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Abstract

Green renewable energy is produced by floating offshore wind turbines

(FOWT), a crucial component of the modern offshore wind energy industry. It

is a safety concern to accurately evaluate excessive weights while the FOWT

operates in adverse weather conditions. Under certain water conditions,

dangerous structural bending moments may result in operational concerns.

Using commercial FAST software, the study's hydrodynamic ambient wave

loads were calculated and converted into FOWT structural loads. This article

suggests a Monte Carlo‐based engineering technique that, depending on

simulations or observations, is computationally effective for predicting

extreme statistics of either the load or the response process. The innovative

deconvolution technique has been thoroughly explained. The suggested

approach effectively uses the entire set of data to produce a clear but accurate

estimate for severe response values and fatigue life. In this study, estimated

extreme values obtained using a novel deconvolution approach were

compared to identical values produced using the modified Weibull technique.

It is expected that the enhanced new de‐convolution methodology may offer a

dependable and correct forecast of severe structural loads based on the overall

performance of the advised de‐convolution approach due to environmental

wave loading.

KEYWORD S

environmental loads, floating offshore wind turbine, green energy, renewable energy,
wind energy

1 | INTRODUCTION

A significant amount of the world's energy demands
might be met by wind energy, a substantial ecologically
benign renewable energy source. Offshore wind farms
are commonly constructed to harness plentiful wind
energy and produce power. Due to the fact that offshore
wind speeds are frequently higher than onshore wind
speeds, the floating offshore wind turbine (FOWT)'s

contribution to energy generation is essential for the
sector.

Predicting FOWT design loads may be done largely in
one of the two methods. The recommended design
procedure might assist in choosing the ideal wind turbine
characteristic values, thereby reducing the risk of
structural damage to FOWTs: (a) prediction of severe
events and corresponding system responses with a low
probability of occurrence, resulting in excessive
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structural loads and reactions; and (b) extrapolation of
system responses and load levels toward cricilevels, while
system being simulated/measured under typical operat-
ing environmental circumstances.1–4 Both strategies are
advised by the IEC 61400‐1 standard.5–7 The second
approach (b), which is elaborated in this research study,
promotes techniques that are already shown to be
effective for a range of maritime constructions, including
various offshore platforms and vessels.8–13

There are numerous recently published research
studies related to FOWT reliability aspects.14

In Zhang et al.15 authors studied dynamic system
fault tree analysis to evaluate quantitatively FOWT
failure rates. In Li et al.16 authors utilized Bayesian
Network to analyze FOWT reliability function and
reported that the results were in good agreement with
the available verified data. In Xu et al.17 authors have
proposed a multidimensional reliability approach to
assess site‐specific FOWT environmental loads. In Song
et al.18 authors conducted dynamic reliability structural
analysis, given FOWT subjected to wind‐wave joint
excitations, using the so‐called probability density evolu-
tion method. In Liu et al.19 authors have used the
intelligent teaching‐learning‐based optimization tech-
nique to assess FOWT mooring system reliability
functions. In Sultania and Manuel20 authors have
utilized three‐dimensional (3D) inverse first‐order reli-
ability method to estimate 50‐year return period long‐
term loads acting on FOWT. In Zhang et al.21 authors
used the fuzzy set theory to handle FOWT failure
statistics, reported results showed advantages; for exam-
ple, failure rate reduced errors.

This study uses unique de‐convolution to boost the
effectiveness of using measured or simulated data. To
characterize the tail behavior of the extreme value
distribution, the structural load data that are now
available are paired with an appropriate class of
parametric functions. Then, a comprehensive methodol-
ogy to estimate extreme values is devised that not only

just relies on an asymptotic distribution (peak over
threshold) but also is independent of conventional
methods like Gumbel, Pareto, Weibull, and POT. With
much fewer simulations and observations than the direct
MC technique, the recommended MC‐based approach
for engineering design has the benefit of producing
predictions of severe load and response that are
comparable to accuracy. Figure 1 left shows the National
Data Buoy Center's (NDBC) National Oceanic and
Atmospheric Administration (NOAA) database that was
used in this study. The Cape Elizabeth location's
accessible in situ measured hourly historical metocean
data, gathered between 2010 and 2017, have been used to
calculate joint wind‐wave statistics.22

The flow chart for the described long‐term MC‐based
statistical/reliability study is shown in Figure 1 right.

