
FACULTY OF SCIENCE AND TECHNOLOGY

MASTER THESIS

Study program/specialisation: Spring 2023

Masters of Science and Engineering / Open

Robot Technology and Signal Processing

Author: Sander André Søndeland

Course responsible: Aksel Hiort

Supervisor: Aksel Hiort

Title: Data Driven Model Discovery - Petroleum application

Credits: 30

Keywords: Pages: 63

SINDy, DISKOS, Data Driven Model + appendix, bibliography: 63

Stavanger 15. juni 2023

Abstract

The SINDy algorithm is a data driven algorithm that discovers dynamical system

in data that evolves over time. The method can be utilized for every dataset that

evolves over time. In this study we have looked the Lorenz system, covid-19 data and

production data from two different oil fields on the Norwegian shelf.

The aim of the study was to investigate if SINDy can be used on the well data to extract

sparse and suitable well models. The complexity of the models are decided by the user

when using prior knowledge to choose the candidate function. If you have limited

knowledge about the system a handful of different models are tested and parameters

are optimized to fit the data.

Noisy and spiky data are an issue for the SINDy method due to its use of the differenti-

ated data. Therefor filtering is needed on production data to minimize the large spikes

and smooth out the data.

The SINDy algorithm gives good results to the production data using polynomials to

describe the data. The results are good for data from Draugen and Statfjord Øst. And

the results from the covid-19 data are promising.

i

List of Figures

2.1 Lorenz system . 3

2.2 Origianl Lorenz system and SINDy approximation. 9

2.3 Schematic of SINDy algorithm [17]. 9

2.4 Overview of the PySINDy package [11]. 10

2.5 Flow chart [11]. 11

3.1 Covid data from Afghanistan. 13

3.2 Diskos organization map [1]. 14

3.3 Statfjord C-platform [9]. 14

3.4 Statfjord Øst field. Map taken from Norsk Petroleum. https://www.

norskpetroleum.no/interaktivt-kart-og-arkiv/interaktivt-kart/.

(accessed: 14.05.23). 15

3.5 Model of water injection of a well [6]. 16

3.6 Production data from Statfjord Øst. 16

3.7 Draugen platform [12]. 17

3.8 Draugen field. Map taken from Norsk Petroleum. https://www.norskpetroleum.

no/interaktivt-kart-og-arkiv/interaktivt-kart/. (accessed: 14.05.23) 17

3.9 Production data from Draugen. 18

4.1 Flowchart for the Lorenz system. 25

4.2 Derivaitve with smoothing using the kalman method on data from

Draugen. 29

4.3 Derivaitve with smoothing using the finite difference method on data

from Draugen. 29

ii

https://www.norskpetroleum.no/interaktivt-kart-og-arkiv/interaktivt-kart/
https://www.norskpetroleum.no/interaktivt-kart-og-arkiv/interaktivt-kart/
https://www.norskpetroleum.no/interaktivt-kart-og-arkiv/interaktivt-kart/
https://www.norskpetroleum.no/interaktivt-kart-og-arkiv/interaktivt-kart/

iii LIST OF FIGURES

5.1 Covid data from Afghanistan. 34

5.2 Covid results using data from Afghanistan. 35

5.3 Distance between the three wells during the tests for Statfjord Øst. Map

taken from Norwegian Petroleum Directorade. https://factmaps.npd.

no/factmaps/3_0/. (accessed: 22.05.23). 37

5.4 The result for x-data . 39

5.5 The result for y-data . 39

5.6 The result for z-data . 40

5.7 The result for x-data . 42

5.8 The result for y-data . 42

5.9 The result for z-data . 43

5.10 The result for x-data . 45

5.11 The result for y-data . 46

5.12 The result for z-data . 46

5.13 Distance between the three wells during the tests on Draugen. Map

taken from Norwegian Petroleum Directorade. https://factmaps.npd.

no/factmaps/3_0/. (accessed: 22.05.23). 47

5.14 The result for x-data . 49

5.15 The result for y-data . 49

5.16 The result for z-data . 50

5.17 The result for x-data . 52

5.18 The result for y-data . 52

5.19 The result for z-data . 53

5.20 Distance between the wells during this test on Draugen. Map taken

from Norwegian Petroleum Directorade. https://factmaps.npd.no/

factmaps/3_0/. (accessed: 22.05.23). 54

5.21 The result for x-data . 56

5.22 The result for y-data . 56

5.23 The result for z-data . 57

5.24 The data used in this test. 57

5.25 The result for x-data . 59

5.26 The result for y-data . 59

iii

https://factmaps.npd.no/factmaps/3_0/
https://factmaps.npd.no/factmaps/3_0/
https://factmaps.npd.no/factmaps/3_0/
https://factmaps.npd.no/factmaps/3_0/
https://factmaps.npd.no/factmaps/3_0/
https://factmaps.npd.no/factmaps/3_0/

iv LIST OF FIGURES

5.27 The result for z-data . 60

iv

Listings

4.1 Imported packages. 20

4.2 Derivative-function . 21

4.3 Data generator for Lorenz System . 21

4.4 The library generator. 22

4.5 The least-square algorithm to solve equation 2.14. 22

4.6 This algorithm is adding sparsity to the Ξ-matrix. 23

4.7 This is the which computes the approximated u from the SINDy method. 23

4.8 This function returns the right hand side of equation 2.14. 24

4.9 Code for plotting the approximation in 3D. 24

4.10 Packages that were imported. 26

4.11 Code for downloading the dataset from Github. 26

4.12 Getting data for a specific well and adding oil and gas production together. 27

4.13 Using datetime to get the timeinterval of the production. 27

4.14 Median filter that was used for all production data to smooth out the data. 27

4.15 Defining t and t np to use in the derivation function afterwards. 27

4.16 Derivation with smoothing using the kalman method. 28

4.17 Derivation with smoothing using the finite difference method. 28

4.18 Creating a matrix for the filtered data. 30

4.19 New library function with sine cosine and exponential functions. 30

4.20 These functions finds the Ξ-matrix and then add sparsity. 31

i

Contents

Abstract i

List of Figures ii

Acknowledgements iv

1 Introduction 1

2 Theory 2

2.1 SINDy . 2

2.2 PySINDy - A robust Python package for SINDy 10

3 Construction 12

3.1 SINDy . 12

3.2 Lorenz equation . 12

3.3 Covid 19 example . 12

3.4 Petroleum data . 13

3.4.1 Statfjord Øst . 13

3.4.2 Draugen . 16

4 Implementation 19

4.1 Implementation used for the Lorenz system 19

4.2 Implementation for Draugen and Statfjord Øst 25

5 Results 33

5.1 Covid example . 33

ii

iii CONTENTS

5.2 Statfjord Øst . 36

5.2.1 Test 1 . 37

5.2.2 Test 2 . 40

5.2.3 Test 3 . 43

5.3 Draugen . 47

5.3.1 Test 1 . 48

5.3.2 Test 2 . 50

5.3.3 Test 3 . 53

5.3.4 Test 4 . 58

6 Conclusion 61

6.1 Future work . 61

Bibliography 63

A Appendix A 65

A.1 Code for Lorenz system . 65

A.2 Code for Covid-19 . 72

A.3 Code for SINDy on Statfjord Øst . 80

A.4 Code for SINDy on Draugen . 97

A.5 Code for PySINDy on Draugen . 114

A.6 Master poster . 126

iii

Acknowledgements

This master thesis will conclude my master’s degree in Robot Technology and Signal

Processing at the Univeristy of Stavanger. The thesis is proposed by Aksel Hiorth, and

the thesis has been a working process from January 2023 to June 2023.

I want to express gratitude towards my thesis supervisor, Aksel Hiorth, for the excelent

guidance and support offered during the work of this master thesis from the very start

until the end of the thesis study.

Thanks to my family and girlfriend for the continued encouragement and support

throughout my Master’s degree.

Stavanger, 15th June 2023

Sander André Søndeland

iv

Chapter 1

Introduction

Using dynamical system as a mathematical framework to describe how the world

around us evolves in time is a big task. By utilizing how data evolves over time we can

discover and approximate a model of its underlying dynamical system. Data-driven

dynamical systems is a rapidly evolving field, and with the influence of big data and

machine learning has had its renaissance these last years [14, p. 253].

The paper ”Discovering governing equations from data by sparse identification of

nonlinear dynamical systems” was first published in 2016 which was the first paper

about the SINDy method [17]. Prior knowledge of the system or a handful of candidate

functions are used to form a candidate model which describes how the data evolves in

time [14, p. 275]. The SINDy algorithm has been utilized to identify system of high

dimensional dynamical systems, for example fluid flows [14, p. 278].

The data used in this study was downloaded from Diskos which is a national data

repository for exploration and production related data shared by the Authorities and oil

companies [3]. In 1995 the Norwegian Petroleum Directorate (NPD) and oil companies

represented on the Norwegian shelf designed the Diskos National Data Repository [3].

This contain three different data types which is seismic and navigational data, well

data and production data [3].

For this study the production data has been utilized with the SINDy algorithm to

discover its underlying dynamical system.

1

Chapter 2

Theory

Data-driven model discovery is a developing field, and one of these techniques are

sparse identification of nonlinear dynamics (SINDy). In recent time there has been a

push towrads parsimonious modelling such as the SINDy method [10]. It which was

introduced in 2016 by Steve L. Brunton, Joshua L. Proctor and J. Nathan Kutz [17].

A parsimonius model are trying to accomplish high level or prediction with as few

predictor variable as possible [10]. These types of models want to make an approach as

easy as possible while accomplishing the precision that is needed for it’s purpose.

2.1 SINDy

The SINDy algorithm are handed a set of data, and the algorithm gives back a set of

dynamcial equations that describes how the data evolves in time. But how does this

actually work?

The definition of a dynamical system is ”a system whose state evolves with time over

a state space according to a fixed rule.” [8]. We can consider the form of a dynamical

system as equation (2.1) below [17].

d
dt

x = f (x). (2.1)

The Lorenz system can be used to explain how the SINDy algorithm works, and utilize

2

3 CHAPTER 2. THEORY

it to gather data and discover the underlying dynamical equations of the system [18].

The Lorenz equations can be described by these three equations below:

ẋ = σ(y − x), (2.2)

ẏ = x(ρ − z)− y, (2.3)

ż = xy − βz. (2.4)

Here we will put σ = 10, ρ = 28 and β = 8/3. The Lorenz system with these

parameters are shown in figure 2.1. This system is a well-studied dynamical system,

and are known to be one of the simplest systems that exhibit chaos [14, p. 254]. In

figure 2.1 there is a trajectory of the Lorenz system with initial conditions of x, y and z

value has been set to -8, 8 and 27.

Figure 2.1: Lorenz system

Data for the Lorenz system is created in python, and are generated with no noise in

this practical example for the SINDy algorithm. The data that are collected, or as in

3

4 CHAPTER 2. THEORY

this example generated, are arranged into a matrix X. Which is an mxn-sized matrix for

a n dimensional system, and m is the number of time evolving data collected and are

decided by frequency and the time interval the data is collected. The general matrix is

shown in matrix (2.5).

X =


XT(t1)

XT(t2)
...

XT(tm)

 =


X1(t1) X2(t1) . . . Xn(t1)

X1(t2) X2(t2) . . . Xn(t2)
...

...

X1(tm) X2(tm) . . . Xn(tm)

 . (2.5)

X1(t1) is the value for the first timestep for n=1. X2(t1) is then the value for the first

timestep but for n=2. The first contains all the values for the first timestep, and the next

contains values for the second timestep and this goes up to timestep m, which is the

last timestep. The Lorenz system is a three dimensional system which means that n

equals to 3. The data has been called x, y and z instead of x1, x2 and x3. Matrix (2.6)

gives an example of how the Lorenz data are arranged into a matrix with x, y and z

values.

X =


X(t1) Y(t1) Z(t1)

X(t2) Y(t2) Z(t2)
...

...
...

X(tm) Y(tm) Z(tm)

 . (2.6)

There is no limit in the dimensional size of the matrix, but for the Lorenz example the

matrix is a three dimensional matrix.

For the simplicity and to match the python code for the Lorenz system, the data are

collected as x, y and z instead of x1, x2 and x3 such matrix (2.6) above describes. This is

a three-dimensional matrix which means the matrix has three columns for x, y and z.

Then the general matrix will look like matrix (2.6), and the one for this example appear

like matrix (2.7). The size of the matrix is 100 000 x 3. The timestep starts from 0.001

and the final timestep is 100, and the intervalsize are 0.001.

4

5 CHAPTER 2. THEORY

X =


−8.00 8.00 27.00

−7.84 7.98 26.86
...

...
...

−7.19 −11.76 16.60

 . (2.7)

Then the data are differentiated to find ẋ, ẏ and ż and arrange into a matrix called Ẋ,

just like matrix 2.7. There is a few different ways to find the derivative matrix, Ẋ, but

total variation regularization is recommenden because it denoise the derivative, and to

avoid differentiation error [17]. This will work quite well, but another options are to

filter both X and Ẋ [17].

For the Lorenz system the derivative package has been utilized to import the dxdt

function. Then the finite difference method has been used to find the derivatives.

Because the data has zero noise this method doesn’t need any filtering, but for a

practical example it could be benefical to filter the data during the derivation [17].

Ẋ =


ẊT

(t1)

ẊT
(t2)
...

ẊT
(tm)

 =


Ẋ1(t1) Ẋ2(t1) . . . Ẋn(t1)

Ẋ1(t2) Ẋ2(t2) . . . Ẋn(t2)
...

...

Ẋ1(tm) Ẋ2(tm) . . . Ẋn(tm)

 (2.8)

In matrix (2.8) Ẋ1(t1) is the first derivative where n equals to 1. Then the value below

will be the second derivative for n equals to 1. The second column is the derivatives

where n is equal to 2. For the Lorenz system the differentiated matrix Ẋ will look like

this:

Ẋ =


Ẋ(t1) Ẏ(t1) Ż(t1)

Ẋ(t2) Ẏ(t2) Ż(t2)
...

...
...

Ẋ(tm) Ẏ(tm) Ż(tm)

 . (2.9)

And after the values have been found the differentiated matrix will look like this

5

6 CHAPTER 2. THEORY

Ẋ =


159.12 −16.44 −135.11

158.24 −16.86 −134.23
...

...
...

−45.50 −70.16 39.84

 . (2.10)

The next step in the SINDy algorithm is to create a library which contains a list of

candidate nonlinear terms. These library are only limited by one’s imagination, and it

may consist of constant, polynomials of dth-degree and trigonometric terms [17]. A

general library, Θ(X) can be written as:

Θ(X) = [1 x x2 ... xd ... sin(X) ...]. (2.11)

For the Lorenz example a library with polynomials up to 5th order has been chosen,

and the size of this matrix will depend on the what the library contains and the size of

the data set. A library with polynomials of second degree will have less columns than

a library with fifth degree polynomials. The amount of rows will stay the same as long

as there is no change in the data set. A library with second degree polynomials will

look like this:

Θ(X) = [1 x y z x2 xy xz y2 yz z2], (2.12)

Θ(X) =


...

...
...

...
...

...
...

...
...

1 x y z x2 xy xz y2 . . . z2

...
...

...
...

...
...

...
...

...

 . (2.13)

Because each column of Θ(X) represent x, y and z. Then the we can set up the equation

for the algorithm to solve:

Ẋ = Θ(X)Ξ. (2.14)

First equation (2.14) has to be solved, where Ξ is the unknown. Ξ is a coefficient matrix

that chooses the active terms in the library. It’s from this matrix we can understand

6

7 CHAPTER 2. THEORY

the solution that SINDy suggests, and how the dynamical system can be described.

Before it’s possible to understand we need to solve equation (2.14). There’s different

ways to solve the equation but the book suggest two different algoritms, the LASSO

algorithm or the sequential thresholded least-squares (STLS) algorithm [14, p. 276].

In the Lorenz example the sequential thresholded least-squares algorithm has been

utilized to find the Ξ-matrix. The next step is to add sparsity to the Ξ-matrix which is

an optimalization problem.

The equation for this optimixation problem is showed in equation 2.10, and when

this is solved we get the sparse regression. We are asking to minimize the difference

between right hand side and left hand side in (2.14).

After the matrix with the differentiated data, matrix (2.10), we can find the Ξ-matrix

using the least-squares algorithm and solve equation (2.14). To promote sparsity to the

solution we will solve the following optimization problem:

Ξ = argminΞ∥Ẋ − Θ(X)Ξ∥2 + λ∥Ξ∥1. (2.15)

Where λ is a sparsity-promoting knob [14, p. 276] which desides how sparse the

Ξ-matrix should be [14, p. 276].

When the optimization problem has been solved we get a sparse Ξ-matrix that describes

the underlying dynamical system of the data. For the Lorenz system our Ξ-matrix

turned out like this:

7

8 CHAPTER 2. THEORY

Ξ =



0 0 0

−10 27.8 0

10 −1.0 0

0 0 −2.7

0 0 0

0 0 1

0 −1 0

0 0 0

0 0 0

0 0 0



. (2.16)

From matrix (2.16) ẋ, ẏ and ż can be found, and then it’s possible to compare what

SINDy found with equation (2.2), (2.3) and (2.4) from the start. From the Ξ-matrix

(2.16) the equations the SINDy algorithm suggested can be written as:

ẋ = −10x + 10y = 10(y − x), (2.17)

ẏ = 27.8x − y − xz ≈ x(28 − z)− y, (2.18)

ż = −2.7y + xy ≈ xy − 8/3z. (2.19)

The results from the SINDy algorithm for the Lorenz system is good and it’s clear to

see that the trajectory of the systems are really similar.

