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Abstract 
 

Wind turbines, as critical components of the renewable energy industry, present unique 

maintenance challenges, particularly in remote or challenging locations such as offshore wind 

farms. These are amplified in the inspection of leading-edge erosion on wind turbine blades, a 

task still largely reliant on traditional methods. Emerging technologies like computer vision and 

object detection offer promising avenues for enhancing inspections, potentially reducing 

operational costs and human-associated risks. However, variability in image resolution, a 

critical factor for these technologies, remains a largely underexplored aspect in the wind energy 

context.  

 

This study explores the application of machine learning in detecting and categorizing 

leading edge erosion damage on wind turbine blades. YOLOv7, a state-of-the-art object 

detection model, is trained with a custom dataset consisting of images displaying various forms 

of leading edge erosion, representing multiple categories of damage severity. Trained model is 

tested on images acquired with three different tools, each providing images with a different 

resolution. The effect of image resolution on the performance of the custom object detection 

model is examined. The research affirms that the YOLOv7 model performs exceptionally well 

in identifying the most severe types of LEE damage, usually classified as Category 3, 

characterized by distinct visual features. However, the model's ability to detect less severe 

damage, namely Category 1 and 2, which are crucial for early detection and preventive 

measures, exhibits room for improvement.  

 

The findings point to a potential correlation between input image resolution and 

detection confidence in the context of wind turbine maintenance. These results stress the need 

for high-resolution images, leading to a discussion on the selection of appropriate imaging 

hardware and the creation of machine learning-ready datasets. The study thereby emphasizes 

the importance of industry-wide efforts to compile standardized image datasets and the potential 

impact of machine learning techniques on the efficiency of visual inspections and maintenance 

strategies. Future directions are proposed with the ultimate aim of enhancing the application of 

artificial intelligence in wind energy maintenance and management, enabling more efficient 

and effective operational procedures, and driving the industry towards a more sustainable 

future. 
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1. Introduction 
 

Management and maintenance of industrial assets plays a significant part in achieving optimal 

levels of efficiency in critical energy infrastructure, such as wind turbine systems. Effective 

maintenance practices are essential in sustaining reliability across operational time periods, 

considering that these systems are exposed to a variety of environmental conditions that eventually 

reduce or compromise their effectiveness or lifespan to alarming levels. One such issue is leading 

edge erosion (LEE), which, if unchecked, can affect structural integrity as well as appropriate 

aerodynamic properties of the blades. It is crucial to identify and evaluate LEE proactively with 

emphasis on accuracy in order to enable optimal maintenance planning and reduce operational 

costs. 

 

The way that inspections and maintenance activities are carried out has the potential to change 

and adapt substantially as a result of the integration of computer vision technologies into industrial 

asset management. In particular, its application to assessing leading edge erosion (LEE) damage to 

wind turbine blades presents a promising possibility of conducting reviews more precisely and 

rapidly. The quality and resolution of the input visuals, however, play an important role on how 

well these strategies work. This thesis explores the impact of image resolution variances from 

different sources on the precision of LEE damage identification and categorization using a computer 

vision algorithm. Ultimately, the aim is to strengthen asset management procedures for maintenance 

planning. 

 

Three primary objectives guide this study and determine its methodology. They include: 

 

• Evaluating how effectively computer vision technologies detect and classify LEE 

damage on wind turbine blades utilizing multiple datasets. 

 

• Examining the effects of several picture resolution/quality levels when analyzing LEE 

damage. 

 

• Determining the most useful sources of images in determining different cases of LEE. 

 

1.1.  Background and Problem Presentation 
 

It is increasingly becoming essential to include wind energy as a key component in order to 

effectively meet the goals set for the production of renewable energy on a worldwide scale. 

Managing the effectiveness and efficiency of wind turbine systems through appropriate asset 

management procedures is an important part of this change. Leading-edge erosion (LEE) on the 

turbines' blades, however, is one of the primary obstacles encountered throughout these 

maintenance procedures. Failures resulting from erosion damages could lead to decreased 

aerodynamic capabilities and limited lifespan for these assets. Therefore, early detection of LEE is 

crucial for efficient maintenance planning with the objective at minimizing operational expenses. 
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Despite the importance of detecting and evaluating LEE, traditional methods of inspection 

can be time-consuming, labor-intensive, and often expose maintenance personnel to safety risks. 

For instance, manual visual inspections require workers to physically access turbine blades, 

sometimes in challenging weather conditions or at great heights. 

 

The emergence of computer vision technology offers a promising alternative to these 

conventional methods. Computer vision can enable the automation of LEE damage identification 

and categorization with the use of machine learning techniques on high resolution imagery. The 

accuracy, effectiveness, and safety of wind turbine inspections are prone to improvement with such 

applications. 

 

Within the potential that computer vision brings, one major component of successful 

application on maintenance cases is the resolution of the input images. The accuracy of LEE 

detection is open to be influenced to a certain degree by the quality of the images to be analyzed. 

The focus, then, lies on how the performance of computer vision algorithms might vary with 

different resolutions. 

 

From cameras embedded on drones to everyday smartphones, given the variety of imaging 

devices available, there is a need to understand which sources of images are most useful in detecting 

and categorizing levels of LEE. In this study, a Ryze Tello drone with a built-in lens, an iPhone, 

and a consumer-grade digital camera will be utilized to capture images of a 2.5-meter blade section 

with artificially recreated LEE damages.  

 

Overall, the problem this thesis aims to address is the gap in understanding about the impact 

of image resolution variances on the effectiveness of computer vision algorithms in identifying and 

categorizing LEE damages. Successful understanding could therefore support the selection of 

imaging devices for wind turbine inspections and provide a novel approach to maintenance 

applications in the field. 

 

1.2.  Research Objectives and Relevance 
 

The study looks at optimal input equipment for this application as well as how image 

resolution affects a computer vision algorithm's ability to detect and categorize LEE damage. The 

goals defined to be achieved are: 

 

• Determine the impact of using different resolutions collected from different sources for 

identifying and classifying LEE damage on wind turbine blades. 

 

• Establish the ideal level of resolution that produces optimal results with the given inputs, 

while evaluating how variation affects performance ratings.  

 

• Evaluate how well various imaging tools perform when it comes to capturing images that 

meet the criteria for carrying out computerized analyses of LEE damage.  
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The increasing focus on wind energy on a global scale, and the use of computer vision for 

asset management provides the basis for the study's significance. This research will contribute to 

the knowledge-base regarding how image resolution affects computer vision algorithms, which will 

ultimately assist stakeholders choose the best imaging systems to enhance the effectiveness and 

efficiency of wind turbine blade inspections.  

 

The results of the study can also benefit fields beyond wind turbine maintenance. It can 

inform researchers on how to use computer vision technologies in comparable circumstances where 

inspections are important, such as in construction, infrastructure, or manufacturing quality control. 

From this perspective, the overall understanding of industrial computer vision applications can be 

expanded. 

 

1.3.  Research Question 
 

The primary research question that drives the work completed in this thesis is: 

 

"Does image resolution have an impact on the performance of customized object detection 

models within wind turbine blade inspections?” 

 

This research aims to explore the link between the resolution of input images fed to 

computer vision algorithms and the level of accuracy achieved by specific applications in 

generating outputs. Due to its presence at the intersection of two areas that are quickly evolving, 

renewable energy and artificial intelligence, this particular focus carries significant weight. Its 

prospective effects on visual maintenance initiatives and asset management techniques, particularly 

in the wind energy sector, are particularly important. 

 

By answering the question defined above, the study seeks to contribute novel perspectives 

to the body of knowledge that exists on computer vision applications and to reveal insightful 

information that can improve the general effectiveness of maintenance procedures across a variety 

of fields. 

 

1.4.  Methodology 
 

The methodology of this study is built on an interdisciplinary approach, combining elements 

of physical operations, experimental procedures, and computational analysis to explore the impact 

of image resolution on the identification and categorization of leading edge erosion (LEE) in wind 

turbine blades using a computer vision algorithm. 

 

The physical component of this research involves the utilization of a wind turbine blade 

section that is subjected to controlled erosion to simulate different stages of LEE damage. The blade 

serves as the physical representation of real-world conditions and provides the base for the 

collection of image data. Furthermore, various imaging devices, including a drone, a smartphone, 
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and a digital camera, are used in capturing these representation of real-world conditions for further 

computational analysis.  

 

Experimental procedures in this study encompass the controlled capture of image data from 

the eroded blade model using the selected imaging tools. These procedures are performed under 

uniform conditions to ensure the consistency of the data collected.  

 

The core of the computational analysis involves the application of a computer vision 

algorithm to the collected image data. This algorithm, selected based on its relevance and efficiency 

in handling object detection tasks, serves to process the images, detect and categorize the LEE 

damage. The impact of image resolution on the performance of the algorithm is evaluated by 

comparing the algorithm's output with the ground truth data. Additionally, the computational part 

of the methodology extends to the evaluation of the imaging tools, comparing their effectiveness in 

capturing images that lead to the successful detection and classification of LEE. It also involves the 

analysis of the results, which will help understand the relation between image resolution and the 

performance of the computer vision algorithm. 

 

This methodology's structure combines physical, experimental, and computational elements 

to offer a comprehensive approach for addressing the research question, providing an innovative 

insight into the interaction between image resolution and computer vision technology in the context 

of wind turbine maintenance. 

 

1.5.  Thesis Scope 
 

This thesis' main objective is to investigate how variations in picture resolution might impact 

how well a computer vision system works to identify and classify leading edge erosion (LEE) 

damage on wind turbine blades. The goal is to investigate how variations in picture resolution affect 

the accuracy levels reached by computer vision algorithms and to determine the imaging equipment 

that is most suited for precisely recognizing and characterizing LEE. 

 

Through the controlled erosion of a blade's tip portion by 2.5 meters in length, it will be 

possible to examine LEE damage in the context of wind turbine blades. Three different photo-taking 

tools are used in order to get clear photographs for analysis: a Ryze Tello drone, a smartphone 

camera, and a consumer-grade digital camera. The computer vision algorithm will be equipped 

through the use of the most recent computer vision model appropriate especially for this application 

and relevant machine learning techniques. 

 

The fundamental restriction on the scope of this thesis is to build upon current computer 

vision models. The goal of this project does not entail creating a novel computer vision model or a 

commercial application. Instead, it focuses on using an existing computational technique to handle 

particular challenges associated with wind turbine maintenance tasks. The direct application of the 

findings to industrial settings is outside the scope of this study, which instead intends to establish 

relevant foundational information for directing future research and potential implementation 

strategies for stakeholders. 
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Finally, it is important to point out that, while there is a possibility of this study 

encouraging and having consequences on other fields utilizing computer vision technology, its 

primary focus is on using the techniques to address erosion at the leading edge of wind turbine 

blades. The study does not intend to thoroughly investigate potential uses in other industries. 

 

1.6.  Thesis Structure 
 

The thesis is structured into seven primary sections that are allocated to a significant area of 

the research undertaken: 

 

1) Introduction: This section opens with an outline of the subjects covered in the thesis. The 

background of the issue, the goals of the research, its importance, and the methods used are 

all briefly addressed. Then, a summary of this thesis's structure is given while highlighting 

its range of application. 

 

2) Theoretical Background: The second chapter delves into existing literature and past 

research in the areas of wind turbine maintenance, leading edge erosion (LEE), and 

computer vision technology. It establishes the current understanding in these fields and 

identifies the gaps this research aims to fill. 

 

3) Methodology: This chapter of the work aims to provide a further detailed overview in how 

the research and experiment was designed and executed. The creation of artificial erosion, 

the process of image capture through different devices, the configuration of the computer 

vision application, and finally the analysis of the findings will be discussed. 

 

4) Results: The fifth chapter provides the output directly from the computer vision algorithm. 

It details the performance of the algorithm in identifying and categorizing LEE damage 

using images of different resolutions. 

 

5) Discussion: This section provides a further in-depth analysis of the results obtained from 

the computer vision algorithm, while touching upon what the output indicates. It discusses 

the impact of image resolution variation on the effectiveness of the algorithm, and the 

performance of the different imaging devices used. A methodical comparison between the 

devices is provided, before drawing final conclusions. 

 

6) Conclusion and Future Work: With the final chapter, the research is concluded while 

providing recommendations for future research. The main findings of the experiment are 

summarized and the study’s implications are discussed. Looking back on the overall 

achievement of the work; potential areas for improvement, suggestions on future research 

and the ways in which the study can be extended upon finalizes the paper. 
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2. Theoretical Background 
 

This section provides a comprehensive exploration of the theoretical principles associated with 

wind energy generation, particularly focusing on the maintenance of wind turbine blades. It delves 

into the significance of maintenance strategies, the unique challenges encountered with wind 

turbine deployment in diverse locations, and the potential role of advanced technology in 

revolutionizing maintenance procedures. The discussion also considers the competitive dynamics 

of the industry and their implications for cooperative efforts aimed at enhancing reliability. The 

emergence of innovative technologies such as unmanned aerial vehicles (UAVs) and computer 

vision, and their potential impacts will be assessed, including the limitations of implementing these 

technologies, such as the influence of input resolution on the effectiveness of object detection 

models, within the context of wind turbine inspections. Finally, this fundamental theoretical 

groundwork will guide the study in the following sections, through the identification of knowledge 

gaps in the existing literature. 

