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Characteristics of the tumor microenvironment (TME) such as the leaky intratumoral 
vascular network and the density and composition of the desmoplastic extracellular matrix 
(ECM) contain essential information that determine the possibly heterogeneous interstitial 
fluid (IF) velocity field and interstitial fluid pressure (IFP). This information plays an 
important role for how anticancer drug that is delivered through the blood vasculature 
will distribute and possibly affect the tumor. The main question we deal with in this work 
is: Can we lure the cancer cells to reveal such information to us? By means of an in silico 
tumor model we demonstrate that subject to the condition that the tumor progression 
behavior is dominated by a cancer cell phenotype which moves by fluid-sensitive migration 
mechanisms as reported from experimental works, such information about the TME can be 
acquired by measuring the change in the cancer cell volume fraction distribution between 
two times T0 and T1, e.g., based on MRI images. We demonstrate this principle by using a 
continuum based multiphase model for tumor progression combined with assimilation of 
observed data through an ensemble Kalman filter approach which has been extensively and 
successfully used for updating advanced multiphase flow models in the context of reservoir 
simulation. Our results based on a synthetic dataset demonstrate how the methodology 
can be used to extract valuable quantitative information (e.g., interstitial fluid velocity 
field and fluid pressure, tissue conductivity reflecting ECM status, and effective vasculature 
conductivity) for which direct measurements may not be possible or impractical.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

1.1. Data-driven modeling

There is considerable interest in the use of computational methods to gain insight into tumor progression and treat-
ment. Research groups have incorporated imaging data into macroscopic models of tumor cell growth in order to include 
elements of patient specific information when simulating the effect of a therapeutic drug on the tumor progression [70,71]. 
These works have elucidated the significant potential of using computational methods in a patient-specific and predictive 
framework to forecast the response of tumors to therapy. By relying on assimilation methods previously employed in the 
setting porous media reservoir flow [1,13,14,41], we seek in this work to demonstrate the forecasting power of biophysical 
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Fig. 1. IFP measured at two different positions inside the tumor for (A) 15 tumors with a homogeneous histology. (B) 15 tumors with a heterogeneous 
histology. The points represent single tumors. (C) Example of a tumor with homogeneous histology. (D) Example of a tumor with heterogeneous histology, 
showing that the tissue was divided into compartments by thick bands of connective tissue. Reproduced from [22][DOI: 10.1016/j.tranon.2019.05.012] with 
the courtesy of E. Rofstad.

and biomathematical modeling in the context of tumor growth and therapy [73]. This study aims to investigate two related 
issues: (i) whether a parameter estimation technique together with a partial differential equation (PDE) based model is able 
to gain valuable information about the tumor microenvironment (TME); (ii) and if this information can be used to predict 
further development of the tumor. TME heavily impacts how the tumor is developing through the different stages [69,58], 
in addition to the evolution of malignancies. The penetration distance and distribution of drugs, i.e. the effectiveness of the 
drug, is hindered by the tumor microenvironment [60,28]. A motivation for the current work has been a recent work on 
preclinical models of cervical carcinoma cancer [22]. The authors investigated interstitial fluid pressure in HL-16 cervical 
carcinoma xenograft tumor models. The study showed that IFP could differ substantially within the central region of the tu-
mor as shown in Fig. 1. Significant IFP heterogeneity inside the tumor was associated with the presence of thick connective 
tissue bands that divided the tumor into compartments. Fibroblasts that are recruited into tumor masses, called tumor-
associated fibroblasts (TAFs) or cancer-associated fibroblasts (CAFs), are the main cellular components of the surrounding 
stroma of many solid cancers. Evidently, these CAFs provide a range of different cytokines, growth factors, tissue remodeling 
enzymes and extracellular matrix (ECM) components, all of which regulate the tumor stroma [11,31]. Gaggioli et al. [20]
discovered that fibroblasts may act as leader cells of a collective group of following carcinoma cells. This would allow cancer 
cells to retain their epithelial features, which is observed in solid tumors in vivo and also in vitro [75,16], while having a 
mesenchymal-like cell to lead them to invade the adjacent stroma. Furthermore, Gaggioli propose that cancer cells move 
within paths in behind fibroblasts. These paths are created by the fibroblasts both through proteolytic activity and force-
mediated matrix remodeling [6]. Fibroblast-enhanced tumor cell migration was reported by Shieh et al. in the presence of 
interstitial flow where, similar to Gaggioli et al., it was found that fibroblasts create tracks within the ECM for cancer cells 
to follow [55]. Later, Labernadie et al. identified another possible mechanism to which fibroblasts lead cancer cells through 
a heterotypic cell-cell adhesion between the two types of cell [36]. This mechanism represents a direct fibroblast-cancer 
cell interaction through N-cadherin/E-cadherin junctions. In a recent work a cell-fibroblast-fluid multiphase model [66] was 
developed and explored to shed light on the preclinical findings reported in [22]. A special feature of the model is that it 
can explore possible interrelations, in a continuum based setting, between characteristics of TME which affect IF and IFP 
and fluid-sensitive migration mechanisms for fibroblasts and cancer cells, which dictate the tumor progression and possible 
invasive behavior as explored experimentally in [3,22].

1.2. Research question/problem setup

The research question we focus on in this work is: Given that we know the tumor cell distribution in a 2D setting in 
terms of a volume fraction αc(x, t) at a time T0. By assuming that we have access to information about the tumor cell 
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distribution (through, e.g., MRI image) at a later time T1, how can we extract quantitative information about the tumor 
microenvironment (TME) like tissue conductivity (which is related to ECM structure), IF velocity field and IFP as well as 
effective vascular conductivity? A more precise statement in terms of mathematical variables and parameters is made after 
the mathematical model with its different assumptions has been given in Section 2. The proposed methodology implies that 
we (indirectly) can extract useful information about TME like ECM bands and IFP and tumor vasculature while the tumor is 
still developing. Such information was collected and measured after the mice were anesthetized in [22]. A relevant question 
to address is under what assumptions this is possible as it seems by no means obvious that observation of cancer cell 
migration behavior only can reveal information about the IFP and IFP velocity field.

To put this question into perspective it seems instructive to refer to recent research where physics-informed deep learn-
ing methods are developed in the context of fluid mechanics [53,54,52]. The aim is to learn velocity and pressure fields from 
flow visualizations. More precisely, by means of the assumption that the underlying dynamic is described by the classical 
Navier-Stokes (NS) equations and observations (in terms of images) of a passive scalar, such as the transport of dye or smoke 
in physical systems and contrast agents in biological systems, one tries to extract information about corresponding velocity 
and pressure fields (which are much more challenging to measure directly). The key is the combination of many images of 
the passive agent concentration that follows the fluid flow and incorporating the NS equations in the loss function (objec-
tive function) used for training the physics-informed deep learning networks [54]. In the tumor setting, a main additional 
complicating factor is that the manner cancer cells make use of or relates to fluid is more involved. Our framework relies 
on a mathematical model for tumor progression where fibroblasts and tumor cells migrate driven by chemotaxis towards 
higher concentrations of chemical agents. The chemical agents are governed by the fluid velocity field [55,49,63,17]. The 
fluid velocity field and IFP is in turn a result of TME characteristics through tissue conductivity (which is a result of ECM 
structure) and tumor vasculature through internal hydraulic pressure and effective vascular conductivity. Hence, in theory 
there is room for detecting TME characteristics through observing changes in the cancer cell volume fraction, although it 
seems to the best of our knowledge as a relatively unexplored issue. The framework we use for implementing and testing 
this approach is to combine the cell-fibroblast-fluid model [67] for tumor progression with assimilation of observed cancer 
cell volume fraction at times T0 and T1, respectively through an ensemble Kalman filter approach.

The ensemble based approaches have been applied for a multitude of large-scale estimation problems [1,13–15,27,41,64], 
including within weather forecasting and reservoir engineering. It has a particular strength in updating spatial fields. The 
application investigated in this paper has clear similarities to updating multiphase models within reservoir engineering. In 
both cases one would update several spatially varying parameter fields based on available measurements. The current work 
utilizes the experience built up over a couple of decades on the use of ensemble based approaches within reservoir engi-
neering. A main difference between this approach and the one mentioned above based on physics-informed deep learning, 
is that we only have observations of cancer cell distribution at two different times whereas the first make use of mea-
surements scattered in both space and time. In that respect, our approach bears similarity to the calibration method that 
has been used more recently in a series of works [70,71]. On the other hand, their approach and the one we pursue differ 
in the sense that the cancer cell migration mechanisms they account for are not directly coupled to fluid flow but tissue 
mechanical properties and therefore does not give estimates of IFP and IF velocity.

Why are we interested in the TME characteristics like IFP and the corresponding IF velocity field? While it is a potent 
driver of invasion in brain [46,33] skin [23] and breast cancer [55,49] IF flow has been poorly measured and characterized 
in vivo. It is thereby pertinent to develop accurate means to quantify IF flow in the pre-clinical and clinical settings through 
noninvasive methods [34,68,59]. It is of interest to extract information pertaining to the TME with a special eye to informa-
tion about the leaky intratumoral vascular network and characteristics of the desmoplastic ECM. The ECM possibly involves 
heterogeneous dense structures of stroma and presence of CAFs that play a central role in remodeling of ECM as well as 
tumor progression. This is relevant for the planning and performance of neoadjuvant therapies whose purpose is to shrink 
the primary tumor before it is removed through surgical operation. Typically, a therapeutic drug will reach the primary 
tumor through the intratumoral microvascular network by leaking through the aberrant blood vessel walls [58]. Depending 
on the amount of fluid that leaks and the ECM density and structures, an elevated possible heterogeneous, interstitial fluid 
pressure (IFP) is formed on the inside of the tumor with a rapid decrease at the tumor margin. This results in a correspond-
ing fluid velocity field in the region close to tumor margin which will affect the drug transport. Hence, the efficiency of the 
drug most likely depends critically on the above mentioned parameters associated with TME, in addition, to other aspects 
like cancer cell resistancy to the drug in question [58].