8

9 CHAPTER 2. THEORY

Figure 2.2: Origianl Lorenz system and SINDy approximation.

To get a view over everything a schematic view of the SINDy method demonstrated on

the Lorenz equations is illustrated in figure 2.3.

Figure 2.3: Schematic of SINDy algorithm [17].

9

10 CHAPTER 2. THEORY

2.2 PySINDy - A robust Python package for SINDy

This package has been used to compare the results between the implemented SINDy

and the package to see if the results are similar.

The PySINDy package is an open source python package made to discover governing

dynamical systems models from data, just like the SINDy algorithm. This package is

made for researchers and practitioners alike, which makes it accessible to inexperienced

practitioners while also usefull for more advanced users. PySINDy includes a number

of different options, which means it can be heavily customized to your needs [16].

In 2022 there was a major update to the PySINDy package which implemented several

advanced feature that will enable the discovery of more general differential equations

from noisy and limited data [11]. They have extended the library of candidate terms for

indetification of actuated systems, partial differential equations and implicit differential

equations. To enforce and provide inequality constrains and stability a range of new

optimization algorithms has also been added [11]. In figure 2.4 there is a summary of

what features the PySINDy package has.

Figure 2.4: Overview of the PySINDy package [11].

In figure 2.5 there is a flow chart of how a user systematically take the right decisions

for a specific scientific task [11].

10

11 CHAPTER 2. THEORY

Figure 2.5: Flow chart [11].

11

Chapter 3

Construction

3.1 SINDy

To implement a toy example for the SINDy method is an important step for the process

and a good way to start the project. The first construction of the SINDy algorithm was

to recreate the Lorenz system [18]. One using the integrated SINDy method in pySindy

and one where the users defines and creates everything.

3.2 Lorenz equation

The data is generated in python, and has no noise. The data has been generated using

equation (2.2), (2.3) and (2.4). So this is a theoretical experiment because of the lack of

noisy data [18]. Figure 2.1 shows the trajectory of the generated data.

3.3 Covid 19 example

The data for the Covid-19 example has been collected from github and this link, https:

//github.com/CSSEGISandData/COVID-19. The data are called ”COVID-19 Data Repos-

itory by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins

University”. They have gathered the data from different sources for example the

Worlds Health Organization (WHO) [7]. Figure 3.1 shows the data of infected people

12

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19

13 CHAPTER 3. CONSTRUCTION

in Afghanistan.

Figure 3.1: Covid data from Afghanistan.

3.4 Petroleum data

All the data used in this experiment for the platforms are downloaded from the

Diskos National Data Repository (NDR) which is Norway’s national data repository

for petroleum data [1]. The Norwegian Petroleum Directorate and oil companies on

the Norwegian continent has collaborated to create Diskos, and NPD leads the joint

venture. The data that are stored in the NDR are seismic data, well data and production

data [1]. The data that has been used for this project is the production data. The data

repository this data has been gathered has been closed from 1. June, and Diskos 2.0

went live 17. April [2].

3.4.1 Statfjord Øst

Statfjord Øst is an oil field that was approved for production the 11. December 1990.

The production then started the 24. September in 1994, and have been in production

since. The companies that have the rights of this field currently are Equinor, Petoro,

Vår Energi, INPEX Idemitsu and Wintershall Dea. The current operating company

13

14 CHAPTER 3. CONSTRUCTION

Figure 3.2: Diskos organization map [1].

are Equinor [5]. In 2020 there was a big investment of NOK 3 billion to extend the

production of Statfjord Øst towards 2040, and the recovery rate has increased from

56 percent to 62 percent [9]. The wells will be drilled in 2022-2024, and the extended

production will start in 2024 [9].

Figure 3.3: Statfjord C-platform [9].

The oil field are located in the northern part of the North Sea, and Statfjord Øst is seven

kilometers north-east from Statfjord. The water depth are between 150 and 190 meter

[5]. The field has been built out with two seabed frameworks for production and one

for water injection which is connected to the Statfjord C facility. In addition to this

there has been drilled two productions well from Statfjord C as well [5]. In 2024 there

will be an increased production from Statfjord Øst to the Statfjord C platform according

to new investments from December 2022 [9].

The depth of the reservoir are 2400 meters, and the oil are from sandstone of Middle

14

15 CHAPTER 3. CONSTRUCTION

Jurassic age in the Brent group. The well flow goes in two pipelines to Statfjord C

facility where it is processed, stored and exported. Tankers come and collect the oil

while the gas is exported through the Tampen Link and Far North Liquids and Gas

System (FLAGS) pipeline to the UK [5]. In figure 3.4 below, there is a image where

Statfjord Øst oil field is located on the map

Figure 3.4: Statfjord Øst field. Map taken from Norsk Petroleum. https://www.

norskpetroleum.no/interaktivt-kart-og-arkiv/interaktivt-kart/. (accessed:

14.05.23).

Statfjord Øst is provided with three sub-sea templates, K, L and M. The K structure is

for water injection, while the other two handles oil production. It has been common to

utilize water injection in oil fields and in 2019, 41 out of 78 fields on the Norwegian

Continental Shelf (NCS) utilizes it. Water injection is used to pressure maintenance

of the reservoir and displacing the oil from injection towards production wells [6].

On Statfjord Øst there are 20 registered production wells and four water injection

wells registered. First it produced with water injection, but has changed to pressure

depletion in later years [5].

15

https://www.norskpetroleum.no/interaktivt-kart-og-arkiv/interaktivt-kart/
https://www.norskpetroleum.no/interaktivt-kart-og-arkiv/interaktivt-kart/

16 CHAPTER 3. CONSTRUCTION

Figure 3.5: Model of water injection of a well [6].

Figure 3.6 shows the production data from three wells on the Statfjord Øst field.

Figure 3.6: Production data from Statfjord Øst.

3.4.2 Draugen

Draugen is an oil field where the production started in 1993, and it’s located in the

southern part of the Norwegian Sea. It was discovered in 1984, and then approved in

1988. The production comes from to formations and the main reservoir is in sandstone

of Late Jurassic age in the Rogn Formation. The western reservoir of the field produces

16

17 CHAPTER 3. CONSTRUCTION

from sandstone of Middle Jurassic age in the Garn Formation. They both have good

reservoir quality [4]. The operators for this field are Petoro AS, OKEA ASA and M Vest

Energy AS, with Petoro and OKEA as the biggest operators with over 90 percentages

of the total shares [13].

Figure 3.7: Draugen platform [12].

This field uses water injection and water from the base formations to produce with

pressure. In 2020 Draugen had a production reliability of 99 percent [13]. In figure 3.8

it is possible to see where the Draugen oil field is located on a map.

Figure 3.8: Draugen field. Map taken from Norsk Petroleum. https://www.

norskpetroleum.no/interaktivt-kart-og-arkiv/interaktivt-kart/. (accessed:

14.05.23)

17

https://www.norskpetroleum.no/interaktivt-kart-og-arkiv/interaktivt-kart/
https://www.norskpetroleum.no/interaktivt-kart-og-arkiv/interaktivt-kart/

18 CHAPTER 3. CONSTRUCTION

The current status of the production on Draugen is that there need to be made invest-

ments to the facilities to maintain the forecasted production profile [4]. The newest

well was drilled in 2015, and the production started in 2017 on this one [13].

Figure 3.9 shows the production data of three wells at the Draugen field. These data

has been utilized in the SINDy method.

Figure 3.9: Production data from Draugen.

18

Chapter 4

Implementation

In this chapter we will explain the implementation of the SINDy algorithm for the

Lorenz system. The code is inspired by Bea Stollnitz [18] and Steve L. Brunton and J.

Nathan Kutz [14].

Then based of the work done for the Lorenz system the code for the SINDy method

for the well data from DISKOS was implemented [1]. There was made some changes

to how the derivative data was found, filtering was added and some other changes.

The main different from the Lorenz system were that the data was real data with some

noise and a spiky dataset, compared to the data from Lorenz system with very smooth

generated data.

The code and the data sets can be found in a Github repository using this link, https:

//github.com/SanderSondeland/Master_thesis.

4.1 Implementation used for the Lorenz system

First we will have a look on how the system was implemented to solve the Lorenz

system. The code can be found in appendix A.1 or in the Github repository.

As much as possible in this notebook has been made as functions where the important

parameters and data are passed in. It is easy to make changes to the parameters and

other data instead of changing it inside the functions.

19

https://github.com/SanderSondeland/Master_thesis
https://github.com/SanderSondeland/Master_thesis

20 CHAPTER 4. IMPLEMENTATION

The first part of the notebook is to import all the packages needed to get everything to

work.

1 import numpy as np

2 import logging

3 from scipy.integrate import solve_ivp

4 from derivative import dxdt

5 from typing import Tuple

6 import matplotlib.pyplot as plt

Listing 4.1: Imported packages.

The Lorenz equations are put in, so it can be used to generate the data, u. When the

data is generated in generate u() the first three values are set to -8, 8 and 27.

1 def lorenz(_: float , u: np.ndarray , sigma: float , rho: float , beta:

float) -> np.ndarray:

2

3 x = u[0]

4 y = u[1]

5 z = u[2]

6 dx_dt = sigma * (y - x)

7 dy_dt = x * (rho - z) - y

8 dz_dt = x * y - beta * z

9

10 return np.hstack ((dx_dt , dy_dt , dz_dt))

The solve ivp is used to generate the data, u. Solve vip is a function in the scipy-

package which numerically integrates a system of ordinary differential equations given

an initial value [15]. t spand defines the interval of the integration. y0 is set to the

initial values, which are u0 which is an array of three numbers [-8, 8, 27].

1 def generate_u(t: np.ndarray) -> np.ndarray:

2 u0 = np.array([-8, 8, 27])

3 result = solve_ivp(fun=lorenz ,

4 t_span =(t[0], t[-1]),

5 y0=u0,

6 t_eval=t,

7 args=(SIGMA , RHO , BETA))

8 u = result.y.T

20

21 CHAPTER 4. IMPLEMENTATION

9 return u

To find the derivative of u, a function called calculate finite difference derivatives was

constructed and the function dxdt from derivative package was used. The differen-

tiation kind was set to finite difference with central differencing using 3 points. The

derivative package are actually a part of the pySINDy-package [11].

1 uprime = dxdt(u.T, t, kind="finite_difference", k=1).T

Listing 4.2: Derivative-function

We use both of these functions to generate u and u prime. In this function t0, dt and

tmax is decided.

1 def generate_data () -> Tuple[np.ndarray , np.ndarray]:

2 """ Generates data u, and calculates its derivatives.

3 """

4 t0 = 0.001

5 dt = 0.001

6 tmax = 100

7 n = int(tmax / dt)

8 t = np.linspace(start=t0, stop=tmax , num=n)

9

10 # Step 1: Generate data u.

11 u = generate_u(t)

12

13 # Step 2: Calculate u' from u.

14 uprime = calculate_finite_difference_derivatives(u, t)

15

16 return (u, uprime)

Listing 4.3: Data generator for Lorenz System

The library of candidate terms consists of polynomial terms and can go up to fifth

polynomial order. The input of the library function is the dataset and polynomial order.

Parts of the library function, create library() is shown below. The whole function is

not shown because it repeats itself by building out the polynomial order. The output

of this function is a matrix called theta with many candidate terms. The size of the

output matrix, theta, is decided by the polynomial order and the size of input data.

21

22 CHAPTER 4. IMPLEMENTATION

If the polynomial order = 2 and the input data, u, is a matrix that consists of three

dimensions, x, y and z, then the terms would be 1, x, y, z, x2, xy, xz, y2, yz and z2.

1 def create_library(u: np.ndarray , polynomial_order: int) -> np.

ndarray:

2 """ Creates a matrix containing a library of candidate functions.

3 """

4 (m, n) = u.shape

5 theta = np.ones((m, 1))

6

7 # Polynomials of order 1.

8 theta = np.hstack ((theta , u))

9

10 # Polynomials of order 2.

11 if polynomial_order >= 2:

12 for i in range(n):

13 for j in range(i, n):

14 theta = np.hstack ((theta , u[:, i:i + 1] * u[:, j:j +

1]))

15 .

16 .

17 .

18 return theta

Listing 4.4: The library generator.

After the library has been created the next step is to find the Ξ matrix. We have to solve

equation 2.14 using the least-square algorithm, the same function used in generate u().

uprime are for the input for the differentiated matrix.

1 xi = np.linalg.lstsq(theta , uprime , rcond=None)[0]

Listing 4.5: The least-square algorithm to solve equation 2.14.

Ẋ and Θ is known and will be used to find Ξ matrix. After the matrix has been found

then the sparsity will be added. How much sparsity will be added is decided by max

iterations, which decides how many times the algorithm will be run and try to zero out

small terms. And the threshold will effect which values will be set to zero. If threshold

has been set to 0.001 then values under 0.001 will be set to zero in the Ξ matrix.

22

23 CHAPTER 4. IMPLEMENTATION

1 for _ in range(max_iterations):

2 small_indices = np.abs(xi) < threshold

3 xi[small_indices] = 0

4 for j in range(n):

5 big_indices = np.logical_not(small_indices [:, j])

6 xi[big_indices , j] = np.linalg.lstsq(theta[:, big_indices],

7 uprime[:, j],

8 rcond=None)[0]

Listing 4.6: This algorithm is adding sparsity to the Ξ-matrix.

These are added together to mare the function calculate regression(), and which uses

theta, uprime, threshold and max iterations as input values. The function will then

return a sparse Ξ-matrix.

Compute trajectory is the code that returns the approximated signal based on u prime,

Θ and Ξ. The input for the function is u0, Ξ and the polynomial order.

1 def compute_trajectory(u0: np.ndarray , xi: np.ndarray ,

polynomial_order: int) -> np.ndarray:

2 t0 = 0.001

3 dt = 0.001

4 tmax = 100

5 n = int(tmax / dt + 1)

6

7 t = np.linspace(start=t0, stop=tmax , num=n)

8 result = solve_ivp(fun=lorenz_approximation ,

9 t_span =(t0 , tmax),

10 y0=u0,

11 t_eval=t,

12 args=(xi , polynomial_order))

13 u = result.y.T

14

15 return u

Listing 4.7: This is the which computes the approximated u from the SINDy method.

This computes the approximated trajectory, and are the final step in the SINDy method.

In SciPy’s solve ivp package fun is the right hand side of the system, and here there

has been used a self made right hand system to fit what’s needed [15].

23

24 CHAPTER 4. IMPLEMENTATION

1 def lorenz_approximation(_: float , u: np.ndarray , xi: np.ndarray ,

2 polynomial_order: int) -> np.ndarray:

3 theta = create_library(u.reshape ((1, 3)), polynomial_order)

4 return theta @ xi

Listing 4.8: This function returns the right hand side of equation 2.14.

This code returns the right hand side of equation 2.14 to be used in SciPy’s solve ivp

function to find the approximated trajectory.

The input for this is u0 and xi, and those are being used in the create library function

to create a new theta. The new theta has been reshaped because u0 has been reshaped

in the input. That is becuase the matrix multiplication can be done with the xi-matrix.

And theta*xi is equal to Ẋ from equation 2.14, then the compute trajectory can be used

to solve and find the approximated trajectory.

The only remain is to illustrate the trajectories and compare the results from the SINDy

algorithm. For graphing the trajectories a function using matplot.pyplot was made and

called graph results().

1 axis3d = fig.add_subplot (1, 2, 2, projection="3d")

2 x = u_approximation [0: sample_count , 0]

3 y = u_approximation [0: sample_count , 1]

4 z = u_approximation [0: sample_count , 2]

5 axis3d.plot3D(x, y, z, orange , linewidth =0.4)

6 axis3d.set_title("SINDy approximation")

7 style_axis3d(axis3d)

Listing 4.9: Code for plotting the approximation in 3D.

This code is the main part of the graph results function, and the code is utilizing the

matplotlib package to get this three dimensional plot.

The flowchart in figure 4.1 shows which functions runs and what parameters has to be

set to different values.

24

25 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Flowchart for the Lorenz system.

4.2 Implementation for Draugen and Statfjord Øst

The framework from the implementation used for the Lorenz system was worked on

more to fit the data from Draugen and Statfjord Øst. The algorithm has been changed

as well to fit this data better. The code can be found in appendix A.4 or in the Github

repository.

25

26 CHAPTER 4. IMPLEMENTATION

There has been more packages imported in this implementation because of the use of

filters and dates in the dataset. And some of the extra packages was to load the dataset

from Github.

1 import numpy as np

2 import pandas as pd

3 import requests

4 import io

5 import datetime

6 from scipy.integrate import solve_ivp

7 from derivative import dxdt

8 import matplotlib.pyplot as plt

9 import matplotlib.dates as mdates

10 from scipy.ndimage import median_filter

Listing 4.10: Packages that were imported.

The datasets was downloaded via Github, and the link to the raw file was used to

download the dataset into Visual Studio Code. This has to be done each time the

notebook is restarted, and then the link to the raw data has gone out of date so it has to

be copied from Github and pasted into Visual Studio Code again. The link is pasted in

where it says url =’ ’.

1 url = ''

2 download = requests.get(url).content

3 data = pd.read_csv(io.StringIO(download.decode('utf -8')))

Listing 4.11: Code for downloading the dataset from Github.

The next step is to gathered the data that is needed and remove the rest of the dataset

that we do not need for this project. The production data is gathered one time a month,

and we then want the production of oil and gas. Then they are added together to create

a new column of the total production of the well. Oil and gas has to have the same

units so the gas data has to be divided by 1000 to get the same units for both. Groupby

has been used to group by period, which is now YYYY-MM. The example below is

for well 6407/9-A-1 in the Draugen field, but it is similar for every well. It is just the

name that has to be changed due to similarities on the data sets downloaded from

Diskos.