 

2.1.  Wind Turbine Operations and Maintenance 

2.1.1. Reliability, Costs and Failures 
 

The emergence of wind power generation as a competitive alternative and the increasing 

pace of technological developments on wind turbines over different scales have emphasized the 

importance of effective operation and maintenance (O&M) practices. The reliability and efficiency 

of these large-scale turbines is a multifaceted issue that has a significant impact on the total cost of 

energy (COE) from wind power projects. Substantial research on wind turbine O&M have provided 

valuable insights, and present key challenges within the industry. 

 

In their research, Walford (2006) emphasizes the importance of reliability for a project's 

revenue stream,  points out that the reliability of wind turbines varies with the operating 

environment and is influenced by factors such as design assumptions, knowledge of the operating 

environment, and manufacturing quality control. Its highlighted that O&M costs can represent up 

to 20% of a project's total cost of energy (COE), with unscheduled maintenance costs accounting 

for 30%-60% of total O&M costs, thereby emphasizing the necessity for improved certainty in the 

O&M cost estimations (Walford, 2006). The study suggests that effective maintenance programs, 

including comprehensive condition monitoring and early identification of critical components and 

failure modes, can help optimize costs and prevent catastrophic failures. 

 

Pinar Pérez et al. (2013) underscores the fact that larger turbines tend to fail more frequently 

than smaller ones, necessitating the implementation of robust condition monitoring systems to 

enhance their reliability. Their paper also details the structural and functional aspects of WTs and 

considers the need for sophisticated maintenance systems due to the high costs of WT machinery 

and infrastructure. Finally, the authors define the increasing failure rates of certain components, 

such as rotor blades and gearboxes, stressing the necessity of predictive and preventive maintenance 

strategies, especially for larger wind turbines.  
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Artigao et al. (2018) provide a detailed overview of the reliability analysis of wind turbines, 

drawing from thirteen different studies in the domain. Their work underscores the shared crucial 

parts between onshore and offshore uses, and also points out the variability in failure rates among 

different geographical areas. The authors emphasize the critical role of Operation and Maintenance 

(O&M) activities in enhancing turbine availability, with O&M costs constituting a substantial part 

of wind farm project expenditures. They point out that larger wind turbines, despite their benefits, 

show higher failure rates than smaller ones, underscoring the need for efficient condition 

monitoring. The research further unveils that condition monitoring systems (CMS) help optimize 

preventive and corrective maintenance, preventing unnecessary repairs and unplanned downtime. 

The study also underscores the significant disparities in O&M strategies between onshore and 

offshore wind turbines, primarily due to accessibility issues and cost variations (Artigao et al., 

2018). Ultimately, this review determines that the electric and control systems, the gearbox, the 

generator, and the hub & blades are the most critical assemblies needing attention in CMS design, 

suggesting that condition-based maintenance could improve wind turbine availability and cost-

effectiveness (Artigao et al., 2018). 

 

Carroll et al. (2016) present an exhaustive analysis of failure rates, repair times, and 

unscheduled operations and maintenance (O&M) costs based on offshore wind turbines. Drawing 

from a sample of approximately 350 offshore wind turbines spanning 5 to 10 wind farms across 

Europe, the authors provide unique insight into failure rates of the overall turbine and its various 

sub-assemblies, repair times, costs, and resource requirements, and reveal that reliability and 

maintenance resources can constitute around 30% of the overall energy cost, with blades accounting 

for 6.2% of the overall failure rates (Carroll et al., 2016). Notably, their analysis identifies that 

offshore turbines in high wind speed areas exhibit higher failure rates. The researchers suggest that 

this correlation is stronger offshore than onshore, and it could be attributed to factors such as the 

harsher marine environment, the larger size of offshore turbines, and potential differences in 

maintenance standards due to accessibility (Carroll et al., 2016). This study is instrumental in 

understanding and optimizing O&M cost modeling, ultimately aiding in the decision-making 

process for O&M planners and managers. 

 

Turbine blades are a particularly crucial component, as they contribute to for 15–20% of 

overall turbine costs (Ciang et al., 2008). The blades' structural health is, therefore, of primary 

concern due to the expensive and time-consuming nature of repairs. Ciang et al. (2008) also 

highlight that minor blade damage can lead to significant secondary damage to the entire wind 

turbine system, which could result in the collapse of the whole tower if prompt repair action isn't 

taken. Consequently, the study suggests regular monitoring of the blades is essential to ensure early 

detection and repair of potential damage, effectively reducing the total cost of repair and preventing 

more serious damage. 

 

Taken together, these studies emphasize the need for improving wind turbine reliability, 

optimizing O&M strategies, and utilizing data and predictive analytics. They also underline the 

need to focus on the maintenance of wind turbine blades due to their significant contribution to 

turbine costs and overall cost of energy. Enhancements in public databases, structural health 

monitoring (SHM) systems, and O&M cost reductions are all necessary steps towards improving 
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wind turbine reliability and efficiency, which is essential for the long-term viability and 

sustainability of wind power generation. 

 

2.1.2. Damage Detection and Repairs 
 

The growing recognition of the importance of wind turbine operation and maintenance, 

particularly in regards to reliability, costs, and failures, has inspired the development of innovative 

damage detection and assessment technologies. Du et al. (2020) and Zhang et al. (2020) emphasize 

the urgency of early damage detection in wind turbine blades, driven by escalating maintenance 

costs associated with the increasing size and complexity of these structures. McGugan and 

Mishnaevsky (2020) introduce a novel approach to the structural health monitoring of wind turbine 

blades, focusing on various physical degradation mechanisms such as surface erosion, adhesive 

fatigue, and laminate cracking, among others. 

 

Mishnaevsky (2019) highlights the critical task of wind turbine blade repair in the 

advancement of renewable energy technologies. In a comprehensive review, the research 

underscores the significance of blade repair for the progression of renewable energy technologies, 

given that an out-of-service turbine can be exceedingly costly, with repair fees ranging from $800 

to $1600 per day (Mishnaevsky, 2019). The study stresses the importance of improving and 

optimizing repair methodologies to reduce costs, shorten repair times, and ensure that repaired 

structures maintain initial performance levels. 

 

Xu et al. (2019) provide an innovative perspective on blade surface inspection by proposing 

a method that utilizes deep learning and unmanned aerial vehicles (UAVs), treating blade inspection 

as an image recognition task. This approach is intended to overcome the limitations of traditional 

methods, such as stability issues, sensor installation challenges, and difficulties in data storage and 

processing (Xu et al., 2019). Utilizing UAVs for image acquisition, they propose improved 

efficiency and ensured personnel safety. 

 

Stokkeland et al. (2019) expands on the use of UAVs in wind turbine inspection by exploring 

the autonomous visual navigation of UAVs. They illustrate how UAVs, especially when 

autonomous or remotely controlled, can approach inspection targets closely and accurately, given 

the large dimensions of modern wind turbines. The cost-effectiveness of UAVs over manual 

inspection by climbing, particularly for offshore wind turbines, was also highlighted. 

 

Tchakoua et al. (2012) contribute to the discourse on wind turbine condition monitoring by 

underscoring the necessity for remote, intelligent, and integrated systems, particularly as the wind 

energy industry leans towards larger and more remotely located wind turbines. A key focus of the 

authors’ work is discussing emerging trends such as non-contact and remote non-destructive testing 

(NDT) methods, and the automation of condition monitoring and diagnostic systems. They also 

discuss the role of visual inspection (VI) as a complementary method in condition monitoring, 

although traditional methods rely on human intervention and can benefit from further research. 
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Together, the insights from literature create a compelling narrative for the future of wind 

turbine operations. The integration of machine vision, UAVs, artificial intelligence, localized 

nanoscale sensors for damage detection and assessment, and advanced computational modeling 

presents significant potential for cost savings, reduced human risks, and enhanced operational 

efficiency. Despite challenges such as capturing high-definition images, extracting damage 

information from complex backgrounds, managing environmental factors, and ensuring that sensor 

deployment does not weaken the blade structure, these technological advancements signal a 

promising future for wind turbine maintenance and operation. Continual research and technological 

innovation remain vital to fully exploit these opportunities and tackle the remaining challenges. 

 

 

2.2.  Leading Edge Erosion 

2.2.1. Impact on Energy Production 
 

Surface material degradation at the forward facing edge of wind turbine blades, also known 

as leading edge erosion (LEE), is a significant issue in wind energy studies. This deterioration, 

brought about by elements such as wind and rain, primarily concerns researchers due to its 

pronounced effect on both the energy output and the structural soundness of the wind turbine blades. 

A common attention within the literature is given to accurately estimating the impact of LEE on 

annual energy production (AEP) over a turbine's lifetime, given the associated maintenance costs 

and lost AEP (Herring et al., 2019; Law and Koutsos, 2020; Sareen et al., 2014). The transition of 

the wind industry towards larger blade lengths, higher tip speeds, and new markets characterized 

by harsh climatic conditions, has further brought forward the issue of leading edge erosion (Herring 

et al., 2019). Moreover, the current aggressive expansion of the offshore wind industry, coupled 

with the persistent lack of a permanent solution that offers protection on the leading edge for blades’ 

dedicated lifetime of 25-years on average, further underscores the importance of addressing LEE 

(Herring et al., 2019). 

 

Understanding the complexity of leading edge erosion is not a recent effort literature. 

Keegan et al. (2013) conducted an in-depth examination of the potential wear and tear caused by 

various environmental factors, with a special emphasis on the effects of raindrop and hailstone 

collisions on the leading edge of the blade. The researchers studied various methods and resources 

like weather and climate information, lab-controlled rain and hailstone exposure tests, and 

computational modeling techniques to assess and alleviate the threats linked with leading edge 

erosion. Their review clearly showed that overcoming issues related to leading edge erosion and 

crafting superior materials that can withstand these conditions is a considerable challenge (Keegan 

et al., 2013). This difficulty is compounded by the various environmental elements involved and 

the increasing size of contemporary wind turbine blades. 

 

Mishnaevsky et al. (2021) focused on the issue of leading edge erosion (LEE) in wind 

turbine blades, underlining the serious negative effects of LEE on the blades' aerodynamic efficacy. 

The study stressed that severe erosion could cut annual energy output by more than 5% 
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(Mishnaevsky et al., 2021), and also observed that geographical differences substantially influence 

the way erosion processes occur. 

 

Contreras López et al. (2023) suggested a computational model capable of predicting the 

progression of leading edge erosion and its impact on energy output over time, which can be applied 

in operation and maintenance decision making. They tested this model using a 5MW wind turbine 

in the North Sea as an example, and the results showed that the greatest annual energy production 

losses ranged between 1.6 and 1.75% (Contreras López et al., 2023). 

 

The impact of leading edge erosion on the aerodynamic properties of a wind turbine was 

explored by Sareen et al (2014). Their results suggest that even a relatively trivial stage of leading 

edge erosion leading to an 80% increase in drag, has to potential to decrease annual energy 

production (AEP) by 5%, and in more severe cases of LEE, this loss could be as high as 25%. 

(Sareen et al., 2014) Their research underpins the urgency of addressing LEE and devising 

mitigation strategies. 

 

LEE negatively impacts the performance of turbines and necessitates expensive repairs. 

Over time, it has evolved from a challenge limited to a few turbines in harsh conditions to a 

widespread problem that impacts whole wind farms, even those located in relatively mild climates 

(Herring et al., 2019). Consequently, leading edge erosion is now one of the most significant 

concerns in the wind industry, a point also underscored by Duthé et al. (2021) in their discussion of 

the detrimental effects of LEE on power performance and the functionality of blades. 

 

Moreover, the nature and evolution of leading edge erosion, influenced by variables such as 

the speed of the tip, the composition and form of the blade, and the surrounding environment, 

complicates the task of both comparing erosion rates across various blades and establishing an 

accurate timeline for its progression (Herring et al., 2019).. The need for early detection and 

intervention is crucial given this context, as noted by Mishnaevsky et al. (2021) in their discussion 

of the importance of predicting erosion and setting the frequency of control and maintenance events. 

 

Existing diagnostic techniques predominantly rely on direct visual inspection, and statistical 

analysis of supervisory control and data acquisition (SCADA) output (Duthé et al., 2021). However, 

research suggests these techniques have not been effective in terms of accurately determining and 

standardizing the severity and spatial extent of erosion on the blades. Meanwhile, the increasing 

use of drone inspections reduces turbine downtime and speeds up the inspection process, offering 

a promising alternative to traditional methods (Law and Koutsos, 2020). 

