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Abstract

This dissertation presents seismic amplitude versus offset (AVO) inversion methods to
estimate water saturation and effective pressure quantitatively in elastic and viscoelastic
media. Quantitative knowledge of the saturation and pore pressure properties from
pre- or post-production seismic measurements for reservoir static or dynamic modeling
has been an area of interest for the geophysical community for decades. However,
the focus on the existing inversion methodologies and explicit expressions to estimate
saturation-pressure variables or changes in these properties due to production or fluid
injection has been based on elastic AVO models. These conventional methods do not
consider the seismic wave attenuation effects on the reflection amplitudes and therefore
can result in biased prediction.

Numerous theoretical rock physics models and laboratory experiments have demon-
strated the sensitivity of various petrophysical and seismic properties of partially fluid-
filled porous media to seismic attenuation. This makes seismic wave attenuation a
valuable time-lapse attribute to reliably measure the saturation (Sw) and effective pres-
sure (Pe) properties. Therefore, in this work, I have developed two AVO inversion pro-
cesses i.e., the conventional AVO inversion method for elastic media and the frequency-
dependent amplitude versus offset (FAVO) inversion technique for the viscoelastic media.
This dissertation first presents the inversion strategies to invert the pre-stack seismic
data for the seismic velocities and density by using the conventional AVO equation
and for the seismic velocities, density, and Q-factors by using the frequency-dependent
AVO method. These inversion methods are then extended to estimate the dynamic
reservoir changes e.g., saturation and pressure variables, and can be applied to predict
the saturation and pressure variables at any stage e.g., before and during production, or
fluid injection, or to estimate the changes in saturation (∆Sw) and pressure (∆Pe). The
first part of the dissertation describes the theory and formulation of the elastic AVO
inversion method while in the second half, I have described the viscoelastic inversion
workflow. FAVO technique accounts for the dependence of reflection amplitudes on
incident angles as well as seismic frequencies and P and S waves attenuation in addition
to seismic velocities and density. The fluid saturation and pressure in the elastic and
inelastic mediums are linked to the reflection amplitude through seismic velocities,
density, and quality factors (Q).

The inversion process is based on the gradient-descent method in which the least-
square differentiable data misfit equation is minimized by using a non-linear limited-
memory BFGS method. The gradients of the misfit function with respect to unknown
model variables are derived by using the adjoint-state method and the multivariable
chain rule of derivative. The adjoint-state method provides an efficient and accurate way
to calculate the misfit gradients. Numerous rock physics models e.g., the Gassmann
substitution equation with uniform and patchy fluid distribution patterns, modified
MacBeth’s relations of dry rock moduli with effective pressure, and constant Q models
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for the P and S wave attenuation are applied to relate the saturation and effective
pressure variables with elastic and an-elastic properties and then forward reflectivity
operator. These inversion methods have been defined as constrained problems wherein
the constraints are applied e.g., bound constraints, constraints in the Lagrangian solution,
and Tikhonov regularization. These inversion methods are quite general and can be
extended for other rock physics models through parameterizations.

The applications of the elastic AVO and the FAVO methods are tested on various 1D
synthetic datasets simulated under different oil production (4D) scenarios. The inversion
methods are further applied to a 2D realistic reservoir model extracted from the 3D
Smeaheia Field, a potential storage site for the CO2 injection. The inversion schemes
successfully estimate not only the static saturation and effective pressure variables or
changes in these properties due to oil production or CO2 injection but also provide a
very good prediction of seismic velocities, density, and seismic attenuation (quantified
as the inverse quality factor). The partially CO2-saturated reservoir exhibits higher P
wave attenuation, therefore, the addition of time-lapse P wave attenuation due to viscous
friction between CO2-water patches helps to reduce the errors in the inverted CO2/water
saturation variables as compared to the elastic 4D AVO inversion.

This research work has a wide range of applications from the oil industry to carbon
capture and storage (CCS) monitoring tools aiming to provide control and safety during
the injection. The uncertainty in the inversion results is quantified as a function of the
variability of the prior models obtained by using Monte Carlo simulation.
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Chapter 1

Introduction

"Interest invokes the continuum to proceed"

KAK
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1. Introduction

1.1 Introduction

Numerous techniques have been used in geosciences for investigating subsurface prop-
erties and among them, the seismic techniques are classified as the most successful and
widely used methods. After the first successful deployment of the seismic method to lo-
cate the Orchard salt dome in 1924 Musgrave (1967), seismic theory and data have been
an integral part of hydrocarbon exploration and field development. For many decades,
seismic methods were used to designate and map the subsurface structures to identify
potential hydrocarbon traps. However, gradually with the improvement in seismic data
quality and computation technology, it becomes possible to use the variations of seismic
amplitude with incident angles/offset (AVO) as a Direct Hydrocarbon Indicator (DHI)
and to use it to differentiate the hydrocarbon-filled sediments from the background
geology or brine-filled rock (Castagna et al. 1998; Hilterman 1990; Ostrander 1984).
Over the last two decades, the time-lapse (4D) pre-stack seismic data turned out to be
a useful tool in investigating reservoir complexities, the effect of fluid saturation and
pressure variations separately, etc. (Bhakta and Landrø 2014; Côrte et al. 2023; Landrø
2001; Lang and Grana 2019; Trani et al. 2011).

In the conventional AVO methods, the reflection amplitudes at the geological bound-
ary of two elastic layers depend only on the incident angles, elastic wave velocities, and
density (Buland and Omre 2003b; Luo et al. 2020b; Tang et al. 2021). On the other
hand, at the interface of a viscoelastic medium, the reflection amplitude is related to
seismic attenuation (quantified as the inverse quality factor) of the layers and seismic
frequency in addition to the elastic parameters and incident angles (Chen et al. 2018;
Innanen 2011; Li and Liu 2019). Numerous attempts (Bhakta and Landrø 2014; Bhakta
et al. 2022; Côrte et al. 2023; Dupuy et al. 2021a; Dupuy et al. 2021b; Forberg et al.
2021; Grana et al. 2022; Grana and Mukerji 2015; Landrø 2001; Lang and Grana 2019;
Meadows 2001; Trani et al. 2011; Veire et al. 2006) have been made to estimate the
static or dynamic fluid saturation and pressure properties from the pre-stack seismic
data in the elastic medium. These methods do not incorporate the effect of time-lapse
seismic attenuation. Recently some research (for example, Blanchard and Delommot
2015; Dinh and Van der Baan 2019; Morgan et al. 2012; Qi et al. 2016) has been
made to estimate fluid saturation changes in the viscoelastic media from the time-lapse
seismic data by applying viscoelastic AVO theory. However, their work has various
limitations e.g., ignoring shear wave attenuation due to rock-frame heterogeneities and
not taking into consideration the effect of attenuation due to changes in pore pressure.
This encourages us to investigate the viscoelastic AVO theory more precisely and for
understanding reservoir dynamic changes.

This dissertation is a theoretical and applied contribution towards a better estimation
of saturation and pore pressure changes estimation by applying elastic and viscoelastic
(frequency-dependent) amplitude-versus-offset inversion methods and incorporating
viscous friction between the viscous fluids and between the fluids and solid grain
walls. In addition to the estimation of the reservoir dynamic parameters (e.g., saturation
and pressure) by using seismic inverse modeling, this dissertation also contributes to
predicting the seismic wave velocities and quality factors, and bulk density. This first
chapter gives a summary and brief introduction to the dissertation. I begin with the
seismic time-lapse analysis, the theoretical background of the subject, a brief literature
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review, and a conceptual description of seismic attenuation mechanisms. In the end, the
organization of the dissertation and summary of individual papers is briefly described.

1.2 Seismic time-lapse analysis

At this moment, it is worthwhile to describe the fundamental physical mechanisms that
are relatively associated with hydrocarbon production or fluid injection or environmental
changes caused by variations in the reservoir rock properties or in its pressure conditions.
Primarily and the most noticeable effect is the effect caused due to fluid replacement
in the porous and permeable sediments i.e. when water replaces the pore spaces of
produced oil, the pore pressure drops, and as a result, dissolved gas appears in the
solution below the bubble point (Johnston 2013). Fluid replacement within the reservoir
changes the elastic moduli and bulk density of the saturated rock and consequently may
alter the P wave propagation velocities substantially in reservoir sediments undergoing
hydrocarbon production or fluid injection. However, fluid substitution has a notably
lower effect on the S wave propagation velocity. Variations in the seismic velocities and
density contrast at the reservoir and seal rock interface change the reflection coefficient
series and resultantly translate into interpretable seismic AVO signatures (Du et al. 2019;
Wandler et al. 2007). Similarly, fluid migration within the reservoir results in seismic
velocity variations which proceed with noticeable time-shifts of recorded seismic events.
If the elastic parameters e.g., matrix and rock skeleton moduli, fluids moduli, and
petrophysical properties like porosity, pre- and post-production saturation levels, etc.
are known, the effect of change in saturation and pressure on seismic velocities can
be modeled by using Gassmann’s equation (Gassmann 1951; Mavko et al. 2020) and
MacBeth’s modified relationships between dry-rock moduli and effective pressure
(Grana 2016; MacBeth 2004). Bulk density and P wave velocity increase in case water
replaces either oil or gas and then lowers because of gas/CO2 substituting water or
oil. Seismic P velocity variations due to fluid substitution are possibly meaningful and
relative changes may reach hundreds of meters per second (Maharramov et al. 2016).

Hydrocarbon production or fluid injection into a reservoir can result in stress vari-
ations. Therefore, pressure changes (e.g., changes in effective pressure due to pore
pressure variations) are another essential mechanism responsible for the time-lapse
effects (Holt et al. 2005; Landrø 2001). In general, seismic velocities and density are
higher within compacting reservoir sediments. For example, dropping pore pressure
results in an increase in effective pressure and both acoustic and shear velocities will
typically increase. Conversely, reservoir rock that is under fluid injection normally
shows a decrease in seismic velocities due to an increase in pore pressure (Zoback 2010).
However, almost every researcher (Bhakta and Landrø 2014; Forberg et al. 2021; Grana
and Mukerji 2015; Landrø 2001; Lang and Grana 2019; Trani et al. 2011) has assumed
pre- and post-production reservoir density independent of the pore pressure changes.
In addition to the changing fluids saturation and pressure, there are numerous other
time-lapse processes e.g., thermal and chemical processes, porosity variations in case
of subsidence, etc. may result in changes in seismic velocities. However, the scope of
this dissertation is to focus on the prediction of the effects of saturation and pressure
changes from pre-stack seismic data.
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In the published scientific literature, a variety of methods based on seismic AVO the-
ory integrated with laboratory measurements and rock physics models (e.g., Gassmann
uniform and patchy fluid distribution models, Hertz–Mindlin method, MacBeth’s com-
pliance model, etc. (Batzle and Wang 1992; Gassmann 1951; Grana 2016; Hill 1963;
MacBeth 2004; Mavko et al. 2020; Mindlin 1949)) have been presented for reservoir
dynamic changes estimation. These methods primarily vary in the models subject to
relate the reservoir dynamic parameter domain to the seismic reflectivity domain, for
example, some of the methods use a direct link between two domains, and the alternative
use an intermediary elastic parameter domain between reservoir properties and seismic
response. The methods use the direct links between two domains relying on first- or/and
second-order empirical regression models to relate the rock and pore fluid physics. In the
famous method proposed by Landrø (2001), explicit expressions for saturation-pressure
changes are derived by directly linking the AVO intercept and gradient with reservoir
dynamic changes and by assuming the linear and quadratic expansions between elastic
properties and reservoir parameters. Developments and extensions in the applications
of Landrø’s approach have been made by including numerous non-linear relationships
between time-lapse AVO and reservoir properties changes (Angelov et al. 2004; Bhakta
2018; Lang and Grana 2019; Meadows 2001). Similarly, analogous expressions of
Landrø’s method are also presented for the time-shift and seismic impedance attributes
and higher (than 2) P to S wave velocities ratios (Bhakta and Landrø 2014; Grude
et al. 2013; Kvam and Landrø 2005; Trani et al. 2011; Veire et al. 2006). Alvarez and
MacBeth (2014) developed an approximation for more intuitive understanding which
allows mapped time-shift and 4D seismic amplitude to be associated directly with the
weighted linear sum of saturation and pore pressure variations. MacBeth et al. (2006)
published a data-driven method similar to Landrø’s linearized model wherein the model
properties are calibrated by using production data instead of laboratory measurements.

An alternative methodology that uses the elastic property domain as an intermediary
between the seismic response and reservoir static or dynamic properties has also been
presented by several researchers. This procedure usually needs a well-founded and
valid petro-elastic model (PEM) to compute the elastic variables and a synthetic seismic
forward model. This workflow allows for using of theoretical rock physics models to
calculate the seismic velocities and density from the basic petrophysical properties such
as fluid saturation, porosity, pressure, mineralogy, etc. These techniques may include
non-linear equations relying on theoretical physics in preference to data observations
and measurements. The relation between seismic reflectivity and elastic parameters can
be defined via any seismic forward modeling method or renowned wavelet convolution
model. These methods comprise on two-step inversion process that first translates the
seismic amplitudes to acoustic impedances and then further invert to the saturation-
pressure changes (Correia et al. 2014; Dadashpour et al. 2008; Davolio et al. 2012;
Davolio et al. 2013; Emerick 2014; Grana and Mukerji 2015; Meadows and Cole 2013;
Ribeiro and MacBeth 2006).

Bayesian inversion processes are nowadays more commonly applied to solve geo-
physical inverse problems (Buland and Omre 2003b; Grana et al. 2021; Mosegaard
and Tarantola 1995; Sen and Stoffa 1996). In the particular context of time-lapse
seismic AVO inversion to reservoir dynamic changes estimation, a variety of inversion
formulations in the Bayesian framework have been proposed (Emerick 2014; Floricich
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et al. 2012; Grana and Mukerji 2015; Landa et al. 2015; Lang and Grana 2019; Wong
et al. 2015). To address the problem of non-linearities because of gas saturation and
pressure response, Côrte et al. (2023) applied a Markov Chain Monte Carlo method
to evaluate the uncertainties in the inverted saturation-pressure variables and sample
the Bayesian posterior distribution. The advantages of these statistically based inver-
sion techniques are that the uncertainties can be assessed analytically. However, the
computational cost and feasibility of applying for large geophysical datasets are usually
not practical due to the spatial correlation of the model properties. Contrastingly, the
adjoint-based non-linear optimization methods are computationally fast and provide
an inverse solution with good convergence. Nevertheless, the implementation of the
adjoint method for non-linear optimization with analytical solutions of the first-order
gradient of the objective function for time-lapse seismic AVO inversion to estimate the
saturation-pressure changes has not been yet proposed.

Similarly, when seismic energy propagates through the subsurface geological strata
or partially fluid fill reservoir rock, both P and S seismic waves are dissipated due to
several mechanisms (Blanchard 2011; Müller et al. 2010; Pride et al. 2004; Quintal
et al. 2011). However, the effect of time-lapse seismic attenuation (Blanchard and
Delommot 2015; Weinzierl and Wiese 2021) on seismic amplitude due to changes in
fluid saturation (especially gas) and pressure has been ignored in the previously discussed
work. Therefore, time-lapse attenuation, if taken into consideration as a monitoring
tool for saturation-pressure changes estimation during hydrocarbon production or CO2
geological storage can provide a more realistic way to find these dynamic variables
(Dinh and Van der Baan 2019). This leads to extending the research domain for further
investigation of reservoir dynamic changes measurement by including the viscoelastic
properties of a medium. A comprehensive discussion on seismic attenuation theory has
been included in the next section to understand seismic attenuation, its types, and the
various mechanisms responsible for it.

1.3 Seismic attenuation theory

Seismic attenuation refers to the loss of coherent wave-front with distance when seismic
energy propagates through the subsurface geological strata. The attenuation is quantified
as the inverse quality factor. Numerous physical mechanisms that can result in seismic
wave attenuation are generally split into two processes: extrinsic and intrinsic attenuation.
Extrinsic attenuation is when the total seismic energy of the wavefield is conserved (e.g.,
geometric spreading and scattering), while intrinsic or inelastic attenuation occurs due to
the conversion of elastic energy into heat, due to particle friction like solid-solid friction
in the grain contacts or micro-cracks or viscous friction between the viscous fluid and
the solid grain walls or crack walls). Intrinsic attenuation of body waves caused by
viscous friction between the viscous fluid in the pore space and the solid grain walls is of
great interest to exploration geophysics (Müller et al. 2010). The scientific presumption
is that the knowledge of fluid-related attenuation in the oil and gas reservoirs combined
with improved estimation of seismic wave attenuation from the surface seismic data
may help to estimate hydraulic properties and reservoir characterization.

It is widely recognized that the existence of fluids within the rock pore space leads to
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seismic attenuation and velocity dispersion by the predominant phenomenon referred to
as wave-induced fluid flow (WIFF). Wave-induced fluid flow takes place as the seismic
wave passage generates pressure gradients within the porous medium associated with
internal friction. WIFF’s description in partially saturated porous sediments considers
three different length scales - macroscopic, mesoscopic, and microscopic (Toms et al.
2006) and are shown in Figure 1.1. Macroscopic or global flow occurs when the pressure
gradient due to WIFF is over the wavelength of a seismic compressional wave and is
quantified theoretically by Biot’s theory (Biot 1956; Biot 1962; Bourbié et al. 1992;
Pride 2005). Biot’s theory explains the magnitude of observed attenuation for the global
flow mechanisms above 100 kHz seismic frequencies. Alternatively, on the other end
of the heterogeneity scale, due to pore shapes and orientation differences, different
compliances of the adjoining pores may result in local spatial gradients between these
pores. For example, granular rocks are commonly assumed to have quite compliant
pores in the contact areas between adjoining pores and stiffer pores occurring in between
these grains. The passage of a compressional wave in a rock deforms the grain contact
area to a far larger extent compared with the intergranular pores, leading to local pressure
gradients, relative fluid motion, and viscous attenuation. This phenomenon of pore-scale
WIFF is also called local or squirt flow and is responsible for seismic wave attenuation
at ultrasonic frequencies (Johnston et al. 1979; Pride et al. 2004; Winkler 1985).

Wave-induced fluid flow can also happen on a scale way smaller compared with the
wavelength but significantly higher than normal pore size due to spatial variations in
rock compliance. This scale of heterogeneities is known as mesoscopic flow (Figure
1.1). The passage of the P wave leads to compression of the porous framework on
the time scales applied by the seismic wave speed. When a compression or a dilation
of seismic energy passes through a rock that has saturation fluid and rock properties
heterogeneities, it creates spatial gradients in the pore pressure. The heterogeneities
present on the length scale larger than the pore scale but lower than the wavelength
cause the development of gradients in the pore pressure on the mesoscale which leads
to seismic energy dissipation in a broad range of frequencies. It is considered that
mesoscopic flow is a substantial phenomenon of partial fluid-related attenuation in the
seismic data frequency range of a few Hz to 1000 Hz (Pride et al. 2004; Tisato and
Quintal 2013; Toms et al. 2006) and therefore is the focus to include in the current
inversion method and this dissertation.

The level of heterogeneities in the reservoir rock, for example, the difference between
the elastic properties of varying parts of rocks and fluid patches, etc. are the significant
source of seismic wave attenuation. The two most noticeable frameworks that have
gained considerable attention in past years are patchy fluid-saturated reservoirs and
fractured rocks. In case of two non-mixing pore fluids with significantly varying
moduli (for instance brine and gas) are present in the form of patches at the mesoscale
results in substantial wave attenuation and velocity dispersion (Caspari et al. 2019;
Murphy III 1982; Quintal et al. 2011; White et al. 1975). Wave-induced pore pressure
equilibration can be attained only if the seismic wave has an adequately low frequency
such that the characteristic diffusion length (the virtual boundary between uniform and
patchy saturation regimes) is in large contrast to the largest spatial scale of fluid mixing.
However, at higher frequencies, the pressure gradient between neighboring liquid and
gas-saturated phases will not have enough time to re-equilibrate causing an increased
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Figure 1.1: Different scales of heterogeneities and WIFF occur in seismic frequencies
range which is known as the mesoscopic scale (from Müller et al. 2010).

seismic velocity and bulk modulus. This leads to the concept that the existence of two
fluids (partially saturated rocks) in the pore spaces is the source of additional elastic
wave attenuation-dispersion that is specifically associated with the relaxation fluid’s
pore pressure. In a partially saturated porous media, the dependence of frequency on
attenuation-dispersion is controlled by various factors such as fluid distribution patterns,
size and shape of fluid patches, pore connectivity and elastic moduli of the rock-forming
minerals, and properties of fluid phases, etc. (Carcione and Picotti 2006; Mavko et al.
2020; Müller et al. 2010). Figure 1.2 shows the 2D model of the P wave attenuation
due to wave-induced fluid flow (WIFF) in the baseline and monitor cases (left-side
panel). The corresponding attenuation models are computed by using the constant Q
rock physics model (Mavko et al. 2020) and are shown in the right-side panel. The
magnitude of attenuation approaches zero when there is a single fluid present, therefore,
in the baseline model which is fully water-saturated, the respective attenuation is zero
or close to zero value. The attenuation has maximum values in the partial fluid saturated
zones (water/CO2), especially in the low CO2 zones (e.g., SCO2 > 0.9).

In this work, one of the goals is to translate these observed seismic wave attenuation
changes due to WIFF at mesoscale into physical changes within the rock itself and then
used to map ideally any changes in the pressure and saturation.

1.4 Aims and objectives of dissertation

This dissertation deals with the problem of seismic reservoir characterization and
improved oil recovery. The primary focus is on the development of an appropriate
theoretical background and workflow, including the frequency dependence on the time-
lapse (4D) seismic AVO inversion and analysis to estimate viscoelastic properties,
pressure, and fluid saturation changes. The objective is to include the time-lapse seismic
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Figure 1.2: P wave attenuation model due to wave-induced fluid flow (WIFF) in the
baseline and monitor cases. The baseline model represents the full water saturation case
and the CO2 has been injected in the monitor model.

attenuation measurements in the 4D AVO inversion workflow while mapping saturation-
pressure variables or changes in these properties. In addition to the frequency-dependent
method, the AVO inversion method is developed without considering the dependence of
reflection amplitudes on seismic frequencies (elastic AVO) and to estimate the elastic
properties and saturation-pressure variables. This project is comprised of several phases
as described below:

• In the first step, a theoretical foundation has been developed for without frequency
and frequency-dependent seismic AVO inversion (elastic AVO and FAVO) meth-
ods to estimate the seismic velocities, density, and seismic quality factors. This is
because of the reservoir dynamic properties are linked with seismic reflectivity
through elastic and an-elastic properties. Then, the extension of these inversions
(elastic AVO and FAVO) schemes to map the fluid saturation and pore pressure
changes in the elastic and viscoelastic mediums was carried out. The AVO in-
version methods are applied to the different parameterizations of the model by
using the chain rule of differentiation and by incorporating feasible and adequate
rock-physics relations.

