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Summary

Chronic kidney disease is a serious health challenge and still, the field of
study lacks awareness and funding. Improving the efficiency of diagnosing
chronic disease is important. Machine learning can be used for various tasks
in order to make CKD diagnosis more efficient. If the disease is discovered
quickly it can be possible to reverse changes. In this project, we explore
techniques that can improve clustering of glomeruli images.

The current thesis evaluates the effects of applying stain normalization to
nephropathological data in order to improve unsupervised learning cluster-
ing. A unsupervised learning pipeline was implemented in order to evaluate
the effects of using stain normalization techniques with different reference
images. The stain normalization techniques that were implemented are:
Reinhard stain normalization, Macenko stain normalization and Structure
preserving color normalization. The evaluation of these methods was done
by measuring clustering results from the unsupervised learning pipeline,
using the Adjusted Rand Index metric. The results indicate that using
these techniques will increase the cluster agreement between results and
true labels for the data. Six reference images were used for each stain nor-
malization technique. The average Adjusted Rand Index score for all ref-
erence images was increased using all three stain normalization techniques.
The best performing method overall was the Reinhard stain normalization
technique. This method gave both the highest single experiment and aver-
age score. The other normalization methods both have one score close to
zero (unsuccessful clustering), and structure preserving color normalization
would outperform the Reinhard method if this single clustering was more
successful.
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Chapter 1

Introduction

1.1 Problem description

In recent years, machine learning models have become accurate at detect-
ing differences in images after being trained on large datasets [26].To train
an image classification model you typically need datasets with labels that
assign each image to a class [13]. With labels, the machine learning model
can know whether the prediction it has made is correct or incorrect, and
learn from it through a method called backpropagation [25]. This process
is called supervised learning.

For some classification tasks, there are large labeled datasets available. In
these cases, a deep learning classification model can be trained to achieve
satisfactory classification accuracy [22]. In cases where there is less labeled
data, trying to train a deep learning model can lead to overfitting and low
classification accuracy [22]. In cases where the amount of annotated data
is insufficient, we can attempt to use unsupervised learning techniques. In
these techniques the model separates the data based on features, but does
not go through the same training process.

The current thesis explore machine learning applied to medical images in
the field of non-neoplastic nephropathology. Nephropathology is the study
of kidneys diseases. In nephropathology there is a shortage of publicly avail-
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1.2 Aims and objectives

able datasets with annotations. Annotations for nephropathology images
are time consuming to obtain and require expert knowledge in the field
of study [29]. In order to still use machine learning to separate data into
classes, we implement a clustering pipeline. A similar approach was imple-
mented for a different dataset by Sato et al. [26]. The dataset provided
for this thesis contains 9088 images of glomeruli (kidney filtration units).
Although this dataset is labeled, it is only used in this thesis to validate
clustering results.

Clustering is a form of unsupervised learning and can be applied to unla-
beled data [16]. By using various data processing techniques, images can
be used as input to a pipeline that returns a cluster label. By implement-
ing a process for automated clustering of data, it can be used to evaluate
the impact that different pre-processing steps have on the final clustering.
The specific step we want to evaluate in this project is stain normalization
techniques. By implementing several stain normalization techniques in the
clustering pipeline, we can evaluate how the stain normalization affects clus-
tering results and whether and which stain normalization technique should
be chosen.

Stain normalization is used to normalize the color scheme of images [24].
Ideally, the structure in the image is also preserved during this process.
Staining refers to the chemical process of giving different tissue components
different colors. Different staining chemicals are used to do this. Along with
other factors such as tissue processing and section thickness this leads to
color variations in glomerular images that might mislead machine learning
algorithms. Kanwal et al. did a comprehensive review of the performance
for different stain normalization techniques in [12].

1.2 Aims and objectives

The goal of this thesis is to see what effect different stain normalization
techniques have on the final clustering result. Several stain normalization
techniques will be implemented as well as all the steps involved in cluster-
ing of input images. Stain normalization is done using a reference image
with color features that we want to transfer to another image. This thesis
includes experiments using several different reference images for each stain
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1.2 Aims and objectives

normalization technique.

To evaluate the results from the experiments that are explained in this
thesis, a metric called the adjusted rand index is used [7]. The metric is
used to evaluate the similarity between two clusterings [7]. By using it to
compare the value assigned by the clustering model to the true class labels,
it is possible to evaluate how good the clustering of glomerular images is.

The metric will tell us about how successful the algorithm was at differen-
tiating between classes of glomerular lesions. The task of the algorithm is
to cluster glomerular lesions into the following two classes: global sclero-
sis and everything else. The classes have different levels of morphological
changes, and the data in the global sclerosis class are in the final stage of
morphological change. These clustering targets are based on the features
of the classes. The class global sclerosis shows distinctly different features
from other classes and is more likely to separate from the rest in clustering.

In the context of a fully automated process for clustering of whole slide
images, we want to evaluate the following questions: Is stain normalization
a useful step for the final result? If so, what kind of stain normalization
should be used? Finally, how does the choice of reference image affect the
clustering results?
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Chapter 2

Background

This thesis is part of work package 8 "Classification of glomerular lesions" of
the strategic research project "Pathology services in the Western Norwegian
Health Region – a center for applied digitization" (PiV).

2.1 Chronic kidney disease

Chronic kidney disease (CKD) is a group of heterogeneous diseases affecting
the kidney [14]. In CKD the kidney loses function over time. CKD is defined
as: "Abnormalities of kidney structure or function, present for >3 months,
with implications for health" [23].

CKD include a variety of diseases. Examples are different types of inflam-
mation, familial diseases, and chronic damage due to systemic diseases such
as high blood pressure or diabetes [30]. CKD is both underrated and an un-
recognized disease. The global prevalence of CKD is about 10% [3], which
is in the same range as cardiovascular disease, diabetes mellitus, cancer and
chronic respiratory diseases [28]. Vanholder et al. in [28] states that CKD
is projected to be the fifth leading cause of death worldwide by 2040.

CKD is not a low-cost disease and underestimation and lack of awareness
certainly contribute to the high cost of treatment. It is estimated that health
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2.1 Chronic kidney disease

care costs for CKD are at least in the same range as for cancer and diabetes
[28]. For patients, CKD means reduced quality of life and premature death.

The role of pathology is to suggest a specific diagnosis and provide informa-
tion on chronicity and potential reversibility of changes. Pathology inves-
tigation of a kidney biopsy renders a correct diagnosis, predicts prognosis
and guides treatment.

2.1.1 The kidney biopsy and digital histopathology

A kidney biopsy is a thin cylindrical piece of kidney tissue taken with a
thin needle under local anesthesia. The biopsy is put in a fixation solution
to preserve the tissue, and is then processed in a pathology laboratory.
This process involves various means as shown in [12], including sectioning
into thin slices, staining using chemicals and scanning with a digital slide
scanner, resulting in a whole slide image (WSI). WSIs are large images with
a lot of information. Through digital pathology, pathologists or machine
learning algorithms can find important regions and features to study. The
data that is used in this thesis are smaller regions extracted from WSIs.

2.1.2 Glomeruli and morphological changes

The kidney cortex consists of three compartments: Glomeruli, tubules and
vessels. A glomerulus (glomeruli in plural) is a specialized bundle of tiny
blood vessels or capillaries with very thin walls. Primary urine is formed
when the blood is filtered through these thin capillary walls. This is why
glomeruli are also referred to as filtration units [20]. The urine is collected in
the Bowman’s space which is surrounded by the Bowman’s capsule. Figure
2.1. A shows a normal glomerulus with capillary convolute, Bowman’s space
and Bowman’s capsule. Several glomeruli can be found in one nephropathol-
ogy WSI. From the Bowman’s space the urine enters the tubules. The
tubules transport the urine and both absorb some of the filtered substances
from the glomerulus and actively excrete other substances. Between the
tubules, there is the interstitium, a narrow space with small blood vessels
and small amounts of connective tissue.
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2.1 Chronic kidney disease

Each of the three compartments can develop a variety of lesions which
impact the kidney function. This thesis focuses on morphological changes in
the glomerulus. Through digital nephropathology, morphological changes
in the glomerulus can be observed and used to diagnose chronic kidney
disease.