26

27 CHAPTER 4. IMPLEMENTATION

1 x_data = data1[data1['name'] == '6407/9 -A-1']

2 x_data.loc[:, 'period '] = x_data['year']. astype(str) + '-' + x_data

['month ']. astype(str)

3 x_data.loc[:, 'tot_prod '] = (x_data['oil'] + x_data['gas']/1000).

round (1)

4 x_data = x_data.groupby('period ').sum()

5 x_data

Listing 4.12: Getting data for a specific well and adding oil and gas production together.

The datetime package was used to use the dates by defining the start year and end

year. Then the months that is not in the data set are removed in line two below.

1 dates = [datetime.datetime(year=int(year), month=int(month), day=1)

for year in range (1994 , 2021) for month in range(1, 13)]

2 dates = dates [11: -3]

Listing 4.13: Using datetime to get the timeinterval of the production.

Filtering these data are important because the signal is very spiky, and they have to be

smoothed out both before and during differentiation. If this is not done the derivative

gets really large values due to some of the spikes in the production. To smooth out the

data before the differentiation a median filter was used. The window size defined how

large of an effect the filter would make, and a larger window size would mean more

smoothing. Then it is to find a good window size for the data and to make sure that to

much information is not lost during the filtering.

1 md_x = median_filter(tot_prod_x , size =4)

2 md_y = median_filter(tot_prod_y , size =4)

3 md_z = median_filter(tot_prod_z , size =4)

Listing 4.14: Median filter that was used for all production data to smooth out the data.

To differentiate the data a t-variable is needed, and that was generated out of the

dates. It was also converted to a numpy array due to the needs of the derivation

function.

1 i = len(dates)

2 t = list(range(1, i+1))

27

28 CHAPTER 4. IMPLEMENTATION

3 t_np = np.array(t)

Listing 4.15: Defining t and t np to use in the derivation function afterwards.

The derivative module has a function called dxdt which has been used to differentiate

the data. The input in this has to be a numpy array so the total production has been set

to a numpy array.

The function also has different ways to derivative the data. Here the kalman derivative

has been used to smooth out the data even more. The smoothing has been set to 2.

1 x_der = dxdt(md_x_np , t_np , kind="kalman", alpha =2)

2 y_der = dxdt(md_y_np , t_np , kind="kalman", alpha =2)

3 z_der = dxdt(md_z_np , t_np , kind="kalman", alpha =2)

Listing 4.16: Derivation with smoothing using the kalman method.

Another derivative method that could be used to smooth the data is the finite difference

method.

1 x_der = dxdt(md_x_np , t_np , kind="finite_difference", k=2)

2 y_der = dxdt(md_y_np , t_np , kind="finite_difference", k=2)

3 z_der = dxdt(md_z_np , t_np , kind="finite_difference", k=2)

Listing 4.17: Derivation with smoothing using the finite difference method.

The results from listing 4.16 and 4.17 are displayed in figure 4.2 and 4.3.

28

29 CHAPTER 4. IMPLEMENTATION

Figure 4.2: Derivaitve with smoothing using the kalman method on data from Draugen.

Figure 4.3: Derivaitve with smoothing using the finite difference method on data from

Draugen.

In figure 4.2 and 4.3 two plots of the differentiated data is shown. The kalman method

was utilized in this project due to the spikes in the finite difference method. Compared

to the kalman method in figure 4.2 the values of the spikes are much higher, and the

29

30 CHAPTER 4. IMPLEMENTATION

smoothest output was selected, which was the kalman method. The highest peak from

the finite differnce method is over 6000, but for the kalman method it is just about

3000.

Two matrices are created with the filtered data and the derivated data. X, y and z data

has been put toghether to form a 310 x 3 matrix so it can be used in the SINDy method.

The same thing has been done to the derivated data as well, now we have to matrices

to use in the SINDy method.

1 mat = np.zeros ((310 ,3))

2

3 mat[:, 0] = md_x

4 mat[:, 1] = md_y

5 mat[:, 2] = md_z

Listing 4.18: Creating a matrix for the filtered data.

The library is similar to the implementation for the Lorenz system, but two new features

has been added. Now it is possible to add one sin and one cosine function and two

exponential functions as well. If use trig is set to True then the sine and cosine function

will be added at the end, and if use exp is set to true the exponential functions are

added at the very end of the library. The exponential equation that will be added is

e−u and e−u2
. Then the code was looking like this afterwards.

1 def create_library(u: np.ndarray , polynomial_order: int , use_trig:

bool , use_exp: bool) -> np.ndarray:

2 """ Creates a matrix containing a library of candidate functions

.

3 """

4 (m, n) = u.shape

5 theta = np.ones((m, 1))

6

7 # Polynomials of order 1.

8 theta = np.hstack ((theta , u))

9 .

10 .

11 .

12 if use_trig:

13 for i in range(1, 11):

30

31 CHAPTER 4. IMPLEMENTATION

14 theta = np.hstack ((theta , np.sin(i * u), np.cos(i * u))

)

15

16 if use_exp:

17 for i in range(n):

18 theta = np.hstack ((theta , np.exp(-u[:, i:i+1]), np.exp

(-u[:, i:i+1]**2)))

19

20 return theta

Listing 4.19: New library function with sine cosine and exponential functions.

After theta has been generated the next step is to find Ξ -matrix. The way to find the Ξ

-matrix is the same as for the Lorenz system, where the least-square algorithm is used

to solve the main equation for the SINDy method, which is equation 2.14. The first Ξ

-matrix that is found is not sparse.

The same method as in section 4.1 was utilized to add sparsity to the Ξ -matrix. How

sparse the matrix will be afterwards are decided by the threshold value and can also

be affected by max iterations. Max iterations decides how many times the algorithm

will run to find the sparsest solution.

1 def calculate_regression(theta: np.ndarray , uprime: np.ndarray ,

2 threshold: float , max_iterations: int) -> np.

ndarray:

3 # Solve theta * xi = uprime in the least -squares sense.

4 xi = np.linalg.lstsq(theta , uprime , rcond=None)[0]

5 n = xi.shape [1]

6

7 # Add sparsity.

8 for _ in range(max_iterations):

9 small_indices = np.abs(xi) < threshold

10 xi[small_indices] = 0

11 for j in range(n):

12 big_indices = np.logical_not(small_indices [:, j])

13 xi[big_indices , j] = np.linalg.lstsq(theta[:, big_indices],

uprime[:, j], rcond=None)[0]

14

31

32 CHAPTER 4. IMPLEMENTATION

15 return xi

Listing 4.20: These functions finds the Ξ-matrix and then add sparsity.

After the sparse Ξ -matrix has been found the next is to make an approximation. Once

again the same method as in section 4.1 has been used to make a prediciton. This

method is divided in two different functions. In listing 4.7 and 4.8 it’s displayed how

the code has been implemted.

32

Chapter 5

Results

Different parameters, data and wells has been tested with the SINDy method. The

PySINDy package has also been utilized to compare the results from PySINDy to the

code inspired by Data-Driven Science and Engineering [14].

The SINDy algorithm was first made for the Lorenz system with inspiration from the

book and Bea Stollnitz and her blog which is also inspired by Data-Driven Science and

Engineering from S. L. Brunton and J. N. Kutz [14]. Then this code was worked with

more to fit the data from Diskos and the wells [3].

In chapter 2.1 the SINDy method used on the Lorenz system was used to give a better

understanding of the algorithm and show how the algorithm work on dynamical

systems.

5.1 Covid example

During covid a lot of data was gathered from many different countries around the

world. Here we will look at an easy example from Afghanistan and see how SINDy

approximated the confirmed infected people compared to the real data.

33

34 CHAPTER 5. RESULTS

Figure 5.1: Covid data from Afghanistan.

The parameters used for this test was a higher polynomial order, and a low threshold

value. All the parameters used in this test is listed below.

Polynomial order = 3

USE TRIG = False

USE EXP = False

Threshold = 0.000001

Max iterations = 10

34

35 CHAPTER 5. RESULTS

Results

Then the Ξ -matric became:

Ξ =



ẋ :

4.75e + 01

−3.18e − 02

−1.57e − 06

0.00


1

x

x2

x3

. (5.1)

ẋ = 47.5 − 0.0318x − 0.00000157x2 (5.2)

The results for this test was very promising. Even though the last value are pretty small

the SINDy method came up with an approximation that matched the data really good

and described the dynamics of the system.

Figure 5.2: Covid results using data from Afghanistan.

35

36 CHAPTER 5. RESULTS

Discussion

These result from the covid data is really good, and are looking promising. This is a

easier and less complex problem compared to the other tests, but the results are really

good. The data that has been gathered are relatively smooth, and only a small filter was

added. This makes the SINDy method even better when the data are smooth and not

spiky. The only filtering that has been done in this test is filtering in the differentiation

process. And in the beginning of the data the data set was 1 a lot of days so the first 35

days are removed which makes the approximation better.

5.2 Statfjord Øst

In this section we will take a look at the different results using data from Statfjord Øst.

In the different tests that has been done, the main thing that changes are the candidate

terms in the library, and the threshold value and max iterations also varies.

In the first test of the SINDy method data from three different wells were used. The

wells were located close to each other and according by the npd.no. As shown in figure

5.3, the furthest distance between the wells are between 33/9-L-1 H and 33/9-L-3 H

with a distance of 19.5 meters. Meanwhile the distance from 33/9-L-3 H to 33/9-L-

2 H are only 8.1 meters, and from 33/9-L-2 H to 33/9-L-1 H there are 17.1 meters

apart.

36

37 CHAPTER 5. RESULTS

Figure 5.3: Distance between the three wells during the tests for Statfjord Øst. Map

taken from Norwegian Petroleum Directorade. https://factmaps.npd.no/factmaps/

3_0/. (accessed: 22.05.23).

The data was as mentioned these three wells, and were set up like this:

x = 33/9-L-3 H

y = 33/9-L-2 H

z = 33/9-L-1 H

5.2.1 Test 1

The candidate library was set to a polynomial order of 2, and did not use sin or cos

function and neither exponential functions in this test. The threshold was set to 0.005

and 10 max iterations. A summary of the parameters are listed below.

Polynomial order = 2

USE TRIG = False

USE EXP = False

Threshold = 0.005

Max iterations = 10

37

https://factmaps.npd.no/factmaps/3_0/
https://factmaps.npd.no/factmaps/3_0/

38 CHAPTER 5. RESULTS

The Ξ-matrix became:

Ξ =



ẋ : ẏ : ż :

−3.22e + 02 −1.43e + 02 −6.57e + 02

−1.66e − 02 0.00 −7.43e − 02

0.00 −1.28e − 02 3.00e − 03

1.70e − 02 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00



1

x

y

z

x2

xy

xz

y2

yz

z2

. (5.3)

ẋ = −322 − 0.0166x + 0.0170z, (5.4)

, ẏ = −143 − 0.0128y (5.5)

ż = −657 − 0.0743x + 0.003y. (5.6)

Results

The results were promising, and the SINDy algorithm made a good approximation

based of the data. From the Ξ -matrix there is no terms for the second order polynomials

so the polynomial order could be set to 1 and the results would be the same.

The results was better for y- and z-data, but that’s probably because the x-data consist

of a lot of zeros in the later years of production compared to the two other wells. The

result on x-data is not good, and the graph is non-physical because the graph has a

negative value at the end, and the production numbers can not go below zero.

38

39 CHAPTER 5. RESULTS

Figure 5.4: The result for x-data

Figure 5.5: The result for y-data

39

40 CHAPTER 5. RESULTS

Figure 5.6: The result for z-data

Discussion of test 1

The results here are promising, and the trajectory follow the main trend of the data. It

is hard for the approximation to follow completely due to a very spiky data set. The

data has been filtered before differentiation and during differentiation to smooth out

the data. This is because we want to decrease the big spikes because that will give us

big numbers in the differentiated data.

The best results was with the y- and z-data, but that’s most likely because of the amount

of zero-data in the x-data set. Where y- and z-data has more consistent data compared

to x-data.

5.2.2 Test 2

For the second test of Statfjord Øst the same wells has been used, but the candidate

terms in the library has been changed. Now exp(−u) and exp(−u2) has been added,

where u is the data (x, y and z) so the library has now 6 more candidate terms. The

threshold value and max iterations are still the same as before. Also the filters are still

the same, and the differentiation method are also the same as test 1.

Polynomial order = 2

USE TRIG = False

40

41 CHAPTER 5. RESULTS

USE EXP = True

Threshold = 0.005

Max iterations = 10

Then the Ξ-matrix became:

Ξ =



ẋ : ẏ : ż :

−4.38 + e02 −1.44e + 02 2.05e + 02

−6.94e − 02 0.00 −1.57e − 02

0.00 −1.28e − 02 3.31e − 02

1.69e − 02 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

1.01e + 02 6.40e − 01 −7.91e + 02

1.01e + 02 6.40e − 01 −7.91e + 02

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00



1

x

y

z

x2

xy

xz

y2

yz

z2

exp(−x)

exp(−y)

exp(−z)

exp(−x2)

exp(−y2)

exp(−z2)

. (5.7)

ẋ = −438 − 0.0694x + 0.0169z + 101e−x + 101e−y, (5.8)

ẏ = −144 − 0.0128y + 0.640e−x + 0.640e−y, (5.9)

ż = 205 − 0.0157x + 0.0331y − 791e−x − 791e−y. (5.10)

41

42 CHAPTER 5. RESULTS

Results

The results for this test was similar to the results for test 1, in section 5.2.1. The graph

for x-data is a better because the graph is physical, in test 1 the graph went below zero

which is not realistic.

Figure 5.7: The result for x-data

Figure 5.8: The result for y-data

42

43 CHAPTER 5. RESULTS

Figure 5.9: The result for z-data

Discussion of test 2

The extra terms added to the library results in more complex outcome compared to

test 1 in section 5.2.1. But the results is not that much better compared to the results

from test 1, but a one thing that is much better is that is not unphysical any more. The

trajectory does not goes below 0 anymore.

The trajectory for x-data is very similar to test 1, but instead of going below 0 at the end

it goes to 0 and stays there. For the y-data the results are similar, and the exponential

terms does not add any significant changes to the trajectory.

The worst result with this change is for z-data, and that is also the approximation that

changed the most as well compared to test 1.

5.2.3 Test 3

The third test using the same data from Statfjord Øst, but yet again the candidate terms

in the library has changed. The use trig is set to true, which means that sine and cosine

are now included in the library as well. The terms sin(u) and cos(u), where u is the

data (x, y and z), so the library has 6 more candidate terms. The threshold and max

iterations are the same as previous tests.

x = 33/9-L-3 H

43

44 CHAPTER 5. RESULTS

y = 33/9-L-2 H

z = 33/9-L-1 H

Polynomial order = 2

USE TRIG = True

USE EXP = False

Threshold = 0.005

Max iterations = 10

Then the Ξ -matrix turned out like this:

Ξ =



ẋ : ẏ : ż :

−3.38 + e02 −5.18e + 01 −8.03e + 02

−1.44e − 02 −1.29e − 02 −5.59e − 02

0.00 −8.26e − 03 3.69e − 02

1.61e − 02 −5.93e − 03 −1.47e − 02

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

−1.08e + 01 1.35e + 02 −3.19e + 01

4.36e + 01 −1.01e + 02 −6.28e + 02

2.29e + 01 −2.99e + 02 −7.87e + 01

1.11e + 02 1.88e + 01. 3.01e + 1

1.55e + 01 2.11e + 02 −3.96e + 02

1.44e + 02 3.17e + 02 3.36e + 01



1

x

y

z

x2

xy

xz

y2

yz

z2

sin(x)

sin(y)

sin(z)

cos(x)

cos(y)

cos(z)

. (5.11)

ẋ = −338 − 0.0144x + 0.0161z − 10.8sin(x) + 43.6sin(y)+

22.9sin(z) + 111cos(x) + 15.5cos(y) + 144cos(z),
(5.12)

44

45 CHAPTER 5. RESULTS

ẏ = −51.8 − 0.0129x − 0.00826y − 0.00593z − 13.5sin(x)− 101sin(y)−

299sin(z) + 18.8cos(x) + 211cos(y) + 317cos(z),
(5.13)

ż = −803 − 0.0559x + 0.0369y − 0.0147z − 31.9sin(x)− 628sin(y)−

78.7sin(z) + 30.1cos(x)− 396cos(y) + 33.6cos(z).
(5.14)

Results

The results are good, but the sine and cosine functions add 6 more terms to each

equation for ẋ, ẏ and ż which makes them more complex. Also these equations are

harder to understand.

Figure 5.10: The result for x-data

45

46 CHAPTER 5. RESULTS

Figure 5.11: The result for y-data

Figure 5.12: The result for z-data

Discussion of test 3

When the sine and cosine function was added it resulted in a lot more complex and

advanced equations which describes the trajectories. They made it harder to under-

stand. There was some change in the approximation, but also they were more crooked

compared to the smooth trajectories on previous tests. To summarize there was nothing

much gained by the more complex equations when sine and cosine was added, and

the results was not better than any of the other tests.

46

47 CHAPTER 5. RESULTS

5.3 Draugen

This section we will look at the results from applying the SINDy method on data from

three different Draugen oil wells. Using different candidate libraries and different set-

tings in the algorithm to look at the results and trajectories compared to the production

data. The production data contains data from both oil and gas production.

The wells used in this section is close to eachother again. This is to see if the SINDy

algorithm can find some interference between them in the output equations which

describes the production.

