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Abstract

In this research, the implementation and evaluation of a novel learning approach for an autonomous
crane operation called LOKI-G (Locally Optimal search after K-step Imitation - Generalized) using
Closed-form Continous-time (CfC) Artificial Neural Network (ANN) was explored. The study re-
volved around addressing the Sim-to-real gap by allowing the model to learn on edge with minimal
examples, mitigating the need for simulators. An emphasis was placed on creating a sparse, robust,
reliable, and explainable model that could be trained for real-world applications.

The research involved five experiments where the model’s performance under varying conditions
was scrutinized. The model’s response under baseline conditions, sensory deprivation, altered en-
vironment, and object generalization provided significant insights into the model’s capabilities and
potential areas for improvement.

The results demonstrated the CfC ANN’s ability to learn the fundamental task with high accuracy,
exhibiting reliable behaviour and excellent performance during Zero-Shot Learning. The model,
however, showed limitations in regard to understanding depth. These findings have significant
implications for accelerating the development of autonomy in cranes, thus increasing industrial
efficiency and safety, reducing carbon emissions and paving the way for the wide-scale adoption of
autonomous lifting operations.

Future research directions suggest the potential of improving the model by optimizing hyperpa-
rameters, extending the model to multimodal operation, ensuring safety through the application of
BarrierNet, and adopting new learning methods for faster convergence. Reflections on the impor-
tance of waiting during tasks and the quantity and quality of data for training also surfaced during
the study.

In conclusion, this work has provided an experimental proof of concept and a springboard for future
research into the development of adaptable, robust, and trustworthy AI models for autonomous
industrial operations.
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Chapter 1

Introduction

Traditional control of robotic systems, primarily through rule-based programming and explicit in-
structions, has proved inadequate in managing the growing complexity and dynamics of real-world
tasks. The promise of an alternative lies in the advancements of Machine Learning (ML) and
Artificial Intelligence (AI), which automate the decision-making processes in robotics. This shift
towards ML and AI is particularly evident in sectors such as manufacturing, logistics, healthcare,
and services, where they are driving higher levels of automation [3]. This automation revolution,
empowered by the rise of sensor technology and digitization, is transforming industry operations
[23].

Within Machine Learning, two particular areas of research that have shown promising results are
Imitation Learning (IL) and Reinforcement Learning (RL). Imitation Learning allows robots to
learn tasks by observing and mimicking human actions. While promising, it often has difficulty
adapting to new and complex situations and is limited by the ability of the agent it is trying to
learn from. On the other hand, Reinforcement Learning involves learning through trial and error
by receiving rewards and punishments [27]. However, it suffers from long training times and the
accuracy of its learning depends on how well the "reward function" is constructed [1].

To improve upon these limitations and push the boundaries of what is currently possible in robotic
control, this thesis presents a novel approach that combines Behaviour Cloning (a branch of Imita-
tion Learning) and Phasic Policy Gradient (a method within Reinforcement Learning). Specifically,
in the context of crane operations, this thesis investigates a modified version of the LOKI (Lo-
cally Optimal search after K-step Imitation) algorithm [5], utilizing a Closed-form Continuous-time
(CfC) Artificial Neural Network (ANN) [12]. The adoption of these algorithms and networks is
anticipated to yield a model that not only advances the field of robotics control but also delivers
practical solutions for automating heavy industrial applications. The end goal is to create efficient
and explainable models for edge devices, addressing a pressing need in the industry, and thus driving
forward the frontier of ML-enabled automation.

1.1 Motivation

This thesis is inspired by the substantial challenges associated with the training of deep neural net-
works, which is traditionally a time-consuming and computationally intensive process. The pursuit
of more efficient learning strategies and neural network architectures has led to the examination of
several pioneering works in the field.

The paper "Fast Policy Learning through Imitation and Reinforcement" [5] (2018) proposes an inno-
vative strategy called "LOKI". This strategy utilizes the strengths of both Imitation Learning (IL)
and Reinforcement Learning (RL) for more effective control of robotic systems. Notwithstanding
its potential, the original LOKI algorithm operates as a randomized learning method, alternating
between online IL and RL after a random number of steps. Therefore, this thesis proposes an

1



enhancement to the LOKI algorithm, modifying it for use with offline IL. This adaptation promises
improved hyperparameter tuning and model architecture optimization over the collected training
examples.

Additionally, attention is drawn to the transformative work of Ramin Hasani and Mathias Lech-
ner at TU Wien and MIT. Their research, which emulates the neural structure of the nematode
Caenorhabditis Elegans, introduced the concept of Liquid-Time Constant (LTC) neural networks
[14] that are designed to model continuous-time systems. These networks employ a unique activa-
tion function that possesses a liquid-like property (due to varying time constants), thus facilitating
faster and more efficient training, as well as improved accuracy on data structured as time series.
This groundbreaking concept enables the development of models for machine control that bypass
the inherent black box properties of deep learning.

Furthermore, the publication "Closed-form Continuous-Time Neural Networks" [12] (2022) intro-
duces Closed-form Continuous-time (CfC) artificial neural networks (ANN). This revolutionary con-
cept enables the bypass of numerical differential equation solvers, accelerating the learning process.
The CfC ANN is also inherently explainable, a feature that is particularly advantageous for visual
tasks like lifting operations, the primary focus of this thesis. The specific use case in this thesis
requires a camera sensor for object localization and general awareness. Coupling the CfC ANN with
a Convolutional Neural Network (CNN) for feature generation allows for the creation of a heatmap
of the incoming image stream, enhancing the model’s explainability. This visual representation aids
in determining whether a model is ready for production and assists in fault detection should the
model exhibit unwanted behaviour.

The ambition of this thesis is to synthesize these influences to engineer a model architecture that
strikes a balance between accuracy and size, addressing limitations associated with edge computing
and memory constraints. This goal is increasingly important given growing concerns about the
environmental footprint associated with training and utilizing large models on the cloud [19]. As
such, the thesis advocates for the deployment of compact models, trained on minimal data, directly
on the machines they operate (known as edge devices), as an environmentally conscious alternative.

While the proposed approach is applicable to various types of heavy machinery, lifting operations
have been selected as a relevant case study. The operations’ inherent visual dimension within a 3D
space allows for tangible observation of the model’s output, thus providing an engaging context for
the application and evaluation of the proposed methods.

1.2 Research Objective

Based on what this thesis aims to contribute, the research objective can be worded as follows:

The primary objective of this research is to determine the potential of integrating a generalized
version of the ’LOKI’ fast policy learning method with Closed-form Continuous-time Neural
Networks for developing an efficient, robust and transparent solution for real-world lifting op-
erations using minimal training examples.

To accomplish the primary objective, the following list of secondary objectives has been identi-
fied:

• Analyzing the open-source frameworks for performing IL and RL in an industrial setting, with
a focus on the eligibility of the LOKI algorithm and CfC ANN.

• Adapting the LOKI algorithm to offline IL and state-of-the-art (SOTA) RL.

• Creation of a custom environment for performing lifting operations. Create logging tools for
State-Action pairs used in offline IL and reward function for RL.
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• Evaluate the performance of the model when performing the lifting operation, focusing on
risk minimization, efficiency and explainability.

The overall aim is to explore the feasibility of training small neural networks on edge devices that
are suited for controlling heavy machinery. The validation of this approach could provide a more
environmentally friendly alternative to the increasing reliance on large neural networks in the cloud,
thus expanding the scope of machine learning applications in heavy machinery while reducing their
environmental impact.

By focusing on a lifting operation as a case study, this research intends to provide insights into the
performance of this approach in a real-world setting. The insights derived from this study would
inform future research on optimizing machine learning strategies for industrial applications.

If the proposed approach is validated as a robust, efficient and transparent method for creating
controllers for use in industrial machines, the general goal is to democratize the use of machine
learning in heavy machinery. This would expands the possibility of what tasks could be automated
and lower the cost of programming control systems.