The authors use the term “environmental sea state”
to refer to the whole set of locally accounted environ-
mental factors, such as wave height and wind speed, that
are included in the in situ environmental sea state, see
International Electrotechnical Commission and col-
leagues23–33 for current studies on FOWTs and their
engineering dependability.

2 | METHOD

Extreme value prediction problems in engineering are
frequent and challenging, especially when the available
data set is limited.34–38 Let's take a look at a stationary
(ideally ergodic) stochastic of either the load or the
response process X t( ), which may be described as the
sum of two distinct stationary component processes X t( )1

and X t( )2

X t X t X t( ) = ( ) + ( ).1 2 (1)

It should be noted that this work promotes a general
method that may be used to predict extreme values for a

FIGURE 1 Left: Typical data measurement buoy.11 Right: Flow chart for long‐term environmental statistical/reliability analysis.
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variety of loads and reactions for different ships and
offshore structures. One can derive PDF pX for the
process of interest load/response X t( ) in two distinct
ways:

A) With the time series X t( ) as the available data set,
direct de‐convolution is used to estimate pX

A ,

B) Separate PDF extraction is performed from the
corresponding process components X t( )1 and X t( )2 ,
namely pX1 and pX2 before convolution is applied
p p p= conv( , )X
B

X X1 2
.

Target PDF pX estimates both pX
A and pX

B .
Approach (A) is more straightforward to use; however,
(B) would yield a more accurate target PDF pX .
Convolution has the distinct advantage of enabling direct
extrapolation of the empirical PDF pX

A toward target
design probability levels without assuming any extra-
polation parametric or functional class, such as from the
family of generalized extreme value distributions (GEV),
which is necessary to extrapolate PDF tail. It should be
emphasized that the majority of extrapolation techniques
that are often used in offshore engineering practice do, in
fact, rely on assuming certain extrapolation parametric/
functional classes.8–33,39–41 Among the widely used
techniques, the techniques currently in use are peak
over the threshold (POT),31 Pareto, modified Weibull
method,42–47 bivariate modified Weibull,48,49 traditional
Weibull fit, and Gumbel fit; these are just a few examples
of fitting techniques. In the simplest instance, PDFs pX1
and pX2 may represent two identically distributed
processes, X t( )1 and X t( )2 , with p p=X X1 2

.

The alternative (A) scenario, in which processes
X t( )1 and X t( )2 have similar distributions, is the
subject of this study. Therefore, the objective of the
current study would be to locate component PDF pX1
such that it can produce a directly calculated PDF pX
as in instance (A)

( )p p p= conv ,X X X1 1
(2)

restricting our investigation to a single de‐
convolution illustration to illustrate the later idea of
improving a given empirical PDF, pX , by robustly
estimating the unknown PDF, pX1. Convolution of the
two vectors, u and v, occurs at the area where the
vectors' constituent parts (supports) overlap, with
vector v gliding over vector u. Convolution is
analogous to multiplying two polynomials, whose
coefficients are parts of u and v, in algebra. Let w be a
vector of length m n+ − 1, with the k‐th element
being m n+ − 1, and n be a vector of u, vlength( ),
with u= length( ) and vn = length( )

w k u j v k j( ) = ( ) ( − + 1).
j

m

=1
(3)

All j values that produce acceptable subscripts for u j( )

and v k j( − + 1), particularly j k n= max(1, + 1 − ):

k m1 : min ( , ), are summed. The main scenario in this
section is when m n= , and one may obtain