Figure 5.13: Distance between the three wells during the tests on Draugen. Map taken

from Norwegian Petroleum Directorade. https://factmaps.npd.no/factmaps/3_0/.

(accessed: 22.05.23).

In figure 5.13, it’s easy to see the distance between the wells where the data is gathered

from. The 6407/9-A-1 well is in the upper right hand corner and are 2.40 meters away

from well 6407/9-A-2 A. This well is then just 4.66 meters away from 6407/9-A-6. Then

there is 5.23 meters between 6407/9-A-6 and 6407/9-A-1.

The median filter size used on these tests are of size 4. Unsure if this is needed.

The data has called x, y and x like this for the tests:

x = 6407/9-A-1

y = 6407/9-A-2 A

47

https://factmaps.npd.no/factmaps/3_0/

48 CHAPTER 5. RESULTS

z = 6407/9-A-6

5.3.1 Test 1

For the first test the polynomial order was set to 1, and the there was no candidate

terms with exponential functions, sine or cosine. The threshold was set to 0.005 and

max iterations was set to 10. All the parameters are listed below.

Polynomial order = 1

USE TRIG = FALSE

USE EXP = FALSE

Threshold = 0.005

Max iterations = 10

median filter size = 4

Then the Ξ -matrix became:

Ξ =



ẋ : ẏ : ż :

9.18e + 01 −2.84e + 02 −3.78e + 02

−3.18e − 02 3.52e − 02 0.00

5.83e − 02 −3.65e − 02 1.88e − 02

−3.42e − 02 5.65e − 03 −1.85e − 02


1

x

y

z

. (5.15)

ẋ = 91.8 − 0.0318x + 0.0583y − 0.0342z, (5.16)

ẏ = −284 + 0.0352x − 0.0365y + 0.00565z, (5.17)

ż = −378 + 0.0188y − 0.0185z. (5.18)

48

49 CHAPTER 5. RESULTS

Results

The results for this case is good, and the approximated trajectories follows the main

trends in the data. The data has some spikes to it, and the approximation does not

follow these, but follows the trend of the data more smoothly except for z-data where

it does not follows as good as the two others.

Figure 5.14: The result for x-data

Figure 5.15: The result for y-data

49

50 CHAPTER 5. RESULTS

Figure 5.16: The result for z-data

Discussion

Decent results for both x and y data, but not as good for z-data.

The worst result in this test is for the z data where it can look like the solution is a litte

to sparse and it does not match the trend of the data very well. For the x and y data if

follows the trend nicely, and especially from the middle and out. Maybe the results

could be better for z-data is the polynomial order was set higher to 2 for example. This

will be tested in test 2 below.

Even though the results was not that good for the z-data, the other two was pretty

good with a sparse solution of only four terms in the output equations that describes

the trajectories.

5.3.2 Test 2

For the second test everything is similar to test 1 except the polynomial order is set to 2.

This is to see if the added candidate terms can make the results for z-data better while

keeping the good results for the x and y-approximation.

Polynomial order = 2

USE TRIG = FALSE

USE EXP = FALSE

50

51 CHAPTER 5. RESULTS

Threshold = 0.005

Max iterations = 10

median filter size = 4

Results

Then the Ξ -matrix became:

Ξ =



ẋ : ẏ : ż :

9.96e + 01 −2.73e + 02 −3.83e + 02

−3.22e − 02 3.70e − 02 0.00

5.87e − 02 −3.83e − 02 1.90e − 02

−3.43e − 02 5.80e − 03 −1.86e − 02

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00



1

x

y

z

x2

xy

xz

y2

yz

z2

. (5.19)

ẋ = 99.6 − 0.0322x + 0.0587y − 0.0343y, (5.20)

ẏ = −273 + 0.0370x − 0.0383y + 0.00580z, (5.21)

ż = −383 + 0.0190y − 0.0186z. (5.22)

51

52 CHAPTER 5. RESULTS

Figure 5.17: The result for x-data

Figure 5.18: The result for y-data

52

53 CHAPTER 5. RESULTS

Figure 5.19: The result for z-data

Discussion

These results are almost excactly the same as test 1, and the added candidate terms

in the library does not make any difference. There are some difference in the values

the SINDy method found, but not a big difference. If the threshold was set lower and

included smaller numbers that could make more terms appear. Even though more

terms would appear the results would not be sparse anymore and most likely not

better.

5.3.3 Test 3

In this test two wells located close to each other and a third well from a further distance

was added. This well has a different production timeline. The production has been set

to 0 when there is not any data. Due to the need of the data matrix has to be the same

size.

For x and y the data are from the same wells as above, but the z-data has been changed

to data from another well. It is from well 6407/9-E-1 H, which has been produciong

from about 2003. This well is located over 10 kilometers away from the other two wells,

see figure 5.20 below.

53

54 CHAPTER 5. RESULTS

Figure 5.20: Distance between the wells during this test on Draugen. Map taken

from Norwegian Petroleum Directorade. https://factmaps.npd.no/factmaps/3_0/.

(accessed: 22.05.23).

The data and well layot for this test are listed below to make it clear which results are

from what data.

x = 6407/9-A-1

y = 6407/9-A-2 A

z = 6407/9-E-1 H

There was some change to the parameters in this test, but not much. The threshold was

put down to 0.001 instead of 0.005, and the polynomial order was set back to 1 again.

All the parameters was:

54

https://factmaps.npd.no/factmaps/3_0/

55 CHAPTER 5. RESULTS

Polynomial order = 1

USE TRIG = FALSE

USE EXP = FALSE

Threshold = 0.001

Max iterations = 10

median filter size = 4

Results

Using these data and parameters and the Ξ -matrix became:

Ξ =



ẋ : ẏ : ż :

4.02e + 01 3.22e + 02 −1.75e + 02

−4.85e − 02 1.99e − 02 0.00

3.63e − 02 −1.82e − 02 2.04e − 03

−1.59e − 01 −9.23e − 03 2.33e − 03


1

x

y

z

. (5.23)

ẋ = 40.2 − 0.0485x + 0.0363y − 0.159z, (5.24)

ẏ = 322 + 0.0199x − 0.0182y − 0.00923z, (5.25)

ż = −175 + 0.00204y + 0.00233z. (5.26)

The results here are not promising, and it’s clear to see that the SINDy method struggles

to find a good approximation of the dynamics. The results are unphysically for z-data

when the approximation goes below zero. For the x- and y-data the approximation is

decent in the beginning, but there is a change from the middle of the trajectory and to

the end. Here the SINDy method approximated an increased production from the well,

which is clear that did not happen.

55

56 CHAPTER 5. RESULTS

Figure 5.21: The result for x-data

Figure 5.22: The result for y-data

56

57 CHAPTER 5. RESULTS

Figure 5.23: The result for z-data

Discussion

One of the reasons of the bad results in this test could be the production timeline, where

the x and y data has been producing for a much longer time compared to z-data.

In figure 5.24 below there is a plot of the data used in this test compared to eachother. It

is clear that the volume of the production from x and y data are much higher compared

to the z-data. That could also make a difference in the approximation.

Figure 5.24: The data used in this test.

Also the timeline in these are different, and the data for z-data has been set to zero in

the beginning. This could also effect the results, because there are no production for a

57

58 CHAPTER 5. RESULTS

long time and then suddenly it starts to produce and then go back to zero again before

it produces more regularly.

This test was mainly to see how the distance and different timeline affected the results,

and it is clear to see that the results was not as good compared to the other wells from

Draugen.

5.3.4 Test 4

During this test the pySINDy package was used with the same parameters as in Test 1 in

section 5.3.1. We can use this to see how the results compare with the self implemented

SINDy method. The results should be similar.

For the test the polynomial order was set to 1, and the there was no candidate terms

with exponential functions, sine or cosine. The threshold was set to 0.005 and max

iterations was set to 10. All the parameters are listed below.

Polynomial order = 1

USE TRIG = FALSE

USE EXP = FALSE

Threshold = 0.005

Max iterations = 10

median filter size = 4

ẋ = 115.4 − 0.045x + 0.076y − 0.041z, (5.27)

ẏ = −255.0 + 0.028x − 0.024y, (5.28)

ż = −396.8 − 0.015x + 0.039y − 0.025z. (5.29)

58

59 CHAPTER 5. RESULTS

Results

Figure 5.25: The result for x-data

Figure 5.26: The result for y-data

59

60 CHAPTER 5. RESULTS

Figure 5.27: The result for z-data

Discussion

The results using the pySINDy package is really similar to the result from the self

implemented SINDy method. This shows that the self implemented method works just

like the pySINDy package. Even though the pySINDy package has a lot more built in

functions, when we use the same parameters and setting the results are similar.

The results that differ most from test 1 in section 5.3.1 is the results for the z-data.

Where the trajectory of the approximation goes much further down, and it goes further

down in the beginning of the trajectory.

In general the results are similar, but for the results using the PySINDy package the

trajectories looks to sit a little lower down in the plot compared to test 1 in section

5.3.1.

60

Chapter 6

Conclusion

This study have looked into if the SINDy method could be used on well data to extract

suitable well models of different complexities. A self implemented SINDy method has

been used, and the PySINDy package has also been used to compare the results from

the two methods.

The SINDy method can be used to discover suitable models on well data from DISKOS.

It is clear that it can follow the data good even though the data is very spiky. When

the derivatives are calculated it is a advantage that the data are smooth. To get better

results the data are smoothed with a median filter before differentiation and smoothed

using kalman smoothing during differentiation.

For this study I used data from three different wells, and the results are good. Added

complexity does not always lead to better approximation, and they can be harder to

understand compared to the simpler models.

6.1 Future work

For future work there is a lot that can be done and looked at. The study mainly looked

at a three dimensional problem using data from three different wells located close to

each other. It could be a possibility to add more dimensions to the SINDy method and

for example add all the wells that are producing oil and gas in that period of time.

61

62 CHAPTER 6. CONCLUSION

The self implemented SINDy method works fine, and are good for less complex models.

If the user want even more complex models it is suggested to use the PySINDy package

because it has a lot more built-in libraries and functions that can be utilized. It can be

harder to understand what is happening when using the package compared to the self

implemented method, but it is designed to fit both new and experienced users of the

SINDy method.

The SINDy method can be extended, and it is just our imagination that stops us, and

there is a lot of possibilities to be discovered in the future.

62

Bibliography

[1] Norwegian Petroleum Directorate. About us. NPD.NO. URL: https://www.npd.

no/en/diskos/About/. (accessed: 22.05.2023).

[2] Norwegian Petroleum Directorate. Diskos 2.0 is up and running. NPD.NO. URL:

https://www.npd.no/en/diskos/news/diskos-2.0-is-up-and-running/.

(accessed: 22.05.2023).

[3] Norwegian Petroleum Directorate. Diskos. NPD.NO. URL: https://www.npd.

no/en/about-us/organisation/collaboration-projects/diskos/. (accessed:

21.05.2023).

[4] Norwegian Petroleum Directorate. DRAUGEN. NORSKPETROLEUM.NO. URL:

https://www.norskpetroleum.no/fakta/felt/draugen/. (accessed: 14.03.2023).

[5] Norwegian Petroleum Directorate. STATFJORD ØST. NORSKPETROLEUM.NO.

URL: https://www.norskpetroleum.no/en/facts/field/statfjord-ost/.

(accessed: 14.02.2023).

[6] Norwegian Petroleum Directorate. Water Injection. NPD.NO. URL: https://

www.npd.no/en/facts/production/improved- oil- recovery- ior/water/.

(accessed: 14.02.2023).

[7] Gardner L. Dong E Du H. “An interactive web-based dashboard to track COVID-

19 in real time. Lancet Inf Dis. 20(5):533-534.” In: (). DOI: 10 . 1016 / S1473 -

3099(20)30120-1. URL: https://github.com/CSSEGISandData/COVID-19.

[8] Nykamp DQ. Dynamical system definition. From Math Insight. URL: https://

mathinsight.org/definition/dynamical_system. (accessed: 20.05.2023).

[9] Equinor. Improving recovery from Statfjord Øst. EQUINOR.COM. URL: https:

//www.equinor.com/news/archive/202012-improving-recovery-statfjord-

east. (accessed: 12.04.2023).

63

https://www.npd.no/en/diskos/About/
https://www.npd.no/en/diskos/About/
https://www.npd.no/en/diskos/news/diskos-2.0-is-up-and-running/
https://www.npd.no/en/about-us/organisation/collaboration-projects/diskos/
https://www.npd.no/en/about-us/organisation/collaboration-projects/diskos/
https://www.norskpetroleum.no/fakta/felt/draugen/
https://www.norskpetroleum.no/en/facts/field/statfjord-ost/
https://www.npd.no/en/facts/production/improved-oil-recovery-ior/water/
https://www.npd.no/en/facts/production/improved-oil-recovery-ior/water/
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1016/S1473-3099(20)30120-1
https://github.com/CSSEGISandData/COVID-19
https://mathinsight.org/definition/dynamical_system
https://mathinsight.org/definition/dynamical_system
https://www.equinor.com/news/archive/202012-improving-recovery-statfjord-east
https://www.equinor.com/news/archive/202012-improving-recovery-statfjord-east
https://www.equinor.com/news/archive/202012-improving-recovery-statfjord-east

64 BIBLIOGRAPHY

[10] J. Nathan Kutz Kadierdan Kaheman and Steve L. Brunton. (2020). SINDy-PI: a

robust algorithm for parallel implicit sparse identification of nonlinear dynamics. URL:

https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2020.0279.

(accessed: 24.01.2023).

[11] Alan A. Kaptanoglu et al. “PySINDy: A comprehensive Python package for

robust sparse system identification”. In: Journal of Open Source Software 7.69

(2022), p. 3994. DOI: 10.21105/joss.03994. URL: https://doi.org/10.21105/

joss.03994.

[12] OKEA. Draugen er fortsatt drivkraften. OKEA.NO. URL: https://www.okea.no/

stories/draugen-er-fortsatt-drivkraften/. (accessed: 26.04.2023).

[13] OKEA. Draugen. OKEA.NO. URL: https://www.okea.no/no/asset/draugen-1/.

(accessed: 25.04.2023).

[14] J. N. Kutz S. L. Brunton. DATA-DRIVEN SCIENCE AND ENGINEERING Machine

Learning, Dynamical Systems, and Control, Second Edition. Cambridge University

Press, 2022.

[15] Scipy. scipy.integrate.solve ivp. URL: https://docs.scipy.org/doc/scipy/

reference/generated/scipy.integrate.solve_ivp.html.

[16] Brian M. de Silva et al. “PySINDy: A Python package for the sparse identification

of nonlinear dynamical systems from data”. In: Journal of Open Source Software

5.49 (2020), p. 2104. DOI: 10.21105/joss.02104. URL: https://doi.org/10.

21105/joss.02104.

[17] Joshua L. Proctor Steve L. Brunton and J. Nathan Kutz. (2016). Discovering govern-

ing equations from data by sparse identification of nonlinear dynamical systems. URL:

https://www.pnas.org/doi/10.1073/pnas.1517384113. (accessed: 22.01.2023).

[18] B. Stollnitz. Discovering equations from data using SINDy. Bea Stollnitz. URL: https:

//bea.stollnitz.com/blog/sindy-lorenz/. (accessed: 19.01.2023).