1.3 Significance and Potential Impact

The primary aim of this study is to create a robust, efficient, and transparent learning algorithm that
can learn directly from real-world examples. This investigation, drawing inspiration from significant
works on Imitation Learning, Reinforcement Learning, liquid-time constant networks, and closed-
form continuous-time neural networks, aspires to amalgamate the strengths of these methodologies,
thus proposing a novel solution to various challenges inherent in machine learning for industrial
automation.

One of the main challenges that this study seeks to address is the performance gap often observed
when training a model in a simulated environment before its deployment in the real world. Simu-
lation environments, while valuable for initial model training and safety, often fail to fully capture
the complexity and variability of real-world situations. As a result, models trained in these environ-
ments do not perform as well when transferred to real-world tasks, requiring additional fine-tuning
or even a complete retraining process. By learning directly from real-world examples, the proposed
algorithm aims to mitigate this performance gap. For the user this would offer a seamless transition
from training to deployment with minimal effort.

Another significant aspect of this study is its potential to democratize AI, particularly for industrial
manufacturers. Currently, the development of machine learning models often requires substantial re-
sources, including the creation of digital twins or simulation environments, which can be prohibitive
for many smaller companies or those without substantial budgets or human resources in the field.
By proposing an approach that minimizes the need for these expensive and time-consuming steps,
this study could lower the barrier to entry for these companies. This would enable them to initiate
pilot projects and incorporate AI into their operations without the need for substantial upfront
investment in digitalization.

The use of the CfC ANN adds an element of explainability to the model at the core of the algorithm.
This is particularly relevant in an industrial context, where understanding the behavior of the model
could be critical for safety and efficiency.

Overall, this study is intent on designing a learning algorithm that stands out not only in terms
of robustness and efficiency but also in its transparency and accessibility to a diverse range of
industrial manufacturers. By utilizing advanced techniques in machine learning and neural network
architectures, focusing on training with real-world examples, and prioritizing reliability, safety, and
explainability in the model design, this work could bring about substantial transformations in the
domain of industrial automation.

3



Chapter 2

Literature Review

This chapter discusses general theoretical principles relevant to this thesis, specific related studies
and their influence on our approach. There are various ways to utilize machine learning techniques
in the control of robotic manipulators, which also hold promise for crane control scenarios. These
approaches fall into three main categories: Imitation Learning, Reinforcement Learning, and In-
teractive Learning. While each method and its subsets have their own advantages and drawbacks,
they all share the capability to tackle problems that are formulated as sequential decision-making
processes.

2.1 Background and Overview

Before developing a specific approach for machine learning-enabled crane control, a thorough un-
derstanding of available machine learning techniques is vital. The recent surge in the use of neural
networks, largely enabled by increasingly accessible and user-friendly machine learning frameworks
such as TensorFlow and PyTorch, has significantly influenced this field. A majority of these algo-
rithms are trained, evaluated, or both, within simulated environments, which although convenient
and safe for initial model training, present challenges in the transfer of learned models to real-world
applications. These challenges, often termed as the ’sim-to-real’ gap, are a significant point of con-
sideration in this work and will be discussed in greater detail in the Discussion section of this thesis
(see Chapter 5).

The main focus of this work involves the application and validation of the LOKI algorithm and
the Closed-form Continuous-time (CfC) Artificial Neural Network (ANN), which include Neural
Circuit Policies (NCPs). Therefore, this section will provide a comprehensive introduction and
background to these techniques. In order to create an ANN capable of functioning effectively in
a cyber-physical environment, understanding principles of generalization and Zero-shot learning is
crucial. These principles will be discussed initially, followed by an overview of existing approaches.
The application of these principles and methods to the current study will be explored in later
sections of the thesis.

2.2 Generalization

Generalization in machine learning refers to a model’s ability to make accurate predictions or take
suitable actions based on input data that it has not encountered during training. For machine
control, this ability is critical. Real-world environments are incredibly diverse and unpredictable.
It is impossible to expose a model to all potential scenarios during training. Hence, models must
generalize from the training data to unseen situations to work effectively in real-world applications.

A machine learning model that can generalize well can handle new scenarios that it encounters,
increasing the utility and safety of the machine control system. For instance, an autonomous vehicle
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trained on a specific set of traffic scenarios must still be able to operate safely when presented with
a situation not included in its training data.

However, the challenge is to balance a model’s ability to generalize without overfitting to the training
data. Overfitting occurs when a model learns the training data too closely, including the noise or
outliers, and performs poorly on unseen data. A well-generalized model avoids overfitting, capturing
the underlying patterns in the training data without being overly influenced by noise or outliers.

2.3 Zero-shot learning

Zero-shot learning takes generalization one step further. It refers to a model’s ability to handle tasks
or make decisions about which it has received no explicit training. This capability is particularly
vital in control systems because it allows these systems to extend their operations beyond their
training environments or tasks.

Zero-shot learning is particularly useful for resource-constrained systems. Training machine learning
models on all possible scenarios is requires significant computational resources and time. For many
scenarios it would not even be safe to provide a demonstration. If a model can effectively perform
tasks without explicit training, this could lead to substantial resource savings.

This means that if the model performs well on zero-shot learning metrics it allows for greater
adaptability. In real-world applications, machines may need to handle tasks or scenarios that were
unforeseen during model development. For instance, a crane may need to interact with a new type
of object or navigate in a previously unexplored environment. With zero-shot learning capabilities,
the crane can still function effectively in these scenarios.

In summary, generalization and zero-shot learning are crucial for machine control systems, enabling
them to handle diverse and unpredictable real-world scenarios. They increase the system’s utility,
safety, adaptability, and efficiency, making them more robust and reliable [16].

2.4 Imitation Learning

Imitation Learning (IL) is a supervised machine learning technique. In IL, an algorithm tries to
optimize a controller based on expert examples. There are various methods to implement IL, with
offline and online IL being the most common.

Offline IL uses Behaviour Cloning (BC), which leverages a set of state-action pairs logged from an
expert. Despite its simplicity and wide usage, BC has notable limitations. These include never
exceeding the performance of the expert, potential bias in the training set, poor generalization in
dynamic environments, and susceptibility to covariate shifts in data distribution [7].

In contrast, online IL has access to the expert policy during training, allowing for faster convergence
time and higher accuracy. It has also shown efficiency against covariate shifts with algorithms like
DAgger [22]. However, online IL’s need for interaction with an expert often restricts its usage
primarily to simulated environments [31].

Interactive Imitation Learning (IIL), a field that intersects with Interactive Machine Learning,
closely mimics human learning patterns. The algorithm learns from demonstrations and receives
performance feedback from the expert. This focused learning method improves areas needing en-
hancement and reduces random loss-searching, making it a promising approach [4].

2.5 Reinforcement Learning

Reinforcement Learning (RL) is a distinct learning approach based on trial and error. RL requires a
reward function to evaluate the actions taken, with the algorithm performing random actions until
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it identifies a pattern that maximizes rewards and minimizes penalties. Historically, RL required
numerous experiments to recognize desirable behavior. However, given enough time, it tends to
exceed human performance [9].

The randomness of actions during the training period has historically limited the use of RL in
scenarios where simulator training is not possible due to the potential for damage and costly training
time [18].

Two primary RL practices are model-free and model-based. Model-free RL associates an observation
with an action, while model-based RL stores the dynamics of the model/system it optimizes against.
This model can either be known to the algorithm from the start (known model) or learnt during
the trial and error phase (learnt model) [21].

2.6 Hybrid Approaches

One solution for combining both Imitation Learning (IL) and Reinforcement Learning (RL) is the
Locally Optimal search after K-step Imitation (LOKI) algorithm, originated from Georgia Tech’s
School of Interactive Computing [5]. LOKI is designed for pre-training a neural network using IL
before employing RL to perform and refine a given task. The algorithm uses first order methods in
both phases, however, the oracles for estimating the gradients (gn) differ.