1.3. Methodology

We explore our in silico tumor framework by using synthetic generated data. That is, we assign a stochastic model for 
the unknown parameter vector θ which typically involves spatial-dependent Gaussian random fields as well as constant 
parameters. A Gaussian random field is specified through the given mean, variance and correlation. The output of the model 
is the state vector Y = F (X, θ) where αc (cell volume fraction) is one of them and X is the input vector of known input 
data (initial states and parameters that characterize the model system and assumed to be known). F represents the solution 
operator associated with the PDE model. The methodology is as follows:
3
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Fig. 2. Illustration of the methodology used in this work based on the EnKF approach. Note that Y refers to the full solution of the model (1) whereas U
refers to a subset of Y representing the observation data which in our case is the cancer cell distribution αc(x, T1).

(i) A parameter vector θ true is generated from the specified stochastic model(s). This is used to compute the true tumor 
status represented by the state vector Y true = F (X, θ true) through the multiphase tumor model [66]. From this we 
extract the observed tumor status denoted by Usub which in our case is represented by the cell volume fraction Usub =
αtrue

c (x, T1) at time T1. See upper action line of the scheme in Fig. 2. The question is: To what extent are we able to 
identify a good approximation θest of θ true by only making use of the observation αtrue

c (x, T1) (including measurement 
noise)? By populating the computer model with the estimated parameter vector θest , how well can we predict the true 
behavior represented by Y true at the later time T2?

(ii) The first step is to span out the solution space by generating an ensemble {θi}N
i of N different parameter vectors θi

based on prescribed stochastic models. The solution vectors {Yi}N
i=1 where Yi = F (X, θi) then represent the solution 

space. See the lower action line of the scheme in Fig. 2. We might expect to see a large variation in the computed 
tumor progression behavior, similar to the preclinical study shown in Fig. 1 (panel A and B), where IFP vary between 
10 and 45 mmHg.

(iii) By using the information from Ûsub = {αc,i(x, T1)}N
i=1 extracted from {Yi}N

i=1, we can compute the error as compared 
to αtrue

c (x, T1). The ensemble Kalman filter approach then allows us to compute an updated ensemble of parameter 
vectors {θ∗

i }N
i=1 (possible through several steps to deal with the nonlinearity in the problem) designed to minimize this 

error. See the scheme in Fig. 2.
(iv) The final step is to compute an updated parameter vector θ∗

as an average of {θ∗
i }N

i=1, from which we can compute 
the tumor state Y ∗ = F (X, θ∗

) where the error between α∗
c (x, T1) and αtrue

c (x, T1) has been minimized and where 
α∗

c (x, T2) hopefully represents a good prediction of αtrue
c (x, T2).

We explore this approach subject to certain constraints. We first assume that the tumor progression in the simulated period 
[0, T2] is dominated by cancer cell migration and not growth. Then, we evaluate how inclusion of growth, whose parameters 
also must be estimated, may have an impact on the ability of detecting information about TME through the parameter vector 
θ . In order to make this work focused, parameters that characterize the cancer cell and fibroblast phenotype are assumed 
to be known. However, we test the robustness of the method by considering different phenotypes. Our conclusion is that 
the methodology seems to offer a promising general approach for data-driven simulation of tumor progression, at least as 
far as we can assess from the testing based on synthetic data.

2. Method

We will use the multiphase model that was explored in [66] to shed light on the preclinical data in [22] to represent the 
in silico tumor model. This model bears many similarities with previous models as described in [7,26,72,44,12,39,45,4,70,
29,24,47]. Motivated by recent results which emphasize the possible role played by fluid flow and related forces as a means 
4
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Table 1
Variables used in the model (1).

Variable Description

φ,αc , α f , αw tissue porosity, volume fraction of cell, fibroblast and fluid
Sc , S f cell growth/death
uc , u f , uw interstitial cell, fibroblast and fluid velocity
C , H chemokine and TGF (transforming growth factor)
P w , Pc , P f IF pressure, solid stress associated with cancer cell, fibroblast
�P f w , �Pcw , �C , �H CAF-CAF, cell-cell stress, chemokine and TGF chemotactic stress
ζc , ζ f , ζw , ζc f cell-ECM, fibroblast-ECM, fluid-ECM and cell-fibroblast coefficients
Q v , Q l transvascular flux related to blood vessels, lymphatic vessels
T v , Tl conductivity of vascular vessel wall, conductivity of lymphatic vessel wall
P̃∗

v , P̃∗
l effective vascular pressure, effective lymphatic pressure

DC , D H diffusion coefficients
Q C , Q H production/decay rates associated with C , H

for cancer cells to seed distant metastases [17], we will inform the model with experimentally observed fluid-sensitive 
migration mechanisms, both for fibroblasts and cancer cells. In the following we give a compact summary of the model and 
refer to [66] for more details.

2.1. Underlying assumptions and principles for the mathematical multiphase model

1. We consider three separate phases in terms of cancer cells αc , fibroblasts (CAFs) α f and interstitial fluid αw which are 
represented through separate mass balance equations and momentum balance equations which account for the stress 
tensor and external forces for each individual phase [26,39].

2. Cancer cells and CAFs are able to generate friction forces and active traction forces [2]. To represent these mechanisms 
the tissue is considered as a porous medium composed of a stagnant, rigid solid matrix that essentially represents the 
ECM structures whereas the porous space is available for the cancer cells, CAFs and fluid to move through. The momen-
tum balance laws, which are a generalization of the standard Darcy equation commonly used [72], explicitly represent 
interaction forces between cancer cells and CAFs as well as resistance forces (friction) between the different phases and 
underlying matrix [50]. This allows to explore how elevated intratumoral IFP is a result of the tissue conductivity and 
aberrant intratumoral vasculature caused by solid stress [45,4,12].

3. The intratumoral blood and lymphatic vasculature are modeled by using a continuum approach based on Starling’s law 
[72,45,12,59].

4. We explicitly account for solid stress through Pc and P f , respectively, associated with cancer cells and fibroblasts, 
similar to what is done in [18,72,26,39,44]. More precisely, Pc = P w +�P +� where P w is IFP and �P and � represent 
stress generated by the moving cells/fibroblasts as they interact with the surrounding ECM structure through diffusive 
spreading and chemotactic migration, respectively,

5. Solid stress is reported to be a driver for the development of the aberrant intratumoral vasculature with high intravas-
cular pressure and high vasculature conductivity reflecting a high degree of leaky walls [28,48]. Solid stress may also 
suppress proliferation and promote cancer cell phenotype with higher degree of viability [18,28,43].

2.2. Tumor cell-fibroblast-fluid model

Let φ be the volume fraction occupied by the pore space through which the cells and fluid can move whereas 1 − φ

represents the remaining matrix volume fraction. The mathematical model takes the following form using variables as 
summed up in Table 1:

(φαc)t + ∇ · (φαcuc) = Sc

(φα f )t + ∇ · (φα f u f ) = S f , αc + α f + αw = 1

(φαw)t + ∇ · (φαw uw) = −Sc − S f + Q , Q = Q v − Q l

αc∇(P w + �Pcw + �C ) = −ζcuc + ζc f (u f − uc)

α f ∇(P w + �P f w + �H ) = −ζ f u f − ζc f (u f − uc)

αw∇ P w = −ζw uw

(φαw C)t = ∇ · (DC ∇C) − ∇ · (φαw Cuw) + Q C

(φαw H)t = ∇ · (D H∇H) − ∇ · (φαw Huw) + Q H

(1)

where ui = (ux
i , u

y
i ) for i = c, f , w . Since φ is here assumed to be constant it can be incorporated in the dimensionless 

time and grouped with the velocities uw , u f , uc [67] (Appendix A). Mass balance equations for cancer cells, fibroblasts 
5
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Table 2
Source terms in (1)7,8 accounting for production/decay of chemokine and growth 
factor.

Function Description

Q C = αcα f λ11

(
1 − ( C

CM

)νC
)

− λ12αc C − MC Q lC

Q H = α f λ21

(
1 − ( H

H M

)2 − ( H
H M

)νH
)

− λ22α f H − λ23 H − MH Q l H

and interstitial fluid are accounted for through (1)1-3. The next three equations, (1)4-6, are the corresponding momentum 
balance equations [26,39]. The RHS of (1)4 is separated into two terms: ζcuc representing the resistance against migration 
felt by cancer cells from the ECM, ζcf (u f −uc) represents the drag force exerted by fibroblasts on cancer cells. �Pcw (αc) and 
�P f w(α f ) are functions quantifying the elevated pressures seen in the cell phase compared to interstitial fluid pressure P w . 
This yields a diffusive-like cell migration, i.e., a random migration [72,70,71]. The potential function �C (C) represents the 
additional phase pressure of cancer cells due to chemotaxis toward chemokine (C). �H (H) represents the additional phase 
pressure associated with the fibroblast phase due to chemotaxis toward growth factor (H). The two remaining equations, 
(1)7-8, are transport-reaction equations for the chemical components chemokine and TGF. Rate terms for production/decay 
of C and H are given by Q C and Q H and are specified in Table 2. The values used for different rate terms λi j are given in 
Table 6 (Appendix A) and are largely based on previous calibration [55,63,66].

2.3. Cell-matrix and cell-fibroblast interaction coefficients

The interaction coefficients which are used in the model are specified as follows:

ζw = I wkwαrw
w , ζc = Ickcα

rc
c , ζ f = I f k f α

r f

f , ζc f = Ic f α
rc f
c α

r f c
f (2)

The parameters I w , Ic and I f represent static properties of the tissue, whereas kw , kc and k f can account for dynamic 
properties related to for instance ECM remodeling and fiber alignment. The coefficients rw , rc , r f , rcf and r f c play a similar 
role to the use of relative permeability functions in standard Darcy’s equation approach extended to several phases [50,66]. 
The parameter I w represents the fluid-ECM resistance force and is set such that a realistic interstitial fluid velocity and IFP 
are obtained, typically in the range of 0.1-1 μm/s and 5 − 50 mmHg, respectively [56,49,23,22,17]. Through the parameter 
kw(x) we can account for local heterogenities like the bandlike structures reported in [22] and seen in Fig. 1. Moreover, Ic f

is a constant determining the order of magnitude of the cell-fibroblast interaction. We assume that fibroblasts remodel and 
degrade the ECM, making it easier for the cancer cells to migrate in their path [20,55,6]. This is represented through the 
following equation:

kc = 1 − A
(
1 − exp(−Bα f )

) = kc(α f ) (3)

where A and B are specified constants. We refer to Table 5 (Appendix A) for values used.