64

https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2020.0279
https://doi.org/10.21105/joss.03994
https://doi.org/10.21105/joss.03994
https://doi.org/10.21105/joss.03994
https://www.okea.no/stories/draugen-er-fortsatt-drivkraften/
https://www.okea.no/stories/draugen-er-fortsatt-drivkraften/
https://www.okea.no/no/asset/draugen-1/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://doi.org/10.21105/joss.02104
https://doi.org/10.21105/joss.02104
https://doi.org/10.21105/joss.02104
https://www.pnas.org/doi/10.1073/pnas.1517384113
https://bea.stollnitz.com/blog/sindy-lorenz/
https://bea.stollnitz.com/blog/sindy-lorenz/

Appendix A

Appendix A

A.1 Code for Lorenz system

65

sindy-lorenz-ex

June 14, 2023

1 SINDy utilized on the Lorenz System

[1]: import numpy as np
import logging
from scipy.integrate import solve_ivp
from derivative import dxdt
from typing import Tuple
import matplotlib.pyplot as plt

[2]: def lorenz(_: float, u: np.ndarray, sigma: float, rho: float,
beta: float) -> np.ndarray:

x = u[0]
y = u[1]
z = u[2]
dx_dt = sigma * (y - x)
dy_dt = x * (rho - z) - y
dz_dt = x * y - beta * z

return np.hstack((dx_dt, dy_dt, dz_dt))

def generate_u(t: np.ndarray) -> np.ndarray:
u0 = np.array([-8, 8, 27])
result = solve_ivp(fun=lorenz,

t_span=(t[0], t[-1]),
y0=u0,
t_eval=t,
args=(SIGMA, RHO, BETA))

u = result.y.T
return u

def calculate_finite_difference_derivatives(u: np.ndarray,
t: np.ndarray) -> np.ndarray:

logging.info("Using finite difference derivatives.")
uprime = dxdt(u.T, t, kind="finite_difference", k=1).T
return uprime

1

[3]: def generate_data() -> Tuple[np.ndarray, np.ndarray]:
""" Generates data u, and calculates its derivatives uprime.
"""
t0 = 0.001
dt = 0.001
tmax = 100
n = int(tmax / dt)
t = np.linspace(start=t0, stop=tmax, num=n)

Step 1: Generate data u.
u = generate_u(t)

Step 2: Calculate u' from u.
uprime = calculate_finite_difference_derivatives(u, t)

return (u, uprime)

[4]: """Utilities related to graphing."""

def style_axis(axis):
"""Styles a graph's x, y, or z axis."""
pylint: disable=protected-access
axis._axinfo["grid"]["color"] = "#dddddd"
axis._axinfo["grid"]["linewidth"] = 0.4
axis._axinfo["tick"]["linewidth"][True] = 0.4
axis._axinfo["tick"]["linewidth"][False] = 0.4
axis.set_pane_color((0.98, 0.98, 0.98, 1.0))
axis.line.set_color("#bbbbbb")
axis.label.set_color("#333333")
pass

def style_axis3d(axis3d):
"""Styles a 3D graph."""
axis3d.set_xlabel("x")
axis3d.set_ylabel("y")
axis3d.set_zlabel("z")
axis3d.tick_params(axis="x", colors="#666666")
axis3d.tick_params(axis="y", colors="#666666")
axis3d.tick_params(axis="z", colors="#666666")
style_axis(axis3d.w_xaxis)
style_axis(axis3d.w_yaxis)
style_axis(axis3d.w_zaxis)
axis3d.set_title(axis3d.get_title(), fontdict={"color": "#333333"})

def graph_results(u: np.ndarray, u_approximation: np.ndarray) -> None:

2

"""Graphs two 3D trajectories side-by-side."""
sample_count = 20000
orange = "#EF6C00"

fig = plt.figure(figsize=plt.figaspect(0.5))

Graph trajectory from the true model.
axis3d = fig.add_subplot(1, 2, 1, projection="3d")
x = u[0:sample_count, 0]
y = u[0:sample_count, 1]
z = u[0:sample_count, 2]
axis3d.plot3D(x, y, z, orange, linewidth=0.4)
axis3d.set_title("Original trajectory")
style_axis3d(axis3d)

Graph trajectory computed from model discovered by SINDy.
axis3d = fig.add_subplot(1, 2, 2, projection="3d")
x = u_approximation[0:sample_count, 0]
y = u_approximation[0:sample_count, 1]
z = u_approximation[0:sample_count, 2]
axis3d.plot3D(x, y, z, orange, linewidth=0.4)
axis3d.set_title("SINDy approximation")
style_axis3d(axis3d)

plt.show()

[5]: def calculate_regression(theta: np.ndarray, uprime: np.ndarray,
threshold: float, max_iterations: int) -> np.ndarray:

Solve theta * xi = uprime in the least-squares sense.
xi = np.linalg.lstsq(theta, uprime, rcond=None)[0]
n = xi.shape[1]

Add sparsity.
for _ in range(max_iterations):

small_indices = np.abs(xi) < threshold
xi[small_indices] = 0
for j in range(n):

big_indices = np.logical_not(small_indices[:, j])
xi[big_indices, j] = np.linalg.lstsq(theta[:, big_indices],

uprime[:, j],
rcond=None)[0]

return xi

[6]: def create_library(u: np.ndarray, polynomial_order: int) -> np.ndarray:
"""Creates a matrix containing a library of candidate functions.
For example, if our u depends on x, y, and z, and we specify

3

polynomial_order=2, our terms would be:
1, x, y, z, x^2, xy, xz, y^2, yz, z^2.
"""
(m, n) = u.shape
theta = np.ones((m, 1))

Polynomials of order 1.
theta = np.hstack((theta, u))

Polynomials of order 2.
if polynomial_order >= 2:

for i in range(n):
for j in range(i, n):

theta = np.hstack((theta, u[:, i:i + 1] * u[:, j:j + 1]))

Polynomials of order 3.
if polynomial_order >= 3:

for i in range(n):
for j in range(i, n):

for k in range(j, n):
theta = np.hstack(

(theta, u[:, i:i + 1] * u[:, j:j + 1] * u[:, k:k + 1]))

Polynomials of order 4.
if polynomial_order >= 4:

for i in range(n):
for j in range(i, n):

for k in range(j, n):
for l in range(k, n):

theta = np.hstack(
(theta, u[:, i:i + 1] * u[:, j:j + 1] *
u[:, k:k + 1] * u[:, l:l + 1]))

Polynomials of order 5.
if polynomial_order >= 5:

for i in range(n):
for j in range(i, n):

for k in range(j, n):
for l in range(k, n):

for m in range(l, n):
theta = np.hstack(

(theta, u[:, i:i + 1] * u[:, j:j + 1] *
u[:, k:k + 1] * u[:, l:l + 1] * u[:, m:m + 1]))

return theta

4

[7]: def lorenz_approximation(_: float, u: np.ndarray, xi: np.ndarray,
polynomial_order: int) -> np.ndarray:

theta = create_library(u.reshape((1, 3)), polynomial_order)
return theta @ xi

def compute_trajectory(u0: np.ndarray, xi: np.ndarray, polynomial_order: int)␣
↪-> np.ndarray:

t0 = 0.001
dt = 0.001
tmax = 100
n = int(tmax / dt + 1)

t = np.linspace(start=t0, stop=tmax, num=n)
result = solve_ivp(fun=lorenz_approximation,

t_span=(t0, tmax),
y0=u0,
t_eval=t,
args=(xi, polynomial_order))

u = result.y.T

return u

[8]: SIGMA = 10
RHO = 28
BETA = 8 / 3

POLYNOMIAL_ORDER = 2

THRESHOLD = 0.025
MAX_ITERATIONS = 10

[9]: (u, uprime) = generate_data()
theta = create_library(u, POLYNOMIAL_ORDER)
xi = calculate_regression(theta, uprime, THRESHOLD, MAX_ITERATIONS)
xi

[9]: array([[0. , 0. , 0.],
[-10.00449518, 27.80496577, 0.],
[10.00429024, -0.95767769, 0.],
[0. , 0. , -2.66700595],
[0. , 0. , 0.],
[0. , 0. , 0.99924596],
[0. , -0.99347666, 0.],
[0. , 0. , 0.],
[0. , 0. , 0.],
[0. , 0. , 0.]])

5

[10]: u0 = np.array([-8, 8, 27])
u_approximation = compute_trajectory(u0, xi, POLYNOMIAL_ORDER)

[11]: graph_results(u, u_approximation)

C:\Users\sande\AppData\Local\Temp\ipykernel_2068\129517075.py:24:
MatplotlibDeprecationWarning: The w_xaxis attribute was deprecated in Matplotlib
3.1 and will be removed in 3.8. Use xaxis instead.

style_axis(axis3d.w_xaxis)
C:\Users\sande\AppData\Local\Temp\ipykernel_2068\129517075.py:25:
MatplotlibDeprecationWarning: The w_yaxis attribute was deprecated in Matplotlib
3.1 and will be removed in 3.8. Use yaxis instead.

style_axis(axis3d.w_yaxis)
C:\Users\sande\AppData\Local\Temp\ipykernel_2068\129517075.py:26:
MatplotlibDeprecationWarning: The w_zaxis attribute was deprecated in Matplotlib
3.1 and will be removed in 3.8. Use zaxis instead.

style_axis(axis3d.w_zaxis)

[]:

6

72 APPENDIX A. APPENDIX A

A.2 Code for Covid-19

72

covid-19

June 14, 2023

1 Covid 19 example

[1]: import requests
import io
import numpy as np
import matplotlib.dates as mdates
import pandas as pd
import matplotlib.pyplot as plt

[2]: url = 'https://raw.githubusercontent.com/SanderSondeland/Master/main/
↪corona_data_new.csv?token=GHSAT0AAAAAACBRT5KRZAWZGFMMNZ3Y5IBAZEIELWA'

download = requests.get(url).content
data = pd.read_csv(io.StringIO(download.decode('utf-8')), sep='\t')
data

[2]: LOCATION TIME ELAPSED_TIME_SINCE_OUTBREAK \
0 Afghanistan 2020-02-24 23:59:00 0
1 Afghanistan 2020-02-25 23:59:00 1
2 Afghanistan 2020-02-26 23:59:00 2
3 Afghanistan 2020-02-27 23:59:00 3
4 Afghanistan 2020-02-28 23:59:00 4
… … … …
44516 Hubei 2020-10-21 23:59:00 273
44517 Hubei 2020-10-22 23:59:00 274
44518 Hubei 2020-10-23 23:59:00 275
44519 Hubei 2020-10-24 23:59:00 276
44520 Hubei 2020-10-25 23:59:00 277

CONFIRMED DEATHS RECOVERED
0 1 0 0
1 1 0 0
2 1 0 0
3 1 0 0
4 1 0 0
… … … …
44516 68139 4512 63627
44517 68139 4512 63627

1

44518 68139 4512 63627
44519 68139 4512 63627
44520 68139 4512 63627

[44521 rows x 6 columns]

[3]: data_A = data[data['LOCATION'] == 'Afghanistan']
data_A

[3]: LOCATION TIME ELAPSED_TIME_SINCE_OUTBREAK CONFIRMED \
0 Afghanistan 2020-02-24 23:59:00 0 1
1 Afghanistan 2020-02-25 23:59:00 1 1
2 Afghanistan 2020-02-26 23:59:00 2 1
3 Afghanistan 2020-02-27 23:59:00 3 1
4 Afghanistan 2020-02-28 23:59:00 4 1
.. … … … …
240 Afghanistan 2020-10-21 23:59:00 240 40510
241 Afghanistan 2020-10-22 23:59:00 241 40626
242 Afghanistan 2020-10-23 23:59:00 242 40687
243 Afghanistan 2020-10-24 23:59:00 243 40768
244 Afghanistan 2020-10-25 23:59:00 244 40833

DEATHS RECOVERED
0 0 0
1 0 0
2 0 0
3 0 0
4 0 0
.. … …
240 1501 33824
241 1505 33831
242 1507 34010
243 1511 34023
244 1514 34129

[245 rows x 6 columns]

[4]: time_A = data_A['ELAPSED_TIME_SINCE_OUTBREAK'].to_numpy()
confirmed_A = data_A['CONFIRMED'].to_numpy()
confirmed_A = confirmed_A[35:]
time_A = time_A[35:]

[8]: fig, ax = plt.subplots(figsize=(12, 8))
ax.grid()
plt.title('Covid-19 in Afghanistan')
plt.xlabel('Time since initial breakout (days)')
plt.ylabel('Number of confirmed cases')

2

ax.plot(time_A, confirmed_A, color='black')

plt.show()

2 SINDy method

[7]: from scipy.integrate import solve_ivp
from derivative import dxdt

[8]: def create_library(u: np.ndarray, polynomial_order: int,
use_trig: bool) -> np.ndarray:

"""Creates a matrix containing a library of candidate functions.
For example, if our u depends on x, and we specify
polynomial_order=2 and use_trig=false, our terms would be:
1, x, x^2.
"""

u = u.reshape((-1, 1))

(m, n) = u.shape
theta = np.ones((m, 1))

3

Polynomials of order 1.
theta = np.hstack((theta, u))

Polynomials of order 2.
if polynomial_order >= 2:

for i in range(n):
for j in range(i, n):

theta = np.hstack((theta, u[:, i:i + 1] * u[:, j:j + 1]))

Polynomials of order 3.
if polynomial_order >= 3:

for i in range(n):
for j in range(i, n):

for k in range(j, n):
theta = np.hstack(

(theta, u[:, i:i + 1] * u[:, j:j + 1] * u[:, k:k + 1]))

Polynomials of order 4.
if polynomial_order >= 4:

for i in range(n):
for j in range(i, n):

for k in range(j, n):
for l in range(k, n):

theta = np.hstack(
(theta, u[:, i:i + 1] * u[:, j:j + 1] *
u[:, k:k + 1] * u[:, l:l + 1]))

Polynomials of order 5.
if polynomial_order >= 5:

for i in range(n):
for j in range(i, n):

for k in range(j, n):
for l in range(k, n):

for m in range(l, n):
theta = np.hstack(

(theta, u[:, i:i + 1] * u[:, j:j + 1] *
u[:, k:k + 1] * u[:, l:l + 1] * u[:, m:m + 1]))

if use_trig:
for i in range(1, 11):

theta = np.hstack((theta, np.sin(i * u), np.cos(i * u)))

return theta

[10]: def calculate_regression(theta: np.ndarray, uprime: np.ndarray, threshold:␣
↪float, max_iterations: int) -> np.ndarray:

Solve theta * xi = uprime in the least-squares sense.

4

xi = np.linalg.lstsq(theta, uprime, rcond=None)[0]
xi_before = xi
n = len(xi)
#print('xi before sparisty: ', xi)

Add sparsity.
for _ in range(max_iterations):

small_indices = np.abs(xi) < threshold
xi[small_indices] = 0
for j in range(n):

big_indices = np.logical_not(small_indices)
xi[big_indices] = np.linalg.lstsq(theta[:, big_indices],

uprime,
rcond=None)[0]

return xi_before, xi

[11]: def approximation(_: float, u: np.ndarray, xi: np.ndarray) -> np.ndarray:
theta = create_library(u.reshape((1, 3)), POLYNOMIAL_ORDER, USE_TRIG)
return theta @ xi

def compute_trajectory(u0: np.ndarray, xi: np.ndarray) -> np.ndarray:
if u0.size == 1:

u0 = np.repeat(u0, 3)
else:

u0 = u0.reshape((3,))
t0 = 0
dt = 1
tmax = 210
n = int(tmax / dt + 1)

t = np.linspace(start=t0, stop=tmax, num=n)
result = solve_ivp(fun=approximation,

t_span=(t0, tmax),
y0=u0,
t_eval=t,
args=(xi,))

u = result.y.T

return u

[12]: data_A_der = dxdt(confirmed_A, time_A, kind="kalman", alpha=2)

[13]: fig, ax = plt.subplots(figsize=(12, 8))
ax.grid()
ax.set_xlabel('Time since initial breakout (days)')
ax.set_ylabel('Number of confirmed cases')

5

ax.plot(time_A, data_A_der, color='black')

[13]: [<matplotlib.lines.Line2D at 0x24e616251c0>]

[14]: POLYNOMIAL_ORDER = 3
USE_TRIG = False
USE_EXP = False
T_ORDER = 1

theta = create_library(confirmed_A, POLYNOMIAL_ORDER, USE_TRIG)

[25]: THRESHOLD = 0.000001
MAX_ITERATIONS = 10

xi_before, xi = calculate_regression(theta, data_A_der, THRESHOLD,␣
↪MAX_ITERATIONS)

mat_0 = confirmed_A[0]
u_approximation = compute_trajectory(mat_0, xi)
xi

(4,)

6

[25]: array([4.74599839e+01, 6.02929056e-02, -1.57168749e-06, 0.00000000e+00])

[28]: fig, ax = plt.subplots(figsize=(12, 8))
ax.grid()
ax.set_xlabel('Time since initial breakout (days)')
ax.set_ylabel('Number of confirmed cases')
ax.plot(time_A, confirmed_A, color='black')
ax.plot(time_A, u_approximation[:-1], color='red')

[28]: [<matplotlib.lines.Line2D at 0x24e66ef89d0>,
<matplotlib.lines.Line2D at 0x24e66ef8a00>,
<matplotlib.lines.Line2D at 0x24e66ef8b20>]

[]:

7

80 APPENDIX A. APPENDIX A

A.3 Code for SINDy on Statfjord Øst

80

threewells

June 14, 2023

1 Testing on three wells.
Testing on three wells to see if it is possible to find some interference between the wells using SIDNy.

[1]: # Import modules

import numpy as np
import pandas as pd
import requests
import io
import logging
from scipy.integrate import solve_ivp
from derivative import dxdt
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from scipy.ndimage import median_filter

[2]: url = 'https://raw.githubusercontent.com/SanderSondeland/Master/main/
↪20230118_WellBore_monthlyFacility.csv?
↪token=GHSAT0AAAAAACD4GTTLIUBPTGRR75LLYNE4ZEJZVTA'

download = requests.get(url).content
data = pd.read_csv(io.StringIO(download.decode('utf-8')))
data

[2]: name npdId field year month operationTime \
0 33/9-C-16 A 7878 STATFJORD ØST 2016 11 25.38
1 33/9-C-16 A 7878 STATFJORD ØST 2016 12 NaN
2 33/9-C-16 A 7878 STATFJORD ØST 2017 1 19.98
3 33/9-C-16 A 7878 STATFJORD ØST 2017 2 13.06
4 33/9-C-16 A 7878 STATFJORD ØST 2017 3 NaN
… … … … … … …
2100 33/9-M-4 AH 2813 STATFJORD ØST 2020 5 5.23
2101 33/9-M-4 AH 2813 STATFJORD ØST 2020 6 0.00
2102 33/9-M-4 AH 2813 STATFJORD ØST 2020 7 0.00
2103 33/9-M-4 AH 2813 STATFJORD ØST 2020 8 0.00
2104 33/9-M-4 AH 2813 STATFJORD ØST 2020 9 NaN

operationTimeUom wellStatus oil oilUom gas gasUom condensate \

1

0 d producing 4603 Sm3 652469 Sm3 NaN
1 d NaN 14006 Sm3 1987611 Sm3 NaN
2 d producing 6172 Sm3 876347 Sm3 NaN
3 d producing 1546 Sm3 219285 Sm3 NaN
4 d NaN 2839 Sm3 402431 Sm3 NaN
… … … … … … … …
2100 d producing 1776 Sm3 483947 Sm3 NaN
2101 d closed 0 Sm3 0 Sm3 NaN
2102 d closed 0 Sm3 0 Sm3 NaN
2103 d closed 0 Sm3 0 Sm3 NaN
2104 d NaN 0 Sm3 0 Sm3 NaN

condensateUom water waterUom
0 Sm3 5794 Sm3
1 Sm3 28841 Sm3
2 Sm3 14953 Sm3
3 Sm3 9226 Sm3
4 Sm3 13529 Sm3
… … … …
2100 Sm3 6399 Sm3
2101 Sm3 0 Sm3
2102 Sm3 0 Sm3
2103 Sm3 0 Sm3
2104 Sm3 0 Sm3

[2105 rows x 16 columns]

[3]: data.name.unique()

[3]: array(['33/9-C-16 A', '33/9-C-33 A', '33/9-L-1 H', '33/9-L-2 H',
'33/9-L-3 H', '33/9-L-4 H', '33/9-M-1 AH', '33/9-M-1 H',
'33/9-M-2 AH', '33/9-M-2 BH', '33/9-M-2 H', '33/9-M-3 H',
'33/9-M-4 AH'], dtype=object)

[4]: data1 = data.drop(columns=['npdId', 'field', 'operationTime',␣
↪'operationTimeUom','wellStatus','oilUom', 'gasUom', 'condensate',

'condensateUom', 'water', 'waterUom'])
data1

[4]: name year month oil gas
0 33/9-C-16 A 2016 11 4603 652469
1 33/9-C-16 A 2016 12 14006 1987611
2 33/9-C-16 A 2017 1 6172 876347
3 33/9-C-16 A 2017 2 1546 219285
4 33/9-C-16 A 2017 3 2839 402431
… … … … … …
2100 33/9-M-4 AH 2020 5 1776 483947

2

2101 33/9-M-4 AH 2020 6 0 0
2102 33/9-M-4 AH 2020 7 0 0
2103 33/9-M-4 AH 2020 8 0 0
2104 33/9-M-4 AH 2020 9 0 0

[2105 rows x 5 columns]

[5]: x_data = data1[data1['name'] == '33/9-L-3 H']
x_data.loc[:, 'period'] = x_data['year'].astype(str) + '-' + x_data['month'].