⋯

⋯

w u v

w u v u v

w u v u v u v

w n u v n u v n

u n v

w n u n v n

(1) = (1) · (1)

(2) = (1) · (2) + (2) · (1)

(3) = (1) · (3) + (2) · (2) + (3) · (1)

( ) = (1) · ( ) + (2) · ( − 1) +

… + ( ) · (1)

(2 − 1) = ( ) · ( )

(4)

Having established u = v = u u n( (1), …, ( )), one
may now infer from Equation (4) that one obtains
increasingly lower amounts of the w ‐ ‐components
w n w n( + 1), …, (2 − 1) as the index increases from
n + 1 to n2 − 1. The latter, which is twice as long as
the original u ‐distribution support domain and doubles
the length of the pX distribution support,

∆ ∆n x n x X(2 − 1) · 2 · = 2 L compared with the origi-
nal distribution support length ∆n x X· = L, with ∆x

being a constant discrete distribution bin width, clearly
extends vector w into a wider support domain. The
empirical target PDF pX is discretely represented by the
vector w = w w n( (1), …, ( )), where n is the length of the
distribution support, X[0, ]L , and this research study is
limited to the situation of non‐negative valued one‐sided
random variables, that is, X 0, for simplicity.

In this study, only the same distribution scenario—that
is, the case when Equation (4) holds equality and u = v—
will be investigated. Vectorsw and u are represented by the
PDFs pX and pX1 in Equation (2), respectively. The
unknown components u = v = u u n( (1), …, ( )) may be
estimated progressively, starting with the first component

u w(1) = (1) , then the second u (2) =
w

u

(2)

2 (1)
, and so on,

until the last one u n( ), according to Equation (4), given
the values of w = w w n( (1), …, ( )). In this article, the
authors promote a straightforward linear extrapolation of
the self‐deconvoluted vector u u n( (1), …, ( )) toward
u n u n( ( + 1), …, (2 − 1)); in other words, the PDF tail of
pX1 will be linearly extrapolated within the support range
X X( , 2 )L L . Given that PDF pX1 is a discrete representation of
the associated estimated vector u, it is possible to refer to it
as a deconvoluted PDF. Using Equation (3), the initial
vector w will be doubled in length and projected into the
PDF support domain, resulting in a pX support
length ∆ ∆n x n x X(2 − 1) · 2 · = 2 L that is twice as long
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as the original PDF support length ∆n x X· = L. Since the
original (raw) PDF tail, calculated by MC simulations or
observations, pX is typically not smooth, authors suggest
smoothening the original PDF p x( )X tail by interpolation,
as cumulative density function (CDF) tail being more
regular for higher tail values x . The modified Weibull
approach has been used; for x x0, the PDF tail behaves
very similarly to ax b dexp{−( + ) + }c , where a b c d, , , are
appropriate constants fitted for the appropriate x0, see
Equations (6) and (7). Authors have used linear tail
extrapolation of pX1 since it is an objective, numerically
more stable choice. Biases and assumptions are commonly
used in nonlinear extrapolation approaches.

The assumptions of the underlying data's statio-
narity, ergodicity, quality, and sufficiency are identi-
cal to the typical restrictions of any extrapolation
approach of this type and apply to the recommended
strategy as well. As previously mentioned, the PDF/
CDF distribution tail may be extrapolated using the
de‐convolution extrapolation technique without the
need for a specific extrapolation functional or
parametric class. Since projecting exceedance proba-
bility is crucial in the majority of reliability analysis
engineering applications, 1−CDF extrapolation is
required rather than marginal PDF. The complemen-
tary cumulative density function 1−CDF will thus be
denoted in this research using the same notation as
the marginal PDF, fX . A portion of the original data
set (called here “shorter” data set) has been extra-
polated to validate the extrapolation procedure
indicated above, and estimations based on the entire
(called here “longer”) data set are compared with the
extrapolated data. Therefore, the purpose of this work
is to demonstrate the effectiveness of the recom-
mended extrapolation technique over at least a few
orders of magnitude.