 

Herring et al. (2019) highlight that performing repairs on eroded blades can lead to a 

significant period of downtime and substantial costs due to the need for suitable wind and weather 

conditions, equipment, and technicians. The expenses tied to comprehensive turbine inspections 

often result in operators conducting these only every two to three years, which can leave repair 

issues undetected until the next review period (Herring et al., 2019). 
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In conclusion, the far-reaching impacts of leading-edge erosion on wind turbine blades 

necessitate continuous research and innovation. The complex mechanisms underlying LEE, the 

promising advancements in monitoring techniques, the need for accurate prediction models, and the 

vital role of timely maintenance collectively underscore the significance of this issue. With these 

insights, the wind energy sector continues to strive towards mitigating the economic and energy 

production losses associated with leading-edge erosion. 

 

2.2.2. Inspections Against Leading Edge Erosion 
 

As wind turbines continue to play a central role in renewable energy production, ensuring 

their efficient operation remains critical. Key to this is the early detection and proper management 

of the erosion of their leading edges. Anisimov et al. (2021) highlights the limitations of the current 

visual or drone-based camera system inspections, and the need for a more reliable and precise means 

of detecting and monitoring leading-edge erosion. The authors employ a customized long-range 

laser line scanner, detecting eroded and damaged areas with sub-millimeter resolution, thus moving 

towards a condition-based and predictive maintenance approach (Anisimov et al, 2021). 

 

Dimitrov (2018) suggested a method for evaluating the risks associated with blade damage 

identified during visual checks, aiming to pinpoint the most cost-effective repairs. The research 

showed that the best repair strategy varies depending on the severity of the damage, and that a risk 

evaluation can help to find the most economically viable solution (Dimitrov, 2018). This idea 

corresponds closely with the call for better evaluation methods found in related research. The 

procedure developed for assessing the severity of an issue relied on the use of a model to estimate 

how fast the damage was developing.  

 

The existing literature on wind turbine blade inspection methods against leading edge 

erosion damage is limited, and collectively underscores the significance of developing reliable, 

sensitive, high-resolution methods for detecting, monitoring, and assessing leading-edge erosion of 

wind turbine blades. The laser line scanner approach proposed by Anisimov et al. (2021) represents 

a promising avenue for achieving these goals, while the risk-based assessment procedure by 

Dimitrov (2018) offers a rational way of categorizing damage severity and determining optimal 

interventions. These integrated efforts suggest a path forward towards condition-based and 

predictive maintenance, though further advancements are still needed to address the challenges 

inherent in offshore wind turbine inspections. 

 

2.3.  Machine Learning and Computer Vision 

2.3.1. Object Detection and Improvement of Learning 
 

Object detection is a key task within the broader field of computer vision that involves 

identifying specific objects within a digital image or a video sequence. It differs from related tasks 

such as image classification and segmentation by not only categorizing what is present in an image, 

a task that usually is attributed to image classification, but also precisely locating each object via a 
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bounding box or a similar method. Unlike image segmentation, which aims to assign a class to each 

pixel in the image for a detailed breakdown, object detection provides a higher-level overview of 

object locations and classes. This balance makes object detection a crucial tool in many applications 

such as self-driving vehicles, video surveillance, and augmented reality, where both recognizing 

and locating objects are important. 

 

The comprehensive reviews by Zou et al. (2023) and Liu et al. (2020), alongside the work 

by Zoph et al. (2020), have offered an insightful understanding of the evolution, achievements, and 

challenges in the field of object detection, including the significant role played by data 

augmentation. In this context, the research presented by Perez and Wang (2017) provides valuable 

insights into the effectiveness of data augmentation in the closely related field of image 

classification. 

 

Perez and Wang (2017) explore and compare various solutions to the problem of data 

augmentation in image classification, a challenge also underscored by Zoph et al. (2020) in the 

domain of object detection. Their work highlights the effectiveness of simple techniques such as 

cropping, rotating, and flipping images. Their conclusions align with Zoph et al.'s (2020) findings, 

emphasizing that such techniques, when combined with the creation of specialized data 

augmentation policies, can lead to improvements in the generalization performance of models 

trained on limited data. 

 

Echoing Zoph et al.'s (2020) assertions about the benefits of data augmentation, Perez and 

Wang (2017) highlight that it offers a promising way to enhance the accuracy of classification tasks, 

even when the quality of data is relatively low. They posit that the more data a machine learning 

algorithm has access to, the more effective it can be, as long as useful information can be extracted 

from the original dataset. 

 

Perez and Wang (2017) further explore the idea of taking a small, structured dataset and 

augmenting it to improve model performance, an approach they found to be effective in multiple 

problems. This notion is particularly crucial for specialized image and video classification tasks, 

such as object detection, which often suffer from insufficient data (Perez and Wang, 2017). The 

problem is potentially even more pronounced in industries where data access is heavily protected 

due to privacy concerns. 

 

While both Zou et al. (2023) and Liu et al. (2020) highlight the role of large and unbiased 

datasets in pushing object detection research forward, Perez and Wang's (2017) work underscores 

the importance of techniques that can effectively augment and leverage smaller datasets. They 

discuss the problems of overfitting in models trained on small datasets, which do not generalize 

well to validation and test sets, a challenge that resonates with Liu et al.'s (2020) concerns about the 

limitations of fully supervised learning. 

 

Finally, Perez and Wang (2017) introduce the concept of transfer learning, a technique 

closely related to data augmentation. They describe it as a method where pre-trained weights of a 

neural network trained on similar or more comprehensive data are fine-tuned to best solve a more 
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specific problem. This technique, coupled with data augmentation, provides additional ways to 

reduce overfitting on models (Perez and Wang, 2017). Overfitting in computer vision refers to a 

model learning the training data too well, to the point where it performs poorly on unseen data 

because it has picked up on noise or irrelevant patterns in the training set, rather than generalizable 

features. 

 

In summary, the reviews by Zou et al. (2023) and Liu et al. (2020), along with the 

contributions from Zoph et al. (2020) and Perez and Wang (2017), provide a comprehensive 

understanding of the field of object detection. They emphasize the need for data augmentation and 

transfer learning strategies, particularly for models trained on limited datasets, and highlight the 

necessity for ongoing research to further refine these techniques and methodologies. These efforts 

are all directed towards the ultimate goal of creating detection systems with abilities rivalling those 

of the human visual system. 

 

2.3.2. Computer Vision in Industrial Maintenance 
 

In the realm of industrial maintenance, the intelligent detection of defects and faults has 

become an increasing necessity. The applications of computer vision has found use in many 

different industries. This is highlighted by recent increased focus on research in the field. Xu et al. 

(2022) identify the limitations of traditional methods in road crack monitoring, especially with the 

growing road network requiring more advanced and intelligent technologies. Their study 

demonstrates the potential of state-of-the-art algorithms in intelligently detecting road cracks, 

building upon previous research in computer vision and digital image processing. However, they 

emphasize the need for large datasets for training and the continuous evolution of deep learning 

methods. 

 

Parallelly, Wang et al. (2022) address fundamental issues in unmanned aerial vehicle 

(UAV)-based inspection, a key area of research in the wind energy industry. They propose an 

improved model for segmenting wind turbines from UAV-taken images. The results present 

superior performance in terms of performance metrics such as intersection over union (IoU), and 

recall values after 20 epochs of training, providing evidence of the effectiveness and practical utility 

of deep learning in industrial maintenance. (Wang et al., 2022) 

 

Furthermore, Shihavuddin et al. (2019) explores a deep learning-based automated damage 

suggestion system for wind turbine blade surface inspection using drone imagery. Their approach 

achieved near-human-level precision in suggesting damage location and types on wind turbine 

blades. By utilizing a specialized model architecture within Faster R-CNN, they present a model 

achieving a mean average precision (mAP) of 81.10% for four different types of damages 

(Shihavuddin et al., 2019). The study also demonstrates the effectiveness of data augmentation in 

improving the generalization of the trained model and highlights the potential cost advantages of 

automating the inspection and analysis process. 

 

In the field of wind turbine blade crack inspections, Wang et al. (2019) suggested a method 

to accurately identify cracks on the surface of wind turbine blades by examining images taken by 
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drones. The initial stage of their approach utilizes a fundamental detection framework to accurately 

locate cracks. The method's reliability and efficiency is further validated through images captured 

by drones from a commercial wind farm. 

 

Furthermore, Xu et al. (2019) propose the use of convolutional neural networks (CNNs) for 

image recognition of common wind turbine blade defect conditions, while constructing a 

preliminary dataset consisting of 25,773 images depicting five common wind turbine blade defect 

conditions and trained three different deep learning models. The authors’ proposed method 

demonstrates advantages such as intuitive understanding of wind turbine blade conditions, reduced 

downtime, improved productivity, and increased economic benefits (Xu et al., 2019). The study 

also acknowledges the importance of considering regional variations in wind turbine blade damage.  

 

Moreover, Ye et al. (2016) provides a comprehensive review to highlight the advantages of 

noncontact, nondestructive, and high-precision monitoring techniques. The review offers valuable 

insights into the initial efforts on the integration of machine vision technology, and highlights the 

challenges and limitations in the field. 

 

These studies collectively contribute to the growing body of knowledge in the field of 

intelligent defect detection and maintenance, showcasing the potential of machine learning and deep 

learning algorithms in various industrial applications. Overall, the existing literature highlights the 

ongoing efforts to enhance inspection processes, reduce downtime, and improve the overall 

efficiency of maintenance operations through automated analysis of collected data. The continual 

evolution and refinement of these approaches are crucial for ensuring the reliability and safety of 

industrial assets in sectors such as transportation and renewable energy.  

 

2.3.3. Real-time Object Detection and State-of-the-Art 
 

Over time, the realm of object detection has seen substantial progress, characterized by 

remarkable improvements in both speed and accuracy, as demonstrated in various studies and 

publications. Ren et al. (2017) introduced Faster R-CNN, an innovative solution aimed at efficiently 

generating high-quality region proposals. This work was crucial in tackling the processing 

limitations of the top-tier detection systems of that period, allowing for a deep-learning-oriented 

object detection system to operate in near-real time. However, it was still not considered suitable 

for complete real time applicaitons. The resulting system was able to achieve remarkable object 

detection accuracy that led the field for a substantial amount of time (Ren et al., 2017). 

 

On the other hand, Redmon et al. (2016) proposed a novel architecture, known as YOLO 

(You Only Look Once), within the object detection landscape. YOLO employed a network that is 

capable of mitigating the need for the complex pipelines associated with earlier approaches, through 

analyzing the entire image during training and testing in one go, yielding fewer background errors. 

(Redmon et al., 2016) However, YOLO had its own limitations, such as the challenge to localize 

small objects accurately.  
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Wang et al. (2022) focused on enhancing the training process through optimized modules 

and introduced YOLOv7. In comparison to its predecessors, YOLOv7 demonstrated improvements 

in accuracy and efficiency, having 75% fewer parameters and requiring 36% less computational 

resources (Wang et al., 2022). The researchers also found that YOLOv7 surpassed all known real-

time object detectors in speed and accuracy, solidifying its position as a highly effective and 

efficient object detection solution (Wang et al., 2022).  

 

In conclusion, while both YOLOv7 and Faster R-CNN present significant advancements in 

object detection, YOLOv7 seems to have the edge over object detection models in terms of speed 

and still obtains remarkable levels of accuracy. This makes it the more efficient solution for real-

time object detection tasks, such as damage detection on the edge cases. Future developments in 

the field of object detection could further leverage the strengths of both approaches, pushing the 

boundaries of what is currently achievable. 

 

2.3.4. Impact of Resolution on Performance 
 

The importance of input resolution and quality on the performance of machine learning 

models, specifically for object detection, is increasingly recognized as a crucial aspect of achieving 

high-performance results. In their study, Wu et al. (2022) highlighted how variations in image 

resolution can substantially influence the efficacy of deep learning models in the diagnosis of breast 

cancer. Their research used grayscale ultrasound breast images from two Chinese hospitals, with 

resolutions of 224×224, 320×320, and 448×448 pixels, which are commonly used values due to 

their balance of performance and computational efficiency (Wu et al., 2022). The findings from this 

study underline that smaller resolution images, while requiring less computational time, may 

sacrifice critical information, thereby impacting the diagnosis outcomes. It was noted that different 

combinations of machine learning models and input image resolutions yielded diverse results, 

emphasizing the importance of finding the optimal pairings (Wu et al., 2022). 