↪astype(str)
x_data.loc[:, 'tot_prod'] = (x_data['oil'] + x_data['gas']/1000).round(1)
x_data.groupby('period').sum()
x_data

C:\Users\sande\AppData\Local\Temp\ipykernel_2448\4116822974.py:2:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

x_data.loc[:, 'period'] = x_data['year'].astype(str) + '-' +
x_data['month'].astype(str)
C:\Users\sande\AppData\Local\Temp\ipykernel_2448\4116822974.py:3:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

x_data.loc[:, 'tot_prod'] = (x_data['oil'] + x_data['gas']/1000).round(1)
C:\Users\sande\AppData\Local\Temp\ipykernel_2448\4116822974.py:4: FutureWarning:
The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a
future version, numeric_only will default to False. Either specify numeric_only
or select only columns which should be valid for the function.

x_data.groupby('period').sum()

[5]: name year month oil gas period tot_prod
677 33/9-L-3 H 1994 10 51473 7547000 1994-10 59020.0
678 33/9-L-3 H 1994 11 90972 13310000 1994-11 104282.0
679 33/9-L-3 H 1994 12 110652 16155000 1994-12 126807.0
680 33/9-L-3 H 1995 1 99745 14158000 1995-1 113903.0
681 33/9-L-3 H 1995 2 86007 12235000 1995-2 98242.0
.. … … … … … … …
950 33/9-L-3 H 2019 7 0 0 2019-7 0.0
951 33/9-L-3 H 2019 8 0 0 2019-8 0.0
952 33/9-L-3 H 2019 9 0 0 2019-9 0.0

3

953 33/9-L-3 H 2019 10 0 0 2019-10 0.0
954 33/9-L-3 H 2019 11 0 0 2019-11 0.0

[278 rows x 7 columns]

[6]: y_data = data1[data1['name'] == '33/9-L-2 H']
y_data.loc[:, 'period'] = y_data['year'].astype(str) + '-' + y_data['month'].

↪astype(str)
y_data.loc[:, 'tot_prod'] = (y_data['oil'] + y_data['gas']/1000).round(1)
y_data.groupby('period').sum()
y_data

C:\Users\sande\AppData\Local\Temp\ipykernel_2448\2731263958.py:2:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

y_data.loc[:, 'period'] = y_data['year'].astype(str) + '-' +
y_data['month'].astype(str)
C:\Users\sande\AppData\Local\Temp\ipykernel_2448\2731263958.py:3:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

y_data.loc[:, 'tot_prod'] = (y_data['oil'] + y_data['gas']/1000).round(1)
C:\Users\sande\AppData\Local\Temp\ipykernel_2448\2731263958.py:4: FutureWarning:
The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a
future version, numeric_only will default to False. Either specify numeric_only
or select only columns which should be valid for the function.

y_data.groupby('period').sum()

[6]: name year month oil gas period tot_prod
411 33/9-L-2 H 1996 8 18896 2723000 1996-8 21619.0
412 33/9-L-2 H 1996 9 87941 12497000 1996-9 100438.0
413 33/9-L-2 H 1996 10 83026 11800000 1996-10 94826.0
414 33/9-L-2 H 1996 11 79860 11361000 1996-11 91221.0
415 33/9-L-2 H 1996 12 89757 12765000 1996-12 102522.0
.. … … … … … … …
672 33/9-L-2 H 2020 5 0 0 2020-5 0.0
673 33/9-L-2 H 2020 6 0 0 2020-6 0.0
674 33/9-L-2 H 2020 7 0 0 2020-7 0.0
675 33/9-L-2 H 2020 8 0 0 2020-8 0.0
676 33/9-L-2 H 2020 9 0 0 2020-9 0.0

4

[266 rows x 7 columns]

[7]: z_data = data1[data1['name'] == '33/9-L-1 H']
z_data.loc[:, 'period'] = z_data['year'].astype(str) + '-' + z_data['month'].

↪astype(str)
z_data.loc[:, 'tot_prod'] = (z_data['oil'] + z_data['gas']/1000).round(1)
z_data.groupby('period').sum()
z_data

C:\Users\sande\AppData\Local\Temp\ipykernel_2448\912022984.py:2:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

z_data.loc[:, 'period'] = z_data['year'].astype(str) + '-' +
z_data['month'].astype(str)
C:\Users\sande\AppData\Local\Temp\ipykernel_2448\912022984.py:3:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

z_data.loc[:, 'tot_prod'] = (z_data['oil'] + z_data['gas']/1000).round(1)
C:\Users\sande\AppData\Local\Temp\ipykernel_2448\912022984.py:4: FutureWarning:
The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a
future version, numeric_only will default to False. Either specify numeric_only
or select only columns which should be valid for the function.

z_data.groupby('period').sum()

[7]: name year month oil gas period tot_prod
181 33/9-L-1 H 1999 8 30380 4313000 1999-8 34693.0
182 33/9-L-1 H 1999 9 100684 14297000 1999-9 114981.0
183 33/9-L-1 H 1999 10 99318 14103000 1999-10 113421.0
184 33/9-L-1 H 1999 11 99453 14122000 1999-11 113575.0
185 33/9-L-1 H 1999 12 87483 12388000 1999-12 99871.0
.. … … … … … … …
406 33/9-L-1 H 2020 5 0 0 2020-5 0.0
407 33/9-L-1 H 2020 6 0 0 2020-6 0.0
408 33/9-L-1 H 2020 7 0 0 2020-7 0.0
409 33/9-L-1 H 2020 8 0 0 2020-8 0.0
410 33/9-L-1 H 2020 9 0 0 2020-9 0.0

[230 rows x 7 columns]

5

[8]: import datetime
dates = [datetime.datetime(year=int(year), month=int(month), day=1) for year in␣

↪range(1999, 2000) for month in range(1, 13)]
dates = dates[7:]
dates2 = [datetime.datetime(year=int(year), month=int(month), day=1) for year␣

↪in range(2002, 2011) for month in range(1,13)]
dates2 = dates2[:]

[9]: test_x = x_data[63:-107]
tot_prod_x = test_x['tot_prod']

test_y = y_data[41:-117]
tot_prod_y = test_y['tot_prod']

test_z = z_data[5:-117]
tot_prod_z = test_z['tot_prod']

[10]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates2, tot_prod_x, label='33/9-L-3 H')
ax.plot(dates2, tot_prod_y, label='33/9-L-2 H')
ax.plot(dates2, tot_prod_z, label='33/9-L-1 H')

date_fmt = mdates.DateFormatter('%m/%Y')
ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels
plt.title('Production data from Januar 2002 to December 2010.')
plt.legend()
plt.xlabel('Year and Month')
plt.ylabel('Oil and gas [Sm3]')

plt.show()

6

1.1 Filtering
Filter the signals to remove the big spikes before deriving the data. Using a median filter to smooth
the data.

Trying out the savgol_filter below.

[11]: md_x = median_filter(tot_prod_x, size=6)

md_y = median_filter(tot_prod_y, size=6)

md_z = median_filter(tot_prod_z, size=6)

[12]: from scipy.signal import savgol_filter

sf_x = savgol_filter(tot_prod_x, 10, 1, mode='nearest')

sf_y = savgol_filter(tot_prod_y, 10, 1, mode='nearest')

sf_z = savgol_filter(tot_prod_z, 10, 1, mode='nearest')

[13]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates2, md_x, label='33/9-L-3 H')
ax.plot(dates2, md_y, label='33/9-L-2 H')
ax.plot(dates2, md_z, label='33/9-L-1 H')

date_fmt = mdates.DateFormatter('%m/%Y')

7

ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels
plt.title('Filtered production data from Januar 2002 to December 2010. Median␣

↪filter. ')
plt.legend()
plt.xlabel('Year and Month')
plt.ylabel('Oil and gas [Sm3]')

plt.show()

[14]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates2, sf_x, label='33/9-L-3 H')
ax.plot(dates2, sf_y, label='33/9-L-2 H')
ax.plot(dates2, sf_z, label='33/9-L-1 H')

date_fmt = mdates.DateFormatter('%m/%Y')
ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels
plt.title('Filtered production data from Januar 2002 to December 2010. Savgol␣

↪filter.')
plt.legend()
plt.xlabel('Year and Month')

8

plt.ylabel('Oil and gas [Sm3]')

plt.show()

[15]: i = len(dates2)
t = list(range(1, i+1))
t_np = np.array(t)

[16]: md_x_np = np.array(md_x)
md_y_np = np.array(md_y)
md_z_np = np.array(md_z)

[17]: x_der = dxdt(md_x_np, t_np, kind="kalman", alpha=2)
y_der = dxdt(md_y_np, t_np, kind="kalman", alpha=2)
z_der = dxdt(md_z_np, t_np, kind="kalman", alpha=2)

[18]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates2, x_der, label='dx/dt')
ax.plot(dates2, y_der, label='dy/dt')
ax.plot(dates2, z_der, label='dz/dt')

date_fmt = mdates.DateFormatter('%m/%Y')
ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels

9

plt.title('Filtered production data from Januar 2002 to December 2010. Savgol␣
↪filter.')

plt.legend()
plt.xlabel('Year and Month')
plt.ylabel('Oil and gas [Sm3]')

plt.show()

2 SINDy

[19]: mat = np.zeros((108,3))

mat[:, 0] = md_x
mat[:, 1] = md_y
mat[:, 2] = md_z

[20]: mat_der = np.zeros((108,3))

mat_der[:, 0] = x_der
mat_der[:, 1] = y_der
mat_der[:, 2] = z_der

[21]: def create_library(u: np.ndarray, polynomial_order: int,
use_trig: bool, use_exp: bool) -> np.ndarray:

"""Creates a matrix containing a library of candidate functions.

10

For example, if our u depends on x, y, and z, and we specify
polynomial_order=2, use_exp=True and use_trig=False, our terms would be:
1, x, y, z, x^2, xy, xz, y^2, yz, z^2, exp(-t*x), exp(-t*y), exp(-t*z),␣

↪exp(-t*x^2), exp(-t*y^2), exp(-t*z^2)
"""
(m, n) = u.shape
theta = np.ones((m, 1))

Polynomials of order 1.
theta = np.hstack((theta, u))

Polynomials of order 2.
if polynomial_order >= 2:

for i in range(n):
for j in range(i, n):

theta = np.hstack((theta, u[:, i:i + 1] * u[:, j:j + 1]))

Polynomials of order 3.
if polynomial_order >= 3:

for i in range(n):
for j in range(i, n):

for k in range(j, n):
theta = np.hstack(

(theta, u[:, i:i + 1] * u[:, j:j + 1] * u[:, k:k + 1]))

Polynomials of order 4.
if polynomial_order >= 4:

for i in range(n):
for j in range(i, n):

for k in range(j, n):
for l in range(k, n):

theta = np.hstack(
(theta, u[:, i:i + 1] * u[:, j:j + 1] *
u[:, k:k + 1] * u[:, l:l + 1]))

Polynomials of order 5.
if polynomial_order >= 5:

for i in range(n):
for j in range(i, n):

for k in range(j, n):
for l in range(k, n):

for m in range(l, n):
theta = np.hstack(

(theta, u[:, i:i + 1] * u[:, j:j + 1] *
u[:, k:k + 1] * u[:, l:l + 1] * u[:, m:m + 1]))

if use_trig:

11

for i in range(1,2):
theta = np.hstack((theta, np.sin(i * u), np.cos(i * u)))

if use_exp:
for i in range(n):

theta = np.hstack((theta, np.exp(-u[:, i:i+1]), np.exp(-u[:, i:
↪i+1]**2)))

return theta

[22]: def approximation(_: float, u: np.ndarray, xi: np.ndarray,
polynomial_order: int, use_trig: bool, use_exp: bool)␣

↪-> np.ndarray:
theta = create_library(u.reshape((1, 3)), polynomial_order, use_trig,␣

↪use_exp)
return theta @ xi

def compute_trajectory(u0: np.ndarray, xi: np.ndarray, polynomial_order: int,
use_trig: bool, use_exp: bool) -> np.ndarray:

t0 = 0
dt = 1
tmax = 108
n = int(tmax / dt + 1)

t = np.linspace(start=t0, stop=tmax, num=n)
result = solve_ivp(fun=approximation,

t_span=(t0, tmax),
y0=u0,
t_eval=t,
args=(xi, polynomial_order, use_trig, use_exp))

u = result.y.T

return u

[23]: def calculate_regression(theta: np.ndarray, uprime: np.ndarray,
threshold: float, max_iterations: int) -> np.ndarray:

Solve theta * xi = uprime in the least-squares sense.
xi = np.linalg.lstsq(theta, uprime, rcond=None)[0]
n = xi.shape[1]

Add sparsity.
for _ in range(max_iterations):

small_indices = np.abs(xi) < threshold
xi[small_indices] = 0
for j in range(n):

big_indices = np.logical_not(small_indices[:, j])
xi[big_indices, j] = np.linalg.lstsq(theta[:, big_indices],

12

uprime[:, j],
rcond=None)[0]

return xi

[31]: POLYNOMIAL_ORDER = 2
USE_TRIG = False
USE_EXP = False

theta = create_library(mat, POLYNOMIAL_ORDER, USE_TRIG, USE_EXP)

[32]: THRESHOLD = 0.01
MAX_ITERATIONS = 100

xi = calculate_regression(theta, mat_der, THRESHOLD, MAX_ITERATIONS)
xi

[32]: array([[-3.22409827e+02, -1.43103085e+02, -6.56608204e+02],
[-1.65597332e-02, 0.00000000e+00, -7.43393900e-02],
[0.00000000e+00, -1.27730347e-02, 2.99814973e-02],
[1.69081543e-02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])

[33]: mat_0 = mat[0]

u_approximation = compute_trajectory(mat_0, xi, POLYNOMIAL_ORDER, USE_TRIG,␣
↪USE_EXP)

x_aprox = u_approximation[:,0]
y_aprox = u_approximation[:,1]
z_aprox = u_approximation[:,2]

[34]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates2, tot_prod_x, label='33/9-L-3 H')
ax.plot(dates2, x_aprox[:-1], label='Approximation')

date_fmt = mdates.DateFormatter('%m/%Y')
ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels

13

plt.title('Filtered production data from Januar 2002 to December 2010. Median␣
↪filter. ')

plt.legend()
plt.xlabel('Year and Month')
plt.ylabel('Oil and gas [Sm3]')

plt.show()

[35]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates2, tot_prod_y, label='33/9-L-2 H')
ax.plot(dates2, y_aprox[:-1], label='Approximation')

date_fmt = mdates.DateFormatter('%m/%Y')
ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels
plt.title('Filtered production data from Januar 2002 to December 2010. Median␣

↪filter. ')
plt.legend()
plt.xlabel('Year and Month')
plt.ylabel('Oil and gas [Sm3]')

plt.show()

14

[36]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates2, tot_prod_z, label='33/9-L-1 H')
ax.plot(dates2, z_aprox[:-1], label='Approximation')

date_fmt = mdates.DateFormatter('%m/%Y')
ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels
plt.title('Filtered production data from Januar 2002 to December 2010. Median␣

↪filter. ')
plt.legend()
plt.xlabel('Year and Month')
plt.ylabel('Oil and gas [Sm3]')

plt.show()

15

[]:

16

97 APPENDIX A. APPENDIX A

A.4 Code for SINDy on Draugen

97

draugen

June 14, 2023

1 Draugen

[1]: # Import modules

import numpy as np
import pandas as pd
import requests
import io
import datetime
from scipy.integrate import solve_ivp
from derivative import dxdt
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from scipy.ndimage import median_filter