• The next phase includes performing of feasibility analysis with 1D synthetic data
to predict the seismic properties of the elastic and viscoelastic medium. Then,
apply the inversion methods to the synthetic data simulated under various time-
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lapse scenarios to predict the oil/water saturation and pressure properties and the
changes in saturation-pressure variables due to either production or fluid injection.

• Implementation of the 4D inversion methods to 4D seismic data and compare
the results to those obtained using conventional AVO and FAVO analysis and
inversion. For example, the 4D inversion methods are tested on the 2D model
obtained after CO2 injection in the Smeaheia field.

1.5 Organization of dissertation

The estimation of reservoir saturation level and effective pressure by using conventional
and frequency-dependent AVO inversion methods is the primary focus of this disser-
tation. These reservoir properties are linked with seismic reflectivity through elastic
and an-elastic properties in the elastic and viscoelastic media. Therefore, the main
part of the dissertation consists of four independent research papers including their
own abstracts or summaries, introductions, theory and methods (inversion workflows),
applications to data, and appendixes. Two of the four papers are already published
and two are under consideration in widely known scientific journals in geophysics. In
addition, a short chapter summarizing the main conclusions is placed at the end. In the
appendix, I have discussed the computation cost of the adjoint-state-based gradients and
the convergence of the optimization method. The organization of the chapters and the
relationship between these chapters are described as follows:

The paper in Chapter 2, Constrained non-linear AVO inversion based on the adjoint-
state optimization, presents a non-linear seismic AVO inversion method to estimate
the seismic velocities and bulk density from pre-stack seismic data. The inversion
process is formulated by using the gradient descent optimization method wherein the
first-order gradient of the objective function is implemented by using the adjoint-state
method. The error function is minimized by making use of the second-order non-linear
limited-memory BFGS algorithm. The applications of the method were tested on 1D
and 2D synthetic datasets obtained from the Edvard Grieg Field, Norwegian North
Sea, and simulated by using both convolutional modeling and finite difference methods.
The concept behind the methodology of this paper is mainly contributed by the first
two authors. The first author is the principal contributor in the writing of the initial
draft, its layout, and visual presentations of results. My co-authors revised the text and
contributed to technical discussions and suggestions. Wiktor Weibull also helped in the
derivation of the adjoint-based gradients and codding. This paper is published in the
November 2022 issue of Computers & Geosciences.

In the paper in Chapter 3, Constrained non-linear AVO inversion for reservoir
dynamic changes estimation from time-lapse seismic data, we extend the inversion
method described in Chapter 2 to estimate the static saturation and pressure properties
or changes in these properties due to production or fluid injection from pre-stack seismic
data. In this inversion workflow, the forward model comprises of linearized AVO
equation and rock physics models e.g., Gassmann’s equation (1951) and MacBeth’s
modified models (MacBeth, 2004; Grana, 2016) are used to relate the saturation and
pressure variables with elastic properties and then seismic response. Furthermore, the
chain rule of the derivative is used to derive the gradient of the objective function with
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1. Introduction

respect to water saturation and effective pressure. The bound constraints based on prior
geological and reservoir engineering knowledge are applied to limit the solution space
of model variables e.g., saturation can only vary between 0 – 1. The applications of the
inversion scheme are first illustrated on 1D synthetic data simulated under various 4D
scenarios and then applied to a 2D model representing the CO2 injection field. The main
idea of this inverse workflow is conceptualized with the collaboration of my co-authors.
However, major contributions i.e., manuscript layout and writing, visual presentation of
results, and implementation of code are made by the first author. My co-authors also
contributed to text reviewing and editing, technical suggestions, and discussions, and
by helping to solve the problems experienced during coding. This paper is currently
under review in Geophysics and the results of this paper were also presented at the 6th
International Workshop on Rock Physics, held in A Coruña, Spain.

In the paper in Chapter 4, Frequency-dependent AVO inversion applied to physically
based models for seismic attenuation, we present a new inversion method to estimate
the elastic and an-elastic properties in the viscoelastic media. The inversion strategy
is based on a similar approach described in Chapter 2. However, in the forward model
of this paper, the reflection amplitude is dependent on seismic frequencies and P and
S wave quality factors in addition to incident angles, P and S wave velocities, and
density. Therefore, the frequency-dependent AVO inversion method helps to estimate
the seismic wave quality factors which potentially provides knowledge about rock and
fluid properties. The inversion scheme is general and therefore we have applied it
to retrieve the quality factors (also referred to as the inverse of seismic attenuation)
based on various physically based attenuation models e.g., empirical relations (Waters
and Waters 1981), constant Q model (Dvorkin and Mavko 2006; Mavko et al. 2020)
and frequency-dependent White model (Quintal et al. 2009; White et al. 1975). The
applications are illustrated on 1D and 2D synthetic datasets. Moreover, we also examine
the crosstalk study between the inverted properties classes (e.g., VP - QP, VS - QS, VP – VS,
QP – QS) arises due to coupling effects of simultaneous inversion of multi-parameters.
The main contribution i.e., manuscript structure and writing, graphic presentation, and
implementation of code is made by the first author. My co-authors also contributed to
text reviewing and editing, technical suggestions, and discussions, and by helping to
solve the problems experienced during coding. Some of the results of this paper were
presented at the 83rd EAGE Annual Conference & Exhibition, held in Madrid, Spain.
This paper is published in the April 2023 issue of Geophysical Journal International.

In the paper in Chapter 5, Time-lapse frequency-dependent AVO inversion method,
we derive a novel frequency-dependent AVO inversion workflow to estimate water
saturation and effective stress or changes in saturation-pressure variables either due
to production or fluid injection. The proposed method is based on the minimization
algorithm e.g., the gradient descent method which iteratively moves in the descent
direction to find the minima of the least-squares error function. We use the analytical
gradient solution derived in Chapter 4 e.g., the partial derivatives of the Lagrangian with
respect to VP, VS, ρ , QP, and QS. Then, we implemented the chain rule of derivative and
rock physics theory to obtain the analytical gradient solution of the error function with
respect to saturation and pressure variables. Two rock physics models i.e., Gassmann-
Hill patchy fluid saturation and constant Q models are used to relate the saturation and
pressure variables with seismic elastic and an-elastic properties. The newly derived
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method is applied to various 1D synthetic applications simulated under various 4D
scenarios with and without noise levels. The first author conceptualized the idea and
centrally contributed to writing, implementing the data, and coding. My co-author’s
participation includes reviewing and editing text and equations, technical discussion,
recommendations regarding the formulation of the manuscript, and solving coding-
related issues. Some parts of the results of this paper have been presented at the 21st
annual conference of IAMG2022 in Nancy, France. This paper will be submitted to
Geophysics or other relevant journals in the future.

Thereafter, in a short Chapter 6, I first outlined the most important results and
outcomes of this dissertation. I then summarize the assumptions and limitations of the
method with some possible future research directions.

In the end, in appendices, I illustrated the benefits i.e., computational cost and
accuracy of the gradient computed by using the adjoint-state method (analytical deriva-
tion) over the finite difference approximation. I also included the convergence of the
non-linear minimization method i.e., L-BFGS around the minimum point.
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2. Constrained non-linear AVO inversion based on the adjoint-state
optimization

2.1 Summary

Pre-stack AVO inversion of seismic data is a modeling tool for estimating subsurface
elastic properties. Our focus is on the model-based inversion method where then
unknown variables are estimated by minimizing the misfit to the observed data. Standard
approaches for non-linear AVO inversion are based on gradient descent optimization
algorithms that require the calculation of the gradient equations of the objective function.
To improve the accuracy and efficiency of these methods, we developed a technique that
uses an implementation of the adjoint-state-based gradient computation. The inversion
algorithm relies on three basic modeling components consisting of a convolution-
based forward model using a linearized approximation of the Zoeppritz equation, the
definition of the objective function, and the adjoint-computed gradient. To achieve
an accurate solution, we choose a second-order optimization algorithm known as the
limited memory - BFGS (L-BFGS) that implicitly approximates the inverse Hessian
matrix. This approach is more efficient than traditional optimization methods. The
main novelty of the proposed approach is the derivation of the adjoint-state equations
for the gradient of the objective function. The application of the proposed method
is demonstrated using 1D and 2D synthetic datasets based on data from the Edvard
Grieg oil field. The seismic data for these applications is generated by using both
convolutional modeling and finite difference methods. The results of the proposed
method are accurate and the computational approach is efficient. The results show
that the algorithm reliably retrieves the elastic variables, P- and S-wave velocities, and
density for both convolutional and finite difference models.

2.2 Introduction

In a seismic inversion, the objective is to reconstruct unknown model variables in
the subsurface, for example, elastic velocities, from a set of seismic measurements,
including seismic amplitudes and travel time measured at the surface (Aki and Richards
1980). The inversion results are retrieved from seismic reflection data by solving the non-
unique and ill-posed inverse problem and they provide a quantitative model of predicted
physical properties varying laterally and vertically (Buland and Omre 2003b). Seismic
data inversion schemes can be split into two main classes, post-stack (or acoustic)
impedance, and pre-stack (or elastic) inversions. Post-stack inversion aims to predict
acoustic impedance from stacked seismic data and it is often used in stratigraphic
interpretation (Ghosh 2000) but it does not give any information about the shear wave
velocity (Maurya et al. 2018; Morozov and Ma 2009). On the other hand, pre-stack
inversion is based on the concept of amplitude variations with offset/angle (AVO/A)
and aims to predict a set of elastic attributes such as seismic velocities, impedances,
and density (Downton 2005). AVO inversion results are typically correlated with
petrophysical attributes like porosity, saturation of fluids, and reservoir litho-facies.
These properties play a significant role in lithology prediction, geofluids identification,
and quantitative reservoir characterization (Chiappa and Mazzotti 2009; Grana 2020;
Luo et al. 2019; Zhao et al. 2014b). In addition, AVO inversion can also be used in
time-lapse seismic monitoring studies to predict the changes in pressure, saturation,
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and porosity, as an example, for CO2 sequestration in depleted reservoirs (Dupuy et al.
2021b; Lang and Grana 2019).

A seismic reflection event at the recording point is described generally by the
convolution of the seismic source and the reflectivity series based on the wave equations
(Mallick 2007), Zoeppritz equations (Kurt 2007; Liu et al. 2016; Skopintseva et al.
2011) or linearized approximations (Aki and Richards 1980; Buland and El Ouair
2006; Buland and Omre 2003b; Downton and Ursenbach 2006; Rabben and Ursin
2011; Xiao et al. 2020). The inversion can be performed according to deterministic or
probabilistic inversion methods. For example, based on Aki and Richards linearized
approximation, Hu et al. (2011) presents a joint AVO inversion technique in the Bayesian
framework to extract seismic velocities and density parameters, Sengupta et al. (2021)
perform Bayesian inversion directly in the depth domain by using linearized Aki and
Richards equation, and Liu et al. (2021) present a joint PP and PS inversion method
based on the calculation of a Jacobian matrix of the Zoeppritz approximation. In
addition to gradient-based optimization, the Monte Carlo inversion method (Jin and
Madariaga 1994) and Bayesian linearized AVO inversion technique based on Gaussian
distributions (Buland and Omre 2003b; Tarantola 1987) have also been utilized to solve
the inverse problems and quantify the uncertainty of the predicted model. Feng-Qi
et al. (2013) present a Bayesian linearized pre-stack inversion based on a trivariate
Cauchy distribution. Ensemble-based methods such as ensemble Kalman filter and
ensemble smoother (Evensen et al. 2009) have been successfully applied to inverse and
data assimilation problems, especially for history matching of borehole and geophysical
data. For example, Luo et al. (2015) developed an iterative ensemble smoother based on
a regularized Levenberg-Marquardt (RLM) algorithm for reservoir data assimilation,
and Luo et al. (2017) applied the iterative ensemble smoother to 4D-seismic history-
matching. Kolbjørnsen et al. (2020) develop a Bayesian inversion for litho-geofluids
prediction and Grana (2020) extends the Bayesian litho-geofluids approach to multiple
prior models. Bayesian methods can also be integrated with stochastic sampling. For
example, Azevedo et al. (2020) uses the stochastic perturbation optimization approach
for the inversion of seismic data for rock properties and facies. In the Bayesian method,
prior information about the subsurface model is included in the inversion in the form of
probability distributions (Gouveia and Scales 1997). However, the prior information is
often difficult to define and the prior uncertainty generally impacts the model predictions.

In deterministic methods, the goal is to predict a best-fit model that is consistent
with the observed data, according to the objective or cost function that defines the
dissimilarity between the true data and the predicted model. The inversion is performed
by searching for the optimal model that minimizes the objective function. Numerous
iterative algorithms such as the Levenberg-Marquardt (LM) algorithm (Levenberg 1944;
Marquardt 1963), Occam’s inversion (Constable et al. 1987), genetic algorithm (Mallick
1995), conjugate gradient method (Golub and Van Loan 2013), simulated annealing
method (Ma 2001) and particle swarm optimization (Shaw and Srivastava 2007) have
been introduced for solving the least-squares optimization problem. These methods
have been used in seismic AVO inversion problems. For example, Luo et al. (2020a)
and Luo et al. (2020b) adopt the Fréchet derivatives to compute the derivatives of the
propagator matrix with respect to variables and used the L-BFGS approach for the
optimization of the objective function.
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In this work, we present a constrained non-linear AVO inversion scheme based on
the Aki and Richards linearized approximation, and the inversion algorithm is based on
the minimization of an objective function. We adopt a gradient descent optimization
algorithm depending on the calculation of the gradients of the L2-norm objective
function with respect to the elastic properties, P- and S-wave velocities, and density.
The adjoint-state numerical technique (Plessix 2006) is used for computing the gradients
of the objective function efficiently by employing zero-lag cross-correlation between
forward and reverse propagated data residual. The adjoint state solves a linear system
and computes the gradient of the objective function. The advantage of this method is
that the computational cost of computing the gradient is in practice independent of the
number of model variables (N). Hence, the number of forwarding models required to
compute the gradients through the adjoint-state method is independent of the number
of unknown model variables. This makes adjoint-state faster and more efficient than
other methods, such as finite difference and Fréchet derivatives (Plessix 2006). Adjoint
methods have been recently used in several geophysical inversion problems including
seismic full waveform inversion (Assis and Schleicher 2021; Biondi et al. 2021; Hu
et al. 2021; Le et al. 2020; Pan et al. 2020; Ravasi and Vasconcelos 2021; Zheglova and
Malcolm 2019; Zhu et al. 2021). Furthermore, the gradient equations obtained via the
adjoint-state technique are exact within the numerical precision (Epelle and Gerogiorgis
2020). In this work, to minimize the L2-norm objective function, we use the L-BFGS
method (Broyden 1970; Fletcher 1970; Goldfarb 1970; Liu and Nocedal 1989; Nocedal
1980; Shanno 1970), a widely used version of the quasi-Newton iteration method that
does not explicitly calculate the Hessian operator, which reduces the computing time
and memory storage, unlike other classical iterative methods such as Newton-Raphson
or Gauss-Newton methods (Tarantola 2005). Indeed, the L-BFGS method exclusively
stores model information from a limited number of previous l iterations (usually l ≤ 10)
and provides much faster computational time and improved convergence rates for
geophysical inverse problems (Brossier et al. 2010). The main novelty of the proposed
approach is the calculation of the gradient of the objective function with respect to the
elastic properties using the adjoint-state method. The analytical derivatives computed
by the adjoint state lead to advantages in computational and numerical performance.
To stabilize our AVO inversion results, especially in the case of noisy data, we apply
a Tikhonov regularization method (Aster et al. 2018). The Tikhonov regularization
weights improve the stability of the solution and the accuracy of the optimal model.

We tested the proposed approach using synthetic well logs and seismic data gener-
ated for the Edvard Grieg oil field, in the North Sea, with different noise levels. We also
adopt the staggered-grid finite difference (FD) method (Virieux 1986) to simulate the
seismic response. The FD approach contains wave propagation effects such as seismic
refraction, reflection, multiple reflections, and offset-dependent geometrical spreading.
To reconcile the results of the convolutional approximation, we define an amplitude
scaling factor that compensates for the effects of offset-dependent geometrical spreading
and provides a good match between the two seismic modeling approaches.

In the following, we first discuss the seismic forward modeling approaches including,
the convolutional model and the finite difference method. Then, we describe the
mathematical formulation for the proposed non-linear inversion algorithm based on
the adjoint-state technique. Next, we illustrate the implementation of the inversion
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algorithm to a synthetic multilayered dataset, with and without seismic noise, obtained
from well logs assuming no multiples nor other wave propagation effects. Then, a 2D
synthetic data example with complex structural features such as inclined strata and
faults, is presented. Finally, we apply the approach to a synthetic dataset based on the
velocity-stress finite difference (FD) model, including wave propagation effects.

2.3 Method

2.3.1 Seismic modeling

In AVO studies, seismic amplitudes are approximated by a convolutional model. In
continuous form, the convolutional model is written as:

d(t,θ) =
∫

W (τ, θ)RPP(t− τ, θ)d(τ) (2.1)

where d, RPP, and W are the seismic data, reflectivity, and wavelet respectively. In
equation 2.1, t is the two-way travel time (TWT), and θ is the incident angle. This
approximation does not consider multiples and wave propagation effects like offset-
dependent geometrical spreading, attenuation, or absorption effects. The Ricker wavelet
(Ricker 1953) is commonly used for the convolutional model:

W (t) =
(

1− 1
2

ω
2
◦ t

2
)

exp
(
−1

4
ω

2
◦ t

2
)

(2.2)

whereas ω◦ is the dominant frequency. The reflectivity function RPP represents the
reflection coefficients of P-to-P waves as a function of t and θ and is often modeled using
Aki and Richards equation (Aki and Richards 1980), which is a linear approximation of
the non-linear Zoeppritz equation (Zoeppritz 1919) for weak elastic contrasts across the
geological layers. For incident angles less than the acquisition critical angle, the Aki and
Richards equation provides an accurate approximation of the reflection coefficients for
small elastic contrasts. In theory, the proposed methodology could be extended to the
Zoeppritz equation, however, the analytical evaluation of the mathematical formulation
of the gradient is more challenging to derive. The discrete version of Aki and Richards
approximation for RPP is:

RPP[i](θ) =
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) ∆α[i]
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α[i]

)2
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(
β [i]
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∆ρ[i]
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(2.3)

where ∆α , ∆β , and ∆ρ are the variations P- and S-wave velocities and density
across the reflecting interface i whereas α , β and ρ are the corresponding average P-
and S-wave velocities and density.

Alternatively, the seismic response can be modeled by solving the wave equation.
The finite difference (FD) method is often adopted to approximate the partial derivatives
of the wave equation and compute the propagation of seismic waves (Carcione et al.
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1988). Several numerical schemes have been proposed. In this work, we adopt a
high order (8th) staggered-grid FD scheme (Virieux 1986) to numerically model in a
discretized grid the P-SV elastic seismic energy propagating through a heterogeneous
medium using the velocity-stress field. At the time 0, the wave propagating medium
is considered to be in equilibrium; then. time-integrated particle velocity and stress
are propagated. Absorbing boundary conditions (ABCs) are generally assumed for
the mathematical simulation of seismic wave propagation, to avoid artificial boundary
reflection (ABR). In our approach, we consider a perfectly matched layer (PML) to
attenuate modeling boundary reflections. The numerical formulation for the velocity-
stress FD method is given by Virieux (1986). In this work, we adopt this formulation to
compute a synthetic dataset with a different operator than the convolutional model used
for the inversion, to validate the proposed formulation.

2.3.2 AVO inversion

The forward modeling equation of seismic AVO inversion is written as f (m) = d, where
m represents the unknown model variables. The objective of inverse modeling is to esti-
mate the model variables m from the seismic AVO data d. In the proposed formulation,
m represents the elastic model variables as m = [VP(t),VS(t),ρ(t)], including P- and
S-wave velocities and density.

To solve the inverse problem, we first define an objective function to model the misfit
J = d− f (m) between the real and predicted data, and then implement an optimization
algorithm to minimize the objective function. Numerous options for the definition of the
objective functions are available in the literature (Alessandrini et al. 2019; Faucher et al.
2019). We use the Euclidean norm (L2-norm), as it is widely used in inversion, especially
for problems with a natural scattering of the error components. Mathematically, the
L2-norm objective function is written as:

J(m) =
1
2
∥ d(t, θ)− f (m(t, θ)) ∥2 (2.4)

In our approach, the forward modeling operator is given by the convolutional model:

f (m) =W (t)∗RPP(t, θ |m)+n(t, θ) (2.5)

here, the term n represents the random ambient noise and * indicates convolution.
The optimization requires the calculation of the partial derivatives of the gradient(

∂J
∂VP

, ∂J
∂VS

, ∂J
∂ρ

)
of the objective function J with respect to elastic properties (VP,VS,ρ).

We adopt the adjoint-state technique to calculate the gradient of the objective
function. The adjoint-state solution of Aki and Richards equation (1980) and derivation
of the gradient is given in Appendix A. The so-obtained partial derivatives with respect
to (VP,VS,ρ) at a given interface i are:

18



Method
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We then apply a non-linear optimization algorithm, namely L-BFGS, to update
the model variables by minimizing the objective function J according to the L-BFGS
iteration equation 2.9. L-BFGS is a limited-memory quasi-Newton optimization method
often used for solving large-scale non-linear optimization problems where the Hessian
cannot be efficiently computed. The L-BFGS optimization method iteratively approxi-
mates the inverse Hessian using the curvature information from the previous iterations.
The L-BFGS optimization method can be represented as:

mk+1 = mk−αkHk∇J, k = 0,1,2,3, ..., (2.9)

where k represents the iteration, αk is the scalar step length at iteration k, ∇J is the
gradient of the objective function respectively, and Hk describes the inverse Hessian
approximation (Hk ≈ ∇2J−1) at iteration k. The inverse Hessian Hk is approximated as:

Hk+1 =V T
k HkVk +ρksksT

k (2.10)

where Vk = I−ρkyksT
k , sk =mk+1−mk, yk =∇J(mk+1)−∇J(mk), and ρk =(yT

k sk)
−1.
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In the L-BFGS method, the Hessian approximation is more efficient than in the
original BFGS method. At a given iteration k, suppose that the current solution is m
and the vector pairs of the previous p iterations are {si,yi} for i = k− p, ...,k−1 with
associated matrices Vi and scalars ρi. We choose an initial H◦k and compute Hk as:

Hk =
(
V T

k−1...V
T
k−p
)

H◦k
(
Vk−p...Vk−1

)
+ρk−p

(
V T

k−1...V
T
k−p+1

)
sk−psT

k−p
(
Vk−p+1...Vk−1

)
+ρk−p+1

(
V T

k−1...V
T
k−p+2

)
sk−p+1sT

k−p+1
(
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+ρk−1sk−1sT
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(2.11)

We then define a recursive procedure to efficiently calculate the product Hk∇Jk, as
shown in Algorithm 2.1.