During IL, gn is an estimate of equation 2.1, where c̃ is the surrogate loss and the per-round cost is
defined as ln(⇡) = Ed⇡nE⇡[c̃].

r✓ln(⇡n) = Ed⇡n (r✓E⇡) [c̃]|⇡ = ⇡n (2.1)

During the RL phase, the gradient gn is an estimate of r✓Jn(⇡), as expressed in equation 2.2. Here,
� denotes the discount factor, and A represents the (dis)advantage function.

(1� �)r✓Jn(⇡)|⇡ = ⇡n = Ed⇡n (r✓E⇡) [Ad⇡n ]|⇡=⇡n (2.2)

LOKI randomly samples a number K 2 [Nmin,Nmax] using the probability distribution given by:

P (K = n) =
nd

PNM
m=Nm

md
(2.3)

Subsequently, it performs online IL using mirror descent for K iterations before transitioning to
Trust Region Policy Optimization (TRPO). By selecting a random K iterations for IL training to
create a sub-optimal expert and not expecting expert performance, the need for training examples
during the IL phase is reduced, significantly reducing the computational resources and time required
for training. While there is proof of the sub-optimal experts performance in the paper introducing
LOKI, this was in the specific setting of using first order oracles and online IL. Other research in
the field shows that IL algorithms in self-supervised tasks has demonstrated resilient behaviour to
the use of sub-optimal experts compared to optimal experts. For offline IL the sub-optimal experts
has exhibited better generalization properties than expert policies [11].

6



Algorithm 1 LOKI
Parameters: d, Nm, NM

Input: ⇡⇤

1: Sample K with probability in equation 2.3.
2: for t = 1 ... K do . Imitation Phase
3: Collect data Dn by executing ⇡n
4: Query gn from equation 2.1 using ⇡⇤

5: Update ⇡n by mirror descent with gn
6: Update advantage function estimate Ân by Dn

7: end for

8: for t = K + 1 ... 1 do . Reinforcement Phase
9: Collect data Dn by executing Tn.

10: Query gn from equation 2.2 using Â⇡

11: Update ⇡n by mirror descent with gn
12: Update advantage function estimate Ân by Dn

2.7 Artificial Neural Network design

Many existing approaches are benchmarked against each other in simulations, using standardized
artificial neural network (ANN) designs based on multi-layer perceptrons (MLPs). The introduction
of new techniques provides opportunities for improving the sample efficiency, interpretability, and
robustness of ANNs. These factors are highly valued when the algorithm is implemented in produc-
tion. This research employs the current state-of-the-art artificial neurons and wiring for robotics.
Following is a brief introduction.

2.7.1 Closed-form Continuous-time Neural Networks

In our research, we employ an innovative, state-of-the-art neural network model, the Closed-form
Continuous-time Neural Network (CfC). Developed at the MIT Computer Science and Artificial
Intelligence Lab (CSAIL) [12], the CfC advances traditional neural networks by offering notable
improvements in speed and efficiency.

The CfC’s main strength lies in its ability to handle sequential decision-making problems by formu-
lating them as differential equations. This approach significantly differs from conventional discrete-
time models, setting the CfC apart with its unique approach of modeling systems’ changes over
time, also known as dynamical system representation. As a result, the CfC excels in tasks that
involve simulating complex physical dynamics, such as lifting operations. It has also demonstrated
its superiority over Transformers, a popular machine learning model known for its performance in
tasks involving sequential data, by an impressive 18% margin while drastically reducing computa-
tional overheads. Moreover, the CfC utilizes only a tenth to half the time per epoch compared to
Transformers, emphasizing its superior computational efficiency.

A defining feature of the CfC is its use of Liquid Time-Constant Networks (LTCs) [14]. Originally
designed for tasks that require a temporal relationship between input and output, LTCs have been
recognized for their capability to model intricate systems that change over time. However, the
conventional implementations of LTCs have faced limitations due to the necessity of a numerical
solver to handle the differential equations inherent in the model, limiting the scalability of LTC-
based networks.

Addressing these limitations, the CfC introduces an ingenious solution by approximating the ex-
act, or closed-form, solution of LTCs. This significant advancement substantially accelerates the
network, achieving between one to five orders of magnitude faster execution during both training
and inference compared to ordinary differential equation (ODE)-based continuous networks. As a
result, the CfC effectively eliminates the scalability bottleneck seen in previous models, offering a
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more robust solution for controlling industrial machines.

Given the remarkable scalability, efficiency, and performance of the CfC, it paves the way for novel
applications of machine learning models, particularly in edge devices. This makes the CfC an
excellent choice for tasks such as lifting operations.

2.7.2 Neural Circuit Policies

Neural Circuit Policies (NCPs) were utilized to structure the connections of the CfC neural network.
NCPs present a novel and efficient approach for establishing connections within neural networks,
significantly enhancing both the interpretability and efficiency of the model. The fundamental
concept behind NCPs is the emulation of the tap-withdrawal neural circuit found in the nematode
Caenorhabditis elegans, in which a mere 302 neurons manage all of the nematode’s motor functions.
This innovation was pioneered by researchers at the Technische Universität Wien (TU Wien), who
also made notable contributions to machine learning in the robotics field with the development of
the CfC artificial neural network [20].

Adopting strategies from nature contributes to a model that is more interpretable and offers various
practical benefits. One significant advantage of the NCPs structure is that it requires fewer weights
than conventional designs. This reduced complexity translates into less memory consumption on
the hardware, rendering NCPs a more efficient solution. This efficiency is particularly beneficial
in environments with limited computational resources or in scenarios where the goal is to reduce
environmental impact.

To better understand the unique architecture of NCPs, consider a simplified wiring diagram as shown
in Figure 2.1. This example comprises a network of ten neurons, including two output neurons,
and provides a visual representation of the unique NCPs structure. Not only does the diagram
highlight the design, but it also demonstrates how this layout facilitates differentiable properties.
Essentially, differentiable properties enable the model to learn and adjust itself over time, and in this
layout, each neuron’s state at a given moment is influenced by its state in the previous time-step.
This is clearly seen with the neuron at the top in Figure 2.1. Thus, incorporating NCPs enhances
the efficiency and interpretability of neural networks, making it particularly beneficial for Artificial
Neural Networks (ANNs) in the Liquid Time-Constant (LTC) family, such as the CfC used in our
work.
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Figure 2.1: Illustration of ANN following NCPs design
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Chapter 3

Methodology

This chapter aims to describe the methods utilized in this study, as well as the setup for the
experiment.

3.1 Hardware and Software

Describe the hardware and software setup we will be using: robotic arm, computer for data collection
and analysis, software for programming and controlling the arm, and software for training the
imitation learning model.

3.1.1 Hardware

This section describes the physical setup for the experiment performed for this thesis. The hardware
used in the experiment consists of a robotic arm, a camera, and a computer system.

The core hardware components for the experimental setup comprise the following:

• Robotic Arm: The experiment utilized an ABB IRB 140 robotic arm, renowned for its
compactness and high payload capacity. Equipped with six joints and a single arm, the ABB
IRB 140 offers flexibility in movement and object manipulation. For the purposes of this
study, the robot arm was outfitted with a rope and a hook to facilitate the movement of
various objects.

• RGB Camera: The robotic system was augmented with a standard RGB camera. The
camera served as the robot’s primary sensor, capturing images of the robot’s workspace and
providing visual data that was critical for training the imitation learning model. The camera
was strategically placed to capture a clear view of the objects and the designated placement
zone in the robotic arm’s environment.

• Computer System: A computer system was employed to manage data collection, analysis,
and training of the learning model. In addition, the computer served as the primary interface
for programming and controlling the robotic arm’s operations.