2.4. Starling law

In nearly all tissue, plasma leaks out of blood capillaries, flows through the interstitium and drains into lymphatic vessels, 
where it passes through lymph nodes before being returned to the venous blood [28]. This circulation is expressed on the 
RHS of (1)3 through the term Q = Q v − Q l . Starling Law is used for the flow of fluid into the interstitium given by [72,12]

Q v = T v
(

P∗
v − P w − σT (π∗

v − πw)
) = T v

(
P̃∗

v − P w
)

T v = Lv
S v

V
(4)

where P̃∗
v = P v − σT (π∗

v − πw). Here Lv is the hydraulic conductivity (m2 s/kg=m/Pa s) of the vessel wall, S v /V (m−1) the 
exchange area of blood vessel per unit volume of tissues V. P∗

v and P w the vascular and interstitial fluid pressure, π∗
v and 

πw the osmotic pressure in the vascular and interstitial space and σT the osmotic reflection coefficient for plasma proteins.
The lymphatic system drains excessive fluid from the interstitial space and returns it back to the blood circulation, as 

expressed by Q l . The lymphatics are typically not functional in the intratumoral region [28,72,48,58]. The loss of functional-
ity is caused by compressive solid stress that is developed in tumors. Through this stress the intratumoral lymphatic vessels 
collapse. Similar to the expression of Q v in (4), we use an expression of the following form to express the absorption of 
fluid through the lymphatics

Q l = Tl(P w − P∗
l ), Tl = Ll

Sl

V
. (5)

Here Ll is the hydraulic conductivity of the lymphatic vessel walls whereas Sl /V is the surface area of the lymphatic vessel 
per volume unit of tissues V and P∗ is the effective lymphatic pressure.
l

6
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2.5. Cancer cell and CAF velocities

From (1) an expression for the interstitial cell velocity uc , CAF velocity u f , and IF velocity uw can be derived [63,67]:

uc = f̂ c

αc
UT︸ ︷︷ ︸

(i)

− ĥ1 + ĥ2

αc
∇(�Pcw(αc))︸ ︷︷ ︸

(ii)

− ĥ1 + ĥ2

αc
∇(�C (C))︸ ︷︷ ︸
(iii)

+ ĥ2

αc
∇�H (H)︸ ︷︷ ︸

(iv)

+ ĥ2

αc
∇(�P f w(α f ))︸ ︷︷ ︸

(v)

(6)

u f = f̂ f

α f
UT + ĥ2

α f
∇(�Pcw(αc)) + ĥ2

α f
∇(�C (C)) − ĥ2 + ĥ3

α f
∇�H (H) − ĥ2 + ĥ3

α f
∇(�P f w(α f )) (7)

uw = f̂ w

αw
UT + ĥ1

αw
∇(�Pcw(αc) + �C (C)) + ĥ3

αw
∇(�P f w(α f ) + �H (H)). (8)

We refer to Table 4 (Appendix A) for more information related to the functions f̂ c , f̂ f , and ĥ1, ̂h2, ̂h3. It follows that these 
functions depend directly on the correlations (2). The terms on the RHS of (6) represent different migration mechanisms, 
resulting in the overall velocity uc [66]:

(i) Fluid-generated stress
(ii) Diffusive spreading

(iii) Chemotaxis of cells toward higher concentration gradients in chemokine
(iv) Migration due to fibroblast chemotaxis towards higher concentration gradients in TGF
(v) Migration due to fibroblast diffusion.

2.6. Summary of the model

Below is a short summary of main characteristics of the model which has been designed to be consistent with migration 
mechanisms observed through in vitro studies [55,49,46,63,67] and used to shed light on preclinical studies [22,67]:

1. Fluid is leaking from the vascular system residing near the periphery of the initial tumor and is absorbed by lymphatics 
in the peritumoral region, characterized by Q = Q v − Q l where Q v is given by (4) and Q l by (5). The resulting fluid 
flow field is directed from the vascular to the lymphatic system [23,12]. Tumors develop elevated IFP because they show 
high resistance to blood flow (i.e., P̃∗

v in (4) is high), low resistance to transcapillary fluid flow (i.e., T v in (4) is high), 
and impaired lymphatic drainage (i.e., Q l in (5) is located to the peritumoral region) [3].

2. Chemical components in terms C (chemokine) and H (growth factor TGH) are secreted and produced by cancer cells and 
fibroblasts. These chemical components diffuse and advect with the fluid flow, creating chemical gradients downstream 
of the flow (1)7−8. Cancer cells αc and fibroblasts α f migrate towards positive gradients of their respective chemotactic 
chemical, chemokine and transforming growth factor (TGF).

3. A large resistance force is imposed on the cancer cells, making it difficult for them to migrate. I.e., the cell-ECM in-
teraction coefficient ζc in (2) takes a large value Ic . Fibroblasts, on the other hand, are considered much more mobile. 
They migrate driven by chemotaxis. Cancer cells may attach themselves onto fibroblasts through the interaction term 
ζcf and/or follow tracks where fibroblasts have migrated through the term (3) due to the diminished resistance in their 
wake. This yields a largely fibroblast-dependent cancer cell migration [20,55,36].

2.7. Estimation of parameters that characterize TME

The aggressiveness of the cancer cells through the model (1)–(5) lies in their interaction with CAFs combined with fluid-
sensitive migration mechanisms. The model is armed with a fixed set of parameters that determines the cancer cell and 
fibroblast phenotype as specified in Table 4, 5, and 6, as used in [67]. On the other hand, parameters that characterize the 
TME, such as the leaky intratumoral vascular network through Q v(x, t) given by (4) and the density and composition of the 
desmoplastic ECM through kw (x) in (2) and initial fibroblast distribution α f (x, t = 0) = α0

f (x), are unknown and must be 
estimated. More precisely, the parameters that we estimate are:

(a) kw(x) which accounts for the inverse of the interstitial hydraulic conductivity through which the possible compartment 
structure (see Fig. 1) can be represented.

(b) α0
f (x) which represents the initial fibroblast distribution assumed to be placed in a heterogeneous bandlike region that 

surrounds the primary tumor [65,37].
(c) the intratumoral vascular filtration parameter T v (x) involved in (4) which accounts for the area and leakiness of blood 

vessel walls.
7
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Fig. 3. (A) The characteristic length is L∗ = 1 cm (Table 3, Appendix A). Hence, the diameter of the initial primary tumor is around 0.3 (dimensionless), 
i.e., 0.3 cm, in the domain of size 1 × 1 (dimensionless), i.e., 1 cm × 1 cm. Initial cell volume fraction, α0

c (x). The red ring surrounding the tumor has a 
volume fraction of αc = 0.01. The grey area within the tumor is a superimposed illustration of where the vascular system is located. The grey peritumoral 
area shows where the fluid is drained through the functioning lymphatic system. (B) Example of initial fibroblast distribution α0

f (x) in a bandlike region 
surrounding the initial tumor. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

As observed data we shall only use the cell volume fraction αtrue
c (x, T1) assumed to be observed at some time T1. We 

perform an in silico simulation study to assess the ability of this methodology to capture the TME-related parameters. Then 
we populate the forward model with these key model parameters and use it to simulate the tumor progression in the time 
period [0, T2] with T2 = 2T1 where we can do a final assessment by comparing with observed data αtrue

c (x, T2). We refer to 
Appendix B for a description of the EnKF based method for how to compute the updated parameter vector θ = (α0

f , kw , T v).

2.8. Cancer cell and fibroblast phenotype

Important parameters that characterize the strength of the chemotactiv driven migration are �C1 for cancer cells and 
�H1 for fibroblasts. We refer to Table 4 (Appendix A) for the functional expressions and parameter values. Similarly, the 
parameter Ic f (see Table 5, Appendix A) which determines how strongly the more immobile cancer cells tend to attach to 
the more mobile fibroblasts, is important for the tumor progressing behavior. We keep these parameters fixed when we 
explore how we can identify the parameter vector θ that characterizes TME. However, we want to verify that the method 
we use for searching for an estimate of the parameter vector θ is not sensitive to the specific phenotype. Therefore, we will 
also in the next section explore simulation results when we vary these parameters.

3. Results

3.1. Initialization of the model

The unknown variables to solve for by using (1)–(5) are Y = (αc, α f , αw , C, H, uc, u f , uw , P w) = F (X, θ) where X is the 
input vector of known input data (initial states and parameters that characterize the model system and assumed to be 
known) and θ is the unknown parameter vector. The model (1)-(5) is combined with the boundary condition

P w |∂ = P∗
B ,

∂

∂ν
C |∂ = 0,

∂

∂ν
H|∂ = 0, t > 0 (9)

where ν is the outward normal on the domain ∂ with  = [0, 1] × [0, 1] (dimensionless) and P∗
B is atmospheric pressure. 

The corresponding initial data are

αc(x, t = 0) = α0
c (x), α f (x, t = 0) = α0

f (x), C(x, t = 0) = H(x, t = 0) = 0. (10)

We consider a grid of 61 × 61 grid blocks similar to what was used in [67]. For more details related to the numerical 
solution method the interested readers are referred to [67].

The initial tumor cell volume fraction α0
c (x) is assumed to be known and is shown in Fig. 3 (panel A). The tumor has 

a high concentration core of αc = 0.3 and will quickly decrease at the periphery, around 0.15 cm from the center of the 
primary tumor. Hence, we have developed a tumor with homogeneous tumor cell distribution and well defined margins.