Figure 2.1: Glomerular patches, image A is a healthy glomerulus and image B
is a scarred glomerulus (with morphological changes)

Glomeruli can develop a diversity of lesions that can affect the capillary
convolute as well as the Bowman’s space and capsule. Some examples of
such lesions are necrosis, hypercellularity and sclerosis [6]. These lesions
are examples of morphological changes in the glomeruli. The glomerular
morphological changes are deviations from a normal glomerulus that can
be measured. There are definitions that define what kind of morphologi-
cal changes will indicate different lesions [6]. The morphological changes
of the glomerulus that indicate global sclerosis is what we want to cluster
using machine learning. Global sclerosis is the final stage of scarring in the
glomerulus, where the entire glomerular structure is replaced by connective
tissue and all capillaries have disappeared [11]. At this stage the glomeru-
lus does not produce any more urine and is non-functional. Figure 2.1.B
shows global sclerosis, the morphological change that stands most out of the
classes. The glomerulus is completely scarred in this example. Counting
the number of globally sclerosed glomeruli in a kidney biopsy will indicate
the functional state of the kidney. Therefore we want to cluster between
the class global sclerosis and everything else.
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2.1 Chronic kidney disease

2.1.3 Diagnosing CKD

When a nephropathologist investigates a kidney biopsy, they will look at
every glomerulus and try to classify the kind of lesion. The method of
visual inspection is qualitative and is challenging to reproduce [13]. Visual
inspection is also slow. if parts of it can be automated the pathologists will
be able to diagnose patients faster. A deep learning classification model
trained for this purpose would be useful for pathologist. The problem with
using deep learning classification models is the lack of annotated data in the
field. Another option for applying machine learning to nephropathology is
to use unsupervised learning. In this thesis we want to help pathologists by
improving automated tools that can cluster between global sclerosis and all
other glomeruli.

2.1.4 Stain variation

Tissue extracted from biopsies are put through a process before they can
be scanned and digitized, there are many steps in this process but the
one we will be focusing on is staining. Staining means to dye the tissue
using chemicals to highlight the present structures [12]. The use of different
chemicals for staining tissue leads to varying color schemes for different
images. Color variation may also be caused by other factors. The most
commonly used stain is Hematoxylin and Eosin, however others are used
as well such as PASM, which highlights morphological changes. The data
used in this thesis is stained using Periodic Acid Schiff (PAS) [4]. There
are many different factors that can alter the result when obtaining digital
nephropathological images. In Kanwal et al. [12] they go through what
kind of image artifacts that can be introduces in each step from biopsy to
WSI. These artifacts cause stain variation in the final WSI [12], some of
them are color related and can be processed with stain normalization.

One of the challenges in the process of automatic clustering of images from
glomerular lesions is color variation. Variations in the stained sections of
glomeruli might have a negative impact on clustering results. The stain
variations introduces features in the images that might mislead machine
learning models from focusing on the correct features. By using stain nor-
malization, we can make the slices more similar in color and in that way
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2.2 Machine learning

improve the accuracy of the machine learning model.

2.2 Machine learning

Machine learning is a broad term of algorithms for data analysis. IBM
explains the term as follows: [8] "Machine learning is a branch of artificial
intelligence (AI) and computer science which focuses on the use of data
and algorithms to imitate the way that humans learn, gradually improving
its accuracy." The next paragraphs will explain some branches of machine
learning that are relevant for the current project.

2.2.1 Supervised learning

Supervised learning is the process of training machine learning models using
data with labels [13]. Labels allow the machine learning model to compare
the prediction of a data point to the true label and calculate the error.
The error can be propagated back through the network to determine the
contribution of the individual weights and adjust the weights to improve
future predictions from the network [25]. This procedure is referred to
as backpropagation, an iterative process that improves the model through
training [25]. Most supervised learning networks are feed forward networks.
A feed forward network is a one directional network [19]. To train a feed
forward network, we use backpropagation [9].

Artificial neural networks (ANN) are the ground building blocks for deep
learning. Figure 2.2 shows an example of a basic ANN. ANNs for supervised
learning are typically made of layers and nodes [19]. A node is associated
with a weight and a threshold. When the output of a node exceeds the
thresholding value, it will activate and will send the data to the next layer
[9]. To activate a node, the conditions for a non-linear function needs to be
fulfilled. The inputs are outputs from nodes in the previous layer, with as-
sociated weights and biases that determine the significance of the respective
input. A ANN uses input layers, hidden layers and output layers [19]. A
fully connected layer is a layer, where the inputs for all neurons is connected
from all neurons in the previous layer.
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2.2 Machine learning

Figure 2.2: Artificial neural network, figure illustrating neurons in different
layers. The figure is reprinted in unaltered form from Wikimedia commons,
File:Artificial neural network.svg, licensed under CC BY-SA 3.0.

2.2.2 Unsupervised learning

Unsupervised learning is a branch of machine learning, where the algorithm
is able to make a prediction on data without being trained using labeled
data [13]. Some popular examples of unsupervised learning techniques are
clustering and anomaly detection [8]. Algorithms like these are made to
discover hidden patterns or similarities without human interaction.

Clustering

Clustering is the process of grouping similar data-points without labels to-
gether based on their features [16]. The objective of clustering is to divide
the data into groups (clusters) where the points are similar to each other,
and dissimilar to other clusters [2]. Clustering is used in unsupervised learn-
ing to automatically cluster data, results from unsupervised learning can
also help discover features in the data that have previously been overlooked
[13]. In this thesis we use Gaussian Mixture Models (GMM) for clustering,
a probabilistic clustering model. A GMM is a clustering method where the
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2.2 Machine learning

assumed distribution of data is a mixture of gaussian distributions. The
model is fitted to the data in an iterative process, giving a model that can
be used to predict the cluster for a given input [8].

Convolutional neural network

A convolutional neural network (CNN) is a deep learning model that is
primarily used for image-based pattern recognition tasks [19]. This type
of network is a form of ANN, but use additional types of layers. CNNs
commonly have four main types of layers, first the input layer holds all
the pixel values of the input image. Between input and output there can
be a combination of convolutional and pooling layers [19], this is the part
of the network responsible for feature extraction. The convolutional layers
have an activation function that activates depending on if conditions are
met while the pooling layers performs down-sampling, reducing the amount
of parameters [22]. Lastly, the classification part of the model commonly
consists of one or more fully connected layers, the output from these layers
are the classification results [19]. As with other supervised deep learning
algorithms the network can be trained on labeled data. By comparing the
true labels to the predicted labels, the error can be calculated and used to
estimate the individual weight’s contribution to that error [22].

A pre-trained CNN refers to a network that has been trained on a different
dataset, this can be useful if the dataset that is going to be classified is too
small to saturate the training, or training the network is too computation-
ally expensive. For this project, the CNN used is NasNetLarge. Without
classification layers, the model has 1040 layers, consisting of mostly con-
volutional layers, pooling layers and activations. The model is pre-trained
on a large dataset called ImageNet. ImageNet is a freely available dataset
of more than 14 million hand-labeled images in over 21000 classes at the
time of writing [10]. The advantage of using a pre-trained network is that
the weights are already tuned to detect common features in data. Even
though the dataset it was trained on is substantially different from the
nephropathological data we use here, the model has learned about general
image features. This process is called transfer learning.
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2.2 Machine learning

Figure 2.3: The figure illustrates a typical CNN with convolutional layers, pool-
ing shown as subsampling and fully connected layer for classification. The figure
is reprinted in unaltered form from Wikimedia commons, File:Typical cnn.svg,
licensed under CC BY-SA 4.0.