 

On the same theme, Talebi and Milanfar (2021) focused on the potential impacts of image 

size on training accuracy. They argued that the input images' resizing to a relatively small resolution 

has been treated as an afterthought in many machine learning applications, despite its potential to 

influence the overall performance of the trained models. Their research indicated that the commonly 

used image resizers could be replaced with learned resizers to improve performance. Interestingly, 

it was found that the replacement of these classical resizers with learned ones did not necessarily 

enhance the visual quality of the downscaled images, but they did improve task performance (Talebi 

and Milanfar, 2021). This demonstrates that a balance must be found between image quality and 

computational efficiency, which, in turn, could affect object detection performance. 

 

The significance of image resolution was further underscored by Thambawita et al. (2021), 

who found that image resolution had a substantial impact on the performance of convolutional 

neural network (CNN)-based image classification in gastrointestinal endoscopy. They used a 

dataset comprising 10,662 images of 23 different findings to assess the performance of two models 

at different image resolutions. The findings of this study revealed that higher image resolution 
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generally led to better performance (Thambawita et al., 2021). They suggested that the reduction of 

image resolution might lead to the loss of critical details, such as fine vessels and other patterns of 

the findings, which are important for accurate classification. Their research further demonstrated 

that upscaling from lower resolution images resulted in a more significant performance loss than 

downscaling from higher resolution images. This calls for high-resolution image collection in deep 

learning context, given that downscaling is easier than upscaling to the original resolution with the 

tools available at the time of the study (Thambawita et al., 2021). 

 

Examining the impact of low resolution on image recognition, Koziarski and Cyganek 

(2018) discovered that even relatively mild decreases in image resolution could significantly 

decrease classification accuracy of deep neural networks. They observed that the performance 

decline was particularly noticeable for low-resolution levels and that super-resolution techniques 

could partially mitigate the negative impact but were still far from achieving results comparable to 

undistorted data (Koziarski and Cyganek, 2018). The authors acknowledged the ongoing research 

in super-resolution methods, suggesting that future improvements may further reduce the negative 

effects of low resolution on classification accuracy (Koziarski and Cyganek, 2018). 

 

Dodge and Karam (2016) assessed the efficacy of cutting-edge deep neural network models 

in the realm of image classification, particularly when faced with different quality distortions. The 

results revealed these networks' vulnerability to distortions such as blur and noise, but they 

demonstrated resilience when dealing with compression artifacts and modifications in contrast 

(Dodge and Karam, 2016). Given that image quality is frequently compromised in real-world 

scenarios, the authors brought forward the importance of engineering deep neural networks that can 

better withstand quality distortions. 

 

Overall, resolution impact on detection performance has been a focus of numerous studies 

within the medical field, but lacks attention in industrial applications. The studies explored so far 

highlight the significant impact of image resolution and quality on the efficiency of machine 

learning models. The choice of image resolution and the consideration of quality distortions are 

crucial factors in achieving optimal results, particularly in object detection within medical imaging 

applications. Further research on  input resolution within specific use cases of computer vision, 

such as wind turbine inspection and other relevant industrial applications, is necessary to achieve 

more robust and invariant models. 

 

2.4.  Summary and Gaps in Literature 
 

Wind turbine blades are central components in the operation of wind energy systems. Their 

maintenance is an area of increasing focus within the academic and industrial sectors, given the 

accelerating adoption of wind as a viable and competitive alternative source of energy. The steady 

increase in the number of turbines coming in operations, particularly those in remote or challenging 

locations such as offshore wind farms, has amplified the inherent complexities involved in 

maintaining these essential equipment. This rapidly expanding scheme of turbine operations 

demands emphasis on robust and efficient maintenance protocols for turbine blades, a factor critical 

to overall sustainability of operations and performance. 
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Currently, the focus is on predictive maintenance approaches through advanced sensor 

technologies and data-driven decision-making systems. The collection and utilization of real-time 

data offers a path to preemptive maintenance strategies that can significantly increase the 

operational lifespan of wind turbine blades. However, despite the promising potential of such 

approaches, the competitive nature of the wind energy industry may impose constraints on the kind 

collaboration necessary for large-scale reliability enhancements. This shared commitment to 

reliability is an essential aspect of ensuring the long-term sustainability of wind energy operations 

across the global energy industry. 

 

Despite advancements in technology, inspections of leading-edge erosion on wind turbine 

blades remain largely reliant on traditional, labor-intensive methods. Inspectors typically have to 

physically climb towers to conduct visual checks, a process that is both time-consuming and inhibits 

potential safety risks. The potential for leveraging UAVs to enhance and simplify this process has 

been explored, however, their use has yet to be widely adopted or standardized, limiting their 

current impact on inspection practices. 

 

Simultaneously, the progressive evolution of computer vision and object detection technologies 

has drawn considerable attention within the wind energy industry. These advancements lead to 

opportunities for enhancing turbine inspections. They can potentially drive down operational costs 

but also mitigate the human safety risks associated with manual inspections. By automating image 

analysis and damage detection, these emerging technologies can substantially streamline and 

upgrade the inspection process. 

 

However, there's a lack of standardization in the tools required to implement this technology. 

The devices used in inspections, irrespective of UAV usage, currently produce variable resolutions. 

As object detection depends heavily on visual data, the size and quality of inspection images have 

the potential to influence the performance of models that detect and categorize erosion damage 

levels on wind turbine blades. 

 

While other sectors, such as healthcare and medical technology, have investigated the impact 

of image resolution on machine learning performance, this critical factor remains comparatively 

under-researched in the realm of wind energy. This suggests a gap in the existing body of literature, 

emphasizing the need for research efforts to drive the industry towards the successful and effective 

deployment of these emerging technologies. As the world strives to utilize the power of wind more 

efficiently and sustainably, such research initiatives will be effective in shaping the future of wind 

turbine maintenance and management.  
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3. Methodology 
 

This study employs a research design that applies the principles image processing techniques to 

the field of industrial asset management. The foundation of the research is based on the 

experimental method, where artificially created leading edge erosion (LEE) damages, created in a 

controlled environment, on a wind turbine blade section will be imaged, analyzed, and categorized 

using object detection capabilities of the YOLOv7 computer vision algorithm. 

 

The experimental design includes the examination of the impact of image resolution variances 

obtained from different imaging devices on the accuracy of the computer vision algorithm. To 

effectively analyze this, the research is designed to compare the performance of the algorithm across 

three distinct types of imaging devices: (1) Ryze Tello, a mini drone available for educational 

purposes with an embedded lens, (2) a smartphone, which currently is a common tool in 

documenting damages in manned inspections due to its availability, and (3) Panasonic Lumix 

DMC-GF6, a consumer-grade digital camera. These devices were chosen due to their ability to 

represent a range of potential resolution and image quality outputs altogether. 

 

The research seeks to explore new insights and understandings into how image resolution can 

impact the effectiveness of a computer vision algorithm in the context of wind turbine blade 

inspections. The outcomes of this research could potentially help to inform decisions around the 

imaging systems to enhance the effectiveness and efficiency of wind turbine blade inspections, 

contributing to both theoretical and practical advancements in the field. 

 

3.1.  Creation of Artificial Erosion 
 

The first step of the methodology involved the acquisition of a decommissioned wind 

turbine blade, provided by the industry partner. This ensured an authentic experimental subject, 

embodying real-world conditions. A 2.5-meter section from the blade's tip was selected, as this area 

traditionally faces the highest wind velocities. Following the acquisition, the blade section was 

relocated to an area within the university grounds. This provided an appropriate environment for 

implementing controlled damage to the blade in a safe and practical manner. 

 

To prepare the blade section for the creation of artificial LEE, it underwent an initial 

cleaning process. This stage was vital to ensure that the artificial damages created would be as 

accurate and representative as possible, removing any residues that could have interfered with the 

erosion simulation or detection process. 

 

Artificial erosion was then implemented onto the blade's leading edge at three distinct 

locations, each corresponding to a different stage of LEE severity. This design choice ensured the 

study spanned across the spectrum of erosion, thus providing a comprehensive assessment of the 

capabilities of the computer vision algorithm under different damage conditions. 
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The first level of inflicted damage was primarily cosmetic, emulating the initial stages of 

erosion buildup. This level was minimal and did not expose the structural material beneath the 

surface layer of the blade. 

 

The second level of damage was more advanced, with a deeper erosion that allowed for the 

partial visibility of the structural material beneath. This stage represented a more advanced state of 

LEE, which often leads to the need for repair or replacement actions in real-world conditions. 

 

Finally, the third level of damage was the most severe, with the structural material of the 

blade completely exposed and a measurable depth to the erosion. This stage served to simulate the 

extreme cases of LEE, where the functionality and safety of the blade are compromised, and 

immediate maintenance action is necessary. 

 

In essence, these three levels of artificial damage created on the leading edge of the blade 

provided a broad range of scenarios for testing the computer vision algorithm's ability to detect and 

categorize varying degrees of LEE. This was critical for measuring the impact of image resolution 

on the effectiveness of these algorithms, serving as the foundation of this study's experiment. 

 

3.2.  Data Collection 
 

The data collection process was initialized with the imaging of the artificially eroded 

sections on the wind turbine blade. Three different imaging devices were selected to achieve this 

aim: 

 

• The Ryze Tello drone, providing images with a resolution of 960 x 720 

• A personal smartphone, capturing images with a resolution of 1536 x 2048 

• A high-definition digital camera, producing images with a resolution of 4592 x 3448 

 

In order to standardize the photography process and ensure the images were comparable 

across different erosion categories and devices, a structured process was carefully devised and 

followed throughout the image acquisition activity. This protocol required each erosion category to 

be photographed from three specified distances: 50cm, 100cm, and 150cm. At each distance, five 

images were taken while facing the leading edge directly (0 degrees), then again at an angle of 45 

degrees, and finally at an angle of -45 degrees relative to the blade's leading edge. This was repeated 

for each damage instance located on the blade, and with each unique imaging device. Figure 3.2 

visualizes the imaging layout of the process. This systematic approach provided a comprehensive 

visual dataset of each erosion category from multiple perspectives, resulting in an initial pool of 

405 images. 
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Figure 3.2 – Image Collection Layout 

 

The capturing of images through the smartphone and the digital camera was conducted 

manually, however the capabilities of the drone allowed for a “mission” to be programmed for this 

process. The mission was coded in Python and sequentially commanded the drone to assume its 

position on image capture points and commence capturing pictures of the damages. The initial 

mission included one complete cycle for the drone to capture images at all dedicated points, 

however, this process consumed excessive power from the already limited capacity of the drone’s 

battery, therefore was deemed infeasible. Following this discovery, the mission was adjusted so that 

in a single execution, the drone would only capture images at points lying on individual angle lines. 

This modification required the drone to be placed at 50 centimeters distance from the blade’s 

leading edge as the takeoff position, and the mission to be executed thrice. The modified mission 

code can be found in Appendix A. 

 

Following the image acquisition phase, a detailed selection was conducted to refine the 

dataset. From every combination of device, distance, and angle for each erosion category, one 

representative image was chosen out of the five available. This selection was based on factors such 

as clarity, focus, and how well they represented the damage stage in question. By the conclusion of 
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this selection process, the dataset was reduced to 81 unique images that provided a comprehensive 

representation of the various categories of leading-edge erosion. 

 

In addition to the images collected from the artificially damaged wind turbine blade, the 

dataset was further supplemented with real-world images obtained from an industrial partner. These 

images, taken during actual manned inspections of wind turbines, were carefully reviewed and a 

selection of these, representing various stages of leading-edge erosion, was added to the dataset. 

The inclusion of these real-world images provided an additional layer of validity to the study, 

offering insight into natural erosion on top of artificially created patterns. This combined dataset, 

representative of both simulated and actual conditions, formed the basis for the subsequent data 

analysis and machine learning model training stages of this research. 

 

3.3.  Image Preprocessing, Augmentation and Dataset Generation 
 

This stage concentrated on preparing the images for successful machine learning 

applications. The images were annotated on Roboflow, a platform suitable for such operations, 

which involved marking every occurrence of damage visible on each image, categorizing them 

based on their levels of severity. This annotation process is essential for machine learning tasks, as 

it ensures precise algorithm training and accurate computer vision in later stages. 

 

After thorough annotation, the dataset was separated into three distinct subsets for training, 

validation, and testing purposes. The division ensured the allocation of almost all the images 

provided by the industrial partner to the training and validation sets. Furthermore, 7 images from 

each device category were chosen for the testing process, 8 were assigned for validation, and 12 

were set apart for training. This distribution aimed to ensure a comprehensive and thorough 

evaluation during each phase. 

 

Training subsets tend to be the largest subset of datasets within computer vision applications 

and is used to train the model. The training set helps the model to learn the patterns, features, and 

relationships between inputs, image features, and the desired outputs, object labels and locations. 