The initial fibroblast volume fraction α0
f (x) is one of the unknown parameters to be estimated. A typical example is 

shown in Fig. 3 (panel B). As mentioned above, the vector of unknown parameters θ is given by
8
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θ = (α0
f (x),kw(x), T v(x)). (11)

The implementation of ECM bands through kw is motivated from the study of cervical carcinoma tumor HL-16 models in 
[22], see Fig. 1. Herein, the bands are thought to affect the intratumoral pressure profile, yielding a heterogeneous IFP. We 
refer to the recent work [66] for a discussion of this issue in light of the model (1)-(5). In Fig. 3 (panel A) we can see 
the superimposed vascular system which is restricted to a bandlike region within the tumor (grey ring-shaped region). The 
filtration parameter T v is assumed to take a constant value in this region. The intravascular pressure P̃∗

v involved in (4) is 
assumed known and set to be P̃∗

v = 6000 Pa (45 mmHg) relatively atmospheric pressure.
The lymphatic network is restricted to the peritumoral grey region seen in Fig. 3 (panel A). We assume that the inner 

lymphatic pressure P∗
l is known and set to P∗

l = −300 Pa (-2.25 mmHg) while the filtration constant Tl is set to Tl T ∗ =
0.0054 [1/Pa] where T ∗ is the reference time (see Table 3) which typically gives IFP in the range [-3,3] mmHg in the 
peritumoral region [42,22]. As part of the EnKF methodology we first generate an ensemble of realizations for the parameter 
vector θ . For that purpose we shall restrict them to vary within the following ranges:

α0
f (x) ∈ [0,0.38], kw(x) ∈ [1,105], T v T ∗ ∈ [0.0005,0.005] (1/Pa), (12)

where T ∗ is the reference time (see Table 3). These intervals are set such that the resulting IFP lies within the range of 
10-45 mmHg consistent with the results reported in [22], see Fig. 1B. Herein, α0

f (x) and kw(x) are derived from Gaussian 
random fields [40]. The fields are generated with a spatial distribution based on a Gaussian random field with different 
practical ranges depending on the features of the parameter that is estimated [10,66]. For fibroblasts the practical range is 
4 in the x and y direction. See Fig. 3 (panel B) for an example of α0

f (x). For kw(x) we have developed an algorithm that 
creates thick bands within the primary tumor such that the tumor can be separated into several compartments [66]. Using 
this algorithm yields bands similar to the histological surveys shown in [22]. The vascular filtration coefficient T v takes a 
constant value in a bandlike region but is randomly varying between each ensemble member.

3.2. What is the solution space spanned by the in silico model?

The different times that are involved in the following discussion are T0 = 0, T1 = 25, and T2 = 50 (dimensionless) where 
T2 = 50 amounts to 5.8 days. We define the total production of fluid Q v from the leaky tumor vasculature to be

Q v =
∫


T v(x)( P̃∗
v − P w(x, T1))dx, (13)

while a representative expression for the IFP of one specific tumor is found from the average

IFP = 1

2

(
P w(x1, T1) + P w(x2, T1)

)
(14)

where P w(xi, T1) (i = 1, 2) refers to the numerical calculated P w corresponding to position xi at time T1. Here x1 and x2
refer, respectively, to numerical grid block (28, 28) and (32, 32). These two positions are chosen randomly but such that it 
can mimic what is done experimentally in, e.g., [22]. The interstitial fluid pressure P w is strongly correlated to the interstitial 
fluid velocity uw through the tissue conductivity as represented through kw . In turn, the fluid velocity field determines the 
distribution of chemical components C and H and, consequently, impacts the fibroblast and cancer cell migration patterns. 
Hence, IFP might play a vital role as to how the tumor develops over time. Associations have been reported between high 
IFP and metastatic propensity, i.e., dissemination of cancer cells to lymph nodes [19,42,23,22]. Based on the random fields 
generated for each member of the ensemble, we achieve a vast spectrum of different pressure profiles. This is illustrated in 
Fig. 4, which shows the mean IFP defined through (14) versus the fluid production from the vasculature expressed through 
Q v given by (13), for an ensemble of 100 different realizations of θ = (α0

f (x), kw(x), T v).
In Fig. 5 we show results for 3 different samples (#16, #33, and #96) from the total ensemble of 100 samples. Rows A-C 

reflect the parameter vector θi = (α0
f i(x), kwi(x), T vi) for i = 16, 33, 96. ECM bands represented through kw for the three 

different members are shown in row A. The corresponding initial fibroblast distributions α0
f are shown in row B whereas 

T v is illustrated in row C. Computed results at time T1 are shown in rows D-F: cancer cell volume fraction αc(x, T1) is 
shown in row D, IFP P w(x, T1) in row E, and IF velocity field uw(x, T1) in row F. The location of the ECM bands largely 
determines the heterogeneous IFP and fluid velocity field. Since the tumor progression is driven by fluid-sensitive migration 
mechanisms, the invasive front is also correlated to IF.

In the following, we generate an ensemble of parameter vectors {θ true
i }20

i=1 of 20 members with corresponding simulation 
results Y true

i = F (X, θ true
i ). We select a candidate from this ensemble as our “observed” data. The result in terms of θ true

i
corresponding to #7 is shown in Fig. 6 (left column, panel A-C). The question we now raise is: How can we obtain a best 
possible estimate of this parameter vector θ true

7 such that the error to the observed cancer cell observation αtrue
c (x, T1) (left 

column, panel D), which is the only observed data we will make use of, is minimized and a best possible prediction of 
the distribution αtrue

c (x, T2) is obtained? Note that zero mean uncorrelated noise with standard deviation 0.03 is added to 
αtrue

c (x, T1) before it is used to compute updated parameter vector θ (Appendix B). We also tested by choosing noise with 
9



G. Nævdal and S. Evje Journal of Computational Physics 492 (2023) 112449
Fig. 4. Spanned solution space. Illustration of the spanned solution space measured in terms of Q v vs IFP as expressed by (13) and (14), respectively, which 
corresponds to the a priori ensemble vector θ = {θi}Nens

i=1 with Nens = 100. © = (Q v , IFP) based on the mean initial parameter vector θ . × = (Q v , IFP) based 
on θ true .

standard deviation 0.05 and 0.07, respectively, which gave quite similar results. A main effect of higher level of noise in the 
observation data is that the uncertainty (standard deviation) in the updated parameter vector becomes higher. This is as 
expected.

3.3. Can the cancer cells reveal characteristics of the TME?

The starting point for searching for a good estimate of the parameter vector θ = (α0
f (x), kw(x), T v) is the a priori en-

semble {θi}Nens
i=1 generated above and illustrated in Fig. 4 where further details are shown for three of its members in Fig. 5. 

Each member of the ensemble has the same initial condition of tumor cell volume fraction α0
c (x), seen in Fig. 3A, as we 

consider this to be observable data from an image of a tumor.
The ensemble members are a set of samples from the prior distribution. Each ensemble member i has a different pa-

rameter vector θi given by (11), i.e., θi = (α0
f i(x), kwi(x), T vi) for i = 1, . . . , Nens with Nens = 100. Every member of the 

prior distribution θi is run through the computational model, i.e., we compute Yi = F (X, θi) for i = 1, . . . , Nens, from initial 
condition at time T0 = 0 until time T1 = 2.9 days.

In particular, as explained in Appendix B, this allows us to extract di = h(θi) = αci(x, T1) from which we obtain the 
ensemble mean h(θ) defined by (26) to be used in combination with the observed data d = αtrue

c (x, T1) (after including mea-
surement uncertainty), as expressed by (29). Armed with the updated ensemble parameter vector θ∗

i = (α0,∗
f i (x), k∗

wi(x), T ∗
vi)

with estimated fields obtained in accordance with (30), we utilize the corresponding updated ensemble mean θ
∗ =

(α0,∗
f (x), k∗

w(x), T ∗
v ) from (29) to perform a forecast Y ∗ = F (X, θ∗

) at observation time T1 where we have observation 
αtrue

c (x, T1) as well as final time T2 = 5.8 days where we have observable data αtrue
c (x, T2). In Fig. 6 we have visualized the 

different elements of the updated parameter vector θ∗
(middle column) which can be compared with the corresponding 

true parameter vector θ true
7 (left column). The difference is visualized in the right column of Fig. 6. In particular, by compar-

ing the estimated and true parameter vector θ (panel A - panel C) we see that main trends are largely captured. This is also 
true for the observed and computed cancer cell volume fraction at time T1 (panel D). However, the error plot (right column) 
illustrates that there are local variations in the estimated conductivity through log(k∗

w)(x)) (row C) which are not seen in 
the true. This error, in turn, gives rise to some voxel-to-voxel mismatch when comparing initial fibroblast distribution (row 
A) and cancer cell distribution (row D) up to the order of 0.1. Herein we have used, as described in Appendix B, the iterative 
approach called ensemble smoother - multiple data assimilation (ES-MDA) to better handle non-linearities in the predicted 
observed values h(θ) with N = 4 iterations.

What about the prediction at time T2? The results of the predicted behavior at time T2 are shown in Fig. 7 (middle 
column) and should be assessed in light of true data (left column). The difference is again visualized in the right column. 
Main observations from Fig. 6 and Fig. 7 are: (i) The essential trends of the true ECM band structure through ktrue

w in Fig. 6
(row C, left) is captured by the estimated k∗

w in the same row, middle panel. Similarly, for the vasculature conductivity T true
v

and T ∗
v in row B. (ii) Consequently, the predicted and true heterogeneous IFP in Fig. 7 (row C) and IF velocity field (row 

D), respectively, coincide fairly well. (iii) Finally, the predicted and true cancer cell migration pattern (row A) and fibroblast 
10
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Fig. 5. Illustration of 3 different samples θi with i = 16, 33, 96 from the ensemble of Nens = 100 and corresponding computed in silico tumors at time T1.
Row A: ECM bands through kwi(x); Row B: initial fibroblast α0

f i(x); Row C: vascular conductivity T vi(x); Row D: computed cancer cell volume fraction 
αci(x, T1); Row E: computed IFP P wi(x, T1); Row F: computed fluid flow velocity uwi(x, T1).

migration pattern (row B), respectively, in Fig. 7 shows good agreement. The right column of Fig. 7 shows that the difference 
in velocity field (row D) is responsible for some voxel-to-voxel mismatch in the position of the migrated fibroblasts (row B) 
which also gives rise to similar mismatch in the cancer cell distribution (row A).