CNN blocks

For the purpose of this project, a CNN can be divided into two blocks, con-
volutional blocks performing feature extraction (FE) and fully connected
layers (FC) performing classification. The FC block refers to the fully con-
nected layers at end of the model and the rest of the model belongs to the
FE block [22].

Even though we have labels available, we only want to use them to validate
unsupervised learning results. In this thesis, clustering will be used to
separate images from different classes instead of using the FC block. This
can be done by only putting the data through the FE part of the neural
network and utilizing the feature vector output as the input to a clustering
model. Before feeding the data to the clustering model, a dimensionality
reduction technique will be applied.

2.2.3 Dimensionality reduction and cluster agreement

When using a CNN as a feature extractor, the dimensionality refers to the
number of features extracted from the output of the CNN. The output data
is going to contain more detailed features from input data, but the data is
high dimensional and there is no meaningful way to visualized it without
reducing the data points to a lower dimension. In this case we can use
dimensionality reduction techniques to reduce the data to two-dimensional
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2.3 Stain normalization

data points. This reduction can be done by the Uniform Manifold Projec-
tion Algorithm (UMAP), an algorithm that projects the high dimensional
data points into a lower dimension, where points that are close in the high
dimension will also be close in the lower dimension [17]. After dimension-
ality reduction, the pattern that clustering will be performed on can be
visualized in a two-dimensional plot and it might be possible to observe the
difference between potential clusters.

2.3 Stain normalization

There are many different ways to perform stain normalization. A common
factor is that the algorithm uses a reference image to obtain the desired
color scheme and attempts to transfer this to other images. Following is an
introduction to the three normalization techniques that were chosen for this
project. The choice of techniques were based on what is commonly used as
well as the results of Kanwal et al. in [12].

2.3.1 Reinhard stain normalization

Reinhard color normalization is one of the most widely used techniques for
normalizing the color of pathological images. The normalization method
is simple to implement, with few steps. Although the method is widely
used, [24] shows that is does not perform as well as many of the other color
normalization techniques that were evaluated in this study. Although the
metrics that are presented in [24] apply to similarities between the original
image and the processed image and might not impact clustering in the same
way.

2.3.2 Macenko stain normalization

The Macenko color normalization method is a technique that does the color
transformation of an image in the LAB color space. It was first shown in [15]
and has become widely used in digital pathology and medical imaging. The
method separates the color information from the brightness information.
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2.3 Stain normalization

These components are used to deconvolve the image into multiple stain
contributions. The stain contributions are used to normalize the color vector
so it becomes a consistent distribution across the image [26]. The target
colors are based on a reference image, both the reference image and the
source image are masked to remove white pixels. The normalized color
vector from the reference image is used to reconstruct the original image,
giving a normalized image with colors transferred from the reference image
to the original image.

2.3.3 Structure preserving stain normalization

Structure preserving color normalization (SPCN) is a technique developed
by Vahadane et al. in [27] for the purpose of reducing stain variation in
histological images. The technique was further improved in [21], which
removed some color artifacts. It also greatly improved the efficiency of the
algorithm. The technique uses the stain density map from the source image
and blends it with stain color basis from the reference image. Using this
method, the structure of the image is preserved, while only the colors are
changing [27].
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Chapter 3

Methods

3.1 Overall approach

The following are the main steps that were used to obtain clustering results
for glomerular images, illustrated in Figure 3.1. Step 1: The entire dataset
was processed using different combinations of stain normalization techniques
and reference images. Step 2: A pre-trained CNN was used to extract high-
dimensional features for each image. Step 3: Dimensionality reduction was
applied to reduce the features to two-dimensional data points. Step 4: A
clustering algorithm was used to determine the decision boundary between
clusters.
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3.2 Data materials

Figure 3.1: Machine learning approach from image dataset to classification re-
sults

3.2 Data materials

The dataset includes images from the work of Weis et al. [4] and contains
9088 anonymized images of single glomeruli. All the images in this dataset
are obtained from Periodic Acid-Schiff (PAS) stained kidney biopsy sections.
In this data there are ten different classes of glomeruli with nephrological
disease, as well as normal glomeruli. The classes are distributed with the
following class labels: 4347 normal glomerulus, 394 amyloidosis, 233 DM
nodular, 1954 global sclerosis, 946 mesangial expansion, 69 MPGN, 454
necrosis, 174 NOS, 504 segmental sclerosis and finally 13 TX glomerulitis.
At the time of writing, this dataset is not publicly available. The data was
made available for this thesis through the research group (PiV). Images are
in TIFF format and have variable image size, mostly around 220 pixels each
direction +-50 pixels.
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3.3 Step 1: Stain normalization

Figure 3.2: Class distribution for ground truth labels after processing, the orange
class here is global sclerosis and green is normal

Class labels were assigned by a pathologist in [4], and are considered the
true class labels for this thesis. After extracting features from the data and
performing dimensionality reduction (step 2 and 3 in figure 3.1, we can plot
the data distribution with the true class labels with different colors repre-
senting the different classes. From figure 3.2 we can see that the distribution
of data in one of the classes (this is global sclerosis) separates from the rest,
while other classes are more spread.

3.3 Step 1: Stain normalization

In this project, different stain normalization techniques were applied to the
images to compensate for colour variations and evaluate if this process will
improve automatic clustering of glomerular lesions. Figure 3.3 shows an
example of stain normalization for one image. The image that is going to
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3.3 Step 1: Stain normalization

be normalized it referred to as the source image, and the reference image is
referred to as target image.

In [24], several stain normalization techniques were compared and from the
results of their evaluation, the best performing methods were selected for
implementation: Structure Preserving Color Normalization (SPCN) and
Macenko stain normalization. The Reinhard method was also chosen, due
to being one of the most widely used stain normalization techniques. The
method with the highest overall score from the review [24] was SPCN. This
method was described as preserving brightness and structure well, while
introducing minimal artifacts.
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3.3 Step 1: Stain normalization

Figure 3.3: The figure illustrates stain normalization for one image with white
pixel masks for both source image and target image, using the Reinhard method.
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3.3 Step 1: Stain normalization

3.3.1 Reference images

When normalizing the images, the reference image is used to specify the
desired color scheme of the output image. No golden standard for choosing
a reference image appears to exist in the literature. Some things that were
taken into consideration were stain intensity, the amount of background
present in the image and the morphological changes. The task of selecting
reference images was done by pathologist Sabine Leh. The pathologist chose
three reference images based on stain intensity/brightness (low, perfect,
high) and three images based on the morphological changes, where the
selected glomerular lesions were global sclerosis, amyloidosis and necrosis.
The reference images are from the dataset of labeled glomeruli [4]. Figure
3.4 shows the six reference images.

Figure 3.4: The reference images that were used for all stain normalization
techniques
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3.3 Step 1: Stain normalization

3.3.2 Reinhard stain normalization

Because Macenko and SPCN are complicated methods that are difficult to
illustrate, a full explanation of the Reinhard method is used to illustrate
stain normalization. Before processing images using the Reinhard method,
white pixel masks are applied to both the target and source images. The
steps for performing Reinhard stain normalization are as follows: First load
the source and target images and convert both images to LAB color space.
Second, process each color channel using the formula in equation 3.1.

Îprc =
Isrc − µIsrc

σIsrc
· σItrg + µItrg (3.1)

The equation uses the following abbreviations: prc for processed, src for
source and trg for target. The source image is the image we want to nor-
malize, the target image is the reference image, and the processed image
is the resulting normalized image. µI represents the color mean and σI
represents the standard deviation of color in the respective image. µI and
σI are calculated from the target image colors after the mask to remove
white pixels has been applied. µI and σI are calculated for all pixel values.