The validation set is used to evaluate the model's performance during the training phase and to fine-

tune model parameters. It acts as an “internal testing” set as the model trains over each epoch. Once 

the model's training and validation is complete it is then evaluated on the test set. This is a 

completely separate set of data that the model hasn't seen during its training or validation phases. 

The performance on the test set gives an unbiased estimate of the final model's performance and 

generalizability to unseen data. 

 

The main difference between the validation and test sets is when and how they're used within 

the process. The validation set is used during training to make adjustments to the model's parameters 

and prevent overfitting, while the test set is used after training to provide an unbiased evaluation of 

the model's performance on previously unseen images. 

 

In any computer vision application, the quantity of images with unique details provided for 

training is proportional to the performance of the model. Hence, to optimize the efficiency of this 
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study's model, image augmentation and preprocessing was integrated into the methodology using 

Roboflow once more. This ensured that the training set was adequately robust, aiding in the 

development of a more accurate and efficient damage detection model. 

 

The process of preprocessing specifically targeted the resizing of images, with the final 

dimensions of all being standardized to 640x640 pixels. This standardization enables the model to 

extract information from the images with increased effectiveness without losing source 

characteristics, therefore decreasing the computational load and considerably enhancing the training 

speed. 

 

Simultaneously, the augmentation process included various operations on images aimed at 

artificially expanding the dataset. These included: 

 

• Horizontal and vertical image flipping,  

• 90-degree rotations both clockwise and counter-clockwise,  

• Brightness adjustment within a range of 0% and +15%,  

• Gaussian blur up to 1.5 pixels,  

• and the inclusion of random noise up to 2% of the pixels.  

Such augmentation methods help the machine learning model to better generalize by 

simulating a variety of possible scenarios it might face during the deployment phase. 

 

The integration of these comprehensive preprocessing and augmentation steps resulted in a 

substantial increase in the overall dataset size, bringing it up to a total of 557 images, with a majority 

of 480 being allocated to training. The rest were utilized for validation and testing, with 50 images 

dedicated to the former and 27 to the latter. These steps ensured the creation of a well-rounded, 

high-quality, and extensive image dataset to be utilized in the following stages of the research. 

 

3.4.  Model Training 
 

This section involves the essential process of feeding the improved and finalized dataset into 

the YOLOv7 object detection model, training it for the identification of different categories of 

damages in the test images. The objective was to train the model to efficiently place bounding boxes 

around the detected areas of damage in these images, as well as ensuring smooth categorization of 

the degree of damage. 

 

The training was conducted on Google Colab, chosen for its superior GPU capabilities, a 

critical component in machine learning operations. Google Colab's available infrastructure allows 

for the use of high-performance GPUs such as the NVIDIA A100 with 40GB memory, which was 

utilized in this study. This GPU was selected for its proven efficiency, though it should be noted 

that alternative GPUs could also have been employed, based on available resources and specific 

project requirements. 
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The chosen GPU's capabilities informed the selection of certain adjustable training 

parameters, such as the batch size and the number of epochs. Batch size refers to the number of 

training examples utilized in one iteration, meanwhile, an epoch is a complete pass through the 

entire training dataset (Brownlee, 2018). These parameters can be adjusted to optimize model 

performance, balancing the speed of training against the final accuracy of the model. As you 

increase the number of epochs, the model has more opportunities to learn from the data, but this 

also increases the risk of overfitting. Essentially, overfitting is when the model becomes too well-

adjusted to the training data. If the model is allowed to train for too many epochs, it may become 

“too specialized”, performing poorly on the validation or new input (Ying, 2019). Therefore, careful 

tuning of the number of epochs is necessary. Enough epochs should be allowed for the model to 

learn from the data sufficiently, but not so many that it starts to overfit. For this study, through trial 

and error, the chosen final number of epochs reflects a balance between allowing the model to 

adequately learn from the data while avoiding overfitting to ensure it generalizes well. 

 

To accelerate the training process and enhance the final performance, the model training 

began using a “checkpoint”. This strategy means that the training process wasn't initiated from 

scratch; rather, it was built upon a pre-existing, successful iteration. MS COCO, which stands for 

Microsoft Common Objects in Context, is an extensive dataset used for tasks such as object 

detection, segmentation, and others (Lin et al., 2014). It's commonly utilized as a base for training 

models that are designed for object detection. By using this checkpoint, the model was able to 

leverage prior learnings, focusing on refining its ability to detect and categorize the specific wind 

turbine blade erosion damage as presented in the dataset. The complete code ran on Google Colab 

can be found in Appendix B. 

 

3.5.  Performance Analysis & Reparameterization 
 

The performance of the trained YOLOv7 model was represented visually using a confusion 

matrix. A confusion matrix is a specific table layout that enables easy visualization of the 

performance of an algorithm, typically a machine learning model. In the context of a binary or 

multiclass classification problem such as the one in this study, each column of the matrix 

corresponds to instances of an actual class, and each row corresponds to instances in a predicted 

class. Thus, the confusion matrix presents a comprehensive view of how well the machine learning 

model has performed with respect to the annotated images, or the ground truth, thereby capturing 

outcomes. 

 

True positives and true negatives represent the model's correct predictions, whereas false 

positives and false negatives reflect incorrect predictions. Ideally, a perfectly performing model 

would have all true positives and true negatives, meaning the model correctly identified all the 

damages according to their categories. On the other hand, the presence of any false positives and 

false negatives indicates the areas where the model has failed to identify the damage correctly. A 

clear advantage of using a confusion matrix is that it not only presents the errors, false positives and 

negatives, made by a model, but also shows the types of errors, allowing for targeted improvement. 
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The training, by default, outputs valuable insights into the model's performance. The output 

contained various performance metrics graphically plotted per epoch; including Precision, Recall, 

mAP@0.5, and mAP@0.5:0.95. Precision refers to the proportion of correctly predicted positive 

observations out of the total predicted positives. Recall is the proportion of correctly predicted 

positive observations out of the actual positives. Mean Average Precision (mAP) is a popular metric 

in measuring the accuracy of object detectors like YOLOv7. mAP is calculated by taking the mean 

of average precision scores for each class. Two critical values in this metric are mAP@0.5 and 

mAP@0.5:0.95, which specifically involve the concept of Intersection over Union (IoU). 

 

IoU is an evaluation metric used to measure the overlap between the predicted bounding 

box (by the object detection model) and the ground truth bounding box. It is the ratio of the area of 

overlap and the area of union of the two bounding boxes. A higher IoU indicates a more accurate 

detection and is therefore preferred. The term mAP@0.5 refers to the scenario where the model is 

evaluated at a single IoU threshold of 0.5. This means that if the overlap between the predicted 

bounding box and the ground truth bounding box is at least 50%, the detection is considered a "true 

positive"; otherwise, it is considered a "false positive". On the other hand, mAP@0.5:0.95 means 

the model is evaluated at multiple IoU thresholds, from 0.5 to 0.95, in steps of 0.05. Here, average 

precision is calculated at each step and the mean of these values is reported. This provides a more 

robust metric, reflecting the model's performance across different levels of overlap and detection 

difficulty.  

 

Observing the mAP values’ progress over time allowed the identification of a suitable epoch 

number to prevent overfitting. Subsequently, separate training sessions were conducted, adjusting 

the number of epochs, to determine the optimal point that maximized model performance while 

minimizing the risk of overfitting. Ultimately, a final selection on the number of epochs was made 

to proceed into the further stages of the study. As the batch size parameter primarily concerns the 

total training time of the model, the selected size of 64 was not modified. It’s worth noting that this 

selection was compatible only with the NVIDIA A100 GPU or higher models on Google Colab.  

 

In addition to the previous output graphs, the training results also included a graph for the 

resulting F1 value, the harmonic mean of precision and recall, for the training against different 

confidence values, allowing for the optimal confidence value to be identified for the following 

stages of testing and detection. This phase of performance analysis and reparameterization 

allowed for an iterative improvement in the model, enabling the fine-tuning of the number of 

epochs to optimize performance, while ensuring the applicability and reliability of the model in 

real-world scenarios. 

 

3.6.  Model Testing 
 

Upon the completion of the training phase, the next step was to test the trained model. This 

is a relatively simpler yet critical step, as it evaluates the model's performance and capacity to 

accurately detect and categorize the damages. The testing process was conducted in the Google 

Colab environment due to the powerful computational resources it offers, similar to the training 
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phase, as well as to contain the computational part of the study to a single environment for better 

control and customization. 

 

The primary aim of this stage was to input the images that were specifically allocated to the 

test subset into the trained YOLOv7 model. This is a critical phase as the performance of the model 

on this set of data helps to assess the effectiveness of the training process, providing insight into the 

model's ability to generalize its learning to new, unseen data. 

 

The testing process essentially allowed the trained model to scan the input images and use 

its learnt parameters to identify possible areas of damage. Upon detection, the model drew bounding 

boxes around these areas, categorizing the damage as per the classification it had learnt during 

training. Not only did the model categorize the damage, but it also provided a corresponding 

confidence value for each detection. This value represents the model's level of certainty regarding 

the damage category of the detected area, hence providing a quantitative measure of the model's 

detection accuracy. 

 

An important parameter that was set during the testing phase was the minimum confidence 

threshold. This threshold determined the confidence value below which a detection would not be 

accepted as valid. Consequently, any detections that had a confidence value lower than this pre-

specified threshold were not marked with bounding boxes in the output images. This thresholding 

serves to maintain the quality of detections, ensuring that only those detections that the model is 

reasonably confident about are considered valid and presented in the final output. It is, therefore, a 

crucial aspect of maintaining the accuracy and reliability of the model's damage detection 

performance. 

 

Overall, the testing phase provided a practical application of the trained model on new data, 

serving as a crucial assessment of its real-world usability and performance. 

 

3.7.  Imaging Device Evaluation 
 

The final stage of Imaging Device Evaluation was a critical point in the research process, 

where the efficacy of three distinct sources of images was thoroughly evaluated. An evaluative 

framework was developed for this purpose, using a point system to assess the success rate of damage 

detection for each imaging device. 

 

For each photograph captured, a potential detection scenario involved the algorithm 

identifying a damage with a confidence value between 0 and 1. For instance, in a photograph 

containing two discernible damages, regardless of their categories, the maximum overall confidence 

value achievable would be the sum of the maximum confidence values per damage, amounting to 

2 in this scenario. This maximum value constituted the upper bound of the rate to be calculated.  

 

For the actual value present on an image instance, confidence values of true positive 

detections were summed. However, exceptions were incorporated into the scoring system to address 
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false detections. In the event of the algorithm detecting a damage but categorizing it incorrectly, the 

confidence value assigned to that detection was halved before being added to the total. It's important 

to note that this approach was taken because, regardless of the misclassification, a correct detection 

can still provide valuable insights to industrial professionals. This information can be crucial in 

maintenance planning for the asset, emphasizing the significance of correct detection despite 

potential categorization errors. Moreover, in instances where the algorithm incorrectly detected 

nonexistent damages, such as misinterpreting background objects as damages, the confidence value 

was deducted from the total. Finally, this total was divided by the maximum theoretical confidence 

achievable on the image based on the ground truth, forming the final “success” rate for every image. 

 

Each test image, therefore, received a success rate based on this calculated score, effectively 

quantifying the accuracy of damage detection per image. Subsequently, these images were grouped 

according to their source, namely the drone, the smartphone, and the digital camera, and the average 

success rate for each group was computed. This resulted in an overall success rate for each imaging 

device, thus providing a comparison of their respective performances in the context of damage 

detection. 

 

This evaluative approach allowed for a thorough assessment of the three imaging devices, 

providing crucial insights into their relative efficacy in capturing high-quality images in terms of 

effective damage detection. 
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4. Results and Analysis 
 

In this chapter, the results and findings of the research are presented and evaluated. Each stage 

of the methodology detailed in Chapter 3 has produced quantifiable outcomes, which will be 

presented here in a structured manner. This structured presentation is designed to reflect against the 

stages of the methodology, thereby providing a direct correlation between the applied methods and 

the obtained results. In essence, this chapter's objective is to present and assess the findings, 

following the steps of image preprocessing and augmentation, training of the YOLOv7 object 

detection algorithm, testing of the trained model, performance analysis and reparameterization, and 

the evaluation of imaging devices. The subsections of the chapter will correspond to the steps in the 

methodology, presenting the related results, followed by a thorough analysis and interpretation of 

these results. 

 

4.1.  Creation of Artificial Erosion 
 

In accordance with the experimental procedures outlined in the methodology, the section of 

the wind turbine blade was intentionally subjected to damage in three separate locations along its 

leading edge. The purpose was to simulate distinct categories of leading edge erosion that could 

occur in a real-world scenario. The types of damage ranged from the initial stages of cosmetic 

erosion, characterized by minor surface wear and tear, to the severe end of the spectrum where the 

structural material of the blade is completely exposed, necessitating urgent intervention. The 

damages inflicted on the blade are visually represented in Figure 4.1.1. 