Algorithm 2.1: Limited-memory BFGS two-loops recursion.
1. Inputs: ∇Jk,Hk
2. q← ∇Jk
3. for i = k−1,k−2, ...,k− p do
4. αi← ρisT

i q;
5. q← q−αiyi;
6. end (for)
7. r← Ho

k q
8. for i = k− p,k− p+1, ...,k−1 do
9. βi← ρiyT

i r;
10. r← r+ si(αi−β );
11. end (for)
12. Stop with result Hk∇Jk = r

2.4 Applications

We present numerous numerical examples of synthetic and field datasets used to validate
the proposed inversion using the traditional convolutional model. We then extend
the application to a synthetic dataset generated using the FD method. Two synthetic
subsurface profiles, namely example 1 and example 2, are generated from well logs
using the convolutional model. Then the inversion is extended to synthetic 2D data
generated from an elastic model developed for the Edvard Grieg oil field in the North
Sea.

In example 1, we use a multilayered convolution model to simulate the synthetic
angle gathers from a set of synthetic well logs data. S-wave velocity and density are
computed from P-wave velocity using Castagna’s relation (Castagna et al. 1985) and
Gardner’s equation (Gardner et al. 1974) respectively. The true model variables and the
initial guesses are shown in Fig. 2.1.

Synthetic AVO seismic gathers up to the maximum angle of incidence 30◦ are
generated by convolving a 25 Hz Ricker seismic wavelet with PP reflectivity series
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Figure 2.1: Example 1 - Model variables (solid red lines): the P and S wave velocities in
(m/s) and the bulk density in (kg ·m−3) and the corresponding initial guesses (dashed
blue lines) at the well location in the TWT interval 800 - 1400 ms are plotted in the
figure.

calculated with the linearized Aki and Richards equation. The pre-stack angle gather
profiles without and with seismic random noise levels (S/N = 50) are shown in Fig.
2.2. Fig. 2.3 represents the inverted P wave velocity, S wave velocity, and density
from noise-free AVO seismic gather. The inverted variables are in good agreement
with the true model variables. Fig. 2.4 shows the corresponding seismic response of
the true, initial, and inverted models as well as the percent error between true and
predicted seismic gathers. The inversion results prove the accuracy of this inversion
approach. The AVO inversion results with a signal-to-noise ratio (S/N) of 50 are shown
in Fig. 2.5. The inversion results show a good agreement and are consistent with real
models, despite some slight instability of the solution at quite a few points, especially
for S-wave velocity. We speculate that the local instability of the solution might be
due to the discrete nature of the model and the band-limited nature of the data. The
local instability can be mitigated using a regularization method such as total variation
regularization.

We then test the inversion using a synthetic seismic dataset generated from high-
frequency acoustic and shear sonic logs and density data, measured in the Edvard Grieg
oil field. These reference elastic properties VP, VS, and ρ along with initial models are
shown in Fig. 2.6. The presented true well log measurements (Fig. 2.6) are upscaled to
estimate the model variables at the seismic scale (i.e. seismic wavelet scale) from the
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Figure 2.2: Example 1 - Pre-stack amplitude versus angle (AVA) gathers with different
seismic noise levels (without and with S/N = 50) up to maximum incident angle 30◦.

Figure 2.3: Example 1 - Inverted P- and S-wave velocities (VP, VS) and density (ρ)
models obtained from noise-free AVO gathers.
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Figure 2.4: Example 1 - AVA seismic response (up to 30◦) for baseline true model,
initial model, and inverted model and estimated percent error.

Figure 2.5: Example 1 - Inverted P- and S-wave velocities (VP, VS) and density (ρ)
models obtained from noisy (S/N = 50) seismic AVO gather.
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Figure 2.6: Example 2 - Model variables: P and S wave velocities in (m/s) and bulk
density in (kg ·m−3) along with corresponding initial models at the well location in the
TWT interval 1700 - 1965 ms.

higher frequency properties (i.e. sonic log). The reservoir zone is located between 1867 -
1888 ms. The convolution-based seismic forward modeling is used to generate pre-stack
seismic AVA gathers (Fig. 2.7) without noise and with S/N = 50. The range of angles
of the incident for seismic waves is from 0−30o with an interval of 5o. Figs. 2.8 and
2.9 show the AVA inversion results without and with noise. In the noise-free case, the
comparison between true and inverted models shows that the results are accurate (Fig.
2.8). Similarly, in the noise-added case, the results also show very good agreement with
the true models (Fig. 2.9) and are consistent with the real models. However, the inverted
results are presented in Figs. 2.8 and 2.9 are after applying small weight Tikhonov
regularization to the density and the shear wave velocity.

We then apply the inversion approach to a synthetic dataset built using the Edvard
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Figure 2.7: Example 2 - Pre-stack amplitude versus angle (AVA) gathers with different
seismic noise levels (without and with S/N = 50) up to maximum incident angle 30◦.

Grieg measured data along a section including horizontal and inclined stratigraphy
and faulted geological layers. We adopt an elastic model obtained in previous studies
(referred to as the true model in the following) to generate a synthetic seismic line.
The seismic line comprises 38 common depth points (CDP) and the AVO inversion is
applied trace by trace. The time window is from 500 - 2500 ms. Figs. 2.10 - 2.12 show
the inversion results for P- and S-wave velocity and density, respectively. Each figure
shows the comparison between the initial model, true model, and inverted results for
all CDPs. For each model variable, we compute the percent error between true and
predicted models. The inversion shows accurate results for P-wave velocity, whereas
density values are slightly under-predicted in the bottom part of the interval, and S-wave
velocity is mismatched in the reservoir region. Fig. 2.13 shows the full stack of the
seismic dataset, obtained after stacking the AVO gathers generated at each trace location,
and the seismic response of the inverted model, showing an overall agreement between
data and predictions. In some of the inversion results, the correlation between the
predicted elastic properties is overestimated, possibly due to the linearization in the
inverse problem. This is a common effect in seismic and petrophysical inversion, due
to the correlation of the seismic angles introduced in the processing which reduces the
degrees of freedom of the solution and makes the problem underestimated.
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Figure 2.8: Example 2 - Inverted P- and S-wave velocities (VP, VS) and density (ρ)
models obtained from noise-free AVO gathers.
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Figure 2.9: Example 2 - Inverted P- and S-wave velocities (VP, VS) and density (ρ)
models obtained from noisy (S/N = 50) seismic AVO gather.
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Figure 2.10: 2D profile of inverted P-wave velocity compared to the true and initial
models. The percent errors between true and inverted models are also displayed.
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Figure 2.11: 2D profile of inverted S-wave velocity compared to the initial and true
models. The percent errors are also displayed.
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Figure 2.12: 2D profile of inverted density compared to the initial and true models. The
percent errors between the true and predicted models are also displayed.
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Figure 2.13: Full stack seismic section compared to the seismic response of the inverted
seismic profile and percent errors between real and inverted seismic profiles.

We extend the inversion to a seismic dataset generated using the staggered-grid finite
difference model of elastic waves. We first generate the synthetic seismic by computing
the forward model for the entire section from the surface and extracting the reservoir
layer between 1700 and 1888 ms. We perform normal moveout (NMO) correction offset-
to-angle transformation and apply an amplitude scaling factor to remove the effects of
offset-dependent geometrical spreading. The wavelet with a dominant frequency of
25 Hz is used for the FD model. We assumed a layered isotropic elastic medium with
elastic properties given in Fig. 2.1 and simulated an OBC seismic survey. The number
of receiver points is 1001 with a constant distance of 5 m, for a 5000 m maximum
offset. The recording interval is 0.002 seconds. The synthetic seismograms generated by
the finite difference simulations are shown in Fig. 2.14. The overburden layers extend
to 1750 m, whereas the reservoir layer is between 1750 and 1940 m, such that the
overburden reflections and associated interbedded multiples are subtracted from the
model. The FD results at the top of the reservoir are shown in (Fig. 2.14c). As the
staggered-grid finite difference modeling considers all the wave propagation effects,
in order to implement a convolutional model-based inversion scheme for FD synthetic
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Figure 2.14: Seismic records obtained with staggered-grid finite difference methods:
a) full model; b) overburden model; c) reservoir model obtained by subtracting the
overburden from the full model.

angles gathers, we have defined an amplitude scaling factor that compensates the effects
of geometrical spreading for FD seismic profiles and provides the best calibration
between synthetics of both methods. The derivation of the amplitude scaling factor is
described in Appendix B. The comparison between convolution and FD models at the
reservoir zone level, after the application of the scaling factor, is shown in Fig. 2.15.
We then run the inversion scheme assuming the FD model until incident angle 18◦.
The results of the proposed adjoint-state-based inversion applied to the staggered-grid
FD model are shown in Figs. 2.16 and 2.17. Overall, the inverted P- and S-wave
seismic velocities and density show good agreement with the true models, despite some
discrepancies. Fig. 2.17 shows the synthetic angle gathers for the initial, true, and
inverted models plotted trace by trace up to 18◦, showing a good match.

2.5 Discussion

In the gradient descent-based optimization algorithms, it is necessary to compute the
gradient equations of the least-square objective function with respect to unknown elastic
variables. The efficiency of the algorithm relies on the accuracy and effectiveness of
the computation of the gradient. To efficiently and accurately compute the gradient,
we adopt the adjoint-state technique. The adjoint-state variables do not depend on
the perturbations of the model variables. We apply the method under the non-linear
constraints and derive the set of gradient equations for the objective function. The
advantage of using the adjoint-state method is that it only requires solving one additional
linear system, which makes the inversion more efficient than the Fréchet derivative
approach (Plessix 2006). The optimization problem is then solved by using the L-BFGS
optimizer of the non-linear quasi-Newton class based on the gradient computed with the
adjoint-state method. The non-linear L-BFGS approximates the inverse Hessian matrix
by using a few previous iterations (l < 10) and consequently reduces computational
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Figure 2.15: Comparison between synthetic data modeled by using convolution and
finite difference models after correcting the offset-dependent geometrical spreading.

load and makes the algorithm more efficient than the traditional Newton-Raphson and
Gauss-Newton methods. The proposed approach is tested on several examples based on
two different forward models: the traditional convolutional approach and the FD method.
The adjoint-state-based inversion method for the elastic properties can be theoretically
applied to other properties e.g., seismic impedances, velocity ratio, or petrophysical
parameters e.g., porosity, fluid saturation, clay volume, etc., by calculating the gradients
with respect to the selected parameterization using the chain rule of derivative and by
incorporating adequate rock-physics relations (as described in Chapter 3). The proposed
inversion method can also be applied to other angle-dependent reflectivity operators
such as Zoeppritz equations or their approximations (Fatti et al. 1994; Shuey 1985).

2.6 Conclusions

We presented a non-linear seismic AVO inversion method based on a deterministic
approach for the minimization of the objective function. The objective function is based
on the convolutional model where the reflectivity is obtained using linearized Aki and
Richards approximation. The gradient of the objective function is calculated by using
the adjoint-state technique. The adjoint state is computationally fast and more effective
than traditional numerical methods. The minimization problem is iteratively solved by
using L-BFGS, a non-linear optimization algorithm that approximates the inverse of
Hessian and improves the convergence rate for inversion results. The applications of the
proposed inversion scheme show accurate results for synthetic seismic data computed
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Figure 2.16: Inverted P- and S-wave velocities (VP, VS) and density (ρ) at the top of the
reservoir (1.7 - 1.88 sec).

using the convolutional model as well as the staggered-grid finite difference method.
The estimated synthetic angle gather which is computed from the inversion results
matches the true data in both cases. The adjoint-state-based AVO inversion method can
be applied to the different parameterizations of the model by using the chain rule of
differentiation.
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Code availability section

Figure 2.17: Pre-stack amplitude versus angle (AVA) gathers based on true model
simulated by staggered-grid finite difference method, initial model, and inverted model
obtained with a convolutional approach.

computations and simulations were performed on resources provided by UNINETT
Sigma2 - the National Infrastructure for High-Performance Computing and Data Storage
in Norway.

2.8 Code availability section

Name of the code/library: Non-linear AVO Inversion
Contact: ahmedseis23@gmail.com
Hardware requirements: Standard personal computer
Program language: MATLAB
Software required: MATLAB
The source codes are available for download at the link:
https://github.com/nahmed215/avoinversion.git
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2.9 Appendix A: Adjoint-state based gradients

The gradient ∇ of an objective function J given in the least-square equation 2.4, includes
the partial derivatives of the objective function with respect to the model variables
m = [VP(t), VS(t), ρ(t)]:

∇J =

[
∂J(t)
∂VP

,
∂J(t)
∂VS

,
∂J(t)
∂ρ

]
(2.12)

Based on equation 2.4, the partial derivative of J are given by:

∂J
∂VP

=−
[
d− f (VP, VS, ρ)

]
· ∂ f

∂VP
(2.13)

∂J
∂VS

=−
[
d− f (VP, VS, ρ)

]
· ∂ f

∂VS
(2.14)

∂J
∂ρ

=−
[
d− f (VP, VS, ρ)

]
· ∂ f

∂ρ
(2.15)

In practical applications, elastic properties are discretized. We adopt the notation
VP[i],VS[i] and ρ[i], for the value of the velocity at a given interface i. In the discretized
domain, the terms

(
∂ f

∂VP[i]

)
,
(

∂ f
∂VS[i]

)
and

(
∂ f

∂ρ[i]

)
represent the Jacobian matrix and are

given by:

∂ f
∂VP[i]

=−W ∗ ∂RPP(θ)

∂VP[i]
(2.16)

∂ f
∂VS[i]

=−W ∗ ∂RPP(θ)

∂VS[i]
(2.17)

∂ f
∂ρ[i]

=−W ∗ ∂RPP(θ)

∂ρ[i]
(2.18)

We compute the gradient equations for each model variable using the adjoint method.
In the AVO inverse problem, the Lagrangian function (L) with the adjoint state variable
λ is given by:

L(VP, VS, ρ, RPP, λ ) = ∑
i

∫
θ

dθ

[
d[i]−W [i]∗RPP[i]

]2

+∑
i

∫
θ

dθ

[
RPP[i]−A[i] · ∆α

α
−B[i] · ∆β

β
−C[i] · ∆ρ

ρ

]
λ[i]

(2.19)

here,

A[i] =
[

1
2
(
1+ tan2

θ
)]

B[i] =
[
−4β [i]2

α[i]2
· sin2

θ

]
C[i] =

1
2

[
1− 4β [i]2

α[i]2
· sin2

θ

]
while,

α[i] =
VP[i+1]+VP[i]

2
∆α[i] =VP[i+1]−VP[i]
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β [i] =
VS[i+1]+VS[i]

2
∆β [i] =VS[i+1]−VS[i]

ρ[i] =
ρ[i+1]+ρ[i]

2
∆ρ[i] = ρ[i+1]−ρ[i]

The Lagrangian in Equation 2.19 can be rewritten as L = J +C ∗ λ , where C
represents the constraints. The constraint in the Lagrangian multiplier is automatically
satisfied if we compute RPP using Aki and Richards equations as:[

RPP[i]−A[i] · ∆α

α
−B[i] · ∆β

β
−C[i] · ∆ρ

ρ

]
= 0 (2.20)

The gradient of the objective function J is achieved through the solution of the
following system:

∂L
∂RPP

= 0, (2.21)

∂L
∂λ

= 0, (2.22)

∂L
∂VP[i]

=
∫

θ

dθ

{
A

α[i−1]
·λ [i−1]− A

α[i]
·λ [i]

−A∆α[i−1]
2α[i−1]2

·λ [i−1]− A∆α[i]
2α[i]2

·λ [i]

+
4β [i−1]2

α[i−1]3
· sin2

θ · ∆β [i−1]
β [i−1]

·λ [i−1]

+
4β [i]2

α[i]3
· sin2

θ · ∆β [i]
β [i]

·λ [i]

+
2β [i−1]2

α[i−1]3
· sin2

θ · ∆ρ[i−1]
ρ[i−1]

·λ [i−1]

+
2β [i]2

α[i]3
· sin2

θ · ∆ρ[i]
ρ[i]

·λ [i]
}

(2.23)

∂L
∂VS[i]

=
∫

θ

dθ

{
−2∆β [i−1]

α[i−1]2
· sin2

θ ·λ [i−1]

−2∆β [i]
α[i]2

· sin2
θ ·λ [i]

−4β [i−1]
α[i−1]2

· sin2
θ ·λ [i−1]

+
4β [i]
α[i]2

· sin2
θ ·λ [i]

−2β [i−1]
α[i−1]2

· sin2
θ · ∆ρ[i−1]

ρ[i−1]
·λ [i−1]

−2β [i]
α[i]2

· sin2
θ · ∆ρ[i]

ρ[i]
·λ [i]

}

(2.24)
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and

∂L
∂ρ[i]

=
∫

θ

dθ

{
C[i−1] ·

(
1

ρ[i−1]

)
·λ [i−1]−C[i] ·

(
1

ρ[i]

)
·λ [i]

−C[i−1] ·
(

∆ρ[i−1]
ρ[i−1]2

)
·λ [i−1]−C[i] ·

(
∆ρ[i]
ρ[i]

)
·λ [i]

} (2.25)

When equations 2.21 and 2.22 are satisfied, it means the derivatives of the extended
objective function with respect to RPP and state variable (λ ) are zero. Then, the gradients
of L and J with reference to the model properties coincide: ∂L

∂VP[i]
= ∂J

∂VP[i]
, ∂L

∂VS[i]
= ∂J

∂VS[i]
,

and ∂L
∂ρ[i] =

∂J
∂ρ[i] , and the Lagrangian can be used to find the derivative of J and obtain

the gradient equations for VP[i], VS[i], and ρ[i]. The state variable λ can be computed as:

λ [i] =−2W [i]∗ (d[i]−W [i]∗RPP[i]) (2.26)

2.10 Appendix B: Amplitude scaling factor

To compare the finite difference model and the convolution model, we define an am-
plitude scaling factor to compensate for the effect of offset-dependent geometrical
spreading. If k is the scaling factor, the least-square equation can be written as:

J =
1
2
∥ dC− k ·dFD ∥2

t (2.27)

where dC and dFD stand for the convolution and the finite difference models com-
puted for all the data for any travel time t. The derivative of the discretized form
(t = 1,2,3, ...) of the Equation 2.27 with respect to the scaling factor k the set equal to
0.

dJ
dk

=−∑
t
((dC− k ·dFD) ·dFD) = 0 (2.28)

which leads to:

−∑
t

dC ·dFD + k ·∑
t

dFD
2 = 0 (2.29)

The scaling factor for the geometrical spreading can be then defined mathematically
as:

k =
∑t dC ·dFD

∑t dFD
2 (2.30)

The geometrical spreading scaling factor is plotted as a function of incident angles
in Fig. 2.18. The comparison of the derived least-square based k is made with Ursin’s
method (Ursin 1990) and the results displayed in Fig. 2.18 show the accuracy of the
derived scaling factor up to the incident angle of almost 20◦.
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Figure 2.18: The comparison between amplitude correction scaling factors to compen-
sate for the effects of offset-dependent geometrical spreading. The least-square derived
scaling factor shows a good correlation with Ursin’s method (Ursin 1990) up to incident
angle 20◦.

2.11 Extended discussion

The uncertainty in the inverted models of the elastic properties can be described as a
function of initial model variability. For example, a set of 100 initial models has been
generated by using a Monte Carlo simulation and then the inversion process is applied
to every initial model to get the distribution of the inverted properties. The probability
density estimates for the 100 initial models of each P- and S- wave velocities and density
are plotted in Figure 2.19. These initial models are simulated by using a probabilistic
method that follows the spatial correlation model (Buland and Omre 2003a; Grana et al.
2021).

The probability density estimates for the posterior solution of the model properties
are shown in Figure 2.20. The inverted models are computed with the forward models
having a signal-to-noise ratio of 20. Despite the relatively high variability in the initial
guesses, the uncertainty in the inverted properties is reasonably small. The probability
density estimates of the inverted models are in close agreement with the true models
(shown by solid black lines). This further describes the stability and accuracy of the
proposed inversion method.
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Figure 2.19: The initial guess for the P- wave velocity (VP), S- wave velocity (VS), and
density. The solid black lines represent the mean of the initial models.

Figure 2.20: The inverted models for the P- wave velocity (VP), S- wave velocity (VS),
and density. The solid black lines describe the reference or true model.
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3. Constrained non-linear AVO inversion for dynamic reservoir changes
estimation from time-lapse seismic data

3.1 Summary

We propose a novel elastic AVO inversion process to estimate the fluid saturation and
effective pressure or variations in these properties from the time-lapse seismic dataset.
These changes occur in oil and gas reservoirs caused by fluid injection or hydrocarbon
production that leads to changes in the elastic wave properties, reflectivity, and seismic
response. The proposed method is based on a seismic forward model that consists of
a linearized AVO equation and a rock physics model. The AVO equation links the
elastic wave properties to reflection amplitudes, whereas the rock physics model maps
the saturation and pressure into seismic velocities and density. The inversion approach
relies on the gradient descent technique to estimate the unknown variables by searching
for the minimum of the least-square misfit between observed and modeled data. The
first-order gradient of the least-square data misfit function with respect to the model
properties is derived by using the adjoint-state method and the chain rule to compute
the gradient equations of the seismic response with respect to effective pressure and
water saturation. The optimization method used to minimize the misfit function and
obtain the best optimal solution is the limited-memory quasi-Newton algorithm. This
inversion process allows incorporating the prior constraints and achieving the optimal
regularization weight of the measured variables to limit the solution space of the ill-
posed inversion problem. The application of the developed workflow on 1D synthetic
and real well log data from the Edvard Grieg oil field simulating various saturation-
pressure conditions during production demonstrates the validity of the approach with
different noise levels. The inversion is then applied to a 2D synthetic dataset modeled
from the reservoir model of the Smeaheia field, a potential site for a large-scale offshore
CO2 storage field located in the North Sea. Our results illustrate that the proposed
inversion method efficiently estimates reservoir saturation and pressure variations with
accurate convergence and reliable robustness.