[2]: url = 'https://raw.githubusercontent.com/SanderSondeland/Master/main/
↪20230418_WellBore_monthlyFacility%20(1).csv?
↪token=GHSAT0AAAAAACD4GTTLM35KNNFLKBPUPOWMZEI5SXA'

download = requests.get(url).content
data = pd.read_csv(io.StringIO(download.decode('utf-8')))
data

[2]: name npdId field year month operationTime \
0 6407/9-A-1 2254 DRAUGEN 1994 6 NaN
1 6407/9-A-1 2254 DRAUGEN 1994 7 NaN
2 6407/9-A-1 2254 DRAUGEN 1994 8 NaN
3 6407/9-A-1 2254 DRAUGEN 1994 9 NaN
4 6407/9-A-1 2254 DRAUGEN 1994 10 NaN
… … … … … … …
3700 6407/9-G-5 H 7715 DRAUGEN 2020 8 31.00
3701 6407/9-G-5 H 7715 DRAUGEN 2020 9 28.93
3702 6407/9-G-5 H 7715 DRAUGEN 2020 10 25.54
3703 6407/9-G-5 H 7715 DRAUGEN 2020 11 30.00
3704 6407/9-G-5 H 7715 DRAUGEN 2020 12 31.00

operationTimeUom wellStatus oil oilUom gas gasUom condensate \
0 d NaN 172347 Sm3 7931000 Sm3 NaN

1

1 d NaN 198022 Sm3 10221000 Sm3 NaN
2 d NaN 201457 Sm3 11584000 Sm3 NaN
3 d NaN 197711 Sm3 11087000 Sm3 NaN
4 d NaN 195050 Sm3 10988000 Sm3 NaN
… … … … … … … …
3700 d producing 8851 Sm3 304029 Sm3 NaN
3701 d producing 8493 Sm3 270559 Sm3 NaN
3702 d producing 7268 Sm3 245919 Sm3 NaN
3703 d producing 8109 Sm3 257430 Sm3 NaN
3704 d producing 9069 Sm3 284342 Sm3 NaN

condensateUom water waterUom
0 Sm3 0 Sm3
1 Sm3 0 Sm3
2 Sm3 0 Sm3
3 Sm3 0 Sm3
4 Sm3 0 Sm3
… … … …
3700 Sm3 66253 Sm3
3701 Sm3 66175 Sm3
3702 Sm3 62792 Sm3
3703 Sm3 73987 Sm3
3704 Sm3 79158 Sm3

[3705 rows x 16 columns]

[3]: data.name.unique()

[3]: array(['6407/9-A-1', '6407/9-A-2 A', '6407/9-A-3', '6407/9-A-4',
'6407/9-A-4 A', '6407/9-A-5', '6407/9-A-53 H', '6407/9-A-55 AH',
'6407/9-A-6', '6407/9-D-1 AH', '6407/9-D-2 H', '6407/9-D-3 H',
'6407/9-E-1 H', '6407/9-E-2 H', '6407/9-E-3 H', '6407/9-E-4 H',
'6407/9-G-1 H', '6407/9-G-2 H', '6407/9-G-3 H', '6407/9-G-5 H'],
dtype=object)

[4]: data1 = data.drop(columns=['npdId', 'field', 'operationTime',␣
↪'operationTimeUom','wellStatus','oilUom', 'gasUom', 'condensate',

'condensateUom', 'waterUom'])
data1

[4]: name year month oil gas water
0 6407/9-A-1 1994 6 172347 7931000 0
1 6407/9-A-1 1994 7 198022 10221000 0
2 6407/9-A-1 1994 8 201457 11584000 0
3 6407/9-A-1 1994 9 197711 11087000 0
4 6407/9-A-1 1994 10 195050 10988000 0
… … … … … … …

2

3700 6407/9-G-5 H 2020 8 8851 304029 66253
3701 6407/9-G-5 H 2020 9 8493 270559 66175
3702 6407/9-G-5 H 2020 10 7268 245919 62792
3703 6407/9-G-5 H 2020 11 8109 257430 73987
3704 6407/9-G-5 H 2020 12 9069 284342 79158

[3705 rows x 6 columns]

[5]: x_data = data1[data1['name'] == '6407/9-A-1']
x_data.loc[:, 'period'] = x_data['year'].astype(str) + '-' + x_data['month'].

↪astype(str)
x_data.loc[:, 'tot_prod'] = (x_data['oil'] + x_data['gas']/1000).round(1)
x_data = x_data.groupby('period').sum()
x_data

C:\Users\sande\AppData\Local\Temp\ipykernel_16680\3989910507.py:2:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

x_data.loc[:, 'period'] = x_data['year'].astype(str) + '-' +
x_data['month'].astype(str)
C:\Users\sande\AppData\Local\Temp\ipykernel_16680\3989910507.py:3:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

x_data.loc[:, 'tot_prod'] = (x_data['oil'] + x_data['gas']/1000).round(1)
C:\Users\sande\AppData\Local\Temp\ipykernel_16680\3989910507.py:4:
FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is
deprecated. In a future version, numeric_only will default to False. Either
specify numeric_only or select only columns which should be valid for the
function.

x_data = x_data.groupby('period').sum()

[5]: year month oil gas water tot_prod
period
1994-10 1994 10 195050 10988000 0 206038.0
1994-11 1994 11 196044 10255000 0 206299.0
1994-12 1994 12 176032 9252000 0 185284.0
1994-6 1994 6 172347 7931000 0 180278.0
1994-7 1994 7 198022 10221000 0 208243.0
… … … … … … …

3

2020-5 2020 5 6446 420354 132877 6866.4
2020-6 2020 6 4180 279594 95597 4459.6
2020-7 2020 7 2172 143060 40738 2315.1
2020-8 2020 8 6258 352751 124142 6610.8
2020-9 2020 9 5639 295011 115914 5934.0

[318 rows x 6 columns]

[6]: y_data = data1[data1['name'] == '6407/9-A-2 A']
y_data.loc[:, 'period'] = y_data['year'].astype(str) + '-' + y_data['month'].

↪astype(str)
y_data.loc[:, 'tot_prod'] = (y_data['oil'] + y_data['gas']/1000).round(1)
y_data.groupby('period').sum()
y_data

C:\Users\sande\AppData\Local\Temp\ipykernel_16680\4226326607.py:2:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

y_data.loc[:, 'period'] = y_data['year'].astype(str) + '-' +
y_data['month'].astype(str)
C:\Users\sande\AppData\Local\Temp\ipykernel_16680\4226326607.py:3:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

y_data.loc[:, 'tot_prod'] = (y_data['oil'] + y_data['gas']/1000).round(1)
C:\Users\sande\AppData\Local\Temp\ipykernel_16680\4226326607.py:4:
FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is
deprecated. In a future version, numeric_only will default to False. Either
specify numeric_only or select only columns which should be valid for the
function.

y_data.groupby('period').sum()

[6]: name year month oil gas water period tot_prod
318 6407/9-A-2 A 1994 12 72310 3802000 0 1994-12 76112.0
319 6407/9-A-2 A 1995 1 107169 5585000 0 1995-1 112754.0
320 6407/9-A-2 A 1995 2 137400 7487000 0 1995-2 144887.0
321 6407/9-A-2 A 1995 3 128699 7202000 0 1995-3 135901.0
322 6407/9-A-2 A 1995 4 142063 7908000 0 1995-4 149971.0
.. … … … … … … … …
625 6407/9-A-2 A 2020 8 5055 287806 164523 2020-8 5342.8

4

626 6407/9-A-2 A 2020 9 6422 336610 162410 2020-9 6758.6
627 6407/9-A-2 A 2020 10 6954 381451 171507 2020-10 7335.5
628 6407/9-A-2 A 2020 11 6040 315625 157900 2020-11 6355.6
629 6407/9-A-2 A 2020 12 6962 358310 170456 2020-12 7320.3

[312 rows x 8 columns]

[7]: z_data = data1[data1['name'] == '6407/9-A-6']
z_data.loc[:, 'period'] = z_data['year'].astype(str) + '-' + z_data['month'].

↪astype(str)
z_data.loc[:, 'tot_prod'] = (z_data['oil'] + z_data['gas']/1000).round(1)
z_data.groupby('period').sum()
z_data

C:\Users\sande\AppData\Local\Temp\ipykernel_16680\2187305751.py:2:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

z_data.loc[:, 'period'] = z_data['year'].astype(str) + '-' +
z_data['month'].astype(str)
C:\Users\sande\AppData\Local\Temp\ipykernel_16680\2187305751.py:3:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

z_data.loc[:, 'tot_prod'] = (z_data['oil'] + z_data['gas']/1000).round(1)
C:\Users\sande\AppData\Local\Temp\ipykernel_16680\2187305751.py:4:
FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is
deprecated. In a future version, numeric_only will default to False. Either
specify numeric_only or select only columns which should be valid for the
function.

z_data.groupby('period').sum()

[7]: name year month oil gas water period tot_prod
1897 6407/9-A-6 1994 8 206901 11608000 0 1994-8 218509.0
1898 6407/9-A-6 1994 9 215894 12106000 0 1994-9 228000.0
1899 6407/9-A-6 1994 10 221972 12504000 0 1994-10 234476.0
1900 6407/9-A-6 1994 11 211153 11045000 0 1994-11 222198.0
1901 6407/9-A-6 1994 12 220564 11594000 0 1994-12 232158.0
… … … … … … … … …
2208 6407/9-A-6 2020 8 14463 815989 173401 2020-8 15279.0
2209 6407/9-A-6 2020 9 15132 791996 166646 2020-9 15924.0

5

2210 6407/9-A-6 2020 10 15493 2185778 162246 2020-10 17678.8
2211 6407/9-A-6 2020 11 13065 2184933 156661 2020-11 15249.9
2212 6407/9-A-6 2020 12 14127 2428084 158360 2020-12 16555.1

[316 rows x 8 columns]

[8]: dates = [datetime.datetime(year=int(year), month=int(month), day=1) for year in␣
↪range(1994, 2021) for month in range(1, 13)]

dates = dates[11:-3]

[9]: test_x = x_data[8:]
tot_prod_x = test_x['tot_prod']

test_y = y_data[:-2]
tot_prod_y = test_y['tot_prod']

test_z = z_data[4:-2]
tot_prod_z = test_z['tot_prod']

[10]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates, tot_prod_x, label='6407/9-A-1')
ax.plot(dates, tot_prod_y, label='6407/9-A-2 A')
ax.plot(dates, tot_prod_z, label='6407/9-A-6')

date_fmt = mdates.DateFormatter('%m/%Y')
ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels
plt.title('Production data from 1994 to December 2020.')
plt.legend()
plt.xlabel('Year and Month')
plt.ylabel('Oil and gas [Sm3]')

plt.show()

6

2 Filtering

[11]: md_x = median_filter(tot_prod_x, size=4)

md_y = median_filter(tot_prod_y, size=4)

md_z = median_filter(tot_prod_z, size=4)

[12]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates, md_x, label='6407/9-A-1')
ax.plot(dates, md_y, label='6407/9-A-2 A')
ax.plot(dates, md_z, label='6407/9-A-6')

date_fmt = mdates.DateFormatter('%m/%Y')
ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels
plt.title('Production data from Januar 1994 to December 2010.')
plt.legend()
plt.xlabel('Year and Month')
plt.ylabel('Oil and gas [Sm3]')

plt.show()

7

[13]: i = len(dates)
t = list(range(1, i+1))
t_np = np.array(t)

[14]: md_x_np = np.array(md_x)
md_y_np = np.array(md_y)
md_z_np = np.array(md_z)

tot_prod_x_np = np.array(tot_prod_x)
tot_prod_y_np = np.array(tot_prod_y)
tot_prod_z_np = np.array(tot_prod_z)

[15]: x_der = dxdt(md_x_np, t_np, kind="kalman", alpha=2)
y_der = dxdt(md_y_np, t_np, kind="kalman", alpha=2)
z_der = dxdt(md_z_np, t_np, kind="kalman", alpha=2)

[16]: x_der2 = dxdt(md_x_np, t_np, kind="finite_difference", k=2)
y_der2 = dxdt(md_y_np, t_np, kind="finite_difference", k=2)
z_der2 = dxdt(md_z_np, t_np, kind="finite_difference", k=2)

[19]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates, x_der, label='dx/dt')
ax.plot(dates, y_der, label='dy/dt')
ax.plot(dates, z_der, label='dz/dt')

date_fmt = mdates.DateFormatter('%m/%Y')

8

ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels
plt.title('Derivative of the production data from 1994 to 2020. Kalman')
plt.legend()
plt.xlabel('Year and Month')
plt.ylabel('Derivative')

plt.show()

[21]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates, x_der2, label='dx/dt')
ax.plot(dates, y_der2, label='dy/dt')
ax.plot(dates, z_der2, label='dz/dt')

date_fmt = mdates.DateFormatter('%m/%Y')
ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels
plt.title('Derivative of the production data from 1994 to 2020. Finite␣

↪difference')
plt.legend()
plt.xlabel('Year and Month')
plt.ylabel('Derivative')

9

plt.show()

3 SINDy

[20]: mat = np.zeros((310,3))

mat[:, 0] = md_x
mat[:, 1] = md_y
mat[:, 2] = md_z

mat.shape

[20]: (310, 3)

[21]: mat_der = np.zeros((310,3))

mat_der[:, 0] = x_der
mat_der[:, 1] = y_der
mat_der[:, 2] = z_der

mat_der.shape

[21]: (310, 3)

10

[22]: def create_library(u: np.ndarray, polynomial_order: int,
use_trig: bool, use_exp: bool) -> np.ndarray:

"""Creates a matrix containing a library of candidate functions.
"""
(m, n) = u.shape
theta = np.ones((m, 1))

Polynomials of order 1.
theta = np.hstack((theta, u))

Polynomials of order 2.
if polynomial_order >= 2:

for i in range(n):
for j in range(i, n):

theta = np.hstack((theta, u[:, i:i + 1] * u[:, j:j + 1]))

Polynomials of order 3.
if polynomial_order >= 3:

for i in range(n):
for j in range(i, n):

for k in range(j, n):
theta = np.hstack(

(theta, u[:, i:i + 1] * u[:, j:j + 1] * u[:, k:k + 1]))

Polynomials of order 4.
if polynomial_order >= 4:

for i in range(n):
for j in range(i, n):

for k in range(j, n):
for l in range(k, n):

theta = np.hstack(
(theta, u[:, i:i + 1] * u[:, j:j + 1] *
u[:, k:k + 1] * u[:, l:l + 1]))

Polynomials of order 5.
if polynomial_order >= 5:

for i in range(n):
for j in range(i, n):

for k in range(j, n):
for l in range(k, n):

for m in range(l, n):
theta = np.hstack(

(theta, u[:, i:i + 1] * u[:, j:j + 1] *
u[:, k:k + 1] * u[:, l:l + 1] * u[:, m:m + 1]))

if use_trig:
for i in range(1, 11):

11

theta = np.hstack((theta, np.sin(i * u), np.cos(i * u)))

if use_exp:
for i in range(n):

theta = np.hstack((theta, np.exp(-u[:, i:i+1]), np.exp(-u[:, i:
↪i+1]**2)))

return theta

[23]: def approximation(_: float, u: np.ndarray, xi: np.ndarray,
polynomial_order: int, use_trig: bool, use_exp: bool)␣

↪-> np.ndarray:
theta = create_library(u.reshape((1, 3)), polynomial_order, use_trig,␣

↪use_exp)
return theta @ xi

def compute_trajectory(u0: np.ndarray, xi: np.ndarray, polynomial_order: int,
use_trig: bool, use_exp: bool) -> np.ndarray:

t0 = 0
dt = 1
tmax = 310
n = int(tmax / dt + 1)

t = np.linspace(start=t0, stop=tmax, num=n)
result = solve_ivp(fun=approximation,

t_span=(t0, tmax),
y0=u0,
t_eval=t,
args=(xi, polynomial_order, use_trig, use_exp))

u = result.y.T

return u

[24]: def calculate_regression(theta: np.ndarray, uprime: np.ndarray,
threshold: float, max_iterations: int) -> np.ndarray:

Solve theta * xi = uprime in the least-squares sense.
xi = np.linalg.lstsq(theta, uprime, rcond=None)[0]
n = xi.shape[1]

Add sparsity.
for _ in range(max_iterations):

small_indices = np.abs(xi) < threshold
xi[small_indices] = 0
for j in range(n):

big_indices = np.logical_not(small_indices[:, j])
xi[big_indices, j] = np.linalg.lstsq(theta[:, big_indices],

uprime[:, j],

12

rcond=None)[0]

return xi

[25]: POLYNOMIAL_ORDER = 2
USE_TRIG = False
USE_EXP = False
T_ORDER = 1

t_np_test = np.array(range(1, 311))

theta = create_library(mat, POLYNOMIAL_ORDER, USE_TRIG, USE_EXP)
theta.size

[25]: 3100

[26]: THRESHOLD = 0.005
MAX_ITERATIONS = 10

xi = calculate_regression(theta, mat_der, THRESHOLD, MAX_ITERATIONS)
xi

(10, 3)

[26]: array([[9.96159839e+01, -2.73130752e+02, -3.83454240e+02],
[-3.22382027e-02, 3.70187759e-02, 0.00000000e+00],
[5.87360444e-02, -3.82739125e-02, 1.90176817e-02],
[-3.43451987e-02, 5.79877812e-03, -1.86472767e-02],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])

[27]: mat_0 = mat[0]

u_approximation = compute_trajectory(mat_0, xi, POLYNOMIAL_ORDER, USE_TRIG,␣
↪USE_EXP)

x_aprox = u_approximation[:,0]
y_aprox = u_approximation[:,1]
z_aprox = u_approximation[:,2]

(311, 3)

[28]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates, tot_prod_x, label='6407/9-A-1')

13

ax.plot(dates, x_aprox[:-1], label='Approximation')

date_fmt = mdates.DateFormatter('%m/%Y')
ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels
plt.title('Filtered production data from 1994 to December 2020.')
plt.legend()
plt.xlabel('Year and Month')
plt.ylabel('Oil and gas [Sm3]')

plt.show()

[29]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates, tot_prod_y, label='6407/9-A-2 A')
ax.plot(dates, y_aprox[:-1], label='Approximation')

date_fmt = mdates.DateFormatter('%m/%Y')
ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels
plt.title('Filtered production data from 1994 to December 2020.')