In contrast to the marginal PDF, where one may
utilize 1‐CDF and then use integration to create a new,
smoother CDF, an iterative approach may be used, as the
previous manner of explanation demonstrates. To
estimate the deconvoluted 1‐CDF distribution fX1 given
an empirical distribution fX , described in the preceding
section, the discrete convolution approach, or rather de‐
convolution, has been built on sequentially solving
Equation (4). As was previously predicted for the
empirical parent PDF/CDF distribution fX , the resultant
deconvoluted vector u = u u n( (1), …, ( )) components
u j( ) are often monotonously decreased with increasing
index j. Some of the final values of the resulting vector u,
such as u n L u n( ( − ), …, ( )), may go negative for some
L n< . The pivot value is the lowest positive value fL of a
particular distribution tail of fX . The scaling is then a

linear transformation on a decimal‐log scale along the
PDF's vertical y‐axis

g μ f f f= (log ( ) − log ( )) + log ( )X X L L10 10 10 (5)

with the reference level fL being constant and g x( )X

being a scaled log10 version of the empirical base
distribution fX . To prevent the occurrence of negative
components in the resultant fX1, the scaling coefficient μ

may be selected. When f f f̃ = conv( , )X X X1 1
as in Equation

(2) was used to get fX1, the original scale was restored by

performing an inverse scaling μ−1 with f ̃X being the
target extrapolated version of fX .

2.1 | Modified Weibull extrapolation

We now include a comment on the “shorter” data record
PDF/CDF distribution tail fX interpolation problem. The
latter interpolation was required since the empirical PDF
fX is frequently an inappropriate input for Equation (4)
due to its inherently extremely irregular tail section.
Because of this, a straightforward modified Weibull
(Naesss–Gaidai) extrapolation form has been used

 f x ax b d x x( ) exp{−( + ) + },X
c

0 (6)

using the appropriate optimisation method, reduce the
mean square error function F with respect to the four
constant parameters a b c d, , , .




F a b c d

h x f x d ax b

dx x x

( , , , )

= ( ){ln( ( )) − + ( + ) }

,

x

X

X
c 2

0

L

0

(7)

with the probability distribution tail (x x> 0) becoming pre‐
asymptotically regular at the beginning of the extrapolation
tail area, where x0 serves as an appropriate tail marker.
There are several methods to construct the weight
function h, such as h x C x C x( ) = {ln ( ) − ln ( )}+ − −2 with
C x C x( ( ), ( ))− + is the confidence interval (CI), which is
experimentally calculated using simulated or observed data.

When performing modified Weibull multi-
parameter fit, such as parametric nonlinear extrapola-
tion, room for error and prediction instability can be
significant due to variability in estimated model
parameters and extrapolation's nonlinearity. This is
one advantage of the proposed methodology over other
extrapolation methods.
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3 | MODEL IN BRIEF

Without the use of any presumptions, linearizations, or
other oversimplifications, the environmental data from
the monitored buoys were post‐processed into the
empirical multidimensional joint probability distribution
function (PDF). This study used the power law formula

( )U z U z( ) = ( )r
z

z

α

r
to extrapolate wind speed, where

U z( ) andU z( )r represent the wind speed at height z and
the reference wind speed at height zr, respectively.
Surface roughness length is denoted by z0, and the power
law constant is equal to α = 0.14. The in situ metocean
data were then used to quickly estimate the joint PDF
p U H T( , )s p , which produced a three‐dimensional (3D)
dispersed diagram with Hs andTp standing for significant
wave height and peak‐spectral period, respectively. This
strategy promotes the direct long‐term MC simulation
method,40,42–46,48,49 which has the benefit of not relying
on any assumptions or simplifications. A semi‐
submersible FOWT model with one main column and
three outer offset columns is shown in Figure 2.