3.2 Introduction

Time-lapse seismic AVO data are frequently used to monitor the variations in oil and gas
reservoirs during hydrocarbon production and to optimize the fluid injection schedule for
enhanced oil recovery. Reservoir depletion and/or fluid injection in the reservoir cause
variations in the effective and pore (fluid) pressure and fluid (water and hydrocarbon)
saturation. These changes might have a considerable effect on elastic and seismic
properties (Mavko et al. 2020); hence, geophysical data can be applied to predict the
dynamic changes during production (Holt et al. 2005; LI et al. 2005; Tsuneyama and
Mavko 2007). The difference between pre-stack seismic data acquired at two different
times, for example before and during production, has been successfully utilized to
map the changes in reservoir dynamics properties (Bhakta and Landrø 2014; Buland
and El Ouair 2006; Dinh and Van der Baan 2019; Landrø 2001; Maharramov et al.
2016; Trani et al. 2011). This information is crucial for field development as dynamic
changes are used to determine optimal drainage patterns and understand geomechanical
processes.

The prediction of pressure and saturation properties from the 4D pre-stack seismic

42



Introduction

gathers is formulated as an inverse problem. By combining seismic partial stacks
and rock physics theory, Landrø (2001) introduces an efficient method to estimate the
pressure and saturation changes from the pre-stack monitoring data. This approach is
on the basis of linear and quadratic approximations of the reflectivity coefficients as
a function of pore pressure and water saturation changes have been then extended to
several methods for time-lapse seismic inversion (Bhakta 2018; Bhakta and Landrø
2014; Dadashpour et al. 2008; Landrø et al. 2003; Meadows 2001). Probabilistic
versions of this approach have also been developed to quantify the model uncertainty
(Davolio et al. 2012; Emerick 2014; Lang and Grana 2019; Veire et al. 2006). For
example, Veire et al. (2006) formulate the saturation-pressure estimation problem in the
Bayesian framework, and rock physics fluid substitution models are implemented to
build a prior stochastic model. Then, Lang and Grana (2019), modify Landrø’s approach
to accounting for the spatial variability of porosity and initial reservoir conditions of
pressure and saturation. Landrø’s method and its extensions have been often adopted as
they provide a direct link between seismic amplitudes and reservoir property based on
linear and quadratic approximations (Côrte et al. 2023). These formulations might fail
when the combined effect of pressure and saturation on elastic properties is nonlinear
and cannot be approximated by simple polynomial functions. In these cases, two-step
inversion approaches of time-lapse seismic data have been proposed by combining
seismic inversion in the elastic domain with rock physics inversion in the reservoir
property domain (Buland and El Ouair 2006; Côrte et al. 2023; Dupuy et al. 2021a;
Dupuy et al. 2021b; Forberg et al. 2021; Grana and Mukerji 2015).

In the present research work, we introduce a constrained non-linear algorithm for the
amplitude versus offset (AVO) inversion on the basis of the linearized Aki and Richards
equation (Aki and Richards 1980) to estimate fluid saturation and pressure changes
from 4D pre-stack seismic gathers. The rock physics model is assumed to be known and
it includes multiple poroelastic relations such as Gassmann’s equation, Hill’s average,
MacBeth-Grana’s equation (Gassmann 1951; Grana 2016; Hill 1963; MacBeth 2004)
that are used to link the dynamic reservoir variables (fluid saturation and effective stress)
to the changes in elastic parameters. The rock physics models can account for multiple
fluid mixing scenarios such as uniform and patchy saturation (Ahmed et al. 2016). In
the inversion approach, we apply the gradient descent-based optimization algorithm to
minimize the L2-norm misfit function. The gradient of the least-square misfit function
with respect to saturation and pressure variables is computed using the adjoint-state
numerical method (Ahmed et al. 2023; Plessix 2006). Adjoint methods are already
being used in numerous geophysical publications (Ahmed et al. 2022; Ahmed et al.
2023; Biondi et al. 2021; Hu et al. 2021; Ravasi and Vasconcelos 2021; Wang et al.
2021a). In the proposed approach, the adjoint-state method is first applied to derive
the gradient equations with respect to P- and S- wave velocities and density by solving
the AVO equation as shown in (Ahmed et al. 2022); then, the chain rule for the partial
derivatives is used to calculate the adjoint-based gradient expressions for the water
saturation and effective pressure. The main advantage of the adjoint method is that it
is unrestrained to the number of model variables and consequently provides a more
efficient and faster way to calculate the gradient compared to traditional approaches such
as finite difference or Fréchet derivative. To minimize the misfit function and iteratively
obtain the best optimal solution, we implement a non-linear optimization based on
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the limited-memory BFGS algorithm (Liu and Nocedal 1989; Nocedal 1980). In the
proposed implementation, Tikhonov regularization weights are applied to make the
inverse solution more stable for noisy datasets. The main contribution of the developed
technique is the derivation and application of the adjoint-state solution for the gradient
of the least-square misfit function with respect to saturation and pressure based on the
AVO reflectivity equation and rock physics model. We test the method on two different
scenarios. The first example is based on the well-log data of the Edvard Grieg oil field,
North Sea, where different saturation-pressure combinations with various noise levels
are evaluated. The second example is based on a 2D line extracted from the 3D reservoir
model of the Smeaheia field and a synthetic time-lapse seismic dataset mimicking water
saturation and pressure variations due to CO2 injection.

3.3 Theory and method

In this section, we first present the elastic forward model combining AVO and rock
physics relations and then describe the inversion scheme for the prediction of changes in
unknown model variables (saturation and effective pressure) based on the adjoint-state
solution of the least-square misfit function with respect to the model variables.

3.3.1 Seismic forward model

The seismic forward model is approximated by a known convolutional method based
on the weak contrast formulation of the PP reflectivity and, in this implementation, is
parametrized based on elastic wave velocities (P- and S-wave) and effective density.
According to this formulation, the seismic response d(t, θ) is a function of two-way
travel time (t) and angle of incident (θ ) and it is calculated using the convolutional
operator:

d(t, θ) =W (t)∗RPP(t, θ |m) (3.1)

where W (t) denotes the source wavelet and RPP indicates the reflection amplitudes. RPP
are modeled using the linearized Aki and Richards AVO approximation:

RPP(t, θ) = A(θ)
∆α(t)
α(t)

+B(t, θ)
∆β (t)
β (t)

+C(t, θ)
∆ρ(t)
ρ(t)

(3.2)

whereas,

A =

[
1
2
(
1+ tan2

θ
)]

, B =

[
−4β 2

α2 sin2
θ

]
, C =

1
2

[
1− 4β 2

α2 sin2
θ

]
while ∆ρ , ∆α and ∆β being the contrast between seismic properties and α , β and ρ

being the averages values across the seismic reflection boundary e.g., ∆ρ = ρ2−ρ1,
∆α = VP2−VP1, ∆β = VS2−VS1, ρ = (ρ2 +ρ1)/2, α = (VP2 +VP1)/2, ∆β = (VS2 +
VS1)/2.

Elastic variables e.g., elastic wave (P- and S-wave) velocities (VP and VS) and
effective density (ρ) rely on the litho-fluid properties through the fluid-saturated rock
bulk and shear moduli Ksat and µd (Ahmad et al. 2019; Mavko et al. 2020). To link
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elastic parameters to the pore fluids and rock properties, we introduce rock physics
modeling. For illustration purposes, we assume two fluid phases, namely oil, and water.
We also assume that the effective pressure is obtained by subtracting the pore pressure
from the overburden pressure (Hussain and Ahmed 2018). Hence, the variables of
interest are effective pressure (Pe) and water saturation (Sw). The rock physics theory
then comprises several relations, to describe the saturation and pressure effects.

Gassmann (1951) equation describes the pore fluids effect on the saturated rock bulk
modulus Ksat :

Ksat = Kd +β
2
c M (3.3)

where the Biot coefficient (βc) and M are:

βc = 1− Kd

Km
, M =

[
βc−φ

Km
+

φ

K f

]−1

In this formulation, φ denotes reservoir effective porosity, Km and Kd are the mineral
and dry rock bulk moduli respectively, and K f represents the fluid bulk modulus. In our
formulation, the bulk modulus of the rock-forming minerals (Km) is calculated by using
the Voigt-Ruess-Hill average (Mavko et al. 2020). The bulk modulus of the pore fluids
(K f ) is calculated using Wood’s average equation:

K f =

[
Sw

Kw
+

1−Sw

Ko

]−1

(3.4)

assuming two reservoir fluids, namely water, and oil, where Kw and Ko are the fluid
moduli of water and oil respectively. The Reuss formula holds only if the fluid phases
are uniformly distributed within the pore space. Alternatively, the rock physics model
for patchy saturation is described in the Appendix A.

The effective pressure effect is modeled using the modified MacBeth’s formulas
(Grana 2016; MacBeth 2004) for bulk and shear moduli of dry rock (Kd and µd), as:

Kd =
Km

(
1− φ

φc

)
1+Eke−Pe/Pk

, µd =
µm

(
1− φ

φc

)
1+Eµ e−Pe/Pµ

(3.5)

where φc denotes the critical porosity, µm describes the shear modulus of the rock matrix,
Pk, Pµ represent the fracturing pressure, and Ek, Eµ represent the closing rate of the
pores. These parameters are generally empirically estimated case by case, for example,
due to the inaccessibility of experimental data at the well location, these parameters are
optimized by defining a misfit function (J) representing the distance between the rock
physics model-based P and S wave velocities and the reference well-logs velocities as:

min J(Ek, Eµ) = min
1
2
∥VP−RPM(Ek, Eµ)−VP−well ∥2

t (3.6)

min J(Eµ) = min
1
2
∥VS−RPM(Eµ)−VS−well ∥2

t (3.7)

here, subscripts RPM and well indicate rock physics model and well logs-based
velocities respectively.
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We then applied the unconstrained minimization to the misfit function by using
the quasi-Newton method to obtain optimized close rates (Ek−opt and Eµ−opt). The
gradients of the misfit function with respect to Ek and Eµ are calculated by using the
finite difference method. The main limitation of this approach is that these parameters
might depend on the rock properties such as porosity and lithology as shown (Grana
2016; Lang and Grana 2019) and may spatially vary. Indeed, the parameters of the
exponential function should depend on porosity and lithology but their calibration is
difficult when these parameters are unknown; hence, we used the approximation in
(Grana 2016) where the asymptotic value of the exponential function, for increasing
pressure values, depends on porosity.

Elastic wave velocities are then calculated from the moduli and effective reservoir
density as:

VP =

[
Ksat +4/3µd

ρ

]1/2

, VS =

[
µd

ρ

]1/2

(3.8)

ρ = ρm(1−φ)+φ ρw Sw +φ ρo (1−Sw) (3.9)

where ρm, ρw, and ρo indicate the density of the minerals, water, and oil respectively.

3.3.2 AVO inversion and adjoint-state solution

Based on the previously described seismic and rock physics models, we formulate an
inversion framework where the unknown model properties are predicted by minimizing
a misfit function. We define the L2-norm least-squares misfit function for the model
variables m = [Sw(t), Pe(t)] as:

J(m) =
1
2
∥ d− f (m) ∥2 (3.10)

whereas d represents the real seismic AVO data and f (m) is the previously described
forward model. The minimization is performed using the gradient descent optimization
technique which requires the calculation of the gradient (∇J) of the misfit function with
respect to the model properties:

∇J =

[
∂J

∂Sw
,

∂J
∂Pe

]
(3.11)

The partial derivatives of the multivariate misfit function J given by equation 3.11
with respect to m = [Sw(t), Pe(t)] are calculated in the discretized domain for a sequence
of interfaces i = 1, ...,n and they are equal to:

∂J
∂Sw[i]

=−
[
d− f (m)

]
· ∂ f

∂Sw[i]
,

∂J
∂Pe[i]

=−
[
d− f (m)

]
· ∂ f

∂Pe[i]
(3.12)

The terms (∂ f/∂m[i]) represent the Jacobian matrix and are defined as the matrix
of all its first-order partial derivatives which can be expensive to calculate. The gradient
of a function, when it depends on model parameters through state variables, can be
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computed without the Jacobian matrix by using the adjoint-state method. Therefore
to derive the gradient of the multivariate misfit function, the adjoint-state method is
implemented here through the augmented Lagrangian of the extended misfit function L
with the additional adjoint-state variable λ as:

L(VP, VS, ρ, RPP, λ ) = ∑
i

∫
θ

dθ

[
d[i]−W [i]∗RPP[i]

]2

+∑
i

∫
θ

dθ

[
RPP[i]−A[i] · ∆α

α
−B[i] · ∆β

β
−C[i] · ∆ρ

ρ

]
λ[i] (3.13)

From the above equation, the extended objective function (L) is rescripted as:

L= J+C ∗λ (3.14)

here the constraint C is defined such that the Aki and Richards equation is satisfied:

[
RPP[i]−A[i] · ∆α

α
−B[i] · ∆β

β
−C[i] · ∆ρ

ρ

]
= 0 (3.15)

The gradient of the Lagrangian (L) equals the gradient of the misfit function J as
long as the following system holds for all RPP and all λ :

∂L
∂RPP

= 0,
∂L
∂λ

= 0 (3.16)

The gradients of the extended misfit equation with respect to VP, VS and ρ are
obtained by solving equation 3.13 as shown in Ahmed et al. (2022) as:

∂L
∂VP[i]

=
∫

θ

dθ

{
A

α[i−1]
·λ [i−1]− A

α[i]
·λ [i]

− A∆α[i−1]
2α[i−1]2

·λ [i−1]− A∆α[i]
2α[i]2

·λ [i]

+
4β [i−1]2

α[i−1]3
· sin2

θ · ∆β [i−1]
β [i−1]

·λ [i−1]

+
4β [i]2

α[i]3
· sin2

θ · ∆β [i]
β [i]

·λ [i]

+
2β [i−1]2

α[i−1]3
· sin2

θ · ∆ρ[i−1]
ρ[i−1]

·λ [i−1]

+
2β [i]2

α[i]3
· sin2

θ · ∆ρ[i]
ρ[i]

·λ [i]
}

(3.17)
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∂L
∂VS[i]

=
∫

θ

dθ

{
−2∆β [i−1]

α[i−1]2
· sin2

θ ·λ [i−1]

− 2∆β [i]
α[i]2

· sin2
θ ·λ [i]

− 4β [i−1]
α[i−1]2

· sin2
θ ·λ [i−1]

+
4β [i]
α[i]2

· sin2
θ ·λ [i]

− 2β [i−1]
α[i−1]2

· sin2
θ · ∆ρ[i−1]

ρ[i−1]
·λ [i−1]

−2β [i]
α[i]2

· sin2
θ · ∆ρ[i]

ρ[i]
·λ [i]

}
(3.18)

and

∂L
∂ρ[i]

=
∫

θ

dθ

{
C[i−1] ·

(
1

ρ[i−1]

)
·λ [i−1]−C[i] ·

(
1

ρ[i]

)
·λ [i]

−C[i−1] ·
(

∆ρ[i−1]
ρ[i−1]2

)
·λ [i−1]−C[i] ·

(
∆ρ[i]
ρ[i]

)
·λ [i]

}
(3.19)

The partial derivatives of the extended misfit function with respect to RPP and λ

are 0 when equation 3.16 is satisfied. Then the gradients of the extended and misfit
functions are equal:

∂L
∂VP[i]

=
∂J

∂VP[i]
,

∂L
∂VS[i]

=
∂J

∂VS[i]
,

∂L
∂ρ[i]

=
∂J

∂ρ[i]
(3.20)

and state variable (λ ) is calculated by equation λ [i] =−2W [i]∗ (d[i]−W [i]∗RPP[i]).
The derivatives of the data misfit function with respect to Sw and Pe are computed

by using the multivariable chain rule of the partial derivatives. The expressions for these
gradients are:

∂J
∂Sw[i]

=
∂J

∂VP[i]
· ∂VP[i]

∂Sw[i]
+

∂J
∂VS[i]

· ∂VS[i]
∂Sw[i]

+
∂J

∂ρ[i]
· ∂ρ[i]

∂Sw[i]
(3.21)

and

∂J
∂Pe[i]

=
∂J

∂VP[i]
· ∂VP[i]

∂Pe[i]
+

∂J
∂VS[i]

· ∂VS[i]
∂Pe[i]

(3.22)

where the partial derivatives of elastic properties (VP, VS, ρ) with respect to water
saturation and effective pressure are given by:

∂VP[i]
∂Sw[i]

=
∂VP[i]
∂ρ[i]

· ∂ρ[i]
∂Sw[i]

+
∂VP[i]

∂Ksat [i]
· ∂Ksat [i]

∂K f [i]
·

∂K f [i]
∂Sw[i]

(3.23)
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∂VP

∂ρ
· ∂ρ

∂Sw
=− 1

2ρ3/2

(
Ksat +

4
3

µd

)1/2

·φ (ρw−ρo) (3.24)

∂VP

∂Ksat
=

1
2
√

ρ

(
Ksat +

4
3

µd

)−1/2

(3.25)

∂Ksat

∂K f
·

∂K f

∂Sw
=

β 2
c φ K2

m

(K f (βc−φ)+φ Km)2 ·
−Kw Ko (Ko−Kw)

(Ko Sw +Kw (1−Sw))2 (3.26)

∂VS[i]
∂Sw[i]

=
∂VS[i]
∂ρ[i]

· ∂ρ[i]
∂Sw[i]

(3.27)

∂VS

∂ρ
=−1

2

√
µd

ρ3/2 ,
∂ρ

∂Sw
= φ (ρw−ρo) (3.28)

and

∂VP[i]
∂Pe[i]

=
∂VP[i]

∂Ksat [i]
· ∂Ksat [i]

∂Kd [i]
· ∂Kd [i]

∂Pe[i]
+

∂VP[i]
∂ µd [i]

· ∂ µd [i]
∂Pe[i]

(3.29)

∂VS[i]
∂Pe[i]

=
∂VS[i]
∂ µd [i]

· ∂ µd [i]
∂Pe[i]

(3.30)

∂VP

∂Ksat
=

1
2
√

ρ

(
Ksat +

4
3

µd

)−1/2

(3.31)

∂Ksat

∂Kd
=

(
1− Mβc

Km

)2

(3.32)

∂Kd

∂Pe
= Km

(
1− φ

φc

)[
Eke−Pe/Pk

Pk
(
1+Eke−Pe/Pk

)2

]
(3.33)

∂VP

∂ µd
=

2
3
√

ρ

(
Ksat +

4
3

µd

)−1/2

(3.34)

∂ µd

∂Pe
= µm

(
1− φ

φc

)[
Eµ e−Pe/Pµ

Pµ

(
1+Eµ e−Pe/Pµ

)2

]
(3.35)

∂VS

∂ µd
=

1
2
√

ρ

1
√

µd
(3.36)

We assume that the changes in reservoir porosity caused by pore pressure changes
are usually minor and therefore the effect of pore pressure changes on the density
changes is negligible as considered by several authors (Bhakta 2018; Landrø 2001;
Trani et al. 2011). The gradient solution for the patchy saturation case is given in the
Appendix A.
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To constrain the model parameters between physical bounds, we use the logistic
function to map Pe and Sw into the optimization variables mPe and mSw . For pressure Pe,
we define the forward mapping, inverse mapping, and derivative chain rule mapping
between the optimization variable mPe and the forward modeling variable Pe:

mPe =
1

kPe

ln
(

Pe−Pemin

Pemax−Pe

)
(3.37)

Pe = Pemin +
Pemax−Pemin

1+ exp(−kPemPe)
(3.38)

∂J
∂mPe

=
∂J
∂Pe

kPe(Pemax−Pemin)
exp(−kPe ∗mPe)

(1+ exp(−kPemPe))
2 . (3.39)

In equations 3.37 – 3.39, Pemin and Pemax are the lower and upper bounds respectively,
while kPe is a scaling variable that controls the relative contribution of Pe in the gradient
descent direction. Similar equations are derived for saturation Sw, where the minimum
and maximum saturation are set to 0 and 1.

3.3.3 Gradient-based optimization

Based on the above-computed gradients of the misfit function, a non-linear optimization
algorithm is applied. Several optimization algorithms have been introduced and applied
to solving seismic inverse problems. We adopt the limited-memory BFGS technique that
implicitly approximates the inverse of the Hessian matrix, reducing the computational
and storage costs. In L-BFGS, the model m at each iteration of the AVO inversion
system is updated as:

mk+1 = mk−αkHk∇J, k = 0,1,2,3, ..., (3.40)

whereas mk symbolizes the model vector of the updating variables at iteration k, αk
is the step length or size computed by a line search approach using Wolfe conditions
(Nocedal and Wright 2006), ∇J represents the first-order gradient of the least-square
misfit function J and Hk corresponds the inverse of the Hessian matrix.

In the L-BFGS method, the step length or the line search technique evaluates how
far the optimization algorithm moves in every iteration. The most widespread step
length conditions are the Wolfe conditions comprised of two criteria, such as Armijo and
curvature (which includes Wolfe, and strong Wolfe) conditions. The Armijo condition
is the most widely used line search method that ensures that the function decreases
sufficiently through the iterations. The Wolfe condition is a line search method that
adds a curvature condition to the Armijo condition. The strong Wolfe condition is even
a strict version of the Wolfe condition that involves an additional curvature condition.
In this work, we adopt the Wolfe conditions, where the step size satisfies the following
three inequalities:

J(mk +αkdk)≤ J(mk)+ c1αkdT
k ∇J(mk) (3.41)
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−dT
k ∇J(mk +αkdk)≤−c2dT

k ∇J(mk) (3.42)

and

|dT
k ∇J(mk +αkdk)| ≤ c2|dT

k ∇J(mk)| (3.43)

Equations 3.41 - 3.43 represent the Armijo, Wolfe, and strong Wolfe conditions
respectively. These conditions (equations 3.41 and 3.43) guarantee that the step provides
upper and lower bounds on the acceptable step sizes. Whereas c1 and c2 are user-defined
thresholds for these inequalities, for example c1 = 10−4 and c2 = 0.9 in our application
for the quasi-Newton method (Nocedal and Wright 2006), whereas dk represents the
descent direction (−Hk∇J).

The Tikhonov regularization is introduced to make the solution more stable in case
of noisy data. The regularization weights are chosen based on a trial-and-error approach.
Because saturation is bounded between 0 and 1 and pressure has a limited variation, due
to engineering constraints, we impose minimum and maximum values to constrain the
inversion in the physical range of the solution.