We seek more insight into the 4-step iterative estimation procedure we have employed by plotting the difference be-
tween the true parameter vector θ true and the updated parameter vector θ∗

i where i = 1, . . . , Nens. Fig. 8 illustrates the 
estimation error for the three fields that are being estimated: the fibroblast volume fraction α0 in panel A, the logarithm 
f

11
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Fig. 6. Visualization of synthetic true parameter vector θ true
7 corresponding to case #7 (left column) and estimated parameter vector θ∗

(middle column) and 
the difference (right column). Row A. Initial fibroblast volume fraction: True α0,true

f (x) (left) and estimated α0,∗
f (x) (middle). Row B. Vascular conductivity: 

True T true
v (x) (left) and estimated T ∗

v (x) (middle). Row C. True conductivity through log(ktrue
w (x)) (left) and estimated log(k∗

w )(x)) (middle). Row D. True 
cancer cell volume fraction αtrue

c (x, T1) (left) based on θ true
7 and computed α∗

c (x, T1) (middle) based on θ∗
. We only use of αtrue

c (x, T1) when we update 
the parameter vector θ∗

by means of EnKF.

of the inverse tissue conductivity kw (panel B) and the vascular filtration constant T v in panel C. The estimation error is 
calculated using root mean square error (RMSE) (i.e., L2-norm) between the true parameter θ true and the updated ensemble 
θ∗

i of each respective field:

RM S Ei =
∥∥∥θ true − θ∗

i

∥∥∥
L2

, i = 1, . . . , Nens (15)

where θ here refers to α0
f , kw , and T v , respectively. The estimation error is monotonically decreasing as a function of 

iterations. The iterative approach relies on ES-MDA which increases the measurement uncertainty in each step, leading to a 
better linear approximation of the predicted observed values through many steps compared to only one step (Appendix B). 
12



G. Nævdal and S. Evje Journal of Computational Physics 492 (2023) 112449
Fig. 7. The simulated result at time T2 based on the true parameter vector θ true
7 (left column) and on updated parameter vector θ∗

(middle column), and 
the difference (right column). Row A. True cancer cell volume fraction αtrue

c (x, T2) (left) and the predicted α∗
c (x, T2) (right). Row B. True fibroblast volume 

fraction αtrue
f (x, T2) (left) and the predicted α∗

f (x, T2) (right). Row C. True interstitial fluid pressure P true
w (x, T2) (left) and the predicted P∗

w (x, T2) (right).

Row D. True interstitial fluid velocity utrue
w (x, T2) (left) and the predicted u∗

w(x, T2) (right).

The objective function O measures the mismatch between the observed data d and model prediction h with updated 
ensemble parameter vector and is written as

O i = (h(θ∗
i ) − d)T 1

N
C−1

D (h(θ∗
i ) − d), i = 1, . . . , Nens (16)

where d = αtrue
c (x, T1) is the observed data and h(θ∗

i ) is the model prediction α∗
ci(x, T1) when using the updated ensemble 

parameter vector θ∗
i . Moreover, N is the number of iterations and C D is the covariance matrix of the measurement noise. 

The objective function shown in Fig. 8 (panel D) shows that the mismatch has a steep decline after one iteration then starts 
to even out.

In order to give an impression of the effect of using the updated parameter vector θ∗
i , we compute Yi = F (X, θ∗

i ) for 
i = 16, 33, 96. The results are presented in Fig. 9 and should be compared with the results in Fig. 5 which are based on 
the a priori parameter vector θi . The main observation is that all three cases show clear similarity to the behavior of the 
true data shown in Fig. 6 (left column) and Fig. 7 (left column). Further information about the behavior of the ensemble 
13
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Fig. 8. Estimation error and objective function showing data mismatch: Estimation error of the three estimated fields, calculated through the RM S Ei

(15): (A) the initial fibroblast volume fraction α0
f , (B) logarithm of the inverse tissue conductivity kw and (C) the vascular filtration constant T v . (D) Data 

mismatch as measured by the objective function O i (16). The red horizontal lines show the median, the top and bottom blue edges indicate the 25th and 
75th percentile, respectively, for the ensemble. The whiskers extend to the most extreme data points.

Yi = F (X, θ∗
i ) can be extracted by making a plot similar to the one in Fig. 4 in terms of Q v and IFP but now based on the 

updated parameter vector θ∗
i . Results are shown in Fig. 10 and illustrates how the updated parameters and predictions as 

expressed by (Q v , IFP)-points tend to stay in a smaller region that includes “true” behavior (cross) whereas the behavior 
based on the a priori parameter vector shown in Fig. 4 is much more spread out.

This example confirms that since the tumor progression is driven by cancer cells and fibroblasts that depend on fluid-
sensitive migration mechanisms (chemotaxis), information about TME is implicitly present and affects the change in the 
cancer cell volume fraction distribution over time. This information can be extracted from only observing the change in αc

from time T0 till time T1 and used to populate the in silico model with an updated parameter vector θ∗ such that a good 
prediction at the later time T2 is obtained.

3.4. What is the effect of adding proliferation to the in silico model?

A natural question is what happens if tumor progression also involves growth and death of cancer cells. Is it so that 
these changes in the cancer cell volume fraction can “mask” for the role played by the TME characteristics that affects the 
cancer cell and fibroblast migration? We include a logistic growth term of the form [70,71]

Sc = αc(x, t)K p

(
1 − αc(x, t)

θp(x)

)
= αc(x, t)K p

(
1 − αc(x, t)βp(x)

)
, βp = 1

θp
(17)

where K p is the growth rate and θp is the tumor carrying capacity (i.e., the maximum volume fraction of cancer cells 
that a region can support). The parameter Kp (proliferation rate) is assumed to be constant and vary within the interval 
[0, 1] ×10−5 s−1 from one tumor to another. The quantity θp(x) is here set to vary within the interval [ 1

6 , 12 ] (i.e., βp ∈ [2, 6]) 
and as a Gaussian random field. This gives room for interesting and more realistic tumor progression behavior within the 
simulated time period [0, T2]. Heterogeneity in cancer cell density might be understood as a result of spatially varying 
carrying capacity which may occur due to physical limitations (e.g. decrease in available space to grow) and environmental 
limitations (e.g. poorly perfused, low nutrient concentration) [25,24]. In order to account for this situation we extend the 
parameter vector and consider θE given by

θE =
(
α0

f (x),kw(x), T v , K p, βp(x)
)
. (18)

Similarly, as for the previous case we use sample #7 to represent synthetic data but where we now have augmented 
the parameter vector by using θE defined by (18) instead of (11). Fig. 11 shows the true data (left column) through θ true

versus the estimated parameter vector θ∗ (middle column). A quantification of the difference is shown in the right column 
of Fig. 11. In Fig. 11 we find the new rows D and E that represent, respectively, K p and βp . The main observation is that the 
estimated field k∗

w shown in row C (middle panel) is more diffusive and misses some of the characteristic structure of the 
true counterpart (left panel), see plot in right panel for a more precise quantification of the difference. On the other hand, 
the estimation of the growth related parameter K p in row D is fairly good where the difference in value is around 0.1 (see 
right panel) and the essential spatial heterogeneities of βp shown i row E is largely captured by the estimated parameter 
β∗

p . This is also confirmed by the results in row F showing the observed cancer cell volume fraction αtrue
c (x, T1) versus the 

computed α∗
c (x, T1) based on the updated parameter vector θ∗ . The periphery of the tumor in row F is quite similar, as 

well as the distribution within the tumor, for the two cases. The error plot in the right column shows that there are local 
differences of the order of 0.1 which is similar to the case without proliferation. We also see from row F that the cancer cell 
volume fraction is considerably higher in regions where βp (row E) takes lower values and therefore promotes proliferation. 
14
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Fig. 9. Illustration of 3 different samples from Fig. 5 based on the updated parameter vector θ∗
i for i = 16, 33, 96. Row A: ECM bands through k∗

wi(x); Row 
B: initial fibroblast α0,∗

f i (x); Row C: vascular conductivity T ∗
vi(x); Row D: computed cancer cell volume fraction α∗

c,i(x, T1); Row E: computed IFP P∗
wi(x, T1);

Row F: computed fluid flow velocity u∗
wi(x, T1).

On the other hand, the cell volume fraction is low in regions where βp (row E) takes high values and indicate a low tumor 
carrying capacity.

What about the predicted tumor status at the later time T2 based on the updated parameter vector θ∗? In Fig. 12 we 
find a comparison of true tumor status at time T2 versus the predicted based on θ∗ , respectively, in the left column and 
middle column, whereas the difference is shown in the right column. Row A shows that we still can obtain an estimate of 
the observed cancer cell volume fraction αtrue

c (x, T2) (left) through the predicted α∗
c (x, T2) (middle) on a level similar to 

the case without proliferation. In particular, the error associated with α∗
c (x, T2) is similar (∼ 0.1). This is partly due to the 

fact that the main trends of the new quantities K p (row D) and βp(x) (row E) in Fig. 11 are largely captured.
On the other hand, we see that estimated IFP (row C, middle panel) in Fig. 12 is higher than the true IFP (left panel). In 

fact, from the error plot in the right panel we see that there are local differences in the range of 20 mmHg. This is related 
to the difference in true and estimated fluid velocity field shown in row D, which is more significant for this example, as 
can be seen from a comparison with the error plot in Fig. 7 (row D, right panel). The inaccuracies in IFP and fluid velocity 
field are a consequence of the fact that the estimated k∗

w (row C, right panel) in Fig. 11 is more diffusive and is lacking 
some of the sharp transitions of the true ktrue

w in left panel.
15



Fig. 10. Illustration of the spanned solution space based on the observation αtrue
c (x, T1). The updated ensemble parameter vector θ∗ = {θ∗

i }Nens
i=1 with 

Nens = 100 has been obtained through 4 iterations and used to generate updated simulations Y ∗
i = F (X, θ∗

i ) at time T1. © = (Q v , IFP) based on θ∗ . 
× = (Q v , IFP) based on θ true .

This suggests that if the tumor progression is more dominated by proliferation the method we use may give a poorer 
approximation of the true parameter vector θ true despite the fact that the prediction of the cancer cell volume fraction 
αc is good. This reflects a situation where the information involved in the objective function (16) is insufficient to discern 
properly between growth and go behavior. All in all, the current version of the estimation method seems to handle fairly 
well inclusion of growth as long as it affects the tumor progression on a level as shown in Fig. 11 over the time period 
under consideration.

3.5. Does the finding depend on the cancer cell phenotype?

We recall that we have used a fixed set of parameters to represent the cancer cell and fibroblast phenotype. So what 
happens if we change these parameters? Is the calibration method sensitive to the cell phenotype? We focus on the pa-
rameters �C1, �H1, and Ic f mentioned in Section 2.8. As before, we assume that these parameters are known when we 
generate synthetic data as well as carry out the estimation procedure. We also test the EnKF approach for another data set 
(synthetic) to verify robustness with respect to variation in observation data.