The calculation is iterated three times, once for each color channel. After
the iterations are complete, the image is converted back to RGB color space
and can be evaluated and used for further image processing. The Reinhard
method is expected to introduce artifacts in the processed image in the
form of blurring [24]. An example of an image processed with the Reinhard
method, using all six reference images is shown in figure 3.5.
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3.3 Step 1: Stain normalization

Figure 3.5: The figure shows an original image, and the same image normalized
with the Reinhard method using the six reference images show in figure 3.4

3.3.3 Macenko stain normalization

The Macenko stain normalization uses stain vectors to extract the dominant
colors in the reference image. The colors are then separated from the struc-
ture to obtain stain intensities for the pixels. The stain intensities are then
used to normalize the colors of the target image. [15] In [24], the results
from using Macenko stain normalization are described as inconsistent and
deviating too much from the target image. Like in the Reinhard method,
white pixel masks are used for both target and source images. The detailed
steps in the Macenko methods are complicated and will not be covered here.
The method is well presented in [24]. An example of an image processed
with the Macenko method, using all six reference images is shown in figure
3.6.
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3.3 Step 1: Stain normalization

Figure 3.6: The figure shows an original image, and the same image normalized
with the Macenko method using the six reference images show in figure 3.4

3.3.4 Structure preserving colour normalization

SPCN aims to normalize stain images without distorting the underlying
structure. The method operates via the following steps: First read the
target and source image. Second, the image is represented as a stain density
map and a stain color appearance matrix [24]. Third, an unsupervised
stain separation method, i.e. non-negative matrix factorization is applied.
Step four is to transfer color from the source image to the target image
by combining the color appearance matrix of the source image with the
stain density map of the target image [24]. White pixels do not need to
be removed in SPCN, and no masks are used. An example of an image
processed with the SPCN method, using all six reference images is shown
in figure 3.7.
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3.3 Step 1: Stain normalization

Figure 3.7: The figure shows an original image, and the same image normalized
with the SPCN method using the six reference images show in figure 3.4

3.3.5 Masking tissue of tissue background

For both the Reinhard and Macenko color normalisation techniques, white
pixels should be removed during processing to get accurate results. An
example of how a mask used to remove white pixels looks is illustrated in
figure 3.8. Obtaining a white pixel mask was done using thresholding in
the Hue, Saturation and Intensity (HSI) colour space. After converting the
respective image to HSI space from RGB, each HSI component was thresh-
olded individually using parameters hue-min: 0, hue-max: 1, saturation-
min: 0, saturation-max: 0.2, intensity-min: 220, intensity-max: 255. The
HSI masks are then combined by setting the new mask value to one in areas
where at least one of the masks has a value of one. These parameters can be
found under saliency/cellularity-detection-thresholding in the documenta-
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3.3 Step 1: Stain normalization

tion for [1] on github. For both the Macenko and Reinhard methods, white
pixel masks were used for both the reference image and the input image.
With these masks applied, the normalization techniques will only affect the
foreground (tissue) parts of the image, and the amount of background will
not affect the colors of the processed image.

Figure 3.8: Example of a white pixel mask from a reference image

Figure 3.9 highlights the importance of using a mask to remove white pixels.
The background for the target image has been normalized when not apply-
ing masks, leading to a image with a pink background that is supposed to
be white.

Figure 3.9: Illustration of Reinhard normalization using the amyloidosis reference
image from figure 3.4, both with and without applying masks in the normalization
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3.4 Step 2: Image pre-processing and feature extraction

3.3.6 Evaluating stain normalization results

In this study we use different colour normalization techniques to minimize
color variation between images without affecting other properties of the
image. In order to know if this is the case, we will have to use some eval-
uation metrics to calculate the similarity of the original and the processed
image. The images should also be manually inspected for artifacts that may
form a pattern for the specific normalization technique. In [24], a compre-
hensive study for color normalization methods for histopathology images,
the following metrics were recommended for evaluating color normalization:
Structural Similarity index metric (SSIM), Quaternion Structural Similar-
ity index metric (QSSIM) and Pearson correlation coefficient (PCC). As the
main objective in this thesis is to evaluate the effect that the normalization
techniques lead to in clustering, only SSIM was implemented. This metric
is enough to give an idea of the structural similarity between a reference
image and a processed image.

3.4 Step 2: Image pre-processing and feature ex-
traction

After applying a stain normalization technique, the data is pre-processed
to get the correct dimensions to be fed to the convolutional neural network
(CNN). The CNN, NasNetLarge can use any symmetrical size bigger than
32 for inputs. A common input shape for CNNs was selected (224,224,3).
The size of the images vary and the images are therefore resized to the
appropriate size. The images are also converted to tensors, the input format
expected by the CNN architecture.

A pre-trained version of NasNetLarge is used for the feature extraction. The
reason that a pre-trained network was selected is because it takes a very
long time to train a large network like this, and requires a lot of data to
be able to get meaningful results. If a large network like this is trained on
a small data set it would likely overfit the training data, meaning it could
memorize the data rather than learning the necessary parameters to detect
similar data. If the model is overfitted, it would lose the ability to generalize
and classify yet unseen images. Since the model is not going to be trained,
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3.5 Step 3: Dimensionality reduction

all layers are set to non-trainable.

The CNN is used to extract features from all samples. Since the network
is only used as a feature extractor, the classification layer of the network
(FC) is removed, leaving a single feature vector per image as output from
the network. Using images as input, the network will find properties of the
image through a combination of different layers.

The CNN outputs a feature vector containing 4032 features for each im-
age. Before it is used in a clustering model, the dimensionality reduction
technique is applied.

3.5 Step 3: Dimensionality reduction

The output features from the convolutional neural network are high-dimensional
and can be reduced to lower dimensions by using a dimensionality reduction
technique. Based on [17], a technique called Uniform manifold projection
algorithm (UMAP) was used. This method projects the higher dimensional
data to a lower dimension. UMAP is a popular method for pre-processing
high dimensional data for both visualization and clustering [26]. The algo-
rithm uses the distance relation of high-dimensional data points to compute
a lower-dimensional representation of the data. Data points that are closely
related in the high-dimensional space will be projected with a correspond-
ing relation in the low-dimensional space. Another dimensionality reduction
technique, t-SNE was also implemented for evaluation, but was discarded
due to worse performance.

3.6 Step 4: Clustering

There are several ways to do clustering. In this thesis, Gaussian Mixture
Models (GMMs) are used. The project utilized GMM parameters identified
through systematic testing on a similar dataset in another project previously
conducted in the research group. Along with GMMs, k-means clustering was
also tested in the early stages of this project but discarded as the results
were far worse.
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3.6 Step 4: Clustering

Figure 3.10: Clustering, the left figure shows results from clustering and the
right figure shows true labels between two classes. The black/blue clusters are in
this case global sclerosis and the green/red clusters are everything else

3.6.1 Evaluating clustering results

Using a method called the Adjusted Rand Index (ARI), clustering agree-
ment can be calculated and used to validate clustering results [7]. The ARI
is used to measure the agreement between two clusters, and is adjusted to
account for cluster agreement that is introduced by chance. The ARI score
is measured from -1 to 1, where a value of one is a perfect agreement [7].
Values closer to one indicate high cluster agreement between two compared
clusters, and values closer to -1 indicate that the clusterings are completely
different [18].

RI =
TP + TN

TP + FP + TN + FN
(3.2)

Equation 3.2 describes the Rand Index (RI) when a cluster is compared
to the true labels. Abbreviations in the equation indicate the number of
elements that belongs to the following categories: TP for true positive, FP

27



3.6 Step 4: Clustering

for false positives, TN for true negatives, and FN for false negatives.

Equation 3.3 shows how to calculate the rand index between different clus-
ters, where i and j represents the different clusters and n is the number of
samples in each cluster [7].