The non-linear inversion algorithm is summarized in the following steps:

• Start with the initial guess for the model variables like initial Sw and Pe.

• Map the model variables Sw and Pe to optimisation variables mSw , and mPe .

• Create a function that computes the misfit function and its gradients with respect
to the optimization variables. The misfit function is calculated by using forward
modeling through the current set of model variables while the gradient is computed
by using the adjoint-state equations and associated derivative chain rules.

• Compute the regularization term and its gradients and add to the data misfit
function and data misfit gradients, respectively.

• Minimize the misfit function using the minimization algorithm L-BFGS. As a
part of this step, the functions in steps 3 and 4 are called many times to compute
new values for the objective function and gradients during both line search and
update steps (equation 3.40).

The loop is repeated time and again until the convergence criteria are met or the
predefined number of iterations is achieved. At this point, the optimized model variables
(mopt

Sw
and mopt

Pe
) are the outputs of the inversion algorithms as shown in Figure 3.1. The

inversion scheme following the above steps is described by a concise flowchart in Figure
3.1.

3.4 Applications

We apply the adjoint-state analytical solution-based non-linear seismic AVO inversion
scheme to several examples mimicking reservoir production scenarios in different noise
level conditions. The numerical tests are based on real well logs data from the North
Sea Edvard Grieg field. The clastic reservoir includes a 50 m oil-saturated interval in the
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Initial Swo, Peo

mSw , mPe L - BFGS

Sw, Pe

J+ JR

J

AKR & Gradient ∂J
∂VP

, ∂J
∂VS

, ∂J
∂ρ

∂J
∂Sw

, ∂J
∂Pe

∂J
∂Sw

+ ∂J
∂Sw

, ∂JR
∂Pe

+ ∂JR
∂Pe

∂J
∂mSw

+ ∂JR
∂mSw

, ∂J
∂mPe

+ ∂JR
∂mPe

Outputs mopt
Sw

, mopt
Pe

L

L-1

+ JR

RPM & chain rule

+ ∂∂∂JR
∂∂∂Sw

, ∂∂∂JR
∂∂∂Pe

L

Convergence criteria meet

Figure 3.1: Inversion workflow: Flowchart describes the inversion process defined by
the five steps. Here AKR, RPM, L, and L−1 stand for the Aki and Richards equation,
rock physics models, and logistic and inverse logistic functions respectively while JR
defines the regularization of the objective function.

clastic sediments of the Jurassic/Triassic geological ages. The oil-water contact (OWC)
is interpreted at approximately 1967 m. The available well logs are shown in the time
domain in Figure 3.2. The oil-saturated reservoir sand is located in the two-way time
interval of 1865 - 1890 ms and is highlighted in red. The well logs were measured before
production started (baseline case). We simulate various time-lapse scenarios during
production and injection using rock physics models. We test the inversion method for
different noise levels and initial optimization values. Reservoir rock and pore fluids
properties used to compute the elastic variables through the rock physics relationships
are presented in Table 3.1. The properties of the pore fluid at in-situ conditions are
calculated by applying Batzle-Wang relationships and rock mineral densities and bulk
moduli are taken from the literature (Batzle and Wang 1992; Mavko et al. 2020).

In the first application case, we present a synthetic seismic AVO gathers modeled
on the basis of the well logs describing the reservoir conditions before production
starts (baseline case). The seismic forward model is simulated with different signal-
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Table 3.1: Reservoir rock and fluid parameters used in the rock physics model.

Parameters Average values
Average effective porosity (φ ) 0.26

Critical porosity (φc) 0.40
Reservoir Temperature (T ) 78.18 (◦C)

Reservoir pressure (Pe) 26 (MPa)
Max. reservoir pressure 40 (MPa)

Density of oil (ρo) 0.821 (g/cm3)
API of oil 35

Gas/oil ratio (GOR) 145.7
Bulk modulus of oil (Ko) 1.04 (GPa)

Density of water (ρo) 0.987 (g/cm3)
Bulk modulus of water (Ko) 2.55 (GPa)

to-noise ratios (S/N), including S/N = ∞ and S/N = 15. The model variables for the
baseline survey include water saturation, effective pressure, and corresponding P- and
S-wave seismic velocities and density (Figure 3.2). Seismic velocities and bulk density
are obtained through Gassmann’s fluid replacement model (FSM) and the modified
MacBeth’s pressure relations. The rock physics model predictions (green curves) are in
agreement with the true well logs (black curves).

The two PP seismic synthetic models representing pre-production scenarios with
actual water saturation (about Sw ≈ 0.35) and effective pressure (about Pe ≈ 26 MPa) in
the oil-producing part are displayed in Figure 3.3. The seismic gathers are numerically
modeled by the convolution of a Ricker wavelet of 30 Hz and the reflection coefficient
series is calculated using the AVO linearized equation. The synthetic gathers are modeled
for incident angles between 0◦ and 30◦ at intervals of 5◦. The initial model is obtained
by filtering the actual wireline logs data to a low frequency.

Figure 3.4 shows the AVO inversion results plotted along with the initial and true
models for the baseline water saturation and effective pressure. Figure 3.4 (left penal)
shows the inverted models estimated from the noise-free seismic gather while Figure
3.4 (right panel) shows those estimated from the noisy data. The predicted variables
match relative well the true models in both cases. The mismatches in the estimated
models are below the resolution of the seismic measurements scale. The high-frequency
oscillation in the inverted models of effective pressure within the reservoir seal (time
window 1850 - 1870 m) might be an edge artifact due to the sharp truncation or abrupt
amplitude change at the edges and can be removed by applying a taper to both ends of
the seismic inverted traces. A comparative correlation between the mean values of the
true and predicted results of the model variables within the reservoir zone is shown in
Table 3.2 and the results demonstrate the accuracy of the presented inversion process as
the RMS error is fair minor.

As part of the sensitivity study to the backgrounds, we investigate the influence of
the initial model by imposing a linear trend on the initial model instead of a filtered
model. Figure 3.5 illustrates the inverse prediction of effective pressure and water
saturation using the linear trend for noise-free. The inversion algorithm shows accurate

53



3. Constrained non-linear AVO inversion for dynamic reservoir changes
estimation from time-lapse seismic data

Figure 3.2: Water saturation, effective pressure, and the corresponding seismic velocities
and density at the well location (actual data in black and rock physics model predictions
in green) in the reservoir zone at in situ conditions. The reservoir sand (Sw ≈ 0.35) is
highlighted.

results also if the background model is back from the real reference models.
In the second example, we assume that at the date of the seismic data acquisition for

monitoring, water saturation has increased up to 0.87 (or approximately over 0.80) in
the reservoir zone due to oil production, and pressure has dropped approximately to 4.02
MPa. The new set of seismic and model variables for the monitor case is shown in Figure
3.6. The variation in saturation-pressure profiles corresponding to the reservoir sand
are highlighted with arrows and the computed seismic properties within the reservoir
level are also displayed. The inversion results for the noise-free case of the current
saturation-pressure scenarios are illustrated in Figure 3.7 and show a close agreement
with the actual reservoir properties. A numerical comparison between reference and
inverted values of model properties (saturation and pressure variables) for the monitor
case is shown in Table 3.2. The root means square errors for both saturation and pressure
are relatively low.

The water saturation and effective pressure changes (∆Sw and ∆Pe respectively)
predicted by the proposed algorithm are displayed in Figure 3.8 and are crosschecked
with the reference values. The reference mean values for ∆Sw and ∆Pe are 0.52 and
4.02 MPa and the inverted estimates are 0.51 and 3.93 MPa respectively (Table 3.2).
The uncertainty in the optimal solution of water saturation and pressure is comparably
minor regardless of the high variability in the background models and that supports the
consistency and reliability of the method.

In the third example, we assume a partial reservoir depletion due to water injection,
where the water has been injected in the lower part of the reservoir (Sw≈ 1) with constant
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Figure 3.3: Seismic AVO gathers modeled up to maximum incident angle 30◦ for signal-
to-noise ratios SNR = ∞ and SNR = 15).

Figure 3.4: Inverted water saturation and effective pressure models obtained from the
noise-free (SNR = ∞) data (left panel) and noisy (SNR = 15) data (right panel).
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Figure 3.5: Inverted water saturation and effective pressure models obtained using a
linear trend for the initial model.

Figure 3.6: Water saturation and effective pressure for the monitor survey. Dynamic
changes are marked by the arrows.
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Table 3.2: Comparison of average true and inverted results of the water saturation
and effective pressure within reservoir window (1865 - 1890 ms) for pre- and post-
production cases. The last two rows of the table describe the inversion results in the
case of patchy fluid distribution. The RMSE values represent the errors in the reservoir
interval (between 1D arrays of true and inverted values) instead of the given mean values.
The inverted results with the patchy rock physics model are more accurate and show
low errors.

Model variables True model Inverted model RMSE
Uniform fluid distribution

Baseline case - S/N = infinity
Sw (.frac) 0.35 0.38 0.10
Pe (MPa) 25.65 25.75 1.27

Monitoring case
Sw (.frac) 0.87 0.89 0.068
Pe (MPa) 29.67 29.68 1.20

Difference
∆Sw (.frac) 0.52 0.51
∆Pe (MPa) 4.02 3.93

Baseline case - S/N = 15
Sw (.frac) 0.35 0.34 0.11
Pe (MPa) 25.65 25.84 1.56

Patchy fluid distribution
Baseline case - S/N = infinity

Sw (.frac) 0.35 0.32 0.11
Pe (MPa) 25.65 25.74 1.17

S/N = 15
Sw (.frac) 0.35 0.37 0.18
Pe (MPa) 25.65 26.26 1.25

pressure. The model variables for the fluid injection case are shown in Figure 3.9a. The
inversion results for the model variables and the homologous predicted properties are
shown in Figure 3.9b. The inversion of water saturation shows accurate results compared
to the reference model in both injected and partially oil-saturated zones, whereas the
pressure prediction is less accurate.

In the fourth example, we assume a patchy saturation rock physics model for the pore
fluid mixture. The inverse solution for saturation and pressure is shown in Figure 3.10
and shows very close agreement with the true models. The quantitative comparison of
the results is given in Table 3.2. The comparison of the estimation of water saturation and
pressure variables by using uniform and patchy fluid distribution rock physics models
in Table 3.2 shows that the patchy rock physics model provides a better prediction with
lower RMSE values.

Furthermore, we investigate the model uncertainty based on the variability of the
initial model. The uncertainty in the inverse solution is evaluated using Monte Carlo
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Figure 3.7: Inverted water saturation and effective pressure models for the monitor
survey.

simulation in which we create a set of prior realizations and then obtain the analogous
group of posterior realizations. We first create a set of 200 prior background realizations
of the saturation and pressure at well bore location by sampling from a multivariate
spatially correlated Gaussian distribution (Buland and Omre 2003b; Grana et al. 2021).
The empirical prior distribution estimated from the 200 realizations is demonstrated
in Figure 3.11. We then run the developed inversion workflow to every initial model
individually and estimate the distributions of the predicted realizations (Fig. 3.12).
The actual water saturation and pressure curves show a very good agreement with the
maximum of the posterior distribution. The uncertainty across the posterior distribution
stays reasonably small compared to the large variability among the prior distribution.
However, the uncertainty at some locations is higher and the reference models of
saturation and pressure variables do not show a good correlation with the maximum
of the posterior distribution. Nevertheless, the correlations with the true models are
very good at the reservoir zone. In the case of incorrect bound constraints, the inversion
method can underestimate/overestimate the properties in the reservoir zone which can
be therefore overcome by applying narrow and accurate physical constraints. The
distribution of the posterior is much narrower (brighter yellow and narrower confidence
interval). The ranges of the color bars of prior and posterior for water saturation are the
same (0 - 0.1) and likewise for the pressure distribution are 0 - 0.035.
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Figure 3.8: Changes in water saturation and effective pressure: reference values versus
predicted models.

Similarly, at a location away from the wells or in the case of 2D or 3D scenarios, the
uncertainties in the model variables prediction can be captured by running the inversion
method for numerous prior realizations and by computing the posterior solution. Then
the mean standard deviation of the posterior solution can be used as a possible estimation.

In the latter half of the application section, we apply the presented inverse modeling
process to a 2D line extracted from the reservoir model from the Smeaheia CO2 storage
field, located within the Northern North Sea. The Smeaheia area is based around
20 and 40 km east and northwest of the Troll oil and gas field. The reservoir in the
Smeaheia CO2 storage site is the brine aquifer that could be potentially used for carbon
capture storage (Mulrooney et al. 2020). In this research work, we apply the inversion
technique for the monitor case mimicking the CO2 injection scenario and then take
the difference between the baseline and true/inverted monitors to estimate the CO2
saturation and changes in effective pressure. The dynamic flow simulation is carried
out by Eclipse to calculate the field’s saturation-pressure evaluation with gradual CO2
injection throughout the sand reservoir (Paap et al. 2022). The fluid state of injected
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Figure 3.9: (a) Model variables (from left to right) baseline water saturation, and water
saturation and pressure curves after injection (b) inverted water saturation and effective
pressure for the monitor survey mimicking partial reservoir depletion due to water
injection.

Figure 3.10: Inverted water saturation and effective pressure for the baseline survey
mimicking patchy fluid mixture.
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Figure 3.11: Prior realizations of water saturation and effective pressure at the well
location.

CO2 is assumed supercritical carbon dioxide as the fluid properties e.g., CO2 density
and bulk modulus (600 - 700 kg/m3 and 100 MPa respectively) lie in the supercritical
region determined by (Yam and Schmitt 2011) based on the laboratory data. We then
use the patchy fluid distribution rock physics model to link the model properties with
elastic parameters for this inversion application. The patchy saturation model describes
that the multiple fluid states exist separately in the pores and therefore it provides a more
accurate computation of seismic velocity in the partially saturated reservoirs. During
CO2 storage, however, comparatively high pressure is applied to the storage aquifer and
CO2 is injected rapidly; therefore, CO2 distribution in the reservoir may become patchy
instead of homogeneous saturation. The empirical constants (Ek and Eµ ) in equation
3.5 are calculated by integrating rock physics model-based seismic velocities with the
Hertz-Mindlin model (Mindlin 1949). In this research work, we adopted a strategy to
apply the inversion technique for the monitor case mimicking the injection scenario. It
can be applied on baseline and monitor datasets separately to obtain a high-resolution
baseline and monitor models of reservoir dynamic properties and is more robust against
potential differences in the frequency spectra of the wavelets of seismic datasets from
two different vintages. However, this inversion method can be easily adapted to the case
of time-lapse seismic differences as chosen by (Grana and Mukerji 2015).

The true 2D models of water saturation and effective pressure before CO2 injection
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Figure 3.12: Inverted realizations of water saturation and effective pressure based on
Monte Carlo inverted simulations.

(baseline case) are shown in Figure 3.13. For the baseline case, it is assumed that the
injection site is fully water-saturated and effective pressure is continuously increasing
with depth. The seismic pre-stack gathers for the monitoring data, including near, mid,
and far angles, are displayed in Figure 3.14. These seismic gathers are numerically
simulated with a signal-to-noise ratio equal to 20. The seismic section has 97 traces
and 100-time samples per trace with a sampling interval of 2 ms for three seismic
waves incident angles 10◦, 20◦ and 30◦ (Bhakta et al. 2022; Mavko et al. 2020; Paap
et al. 2022). The bright spot anomaly on the seismic images is because of the acoustic
impedance contrast between CO2 plume and saline-saturated sand. The effect is more
prominent at far-angle traces.

In the monitoring case, we test the inversion to monitor the water saturation and
pressure variations resulting from the injection of CO2. The true saturation and pressure
models for the monitor survey are shown in Figure 3.15 (left side panel). Higher CO2
saturation levels are observed above the injection point; likewise, low effective pressure
values are also observed, as shown in Figure 3.15 (left side panel). The inverse modeling
results for saturation and pressure are described in Figure 3.15 (right side panel). The
inversion accurately captures the spatial distribution of the CO2 plume. The differences
between true and inverted saturation and effective pressure variables are plotted in
Figure 3.16. The actual changes are computed by taking the difference between true
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Figure 3.13: True water saturation and effective pressure models for the baseline case.

Figure 3.14: Synthetic seismic dataset modeled for the monitoring case: near, mid, and
far angles. A Ricker wavelet of 35 Hz is used to convolve it with the earth’s reflectivity
series.
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Figure 3.15: True and predicted water/CO2 saturation and effective pressure models for
the monitoring case.

models before and after injection and between the true model before injection and the
inverted monitor model.

In the next application example, the 4D FAVO inversion has been applied to the 2D
monitoring data of the Smeaheia field by using the starting models that are sufficiently
far from the reference models. The inversion method is applied to the first 40 traces
covering the CO2 injection plume. The reference models, initial models, predicted
models, and real and inverted changes in water saturation and effective pressure due
to CO2 injection are shown in Figure 3.17 and 3.18 respectively. The results describe
that the inversion method provides a good estimation of dynamic properties even if the
initial models are not sufficiently close to the true models. However, the uncertainty at
some locations is comparatively high.

To measure the accuracy of the predicted models, the root mean squared error
(RMSE) between the true and inverted monitor models of saturation and pressure
variables given in Figures 3.15, 3.17 and 3.18 is computed. The RMSEs are calculated
for the first 40 traces covering the CO2 injection plume. The RMSEs are plotted in
Figures 3.19 and 3.20. Figure 3.19 represents the error of the predicted model shown in
Figure 3.15 wherein the initial models are assumed somehow closer to the reference
models. Figure 3.20 describes the errors for the estimated models when the initial models
are sufficiently far away from the true models. The lower RMSE in both saturation
and pressure-predicted models shown in Figure 3.19 indicates that the inverted model
is a better fit with the reference model. In Figure 3.20, the RMSEs in the saturation
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Figure 3.16: Actual and predicted changes in water saturation and effective pressure
due to CO2 injection. Sg indicates the CO2 saturation and ∆Pe represents the changes in
effective pressure.

and pressure models are comparatively higher for some traces but still fall within the
acceptable range.

3.5 Discussion

In the proposed time-lapse AVO inversion methodology, we implement a gradient-based
optimization method combined with the adjoint state technique for the computation of
the gradient of the objective function with respect to the model properties of interest. The
adjoint method is faster and more efficient than other methods such as finite difference or
Fréchet derivative (Plessix 2006). The limited memory BFGS approximates the second-
order Hessian inverse, stores only a limited number of previous iterations, and provides
a good convergence rate to the minima. The inversion is relatively efficient thanks
to the use of the adjoint method. However, the inversion results might not be stable
and require a regularization term to increase the stability of the solution. The current
implementation is based on independent inversions of the base and monitor surveys. In
theory, the inversion method could also be applied to time-lapse seismic differences
(Grana and Mukerji 2015); however, this approach requires a warping technique for
travel time corrections of the monitor survey. The successful application of this approach
relies on the repeatability of the seismic surveys (Dinh and Van der Baan 2019; Romero
et al. 2023; Trani et al. 2011).
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Figure 3.17: 2D slice of the (a) reference model, (b) initial model, (c) predicted model,
(d) reference changes in saturation variables, and (e) predicted changes in the model
property.

Figure 3.18: 2D section of the (a) reference model, (b) initial model, (c) predicted
model, (d) reference changes in effective pressure variables, and (e) predicted changes
in the model property.
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Figure 3.19: Root mean squared errors (RMSE) between the predicted and actual values
of the first 40 traces are plotted. The RMS error plots are calculated between true and
predicted models shown by Figure 3.15.

Figure 3.20: Root mean squared errors (RMSE) between the predicted and actual values
of the first 40 traces are plotted. The RMS error plots are calculated between true and
predicted models shown by Figure 3.17 and 3.18.

The main challenge of rock physics inversion for time-lapse studies is the calibration
of the rock physics model and the uncertainty in the calibrated parameters far away
from the well controls due to the spatial heterogeneity of rock and fluid properties.
The proposed rock physics model includes some approximations such as the negligible
effect of pressure on density and the assumption that rock physics parameters do not
change spatially. However, the effect of density and reservoir porosity changes due
to compaction can be included by using MacBeth’s model (MacBeth 2004) and the
compaction-porosity trend (Rimstad et al. 2012) as described (Ahmed et al. 2024).
The relationship between elastic moduli and pressure includes a porosity term that
controls the asymptotic value of the elastic moduli when pressure increases. Lang
and Grana (2017) show that the parameters of the exponential relation depend on the
initial porosity and saturation values. The proposed approach can be extended to the
porosity-dependent formulation by including the porosity term in the partial derivatives.
This term is certainly relevant in datasets with high spatial heterogeneity in porosity
and when the compaction due to the production mechanisms causes significant porosity
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reduction in the reservoir rocks due to the decreasing effective pressure. In addition, the
rock physics model used for this study is assumed to be less appropriate for the carbonate
reservoir due to their complex pore system and the violation of some assumptions of
Gassmann’s equation. However, this inversion workflow can be applied to the carbonate
reservoirs with some percent of uncertainty in the seismic properties. More detailed
comments are added in the concluding remarks of the thesis (see Chapter 6).

For applications with large lateral heterogeneity in rock properties, the inversion
might provide inaccurate predictions of the saturation changes due to the effect of the
rock properties on elastic properties. A possible solution is to increase the number
of unknown model variables and invert for rock properties and saturation changes
at the same time. This approach often leads to large uncertainty in the predictions.
Furthermore, one of the main limitations of the current approach is that it does not
account for uncertainty in the rock physics model. Overall, the larger the lateral
heterogeneity, the less precise the saturation predictions are.

The gradient descent-based optimization requires an initial guess to find the minima
of a misfit function. Low-frequency models can be used as initial models by filtering
well-log data at the borehole locations and interpolating far away from the wells along
the seismic horizons. Alternatively, initial pressure and saturation models can be
estimated from basin models, nearby fields, borehole data, and static reservoir models.
The current approach can be included in a Bayesian framework by applying a stochastic
method such as Monte Carlo sampling or Approximate Bayesian Computation (Grana
et al. 2021); however, accurate assessment of the posterior uncertainty might require a
large number of stochastic realizations leading to an increase of the computational cost.

It is generally difficult to assess the accuracy of the inversion because of the limited
number of direct measurements. The models can be calibrated using core samples and
well logs, but the inversion results can only be compared to fluid flow simulation models
for validation. The uncertainty of the model variables obtained in this approach should
be interpreted as a measurement of the precision of the inversion, but the absolute values
often depend on initial assumptions and uncertainty sources. A possible verification of
this approach is with seismic history matching where seismic data are integrated into
a data assimilation workflow that accounts for fluid flow simulation. This approach is
beyond the scope of our work because it is not a direct validation of the inversion as the
seismic history matching is also the result of a model.