14

plt.legend()
plt.xlabel('Year and Month')
plt.ylabel('Oil and gas [Sm3]')

plt.show()

[30]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates, tot_prod_z, label='6407/9-A-6')
ax.plot(dates, z_aprox[:-1], label='Approximation')

date_fmt = mdates.DateFormatter('%m/%Y')
ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels
plt.title('Filtered production data from 1994 to December 2020.')
plt.legend()
plt.xlabel('Year and Month')
plt.ylabel('Oil and gas [Sm3]')

plt.show()

15

[]:

16

114 APPENDIX A. APPENDIX A

A.5 Code for PySINDy on Draugen

114

pysindy-1

June 14, 2023

1 PySINDy package
Using the PySINDy package on production data from Draugen.

[1]: import requests
import io
import matplotlib.dates as mdates
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

[2]: url = 'https://raw.githubusercontent.com/SanderSondeland/Master/main/
↪20230418_WellBore_monthlyFacility%20(1).csv?
↪token=GHSAT0AAAAAACD4GTTLLQ6GOKYVKBIVLCMWZEJQAOQ'

download = requests.get(url).content
data = pd.read_csv(io.StringIO(download.decode('utf-8')))
data

[2]: name npdId field year month operationTime \
0 6407/9-A-1 2254 DRAUGEN 1994 6 NaN
1 6407/9-A-1 2254 DRAUGEN 1994 7 NaN
2 6407/9-A-1 2254 DRAUGEN 1994 8 NaN
3 6407/9-A-1 2254 DRAUGEN 1994 9 NaN
4 6407/9-A-1 2254 DRAUGEN 1994 10 NaN
… … … … … … …
3700 6407/9-G-5 H 7715 DRAUGEN 2020 8 31.00
3701 6407/9-G-5 H 7715 DRAUGEN 2020 9 28.93
3702 6407/9-G-5 H 7715 DRAUGEN 2020 10 25.54
3703 6407/9-G-5 H 7715 DRAUGEN 2020 11 30.00
3704 6407/9-G-5 H 7715 DRAUGEN 2020 12 31.00

operationTimeUom wellStatus oil oilUom gas gasUom condensate \
0 d NaN 172347 Sm3 7931000 Sm3 NaN
1 d NaN 198022 Sm3 10221000 Sm3 NaN
2 d NaN 201457 Sm3 11584000 Sm3 NaN
3 d NaN 197711 Sm3 11087000 Sm3 NaN
4 d NaN 195050 Sm3 10988000 Sm3 NaN
… … … … … … … …

1

3700 d producing 8851 Sm3 304029 Sm3 NaN
3701 d producing 8493 Sm3 270559 Sm3 NaN
3702 d producing 7268 Sm3 245919 Sm3 NaN
3703 d producing 8109 Sm3 257430 Sm3 NaN
3704 d producing 9069 Sm3 284342 Sm3 NaN

condensateUom water waterUom
0 Sm3 0 Sm3
1 Sm3 0 Sm3
2 Sm3 0 Sm3
3 Sm3 0 Sm3
4 Sm3 0 Sm3
… … … …
3700 Sm3 66253 Sm3
3701 Sm3 66175 Sm3
3702 Sm3 62792 Sm3
3703 Sm3 73987 Sm3
3704 Sm3 79158 Sm3

[3705 rows x 16 columns]

[3]: data1 = data.drop(columns=['npdId', 'field', 'operationTime',␣
↪'operationTimeUom','wellStatus','oilUom', 'gasUom', 'condensate',

'condensateUom', 'water', 'waterUom'])
data1

[3]: name year month oil gas
0 6407/9-A-1 1994 6 172347 7931000
1 6407/9-A-1 1994 7 198022 10221000
2 6407/9-A-1 1994 8 201457 11584000
3 6407/9-A-1 1994 9 197711 11087000
4 6407/9-A-1 1994 10 195050 10988000
… … … … … …
3700 6407/9-G-5 H 2020 8 8851 304029
3701 6407/9-G-5 H 2020 9 8493 270559
3702 6407/9-G-5 H 2020 10 7268 245919
3703 6407/9-G-5 H 2020 11 8109 257430
3704 6407/9-G-5 H 2020 12 9069 284342

[3705 rows x 5 columns]

[4]: x_data = data1[data1['name'] == '6407/9-A-1']
x_data.loc[:, 'period'] = x_data['year'].astype(str) + '-' + x_data['month'].

↪astype(str)
x_data.loc[:, 'tot_prod'] = (x_data['oil'] + x_data['gas']/1000).round(1)
x_data = x_data.groupby('period').sum()
x_data

2

C:\Users\sande\AppData\Local\Temp\ipykernel_4760\3989910507.py:2:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

x_data.loc[:, 'period'] = x_data['year'].astype(str) + '-' +
x_data['month'].astype(str)
C:\Users\sande\AppData\Local\Temp\ipykernel_4760\3989910507.py:3:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

x_data.loc[:, 'tot_prod'] = (x_data['oil'] + x_data['gas']/1000).round(1)

[4]: year month oil gas tot_prod
period
1994-10 1994 10 195050 10988000 206038.0
1994-11 1994 11 196044 10255000 206299.0
1994-12 1994 12 176032 9252000 185284.0
1994-6 1994 6 172347 7931000 180278.0
1994-7 1994 7 198022 10221000 208243.0
… … … … … …
2020-5 2020 5 6446 420354 6866.4
2020-6 2020 6 4180 279594 4459.6
2020-7 2020 7 2172 143060 2315.1
2020-8 2020 8 6258 352751 6610.8
2020-9 2020 9 5639 295011 5934.0

[318 rows x 5 columns]

[5]: y_data = data1[data1['name'] == '6407/9-A-2 A']
y_data.loc[:, 'period'] = y_data['year'].astype(str) + '-' + y_data['month'].

↪astype(str)
y_data.loc[:, 'tot_prod'] = (y_data['oil'] + y_data['gas']/1000).round(1)
y_data.groupby('period').sum()
y_data

C:\Users\sande\AppData\Local\Temp\ipykernel_4760\4226326607.py:2:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

3

y_data.loc[:, 'period'] = y_data['year'].astype(str) + '-' +
y_data['month'].astype(str)
C:\Users\sande\AppData\Local\Temp\ipykernel_4760\4226326607.py:3:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

y_data.loc[:, 'tot_prod'] = (y_data['oil'] + y_data['gas']/1000).round(1)

[5]: name year month oil gas period tot_prod
318 6407/9-A-2 A 1994 12 72310 3802000 1994-12 76112.0
319 6407/9-A-2 A 1995 1 107169 5585000 1995-1 112754.0
320 6407/9-A-2 A 1995 2 137400 7487000 1995-2 144887.0
321 6407/9-A-2 A 1995 3 128699 7202000 1995-3 135901.0
322 6407/9-A-2 A 1995 4 142063 7908000 1995-4 149971.0
.. … … … … … … …
625 6407/9-A-2 A 2020 8 5055 287806 2020-8 5342.8
626 6407/9-A-2 A 2020 9 6422 336610 2020-9 6758.6
627 6407/9-A-2 A 2020 10 6954 381451 2020-10 7335.5
628 6407/9-A-2 A 2020 11 6040 315625 2020-11 6355.6
629 6407/9-A-2 A 2020 12 6962 358310 2020-12 7320.3

[312 rows x 7 columns]

[6]: z_data = data1[data1['name'] == '6407/9-A-6']
z_data.loc[:, 'period'] = z_data['year'].astype(str) + '-' + z_data['month'].

↪astype(str)
z_data.loc[:, 'tot_prod'] = (z_data['oil'] + z_data['gas']/1000).round(1)
z_data.groupby('period').sum()
z_data

C:\Users\sande\AppData\Local\Temp\ipykernel_4760\2187305751.py:2:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

z_data.loc[:, 'period'] = z_data['year'].astype(str) + '-' +
z_data['month'].astype(str)
C:\Users\sande\AppData\Local\Temp\ipykernel_4760\2187305751.py:3:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-

4

docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
z_data.loc[:, 'tot_prod'] = (z_data['oil'] + z_data['gas']/1000).round(1)

[6]: name year month oil gas period tot_prod
1897 6407/9-A-6 1994 8 206901 11608000 1994-8 218509.0
1898 6407/9-A-6 1994 9 215894 12106000 1994-9 228000.0
1899 6407/9-A-6 1994 10 221972 12504000 1994-10 234476.0
1900 6407/9-A-6 1994 11 211153 11045000 1994-11 222198.0
1901 6407/9-A-6 1994 12 220564 11594000 1994-12 232158.0
… … … … … … … …
2208 6407/9-A-6 2020 8 14463 815989 2020-8 15279.0
2209 6407/9-A-6 2020 9 15132 791996 2020-9 15924.0
2210 6407/9-A-6 2020 10 15493 2185778 2020-10 17678.8
2211 6407/9-A-6 2020 11 13065 2184933 2020-11 15249.9
2212 6407/9-A-6 2020 12 14127 2428084 2020-12 16555.1

[316 rows x 7 columns]

[7]: import datetime
dates = [datetime.datetime(year=int(year), month=int(month), day=1) for year in␣

↪range(1994, 2021) for month in range(1, 13)]
dates = dates[11:-3]

[8]: test_x = x_data[8:]
tot_prod_x = test_x['tot_prod']

test_y = y_data[:-2]
tot_prod_y = test_y['tot_prod']

test_z = z_data[4:-2]
tot_prod_z = test_z['tot_prod']

[9]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates, tot_prod_x, label='6407/9-A-1')
ax.plot(dates, tot_prod_y, label='6407/9-A-2 A')
ax.plot(dates, tot_prod_z, label='6407/9-A-6')

date_fmt = mdates.DateFormatter('%m/%Y')
ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels
plt.title('Production data from 1994 to December 2020.')
plt.legend()
plt.xlabel('Year and Month')
plt.ylabel('Oil and gas [Sm3]')

5

plt.show()

2 Filtering

[10]: from scipy.ndimage import median_filter
import numpy as np

[11]: md_x = median_filter(tot_prod_x, size=4)

md_y = median_filter(tot_prod_y, size=4)

md_z = median_filter(tot_prod_z, size=4)

[12]: i = len(dates)
t = list(range(1, i+1))
t_np = np.array(t)

[13]: md_x_np = np.array(md_x)
md_y_np = np.array(md_y)
md_z_np = np.array(md_z)

tot_prod_x_np = np.array(tot_prod_x)
tot_prod_y_np = np.array(tot_prod_y)
tot_prod_z_np = np.array(tot_prod_z)

6

3 PySINDy

[14]: import logging
import pysindy as ps
from scipy.integrate import odeint
from pysindy.differentiation import FiniteDifference, SINDyDerivative,␣

↪SmoothedFiniteDifference
from pysindy.optimizers import STLSQ

[15]: mat = np.zeros((310,3))

mat[:, 0] = md_x
mat[:, 1] = md_y
mat[:, 2] = md_z

i = len(dates)
t = list(range(1, i+1))
t_np = np.array(t)

[16]: Threshold = 0.005
Max_iterations = 10

[17]: def fit(u: np.ndarray, t: np.ndarray) -> ps.SINDy:
"""Uses PySINDy to find the equation that best fits the data u.
"""
optimizer = STLSQ(threshold=Threshold, max_iter=Max_iterations)

Finite difference derivatives.
differentiation_method = FiniteDifference()
differentiation_method2 = SmoothedFiniteDifference()

model = ps.SINDy(optimizer=optimizer,
differentiation_method=differentiation_method2,
feature_names=["x", "y", "z"],
discrete_time=False)

model.fit(u, t=t)
model.print()

return model

[18]: def compute_trajectory(u0: np.ndarray, model: ps.SINDy) -> np.ndarray:
"""Calculates the trajectory using the model discovered by SINDy.
"""
t0 = 0
dt = 1
tmax = 310
n = int(tmax / dt + 1)

7

t_eval = np.linspace(start=t0, stop=tmax, num=n)

u_approximation = model.simulate(u0, t_eval)

return u_approximation

[19]: model = fit(mat, t_np)

(x)' = 115.442 1 + -0.045 x + 0.076 y + -0.041 z
(y)' = -255.021 1 + 0.028 x + -0.024 y
(z)' = -396.834 1 + -0.015 x + 0.039 y + -0.025 z

[20]: u0 = mat[0]
u_approximation = compute_trajectory(u0, model)

[21]: x_aprox = u_approximation[:,0]
y_aprox = u_approximation[:,1]
z_aprox = u_approximation[:,2]

[22]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates, tot_prod_x, label='6407/9-A-1')
ax.plot(dates, x_aprox[:-1], label='Approximation')

date_fmt = mdates.DateFormatter('%m/%Y')
ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels
plt.title('Filtered production data from 1994 to December 2020.')
plt.legend()
plt.xlabel('Year and Month')
plt.ylabel('Oil and gas [Sm3]')

plt.show()

8

[23]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates, tot_prod_y, label='6407/9-A-2 A')
ax.plot(dates, y_aprox[:-1], label='Approximation')

date_fmt = mdates.DateFormatter('%m/%Y')
ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels
plt.title('Filtered production data from 1994 to December 2020.')
plt.legend()
plt.xlabel('Year and Month')
plt.ylabel('Oil and gas [Sm3]')

plt.show()

9

[24]: fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates, tot_prod_z, label='6407/9-A-6')
ax.plot(dates, z_aprox[:-1], label='Approximation')

date_fmt = mdates.DateFormatter('%m/%Y')
ax.xaxis.set_major_formatter(date_fmt)
plt.xticks(rotation=45)

Set plot title and axis labels
plt.title('Filtered production data from 1994 to December 2020.')
plt.legend()
plt.xlabel('Year and Month')
plt.ylabel('Oil and gas [Sm3]')

plt.show()

10

[]:

11

126 APPENDIX A. APPENDIX A

A.6 Master poster

126

Data Driven Model Discovery – Petroleum application

Sander André Søndeland
University of Stavanger

The Sparse Identification of Nonlinear Dynamics

(SINDy) model has proven its efficacy in

extracting governing equations from dynamical

systems. Through sparsity-promoting techniques,

SINDy offers compact and interpretable

representations of dynamics. This research study

demonstrates the successful application of SINDy

on production data from oil wells due to good

results.

Abstract

I would like to extend a big thank you to my

supervisor Aksel Hiorth, who has been a great help

during the process of my master's thesis.

Acknowledgements

.

More results

The results was promising and good. There can

be done a lot of testing with different parameters

and changing the library with candidate terms. It

shows that even if the data from Diskos was a bit

spiky the SINDy method still managed to find

some equations to capture the system’s

dynamics. Even though the results was

promising the method is sensible to noise, and a

bit of filtering before and during the

differentiation was necessary to get good results.

Good knowledge about the system is also a

benefit when creating the library with candidate

functions.

Conclusion

Data Driven model discovery is a field that is

rapidly developing with a range of different

techniques. One of these are the SINDy

algorithm, also known as sparse identification of

non-linear dynamical systems.

SINDy method was first introduced in 2016 by S.

L. Brunton, J. L. Proctor and J. N. Kutz. This was

seen as a powerful technique to identify

nonlinear dynamical systems from data.

There has also been developed an open-source

python package, pySINDy, to utilize the SINDy

method easier. It’s open source and has been

developed over the last years. This is a good tool

both for beginners and advanced users as well.

Introduction

The SINDy method uses a set of data as input and

differentiate the data. Then a custom library with

candidate terms will be generated. These libraries

can contain d’th–degree polynomials, exponential

terms, sine and cosine. It’s only limited by one’s

imagination.

Using the data and the library of candidate

functions, the SINDy algorithm searches for the

sparsest set of candidate functions that can

represent the dynamics observed in the data.

The result of the SINDy algorithm is a set of

governing equations that best capture the

system’s dynamics.

Methodology
The results are best shown by comparing graphs.

There will be results from two different tests. One

is a more theoretical result where the data is

generated and are the result from the Lorenz

system. The two other is based on data from

Diskos from a well on the Draugen oil field and

the Statfjord Øst field. These system has more

noisy data compared to the Lorenz system.

Results

Overview of the SINDy method Draugen

Lorenz system

Statfjord Øst

	Abstract
	List of Figures
	Acknowledgements
	Introduction
	Theory
	SINDy
	PySINDy - A robust Python package for SINDy

	Construction
	SINDy
	Lorenz equation
	Covid 19 example
	Petroleum data
	Statfjord Øst
	Draugen

	Implementation
	Implementation used for the Lorenz system
	Implementation for Draugen and Statfjord Øst

	Results
	Covid example
	Statfjord Øst
	Test 1
	Test 2
	Test 3

	Draugen
	Test 1
	Test 2
	Test 3
	Test 4

	Conclusion
	Future work

	Bibliography
	Appendix A
	Code for Lorenz system
	Code for Covid-19
	Code for SINDy on Statfjord Øst
	Code for SINDy on Draugen
	Code for PySINDy on Draugen
	Master poster