3.1.2 Software

The following software tools were leveraged to support the experimental execution and data analysis:

• Python and TensorFlow: Python was the primary programming language for this exper-
iment, chosen for its readability and extensive support for scientific computing. The deep
learning model was implemented using TensorFlow, a Python library offering comprehensive
capabilities for machine learning and deep learning.

10



• Robot Studio: The RobotStudio Augmented Reality Viewer enables you to visualize robots
and solutions in a real environment. It was used to upload the necessary modules to the robot
arm, which allowed the control to be a blend of Python files communicating with RAPID
code.

• OpenAI Gym: OpenAI’s Gym was used as the simulation environment to test the imitation
learning model. Gym provides a wide variety of pre-defined environments that simplify the
development and comparison of reinforcement learning algorithms.

These hardware and software configurations collectively formed the foundation for the execution of
this study’s experimental procedures, ensuring an effective environment for model training, testing,
and performance evaluation.

3.2 LOKI-G algorithm

The pursuit of effectively utilizing Machine Learning (ML) as a controller in lifting operations
presented several crucial considerations. Academic research often places the utmost importance on
achieving state-of-the-art performance on benchmarks. However, in the industrial context, aspects
such as robustness and up-time are paramount, and a slight performance loss is a tolerable trade-off
to enhance these features [15]. An Imitation Learning (IL) / Reinforcement Learning (RL) hybrid
approach, termed as the LOKI-G algorithm, emerged as a promising solution, which forms the crux
of this section.

3.2.1 Comparative Overview of IL/RL Algorithms

The IL/RL hybrid approach offers a unique pathway to enhancing robustness and reducing down-
time. IL, not requiring digital twins or simulators, becomes accessible to all manufacturers, irrespec-
tive of their budget or level of digitalization. However, the original LOKI algorithm demonstrated
certain limitations. Notably, its use of online IL necessitated a high degree of expert involvement
and restricted the algorithm to first-order methods only. This prerequisite not only excluded nu-
merous modern algorithms but also demanded the architecture of the neural network to be finalized
before training.

The LOKI-G algorithm is inspired by LOKI in regard to the use of an sub-optimal changing from
the IL phase to RL phase after K numbers of training examples sampled randomly. By disregarding
the requirement of first-order methods and online IL, the guarantee of convergence is not valid. The
advantages is possibility of using offline IL with no involvement from the expert, hence no down-
time. While the use of a sub-optimal expert would create a greater disadvantage in offline IL, there
are arguments that favor it over an optimal experts in a hybrid approach. IL have shown issues
concerning over fitting to the expert, the use of a sub-optimal expert has improved the generalization
of the algorithm [11]. As the output of the IL phase is not a final product, higher performance can
be sacrificed for a more robust, generalizing model.

3.2.2 Implementation of LOKI-G Algorithm

In the implementation of the LOKI-G algorithm, Behaviour Cloning (BC) is employed as the offline
IL algorithm owing to its simplicity and maturity. This, however, doesn’t limit the choice of IL
algorithms; any efficient offline IL method could be suitably adopted.

By generalizing away from the requirement of first order methods in LOKI, a broader range of
applicable RL methods. We use a Single-Network PPG (Phasic Policy Gradient) in our experiments
due to the high sample efficiency and lower memory use than PPG [6]. When introduced PPG used
PPO (Proximal Policy Optimization) [24], while our implementation uses the newer truly-PPO [29].
Originally LOKI used TRPO (Trust Region Policy Optimization) for the RL phase, PPG is two
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generation newer which is the reason it is used in our implementation. There no limitation to the
choice of model-free RL algorithms using our approach, but the use of model-based RL has not been
tested.

As for the architecture, instead of the standard Multi-Layer Perceptrons (MLPs) used by the original
LOKI, the Closed-form Continuous-time (CfC) Artificial Neural Network (ANN) is implemented,
as introduced in 2.7.1. This architecture, structured following the Neural Circuit Policies (NCPs)
framework (2.7.2), treats the optimization problem as a differentiable equation. This approach
makes the ANN more interpretable and delivers better generalization properties with compact
ANNs [12].

In the LOKI-G implementation, an ANN of the CfC type is employed. This architecture adheres to
the NCPs framework, making the ANN interpretable and resulting in better generalization proper-
ties. The architecture is designed to be larger than necessary to explore if this would induce delay
during real-time control. If used, the Tensorflow framework may issue warnings, which can be safely
ignored as the value function layer will be trained during the RL phase. The architecture of this
ANN as used in the experiments is shown in Figure 3.1.

Figure 3.1: Artificial Neural Network architecture during experiments

Figure 3.1 illustrates the ANN architecture implemented in the LOKI-G algorithm during the
experiments. The structure includes two output values where only the logits are trained during the
IL phase, with the value function layer being trained during the RL phase.

3.2.3 Guidelines for LOKI-G Algorithm Implementation

As our approach is a more general implementation of LOKI, we have named it LOKI-G Ẇhile
LOKI had three parameters (d, Nm, NM ), it’s advised to set Nm = NM

2 [5]. To increase simplicity
of implementation it is no parameters in LOKI-G outside designing the ANN. NM is defined to the
number of training examples, Nm = NM

2 and d = 2. To fully take advantage of using offline IL
it’s advised to use a hyperparameter tuner for setting the size of the ANN, this step is not made a
part of the LOKI-G algorithm as memory constraints could make it infeasible in some applications.
As there is no recommended number of examples, this is something that should be adapted to the
task. It is recommended to approach the gathering of examples with the same mindset as with ML
in general, by diversifying the examples and keep a majority of the expected normal use case.

3.2.4 LOKI-G Pseudocode

The following pseudocode provides a summary of the LOKI-G algorithm:
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Algorithm 2 LOKI-G
Input: D
1: Sample K with probability in equation 2.3.
2: for t = 1 ... K do . Imitation Phase
3: Collect random example Dt from D
4: Perform offline IL to optimize ⇡

5: end for

6: for t = K + 1 ... 1 do . Reinforcement Phase
7: Collect data Dt by executing ⇡ on the environment.
8: Update ⇡ according to chosen RL algorithm

3.3 Experimental Design

The experimental design consists of two main stages: (1) data collection and behaviour cloning
model training, and (2) further training using Single-Network Phasic Policy Gradient (PPG).

3.3.1 Data Collection and Behaviour Cloning Model Training

The initial phase of the experimental design centred around the implementation of a custom Python
script to commandeer a robotic arm equipped with a rope and hook. The robot arm, under this
setup, was engineered to accomplish a specific task - lifting and relocating objects to a designated
area, distinctively marked with a white colour scheme.

To facilitate data acquisition for subsequent model training, a strategically positioned camera was
installed adjacent to the robot arm. The camera’s function was twofold: capture visual input
synchronously with the robot’s operations and foster a more interactive and intuitive environment
for the human operator.

During the data collection phase, a human operator manually manipulated the robot arm via the
Python script, undertaking a variety of prescribed actions. While the human operator’s performance
was inevitably sub-optimal, this approach served a crucial function. Each action executed by the
operator prompted the camera to capture corresponding frames. These visuals, coupled with action
data, were meticulously catalogued to formulate the training dataset for the behaviour cloning
model.

The behaviour cloning model, leveraging the power of supervised learning, was trained to emulate
the expert demonstrations showcased by the human operator. By mapping observed states (camera
frames) to the corresponding actions, the model could effectively learn an initial policy. This process
marked the initial stride towards a more autonomous and efficient robotic system, laying a solid
foundation for further iterative refinements and learning.

3.3.2 Single-Network Phasic Policy Gradient (PPG) Training

Following the initial training of the behaviour cloning model, the second phase of the experiment
centred on honing the model through Single-Network Phasic Policy Gradient (PPG) training. This
is a reinforcement learning algorithm designed to refine the rudimentary policy acquired from the
behaviour cloning model, enabling the robotic arm to engage and assimilate lessons from its real-
world environment actively.