3.6 Conclusions

We presented a non-linear inversion for the time-lapse seismic AVO dataset to predict
water saturation and effective pressure variables due to reservoir production and/or
injection. The inversion is based on the linearized AVO approximation and rock physics
relations including well-known fluid substitution models (FSM) and modified MacBeth’s
pressure equation to link the effect of variations in fluid saturation and pressure to the
reflectivity response. The proposed 4D AVO inversion algorithm is relying on the
first-order gradient-descent-based iterative optimization algorithm wherein a non-linear
L-BFGS optimization algorithm is used to minimize the least-square L2 norm misfit
function iteratively. The novel contribution in the developed inversion process is the
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analytical derivation of the first-order gradients of the data misfit function with respect
to the time-lapse model variables by implementing the adjoint-state method, which
results in a fast and efficient algorithm. The proposed inversion is also less dependent
on the choice of background models compared with traditional methods especially
when reservoir dynamic properties have a good spatial correlation with the elastic
properties. The primary limitation of the proposed technique is that it depends on the
constraints to limit the solution space; however, such constraints can be obtained by
integrating prior geological information and engineering data. The results show that
adequate constraint limits are very helpful in reducing the uncertainty in the predicted
models. To validate the proposed method, we applied the inversion to simulated reservoir
scenarios obtained by applying dynamic changes to a set of true well logs, for different
production mechanisms and different noise conditions. The inversion method was also
validated on a 2D realistic reservoir model for CO2 monitoring. The results show that the
inversion workflow provides accurate estimates of saturation and pressure values for the
monitor surveys. However, the RMS error in the results of CO2 saturation and pressure
inversion increases when the initial models are sufficiently away from the reference
models. This is perhaps due to the fact of low spatial correlation between saturation and
pressure (after injection) and with elastic properties (VP, VS, ρ). The model properties
are inverted by using two rock physics models (uniform and patchy) and the results
describe that the patchy distribution model is more accurate than the uniform fluid
distribution model. The inversion method conceivably expanded to all other known rock
physics models with adequate calibration of the rock physics parameters. Similarly,
the presented inversion technique can be extended to invert 4D seismic measurements
for other reservoir parameters, for instance, changes in temperature due to fluid/steam
injection or changes in porosity caused by the subsidence. Real case studies might
require the calibration of rock physics parameters using core samples or well logs.
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3.8 Appendix A: Analytical solution of the partial derivatives

To model the effect of patchy fluids mixture in the reservoir, the patchy saturated
bulk modulus (K∗sat) is computed according to the rock physics model by Wollner and
Dvorkin (2018):
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K∗sat =

[
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and the saturated bulk moduli in water- and oil-filled patches are:

Ksat−wet = Km
φKd− (1+φ)KwKd/Km +Kw

(1−φ)Kw +φKm−KwKd/Km
(3.45)

Ksat−oil = Km
φKd− (1+φ)KoKd/Km +Ko

(1−φ)Ko +φKm−KoKd/Km
(3.46)

This model assumes that the fluid patches are hydraulically isolated compared to
others and that the elastic wave wavelength is higher than the individual patch size of
the fluid.

The partial derivative of the compressional wave velocity with respect to water
saturation for patchy saturation can be written in the discretized form as:
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where ∗ with VP and Ksat indicates the properties representing the patchy saturation case.
Similarly, the partial derivative of elastic wave velocity (V ∗P ) with respect to effective

pressure can be modified for the patchy saturation model as:
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and
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The partial derivatives of Kd and µd with respect to effective pressure are given in
the equations 3.33 and 3.35 respectively.
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4. Frequency-dependent AVO inversion applied to physically based models for
seismic attenuation

4.1 Summary

Seismic inversion of amplitude versus offset (AVO) data in viscoelastic media can
potentially provide high-resolution subsurface models of seismic velocities and atten-
uation from offset/angle seismic gathers. P- and S- wave quality factors (Q), whose
inverse represent a measure of attenuation, depend on reservoir rock and pore fluid
properties, in particular, saturation, permeability, porosity, fluid viscosity, and lithology;
however, these quality factors are rarely taken into account in seismic AVO inversion.
For this reason, in the present work, we aim to integrate quality factors derived from
physically-based models in AVO inversion by proposing a gradient descent optimization-
based inversion technique to predict the unknown model properties (P- and S-wave
velocities, the related quality factors, and density). The proposed inversion minimizes
the non-linear least-squares misfit with the observed data. The optimal solution is
iteratively obtained by optimizing the data misfit using a second-order limited-memory
quasi-Newton technique. The forward model is performed in the frequency-frequency-
angle domain based on a convolution of broadband signals and a linearized viscoelastic
frequency-dependent amplitude versus offset (FAVO) equation. The optimization in-
cludes the adjoint-state-based gradients with the Lagrangian formulation to improve the
efficiency of the non-linear seismic FAVO inversion process. The inversion is tested on
synthetic seismic data, in 1D and 2D, with and without noise. The sensitivity for seismic
quality factors is evaluated using various rock physics models for seismic attenuation
and quality factors. The results demonstrate that the proposed inversion method reliably
retrieves the unknown elastic and an-elastic properties with good convergence and accu-
racy. The stability of the inverse solution especially seismic quality factors estimation
relies on the noise level of the seismic data. We further investigate the uncertainty of the
solution as a function of the variability of the initial models.

Keywords: Rock Physics and AVO inversion; Marine geosciences and applied
geophysics; Inverse theory; Seismic attenuation; Numerical modelling; Joint inversion

4.2 Introduction

Seismic waves propagation through the geological layers leads to the amplitude loss of
coherent wave-front due to absorption and transmission caused by numerous elastic and
an-elastic subsurface mechanisms (Kneib and Shapiro 1995; Wang 2019). The energy
absorption effect also referred to as seismic attenuation, is measured by the inverse of
the quality factor (Q), which can thus be estimated, for example, from the amplitude
decay of seismic waves. The energy loss might depend on the heterogeneity of rock
and pore fluid properties which can cause both scattering and wave-induced fluid flow
(Carcione and Picotti 2006; Caspari et al. 2019; Chapman et al. 2021; Mavko et al. 2020;
Pride and Berryman 2003a; Pride and Berryman 2003b; Pride et al. 2004; Tisato and
Quintal 2013; White 1975). Seismic wave attenuation caused by such physically-based
mechanisms is frequency dependent and can be approximated by a viscoelastic model
(Jänicke et al. 2019; Jänicke et al. 2015).

At a geological horizon between two viscoelastic interfaces, the seismic reflection
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amplitude variations depend on the P- and S- wave quality factors together with P- and
S- wave velocities and density (Innanen 2011; Li and Liu 2019; Zhao et al. 2014a).
In viscoelastic media, seismic waves exhibit dispersion, and thereby the magnitude
of reflection amplitudes is not only dependent on the medium properties and incident
angles but are also strongly affected by the frequency (Chapman et al. 2006; Jin et al.
2017; Kumar et al. 2020). Therefore, the estimation of both seismic quality factors along
with elastic properties can give valuable information regarding the earth’s subsurface
properties, such as temperature, pressure, lithology, and fluid content (Chen et al. 2018;
Cheng 2013; Li and Liu 2019; Peters et al. 2012; Sheehan et al. 2014; Zong et al. 2015).
Numerous studies (Carcione 2007; Chapman et al. 2021; Pride et al. 2004; Tisato and
Quintal 2013) have shown that the wave-induced fluid flow (WIFF) is the dominant
source of seismic waves attenuation in partially fluid-saturated sediments in the seismic
frequencies range, i.e. at the mesoscopic scale. The seismic energy attenuation can
have a substantial impact on the seismic reflectivity and hence can provide additional
information regarding pore fluids saturation (Dvorkin and Mavko 2006; Mavko et al.
2005; Mavko et al. 2020; Quintal et al. 2009; Quintal et al. 2011; Zhao et al. 2014a).

The frequency-dependent amplitude versus offset (FAVO) inversion method is
used to estimate seismic velocities and quality factors from pre-stack seismic gathers
of partially fluid-saturated reservoirs where higher attenuation of seismic waves is
observed. Innanen (2011) carried out a direct AVO inversion process for an-elastic
targets from a single absorptive reflectivity event. Teng et al. (2012) presented a
viscoelastic AVO inversion method by using the Bayesian approach to estimate the
seismic wave quality factors and velocities from the imaginary component of pre-stack
seismic gathers. Zong et al. (2015) proposed an inversion strategy for P- and S- quality
factors from complex seismic data. Chen et al. (2018) developed a frequency-dependent
AVO approximation and a Markov Chain Monte Carlo (MCMC) inversion to predict
inverse seismic quality factors and attenuative seismic impedances. Li and Liu (2019)
derived a decoupled viscoelastic AVO equation based on the Aki and Richards (2002)
nearly constant Q models which relate the dispersion of P- and S- wave velocities to the
P- and S- wave quality factors. To avoid decoupling effects in the inversion results due
to the simultaneous inversion of multi-parameters, they invert only for P- and S- wave
quality factors and density under the assumption of known P- and S- wave velocities
at a dominant frequency in the an-elastic medium. However, the inversion process
given by Li and Liu (2019) does not take into consideration seismic velocity dispersion
effects. Recent advances in frequency-dependent AVO studies and FWI in viscoelastic
media include (Cheng et al. 2020; Cheng et al. 2022; JafarGandomi and Takenaka 2013;
Keating and Innanen 2020; Li et al. 2021; Liu et al. 2022; Pan et al. 2020; Pan and Wang
2020; Pang and Stovas 2020; Yang et al. 2020); however, the use of the adjoint-state
method for non-linear optimization with analytical solutions for the partial derivatives
of the gradient of the misfit function for FAVO inversion has not been yet presented.

In this research work, we propose a novel inversion scheme that is a constrained
non-linear frequency-dependent AVO algorithm that relies on Li and Liu’s (2019)
linearized viscoelastic equation. We first develop a generalized seismic forward model
for the frequency-angle dependent reflectivity time series by performing a 1D Fourier
transform from frequency-time-angle to frequency-frequency-angle. Then, we apply
a gradient descent optimization-based inversion method to iteratively minimize the
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least-squares misfit function that defines the distance between the forward synthetic
model and the observed data. Gradient-based numerical optimization algorithms are
highly efficient thanks to the implementation of the adjoint-state method (Plessix 2006)
to calculate the gradient. The adjoint-state method is widely used in non-linear inverse
geophysical problems (Ahmed and Weibull 2022; Ahmed et al. 2022; Fabien-Ouellet
et al. 2017; Guo et al. 2022; Wang et al. 2021b; Yong et al. 2022) and provides the
analytical gradient solution more efficiently than the finite difference approximation.
For this reason, the adjoint-state method is applied to differentiate the misfit function
with respect to the set of viscoelastic AVO variables. We then adopt the chain rule of
derivatives to obtain the gradient equations for the P- and S- wave quality factors. For
model updating at every non-linear iteration step, we apply the limited-memory BFGS
algorithm (Nocedal and Wright 2006) to define the descent search direction for the data
misfit minimization towards the local minima. L-BFGS is a second-order algorithm
for numerical optimization that refers to the class of quasi-Newton methods. L-BFGS
performs numerical optimization for large-scale problems very efficiently.

The novelty of the presented inversion process is the analytical derivation of the
adjoint-state solution to find the gradient of data misfit with respect to the viscoelastic
AVO variables. Furthermore, unlike the Li and Liu (2019) approach, the gradients of
seismic (P- and S-) wave velocities also depend on the frequency and therefore may
incorporate the possible velocity dispersion. To validate the FAVO non-linear inversion
process, we test the proposed methodology using synthetic data computed from borehole
sonic measurements. The direct measurements of seismic wave quality factors during
wireline logging are problematic. Therefore, various rock physics models, such as
Waters empirical relationships, constant Q models, and frequency-dependent White
analytical solution (Dvorkin and Mavko 2006; Li and Liu 2019; Mavko et al. 2020;
Quintal et al. 2009; Waters and Waters 1981; White et al. 1975), are applied to compute
the reference seismic quality factors.

4.3 Theory and method

4.3.1 Viscoelastic FAVO model

A frequency-dependent reflectivity equation that is a function of seismic velocities, qual-
ity factors, and density is used to estimate the viscoelastic subsurface properties. In the
viscoelastic geological medium, the seismic wave velocity exhibits a dispersion behavior.
Therefore, the reflection coefficients also relate to seismic frequency rather than only
incident angles. We implement a forward modeling approach in the frequency domain
with the help of a Fourier transform to do convolution in the frequency-frequency-angle
domain in order to compute the broadband viscoelastic seismic gather of multilayer
dispersive media.

We use the frequency-dependent AVO approximation derived by Li and Liu (2019)
for the forward model in the viscoelastic isotropic media. The reflectivity equation in
the frequency-time-angle (ω ′, t, θ) domain is given by:
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RPP(t, θ , ωo, ω
′) = A(θ)

∆VP(t, ωo)

VP(t, ωo)
+B(t, θ)

∆VS(t, ωo)

VS(t, ωo)
+C(t, θ)

∆ρ(t)
ρ(t)

+D(θ , ωo, ω
′)

∆ξP(t)
ξP(t)

+E(t, θ , ωo, ω
′)

∆ξS(t)
ξS(t)

(4.1)

where,

A =

[
1
2
(
1+ tan2

θ
)]

, B =

[
−4β 2

α2 sin2
θ

]
, C =

1
2

[
1− 4β 2

α2 sin2
θ

]
and

D =

[
−1

2
(1+ tan2

θ)
1
π

ln
(

ωo

ω ′

)]
, E =

[
4β 2

α2 sin2
θ

1
π

ln
(

ωo

ω ′

)]
whereas, ωo refers to the reference angular frequency, while VP and VS are the

seismic wave phase velocities at an angular reference frequency ωo and ρ is density. In
equation 4.1, the denominators represent the average values of elastic and an-elastic
properties whereas the ∆-terms are the differences across the viscoelastic geological
boundaries. In the forward modeling equation, it is assumed that the medium above and
below the interface is viscoelastic and dissipative. The terms ξP and ξS are defined as
functions of both compressional and shear Q-factors, QP, and QS, as:

ξP(t) = 1+
1

QP(t)
, ξS(t) = 1+

1
QS(t)

Seismic quality factors are not measured directly during borehole logging and are
thus computed using empirical equations as in (Li 2017; Waters and Waters 1981) or rock
physics models such as Dvorkin-Mavko nearly constant Q approximations (Dvorkin
and Mavko 2006; Mavko et al. 2020) and the frequency-dependent White’s analytical
solution (Quintal et al. 2009; White et al. 1975). The rock physics formulations for the
quality factors are given in Appendix A.

4.3.2 Viscoelastic FAVO inversion

The aim of the FAVO inverse modeling is to retrieve the viscoelastic model properties
i.e., m = (VP, VS, ρ, QP, QS) based on the broadband seismic data d(t, ω ′, θ). We first
set up the formulation of the seismic FAVO inverse process as the minimization of a
differentiable error function J with respect to m using the least-squares error between
seismic data (d) and forward model predicted data f (m).

Let j, p, and n be the maximum number of reflection interfaces, broadband frequen-
cies ranges, and corresponding incident angles, then the data misfit equation is given
by:

min J(m) = min
1
2

j

∑
t=1

p

∑
ω ′=1

n

∑
θ=1
∥ d(t, θ)− f (m(t, θ)) ∥2 over C (4.2)
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where forward model f (m) is the time-domain convolution after applying the inverse
Fourier transform.

f (m(t, θ)) = F−1
p

∑
ω ′=1

[
W (ω̂) ·RPP(t, θ , ω̂, ω

′)δ (ω ′− ω̂)
]

(4.3)

whereas, δ represents Dirac’s delta function.
In non-linear inverse optimization, an initial guess for the model properties VP,VS,ρ,QP,

and QS is required to iteratively update the solution, together with a set of constraints to
set their physical boundaries:

C = {m = (VP, VS, ρ, QP, QS) | mmin ≤ m ≤ mmax} (4.4)

The gradient of the data misfit J described in equation 4.2 is the vector of partial
derivatives of the misfit error J in respect of model properties m as given:

∇J =

[
∂J

∂VP
,

∂J
∂VS

,
∂J
∂ρ

∂J
∂QP

,
∂J

∂QS

]
(4.5)

and the solution of misfit J with respect to m = [VP, VS, ρ, QP, QS] is.

∂J
∂m

=−
[
d− f (VP, VS, ρ, QP, QS)

]
· ∂ f

∂m
(4.6)

In practical applications, viscoelastic seismic properties are discretized at the inter-
faces i = 1, ... in in the time (or depth) domain. Therefore, in the following, we adopt
the discretized notation for all the model variables

m = [VP1, ..., VPin , VS1, ..., VSin , ρ1, ..., ρin , QP1, ..., QPin , QS1, ..., QSin ]
T

4.3.3 Adjoint-state method and L-BFGS

The adjoint-state method provides an effective numerical approach to computing the
gradient of the non-linear least-square data misfit that relies on a set of state variables
without computation of the Fréchet derivatives. The adjoint solution is implemented
here by introducing the augmented Lagrangian function L as:

L(VP, VS, ρ, ξP, ξS, RPP, λ ) = ∑
i

∫
θ

dθ

[
d[i]− f [i]

]2

+∑
i

∫
θ ,ω

dθ

[
RPP[i]−A[i]

∆α

α
−B[i]

∆β

β
−C[i]

∆ρ0

ρ0
−D[i]

∆ΞP

ΞP
−E[i]

∆ΞS

ΞS

]
λ[i]

(4.7)
where λ refers the adjoint-state variable, RPP denotes the state variable and forward

model f is given by the equation 4.3. The Lagrangian function in equation 4.7 can
be reformulated as L = J(RPP, m)+C(RPP, m) ∗ λ , where the constraint (C) in the
Lagrangian formalism is automatically satisfied by:
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[RPP[i]−A[i]
∆α

α
−B[i]

∆β

β
−C[i]

∆ρ0

ρ0
−D[i]

∆ΞP

ΞP
−E[i]

∆ΞS

ΞS

]
= 0 (4.8)

In equation 4.7, the denominators indicate the average values at the interfaces and
the numerators are the differential values across the interfaces. To make the derivation
of the gradient solution of the Lagrangian of the misfit function ease for ourselves, we
replace the seismic velocities, density, and quality factor terms in equation 4.7 with α ,
β , ρ0, ΞP and ΞS which are related to the model variables m as:

α[i] =
VP[i+1]+VP[i]

2
∆α[i] =VP[i+1]−VP[i]

β [i] =
VS[i+1]+VS[i]

2
∆β [i] =VS[i+1]−VS[i]

ρ0[i] =
ρ[i+1]+ρ[i]

2
∆ρ0[i] = ρ[i+1]−ρ[i]

ΞS[i] =
ξS[i+1]+ξS[i]

2
∆ΞS[i] = ξS[i+1]−ξS[i]

ΞP[i] =
ξP[i+1]+ξP[i]

2
∆ΞP[i] = ξP[i+1]−ξP[i]

The gradient solution of the data misfit is achieved by solving the subsequent
adjoint-state equations:

∂L
∂RPP

= 0,
∂L
∂λ

= 0 (4.9)

The analytical formulation of the partial derivatives is given in Appendix B.
When the adjoint equations 4.9, the partial differentials of the Lagrangian function

in respect of viscoelastic RPP and state variable λ are satisfied, i.e. equal to 0. Then the
partial derivatives coincide with:

∂L
∂ ·

=
∂J
∂ ·

where · represents one of the five unknown variables m.
Then the partial derivatives with respect to P- and S- quality factors are acquired

using the chain rule derivative:

∂J
∂QP[i]

=
∂J

∂ξP[i]
· ∂ξP[i]

∂QP[i]
(4.10)

∂J
∂QS[i]

=
∂J

∂ξS[i]
· ∂ξS[i]

∂QS[i]
(4.11)

∂ξ [i]
∂QP[i]

=− 1
Q2

P[i]
,

∂ξS[i]
∂QS[i]

=− 1
Q2

S[i]
(4.12)
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The model m, including the five unknown variables, is updated at every iteration
using the second-order quasi-Newton L-BFGS optimization technique that iteratively
approximates the inverse Hessian (H(k)) based on the gradient values and the previous
solution as:

m(k+1) = m(k)+α
(k)[−H(k)

∇J], (4.13)

whereas m(k) and m(k+1) are referred as the current and updated values and α(k)

is described as step length. The gradient descent search direction is determined by
[−H(k)∇J]. The L-BFGS procedure is described in Algorithm 1.

Algorithm 1 The standard L-BFGS algorithm
1: L-BFGS procedure
2: Choose a stating value m0, and integer l > 0
3: do k = 0, 1, 2, 3 ...
4: Calculate data misfit value J and gradient ∇

5: Compute the search direction [−H(k)
∇ J] using L-BGFS two-loop recursion

6: Find the step length α(k) using line search algorithm
7: First trial step length: α(0) = l/ ∥ ∇0 ∥2, if k>m try α(k,0) = 1
8: do i = 0, 1, 2, 3 ..., l
9: Verify function minimization conditions
10: Get new α(k, i+1 using line search algorithm
11: End do
12: Update m(k+1) = m(k)+α(k)[−H(k)

∇ J]
13: Repeat until convergence
14: End procedure

The physics involving seismic wave velocities and corresponding seismic quality
factors are coupled in the simultaneous viscoelastic inversion (Kamei and Pratt 2013).
Consequently, the inverse solution of the estimation of the parameters in the presence
of low-resolution noisy data is not unique and the prediction of velocities and quality
factors might be inaccurate. The lack of model properties resolution is referred to
as crosstalk or trade-off between the variables. Operto et al. (2013) present different
strategies to reduce the coupling effect between optimized properties, such as the use
of second order Hessian matrix, the selection of an appropriate parametrization, and a
model-driven approach where the more sensitive variables are estimated before the least
sensitive ones.