The primary structural dimensions of the semi‐
submersible FOWT are shown in Table 1. The term
“center of mass” (CM).

On top of the DeepCwind platform that was partially
submerged, the 5‐MW NREL baseline wind turbine was
built. To correlate the relevant aerodynamic and gravita-
tional FOWT stresses with its in situ structural dynamics,
FAST and AeroDyn were used.50 The validation of
floating offshore wind turbine modeling methods using
experimental data had been the subject of substantial
experimental work.2,3,33

For this work, the aero‐hydro‐servo‐elastic simulation
code OpenFAST25 was used. TurbSim,27 with generated
random wind fields on a 31 × 31 square grid having
145m width, using the Kaimal spectral and exponential
coherence models. When using the blade element

momenta approach and taking into account rotor‐wake
effects, dynamic stall, and baseline responses, the Open-
FAST code module AeroDyn is adequate to describe
FOWT aerodynamics. The motion equations of the
coupled rigid‐flexible system have been solved to
determine the structural dynamic responses in the time
domain. The Kane technique was used to create these
equations of motion, using HydroDyn,28 incorporating
potential flow theory and Morison's equation for large‐
diameter constructions, to estimate hydrodynamic stres-
ses. Potential flow theory has been used to forecast
hydrodynamic coefficients in the frequency domain, such
as additional mass and potential damping coefficients. To
account for viscous drag forces occurring on FOWT,
Morison's formulation incorporated a drag force compo-
nent. The MoorDyn mooring module, which is based on
the lumped mass theory, is used to represent the three
catenary mooring lines of the NERL 5MW semi‐
submersible FOWT. For extrapolation to predict ultimate
loads with a desired return time of 50 years, at least 15

FIGURE 2 Left: DeepCwind semi‐submersible floating offshore wind turbine (FOWT) platform 1/50 scale model.30,32 Right: An
example of operating FOWT.

TABLE 1 Semi‐submersible floating offshore wind turbine
main dimensions.

Item Value

Platform draft 20.0 m

Spacing between offset columns 50.0 m

Length of base columns 6.0 m

Diameter of main column 6.5 m

Diameter of base columns 24.0 m

Platform mass 1.347·107 kg

Platform roll inertia, about CM 6.827·109 kgm2

Platform pitch inertia, about CM 6.827·109 kgm2

Platform yaw inertia, about CM 1.226E·1010 kg m2

Abbreviation: CM, center of mass.

2746 | LIU ET AL.

 20500505, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ese3.1485 by U

niversity O
f Stavanger, W

iley O
nline L

ibrary on [13/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



quick simulations lasting 10min are required under
typical production circumstances. International Electro‐
Technical Commission IEC‐61400‐1. According to the
IEC Design Load Case (DLC), a total of 2550 10min
short‐term random cases are chosen and numerically
simulated in this study, ranging from a cut‐in wind speed
of 3 m/s to a cut‐off wind speed of 25 m/s. The duration
of each simulation was set to 800 s, with the first 200 s
postprocessing being omitted owing to initial transient
effects. Three wind speeds U (7, 11, and 15m/s) have
been chosen as load situations in this study just as
examples.

The fore‐aft bending moment average value of the
tower base is larger than zero as a result of the
aerodynamic and hydrodynamic loadings. When sub-
jected to large in situ wind forces, excessive structural
loads are more likely to reach a particular, extreme value.
Additionally, an apparent fluctuation component has
been noted; hence, strong structural stresses are pro-
duced by aerodynamic and hydrodynamic forces. Ex-
tensive experimental work has been done within the
context of the OC3 projects,26–33 to provide experimental
data and test FOWT numerical modeling methodologies.
The modeling skills of OpenFAST, the numerical
simulation tool chosen for this investigation, have been
confirmed by the numerical and experimental results.