PPG was judiciously selected for its intrinsic merits, most notably stability and sample efficiency.
These traits are paramount in the realm of real-world robotic systems, where a high degree of
precision is expected, and the opportunity for repeated trial and error is limited. In essence, PPG
serves as a mechanism for the model to navigate its environment, extract valuable insights from its
experiences, and continually evolve its policy.
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In more detail, the PPG training phase commences with the behaviour cloning model as a foun-
dational blueprint. The model, equipped with this preliminary understanding of the task at hand,
proceeds to explore various strategies within the bounds of this understanding. This exploration
allows the model to discern successful strategies from the less effective ones, informing its policy
updates.

Each iterative cycle of exploration, learning, and policy update under PPG contributes to the
model’s maturing proficiency in lifting operations, bolstering its overall performance. This fine-
tuning phase is vital for the model’s transition from a novice learner mimicking human operators
to an adept learner capable of independent decision-making based on past experiences.

3.4 Evaluation Criteria

The effectiveness of the imitation learning model was gauged through a combination of qualitative
and quantitative evaluation criteria, designed to offer a comprehensive perspective on the model’s
performance.

3.4.1 Trajectory Analysis

The foremost evaluation criterion was the trajectory of the robot arm in performing the given task.
This was qualitatively analyzed by comparing the movement paths generated by the model with
the expert demonstrations and expected trajectory. The primary goal was to evaluate the model’s
ability to replicate the human operator’s actions accurately and consistently.

3.4.2 Task Completion

Task completion served as a crucial quantitative measure. This was assessed by verifying if the robot
arm could successfully move the object to the designated location. Metrics included the number of
successful task completions and the rate of task completions over a set number of trials.

3.4.3 Generalization Capability

Generalization was another significant evaluation criterion. This was measured by subjecting the
model to previously unseen scenarios or configurations, such as a changed object location or a
different object type. The model’s performance in these scenarios was analyzed to assess its ability
to generalize the learned behaviours and adapt to novel conditions.

3.4.4 Sensitivity to Environmental Changes

An essential aspect of real-world robotic operations is the model’s sensitivity to changes in the
environment. Trials like the "Moved Sheet" and "No Camera" (further described in Section ??)
were specifically designed to test this attribute. Here, the evaluation metric was the model’s ability
to adjust its behaviour according to changes in the environment.

3.4.5 Stability of Learning

The stability of the learning process was evaluated by monitoring the model’s performance across
different training epochs. A stable learning process would indicate a consistent improvement in the
model’s performance with increasing training, reflected in the form of converging loss values.

Through these evaluation criteria, we aim to assess not only the model’s immediate performance
but also its potential for effective application in diverse, real-world scenarios.
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Chapter 4

Results

The overall experiment has been performed in two parts, first, the Manual Control run was per-
formed to collect the data necessary for Behaviour Cloning (BC). The second part involved running
the Single-Network Phasic Policy Gradient (PPG) algorithm for minor, incremental improvement
of the BC. All of the code used for the experiments can be found in the repository for the project 1.

4.1 Behaviour cloning

4.1.1 Manual Control and Data Acquisition

During the manual control stage, an operator controlled the robotic arm to perform the desired
object manipulation. Each movement was carefully performed, taking into consideration the task
requirements and the limitations of the physical setup. An observation vector containing snapshots
of 3 images for each action, along with an action vector containing all control commands were
logged and saved for later use in the behaviour cloning model. This data, also referred to as expert
demonstration data, comprises a sequence of state-action pairs that represent the operator’s actions
and their corresponding outcomes.

Figure 4.1 illustrates the initial, middle, and final configurations of the experiment. Image (a) Start
displays the robot arm at the initial position (Z coordinate of 500) with an object attached to its
hook. Image (b) Mid shows the robot arm in a halfway state where it has moved from its initial
position but hasn’t reached its final position. Lastly, in image (c) End, the robot arm is shown to
have successfully placed the object on the white sheet.

(a) Start (b) Mid (c) End

Figure 4.1: Progress of a Manual Control run

The motion of the robot arm as controlled by the human operator can be visualized in Figure 4.2.
The figure represents a 3D plot of the path traced by the arm in the Cartesian space during the

1
Repository for the project: https://github.com/R-Liebert/LOKI-G
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task execution.

Figure 4.2: Trajectory of the Manual Control run

Each axis in the figure corresponds to one dimension of the workspace: X and Y represent the
horizontal plane of the table, while Z corresponds to the vertical elevation from the table surface.
The Start point of the path corresponds to the arm’s initial position, while the End point of the
trajectory marks the arm’s final position when the task is complete. Each cross corresponds to a
discreet command that moves the arm by a magnitude of 15 in one of the 6 directions.

4.1.2 Model Training

The BC model was trained on the expert demonstration data obtained from the manual control
stage. The aim of this model was to emulate the operator’s control over the robot arm, enabling
the arm to perform the object manipulation task autonomously.

The results of the BC were evaluated in the early stages of the PPG algorithm as it became apparent
that the performance of BC didn’t undergo almost any changes at that point.

4.1.3 Model Intuition

To visualize the models intuition a saliency map highlights the most important regions of the input.
The saliancy map overlayed the observation in Figure 4.3 is from a random observation with the
BC model.
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Figure 4.3: Saliency map of a random observation using BC model.

As can be seen in the Figure, a lot of the model’s attention is on the landing area (table), the robot
arm and the bottom right corner. Ideally, through running PPG, the attention should shift away
from areas that bear no relevance to the final result of the trial.

4.2 Single Network Phasic Policy Gradient Result

The PPG part of the experiments has been performed across 5 different trials. Each trial’s relevance
is tied to various aspects of the model’s performance, adaptability, and generalization capabilities,
all of which are important for validating the current approach and demonstrating its potential in
real-world lifting operations.

4.2.1 Trial Run 1: Original (Baseline)

Conditions

The conditions described in the methodology chapter are applied in this experiment. No changes
have been made to the setup of the environment.

Relevance

The initial experiment serves as a foundational reference, establishing the baseline performance
of the robotic arm under standard operating conditions. This baseline is crucial as it facilitates
comparative analysis of the results derived from subsequent experimental trials, thereby enabling
a comprehensive understanding of the impact of various modifications on the model’s performance
and adaptability. Such a comparative analysis is instrumental in validating the efficacy of our
proposed approach.

Data

Figure 4.4 illustrates the trajectory followed by the robot arm in the baseline trial run.
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Figure 4.4: Robot Arm Trajectory. Trial: Baseline

Figure 4.5: Endpoint position. Trial: Baseline
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The arm’s movement path is not a clear reflection of the state-action pairs learned during the
behaviour cloning phase. While the robot arm recognised its task of placing the object down on
the table, it didn’t capture the significance of the white sheet as the designated placement zone.

The path originates at the Start point and moves towards a different Endpoint than expected.
The final position of the object can be seen in Figure 4.5. The X coordinate at the end of the
manual control run was 125± 15, whereas the baseline for PPG is 60. The Y axis is not recognised
as significant as the robot arm does not move along it. The only correct estimation was the Z
coordinate.

4.2.2 Trial Run 2: Moved Sheet

Conditions

The conditions only differ from the baseline in that the white sheet (designated placement zone)
has been moved.

Relevance

This trial probes the model’s adaptability to environmental shifts, achieved by repositioning the
white sheet. This alteration challenges the model’s ability to discern the importance of the des-
ignated placement zone, and subsequently, adapt its operational behaviour to the new location.
This adaptability is paramount in ensuring that the model can efficiently perform under real-world
conditions, where environmental consistency is not guaranteed.

Data

Figure 4.6 presents the robot arm’s trajectory during the second trial, where the white sheet was
relocated. Notably, despite the environmental change, the robot arm’s trajectory remains largely
unaltered from the baseline trial.