The linearized AVO equation for viscoelastic media relies on a set of five variables,
i.e. P- and S- wave velocities, density, and the seismic quality factors (VP, VS, ρ , QP,
QS). In this model, the crosstalk affects the following couples of variables: VP and QP,
VS and QS, VP and VS and QP and QS. To examine the crosstalk effects between model
variables, we run several tests and study the coupling effects between seismic velocities
and quality factors at initial iterations as well as for low and high incident angles. In the
first crosstalk test, we introduced two perturbations for P- and S- wave velocities (e.g.,
∆V = 50 and 200 ms−1) and computed the gradient of corresponding quality factors. In
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theory, if the velocities and quality factors were independent, the perturbation in VP or
VS with a constant corresponding QP and QS respectively should not affect the partial
derivatives with respect to the quality factors. However, in reality, these parameters
are not independent and the partial derivatives of the quality factors are affected by the
velocity perturbation. Fig. 4.1 shows the results of the perturbation for the following
couples: VP and QP, VS, and QS, by comparing the gradient results with and without
perturbation. The results demonstrate that strong crosstalk exists between the variables,
as a small perturbation in the seismic velocities results in a variation in the corresponding
quality factors. We also investigate the crosstalk between VP and VS as well as QP and
QS derived through a rock physics model by considering the WIFF mechanism. The
perturbations are added to the compressional wave velocity and the related quality factor.
The gradients of VS and QS with and without perturbations are shown in 4.2 (right side
panel). The gradients plotted in Figures 4.1 and 4.2 are scaled by different factors
ranging between 103 and 105. The results show limited crosstalk between VP and VS
and quality factors. Despite the large perturbation in the P wave quality factor, limited
crosstalk between QP and QS is observed. Then, we study the crosstalk effects between
two classes (VP and QP, and VS and QS) at low and high incident angles (Figures 4.3 and
4.4). The results show that the crosstalk between variables exists at different incident
angles: for example, at the near offset, the coupling between VP and QP is higher than
the coupling between VS and QS for large offset; this result is even more evident for the
coupling between VS and QS.

Due to the coupling between seismic velocities and corresponding quality factors,
we adopt the strategy of inverting the most sensitive model variables first (VP, VS, and
density) and then predicting the least sensitive properties (QP and QS). The crosstalk
between VP and VS or QP and QS is limited; hence, it does not affect the inversion of
seismic velocities at the first phase nor the inversion of the quality factors in the next
step.

4.4 Applications

We present several applications with two synthetic datasets to verify the described FAVO
inversion scheme by using the frequency-domain convolution of broadband signals.
Dataset 1 represents a 1D vertical profile, whereas dataset 2 represents a 2D seismic
section. In both examples, the quality factors have been computed from well logs using
empirical and rock physics models (Appendix A).

In the first example, a 1D synthetic seismic forward model obtained from wireline
logs in the Edvard Grieg field located in the North Sea is used. The quality factors
are calculated using the empirical expressions given by equation 4.14. The reference
model is upscaled at the seismic scale (Fig. 4.5). The seismic response with signal-
to-noise ratio infinity and with seismic random noise level (S/N = 50) is shown in Fig.
4.6. Seismic reflection amplitudes are displayed up to the incident angle 30◦ with an
interval of 5◦. Fig. 4.7 to 4.10 present the results of the inversion scheme for the elastic
and an-elastic properties. In the case of S/N = 0, the inversion method shows good
convergence, and the estimated parameters are in close agreement with the reference
properties (Fig.4.7) and 4.8). In the case of noisy data, the inversion method produces
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Figure 4.1: Crosstalk between elastic and an-elastic variables; VP and QP, VS and QS.
The panels represent the gradients: red lines indicate a perturbation of 50 m/s, green
lines indicate a perturbation of 200 m/s, and blue lines indicate no perturbation.

Figure 4.2: Crosstalk between elastic and an-elastic variables; VP and VS and QP and QS.
The panels represent the gradients: red lines indicate a perturbation of 50 m/s, green
lines indicate a perturbation of 200 m/s, and blue lines indicate no perturbation. The
crosstalk between QP and QS is calculated based on the rock physics model.
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Figure 4.3: Crosstalk between elastic and an-elastic variables; VP and QP, VS and QS,
at incident angles of 1− 5◦. The panels represent the gradients: red lines indicate a
perturbation of 50 m/s, green lines indicate a perturbation of 200 m/s, and blue lines
indicate no perturbation.

Figure 4.4: Crosstalk between elastic and an-elastic variables; VP and QP, VS and QS,
at incident angles of 25−30◦. The panels represent the gradients: red lines indicate a
perturbation of 50 m/s, green lines indicate a perturbation of 200 m/s, and blue lines
indicate no perturbation.
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Figure 4.5: Example 1 - Reference model variables including P- and S- wave velocities,
density, and P- and S- quality factors, with respective initial guesses.

stable results for P- and S- wave seismic velocities and density are consistent with the
reference models, whereas the inversion of quality factors are more unstable and less
accurate (Fig. 4.9 and 4.10). To reduce the instability of the solution, we apply small
Tikhonov regularization weights (Aster et al. 2018), whereas the inaccuracy is due to
noise in the seismic data and the limited sensitivity of the forward model.

In example 2, we applied the proposed non-linear inversion process on a 2D synthetic
example mimicking faulted geological boundaries and inclined horizons. Seismic
velocities interpreted in seismic velocity analysis during processing are used to generate
a 2D visco-elastic model. The FAVO inversion process is implemented trace by trace in
the entire time window (0 - 5000 ms). The resulting elastic and viscoelastic properties are
shown in Fig. 4.11. The inverted P- and S- wave velocity, density, and the related seismic
quality factors are accurately estimated. The initial Q factors are obtained by using
the empirical expressions. The inversion produces some mismatches, especially in the
density prediction, which can be partially compensated using Tikhonov regularization.

In the next examples, we focus on partially saturated reservoirs to investigate
frequency-dependent mechanisms. A leading cause of seismic wave attenuation and
velocity dispersion in partially fluid-saturated rock or sediments is WIFF. Fig. 4.12
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Figure 4.6: Example 1 - Synthetic seismic pre-stack gathers with different noise levels
(no noise and S/N = 50) .

shows the P wave attenuation behavior in two cases when the magnitude of attenuation
is estimated as frequency independent (constant Q model, Fig. 4.12a) and frequency-
dependent (Fig. 4.12b and c) in a partially saturated rock. Partially saturated gas
reservoirs exhibit higher attenuation compared to oil and water. Furthermore, partially
saturated reservoirs exhibit the P wave energy dissipation which also varies as a function
of seismic frequencies. In the next examples, we adopt a rock physics model for seismic
(P- and S-) wave attenuation due to WIFF in an oil-water system.

In example 3, we first adopt a simple physically-based model with constant Q
(equations 4.15 to 4.18) which allows for estimating the P- and S- wave attenuation
from the well logging curves. This model provides reasonable attenuation curves
without considering frequency-dependence effects and can be easily incorporated into
the seismic model (Dvorkin and Mavko 2006). The model example in Fig. 4.13 is
taken from the Edvard Grieg oil field located in the North Sea. The reservoir zone
(1865 - 1888 ms) has a partial oil saturation of about 66 %. Fig. 4.13(a - d) shows
the water saturation curve and the computed attenuation curves in the corresponding
zones. The calculated P-wave attenuation due to WIFF is shown in Fig. 4.13b. The
partially oil-saturated zone displays higher attenuation due to partially fluid saturation
heterogeneities e.g., the seismic energy loss in the oscillatory pore-fluid flow induced
by the passage of waves. The seismic wave passage induces fluid pressure gradients
which cause the fluid flow between softer-stiffer fluid patches, which then results in
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Figure 4.7: Example 1 - Inverted model variables including P- and S- wave velocities,
density for the noise-free case.

86



Applications

Figure 4.8: Example 1 - Inverted model variables including P- and S- wave quality
factors for the noise-free case.
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Figure 4.9: Example 1 - Comparison of initial and inverted properties estimated from
the noisy seismic data.
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Figure 4.10: Example 1 - Comparison of initial and inverted properties estimated from
the noisy seismic data.
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Figure 4.11: Example 2 - Reference model variables (left) and inverted variables (right)
including P- and S- wave velocities, density, and P- and S- quality factors.
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Figure 4.12: P- wave attenuation results: (top) P- attenuation as a function of water
saturation estimated by using nearly constant Q-model (red dashed line for the gas-water
case and solid green line for the oil-water case); (middle) P- attenuation as a function
of frequencies at different gas/water saturation computed at mesoscopic scale using
White’s analytical solution; and (bottom) P- attenuation for the gas-water and oil-water
cases as a function of frequency in the case of Sw = 0.9 at the mesoscopic scale.
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Figure 4.13: Example 3 - Water saturation (a) and corresponding P- wave attenuation
(b-d): (b) attenuation due to pore fluid heterogeneities in partially saturated rocks; (c)
attenuation due to pore fluid heterogeneities in fully water-saturated rocks; (d) the total
attenuation due to both fluid and solid frame heterogeneities.

viscus-friction losses. The Q−1
P is approximately zero in the water zone as low and

high limit moduli become equal. Fig. 4.13c shows both the theoretical P- and S- wave
attenuation curves for fully water-saturated rocks, where the attenuation depends on the
heterogeneities of both fluid and the solid phase. The P-wave attenuation shown in Fig.
4.13d accounts for attenuation due to partial fluid saturation, full water saturation, and
solid frame heterogeneities. The corresponding quality factors (QP and QS) are shown
in Fig. 4.14. The properties used in the rock physics model are given in Table 4.1.

We then apply the inversion method to estimate the energy dissipation from the
seismic frequency-angle gather. The seismic response up to 30◦ with intervals of 5◦

(Fig. 4.14a) together with initial guesses and true models for QP and QS are shown in
Fig. 4.14b. The inversion results are shown in Fig. 4.14c: the P-wave quality is accurate
whereas there is a mismatch between the S-wave quality factor predictions, possibly
because of the low sensitivity of the seismic data to the shear wave attenuation due to
rock-fluid inhomogeneities.

In example 4, we test the inversion workflow for the frequency-dependent meso-
scopic loss which is responsible for the P- wave seismic energy dissipation mechanisms
at seismic frequencies range (Tisato and Quintal 2013). The magnitude of the seismic
energy attenuation is associated with both characteristics of the reservoir strata and of
the fluid within pores (Carcione and Picotti 2006). We model the frequency-dependent
QP based on White’s analytical solution (Appendix A) at various vertical locations
by using the well log data with the parameters given in Table 4.1. We then apply the
inversion technique to invert the seismic frequency-dependent P-wave quality factors.
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Figure 4.14: Example 3 - Seismic response up to the incident angle 30 (a), P- and S-
wave quality factors calculated from the attenuation logs given in Fig. 4.13 (b), and
the inverted P- and S- wave quality factors estimated by using constant Q rock physics
models (c). The solid red curves are the reference models and the dashed blue curves
represent the initial models.

The results for a subset of frequencies are shown in Fig. 4.15 in the partially saturated
reservoir zone. The inverted QP curves are in good agreement with the reference mod-
els, especially at lower frequencies. Fig. 4.16 shows a comparison of the theoretical
P-wave attenuation computed from White’s model and the predicted P-wave attenuation
estimated with the inversion method, which has been made for a broad range of seismic
frequencies and demonstrates a high good correlation. This shows the efficiency of the
inversion process to estimate the fluids-related attenuation from seismic gather. Thus,
our proposed inversion method can be used to locate partially hydrocarbon zones. At
higher frequencies, the FAVO inversion overestimates the P wave attenuation but the
difference in magnitude is small.

Finally, we propose an uncertainty quantification study where we investigate the
uncertainty of the solution as a function of the variability of the initial model. The
uncertainty is quantified using a Monte Carlo simulation where we generate a set of
initial models and predict the corresponding set of posterior solutions. The variability
of the posterior ensemble of solutions is used to investigate the uncertainty propagation
with respect to the initial uncertainty. We first generate a set of 75 initial models of the
five unknown model variables by sampling from a multivariate Gaussian distribution
estimated from the well logs of the properties. The initial models are simulated according
to a spatial correlation model (Grana et al. 2021) estimated from the well log (Fig. 4.17).
We then apply the proposed inversion method to each initial realization to obtain the
distribution of the inverted models (Fig. 4.18). The uncertainty in the inverted models
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Figure 4.15: Example 4 - Inverted QP at different frequencies together with reference
and initial models. The inversion results show a good correlation with the true models.

Figure 4.16: Example 4 - Comparison of P-wave attenuation curves computed using
approximated White’s analytical solution (blue curve) and the proposed FAVO inversion
method (red curve).
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Table 4.1: The reservoir rock and fluid parameters used in rock physics models, based
on lab measurements and literature values (Mavko et al. 2020).

Parameters Average values
Effective porosity (φ ) 0.26

Permeability (k) 50*mD
Bulk modulus of quartz 37 (GPa)
Bulk modulus of clay 21 (GPa)

Shear modulus of quartz 44 (GPa)
Shear modulus of clay 7 (GPa)
Layer 1 thickness (d1) 0.20 (m)
Layer 2 thickness (d2) 0.50 (m)

Temperature (T ) 78.18 (◦C)
Pressure (Pe) 26 (MPa)

Oil API 35
Gas/oil ratio (GOR) 145.7

Density of water (ρo) 987 (kg/m3)
Density of oil (ρo) 821 (kg/m3)

Bulk modulus of oil (Ko) 1.04 (GPa)
Bulk modulus of water (Ko) 2.55 (GPa)

Water viscosity (ηw) 0.001 (Pa.s)
Oil viscosity (ηo) 0.11 (Pa.s)

of the model variables is relatively narrow despite the large variability in the initial
realizations, which shows that the presented inversion scheme is very stable and precise.

4.5 Discussion

The proposed inversion is relying on the gradient descent method which requires the
computation of the first-order gradients of the data misfit in respect of the unknown
model variables. By defining the Lagrangian formulation, we derive the adjoint solutions
and the gradients of the data misfit function, leading to a more efficient algorithm
compared to the classic non-linear inverse theory. Furthermore, the optimal solution
is obtained by minimizing the misfit function iteratively and by using the non-linear
L-BFGS optimization method.

Global optimization is often used in seismic inverse modeling (Sen and Stoffa 2013)
thanks to its ability to explore the model space and avoid local minima; however, for the
proposed seismic inverse problem, local optimization can produce results comparable to
global optimization with a lower computational cost, as seismic data provide relative
information about the property contrasts at the interfaces and the solution is expressed
as a perturbation of the low-frequency model. Because of the seismic noise and the
band-limited nature of the seismic data, the solution is not unique and the objective
function might include several local minima. For this reason, we propose a sensitivity
study on the initial guess of the inversion to investigate the variability of the solution
with respect to the initial models. On the other hand, the Bayesian methods for seismic
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Figure 4.17: Initial realizations of P wave velocity, S wave velocity, density, P, and S
wave quality factors. The mean of the initial models is also shown in black color.

Figure 4.18: Inverted realizations of P wave velocity, S wave velocity, density, P, and S
wave quality factors. The black solid lines represent the true reference model.
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inverse problems (Avseth et al. 2010; Buland and Omre 2003b; Doyen 2007; Grana
et al. 2021; Mosegaard and Tarantola 1995; Sen and Stoffa 1996) can be extended to
viscoelastic inversion; however, the computational efficiency of the Bayesian inverse
methods generally requires assumptions on the linearization of the forward model and
the Gaussian distribution of the model variables. In the Bayesian context, Monte Carlo
simulation methods can also be applied for non-linear inverse problems with complex
prior models (Cordua et al. 2012; Figueiredo et al. 2019), but the application to large
geophysical datasets is generally not feasible because of the spatial correlation of the
model variables (Grana et al. 2022).

The forward model is relying on the frequency-angle dependent linearized AVO
equation derived from constant Q models for the P- and S- wave quality factors, where
the seismic response depends on the incident angles and the seismic frequencies. In
the objective function of the inversion, we did not apply weights associated with angles
nor frequencies, as the calibration of such weights is often challenging as it depends on
uncertain information such as acquisition and processing parameters. In the inversion,
all frequencies and angles are used simultaneously to define the update direction of the
optimization step. Hierarchical approaches for the sequential inversion with respect
to the frequency or angles could also be applied but it might strengthen the crosstalk.
The proposed inversion accounts for the velocity dispersion in both P- and S- wave
velocities as the derived gradient equations (4.28 and 4.29) for VP and VS variables are
frequency-dependent. The inversion predicts the model variables by simultaneously
modeling the multi-angle broadband frequencies.

The viscoelastic inversion shows crosstalks between model variables, specifically
seismic velocities and quality factors. Based on our tests, the velocity variables are
dominant over the quality factors; hence to avoid the crosstalk, we perform the inversion
in two steps: first, we invert the seismic data for the most sensitive properties e.g.,
seismic velocities and bulk density; then we apply inversion process for the less sensitive
variables e.g., quality factors. This approach provides stable inversion results for less
sensitive properties. In general, due to a lower sensitivity of the shear wave quality
factor to the seismic data, it is more challenging to accurately estimate the QS when the
seismic data is noise contaminated.

The proposed sensitivity analysis aims to quantify the uncertainty of the inverted
model as a function of the variability of the initial models. Approximate Bayesian
computation and Markov chain Monte Carlo methods could also be used to assess
the posterior uncertainty in a Bayesian setting; however, the computational cost of
these techniques is generally higher than the proposed sensitivity. Another approach
for uncertainty quantification in the context of local optimization is the calculation
of the inverse Hessian matrix around the convergence point as a proxy to the model
covariance matrix, which provides an estimate of the null space around the solution of
the optimization problem.

One of the main limitations of the described method is the instability of the solution
for the quality factors in case of noisy data. This effect can be mitigated by Tikhonov
regularization which improves the stability of the optimized model. The solution shows
some dependency on the initial model possibly due to the presence of noise in the data,
the approximation of the seismic forward model, and the local minima of the objective
functions; however, the proposed uncertainty quantification captures the variability of
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the solution as a function of the uncertainty of the initial model.

4.6 Conclusions

We proposed a constrained non-linear frequency-angle-dependent pre-stack inversion
method to estimate seismic properties in viscoelastic media. The inversion of an-elastic
properties, which are the P- and S- wave attenuation described as inverse quality factors
(QP and QS), in addition to seismic velocities and density, provides high-resolution
seismic images that can be used in the geophysical exploration and seismic monitoring
of hydrocarbon fields, as well as in geothermal energy or geological sequestration of
CO2. The inversion algorithm relies on the gradient descent optimization technique in
which a differentiable misfit function is iteratively minimized by using a second-order
non-linear L-BFGS algorithm. The least-square misfit function is based on an angle-
frequency-dependent forward model of broadband signals in the frequency domain.
The first-order derivatives of the misfit function with respect to five model variables
are analytically obtained using the adjoint-state technique and chain rule of derivatives,
which results in an accurate and efficient implementation. The inversion method was
tested on synthetic examples, in 1D and 2D, to predict the quality factors and validated
for different an-elastic mechanisms and noise-contaminated seismic data. The results
demonstrate that the proposed an-elastic non-linear AVO inversion process accurately
retrieves the model variables with good convergence. The inversion process reliably
estimates the fluid-related attenuation which demonstrates its effectiveness to be used
as a direct fluid indicator. In the case of noisy data, the inversion results might show
some instability and the solution might depend on the choice of the prior realization. In
this case, we recommend the application of regularization parameters to obtain a stable
estimation.
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4.9 Appendix A: Rock physics models for quality factors

The Waters empirical expressions (Waters and Waters 1981) in relation to P- and S-
wave velocities VP and VS (expressed in km.s−1) are:
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QP = 10.76∗VP, QS = 10.76∗VS (4.14)

In the Dvorkin-Mavko nearly constant Q approximations, the formulation follows
the wave-induced fluid flow (WIFF) mechanism, and the order of magnitude of the P-
wave seismic attenuation (inverse quality factor) is proportional to the contrast between
relaxed and unrelaxed moduli (Mavko et al. 2020) as:

1
QP
≈ M∞−M0√

M∞M0
(4.15)

where M0 and M∞ are the low frequency (relaxed) and high frequency (unrelaxed)
limits of the compressional P- wave modulus MP respectively. The low-frequency
limit (M0) is obtained using Gassmann’s fluid-substitution while the high-frequency
limit (M∞) is calculated using the patchy-saturation model (Mavko et al. 2020). The
P-wave seismic attenuation depends on the difference between the two moduli. The
S-wave seismic attenuation (Q−1

S ) is computed using a rock physics model for fully
water-saturated rocks with heterogeneous solid frame (Dvorkin and Mavko 2006) as:

(
QP−wet

QS−wet

)−1

=
5
4
(γ−2)2

(γ−1)

(
2γ

3γ−2
γ

3γ−3

)−1

, γ =

(
VP−wet

VS−wet

)2
(4.16)

where the subscript wet means that the rock is fully saturated with water and the
attenuation depends on the spatial heterogeneity of the rocks. For fully water-saturated
rocks, the low-frequency limit of the P-wave modulus is obtained as:

M0−wet = Mmin
φ̄ Mdry− (1+ φ̄)Kw Mdry/Mmin +Kw

(1− φ̄)Kw + φ̄ Mmin−Kw Mdry/Mmin
(4.17)

where φ̄ = ⟨φ⟩ and Mdry =
〈

M−1
dry

〉−1
represent the arithmetic average of porosity

and a harmonic average of dry-rock modulus and Mmin and Kw are mineral and water
moduli respectively. The unrelaxed limit is computed as:

M∞−wet =

〈(
Mmin

φ Mdry− (1+φ)Kw Mdry/Mmin +Kw

(1−φ)Kw +φ Mmin−Kw Mdry/Mmin

)−1
〉−1

(4.18)

The P- wave seismic attenuation (Q−1
P ) is calculated from equation 4.15 by replacing

the relaxed and unrelaxed moduli with M0−wet and M∞−wet. Finally, P- and S- wave
velocities for water-saturated rocks (VP−wet and VS−wet) are calculated using Gassmann’s
fluid substitution model by assuming the rock is fully saturated with water (Ahmed et al.
2017). The total attenuation is the sum of the two attenuation curves i.e., the sum of the
attenuation due to fluid and elastic heterogeneity in rock (Mavko et al. 2020).

Several studies (Ehsan et al. 2016; Khalid and Ahmed 2016; Pride et al. 2004;
Quintal et al. 2009; Quintal et al. 2011; Tisato and Quintal 2013; White et al. 1975;
White 1975) demonstrate that the P- wave attenuation is frequency-dependent in partially
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saturated rocks due to wave-induced fluid flow (WIFF). Here, we use the analytical
solution of White’s 1D interlayer-flow model (a 1D WIFF model) given by Quintal et al.
(2009) to estimate the frequency-dependent QP.

White’s analytical solution (White 1975) for the interlayer-flow model describes
the P wave attenuation as frequency-dependent for a set of reservoir rock properties.
Quintal et al. (2009) reformulated White’s analytical solution as follows:

Q−White =
Re(b)
Im(b)

(4.19)

where Re and Im represent the real and imaginary parts while b is a complex number
given by:

b = (1+(I1g1 + I2g2)
−1)−1 (4.20)

The complex P wave modulus (H) is defined by the product of real numbers E0 and
b.