RI =
∑
ij

(
nij

2

)
(3.3)

Equation 3.4 shows the adjusted RI, which is adjusted for chance. The max
RI is the highest possible cluster agreement, 1 [7].

ARI =
RI − Expected_RI

Max_RI − Expected_RI
(3.4)

The expected RI is calculated in equation 3.5, where i and j represents the
different clusters, N is the total number of samples in the dataset, and n is
the number of samples in each cluster [7].

Expected_RI =
∑(

ni
2

)
·
∑(nj

2

)(
N
2

) (3.5)
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Chapter 4

Implementation

All data processing in this project was done in Python3 considering the wide
range of data processing libraries that are available. The work was done
in JupyterLab notebooks which can give a good overview of variables and
useful illustrations between different steps of the process. Various plots were
used to evaluate that the steps were successful. The code for the plots can be
seen in the appendix section but will not be covered in the implementation
section. A lot of the code is dedicated to simplifying the process of running
the same experiment for the different normalization methods and reference
images. These section are also available in the appendix.

4.1 Available hardware

Some machine learning algorithms have the capability to utilize graphics
processing units (GPU) for calculations. TensorFlow does support GPU
processing, and this option was used for feature extraction. The GPU used
was a Nvidia RTX 2070 with 8 gigabytes of video memory. By using this
GPU for feature extraction, the processing time was effectively halved, as
well as freeing up the CPU for other tasks. The other resource intensive
task was stain normalization, which was done using the central processing
unit (CPU). The CPU used was an AMD Ryzen 5 2600X with 6 cores. At
100% CPU usage, each normalization of the whole dataset lasted around
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4.2 Image reading

one hour.

4.2 Image reading

Images from the dataset [4] are in the format .TIFF. The images were
read using the scikit-image function "io.imread" with three colour channels.
These images have variable sizes, and will therefore have to be resized later
on. This function reads the images as RGB image arrays, which can be
used by other packages for further processing.

4.3 Implementation of stain normalization techniques

For the three stain normalization techniques, the steps for implementation
will be different. The Reinhard and Macenko methods are implemented
in a similar fashion as they are both included in the same python library,
HistomicsTK [1] and both require white pixel masks to get accurate colour
processing. To create the masks, the images were converted to HSI color
space using a bespoke function that utilizes open-cv "inRange" which is a
thresholding function with thresholding values found in the documentation
of HistomicsTK. The following sections explain the specific color normal-
ization for each normalization method.

4.3.1 Reinhard implementation

For the Reinhard method, the function "histomicstk.preprocessing.color-
normalization.reinhard" was used. The function expects the following in-
puts: input image, color mean value and standard deviation for reference
image, and mask for the input image. The function returns the normalized
image. The mean and standard deviation for the reference image is calcu-
lated using another function from HistomicsTK, "htk.preprocessing.color-
conversion.lab-mean-std". This function uses the reference image and the
respective white pixel mask as input and outputs both mean and standard
deviation.
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4.3 Implementation of stain normalization techniques

4.3.2 Macenko implementation

The main function used for Macenko stain normalization is
"histomicstk.preprocessing.color-normalization.deconvolution-based
-normalization". This function requires the input image, a stain color ma-
trix for the reference image, stain unmixing routines and the white pixel
mask for the input image. The function returns the normalized image. The
stain unmixing routines are provided in the documentation of histomicsTK,
and the stain color matrix is calculeted with "histomicstk.preprocessing.color-
deconvolution.stain-unmixing-routine" function, which uses the inputs: stain
unmixing routines, reference image and the white pixel mask for the refer-
ence image and returns the stain color matrix.

4.3.3 SPCN implementation

SPCN is implemented quite differently than Reinhard and Macenko. In-
stead of using histomicsTK library, itk-spcn [5] is used for this method.
While this implementation was designed for use with H&E images, it was
still used in the current project, due to being the only publicly available
implementation of SPCN that was found in the literature. Since the im-
ages in the dataset used in this thesis is stained using PAS, the method
might not work as intended. The method was implemented anyway, and
the SSIM score will tell us about the performance. The method does not
require masks that remove white pixels. The itk toolkit has its own im-
age reading function, "itk.imread" that imports the image with RGB color
channels. The function "itk.structure-preserving-color-normalization-filter"
is used to normalize the images. It uses input image and reference image
and outputs the normalized image.

4.3.4 Pipeline for normalizing images

To normalize the whole dataset, two for loops are used to iterate through
the data. The first loop goes through all classes, and for each class lists
the directory and stores it in a variable used to obtain all filenames and
the length of the class. The second loop iterates through all images in the
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4.4 Loading the pre-trained CNN and extracting features

class. For each image in the class, the image is read, normalized with the
respective method and saved in a numpy array. After all the images are
normalized, which is a time consuming process, another loop is used to save
the images within folders that describe the class.

4.3.5 Structural similarity index metric

SSIM was implemented to compare all normalized images to the original. To
do this, a for loop going through each image was used. Calculating the SSIM
was done by using the "skimage.metrics.structural-similarity" function. The
function only uses the two images as input along with the number of color
channels and outputs the SSIM score. The SSIM score that is presented
in results is the mean SSIM for the whole dataset, calculated by using
"numpy.mean" on the array containing all the individual SSIM scores.

4.4 Loading the pre-trained CNN and extracting
features

Before loading the CNN, the input shape for images to the network was
specified to (224,224,3). the network can then be loaded by using the Ten-
sorFlow function
"keras.applications.NASNetLarge(weights=’imagenet’,include-top=False,
input-shape=input-shape). The model is loaded with the wights from pre-
training on imagenet and the option to not include the top means to leave
out the classification layer(s). The model is then set to non-trainable and
a pooling layer is added to the output by using the function
"keras.layers.GlobalAveragePooling2D". After these steps are finished, the
model is compiled and is now ready to be used as a feature extractor.

The features are extracted using a for loop that iterated through all images
in the dataset. For each image, the image is loaded, converted to an array
and dimensions are expanded. The image is now a tensor and is used as
input to the CNN, the CNN then returns the features for the image and is
stored in an array. The shape of the feature array is (9088, 4032).
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4.5 Clustering

4.5 Clustering

4.5.1 Dimensionality reduction implementation

Dimensionality reduction was implemented using the "umap-learn" python
library. To initialize the dimensionality reducer, the function "UMAP" is
used with inputs: number of neighbors, minimum distance, spread, initial-
ization, local connectivity, metric and number of components. The values
for the parameters can be seen in appendix B. The function returns a di-
mensionality reduction model. To use the model, the function "reducer-
umap.fit-transform(features)" is used. This returns dimensionality reduced
features with the shape (9088, 2), which can be visualized in a two dimen-
sional plot.

4.5.2 Clustering implementation

The Gaussian mixture model is initiated by using
"sklearn.mixture.GaussianMixture" with the following input parameters:
number of clusters, number of initializations and init parameters, these
values can also be seen in appendix B. The function returns a clustering
model, that is used to predict on the dimensionality reduced data by do-
ing "clustering-model.predict(DimRed-features). Returning a binary array
with predicted classes for each data point.

4.5.3 Adjusted Rand Index

To calculated the ARI, the function "sklearn.metrics.cluster.adjusted-rand-
score" is used. The function uses true labels and clustering results as input.
The true labels are found by simply iterating through all the filenames and
adding a one if the filename contains "global-sclerosis" and zero otherwise.
The function returns the ARI score.
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Chapter 5

Results

The clustering results of the three different stain normalization techniques
were compared to the results of the clustering without using stain normal-
ization. The ARI is found by comparing true labels to the clustering results.
The results are presented by clustering plots and the calculated ARI scores.
The SSIM was also calculated and is included in the tables, although the
score does not seem to have a close relation to clustering results. Figure
5.1 shows all ARI scores together, with all results for each reference image
grouped together. The results show variation in performance based on both
reference image and the applied stain normalization technique.
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Results

Figure 5.1: Bar plot of the ARI scores for the normalization methods and the
different reference images.
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5.1 No normalization

5.1 No normalization

With no stain normalization applied to the data, the ARI was calculated to
0.48143. Figure 5.2 shows the clustering results along with the true labels.