4 | RESULTS

This work presents the methodology for computing the
FOWT severe bending moment response. The ground‐
breaking de‐convolution method has been described in
previous sections. The recommended method efficiently
uses all the available information to precisely predict
extreme values. Based on the overall effectiveness of the
suggested strategy, it was found that the novel de‐
convolution methodology could include environmental
information and provide more accurate forecasts.36‐38,51‐56

Figure 3 shows the final un‐scaled results of the
proposed de‐convolution technique in this paper, namely
the “shorter” decimal log scale fX PDF tail, extrapolated
by de‐convolution, along with “longer” data distribution
tail and modified Weibull Naess–Gaidai (NG) extrapola-
tion. Equidistant sampling was utilized to reduce the size
of the “shorter” data collection by 50 times compared to
the entire “longer” simulated data set.

Figure 4, similar to Figure 3, presents the final un‐
scaled results of the proposed de‐convolution technique
in this paper, namely the “shorter” decimal log scale fX
PDF tail, extrapolated by de‐convolution, along with
“longer” data distribution tail and modified Weibull (NG)
extrapolation. Different wind speeds U have been

combined according in situ wind speed probabilities
scatter diagram, following the long‐term analysis flow-
chart Figure 1 right, to obtain realistic extreme response
predictions. In Figures 3 and 4, red arrows indicate the
directional difference between “shorter” and “longer”
data sets, indicating that proposed deconvolution tech-
nique yields more accurate results than the modified
Weibull fit.

Equidistant sampling was utilized to reduce the size of
the “shorter” data collection by 50 times compared to the
entire “longer” simulated data set. It should be emphasized
that it is hard to come to a firm judgment on the precision of
the suggested de‐convolution approach using the FOWT
response data set; yet, it can be seen from Figures 3 and 4
that the proposed method agrees well with the modified
Weibull method, being based on the “shorter” data set, and
delivering distribution quite close to the one based on the
“longer” data set. It is also seen from Figures 3 and 4 that
the proposed de‐convolution technique performs slightly
better than modified Weibull fit.

FIGURE 3 (A) Mooring (anchor) tension time series.
(B) Response predictions for floating offshore wind turbine anchor
tension. Un‐scaled “shorter” decimal log scale fX tail, raw (green)
and extrapolated by de‐convolution (solid blue line, along with
“longer” data (red line) and modified Weibull (cyan line).
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5 | CONCLUSIONS

It has been suggested to estimate the FOWT characteris-
tic design values using a unique de‐convolution tech-
nique. This study analyzed FOWT anchor tensions, as
well as its structural bending moments, occurring as a
result of in situ environmental loads.

The described technique has the following advantages:

• Various datasets, such as those that are numerically
simulated or quantitatively measured, may be explored.

• Unlike other techniques like three‐parameter Weibull,
modified Weibull, Gumbel, and POT, the proposed
strategy does not depend on any pre‐assumed func-
tional family to perform reliable distribution tail
extrapolation.

Additionally, it should be kept in mind that the
offered technique may have technical benefits beyond
simply anticipating severe FOWT responses. The reason
for better performance of the suggested deconvolution
technique is that, opposite to the modified Weibull
method, the proposed deconvolution method is less
reliant on preassumed functional class, highly nonlinear,
and potentially unstable in extrapolation.

A major limitation of the advocated approach lies
within the system stationarity assumption, which is
reasonable within short‐term 3 h stationary sea state
conditions, often used in offshore engineering, but may
not be the case for long‐term analysis. Dynamic FOWT
systems may become nonstationary in the presence of an
underlying trend; for example, system degradation due to
corrosion or fatigue damage. If the latter is the case, one
should first identify and subtract the underlying trend
and only then use the methods advocated in this study.
This study advocated a general‐purpose reliability
approach, being well suitable not only for wave‐ and
wind‐induced loads but for any combination of in situ
environmental loads.
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