 

 
 

Figure 4.1.1 – Artificial LEE on Blade Section 

 

 The task of quantifying the distinct characteristics of each erosion category is notably 

complex and poses a significant challenge, which is also reflected in industry practices and 

academic literature. The scanner's capability to deliver reliable, quantitative results was found to be 

more effective in the instances of severe erosion damage, specifically for Category 3. In this case, 

the 3D scanner was able to accurately capture and quantify the depth of artificial erosion. Figure 

4.1.2 shows reconstructed model of the blade where Category 3 erosion damage is present, captured 

by the scanner. 
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Figure 4.1.2 – 3D Model of Artificial Category 3 Erosion Damage on Blade 

 

 Although prior categories of damage cannot be accurately quantified regarding depth, Visual 

inspections and the nature of machine learning applications considered in this research primarily 

deals with the qualitative characteristics of the damage to categorize. 

 

 While the depth of the less severe erosion categories (Category 1 and 2) could not be 

accurately quantified using the industrial 3D scanner, this does not provide a significant obstacle 

for the further stages of the study. The nature of visual inspections and the machine learning 

applications considered in this study primarily focus on recognizing the qualitative features of the 

erosion damage for categorization, rather than relying heavily on the exact depth measurements. 

Visual inspections are designed to identify and categorize the damage based on its appearance and 
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observable characteristics. These could include the shape, size, and pattern of the erosion on the 

blade's surface.  

 

Moreover, the machine learning algorithms employed in this study are particularly adept at 

identifying patterns, nuances, and deviations in the data. They work by extracting features from the 

input images and learning to associate these features with particular categories of damage. This 

implies that even if the exact depth of erosion cannot be quantified for the less severe categories, 

the algorithms can still learn to recognize these damage categories based on other distinct, 

qualitative features visible in the images. While the quantification of damage depth is beneficial for 

certain analytical purposes, its absence does not delay the study's progress or its primary objective, 

to assess the impact of image resolution captured in industrial inspections. 

 

4.2.  Image Preprocessing, Augmentation and Dataset Generation 
 

The image preprocessing and augmentation phase played a critical role in enhancing the 

dataset used in this study. Before any preprocessing and augmentation steps, the initial dataset 

consisted of 173 images, with 310 annotations across 3 damage categories. The average number of 

annotations per image was 1.8. The average size of the images was 15.68 megapixels, ranging from 

0.25 megapixels to 16.06 megapixels. The median image ratio was 3006x3448, representing a tall 

image orientation. 

 



40 

 

 

 
 

Figure 4.2.1 – Augmentation Outpus 

 

 

This initial dataset, while substantial, needed further enhancement to optimally train the 

YOLOv7 model. The preprocessing and augmentation pipeline addressed this need by allowing for 

an increase in the size of the dataset and contributing to the overall diversity of the images. 
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The specific steps involved in this process, and their impacts, are analyzed in this section. 

 

1) Resizing of Images: The initial step in the preprocessing was to resize the images to a 

uniform dimension of 640x640. Ensuring uniformity in image size is critical in machine 

learning models, as inconsistent image sizes can lead to irregularities in the learning 

process. It is important to note that original images were stretched to achieve the desired 

quality, rather than being cropped. The standard dimension of 640x640 pixels provided 

an optimal balance between image quality and computational efficiency. The difference 

between an original image and its resized version can be seen in Figure 4.2.1. 

2) Augmentation Techniques: The augmentation process involved the application of 

multiple techniques to the resized images, aimed at artificially expanding the dataset. 

The techniques used were horizontal and vertical flipping, 90-degree clockwise and 

counter-clockwise rotation, brightness adjustment between 0% and +15%, Gaussian blur 

up to 1.5px, and the addition of random noise up to 2% of pixels. Examples of these 

augmentations can be seen in Figure 4.2.1. 

3) Increased Dataset Size: As a direct result of the augmentation techniques, the dataset 

size increased from 81 unique images to a more substantial dataset of 557 images. This 

increase expanded the training data available to the YOLOv7 model, which generally 

leads to better model performance. Figure 4.2.2 provides a visualization of the dataset 

size before and after the augmentation process. 

 

Figure 4.2.2 – Dataset Size and Distribution 

 

4) Allocations to Training, Validation, and Testing: Following the augmentation 

process, the images were allocated to the training, validation, and testing subsets. The 

training subset received the most significant portion with 480 images, while the 

validation and testing subsets received 50 and 27 images, respectively. The allocation of 

the dataset to these subsets was done to ensure the optimal performance of the YOLOv7 

model. The proportion of images allocated to each subset is illustrated in Figure 4.2.2. 

This comprehensive approach to image preprocessing and augmentation demonstrates the 

importance of careful dataset construction in the successful application of machine learning models 

to real-world scenarios.  
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4.3.  Model Training 
 

The evaluation of the model training phase began with an analysis of the training outputs, 

focusing on the evolution of various key metrics over the sequence of training epochs. For context, 

an epoch in machine learning refers to one cycle through the entire training dataset. During each 

epoch, the model learns and updates its parameters to minimize the difference between the predicted 

and actual outputs. The key performance measures considered in this evaluation include precision, 

recall, mAP@0.5, mAP@0.5:0.95, and F1 values. 

 

Precision is a metric that represents the proportion of true positive instances among all 

instances that the model has predicted as positive. A higher precision indicates a model that 

produces fewer false positives. In Figure 4.3.1, the trend of precision throughout the training process 

can be observed. The decrease in variance between consecutive precision values displays the 

learning process of the custom model. 

 

 
Figure 4.3.1 – Precision over Training 

 

Similarly, recall, also known as sensitivity or true positive rate, is the portion of actual 

positive instances that the model has accurately predicted as positive. Higher recall means the model 

can identify more true positives, thereby producing fewer false negatives. Figure 4.3.2 presents the 

evolution of recall over the course of the training epochs. Much like precision, a decrease in 

variance is also present in the evolution of recall value, indicating successive learning. 
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Figure 4.3.2 – Recall over Training 

 

Next, the Mean Average Precision (mAP) is inspected, both at an Intersection over Union 

(IoU) threshold of 0.5 (mAP@0.5) and over a range of IoU values from 0.5 to 0.95 

(mAP@0.5:0.95). Figure 4.3.3 displays the evolution of mAP over the course of 620 training 

epochs. 
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Figure 4.3.3 – mAP over Training 

 

 

The mAP is a popular metric in measuring the accuracy of object detectors like YOLOv7. 

Specifically, mAP@0.5 means the model is evaluated at a single IoU threshold of 0.5, and 

mAP@0.5:0.95 means the model is evaluated at multiple IoU thresholds from 0.5 to 0.95. Recalling 

the definition, Intersection over Union (IoU) is a measure used in object detection to determine the 

accuracy of the bounding boxes predicted by the model. It is essentially the ratio of the area of 

overlap and the area of union of the predicted and actual bounding boxes. 

 

After a thorough iterative approach, which will be further detailed in section 4.3 

Performance Analysis & Reparameterization, it was decided to train the model for 620 epochs, 

using an NVIDIA A100 GPU on Google Colab, which took roughly 1.5 hours to conclude. This 

number was decided based on the observation that mAP@0.5:0.95 converged into its optimal value 

around this mark, and any further training could risk overfitting. The mAP@0.5:0.95 was prioritized 

over mAP@0.5 as it provides a more comprehensive evaluation, taking into account the mAP over 

a range of IoU values between 0.5 and 0.95. The model achieved mAP@0.5 and mAP@0.5:0.95 of 

0.7278 and 0.4284, respectively, at the end of 620 epochs, with their peak values of 0.7458 and 

0.4497 achieved at epochs 403 and 602. This confirms that average precision over lower IoU values 

converges into optimum more quickly, as detections with higher IoU values require further training 

to improve precision. 

 

 
 

Figure 4.3.4 – F1 over Confidence Values 
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The F1 value, which is the harmonic mean of precision and recall, also plays an important 

role in the training outputs. Figure 4.3.4 shows the F1 value plotted over different confidence values. 

The term "confidence" in this context refers to the probability assigned by the model to the 

prediction of the object class and the bounding box. A higher confidence score implies that the 

model is more certain about the class of the object and the location of the bounding box. The best 

F1 value across all categories was observed around a confidence value of 0.25. As a result, this 

confidence value was used in the subsequent detection and test results evaluations. 

 

 

Figure 4.3.5 – Confusion Matrix (Training) 

 

The confusion matrix is another essential output of the training phase. It is a representation 

that illustrates the performance of the model by comparing the actual and predicted damage 

categories, as well as false positives (FPs) and false negatives (FNs). This matrix allows us to see 

where the model is most and least “confused” in its predictions. It is noticeable from the confusion 

matrix, provided within the outputs of the model and displayed in Figure 4.3.5, that the model 

demonstrated less confusion when detecting Category 3 Erosion but struggled more with Category 

1 Erosion. This finding is understandable, as Category 3 Erosions tend to be larger and more distinct 

due to exposed blade material, making them easier for the model to identify. Conversely, Category 

1 Erosions, being less severe, smaller in size, and more challenging to detect as the distance 

increases, understandably resulted in greater confusion for the model. Meanwhile, Category 2 

Erosion detection results provided a midpoint between the extremes. 
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These training outputs and the analysis therein set the foundation for further model testing 

and refinement as discussed in the following sections. 

 

4.4.  Performance Analysis & Reparameterization 
 

Performance analysis and reparameterization efforts, within the scope of this study, were 

primarily concentrated on achieving a balance between the successful training of the model and the 

risk of overfitting. The primary training performance metric under observation was the 

mAP@0.5:0.95 score across different numbers of training epochs, namely 220, 300, 500, 620, 1000, 

and 1500 epochs. Graphical representations of mAP over epochs, displayed in Figure 4.4, for these 

respective training instances reveal noteworthy patterns and insights, providing a valuable visual 

aid in understanding the model's performance evolution. 

 

 
 

Figure 4.4 - mAP over Different Training Instances 

 

 

Upon a detailed review of these varied training instances, it can be seen that each instance 

of training follows a similar pattern, but is actually unique in detail. This makes it quite complex to 
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pinpoint the exact epoch that results in optimal training, rather it is more practical to approximate 

this epoch based on the results of each training. The aim was, therefore, to identify the 

mAP@0.5:0.95 value to which the training sessions converged. Once identified, the training was 

supposed to be terminated to prevent the model from training too long at this convergence point, 

which increases the risk overfitting. 

 

Through the evaluation of the various training instances, it was found that the 

mAP@0.5:0.95 score, to which the trainings converged, ranged approximately between 0.4 and 

0.45. The maximum concluding mAP recorded among the training instances was 0.4534, achieved 

at 1000 epochs. However, a notable deceleration in the increase of mAP over epochs was observed 

at around 620 epochs. The final mAP score reached at the end of training for 620 epochs was 0.4327. 

This 620-epoch instance offered an ideal compromise between training thoroughness and 

overfitting risk, thereby serving as the chosen model configuration for the remaining phases of the 

research. 

 

4.5.  Model Testing 
 

Following the model training, the testing phase was carried out to evaluate the trained 

model's performance on a separate set of images. Each image was processed by the model, which 

then identified potential areas of damage based on its training. Bounding boxes were drawn around 

these regions, with the model assigning a category of damage and a confidence value to each 

detected area. A sample of detections made by the model are shown in Figure 4.5.1, additional 

output images can also be found in Appendix C. The confidence value signifies the model's certainty 

regarding the type of damage detected and serves as a quantifiable measure of its precision. 

 

The minimum confidence threshold, a critical parameter that was identified during the 

testing phase, plays a crucial role in validation of the detections. Only detections with confidence 

values surpassing this threshold were deemed valid and marked with bounding boxes in the images. 

To optimize the balance between precision and recall, this threshold was set to 0.25, as per the best 

F1 score achieved during training. 
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Figure 4.5.1 – Model Detections 

 

An essential component of the test results once more is the confusion matrix displayed in 

Figure 4.5.2, a graphical representation illustrating the model's performance against the ground truth 
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for the test set. Upon examination, it becomes evident that the model performed exceptionally well 

in detecting Category 3 Erosion damages. In fact, every instance of actual Category 3 damage in 

the test set was correctly identified by the model. However, among the total detections made, a 

minor portion of Category 3 detections were false positives, with the model mistakenly identifying 

background elements as damage. 

 

 
 

Figure 4.5.2 – Confusion Matrix (Testing) 

 

 

This superior detection rate for Category 3 damages can be attributed to the unique visual 

characteristics of these damages, which makes them easier to recognize. On the other hand, the 

performance was somewhat less precise for Category 2 Erosion damages. Although the model 

accurately classified the majority of Category 2 instances, it can tend to incorrectly classify a quarter 

of the instances as Category 1 Erosion. A small fraction of Category 2 Erosions were also 

mislabeled as background objects. 