Figure 5.2: Clustering results for data with no stain normalization. The left
figure shows the cluster labels, where black is assumed to be global sclerosis. The
right figure shows the true labels, where blue is global sclerosis and red all other
classes.

5.2 Reinhard

In this subsection, the results obtained from using the Reinhard stain nor-
malization technique are presented. Figure 5.3 shows the clustering results
along with the true labels.
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5.2 Reinhard

Figure 5.3: Clustering results for data processed with Reinhard color normaliza-
tion. The left figure for each reference image shows the cluster labels, where black
is assumed to be global sclerosis. The right figure for each reference images shows
the true labels, where blue is global sclerosis and red all other classes.

Table 5.1: Comparison of SSIM and ARI values for Reinhard method

Category SSIM ARI
High 0.92278 0.66048
Low 0.98796 0.49095
Perfect 0.97606 0.56077
Amyloidosis 0.98242 0.52777
Global sclerosis 0.96930 0.28751
Necrosis 0.98310 0.64905
Mean values 0.97270 0.52942

Table 5.1 shows the ARI scores from clustering with Reinhard stain normal-
ization. The results are relatively consistent, with no scores close to 0. The
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5.3 Macenko

highest ARI score in the Reinhard method was obtained using the high in-
tensity reference image with a score of 0.66 and is actually the highest score
of all methods. The necrosis reference image comes in at a close second
with a score of 0.65. For the global sclerosis reference image, the ARI score
is reduced to 0.28 after applying stain normalization. This image might be
unfit as a reference image for stain normalization. Overall, the Reinhard
method contains both the highest single and mean ARI score, with a mean
score of 0.52942.

5.3 Macenko

In this subsection, the results obtained from using the Macenko stain nor-
malization technique are presented. Figure 5.4 shows the clustering results
along with the true labels.
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5.3 Macenko

Figure 5.4: Clustering results for data processed with Macenko color normaliza-
tion. The left figure for each reference image shows the cluster labels, where black
is assumed to be global sclerosis. The right figure for each reference images shows
the true labels, where blue is global sclerosis and red all other classes.

The results of the Macenko stain normalization technique are shown in table
5.2 and has the lowest mean ARI score out of the three techniques, with a
mean score of 0.39. This is largely due to a negative result in normalization
using the low intensity reference image. If we exclude this result, the mean
score of the remaining four will be 0.48. Three of the results are improve-
ments over the data without normalization, but they are not reaching the
high values seen in the Reinhard method. The result for the global sclerosis
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5.4 SPCN

Table 5.2: Comparison of SSIM and ARI values for Macenko method

Category SSIM ARI
High 0.99873 0.54373
Low 0.87605 -0.05712
Perfect 0.99857 0.52599
Amyloidosis 0.99873 0.51474
Global sclerosis 0.99718 0.28141
Necrosis 0.99839 0.52253
Mean values 0.97794 0.38854

reference image is very similar to the result in the Reinhard method.

5.4 SPCN

In this subsection, the results obtained from using structure preserving color
normalization are presented. Figure 5.5 shows the clustering results along
with the true labels.
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5.4 SPCN

Figure 5.5: Clustering results for data processed with structure preserving color
normalization. The left figure for each reference image shows the cluster labels,
where black is assumed to be global sclerosis. The right figure for each reference
images shows the true labels, where blue is global sclerosis and red all other classes.

Table 5.3: Comparison of SSIM and ARI values for SPCN method

Category SSIM ARI
High 0.97259 0.54416
Low 0.94221 0.56930
Perfect 0.96887 0.08878
Amyloidosis 0.95747 0.64681
Global sclerosis 0.97841 0.39621
Necrosis 0.97627 0.49553
Mean values 0.96597 0.45679
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5.4 SPCN

SPCN ARI results are shown in table 5.3 and have a mean value of 0.46,
largely due to a very low score of 0.09 with the perfect intensity reference
image. It is unexpected for this reference image to give such a low ARI
score. Looking at the clustering in figure 5.5 - Perfect intensity, the decision
boundary does not seem to be reflecting the features of global sclerosis. In
the figure, separation between the clusters can be seen and it would likely
only require minor adjustments to the clustering parameters in order to
get a better result. If we exclude this result, the new mean ARI for the
method is 0.53. If we assume the clustering using the perfect intensity
reference image was 0.53 or higher, then SPCN would actually be the best
overall performing method out of the three (with corresponding exclusion
of negative result in the Macenko method). Notable results from SPCN is
the ARI score from using the amyloidosis reference image, with a relatively
high score of 0.65.

Considering that the method is optimized for H&E stained images instead
of PAS stained images, the method holds up well. The experiments from
SPCN show the lowest mean SSIM scores, although by a tiny margin. It
was expected from the results of [24] that SPCN would give the highest
SSIM scores, indicating that the method is not entirely compatible with
PAS stained images.
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Chapter 6

Discussion

For the Macenko method with the low intensity reference image, and the
SPCN method with the perfect intensity reference image, the results were
poor. The same images lead to better results in other methods, as shown in
figure 5.1. This might not indicate bad reference images, rather than a "hit-
or-miss" for the clustering. The parameters for the clustering model was
after all not optimized for each stain normalization technique, and remained
unaltered for all experiments in order to not introduce bias. It is possible
that optimizing the clustering algorithm for each stain normalization would
improve performance, and more strongly highlight differences in the results.

When performing clustering, the clustering labels do not tell you which class
it is. If the clustering is successful, the data with each cluster label can be
checked to see which class it belongs to. In the case of the low ARI scores
pesented in 5, it would be fair to assume that the wrong cluster label has
been compared to the the true labels, however by inverting the clustering
results, the ARI score does not change. The ARI is adjusted for chance,
and will penalize these clusters for being too large [7].

The results from SPCN were worse than expected. Based on the results of
Roy et al. [24] it was expected to be the best performing stain normaliza-
tion method. It is possible that a SPCN implementation optimized for PAS
stained images would improve the results for SPCN. The results could also
indicate that the method was not well represented in these experiments due
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to the non-optimized parameters for clustering and dimensionality reduc-
tion.

The process of normalization, feature extraction, dimensionality reduction
and clustering is time consuming. Each experiment takes around two hours
of data processing using the hardware that was available. This process
is excluding the time to adjust algorithms for different reference images
and stain normalization techniques. A realistic number of experiments was
chosen based on the processing time. It seems that it would be beneficial
to perform more experiments in order to properly evaluate the methods.
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Chapter 7

Conclusions

Overall, the results for all methods show improved clustering results over
not using stain normalization, provided an appropriate reference image is
used. Using the ’high’, ’amyloidosis’ and ’necrosis’ reference image from 3.4,
the clustering results were improved in all stain normalization methods.

The figure 5.1 shows an overview of the results. Both the choice of stain
normalization method and reference image appears important for optimiz-
ing the unsupervised learning algorithm on this data. While normalization
with most of the reference images improved the clustering result, the im-
age of global sclerosis stands out as a bad reference image. There could be
multiple reasons for this, one theory is that the image does not accurately
represent the typical glomerulus contents. The scarring is replacing struc-
tures inside the glomerulus, these structures would contain different colors
from the ones that are present in this instance of global sclerosis.

Using this exact dataset [4], along with the same parameters for the algo-
rithm, the best option to improve clustering will be to use the Reinhard
method along with the high intensity reference image. Using this method,
the ARI score was increased from 0.48 to 0.66, an improvement of 37.5
percent.

