow structures around the bluff body at the future time instants. Moreover, 

FPM was introduced to characterize the lift and drag forces acting on the cylinder by 

using a surrounding flow fields predicted by the POD-LSTM-NN ROMs. The main 

conclusions can be summarized as follows:  

1. In order to create the highly quality ROMs which can represent up to 90% of the 

flow energy, 228, 208 and 42 POD modes were used for  𝑢𝑟 = 3, 6 and 11 , 

respectively. The high number of modes for the ROMs is caused by the highly chaotic 

turbulent flow field. Therefore, it is recommended to test different decomposition 

techniques and evaluate the performance of the reduced-order representation of the 

required dominant flow features. 

2. In the present study, the same LSTM-NN model parameters are used to train all 

POD modes to save computational time. Therefore, there is an issue related to 

incapability of the LSTM-NN to accurately represent the high order POD modes. 

The possible solution can be to adjust different setting parameters for the low and 

high order POD modes. However, it leads to a more complexity and less autonomous 

of the LSTM-NN parameter selection. 

3. The temporal evolutions of the dominant POD coefficients can be well-predicted by 

the designed POD-LSTM-NN ROMs. The good performance of the POD-LSTM-NN 

ROMs in prediction of the streamwise and cross-flow velocities and the cross-flow 

displacements is also highlighted for all cases, especially for  𝑢𝑟 = 11.  

4. A good performance of the POD-LSTM-NN ROMs is also confirmed by comparing 

the estimated forces combined with the FPM applied for the predicted and the CFD 

simulated flow fields. The forces acting on the cylinder surface subjected to a chaotic 

turbulent flow predicted by the POD-LSTM-NN ROMs are captured with a high 

accuracy. 
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Chapter 5. 

Conclusions 

5.1. Summary of the key findings 

In the present master’s thesis, modern techniques for analysing the flow field 

over cylindrical bluff bodies undergoing a high Reynolds number regime flow are 

implemented. The combination of the reduced order modelling and neural network 

allows to decrease the complexity of the performed calculations and minimize 

computational costs.  In the present study, the circular cylinders represent the subsea 

slender structures such as production flowlines, umbilicals, risers, jumpers.  Two 

different subsea operational conditions are analysed: two tandem circular cylinders 

and a single 2DoF VIV circular bluff body.  The open source CFD toolbox OpenFOAM 

v2012 is utilized to conduct all simulations in the present study. The 2D URANS 

equations with the standard 𝑘 − 𝜔 SST turbulence model are solved. The ROMs are 

designed by implementing modal decomposition techniques as SPDMD and POD for 

tandem circular cylinders case and the 2DoF VIV bluff body, respectively. The 

dominant modes which capture the dominant spatial-temporal coherent structures of 

the flow field are chosen to build ROMs. The LSTM-NN are applied to predict the 

evolution of the POD modes temporal coefficients as well as the streamwise and cross-

flow velocities and displacements of the cylinder at the future time instances. In the 

present study, the LSTM-NN is designed based on the open-source toolbox TensorFlow 

and Keras. 

The main findings of Chapter 3 can be summarized as flow: 

1. The flow field over tandem circular cylinders at 𝑅𝑒 = 3.6 × 106  significantly 

depends on the relative distance between the bluff bodies. With increasing 𝐿 𝐷⁄  

between the circular cylinders, the reattachment point of the separated UC shear 

layers constantly changes the position on the surface of the DC leading to overshoot, 

FSR, FR, FSR and bi-stable the flow regimes transformations. 

2. Existing of the third super-harmonic for considered cases can be explained by the 

reattachment of the shear layer of the lower vorticity slice on DC surface. While the 

appearance of the second super-harmonic for 𝐿 𝐷⁄ = 2.5  is connected with the 

assistance of the upper vorticity slice of the reattached shear layer to the 

development of the negative coherent structure behind the DC. 
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3. The relative distance between the two cylinders influences on such parameters as 

𝐶𝐷
̅̅̅̅ , 𝐶𝐿,𝑟𝑚𝑠  and 𝑆𝑡 . For example, with the decreasing 𝐿 𝐷⁄  between the two bluff 

bodies, 𝐶𝐷
̅̅̅̅  constantly reduces and archives the negative value at 𝐿 𝐷⁄ = 1.56 . It 

happens due to a low pressure at the surface of the DC caused by the cavity flow 

between UC and DC. The enlargement of the 𝐶𝐿 fluctuation amplitude at 𝐿 𝐷⁄ = 2.5 

is connected with the FR flow regime which characterized by the significant 

interactions of the shear layers. A sudden reduction of the 𝑆𝑡 values is observed at 

𝐿 𝐷⁄ ≥ 1.8 when the reattachment flow regime dominates.   

4. The SPDMD approach has been applied for the modal analysis of the flow field and 

construction of the ROMs. The modal decomposition analysis reveals that Mode 2 

for 𝐿 𝐷⁄ = 1.8 and 3 does not contribute to the lift force. Therefore, there is no peak 

in the frequency spectra of the lift force at the second harmonic of St for these two 

cases. Furthermore, the ROMs have been designed based on the SPDMD modes 

which contribute the most to the flow field dynamics. The reduced order 

representations of the flow field at the high Reynolds number flow could correctly 

reconstruct the wake dynamics behind the two tandem cylinders at the different 𝐿 𝐷⁄  

between them. 

The main findings of Chapter 4 can be summarized as flow: 

1. In order to design the high-quality ROMs for the turbulent flow field around 2DoF 

VIV cylinder, 228, 208 and 42 POD modes are used for  𝑢𝑟 = 3, 6 and 11 , 

respectively, to capture 90% of the flow energy.  

2. In the present study, there is an issue related to incapability of the LSTM-NN to 

accurately capture the high order POD modes as the same LSTM-NN model 

parameters are used to train low and high order POD modes. It has been done to 

save computational resources. The adjustment of the different setting parameters 

for the low and high order POD modes can solve the problem. However, it makes 

the LSTM-NN parameter selection less autonomous. 

3. The POD-LSTM-NN ROMs show good capabilities in prediction of the POD modes 

temporal coefficients for future time steps as well as in prediction of the streamwise 

and cross-flow velocities and the cross-flow displacements, especially for  𝑢𝑟 = 11. 

4. The FPM method is applied to evaluate the lift and drag forces acting on the cylinder 

surface by using the predicted and the CFD simulated flow fields. The POD-LSTM-
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NN ROMs prove their abilities to capture the forces acting on the cylinder surface 

with a high accuracy.  

5.2. Future work 

Following suggestions for further investigations can be made: 

1. The alternative training strategy (unified model approach) for the LSTM-NN can be 

tested in order to account for the issues of the multiple model training strategy 

which was utilized in the present study. According to the unified model approach, 

the NN is trained with the samples from all ranks of the POD modes, not just from 

POD modes of the same rank. The unified NN model can be used to predict the 

coefficients for all POD modes.  

2. Different modal decomposition approaches can be tested to define the most efficient 

decomposition techniques for the reduced-order representation of the dominant 

spatial-temporal coherent structures of the flow field around 2DoF VIV circular 

cylinder at high Reynolds number flow.  

3. Test the performances of the different NN architectures such as convolution neural 

network (CNN) - LSTM, multilayer perceptrons (MLP), etc. for the prediction of the 

flow field evolution over cylindrical bluff bodies subjected to a high Reynolds 

number flow.   

 