This path suggests that despite the model’s training, it has not recognized the significance of the
white sheet as the designated placement zone. Instead, the robot arm follows a trajectory similar
to the one in the baseline trial, moving towards an Endpoint distinct from the new location of the
white sheet.

The final position of the object can be seen in Figure 4.7. Exactly as in the baseline trial, the robot
arm continues to neglect movement along the Y-axis. The final X coordinate in this trial mirrors
that of the baseline trial. The Z coordinate, which was correctly estimated in the baseline trial,
remains accurate in this trial run as well.
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Figure 4.6: Robot Arm Trajectory. Trial: Moved Sheet

Figure 4.7: Endpoint position. Trial: Moved Sheet
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4.2.3 Trial Run 3: No Camera

Conditions

The only difference from the baseline is that the camera has been covered so that it only produces
images with only black pixels.

Relevance

The experiment underscores the significance of visual inputs within the model’s decision-making
paradigm. This is manifested by obscuring the camera, thus assessing whether the model’s actions
are primarily predicated on the visual information or if they are a result of rote replication of
manually provided commands. The ability to forge meaningful correlations between visual inputs
and corresponding actions is indispensable for efficient learning and generalization. Therefore it is
a critical validation of the model’s capabilities.

Data

Figure 4.8 shows the trajectory followed by the robot arm in the "No Camera" trial.

In stark contrast to the previous trials, the robot arm displays a significant deviation from the
expected trajectory. There is no observed movement along the Z-axis, indicating that the arm
does not perform the necessary vertical displacement to lift or lower the object. Instead, the arm
exhibits some movement along the Y-axis, a behaviour not seen in the previous trials. Most of the
movement, however, is along the X-axis.

The absence of a "Wait" option for the robot arm could potentially explain this unusual behaviour.
Without this option, the robot arm could not wait for clear visual input, resulting in it moving
primarily along the X and Y-axes.

It’s clear from this trial that the robot arm relies heavily on visual inputs to make its decision, as
indicated by the dramatic change in the movement trajectory when deprived of these inputs. This
shows that the model’s ability to map visual information to corresponding actions is a vital part of
its operational paradigm.

The results from this trial emphasize the importance of integrating mechanisms that allow the robot
arm to adapt and respond appropriately in the absence of clear visual input, a common scenario in
real-world applications.
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Figure 4.8: Robot Arm Trajectory. Trial: No Camera
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4.2.4 Trial Run 4: Short Rope

Conditions

The difference between the baseline and this trial is the reduced length of the rope that is tied to
the hook.

Relevance

This trial scrutinizes the model’s capacity to accommodate alterations in the physical configuration
of the robotic arm. By introducing a shortened rope, the model’s ability to recalibrate its actions in
response to this change serves as an indicator of its adaptability and robustness. The significance
of this experiment is underscored in real-world applications where the crane might be tasked with
managing disparate tools or components, necessitating appropriate adjustments in its operational
behaviour.

Data

Figure 4.9 depicts the trajectory followed by the robot arm in the "Short Rope" trial.

In this experiment, the rope tied to the hook had a significantly reduced length. In response to
this change, the trajectory of the robot arm illustrates an interesting adaptation. The arm appears
to move largely in alignment with the baseline trial along the X and Y-axes. However, a crucial
adjustment is seen in the Z-axis movement. Recognizing the short rope’s limitation, the robot arm
compensates by moving lower along the Z-axis than observed in the baseline trial. The final position
of the object can be seen in Figure 4.10.

This adaptation indicates that the model is capable of adjusting to changes in the physical config-
uration of the robot arm. It recognizes the change in rope length and responds by modifying the
vertical displacement of the arm to appropriately position the object.

These results highlight the model’s adaptability and its ability to recalibrate its operations in
response to alterations in the robot arm’s configuration. The ability to adjust to such changes is
essential for real-world applications where the physical parameters of the task can often vary. This
trial demonstrates that the model is capable of such adaptation, which bodes well for its robustness
in varied operational scenarios.

23



Figure 4.9: Robot Arm Trajectory. Trial: Short Rope

Figure 4.10: Endpoint position. Trial: Moved Sheet
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4.2.5 Trial Run 5: Blue Object

Conditions

In this trial, the usual green object was replaced by a blue one with a different shape.

Relevance

This trial challenges the model’s ability to manage diverse objects, a critical facet for its applicability
across an extensive range of tasks within lifting operations. By introducing an object that differs
in both colour and shape and which is previously unseen by the model, this trial evaluates the
model’s proficiency in successfully executing the task. This assessment is integral to demonstrating
the model’s capacity to generalize across distinct situations, an aspect that underscores the model’s
effectiveness and adaptability in a multitude of real-world scenarios.

Data

Figure 4.11 shows the trajectory followed by the robot arm in the "Blue Object" trial.

In response to the change of conditions, the robot arm’s trajectory was nearly identical to that
observed in the baseline trial along the X and Y-axes. This indicates that the change in the object’s
colour and shape did not affect the arm’s horizontal movement. However, a distinct difference is
noticed in the Z-axis movement. Recognizing the need to accommodate for the different shape of
the object, the robot arm adjusts by moving lower along the Z-axis to appropriately position the
object on the table. The final position of the object can be seen in Figure 4.12.

This demonstrates the model’s capacity to adapt to changes in the task conditions. It suggests that
the model can recognize differences in object characteristics and adjust its movements accordingly.
This is crucial for real-world applications where tasks often involve handling objects of different
shapes and sizes.
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Figure 4.11: Robot Arm Trajectory. Trial: Blue Object

Figure 4.12: Endpoint position. Trial: Moved Sheet

26



4.3 Neural Network Design

Table 4.1: Behaviour Cloning on full dataset of 18 examples after 10 epochs

Number of Neurons in CfC CNN type CNN Size Training Results

32
CNN with Batch Normalization Small

Accuracy: 0.9825
Loss: 0.0399

Large
Accuracy: 0.98

Loss: 0.0363

Impala-CNN Small
Accuracy: 0.9850

Loss: 0.0394

Large
Accuracy: 0.9805

Loss: 0.1406

64
CNN with Batch Normalization Small

Accuracy: 0.982
Loss: 0.0365

Large
Accuracy: 0.9815

Loss: 0.0389

Impala-CNN Small
Accuracy: 0.9820

Loss: 0.5828

Large
Accuracy: 0.9815

Loss: 0.6676

The CNN blocks use three layers of tf.keras.layers.Conv2D with kernel size 8, 4, 3 and stride 4,
2, 2. The large blocks has 32, 64, 128 filters, while the small blocks have 16, 32, 32 filters. More
information can be found in ConvCfC.py in the GitHub repository.

The large batch normalized CNN has 39 435 392 trainable parameters, while the small has 9 851
456 trainable parameters. The CfC with 64 neurons has 47 028 trainable parameters, while CfC
with 32 neurons has 18 960 trainable parameters. In terms of memory a 64 neurons CfC network
with a large normalized CNN uses 150.61 MB, while a 32 neuron CfC with a small normalized CNN
uses 37.65 MB.

The large Impala-CNN has 9 954 720 trainable parameters and uses 38.15 MB of memory when
paired with the large CfC network. The small Impala-CNN has 2 480 272 trainable parameters and
uses 9.53 MB of memory when paired with a small CfC network.

27



Chapter 5

Discussions

This chapter focuses on the analysis and discussion of the results obtained from the experiments.

5.1 Five Trials

Five experiments were conducted, with conditions modified for each trial. The results of each
experiment are subsequently discussed, with an emphasis on the properties of the proposed approach
that each experiment revealed.