Answering the question of whether stain normalization should be included in
an unsupervised learning algorithm for automatic classification of glomeruli,
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the results indicate that it should. All these stain normalization techniques
show improvement with at least four out of the six reference images. The
results indicate that both intensity and structure should be considered when
choosing a reference image.

Future work for this subject could include: More experiments, this can
be achieved by using more reference images for each stain normalization
technique. Fine tuning clustering parameters for each stain normalization
technique, this would likely improve performance and more strongly high-
light true potential of each technique. Fine tuning the CNN for glomeruli
images by further training the pre-trained model. In this case, it would be
ideal to either use a different dataset for training, or by using augmented
images extracted from the dataset.
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Appendix	A	-	Reinhard	stain	normalization

Functions

Single	image	example

import	histomicstk	as	htk
import	numpy	as	np
import	scipy	as	sp
import	skimage.io
import	skimage.measure
import	skimage.color
import	matplotlib.pyplot	as	plt
import	os
import	cv2
import	numpy	as	np

from	tqdm	import	tqdm
from	skimage.metrics	import	structural_similarity
from	skimage.transform	import	resize
from	matplotlib	import	pylab	as	plt
from	matplotlib.colors	import	ListedColormap
from	histomicstk.preprocessing.color_normalization	import	reinhard

def	hsi_mask(image):
				#HSI	threshold	values	for	masking	white	pixels
				#Source:	HistomicsTK/saliency/cellularity_detection_threshold
				hue_min,	hue_max	=	0,	1
				saturation_min,	saturation_max	=	0,	0.2
				intensity_min,	intensity_max	=	220,	255
				
				#Converting	image	from	RGB	to	HSI
				image_hsi	=	htk.preprocessing.color_conversion.rgb_to_hsi(image)
				
				#Applying	thresholds	to	HSI	image	to	obtain	white	pixel	masks	for	each	component:
				hue_mask	=	cv2.inRange(image_hsi[:,:,0],	hue_min,	hue_max)
				sat_mask	=	cv2.inRange(image_hsi[:,:,1],	saturation_min,	saturation_max)
				int_mask	=	cv2.inRange(image_hsi[:,:,2],	intensity_min,	intensity_max)

				#Converting	HSI	mask	components	to	boolean	arrays
				hue_mask	=	(hue_mask/255).astype(bool)
				sat_mask	=	(sat_mask/255).astype(bool)
				int_mask	=	(int_mask/255).astype(bool)
				
				#Combining	HSI	components	into	one	mask
				hsi_mask	=	(hue_mask	==	1)	&(sat_mask	==	1)	&	(int_mask	==	1)
				return	hsi_mask

def	Reinhard(image,image_mask,ref,ref_mask):
				#Calculating	color	mean	and	standard	deviation	for	the	reference	image	using	image	and	mask
				refMu,	refSgm	=	htk.preprocessing.color_conversion.lab_mean_std(ref,	mask_out=ref_mask)
				#Normalizing	image	using	the	reference	mean	and	std,	source	image	and	respective	white	pixel	mask
				imReinhard	=	htk.preprocessing.color_normalization.reinhard(im_src=image,target_mu=refMu,target_sigma=refSgm
				return	imReinhard

refIm_path	=	'path	to	reference	image'
testIm_path	=	'path	to	test	image'
refIm	=	skimage.io.imread(refIm_path)[:,:,:3]															#Reading	images	in	RGB	with	3	color	channels
testIm	=	skimage.io.imread(testIm_path)[:,:,:3]

ref_mask	=	hsi_mask(refIm)																																		#White	pixel	mask	for	reference	image
image_mask	=	hsi_mask(testIm)																															#White	pixel	mask	for	source	image
imReinhard	=	Reinhard(testIm,	image_mask,	refIm,	ref_mask)		#Normalizing	image	using	reinhard

plt.figure(figsize=(10,15),layout='tight')
plt.subplot(3,2,1)
plt.title('Target	image')
plt.axis('off')
plt.imshow(testIm)
plt.subplot(3,2,2)
plt.title('Mask	for	target	image')
plt.axis('off')
plt.imshow(image_mask)
plt.subplot(3,2,5)
plt.title('Processed	image')
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Variables

Normalize	all	images	(Time	demanding)

Making	folder	structure,	saving	normalized	images,	printing	10
samples	from	all	classes

plt.axis('off')
plt.imshow(imReinhard)
plt.subplot(3,2,3)
plt.title('Reference	image')
plt.axis('off')
plt.imshow(refIm)
plt.subplot(3,2,4)
plt.title('Mask	for	reference	image')
plt.axis('off')
plt.imshow(ref_mask)
plt.savefig('single_image_example.png')
plt.show()

Original_path	=	'Path	to	the	original	dataset'
OriginalData	=	os.listdir(Original_path)																									#List	of	classes	in	directory
glomeruli	=	os.listdir(Original_path+'/'+OriginalData[0])								#List	of	all	original	images
ClassesReinhard	=	os.listdir(Original_path)																						#Classes	for	reinhard	normalized	images
NormalizedReinhard	=	[]																																										#Initializing	array	to	store	normalized	images
original_images	=	[]																																													#Initializing	array	to	store	original	images

for	i	in	tqdm(range(len(OriginalData)):																																				#tqdm	makes	the	progress	bar
				glomeruli	=	os.listdir(Original_path+'/'+OriginalData[i])														#List	of	all	filenames	in	the	class
				categoty_path	=	Original_path+'/'+OriginalData[i]																						#String	to	class	directory
				NormalizedReinhard.append([])																																										#Class
				original_images.append([])																																													#Class
				
				for	j	in	range(len(glomeruli)):
								glomerulus	=	skimage.io.imread(categoty_path+'/'+glomeruli[j])					#Reading	one	image
								original_images[i].append(glomerulus)																														#Appending	the	original	image	for	later	use
								image_mask	=	hsi_mask(glomerulus)																																		#Mask	for	source	image
								imReinhard	=	Reinhard(glomerulus,	image_mask,	refIm,	ref_mask)					#Normalize	image
						
								NormalizedReinhard[i].append(imReinhard)																											#Storing	normalized	image	in	array

save_dir	=	'Path	to	the	directory	for	normalized	images'
os.chdir(save_dir)
for	i	in	range(len(ClassesReinhard)):
				os.chdir(save_dir)
				print(ClassesReinhard[i]
				os.mkdir(ClassesReinhard[i])
				os.chdir(ClassesReinhard[i])
				filenames	=	os.listdir(Original_path+'/'+ClassesReinhard[i])
				for	j	in	range(len(NormalizedReinhard[i])):
								filename	=	filenames[j]
								img	=	NormalizedReinhard[i][j]
								skimage.io.imsave(filename,	img)	#Saving	the	image	in	the	correct	folder
								
				glomeruli	=	os.listdir(Original_path+'/'+OriginalData[i])
				categoty_path	=	Original_path+'/'+OriginalData[i]
				
				print('Normalized	row	1,	Original	row	2')
				plt.figure(figsize=(42,6),	layout='tight')
				for	k	in	range(9):
								plt.subplot(2,9,k+1)
								plt.imshow(NormalizedReinhard[i][k])
								plt.axis('off')
								
				plt.figure(figsize=(43,6),	layout='tight')
				for	s	in	range(9):
								glomerulus	=	skimage.io.imread(categoty_path+'/'+glomeruli[s])
								plt.subplot(2,9,s+10)
								plt.imshow(glomerulus)
								plt.axis('off')
								
				plt.show()

org_dir	=	'Path	to	original	dataset'
prc_dir	=	'Path	to	normalized	dataset'
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struc_sim	=	[]									#Structural	similarity	index	metric	score	list
ssim_trace	=	[]								#Structural	similarity	index	metric	score	array	(in	case	we	want	to	match	to	data)
os.chdir(save_dir)
for	i	in	range(len(ClassesReinhard)):
				os.chdir(prc_dir)
				os.chdir(ClassesReinhard[i])
				filenames	=	os.listdir(org_dir+'/'+ClassesReinhard[i])
				ssim_trace.append([])
				for	j	in	tqdm(range(len(NormalizedReinhard[i]))):
								filename	=	filenames[j]
								prc_img	=	NormalizedReinhard[i][j]
								org_img	=	original_images[i][j]
								
								struc_sim.append(structural_similarity(org_img,	prc_img,	channel_axis=2))
								ssim_trace.append(structural_similarity(org_img,	prc_img,	channel_axis=2))

mean_ssim	=	np.mean(struc_sim)
print(mean_ssim)	#The	mean	SSIM	for	the	entire	dataset