 

Turning the attention to Category 1 Erosion damages, the model demonstrated a satisfactory 

degree of detection and categorization accuracy. Despite being the most challenging to detect due 

to their smaller size and lesser impact on the turbine's performance, the detection of Category 1 

damages is arguably the most critical aspect of this study. The early detection of these damages can 

drive proactive maintenance planning, which in turn prevents the development of these damages to 
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more severe categories. Therefore, while the overall detection rate for Category 1 Erosion is the 

lowest among the three categories, it remains at an acceptable level, thus making the model a viable 

tool for maintenance activities in most cases. An analysis of false positives reveals that most errors 

occur with Category 1 Erosion. Approximately half of the instances, background objects were 

categorized as Category 1 Erosion, with the remainder divided between Categories 2 and 3.  

 

On a broader perspective, the testing outcomes correlate closely with the results obtained 

during the training phase. For instance, the model's superior performance in identifying Category 3 

Erosion damages and the greater degree of difficulty it encounters when detecting Category 1 

Erosion damages are aspects that persist between both stages. This consistent pattern of 

performance reinforces the model's strengths and highlights areas where further fine-tuning may be 

necessary.  

 

This level of consistency is a promising indicator of the model's ability to generalize and 

reliably detect and categorize damages in wind turbine blades, regardless of the dataset it is applied 

to. This adaptability is also crucial as it affirms the model's utility in a real-world context, where 

input data can greatly vary. This is a significant achievement, as the primary goal of any machine 

learning model is to not only perform well on training data but also maintain that performance level 

on new, untrained data. 

 

Therefore, the close alignment of the testing results with the training outputs underscores 

the model's robustness and its potential as a valuable tool in the ongoing maintenance and 

monitoring of wind turbines. These findings suggest that the model can potentially aid in the early 

detection of blade erosion, paving the way for timely maintenance activities and, in turn, potentially 

contributing to more efficient and sustainable wind energy production. 

 

4.6.  Imaging Device Evaluation 
 

The implementation of the evaluative framework detailed in the methodology section 

yielded specific success rates for each of the three imaging devices. The results show that the digital 

camera was the most successful with a rate of 84%, followed by the smartphone at 78%, and the 

drone at 75%. It's crucial to clarify that these percentages do not represent the proportion of damages 

correctly identified; instead, they signify the confidence level of the detections produced by each 

imaging device. In other words, a success rate of 75% for the drone does not suggest that it misses 

1 out of every 4 damage present. Rather, it indicates that the confidence levels associated with its 

detections tend to be lower than those of the other devices. Figure 4.6.1 provides a comprehensive 

representation of these detailed percentages and corresponding visual data. 
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Figure 4.6.1 – Success Rate of Devices 

 

 

To put things into perspective, the resolutions of the images from the drone, smartphone, 

and digital camera were 960x720, 1536x2048, and 4592x3448 pixels, respectively. In order to lay 

the foundations for an appropriate comparison, diagonal resolution values were used in visuals, 

instead of length and width resolution values of images. When these values are compared directly 

with the respective success rates, a clear pattern emerges, suggesting that the resolution of the input 

images indeed impacts the performance of the custom model. This correlation can be attributed to 

the fact that higher resolution images are able to represent more detailed and unique characteristics 

of each damage category, thereby enabling the model to make more confident detections. Indeed, a 

higher resolution tends to yield sharper images, which in turn allows for more precise and accurate 

damage detections. This is supported by Figure 4.6.2, illustrating the relationship between the 

diagonal resolution of each device and their respective success rates. 
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Figure 4.6.2 – Resolution and Success Rate Relation 

 

 

In conclusion, while all three devices achieved considerable success rates, the digital camera 

emerged as the most effective imaging device for damage detection, likely due to its superior 

resolution capabilities. This evaluation and the resulting findings contribute a valuable perspective 

on the role of imaging devices in damage detection and categorization for wind turbine blades, as 

well as providing guidance for future studies and industrial applications. 
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5. Discussion 
 

This chapter of the research is dedicated to a comprehensive discussion on the interpretation of 

the study's findings, their potential implications for the industry, the key takeaways, and how future 

studies can build upon this work. This discussion provides an opportunity to touch upon the aspects 

that could influence the future direction of research in this field. 

 

As the research evolves, it becomes clear that the resolution of the input images can indeed have 

a noticeable impact on the confidence with which detections are made by the YOLOv7 object 

detection model when it is trained on custom data. One of the key findings of this study is that the 

model's performance is at its peak when dealing with Category 3 damages, which are the most 

advanced and severe types of damage. These are also the largest in terms of size and are highly 

distinguishable in color due to the often exposure of the blade's structural material. While this high 

level of performance in detecting Category 3 damages is indeed encouraging, it is, however, to 

some extent expected due to the distinct visual characteristics that this category typically displays. 

 

On the other side of the spectrum, it is observed that while the model's performance in detecting 

Category 1 and 2 damages is acceptable, there exists a degree of potential for further optimization 

and fine-tuning. These initial categories of damage, which are relatively smaller in size and more 

challenging to detect based on turbine performance metrics, could greatly benefit from an improved 

detection model. As the accumulation and progression of leading-edge erosion typically begin with 

these less noticeable damages, the model's ability to correctly identify them can provide significant 

value. 

 

Currently, the model has the potential provide beneficial insights and contribute to resource-

efficient maintenance planning when supervised. However, its readiness for unsupervised operation 

is still uncertain due to the potential risk of generating false alarms. This characteristic brings into 

focus the importance of Category 1 and 2 damages in terms of early detection and preventive 

measures. 

 

To enhance the model's performance in identifying these initial stages of damage, expanding 

the dataset to cover a greater variety of unique examples from these categories could be a potential 

solution. It is understood that, due to confidentiality concerns within the wind energy industry, there 

is limited focus and prioritization towards compiling a standardized dataset among operators of 

wind farms or parties overseeing maintenance activities. Yet, the insights gained from this study 

hopefully should incentivize these industry players to consider developing their own image datasets, 

varying in scale from turbine-specific to site or location-specific, as well as damage category-

specific. 

 

The potential of machine learning techniques in visual inspections is undeniable. If datasets of 

appropriate quality were readily available, it could significantly reduce the human labor required 

for manual annotation of existing images and dataset generation, thereby boosting the efficiency 

and effectiveness of these inspections. This shift towards leveraging artificial intelligence could 
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help not only in damage detection but also in streamlining maintenance strategies, making a 

significant impact on the industry as a whole. 
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6. Conclusion and Future Work 
 

Overall, this research highlights the stages of training a custom object detection model, suitable 

for use in detecting and categorizing LEE damages, including testing its capabilities on a training 

set comprised of images from different sources. This allowed for a comparison between the imaging 

devices, thereby evaluating the model’s performance on different input resolutions.  

 

The evaluation resulted in the discovery and affirmation that detection attempts on different 

classes being made with greater confidence on images with higher resolution, by the custom model. 

The outputs of the experiments brought forward a potential correlation between input image 

resolution and detection confidence on multi-class object detection, in the context of wind turbine 

maintenance. Ultimately, the findings highlight the importance and impact of imaging hardware 

selection on inspections, as well as encouraging industry professionals to construct datasets of 

appropriate quality to be machine learning-ready.  

 

Looking ahead, there are several potentials for future research that could build upon the findings 

of this study. The first concerns the exploration of other computer vision algorithms. While this 

research was focused on the use of the main configuration of YOLOv7 object detection model due 

to its superior performance within the time constraints of the study, examining other configurations 

of YOLOv7 or exploring different architectures like Faster R-CNN might provide additional insight 

onto the effect of input resolution on damage detection and categorization. Within each model itself, 

exploring the optimal parameter selection regarding the number of epochs or confidence threshold 

could also further enhance the existing practices. 

 

Additionally, the method employed in this study for gathering damage information, namely 

inspection photography, could be further enhanced with the inclusion of recent advancements in 

Light Detection and Ranging (LiDAR) technology. LiDAR is a remote sensing method that uses 

light in the form of a laser to measure distances between the source and objects, creating precise, 

three-dimensional information about shapes and surface characteristics. By utilizing LiDAR 

sensors, it may be possible to obtain the dimensional properties of each unique damage. This 

information could offer a deeper understanding of natural erosion patterns, improving predictive 

modeling on erosion and strategic maintenance planning. 

 

A final promising field for future research lies on the use of artificial intelligence to enhance 

image quality. Recent advancements in this field have led to the development and distribution of 

image upscalers that can artificially increase the resolution of images to ultra-high values. It would 

be worthwhile to examine the effects of such artificial upscaling on input images. If successful, this 

could reduce the need for high-resolution inspection devices, further cutting hardware costs. 

Instead, an optimal imaging mode could be identified and used in combination with artificial 

upscaling to form a complete object detection input pipeline. 

 

In conclusion, the findings of this study offer valuable insights into the role of image resolution 

in damage detection and categorization for wind turbine blades, through utilizing machine learning 

technology. It provides a strong foundation for future research, displaying new possibilities for the 
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application of artificial intelligence in the field of wind energy maintenance and management. This 

work, finally, serves as an incentive and encouragement for industry stakeholders to leverage the 

power of machine learning and consider creating their own tailored image datasets with tools that 

provide higher resolution, thus leading the way for more efficient and effective visual inspections. 

Such advancements would introduce opportunities for more streamlined and efficient operational 

procedures in the field of wind turbine maintenance, ultimately contributing towards a more 

sustainable future. 

 

 

 
 

 

 

 

  



57 

 

 

References 
 

Anisimov, A. G., Beukema, R., Hwang, J., Nijssen, R., & Groves, R. M. (2021). AIRTuB: towards automated 

inspection of leading-edge erosion of wind turbine blades by shape analysis. 29. 

https://doi.org/10.1117/12.2592291 

 
Artigao, E., Martín-Martínez, S., Honrubia-Escribano, A., & Gómez-Lázaro, E. (2018). Wind turbine reliability: A 

comprehensive review towards effective condition monitoring development. In Applied Energy (Vol. 228). 

https://doi.org/10.1016/j.apenergy.2018.07.037 

 

Brownlee, J. (2018). What is the Difference Between a Batch and an Epoch in a Neural Network? Machine Learning 

Mastery, 20. 

 

Carroll, J., McDonald, A., & McMillan, D. (2016). Failure rate, repair time and unscheduled O&M cost analysis of 

offshore wind turbines. Wind Energy, 19(6), 1107–1119. https://doi.org/10.1002/we.1887 

 

Ciang, C. C., Lee, J. R., & Bang, H. J. (2008). Structural health monitoring for a wind turbine system: A review of 

damage detection methods. Measurement Science and Technology, 19(12). https://doi.org/10.1088/0957-

0233/19/12/122001 

 

Dimitrov, N. (2018). Risk-based approach for rational categorization of damage observations from wind turbine blade 

inspections. Journal of Physics: Conference Series, 1037(4). https://doi.org/10.1088/1742-6596/1037/4/042021 

 

Dodge, S., & Karam, L. (2016). Understanding how image quality affects deep neural networks. 2016 8th 

International Conference on Quality of Multimedia Experience, QoMEX 2016. 

https://doi.org/10.1109/QoMEX.2016.7498955 

 

Du, Y., Zhou, S., Jing, X., Peng, Y., Wu, H., & Kwok, N. (2020). Damage detection techniques for wind turbine 

blades: A review. In Mechanical Systems and Signal Processing (Vol. 141). 

https://doi.org/10.1016/j.ymssp.2019.106445 

 

Duthé, G., Abdallah, I., Barber, S., & Chatzi, E. (2021). Modeling and monitoring erosion of the leading edge of wind 

turbine blades. Energies, 14(21). https://doi.org/10.3390/en14217262 

 

García Márquez, F. P., Tobias, A. M., Pinar Pérez, J. M., & Papaelias, M. (2012). Condition monitoring of wind 

turbines: Techniques and methods. Renewable Energy, 46. https://doi.org/10.1016/j.renene.2012.03.003 

 

Herring, R., Dyer, K., Martin, F., & Ward, C. (2019a). The increasing importance of leading edge erosion and a 

review of existing protection solutions. In Renewable and Sustainable Energy Reviews (Vol. 115). Elsevier Ltd. 

https://doi.org/10.1016/j.rser.2019.109382 

 

Keegan, M. H., Nash, D. H., & Stack, M. M. (2013). On erosion issues associated with the leading edge of wind 

turbine blades. In Journal of Physics D: Applied Physics (Vol. 46, Issue 38). https://doi.org/10.1088/0022-

3727/46/38/383001 

 

Koziarski, M., & Cyganek, B. (2018). Impact of low resolution on image recognition with deep neural networks: An 

experimental study. International Journal of Applied Mathematics and Computer Science, 28(4). 