5.1.1 Trial Run 1: Original (Baseline)

In the first trial, the same setup employed during the Imitation Learning (IL) phase was used. This
approach aimed to gauge the model’s performance against the demonstrations. The worst outcomes
considered were randomized actions, suggesting an untrained model, or inaction, indicating the
model’s inability to generate an output. The model performed similarly to the demonstration, albeit
with a slight depth offset in the basket placement. Smooth movement and no unexpected behaviour
were observed, indicating the model’s understanding of the fundamental task requirements. The
model’s difficulty in understanding depth, demonstrated by the consistent failure to place the basket
on the white paper, supports findings in existing Sim-to-real gap research [17].

5.1.2 Trial Run 2: Moved Sheet

In the second experiment, the white sheet of paper was relocated to a different part of the table.
The model did not acknowledge this as a new objective and replicated the behaviour observed in
Trial Run 1, placing the basket with a depth offset relative to the white sheet.

5.1.3 Trial Run 3: No Camera

The third trial was characterized by sensory deprivation, where the camera was covered, rendering
the image stream black. The model responded by moving horizontally continuously without at-
tempting to lower the basket. It was noted that the model lacked an output for waiting, suggesting
the necessity of such an option in an industrial setting.

5.1.4 Trial Run 4: Short Rope

The fourth experiment involved shortening the rope from which the basket was hanging to simulate
varying scenarios. Despite this change, the model mirrored the behaviour seen in the baseline
experiment and placed the basket on the table by increasing the number of downward actions.
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5.1.5 Trial Run 5: Blue Object

The final experiment tested the model’s generalization capabilities in a Zero-shot learning environ-
ment. The green basket was replaced with a blue tool possessing a tuning fork shape. The model
performed comparably to the baseline experiment, indicating its ability to reason that the task was
to place the object on the table. Despite its disregard for the white sheet of paper as the placement
zone, the model showed an inclination to focus on the object on the hook, regardless of its nature.

5.2 Trends and Patterns

5.2.1 Model Adaptability

One of the most important trends that were observed during the trial was the model’s adaptability
to changes in the physical configuration of the environment. As shown in the "Short Rope" and
"Blue Object" trials, when significant alterations were introduced to the setup, the model managed
to demonstrate its ability to adjust the movements to accommodate said alterations. Specifically,
it managed to recognise the difference along the Z-axis, which indicates a good grasp of vertical
displacement requirements of the task conditions based on the visual input.

5.2.2 Dependence on Visual Inputs

Another noteworthy pattern that emerged was the model’s heavy reliance on visual inputs for
decision-making, as demonstrated in the "No Camera" trial. When the camera input was covered,
the robot arm’s movements significantly deviated from the expected trajectory. This showcases the
model’s dependence on visual cues for performing its tasks efficiently. While this can be seen as an
asset when visual information is rich and reliable, it may pose challenges in scenarios where visual
information is compromised.

5.2.3 Insensitivity to Subtle Environmental Changes

While the model displayed admirable adaptability to major alterations in the setup, it seemed less
sensitive to more subtle elements in the environment. In the "Baseline" trial it became apparent
that the model did not manage to identify the white sheet as a designated placement zone. In the
"Moved Sheet" trial, the model didn’t adjust its trajectory to account for the new placement of the
white sheet.

This could be tied to the limitations of the 2D camera sensor used for gathering visual data. While
they capture the horizontal and vertical aspects of the scene, they do not provide depth information.
This makes it challenging for the model to accurately gauge the relative distances between objects
in the environment, which is a crucial factor when determining the correct placement of objects.

Without depth perception, the white sheet and other objects in the environment may simply appear
as two-dimensional shapes of different colours. As such, the model might not have been able to
differentiate between the white sheet and similar-coloured objects in the cluttered background,
hence its failure to recognize the sheet as the designated placement zone.

5.2.4 Consistency in Performance

Across all trials, the model demonstrated consistency in attempting to achieve the given task, even
when faced with unfamiliar or altered circumstances. This was evident in the fact that all trials
resulted in the robot arm successfully placing the object down, albeit not always in the desired
location.
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These trends and patterns speak to the crux of our research question, which aimed to investigate the
model’s adaptability, reliance on visual cues, sensitivity to environmental changes, and consistency
in performance. Understanding these trends will enable us to refine the model further, improving
its utility and reliability in real-world lifting operations.

5.3 Relevant Findings

This study has brought forth several findings that are significant to our understanding of autonomous
lifting operations using Behaviour Cloning (BC) and Phasic Policy Gradient (PPG).

5.3.1 Performance of Behaviour Cloning

Initial findings indicate that BC can effectively learn and replicate the control policy demonstrated
by the human operator. The robotic arm successfully imitated the broad task of moving the object
from the starting point to the end. However, the model’s inability to identify the white sheet
as the target placement zone in the baseline and "Moved Sheet" trials demonstrated limitations
in its capacity to discern crucial environmental cues. This observation suggests that additional
depth information or improved training might be required to enhance the model’s understanding of
task-relevant objects in its environment.

While the model did not learn where the placement zone was in regards to depth, the saliency map
shows that the model did get an intuition about the general objective during BC. In Figure 4.3 it
is clear that the model focuses on the table, the object and the robot arm. There are also areas in
the bottom, especially on the right frame that get attention from the model without any specific
reason or this hurting performance.

5.3.2 Robustness to Physical Alterations

The model displayed a degree of robustness to physical changes in the environment, as evidenced
in the "Short Rope" and "Blue Object" trials. Despite the alterations to the hook’s length and the
object’s shape and colour, the model made appropriate adjustments in the Z-axis, suggesting it can
generalize to alterations in the physical task set-up. This is the first indication of the algorithm
being able to perform Zero-shot learning.

5.3.3 Reliance on Visual Inputs

The "No Camera" trial highlighted the model’s heavy reliance on visual inputs for decision-making.
When faced with a lack of visual input (i.e., images with only black pixels), the robot arm failed to
maintain a proper trajectory and exhibited random movement, confirming the critical role of visual
data in the model’s operation.

These findings collectively underscore the potential of behaviour cloning and PPG approach for
autonomous robotic arm control. They also identify areas for future improvement, particularly in
enabling the model to discern subtler environmental changes and function effectively with minimal
visual inputs. This knowledge is crucial for refining the model and advancing its applicability in
real-world lifting operations.

5.4 Key Takeaways

In the scope of this research, the Closed-form Continuous-time (CfC) Artificial Neural Network
(ANN) was employed in a lifting operation using the proposed LOKI-G algorithm. High accu-
racy was exhibited by the CfC ANN in the Imitation Learning (IL) phase across all configurations

30



tested. In the Reinforcement Learning (RL) phase, robust and reliable behaviour was displayed,
with commendable performance observed during the Zero-Shot Learning task. Although the bas-
ket’s placement was proximate to the designated target, a consistent depth offset was noted, likely
attributable to the utilization of a single camera sensor devoid of depth information.

As delineated in Table 4.1 in 4.3 Neural Network Design, minimal variation was observed in model
performance with different hyperparameters. A notable exception was the increased loss recorded
when employing Impala-CNN across all configurations, except the small one. This observation
suggests that the performance was not constrained by the neuron count in the CfC ANN, indicating
the feasibility of utilizing a smaller CfC ANN. Considering the additional factors present in an
industrial setting compared to a lab, a larger 64 neuron CfC ANN was selected for the trial runs,
paired with the small CNN with Batch Normalization. No discernible latency was detected during
the lifting operation, hinting at the potential viability of a more compact model.

During the Behaviour Cloning (BC) phase, the model appeared to form a general understanding of
the key areas of interest, as visualized in Figure 4.3 of the saliency map. Attention given to seemingly
irrelevant bottom corner areas did not adversely impact model performance. While benchmark
outperformance was not the central goal of this experiment, it was proposed that saliency maps
from BC could be compared with those from longer periods of RL. This comparison, conducted with
the same input image, could illuminate any improvements in the model’s reasoning and pinpoint
its primary focus areas.