H = E0b (4.21)

where

E0 =

(
p1

EG1
+

p2

EG2

)−1

(4.22)

Indexes 1 and 2 describe the two different porous media and for each single saturated
porous medium ( j = 1,2). The equations are:

g j =
KE j

2E0(r2− r1)2 p j
, I j =

√
iω ′s j coth

(√
iω ′s j

2

)
, s j =

η jd2
j

KE jk j
(4.23)

p =
d

d1 +d2
(4.24)

In the above equations, ω ′ = 2π f , k, and η are angular frequency, permeability,
and fluid viscosity while p and d refer to the saturation levels and layer thicknesses
respectively. The rest of the elastic properties (without index j) are given below and
symbols are defined in Table 4.2.

EG = Ksat +
4
3

µd , KE =
EdM
EG

, r =
βcM
EG

(4.25)

Ksat = Kd +β
2
c M, βc = 1− Kd

Km
, M =

[
βc−φ

Km
+

φ

K f

]−1

(4.26)

and

Ed = Kd +
4
3

µd (4.27)
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4.10 Appendix B: Partial derivatives of the Lagrangian

The partial derivatives of the Lagrangian of the misfit function are as follows:

∂L
∂VP[i]

=
∫

θ ,ω
dθ

{
A

α[i−1]
λ [i−1]− A

α[i]
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λ [i−1]− A∆α[i]

2α[i]2
λ [i]

+
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α[i−1]3
sin2

θ
∆β [i−1]
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∆β [i]
β [i]
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+
4
π
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θ ln
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)
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4
π
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α[i]3
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)
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λ [i]
}

(4.28)

∂L
∂VS[i]
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θ
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∂L
∂ξP[i]

=
∫
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dθ
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and
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∂L
∂ξS[i]

=
∫

θ ,ω
dθ

{
E

ΞS[i−1]
λ [i−1]− E

ΞS[i]
λ [i]− E

2
∆ΞS[i−1]
ΞS[i−1]2

λ [i−1]

− E
2

∆ΞS[i]
ΞS[i]2

λ [i]
} (4.32)

The state variable λ is given by the equation as:

λ [i] =−
p

∑
ω ′=1

W (ω ′)∗ (d[i]− f [i])(ω̂).δ (ω ′− ω̂) (4.33)

Table 4.2: Symbols used for the elastic moduli given in the equations 4.25 to 4.27.

Symbol Parameter
EG Plane P wave modulus of saturated rock
KE Effective bulk modulus
r Ratio of fast P wave fluid tension to total normal stress ratio

Ksat Gassmann modulus
Ed Dry-rock fast P-wave modulus
M Solid-grain bulk modulus
βc Biot’s coefficient
Kd Frame bulk modulus
Km Solid bulk modulus
µd Shear modulus
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"It takes a great deal of artwork to craft a rock into a masterpiece"

KAK
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6.1 Summary of conclusions

The primary focus of this PhD dissertation is to develop new AVO inversion methods
for seismic monitoring of fluid saturation and pore pressure changes in the reservoir
rock either due to hydrocarbon production or fluid injection, for example, to enhance oil
recovery or CO2 storage by considering the elastic and an-elastic properties of the porous
medium. Therefore, the developed inversion workflows not only consider the variation
of seismic amplitudes with incident angles but also consider the frequency-dependent
AVO. The new inversion techniques allow theoretical rock physics knowledge to be
combined with the seismic reflectivity equations to interpret the seismic amplitudes
in terms of fluid saturation and pressure variables quantitatively. In addition to the
saturation and pressure changes, the inversion processes further estimate the seismic
properties i.e., seismic velocities and corresponding quality factors and density in the
elastic and an-elastic media. The conclusions based on the inversion processes are
summarized as follows:

• The inversion methods to predict the model parameters are based on the gradi-
ent descent optimization technique wherein the least-square data misfit function
is minimized by using a local optimization algorithm known as L-BFGS. The
limited-memory BFGS algorithm approximates the second-order Hessian matrix
and exclusively stores a few prior iterations and therefore allows faster conver-
gence of the objective function to its minima.

• The gradient solution of the least-square data misfit function with respect to
seismic velocities, density, and seismic quality factors is derived by using the
adjoint-state method which provides a more accurate and efficient solution than
another method e.g., the finite difference approximation. A discussion regard-
ing the computational cost of the adjoint method in comparison with the finite
difference approximation has been made in the dissertation appendices.

• In optimization, a constraint can be of many different types e.g., bound constraints,
a constraint given by the equations (like constraint in the Lagrangian solution),
prior bound constraints to restrict the solution space, or constraints such as
Tikhonov regularization, etc. The developed elastic and frequency-dependent
inversion methods to predict the seismic velocities, density, P and S wave quality
factors, and saturation-pressure properties are defined as a constraint problem
because of the constraint in the Lagrangian solution and Tikhonov regularization.
However, in case of saturation and pressure inversion, physical bounds i.e., upper
and lower bound limits are also implemented to get inverted results between these
physical bounds e.g., water saturation must be between 0 and 1. Similarly, the
pressure constraints are defined based on some prior engineering data.

• The proposed seismic AVO inverse theory follows the deterministic approach
and finds the single best optimal solution, therefore, it does not account for the
uncertainty in the model solution. However, we attempt to include the uncertainty
study in the estimated properties by applying the inversion methods to various
prior models obtained from spatially correlated multivariate Gaussian distribution.
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• The elastic AVO inversion method provides a very good convergence by minimiz-
ing the least-square data misfit function and therefore provides a good estimation
of seismic velocities and density. However, in the FAVO inversion method, re-
flection amplitude at an interface depends on the relative information of five
properties (VP, VS, ρ , QP, and QS) of upper and lower mediums. Therefore,
due to crosstalk between properties during the simultaneous inversion of multi-
parameters, it becomes difficult to invert the least sensitive properties e.g., P and S
wave quality factors. The crosstalk issue has been overcome by inverting the data
in two steps i.e., first performing the inversion for the most sensitive properties
and then less influential properties. This way FAVO inversion method provides a
close estimation of seismic velocities, quality factors, and density. However, the
signal-to-noise ratio also affects the estimation of the least influential parameters
such as P and S wave quality factors. The S wave quality factor computed from
the constant Q-model due to rock heterogeneities does not have a spatial and
vertical correlation with other seismic properties and is also the least influential
parameter to the seismic data. Therefore, the inverted QS profile is not in close
agreement with the true model. The applications of the elastic and an-elastic
inversion schemes have been tested on 1D and 2D synthetic examples.

• The elastic AVO and the frequency-dependent AVO inversion methods are ex-
tended to predict the pore fluids saturation and effective pressure or changes
in these properties. Various rock physics models, for example, the Gassmann
fluid substitution equation with uniform and patchy fluids distribution patterns,
the MacBeth-Grana’s formulas, and constant Q methods are used to relate the
saturation-pressure variables with elastic properties and seismic quality factors.
Then the multivariable chain rule for derivatives and the adjoint method are
applied to derive the gradient solution of the water saturation and effective pres-
sure. The rock physics model for the P wave attenuation considers the seismic
energy loss due to the viscous friction between the pore fluids (partially satu-
rated rock) and elastic heterogeneities in the reservoir rock (when rock is fully
water-saturated). While the S wave attenuation model only assumes that the
heterogenous rock is fully water-saturated. However, the energy loss is not only
due to rock inhomogeneities but also caused by wave-induced fluid flow, for
example, water moves from one part of the rock to the other part due to WIFF.

• Various application tests for both 4D inversion methods (elastic and FAVO) have
been run on 1D synthetic data modeled from the real well logs by assuming
various time-lapse scenarios with different SNR levels. Similarly, the inversion
methods are also tested on 2D synthetic data simulated for the CO2 injection. Both
methods provide a stable and reliable estimation of these properties with very
good convergence and the RMSE between true and predicted values is very small.
However, when there is a very good spatial correlation between model properties
and elastic properties (e.g., the 1D example of oil saturation simulated for various
4D scenarios), both inversion methods provide a better estimation. In the case of
2D CO2 injection data, there is no good spatial correlation between saturation
and pressure properties and with elastic and an-elastic properties. Therefore, root
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Figure 6.1: Comparisons between root mean squared errors (RMSEs) of the elastic
AVO and FAVO inversion methods. The error comparison is calculated for the true and
inverted models shown in Figures 3.15 and 5.10 when initial models somehow seem in
correlation with true models.

Figure 6.2: Comparisons between root mean squared errors (RMSEs) of the elastic
AVO and FAVO inversion methods. The error comparison is calculated for the true and
inverted models shown in Figures 3.17 and 3.18 (elastic AVO case) and Figures 5.12
and 5.13 (FAVO case) when initial models are not in good correlation with true models.

mean square error is comparatively higher in the inverted models of saturation
and pressure properties in the CO2 injected part.

• Further, the partially gas-saturated reservoirs like CO2/water exhibit higher P
wave attenuation (as shown in Figure 1.2), therefore, the 4D FAVO inversion
method provides CO2/water saturation estimation with higher accuracy than the
elastic AVO inversion method. The comparisons between root mean squared
errors (RMSEs) of the elastic AVO and FAVO inversion methods have been
shown in Figures 6.1 and 6.2. The viscoelastic inversion method shows lower
errors as compared to elastic AVO inversion in the case of saturation estimation.
However, both methods provide pressure estimation with almost equal accuracy.
The error comparisons have been made for the first 40 traces.

• Both elastic and FAVO inversion methods provide a good estimation in the case
of an oil-water reservoir. In the case of CO2 monitoring, the viscoelastic FAVO
inversion provides a better estimation of CO2 saturation. This is because the
oil/water phases display small time-lapse P wave attenuation whereas the gasses
(especially when a small amount of gas is present in the reservoir) show higher
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attenuation and the dispersive nature of the medium. This leads to the conclusion
that the FAVO method is more suitable while monitoring the CO2 injection or
mapping the gas saturation.

• This dissertation also concludes that bound constraints and regularization are
essential, especially for the accurate inversion of water saturation and pressure
variables. The accuracy in the predicted results therefore largely affected by the
regularization weights and upper and lower limits of the bound constraints.

• The described inversion method is based on the Gassmann theory and one very
general perception is that the Gassmann equation is perhaps inappropriate for
the carbonate reservoirs due to the complex pore system and the violation of
some of its assumptions. Therefore, another question about the validity of this
method for the carbonate reservoirs can also be posed in the reader’s mind. From
the scientific literature (Agersborg et al. 2008; Li et al. 2014; Vega et al. 2007),
enough support for the use of Gassmann’s theory in the modeling of carbonate
rocks-fluids interaction is available. The laboratory measurements indicate that
Gassmann’s equation estimates the P wave velocity in the non-clastic textures
to an accuracy of 5 % (Adam et al. 2006). Another way to answer this question
is if the information about pore space morphology, detailed mineralogy, etc.
is available, other rock physics models reported (Mavko et al. 2020) for the
carbonates can be add-on to this inversion method in a similar fashion.

• In addition, this work supposes constant mass density as a result of pore (or
effective) pressure variations by ignoring the minor porosity changes due to
varying pressure. Numerous researchers (Gurevich 2004; Shapiro and Kaselow
2005) have studied the effect of pressure on the reservoir density, and these
changes occur in the reservoir rock during the production or recovery process.
Therefore, it is important to assume a few percent variations in reservoir porosity
due to pressure changes (MacBeth 2004), and these changes ultimately affect the
seismic reflection amplitudes during the time-lapse inverse process (Ahmed et al.
2024). MacBeth (2004) stated the pressure effects on the reservoir density by
deriving an exponential compaction model as given below:

ρ(Pe) = ρ∞ +(ρ0−ρ∞)
−Pe/Pρ , (6.1)

whereas ρ∞ is considered to be equal to the density of rock-forming minerals
(ρm), Pρ denotes the characteristic pressure for the compaction process, and the
bulk density ρ0 is a function of fluid saturation and reservoir porosity given by
the mass balance equation (Equation 3.9).

The pressure effect on the porosity can be further estimated by assuming that the
compaction trend for porosity is supposed to be known everywhere and can be
modeled by using the following empirical model:

φt = φ0−αc(Pet −Pe0), (6.2)

where the subscripts 0 and t define the time at the baseline and monitor respec-
tively and αc represent the calibration constant for the compaction trend (Rimstad
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et al. 2012). Both density and porosity effects are modeled well in the inversion
method published by Ahmed et al. (2024) which is the modified version of Chap-
ter 3 titled ’Constrained non-linear AVO inversion for dynamic reservoir changes
estimation from time-lapse seismic data’. This work has been accepted and is
going to be published in the Geophysics, 89:1 (2024).

6.2 Future work

There is a wide range of possibilities that exist to significantly extend the proposed
methodologies for the elastic and frequency-dependent inversion schemes. Some possi-
ble future working domains are listed below:

• The described frequency-dependent AVO inversion schemes are based on the
constant Q models and therefore do not consider the seismic wave velocities
and attenuation factors as a function of frequency. In other words, these inverse
modeling techniques do not take into account the velocity dispersion. There-
fore, the FAVO inversion algorithm can be extended, for instance, by using the
RPP equation wherein the P wave reflection coefficients depend on the seismic
frequencies through seismic velocities and quality factors (or attenuation).

• In the inversion of saturation and pressure properties (Sw and Pe respectively),
these parameters are linked to the seismic parameters through rock physics.
Therefore, the sensitivity Sw and Pe depends on the appropriate rock physics
model and reservoir rock properties e.g., porosity and permeability. For this
reason, it might be required a more detailed study by implementing the various
rock physics models that relate the seismic velocities, attenuation, and density
with saturation and pressure properties. This will help to choose a rock physics
model that defines more sensitivity of the model properties to the reflectivity
operator. In the same way, the convergence of the objective function to the
minima can be tested by using the global optimization methods which however
require a large number of iterations in comparison to the local optimizations to
find the desirable minima.

• The uncertainty in the present work has been shown by computing the probability
distributions against individual prior realizations. However, the uncertainty quan-
tification in the time-lapse frequency-dependent AVO inversion methods can be
shown by computing the full probability distributions by using the Bayesian and
Markov Chain Monte Carlo (MCMC) techniques (Grana et al. 2022; Grana and
Mukerji 2015).

• Further future work might also include the viscoelastic full waveform inversion
- FWI (Fabien-Ouellet et al. 2017) integrated with rock physics theory to esti-
mate the reservoir dynamic changes. However, highly optimized modeling FWI
algorithms are perhaps quite time-consuming to predict the model variables of
interest.
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A.1 Gradient computation and efficiency tests

Seismic AVO inverse theory to predict the elastic and viscoelastic medium properties
and reservoir dynamic changes is based on the gradient descent method which itera-
tively computes the subsequent point using first-order gradient at the current location,
multiplies it by step length and subtracts from the current location value. Therefore,
in gradient-based optimizations, it is significantly important to calculate the accurate
gradient of the objective function with respect to the model variables of our interest. In
addition, the computation cost of the inversion technique is greatly dependent on the
method’s efficiency in computing the gradient. To derive the gradients of the differen-
tiable objective function with respect to unknown model properties, we implement the
adjoint-state method (provides analytical gradient solution), and to verify the accuracy
of the adjoint-based gradients (AS), the adjoint gradients are cross-checked by compar-
ing with the gradients calculated using the finite difference (FD) approximation. The
computation cost of both methods is also compared. The equation for finite difference
approximations (central difference) e.g., the partial derivative of a function f at a point
x is given below:

∂ f
∂x

=
f (x+∆x)− f (x−∆x)

2∆x
(A.1)

Figure A.1 shows the gradient plots of the objective function (J) (defined in Chapter
2) with respect to P and S wave velocities and density. These gradients are computed by
using both the adjoint-state and the finite difference methods. The gradient equations
for VP, VS, and ρ in the elastic media are described in Chapter 2 (equations 2.6 - 2.8).
The data used for the gradient comparison is the same as given in Chapter 2 - example 1.
The cross-check of the adjoint-state-based gradient with the finite difference method
describes that the gradient solution is accurate. Figure A.2 shows the gradients of the
objective function with respect to model variables in an-elastic media. The gradients of
seismic velocities, density, and P and S wave quality factors computed by the adjoint
method are in close agreement with the finite difference method. The gradient equations
for VP, VS, ρ , QP and QS in viscoelastic medium are described in Chapter 4 (equations
4.28 - 4.32). The data used in this illustration (Figure A.2) is taken from example 1 of
Chapter 4.

Similarly, in Figure A.3 and A.4, the accuracy of gradients of the objective func-
tion (J) (defined in Chapters 3 and 5) with respect to water saturation and effective
pressure (calculated from the rock physics models for elastic and viscoelastic mediums
respectively) by using the adjoint method are tested by making a comparison with the
finite difference method. The data described in example 1 of Chapter 3 is used to derive
and calculate these gradients. The saturation-pressure gradients used in the inversion
methods match very well with FD approximations. The saturation and pressure gradient
equations in the elastic case are described in Chapter 3 (equations 3.21 - 3.22) while
for the viscoelastic case, the gradient equations are given in Chapter 5 (equations 5.18 -
5.19).

In the next, a computational cost comparison between both the adjoint-state solution
and the finite difference approximation has been made in Figure A.5. Figure A.5 (panel
a) shows the time (sec.) taken by both AS and FD methods to compute the gradients
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Figure A.1: The comparison between gradients of P and S wave velocities and density
computed by using analytical gradient solution (AS) and the finite difference (FD)
approximation. These adjoint-state gradients are used for the inversion of seismic
velocities and density in chapter 2.

of P and S wave velocities and density for 1922 layers (given in Figure A.1). It can
easily be inferred that the computation cost in the case of the adjoint-state method is far
less (0.04 sec.) as compared to the finite difference method which is around 439.4 sec.
Figure A.5 (panel b) compares the cost of the gradients (described in Figure A.2) of
seismic velocities, Q-factors, and density in the viscoelastic case. FD method requires
4556 sec. to calculate the gradients of five model properties each having 260 layers in
comparison to AS which only needs 1.62 sec. Figure A.5 (panels c and d) illustrates the
gradient computing time of both the analytical and the finite difference approximation
for 115 layers of each water saturation and effective pressure variables (given by Figure
A.3 and A.4). Again the computation costs of the adjoint-state method to calculate the
gradient of Sw and Pe are very small as compared to the FD method. This discussion
shows the effectiveness of the adjoint-state method to compute the gradients of the
objective function with respect to model properties over the other method e.g., the finite
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Figure A.2: The comparison between the gradients of P and S wave velocities, density,
and seismic quality factors computed by using the analytical gradient solution (AS) and
the finite difference (FD) approximation. The adjoint-state gradients are used for the
inversion of seismic velocities, density, and quality factors in chapter 4.
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Figure A.3: The comparison between gradients of water saturation and effective pressure
computed by using the analytical gradient solution (AS) and the finite difference (FD)
approximation.

difference approximation. It not only reduces the computational cost of the inversion
method but also provides a more accurate gradient solution. The small differences in the
AS and FD gradients plotted here (from Figure A.1 - A.4) can be observed at a smaller
scale by zooming in on the figures.

A.2 Convergence rates for the gradient-descent method

In this section, the convergence of the objective function to the minima for the gradient-
descent method is described by plotting the error function against the number of itera-
tions. This is applied to all the objective functions used in this dissertation to retrieve the
seismic and reservoir dynamic properties in the elastic and frequency-dependent inver-
sion methods. The convergence tests show that the optimization method provides a very
good convergence for almost all the model variables when the signal-to-noise ratio is ∞.
However, it is noted that the error function is strongly affected by the signal-to-noise
ratio and many other factors like scaling, regularization weights, background models,
etc. which are very commonly applied in seismic inversion methods. The convergence
to minima tests demonstrates that the values of the error function increase with the
increase in signal-to-ratio.

In Figure A.6, the error function for the objective function (defined in Chapter 2) to
predict the elastic properties (VP, VS, and ρ) is plotted for both with and without noise
cases. The error function is reduced up to 0 for the noise-free case and also close to zero
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Figure A.4: The comparison between gradients of water saturation and effective pressure
computed by using the analytical gradient solution (AS) and the finite difference (FD)
approximation.

when the S/N ratio is 50. The convergence of the objective function is very good in the
case of elastic properties. Figure A.7 shows the convergence of the objective function
by using FAVO inversion to predict (panel a) VP, VS and ρ and (panel b) both quality
factors (QP and QS) for the noisy and noise-free data. The convergence in the case of
noisy data is affected by the regularization weights and scaling applied to the model
variables. Despite a very high error function (lower convergence), the optimization
method predicts very good estimation of VP, VS, and ρ even when S/N = 50 as shown
in Figure 6 (Chapter 4). However, the seismic noise affects the sensitivity of Q-factors
to the seismic data therefore it becomes hard to get good convergence for the seismic
quality factors. This issue is well described in Chapter 4. Figure A.8 illustrates the
error functions to obtain the optimal solution for the water saturation and the effective
pressure by using the elastic AVO inversion (panel a) and the FAVO inversion (panel
b). The convergence rate is very good in the case of S/N = ∞ while in the case of a
high signal-to-noise ratio (e.g., S/N = 5 and S/N = 15), the error function is reduced
slightly but enough to get very good results of the inverted models of the water saturation
and the effective pressure as described in Chapter 3 and Chapter 5. In the noise-free
case, the objective function is minimized up to 90 % and 80 % for the elastic AVO and
viscoelastic FAVO inversion methods respectively.
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Figure A.5: The computational cost comparison between gradients of the model vari-
ables derived by the analytical gradient solution (AS) and the finite difference (FD)
approximation. Panel (a) describes the computational cost for P and S wave velocities
and density in the elastic medium, and panel (b) shows the time taken by FD and AS
methods to compute the gradients of the objective function with respect to seismic
velocities and corresponding Q-factors and density in the viscoelastic medium, panels
(c and d) represent the calculation time for the water saturation and pressure gradients
in the elastic and an-elastic cases respectively.
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Figure A.6: The error function versus the number of iterations taken by the optimization
method to minimize the objective function.

Figure A.7: The error function versus the number of iterations taken by the optimization
method to minimize the objective function defined for the FAVO inversion. Panel (a)
shows the error function for VP, VS and ρ while panel (b) is for QP and QS.
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Figure A.8: The error function versus the number of iterations used to minimize
the objective function defined to obtain the optimal solution for water saturation and
effective pressure in (a) elastic and (b) viscoelastic media.
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