https://doi.org/10.2478/amcs-2018-0056 

 

Law, H., & Koutsos, V. (2020). Leading edge erosion of wind turbines: Effect of solid airborne particles and rain on 

operational wind farms. Wind Energy, 23(10). https://doi.org/10.1002/we.2540 

 

Lee, D., Kim, J., & Lee, D. (2019). Robust Concrete Crack Detection Using Deep Learning-Based Semantic 

Segmentation. International Journal of Aeronautical and Space Sciences, 20(1). 

https://doi.org/10.1007/s42405-018-0120-5 

 

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., & 

Dollár, P. (2014). Microsoft COCO: Common Objects in Context. http://arxiv.org/abs/1405.0312 

 



58 

 

 

Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., & Pietikäinen, M. (2020). Deep Learning for Generic 

Object Detection: A Survey. International Journal of Computer Vision, 128(2). https://doi.org/10.1007/s11263-

019-01247-4 

 

López, J. C., Kolios, A., Wang, L., & Chiachio, M. (2023). A wind turbine blade leading edge rain erosion 

computational framework. Renewable Energy, 203, 131–141. https://doi.org/10.1016/j.renene.2022.12.050 

 

McGugan, M., & Mishnaevsky, L. (2020). Damage mechanism based approach to the structural health monitoring of 

wind turbine blades. Coatings, 10(12). https://doi.org/10.3390/coatings10121223 

 

Mishnaevsky, L. (2019). Repair of wind turbine blades: Review of methods and related computational mechanics 

problems. In Renewable Energy (Vol. 140). https://doi.org/10.1016/j.renene.2019.03.113 

 

Mishnaevsky, L. (2022). Root Causes and Mechanisms of Failure of Wind Turbine Blades: Overview. In Materials 

(Vol. 15, Issue 9). MDPI. https://doi.org/10.3390/ma15092959 

 

Mishnaevsky, L., Hasager, C. B., Bak, C., Tilg, A. M., Bech, J. I., Doagou Rad, S., & Fæster, S. (2021). Leading 

edge erosion of wind turbine blades: Understanding, prevention and protection. Renewable Energy, 169, 953–

969. https://doi.org/10.1016/J.RENENE.2021.01.044 

 

Perez, L., & Wang, J. (2017). The Effectiveness of Data Augmentation in Image Classification using Deep Learning. 

http://arxiv.org/abs/1712.04621 

 

Pinar Pérez, J. M., García Márquez, F. P., Tobias, A., & Papaelias, M. (2013). Wind turbine reliability analysis. In 

Renewable and Sustainable Energy Reviews (Vol. 23, pp. 463–472). Elsevier Ltd. 

https://doi.org/10.1016/j.rser.2013.03.018 

 

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. 

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-

December. https://doi.org/10.1109/CVPR.2016.91 

 

Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region 

Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6). 

https://doi.org/10.1109/TPAMI.2016.2577031 

 

Sabottke, C. F., & Spieler, B. M. (2020). The effect of image resolution on deep learning in radiography. Radiology: 

Artificial Intelligence, 2(1). https://doi.org/10.1148/ryai.2019190015 

 

Sareen, A., Sapre, C. A., & Selig, M. S. (2014). Effects of leading edge erosion on wind turbine blade performance. 

Wind Energy, 17(10). https://doi.org/10.1002/we.1649 

 

Shihavuddin, A. S. M., Chen, X., Fedorov, V., Christensen, A. N., Riis, N. A. B., Branner, K., Dahl, A. B., & 

Paulsen, R. R. (2019). Wind turbine surface damage detection by deep learning aided drone inspection analysis. 

Energies, 12(4). https://doi.org/10.3390/en12040676 

 

Stokkeland, M., Klausen, K., & Johansen, T. A. (2015). Autonomous visual navigation of Unmanned Aerial Vehicle 

for wind turbine inspection. 2015 International Conference on Unmanned Aircraft Systems, ICUAS 2015. 

https://doi.org/10.1109/ICUAS.2015.7152389 

 

Talebi, H., & Milanfar, P. (2021). Learning to Resize Images for Computer Vision Tasks. Proceedings of the IEEE 

International Conference on Computer Vision. https://doi.org/10.1109/ICCV48922.2021.00055 

 

Tchakoua, P., Wamkeue, R., Ouhrouche, M., Slaoui-Hasnaoui, F., Tameghe, T. A., & Ekemb, G. (2014). Wind 

turbine condition monitoring: State-of-the-art review, new trends, and future challenges. In Energies (Vol. 7, 

Issue 4). https://doi.org/10.3390/en7042595 

 

Thambawita, V., Strümke, I., Hicks, S. A., Halvorsen, P., Parasa, S., & Riegler, M. A. (2021). Impact of image 

resolution on deep learning performance in endoscopy image classification: An experimental study using a 

large dataset of endoscopic images. Diagnostics, 11(12). https://doi.org/10.3390/diagnostics11122183 

 



59 

 

 

Verma, A. S., Jiang, Z., Ren, Z., & Teuwen, J. J. E. (2020). Leading edge erosion of wind turbine blades: Effects of 

environmental parameters on impact velocities and erosion damage rate. Proceedings of the International 

Conference on Offshore Mechanics and Arctic Engineering - OMAE, 9. https://doi.org/10.1115/OMAE2020-

18173 

 

Walford, C. a. (2006). Wind turbine reliability: understanding and minimizing wind turbine operation and 

maintenance costs. Energy, March. 

 

Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-

art for real-time object detectors. http://arxiv.org/abs/2207.02696 

 

Wang, L., Yang, J., Huang, C., & Luo, X. (2022). An Improved U-Net Model for Segmenting Wind Turbines from 

UAV-Taken Images. IEEE Sensors Letters, 6(7). https://doi.org/10.1109/LSENS.2022.3184521 

 

Wang, L., & Zhang, Z. (2017). Automatic Detection of Wind Turbine Blade Surface Cracks Based on UAV-Taken 

Images. IEEE Transactions on Industrial Electronics, 64(9), 7293–7309. 

https://doi.org/10.1109/TIE.2017.2682037 

 

Wang, L., Zhang, Z., & Luo, X. (2019). A Two-Stage Data-Driven Approach for Image-Based Wind Turbine Blade 

Crack Inspections. IEEE/ASME Transactions on Mechatronics, 24(3). 

https://doi.org/10.1109/TMECH.2019.2908233 

 

Wu, H., Ye, X., Jiang, Y., Tian, H., Yang, K., Cui, C., Shi, S., Liu, Y., Huang, S., Chen, J., Xu, J., & Dong, F. (2022). 

A Comparative Study of Multiple Deep Learning Models Based on Multi-Input Resolution for Breast 

Ultrasound Images. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.869421 

 

Xu, D., Wen, C., & Liu, J. (2019). Wind turbine blade surface inspection based on deep learning and UAV-taken 

images. Journal of Renewable and Sustainable Energy, 11(5). https://doi.org/10.1063/1.5113532 

 

Xu, X., Zhao, M., Shi, P., Ren, R., He, X., Wei, X., & Yang, H. (2022). Crack Detection and Comparison Study 

Based on Faster R-CNN and Mask R-CNN. Sensors, 22(3). https://doi.org/10.3390/s22031215 

 

Ye, X. W., Dong, C. Z., & Liu, T. (2016). A Review of Machine Vision-Based Structural Health Monitoring: 

Methodologies and Applications. Journal of Sensors, 2016. https://doi.org/10.1155/2016/7103039 

 

Ying, X. (2019). An Overview of Overfitting and its Solutions. Journal of Physics: Conference Series, 1168(2). 

https://doi.org/10.1088/1742-6596/1168/2/022022 

 

Zhang, D., Watson, R., Dobie, G., MacLeod, C., Khan, A., & Pierce, G. (2020). Quantifying impacts on remote 

photogrammetric inspection using unmanned aerial vehicles. Engineering Structures, 209. 

https://doi.org/10.1016/j.engstruct.2019.109940 

 

Zoph, B., Cubuk, E. D., Ghiasi, G., Lin, T. Y., Shlens, J., & Le, Q. V. (2020). Learning Data Augmentation Strategies 

for Object Detection. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), 12372 LNCS. https://doi.org/10.1007/978-3-030-58583-9_34 

 

Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2023). Object Detection in 20 Years: A Survey. Proceedings of the 

IEEE. https://doi.org/10.1109/JPROC.2023.3238524 

  
 

  



60 

 

 

Appendices 
 

Appendix A – Drone Image Capture Mission 
 

 

 

 

 

 
 

 

 

 

 

 

 

# Import requirements 

 
import time 

from djitellopy import Tello 

import cv2 

import math 
 

# Define function for image capture 

def save_image(frame, file_path): 

# Save the image to a file 

cv2.imwrite(file_path, frame) 

print(f"Image saved to {file_path}") 
 

 
# Set mission parameters 

 
init_dist = 50 # Takeoff point distance from blade 

altitudes = [20, 30, 70] # Altitudes of damage locations 

distances = [init_dist, init_dist*2, init_dist*3] # Distances for loop 

num_photos = 5 # Number of images to capture 

wait = 2 # Seconds between actions to prevent errors 

name = "blade" # Part of saved image name 

# Connect to the drone 

try: 

tello = Tello() 

 
# Connect to the drone 

tello.connect() 

time.sleep(wait) 

print(f"Battery percentage: {tello.get_battery()}%") 

 
except: 

print("ERROR: Could not connect to Tello.") 
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# Initiate mission 
 

time.sleep(wait) 
 

# Take off and reach the desired altitude 

print(f"Takeoff...") 

tello.takeoff() 

time.sleep(wait) 

 
for alt in altitudes: 

 
tello.move_up(altitudes) 

time.sleep(wait) 
 

for distance in distances: 

 
# Image 

for i in range(num_photos-1): 

# Capture an image 

tello.streamon() 

frame = tello.get_frame_read().frame 

time.sleep(wait-1) 

tello.streamoff() 

time.sleep(wait-1) 

 
# Save the captured image 

save_image(frame, f"photo_{name}_{distance}cm_{i+1}.jpg") 

print(f"Image saved as: photo_{name}_{distance}cm_{i+1}.jpg.") 

time.sleep(wait-1) 

 
 

 
# Move to next position 

if distance != distances[-1]: 

tello.move_back(dist_incr) 

time.sleep(wait) 

print(f"Drone in position.") 

else: 

tello.move_forward((len(distances)-1)*dist_incr) 

time.sleep(wait) 

# Land 

print(f"Landing...") 

tello.land() 

print(f"Battery percentage: {tello.get_battery()}%") 

print(f"Mission completed in {tello.get_flight_time()} time units.") 
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Appendix B – YOLOv7 Custom Training, Testing and Export 
 

 

 

 
 

 
 

  

Download YOLOv7 and install requirements # 

***************************************** 

 
!git clone https://github.com/WongKinYiu/yolov7 

%cd yolov7 

!pip install -r requirements.txt 
 

 
# Export and paste connection training-validation-test dataset from Roboflow in "YOLOv7 PyTorch" format 

# ***************************************************************************************************** 

 
!pip install roboflow 

 
from roboflow import Roboflow 

rf = Roboflow(api_key="**********************") 

project = rf.workspace("*****").project("*************") 

dataset = project.version(**).download("******") 

 
 

# Download YOLOv7 MS COCO starting checkpoint 

# ******************************************* 
 

%cd /content/yolov7 

!wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7_training.pt 
 

 
# Begin training on COCO checkpoint (set batch size 2^n based on GPU power, adjust number of epochs for training duration) 

# ************************************************************************************************************************ 
 

%cd /content/yolov7 

!python train.py --batch 64 --epochs 300 --data {dataset.location}/data.yaml --weights 'yolov7_training.pt' --device 0 
 

 
# Run detection on test images (adjust confidence based on F1 vs Confidence graph on training output) 

# *************************************************************************************************** 
 

%cd /content/yolov7 

!python detect.py --weights runs/train/exp/weights/best.pt --conf 0.1 --source {dataset.location}/test/images 

!python test.py --weights runs/train/exp/weights/best.pt --conf 0.1 --data {dataset.location}/data.yaml --device 0 --batch 64 
 

 
# Zip training weights and results 

# ******************************** 
 

!zip -r export.zip runs/detect 

!zip -r export.zip runs/test 

!zip -r export.zip runs/train/exp/weights/best.pt 

!zip export.zip runs/train/exp/* 
 

 
# Download zipped results 

# ************************ 
 

from google.colab import files 

files.download("/content/yolov7/export.zip") 



63 

 

 

Appendix C – Certain Model Outputs 

 
 

 
 

Image Device: Digital Camera 
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Image Device: Smartphone 
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Image Device: Ryze Tello (Drone) 
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Image Device: Ryze Tello (Drone) 

False Positive in Background 

 

  



67 

 

 

 
 

Image Device: Digital Camera 