Phenotype I. We consider as observed data sample #7 (i.e., we use θ true
7 from the ensemble of the 20 in silico TME charac-

teristics) to generate the synthetic observed tumor statues d = αtrue
c (x, T1), however, where we have changed cancer cell and 

fibroblast migration parameters as follows: �C1, �H1, and Ic f are all multiplied by 2 compared to default values (see Ta-
ble 4 and Table 5). We ignore proliferation in this example. This will rise to a stronger outwardly directed chemotaxis-driven 
migration of fibroblasts and cancer cells through the higher values of �C1 and �H1 combined with a stronger cell-fibroblast 
interaction through increased Ic f which promotes collective migration. Based on this new αtrue

c (x, T1) we use the EnKF with 
4 iterations to generate an updated parameter vector θ∗ which in turn is used to predict the tumor progression in the time 
period [0, T2] In Fig. 13 we show the estimation error behavior of the parameter vector θ = {θi}Nens

i=1 as compared to the 
true θ true

7 (panel A - panel C). We see a convergence behavior similar to the first example, except from T v (panel C) which 
does not show complete decreasing behavior. Then, in Fig. 14 the true and predicted behavior is shown. Comparing with 
the corresponding results in Fig. 7 reveals that the quality of this prediction is quite similar to the default case. The error 
plots shown in the right column of Fig. 7 and Fig. 14, respectively, also confirm this. This test suggests that the estimation 
method is robust with respect to changes in the parameters that characterize the chemotaxis-driven migration as well as 
cancer cell-fibroblast interaction.

Phenotype II. As a second test, we change the interaction coefficient Ic f to be half of the default value while �C1 and 
�H1 are twice as large as default values. This means that the cell-fibroblast coupling is weakened which gives more room 
for individual behavior. At the same time we also want to check sensitivity to the choice of observed (synthetic) data 
by choosing another sample. We choose sample #12 from the ensemble of 20 “true” in silico tumors with Sc = 0 (no 
proliferation). The “true” behavior is shown in Fig. 15 (left column) at time T2 with the predicted behavior shown in the 
middle column and the difference in the right column. The “true” behavior shows a situation with stronger spreading of 
G. Nævdal and S. Evje Journal of Computational Physics 492 (2023) 112449
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Fig. 11. Visualization of synthetic true parameter vector θ true
7 (left column), estimated parameter vector θ∗

(middle column), and the difference (right 
column) for the case with inclusion of proliferation through the growth term (17). Row A. Initial fibroblast volume fraction: True α0,true

f (x) (left) and 
estimated α0,∗

f (x) (middle). Row B. Vascular conductivity: True T true
v (x) (left) and estimated T ∗

v (x) (middle). Row C. True conductivity through log(ktrue
w (x))

(left) and estimated log(k∗
w )(x)) (middle). Row D. True growth factor K true

p (left) and estimated K ∗
p (middle). Row E. True carrying capacity through βtrue

p

(left) and estimated β∗
p (middle). Row F. True cancer cell volume fraction αtrue

c (x, T1) (left) based on θ true
7 and computed α∗

c (x, T1) (middle) based on θ∗
. 

We only make use of αtrue
c (x, T1) when we search for an estimate of the parameter vector θ∗

by means of the EnKF approach.
17
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Fig. 12. Simulated result for the case with proliferation at time T2 based on the true parameter vector θ true
7 (left column) and on updated parameter vector 

θ
∗

(middle column). The difference is shown in the right column. Row A. True cancer cell volume fraction αtrue
c (x, T2) (left) and the predicted α∗

c (x, T2)

(middle). Row B. True fibroblast volume fraction αtrue
f (x, T2) (left) and the predicted α∗

f (x, T2) (middle). Row C. True interstitial fluid pressure P true
w (x, T2)

(left) and the predicted P∗
w (x, T2) (middle). Row D. True interstitial fluid velocity utrue

w (x, T2) (left) and the predicted u∗
w(x, T2) (middle).

isolated clusters of fibroblasts (row B, left panel) and a more invasive, heterogeneous tumor margin with several isolated 
islands shown in row A, left panel. The corresponding IFP is shown in row C (left panel) and IF in row D (left panel). 
Clearly, it reflects a heterogeneous situation with high values of kw in some regions which gives rise to a heterogeneous 
fluid velocity field as shown in row D where fluid flows in the direction of least resistance. The predicted behavior shown in 
the middle column at time T2 reflects an overall match with the true data behavior in terms of main trends. The error plots 
in the right column reflect that there are local differences between true and predicted behavior on a similar level as for the 
base case. In particular, the more invasive and aggressive cancer cell migration pattern is largely captured (row A), as well as 
the fibroblast distribution (row B), which must be understood in view of the corresponding fit with the TME characteristics 
as expressed by IFP (row C) and IF velocity field (row D). More information about the parameter estimation error and data 
mismatch is given in Fig. 16 and behaves similarly to the previous case. This test case indicates robustness with respect to 
different type of observed (synthetic) data in terms of cancer cell spreading and corresponding TME characteristics, as well 
as robustness with respect to different phenotypes.
18
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Fig. 13. Estimation error and data mismatch for phenotype I. Estimation error of the three estimated fields, calculated through RM S Ei (15): (A) the 
fibroblast volume fraction α0

f , (B) logarithm of the inverse tissue conductivity kw , and (C) the vascular filtration constant T v . (D) Data mismatch as 
measured through the objective function O i (16).

4. Discussion

Experimental based research has revealed that cancer cells as well as fibroblasts make use of fluid sensitive migra-
tion mechanisms through autologous chemotaxis [56,55,49,46,17]. Patient data has shown that the greater the number of 
metastatic lymph nodes, the higher the levels of CCR7 expression [21]. Conversely, tumors lacking CCR7 expression have 
shown only low rates of lymph vessel invasion [57]. At the same time, other research groups have through preclinical and 
clinical studies searched for associations between metastatic propensity (lymph node metastasis) and various characteristics 
of the tumor microenvironment, features pertaining to the ECM structure and the aberrant blood vasculature. Both affect 
the drainage of fluid from the leaky vasculature and the collecting peritumoral lymphatics, which determines the tumor IFP 
and IF velocity field. A drawback is that such information is extracted through histological analysis and/or invasive methods. 
Several preclinical studies have found an association between lymph node metastases and high IFP [23,3,22]. High-tumor 
IFP was associated with poor disease-free survival independent of conventional prognostic factors, such as tumor size, stage, 
and lymph node status [74,19]. Taken together, this suggests that fluid-sensitive migration mechanisms in fact might be at 
work in real-life tumors and possibly play a role in tumor progression and invasive behavior, as well as metastatic dissem-
ination [17,76]. On the other hand, research groups have demonstrated how MRI data which gives information about the 
tumor status in terms of cancer cell distribution during growth [25,24] as well as during anticancer treatment [29,30] at, 
e.g., two or several different times, can be used to calibrate continuum based models for tumor growth to fit the observed 
data, and then used to predict the outcome of the tumor progression/regression [70,71,29,24,30].

Motivated by this research, we have raised the question: Subject to the condition that tumor progression is driven by 
fluid-sensitive migration mechanisms, can the cancer cells inform us about TME characteristics? More precisely, given only 
information about the cancer cell distribution at an initial time T0 and a later time T1 (e.g., through MRI), can we detect 
information about TME like tissue conductivity, IFP and IF as well as estimate of the effective vascular conductivity involved 
in Starlings law? These are quantities that cannot easily be obtained by direct measurements. The tumor microenvironment 
is an important factor looking at the effectiveness of a drug [60,58]. Having more information available may help making 
better choices with regard to schemes for efficient drug delivery. Information about the presence of fibroblasts may also be 
useful in a treatment setting, however, such information seems not possible yet to extract without invasive methods.

We explore this question by means of a multiphase model (1)–(5) that accounts for fluid-sensitive migration mechanisms
that have been reported from experimental work [56,55,36]. These mechanisms are indirectly fluid flow dependent, consid-
ering that the underlying chemical component of chemotaxis and growth factor are advected by the fluid flow. The model 
has been used previously to shed light on preclinical data which search for associations between TME characteristics and 
metastatic propensity [66,22]. The computational model is here used in combination with a data assimilation technique that 
uses only one observation of the cancer cell volume fraction αtrue

c (x, T1) of a tumor, in addition to a known initial state, to 
estimate initial fibroblasts volume fraction α0

f (x), inverse tissue conductivity kw(x) and vascular filtration constant T v . These 
are field parameters that characterize important aspects of the tumor microenvironment that most likely play an important 
role in the evolution of the tumor as well as resistance to anticancer drug [42,23,28,58,3,22]. The EnKF based approaches 
have been applied in a large number of applications over the last couple of decades [1,13–15,27,41,64], but examples within 
cancer research are to the best of our knowledge scarce (an exemption is [35]). However, the EnKF based approaches are in 
general easy to implement and test as they can be implemented non-intrusively with respect to the simulation model. We 
use synthetic data obtained by simulation of the PDE model (1)–(5) which has been populated with a stochastic-generated 
input parameter vector θ = (α0

f , kw , T v) which characterizes TME. Main findings are:

(i) Since the tumor progression is driven by cancer cells and fibroblasts that depend on fluid-sensitive migration mecha-
nisms (chemotaxis), information about TME is implicitly present and affects the change in the cancer cell volume fraction 
distribution over time. This information can be extracted by means of the EnKF approach by observing the change in αc
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Fig. 14. Phenotype I: The simulated result at time T2 based on the true parameter vector θ true
7 (left column) and on updated parameter vector θ∗

(middle 
column) and the difference (right column) where cancer cell and fibroblast parameters �C1, �H1, and Ic f have been multiplied by 2 (phenotype I). Row A. 
True cancer cell volume fraction αtrue

c (x, T2) (left) and the predicted α∗
c (x, T2) (middle). Row B. True fibroblast volume fraction αtrue

f (x, T2) (left) and the 
predicted α∗

f (x, T2) (middle). Row C. True interstitial fluid pressure P true
w (x, T2) (left) and the predicted P∗

w (x, T2) (middle). Row D. True interstitial fluid 
velocity utrue

w (x, T2) (left) and the predicted u∗
w(x, T2) (middle).

from time T0 till time T1 and employed to compute an updated parameter vector θ∗ . Populating the PDE model with this 
parameter vector results in a good prediction of the tumor status at the later time T2.