The camera placement in the experiment was acknowledged as unrepresentative of an industrial
crane, where it would typically be affixed to the base or tip of the boom, rendering the crane invisible
to the model. This difference in setup could potentially lead to better performance by directing
model attention towards the object and the environment, rather than the crane. For instance, in
our experiment, the saliency map in Figure 4.3 indicated that action decisions were partly based
on the robot arm’s position. Given the research’s aim to develop an adaptable and robust solution
for real-world lifting operations, the model’s explainability is of paramount importance. As such,
visualizing saliency maps on the trained BC model serves as a vital tool in fostering trust among
crane users and manufacturers.

5.5 Implications of the results

The findings of this study suggest that a sparse Artificial Neural Network (ANN), once robustly
trained and easily explainable, can be effectively trained on the edge using minimal examples. This
discovery has the potential to expedite the development of autonomous cranes without the need
for simulators, thereby circumventing the Sim-to-real gap. Avoiding this gap could allow the initial
performance of the crane to be both safe and efficient from the onset of the lifting operation. Prior
studies have indicated a Sim-to-real gap of 41.1-52.6% depending on the sensors used, after 50 hours
of training on a 64 core CPU and NVIDIA A100 80GB GPU [17].

ANN results are frequently measured against benchmarks for performance. This approach provides
easily understandable quantitative measurements but has led to progressively larger models due to
their exceptional results when trained on cloud compute [28]. This increase in computational power
usage negatively impacts carbon emissions. It is hypothesized that the use of sparse ANN on the
edge could reduce the carbon footprint in comparison to larger models trained using simulation [8].

The use of explainable models such as CfC ANN and tools like saliency maps can potentially enhance
user trust. Industrial applications often prohibit the use of black box models; therefore, having a
trustworthy, easily implementable algorithm that provides visualizable attention could eliminate
some barriers to the widespread adoption of autonomous lifting operations. The repository for this
research is publicly available and open-source1.

1
Repository for the project: https://github.com/R-Liebert/LOKI-G
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5.6 Limitations of the study

This study has been conducted on a robot arm that was simulating a crane. As this was conducted
in a lab, the light conditions were reasonably consistent, the environment was static and natural
disturbances were absent. The only sensor used was a single camera. There have still not been
experiments performed on multimodal CfC ANN [13]. To only rely on one image stream poses an
increased risk towards sensor failure and would limit the applications to those where all information
is within the camera’s field of view.

5.7 Recommendations for Future Research

This study served to provide experimental proof of concept. A logical next step might be to
investigate the Zero-shot learning capabilities further by teaching a robot a specific task and then
altering the environment and the task itself. Although the investigation aimed to explore if a larger
model would negatively impact performance due to increased computational time, this was found
not to be the case. Therefore, future research could explore the development of more compact CfC
ANNs through optimization of the design with hyperparameter tuners such as SigOpt-Lite [25].

Considering that most cranes are equipped with a range of sensors, measuring parameters from
hook load to boom position, the development of a multimodal CfC ANN could potentially enhance
safety in autonomous crane operations.

To further ensure safety during lifting operations, an intriguing approach may lie in the utilization of
BarrierNet [30]. Introducing a safety layer between the CfC ANN and the outputs/controller could
allow for quantitative research to measure the number of interventions required by the BarrierNet on
a model trained using LOKI-G versus one trained in simulation. This would provide an opportunity
to document the difference in carbon footprint between the methods.

Since the commencement of this thesis, several advancements have been made in the field. One
notable development is "A Walk in the Park" [26]. In contrast to the current experiment, which
used PPG in the RL phase, this work is based on a Soft Actor Critic (SAC). Another promising
technique for use in the IL phase is the application of Inverse soft-Q learning in IQ-learn [10]. The
current experiment employed basic Behaviour Cloning in the IL phase. As LOKI-G presents a
general approach, there is potential for improvement through the utilization of novel IL and RL
methods with faster convergence to train the CfC ANN.
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Chapter 6

Conclusions

In order to reach the primary objective, the following secondary objectives were identified in the
Introduction chapter.

• Analyzing the open-source frameworks for performing IL and RL in an industrial

setting, with a focus on the eligibility of the LOKI algorithm and CfC ANN.

The Open-Source rllib library was the most promising candidate as a framework for performing
IL and RL in an industrial setting, with a focus on the eligibility of the LOKI algorithm and
CfC ANN. Rllib is "the industry-standard reinforcement learning Python framework" and
promises "a fast path to production" [2]. However, it became apparent that the documentation
was outdated, and the framework does not support RNN for IL. Consequently, it became
necessary to build everything from scratch regarding data and model management, which was
successfully completed. As such this objective can be considered to be met.

• Adapting the LOKI algorithm to offline IL and state-of-the-art (SOTA) RL.

The LOKI-G algorithm was developed with the purpose of meeting this goal and can be found
on the GitHub provided in this thesis. This objective was also met.

• Creation of a custom environment for performing lifting operations. Create log-

ging tools for State-Action pairs used in offline IL and reward function for RL.

A custom environment was created in order to facilitate communication between the Robot
Arm and the algorithm. It was capable of logging State-Action pairs in both online and offline
parts of the trials. This objective has been met.

• Evaluate the performance of the model when performing the lifting operation,

focusing on risk minimization, efficiency and explainability.

The performance of the model was evaluated and described in the Discussion chapter of this
thesis. We have managed to achieve explainability by adding a saliency map. This objective
has also been met.

Considering all of the secondary objectives have been mapped, we can conclude that there is indeed
potential for integrating a generalized version of the ’LOKI’ fast policy learning method with Closed-
form Continuous-time Neural Networks. This thesis shows that the described method is suited
for developing an efficient, robust and transparent solution for real-world lifting operations using
minimal training examples.

6.1 Summary of main findings

During this research, it has been shown that a sparse neural network trained on a sub-optimal
expert manages to perform a lifting operation in a safe and efficient with minimal examples. While
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the precision of the basket placement was offset by the target, this was a consistent behaviour and
likely linked to sensory input. It has been proven that small networks suitable for training and
operation on edge devices perform adequate lifting operations and further research in this direction
of environmentally friendly development of machine learning is justifiable as a countermeasure to
increasingly large neural networks in the cloud.

Our proposed algorithm LOKI-G, Algorithm 2, performed as expected in a controlled environment.

6.2 Reflection

During the course of this research, we discovered that the act of waiting, a common aspect of human
performance, plays a crucial role. In the process of designing a model for controlling cranes and
other industrial equipment, attention is easily directed towards actions where an actuator is moved.
However, it was found that a human operator frequently engages in periods of inactivity during a
lifting operation. If the model is not provided with the option to wait, it invariably seeks an action
that involves moving an actuator. This tendency can lead to undesirable behaviour, as in many
scenarios, the most appropriate action is no action.

While the importance of quality data is heavily emphasized in machine learning curricula, reflections
were made on how this principle affected performance in a real-world setting. The demonstrations
on which the model was trained were collected by two individuals in a lab, each observing the arm
from different directions. This situation could be equated to having two stereo cameras, two motion
sensors, and two microphones positioned at 0°and 90°relative to the robot arm. In contrast, the
model had only one stationary camera at its disposal. The stark discrepancy in the volume of data
available to the model, as compared to the humans, appears disproportionate when comparing the
model’s performance with human performance. To ensure a fair comparison with human perfor-
mance, the data collected for the model should ideally match the volume of data a human operator
would use to perform the same task.

During the preliminary project, there were anticipations of performing the experiment using industrial-
grade hardware and open-source software. Regrettably, this did not materialize. Proprietary hard-
ware solutions and inaccurate documentation significantly constrained the outcomes and put pres-
sure on the time limits. While this issue is not unique to this experiment, it has a greater impact
when the research has limited previously related experiments to draw upon. The academic repre-
sentation of the experiments would have potentially benefited substantially from a more focused
approach, concentrating on the basic performance of the proposed algorithm rather than adopting
an industrial perspective.
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