Loading	[MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

III



Appendix	B	-	Clustering

Importing	libraries

Choose	experiment

Activate	GPU

Load	pre-trained	CNN

Setting	parameters	for	UMAP	and	GMM

import	os
import	tensorflow	as	tf
import	numpy	as	np
import	pandas	as	pd
import	sklearn
import	matplotlib.pyplot	as	plt
import	cv2
import	umap
import	tqdm

from	keras.applications.nasnet	import	NASNetLarge,	preprocess_input
from	sklearn.datasets	import	load_digits
from	sklearn.preprocessing	import	StandardScaler
from	tensorflow	import	keras
from	sklearn.manifold	import	TSNE
from	tensorflow.keras.preprocessing.image	import	ImageDataGenerator,	load_img
from	tensorflow.keras.preprocessing	import	image
from	tqdm	import	tqdm
from	sklearn.mixture	import	GaussianMixture
from	sklearn.cluster	import	KMeans
from	sklearn.metrics.cluster	import	adjusted_rand_score

Macenko	=	['Macenko_high_intensity',	'Macenko_low_intensity',	'Macenko_perfect_intensity',	'Macenko_Amyloidosis'
Reinhard	=	['Reinhard_high_intensity',	'Reinhard_low_intensity',	'Reinhard_perfect_intensity',	'Reinhard_Amyloidosis'
SPCN	=	['SPCN_high_intensity',	'SPCN_low_intensity',	'SPCN_perfect_intensity',	'SPCN_Amyloidosis',	'SPCN_Global_Sclerosis'
Original	=	'KlassifikationPorubsky_Anonymized'

choose_experiment	=	Original
filepath	=	'path	to	folder	containng	all	datasets'	+	choose_experiment
clustering_file	=	'clustering_'	+	choose_experiment
feature_file	=	'features_'	+	choose_experiment
figure_file	=	'figures_'	+	choose_experiment
print('Clustering	for	images	normalized	with	reference:	',	choose_experiment)
print('Features	will	be	saved	at:	'	+	filepath	+	'/'	+	feature_file)
print('Figures	will	be	saved	at:	'	+	filepath	+	'/'	+	figure_file)
print('Clustering	results	will	be	saved	at:	'	+	filepath	+	'/'	+	clustering_file)

physical_devices	=	tf.config.list_physical_devices('GPU')		#Fetch	data	about	available	hardware
print("Num	GPUs	Available:	",len(physical_devices))
os.environ['CUDA_VISIBLE_DEVICES']='0'																					#Selecting	GPU	to	use
config=tf.compat.v1.ConfigProto()
session	=	tf.compat.v1.Session(config=config)		

input_shape	=	(224,	224,	3)
base_model	=	tf.keras.applications.NASNetLarge(weights='imagenet',include_top=False,	input_shape=input_shape)	#Download	model
base_model.trainable	=	False
out	=	tf.keras.layers.GlobalAveragePooling2D()(base_model.output)
model	=	keras.Model(inputs=base_model.input,	outputs=out)
model.compile()
print(len(model.layers))
model.summary()

#Clustering	and	umap	parameters	provided	by	Dr.	Hrafn	Weishaupt
clusters	=	2
neighbors	=	30
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Feature	extraction

Alternative,	load	features	from	file

Dimensionality	reduction	and	clustering

True	labels	for	global	sclerosis	and	Adjusted	Rand	Index

Clustering	results,	filenames	and	true	labels	saved	to	file

mDist	=	0.1
spread	=	9
local_con	=	9
metric	=	'manhattan'
init	=	'spectral'

#Needed	for	feature	extraction
filenames	=	os.listdir(filepath+'/'+'All_classes')
features	=	np.empty((len(filenames),	4032))

#Skip	if	loading	features	from	file
for	i	in	tqdm(range(len(filenames))):	#tqdm	gives	loading	bar
				img	=	load_img(filepath	+	'/All_classes/'	+	filenames[i].replace('"',''),	target_size=(224,224))	#Load	image
				img_array	=	image.img_to_array(img)	#Convert	image	to	array
				img_tensor	=	np.expand_dims(img_array,	axis=0)	#Expand	dims	to	get	tensor
				input_img	=	tf.keras.applications.nasnet.preprocess_input(img_tensor,	data_format=None)	#feature	extraction
				features[i,:]	=	(model(input_img))	#Store	features	in	array
				
#To	save	features	to	file
os.chdir(filepath)
np.save(feature_file,	features,	allow_pickle=True)

#How	to	load	features
os.chdir(filepath)
features	=	np.load(feature_file+'.npy')
np.save(feature_file,	features,	allow_pickle=True)

#Making	the	UMAP	dimensionality	reducer
reducer_umap	=	umap.UMAP(n_neighbors=neighbors,	min_dist	=	mDist,	spread	=	spread,	init	=	init,
																								local_connectivity	=	local_con,	metric	=	metric,n_components=clusters)	#Initialize	dimensionality	reduction	model
DimRed_features	=	reducer_umap.fit_transform(features)	#Fit	the	model	to	data

#Fit	a	gaussian	mixture	model	to	the	data
Clustering_model	=	GaussianMixture(n_components=clusters,	n_init=100,	init_params	=	'k-means++').fit(DimRed_features

#Using	the	clustering	model	to	predict	on	the	data
clustered_data	=	Clustering_model.predict(DimRed_features)

TrueLabels	=	[]
all_labels	=	[]
for	i	in	range(len(filenames)):
				cl	=	filenames[i].split('_')[1]
				if	(cl	==	'Global-Sclerosis'):
								TrueLabels.append(1)
				else:
								TrueLabels.append(0)
				temp	=	(filenames[i].split('_')[0])
				all_labels.append(int(temp.split('n')[1]))
																										
ARI	=	adjusted_rand_score(TrueLabels,	clustered_data)
print('Adjusted	Rand	Index	result:	'	+	str(ARI))

d	=	{'Filenames':	filenames,	'Clustering	results':	clustered_data,	'True	labels':	TrueLabels}
df	=	pd.DataFrame(data=d)	#Puts	cluster	labels	and	true	labels	in	dataframe
os.chdir(filepath)
df.to_csv(clustering_file+'.csv')	#save	dataframe	to	file

cluster_res	=	df['Clustering	results']
true_labels	=	df['True	labels']
CS	=	[]
TL	=	[]
for	i	in	range(len(cluster_res)):
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Visualization	of	clustering	and	true	labels

				CS.append(cluster_res[i])
				
				TL.append(true_labels[i])

plt.figure(figsize=(10,6))
plt.subplot(1,2,1)
plt.title('Clustering	results')
plt.scatter(DimRed_features[:,0],	DimRed_features[:,1],	c=CS,	cmap='Accent',	s=5)
plt.axis('off')
plt.subplot(1,2,2)
plt.title('True	labels')
plt.scatter(DimRed_features[:,0],	DimRed_features[:,1],	c=TL,	cmap='Spectral',	s=5)
plt.axis('off')
plt.savefig(figure_file+'.png')
plt.show()
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