(ii) By including growth of cancer cells through a constant growth factor K p and a spatial varying carrying capacity term 
βp(x), estimation of the input parameter vector θ and corresponding prediction of tumor status at later time, gave slightly 
poorer result. If the effect of proliferation is dominating, the current version of our estimation method is more uncertain 
since these changes may mask the changes in cancer cell volume fraction due to fluid-sensitive migration. On the other 
hand, the estimation of the spatial varying carrying capacity term βp(x), which is responsible for spatial tumor heterogene-
ity, showed good result.
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Fig. 15. Phenotype II: The simulated result at time T2 based on the true parameter vector θ true
12 (left column) and on updated parameter vector θ∗

(middle 
column). The difference is shown in the right column, where cancer cell and fibroblast parameters �C1 and �H1 have been multiplied by 2 whereas and 
Ic f has been halved (phenotype II). Row A. True cancer cell volume fraction αtrue

c (x, T2) (left) and the predicted α∗
c (x, T2) (middle). Row B. True fibroblast 

volume fraction αtrue
f (x, T2) (left) and the predicted α∗

f (x, T2) (middle). Row C. True interstitial fluid pressure P true
w (x, T2) (left) and the predicted P∗

w (x, T2)

(middle). Row D. True interstitial fluid velocity utrue
w (x, T2) (left) and the predicted u∗

w(x, T2) (middle).

(iii) When the tumor progression is dominated by the fluid-sensitive migration mechanisms (which relate migration to 
tissue conductivity, IFP, and IF) the assimilation method appears to be robust with respect to variation in cancer cell and 
fibroblast migration/interaction characteristics.

This opens for the possibility that a more invasive tumor progression, while a challenge with regard to promoting lymph 
node metastasis, it might be possible to indirectly extract valuable quantitative information (e.g., interstitial fluid velocity 
field and fluid pressure, tissue conductivity reflecting ECM status, and effective vasculature conductivity), for which direct 
measurements may not be possible or impractical, that can be used for improved design of patient-specific treatment. A 
natural way to seek to deal more efficiently with the case when growth is more dominating might be to include more 
measurements in the objective (loss) function. For example, other researchers have used tumor metrics like maximum 
diameter of the primary tumor, blood volume, etc, and information about contrast agent delivery [24,30]. A computational 
model developed by Tektonidis et al. investigates the go or grow (GoG) hypothesis in gliomas [62]. The GoG hypothesis 
states that tumor cells have to either be migrating or proliferate. In other words, tumor cells are not able to migrate and 
21
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Fig. 16. Estimation error and data mismatch for phenotype II with synthetic data for case #12: Estimation error of the three estimated fields, calculated 
through RM S Ei (15): (A) the fibroblast volume fraction α0

f , (B) logarithm of the inverse tissue conductivity kw , and (C) the vascular filtration constant T v .
(D) Data mismatch through the objective function O i (16).

proliferate at the same time. Interestingly, the researchers found that a proliferative-motility dichotomy, cell-cell repulsion 
and density-dependent switching between a proliferative and motile phenotype were required to fit the experimental data. 
This observation might be exploited in the framework of the current manuscript. The model used in this work assumes that 
the primary tumor is already established and at a size as shown in Fig. 3. It would also be possible to adapt the model to a 
situation where we consider tumors grown “from seed”. However, TME characteristics as expressed by T v and kw must then 
include a time-dependence to allow for evolution of these characteristics over time. This identification would also require 
access to MRI images sampled at different times over the time period of interest.

A main underlying assumption in our investigations is that tumor growth is dominated by cancer cell and fibroblasts 
migration where fluid flow directs the chemical agents. Future investigations that try to combine MRI based data with 
the model to test the ability of the model to fit preclinical and clinical data as explored by others [9,25,24] appear to be 
an interesting way forward. Another aspect and related issue is to explore extension of the parameter vector to include 
parameters pertaining to the cancer cell phenotype and not only parameters that characterize TME. An interesting and 
important direction for further work is to include delivery of an anti-cancer drug. How can the EnKF approach be used to 
calibrate the model when we study tumor progression under the impact of an anticancer drug [73,29,30]?

The current manuscript has exclusively dealt with synthetic data. An interesting question is how to possibly validate the 
method laid out in this work by other approaches. In a clinical setting it seems not realistic to do any validation without 
adding the effect of an anticancer drug. This approach has been explored by others [70,29,30]. It seems as an interesting
and relevant task to explore the ensemble based approach when an anticancer drug is included. However, this will require 
some further investigations to see how the EnKF approach can be used to extract drug-related parameters, e.g, estimates of 
parameters pertaining to the delivery of the anticancer drug as well as cancer cell sensitivity to the drug.

In a preclinical setting (e.g., mouse model) one may envision to collect MRI images from experiments as reported in 
[3,22], motivated by other work, e.g. [24]. Based on such images one could use the method of the current manuscript 
to extract information about IFP, compartment structures through kw and extracellular matrix components (dense versus 
sparse matrix), fluid flow through T v , and desmoplastic structures (caused by fibroblasts α f ). This information could then 
be assessed by carrying out histological investigations as done in [3,22].

In this study we are limited to 2D simulation results where main purpose has been to demonstrate the concept: how 
to possibly extract information about TME from observing tumor progression extracted from MRI still images at different 
times. As indicated in Appendix C, the current version of the model seems possible to use on a scale relevant for preclinical 
data. However, for larger scales relevant for clinical data in 3D it seems necessary to rely on parallel computing methods 
where one takes advantage of the possibility to run many simulations in parallel. Note that the ensemble based approach of 
EnKF naturally allows for this as the multiphase model for each ensemble member is solved independently. This means that 
a significant reduction in computational time can be achieved by running the simulations on a cluster. There is also room 
for improvement of the numerical method itself by taking advantage of the fact that the IFP and IF velocity field involve 
solving a stationary problem which may not need to be updated with the time steps required by the cell migration [51].
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Appendix A. Input parameters

Table 3
Reference variables.

Variable Description Values

T ∗ Reference time 104 s
L∗ Reference length 0.01 m
u∗ Reference velocity 10−6 m/s
D∗ Reference diffusion 10−8 m2/s
P∗ Reference pressure 104 Pa
C∗ Reference chemokine density 10−4 kg/m3

H∗ Reference TGF density 10−4 kg/m3

CM , HM Max chemokine, TGF density 0.3C∗ , 0.5H∗

Table 4
Functions involved in cell migration given by Eq. (6) and (7).

Function Description Values Source

�Pcw (αc) = −γc ln(δc + [1 − αc ]) (δc=0.01; γc =1 kPa) [63,66]

�P f w (α f ) = γ f α
δ f

f (δ f =25; γ f =7 kPa)

�C (C) = −�C1
1+exp(−ξC (C−CM ))

(�C1=12.5 kPa; [63,66]
ξC = 8/C∗ m3/kg)

�H (H) = −�H1
1+exp(−ξH (H−H M ))

(�H1=25 kPa; [63,66]
ξH = 16/H∗ m3/kg)

f̂ c(αc,α f ) =
αc [α f ζcf +αc (ζcf +ζ f )]

(αc+α f )2ζcf +α2
c ζ f +α2

f ζc+ α2
w

ζw
(ζcζcf +ζcζ f +ζcf ζ f )

(Eqs. (2) and (3))

f̂ f (αc ,α f ) =
α f [αcζcf +α f (ζcf +ζc )]

(αc+α f )2ζcf +α2
c ζ f +α2

f ζc+ α2
w

ζw
(ζcζcf +ζcζ f +ζcf ζ f )

(Eqs. (2) and (3))

ĥ1(αc ,α f ) =
αc

α2
w

ζw
[αc (ζ f +ζcf )+α f ζcf ]φ

(αc+α f )2ζcf +α2
c ζ f +α2

f ζc+ α2
w

ζw
(ζcζcf +ζcζ f +ζcf ζ f )

(Eqs. (2) and (3))

ĥ2(αc ,α f ) =
αcα f (αcα f − α2

w
ζw

ζcf )φ

(αc+α f )2ζcf +α2
c ζ f +α2

f ζc+ α2
w

ζw
(ζcζcf +ζcζ f +ζcf ζ f )

(Eqs. (2) and (3))

ĥ3(αc ,α f ) =
α f

α2
w

ζw
[αcζcf +α f (ζc+ζcf )]φ

(αc+α f )2ζcf +α2
c ζ f +α2

f ζc+ α2
w

ζw
(ζcζcf +ζcζ f +ζcf ζ f )

(Eqs. (2) and (3))

Table 5
Parameters characterizing the mobility of tumor cells and fibroblasts by Eq. (2).

Variable Description Values Source

I w , rw fluid-ECM interaction 2 · 1012 (Pa s/m2), 0 [63,66]
kw fluid-ECM interaction [1,105] calibrated
Ic , rc cell-ECM interaction 5000I w (Pa s/m2), 0.8 [63,66]
kc cell-ECM interaction ≈ 1 (see Eq. (3)) [63,66]
I f , k f , r f fibroblast-ECM interaction 100I w (Pa s/m2), 1.0, 0.6 [63,66]
Ic f , rcf , r f c cell-fibroblast interaction 1000I w (Pa s/m2), 0.5, 0.5 [63,66]
A, B Reduced cell-ECM resistance 0.7, 10 [63,66]
T v T ∗ vascular conductivity [0.0005,0.005] (1/Pa) calibrated
Tl T ∗ lymphatics filtration constant 0.0054 (1/Pa) [66,72]

Table 6
Parameters for production/decay of chemical agents by Eqs. (1)7,8.

Variable Description Values Source

DC Diffusion coefficient chemokine 7 × 10−12 m2/s [63,66]
D H Diffusion coefficient TGF 8 × 10−12 m2/s

λ11 Proteolytically freed chemokine 3 × 10−3 m3/kg s [63,66]
λ12 Cell consumption rate chemokine 1 × 10−4 1/s
νC , MC Logistic rate exponent, absorption percentage 0.25, 50%

λ21 Proteolytically freed TGF 0.5 × 10−6 m3/kg s [63,66]
λ22 Cell consumption rate TGF 5 × 10−3 1/s
λ23 Natural decay of TGF 5 × 10−5 1/s
νH , MH Logistic rate exponent, absorption percentage 0.2, 50%
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Appendix B. Parameter estimation

There is clearly an uncertainty attached to the unknown parameters θ given by

θ = (α0
f (x),kw(x), T v) (19)

used to describe the tumor and its behavior. Each tumor will have its own spatially varying parameter fields, such as the 
initial fibroblast concentration, α0

f , the tissue conductivity through kw , and the vascular vessel wall permeability T v as 
illustrated in Fig. 5. Initially, we assume that we have some knowledge of the typical (spatial) variation of these fields and 
their range as described by (12). The combination of our prior knowledge of the parameter fields with the information 
obtained from the data d, typically in terms of observed cell volume fraction αobs,T1

c at some time T1, can be done with a 
Bayesian approach for solving the model parameter estimation problem [5,61]. In the Bayesian approach, to solve the model 
parameter estimation problem, one starts out with a prior probability distribution, p(θ), of the uncertain parameters, θ . We 
assume that we can compute the likelihood of the data, d = (

αobs,T1
c

)
, as L(d|θ). Combining these two quantities gives us 

the posterior distribution of the model parameters, p(θ |d), as

p(θ |d) = L(d|θ)p(θ)∫
L(d|θ)p(θ)dθ

= L(d|θ)p(θ)

c
(20)

where the integration in the denominator is over the set of all possible model parameters θ . (Here c =∫
all possible θ

L(d|θ)p(θ) dθ .)
To define the prior distribution of the parameter vector θ given by (19) we resort to describe the initial fibroblast 

concentration α0
f (x) and the inverse tissue conductivity kw (x) as spatial varying fields, whereas we keep T v as a value that 

is unknown, but fixed over the computational domain. Describing spatial varying fields is quite common within geosciences, 
see e.g. [10], and we will use terminology from that area. (An example of use of such terminology in the study of human 
tissue is [38].) Samples from the prior distribution can be used to predict the development of the tumor from the initial 
time to a time point of interest, here T1, without constraining the model to any information from images of the tumor. This 
can be used to calculate statistics of interesting quantities, similar as done in the Monte-Carlo simulations provided in [8]. 
Finding samples of the posterior solution p(θ |d) in (20) could in principle be done with the Metropolis-Hastings algorithm, 
which is a Markov Chain Monte Carlo (MCMC) approach [61]. However, to solve the problem with this approach will require 
a large number of simulations. Therefore we suggest to use an approximative method based on the ensemble Kalman filter 
(EnKF). The EnKF approach [14] has become highly used in geoscience, in many fields, including weather forecasting [27,64], 
subsurface flow in reservoir engineering [1], and climate science [32, Chapter 20].

In the case that both the prior distribution and the measurement uncertainty follows a Gaussian distribution, and 
moreover there is a linear relationship between θ and the observed quantity d, a closed form solution for the posterior 
distribution can be obtained. This can be expressed as follows: Assume that the prior distribution p(θ) follows a Gaussian 
distribution N(μ, P ), i.e. it has mean μ and covariance matrix P , and that d|θ follows a Gaussian distribution N(Hθ, R), i.e. 
d is linearly related to θ by the expression Hθ for a matrix H of appropriate dimension, and the uncertainty in the data 
is described by the covariance matrix R . Then the posterior distribution p(θ |d) follows the Gaussian distribution N(μ∗, P∗)
where

μ∗ = μ + K (d − Hμ) (21)

and

P∗ = (H T R−1 H + P−1)−1 = P − P H T (H P H T + R)−1 H P (22)

where I is the identity matrix of appropriate dimension, and K is the Kalman gain matrix

K = P H T (H P H T + R)−1. (23)

More details can be found in e.g., [5,32,61]. It is worthwhile to note that the same solution is obtained if one formulates 
the parameter estimation problem as solving the linear-least square problem

min
θ

(d − Hθ)T R−1(d − Hθ) + (θ − μ)T P−1(θ − μ). (24)

Then the minimum is achieved at μ∗ given as in (21), cf. [5,61].
In general, the relationship between the observation vector d and the model parameter θ is nonlinear. Let us assume 

it can be described by d = h(θ). A set of samples that can serve as an approximative set of samples from the posterior 
distribution can then be found by the following algorithm:

Algorithm 1 (Ensemble smoother). An updated set of ensemble members, taking the measurements into account is calculated 
as follows (i is the index of the ensemble member):
24
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1. Generate an ensemble of samples {θi} from the prior distribution p(θi).
2. Calculate a corresponding set of predicted observed values, di = h(θi).
3. Find an updated ensemble 

{
θ∗

i

}
tacitly assuming that the ensemble of predicted observed values {di} follows a Gaussian 

distribution, utilizing approximations of (21)–(23).

In our case the updated ensemble is calculated using the ensemble transform Kalman filter [27]. (For a range of other 
approaches for handling Step 3 of the above algorithm see for instance [64].) Let Nens denote the number of samples in the 
ensemble. The update equations can then be expressed using the ensemble mean

θ̄ = 1

Nens

Nens∑
i=1

θi, (25)

the mean for the predicted observed values,

h(θ) = 1

Nens

Nens∑
i=1

h(θi), (26)

and the two matrices containing the ensemble of anomalies for θ and h(θ)

A = [
θ1 − θ̄ , . . . , θNens − θ̄

]
, (27)

and

AH =
[

h(θ1) − h(θ), . . . ,h(θNens) − h(θ)
]
, (28)

respectively. Then, the updated mean θ̄∗ is calculated using an empirical Kalman gain matrix K̂

(i) obtained by replacing P with

P̂ = 1

Nens − 1

Nens∑
i=1

(θi − θ̄ )(θi − θ̄ )T = 1

Nens − 1
A AT ;

(ii) the expression P H T with the empirical estimate ̂P H T = 1
Nens−1 A AT

H ;

(iii) H P H T with ̂H P H T = 1
Nens−1 AH AT

H .

This gives an empirical formula for the Kalman gain (cf. (23)) as

K̂ = ̂P H T ( ̂H P H T + R)−1.

From this we can estimate the mean of the posterior distribution as

θ̄∗ = θ̄ + K̂ (d − h(θ)), (29)

which completes our approximations for (21) and (23). A set of posterior anomalies can be obtained by finding a transfor-
mation matrix T such that A∗ = AT , such that in light of (22)

P̂∗ = P̂ − P̂ H T (H P̂ H T + R)−1 H P̂ .

The above expression does not have a unique solution. Our solution is based on the solution from the ensemble transform 
Kalman filter [27] which is given as

T =
[

I + 1

Nens − 1
AT

H R−1 AH

]−1/2

where the power −1/2 in the above expression denotes the inverse of the unique positive definite square root of a positive 
definite matrix. The updated ensemble members are then given as[

θ∗
1 . . . θ∗

n

] = [θ1 . . . θn] T + [
θ̄∗ . . . θ̄∗] , (30)

which gives us an updated ensemble that is giving an approximation of the posterior covariance matrix in (22). Note that 
by this choice of T the mean of [θ∗, . . . , θ∗

n ] equals θ̄∗ making (29) and (30) consistent.
1
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For better handling of any non-linearities in h(θ) we utilize an iterative approach called the ensemble smoother – 
multiple data assimilation (ES-MDA) [13]. This approach is based on the fact that if we make repeated observations of one 
(or more) data point(s), but with a certain higher uncertainty in the observation, we get the same solution as for a single 
observation. To be more precise, select a set of β j(≥ 1)’s and a N such that 

∑N
j=1 1/β j = 1. In the linear Gaussian case, 

assuming that d is observed N times with uncertainty provided by the covariance matrices β1 R , β2 R , . . . , βN R , we obtain 
the same solution of (20) as the one originally obtained by (21)-(23) recursively. We start with p(θ) given by the Gaussian 
distribution N(μ, P ), utilize (21)-(23), but with the covariance matrix β1 R for the first uncertainty in the data. The posterior 
mean μ∗

1 and P∗
1 are used to describe the prior while we utilize the second data vector which has uncertainty in the data 

described with the covariance matrix β2 R . After N set of observations are utilized we get the same solution as having one 
data vector with covariance matrix R , i.e. the posterior is given as N(μ∗, P∗). This argument is now utilized to change 
Algorithm 1 into an iterative approach where the measurement uncertainty is increased in each step, but we return back to 
Step 2 until N updates of the parameters have been done. This has the advantage that we limit the change in the parameter 
vector in each of the steps, and a better linear approximation of h(θ) in the update Step 3 can be achieved.

Appendix C. Numerical computations

The forward problem associated with (1) is solved in a semi-implicit manner. Pressure is computed implicitly (wrt 
time stepping) whereas advection of fluid and cells takes place through an explicit time stepping calculation [66]. For the 
calculations in this work we consider 61 × 61 grid blocks on a domain of size 1 cm×1 cm, i.e., grid blocks size �x =
�y ≈ 0.16 mm. Simulation over a period [0, T2] (which amounts to 6 days) by using around 850 time steps per day takes 
around 140 sec. With this number of grid blocks it takes around 6-7 hours to do the simulation with 4 iterations (Ensemble 
smoother) and with an ensemble of 100 members where the simulated time period from T0 to T1 = T2/2 represents 
approximately 3 days. For the computations we used a HP desktop, Intel(R) Core (TM) i9-9900K CPU @ 3.60 GHz 3.60 GHz.

To consider simulations in a preclinical setting as explored, for example, in [24], we may consider a physical domain of 
size 2.5 cm×2.5 cm. Again, we may use 61 × 61 grid blocks which amount to �x = �y ≈ 0.4 mm. Considering a simulated 
time period [0, T2] of 20 days we find that it takes around 140 sec computing time. This amounts to using around 250 time 
steps per day. Extension to 3D will of course increase the computing time, however, it seems still to be within the reach on 
this scale of the physical domain. For comparison we note that in [24] a numerical grid corresponding to �x = �y = 0.25
mm and �z = 1 mm was used in combination with MR images acquired over a 32 × 32 × 16 mm3 field of view sampled 
with a 128 × 128 × 16 matrix.
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