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Abstract

Tunnel traffic congestion can increase the risk of traffic accidents, tunnel
fires, and environmental effect. Despite numerous studies on traffic forecast-
ing using deep learning, research on tunnel traffic remains limited.Utilizing
traffic flow data from the Norwegian Public Road Administration, this the-
sis analyzes the applicability of recurrent neural networks for tunnel traffic
prediction. The data is retrieved from different sources and traffic sensors
near or inside the tunnels are selected through a geo-spatial analysis. The
recurrent neural network is designed to be trained on either a single tun-
nel or several tunnels. Furthermore, based on their geographical location
and population density, the tunnels are classified as urban or sub-urban.
Based on the results of the experiments and the sample of tunnels used,
the recurrent neural network outperformed the baseline for urban tunnels
in terms of root-mean-squared-error. However, the performance advantage
was not significant for sub-urban tunnels. The addition of features such
as temporal features and category features provided no significant results.
These findings are discussed in the final sections of the thesis.
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Chapter 1

Introduction

The rapid growth of intelligent systems and the increasing production of
data in recent decades have given rise to the emergence of Intelligent Trans-
port Systems (ITS). ITS offers significant potential to revolutionize traffic
management and mitigate the negative effects of traffic congestion in tun-
nels through the deployment of effective strategies [1]. The negative effects
include substantial time delays, a higher risk of traffic accidents, and fuel
wastage. By harnessing the power of the available traffic data by NPRA,
ITS can potentially enhance traffic safety and lead to a better understanding
of tunnel traffic dynamics.

1.1 Tunnels in Norway

Norway is a country distinguished by its mountainous landscape and a huge
network of over 1260 tunnels (2022) [2]. The tunnels represent a critical
component of transportation infrastructure, particularly in mountainous
regions, and ensuring their safety is essential for public welfare. Norway
hosts a diverse range of tunnels, including both road and underwater tun-
nels. One example is the Lærdal tunnel, spanning 24,5 km on the road and
is the longest road tunnel in the world [2].
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1.2 Traffic accidents in tunnels

1.2 Traffic accidents in tunnels

According to the Fire and Explosion Protection Act (2002), tunnels exceed-
ing a length of 500 meters are designated as separate fire objects, necessitat-
ing the implementation of supervision and emergency plans [3]. Recent tech-
nological advancements have facilitated the development of advanced vehi-
cles equipped with features such as "lanekeeping" and "blind-zone alerts"
[3]. Although tunnel accidents may occur less frequently than on open
roads, they often result in more severe consequences. These incidents pre-
dominantly occur near tunnel entrances, often instigated by factors such as
tire punctures or empty fuel tanks [3]. Collisions and other types of acci-
dents account for approximately 15% of these occurrences [3]. Furthermore,
Norway has experienced a significant number of tunnel fires, particularly in
tunnels with steep gradients. Longer and steeper tunnels inherently carry a
greater risk of fires originating from the engines or brakes of heavy vehicles.
For instance, in 2019, the Gudvanga tunnel witnessed a fire caused by a
heavy vehicle, leading to injuries and the tunnel’s subsequent closure for a
time [4]. Tunnel fires also subject surrounding rock structures to intense
heat, potentially leading to structural cracks when exposed to cold moun-
tain conditions. Therefore, comprehensive safety measures and thorough
inspections are necessary before reopening a tunnel. Nonetheless, it is cru-
cial to recognize that these precautions can disrupt commuters who rely on
the tunnel for travel to work or school, and emergency response agencies.

1.3 Early detection of risk factors

Prevention and early detection of risk factors within tunnels can play a
crucial role in ensuring tunnel safety. Among these risk factors, traffic con-
gestion emerges as a significant concern. To address these risks, monitoring
systems leveraging advanced technologies such as sensors, cameras, and
machine learning algorithms are used. Such systems can proactively detect
potential hazards and enable tunnel operators to take preventive measures.
Machine learning models can utilize historic traffic data from tunnels, to
predict the traffic levels h steps into the future. These predictions, in turn,
enable first responders to proactively manage the traffic situation and im-
plement suitable mitigation strategies accordingly.
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1.4 Available data for tunnel traffic

1.4 Available data for tunnel traffic

There is a limitation of open source data sets about tunnel traffic, that
can be utilized for the purpose of this thesis. One of the reasons for this
could be that traffic in tunnels require some necessary preparations such
as filtering out only tunnel traffic from the rest. The Norwegian Public
Road Administration owns different data sets for traffic in general and hold
potential that may be utilized for tunnel traffic forecasting.

In this study, two open-source data sources from the Norwegian Public Road
Administration, namely NVDB and trafikkdata.no, are utilized to compile
an integrated data set of hourly traffic data for tunnels. This data set en-
compasses details such as tunnel names, lengths, opening years, and various
other technical and informative features. Additionally, it incorporates the
hourly aggregated tunnel traffic volume for each tunnel, which is derived
from the corresponding nearby traffic registration point. The data analysis
and training of the model is performed on the acquired data set.

1.5 Deep learning for traffic forecasting

Machine learning has emerged as a promising approach for traffic manage-
ment, offering significant contributions in optimizing traffic flow and travel
time, and improving existing systems.In particular, neural networks, a group
of machine learning models, have displayed a promising aptitude to com-
prehend complex patterns and trends within traffic data and leverage these
findings for forecasting future traffic patterns. Deep learning methodolo-
gies, such as neural networks, have demonstrated the ability to discern and
model the potentially non-linear dynamics and spatio-temporal dependen-
cies present in traffic data. Such complexities prove challenging for classical
statistical models [1].
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1.6 Problem statement

1.6 Problem statement

The direction of the research is guided by a literature review conducted at
the outset of this study. The literature review reveals that several deep
learning models have been developed that are performing well on traffic
forecasting tasks. That includes long-short-term-memory, recurrent neural
networks, and auto-encoders to mention some [5]. However, there is limited
research on using deep learning to predict traffic flow in tunnels.

The literature review reveals that a model is not always able to maintain
its efficiently when applied to data sets from different scenarios. That is
because the model is not able to generalize well enough during its training,
or the data provided to the model is not representative enough. This work
investigates the hypothesis of whether tunnel traffic possess less complexity
as regular road traffic, or if it can be modeled with a simper neural network
than what has been implemented for regular road traffic. However, it is
worth highlighting that the available data is hourly, meaning the granularity
of the data does not reveal real-time behaviour of tunnel traffic.

1.7 Research objective

The main research objective of this paper is to investigate the usability
of the currently available traffic data provided by NPRA for tunnel traffic
forecasting capabilities. The forecasting task is performed using a simple
recurrent neural network (RNN). Through this work the aim is to achieve
a better understanding of the possible underlying patterns that can assist
deep learning models to perform better.

1.8 Research questions

The following research questions are addressed in this work:

1. Q1: What is the nature in terms of trend and seasonality of tunnel
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1.8 Research questions

traffic data?

2. Q2: How does an RNN model trained on a single tunnel perform
versus on multiple tunnels?

3. Q3: Does adding the category (urban, or sub-urban) feature or the
temporal feature improve the model performance?
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Chapter 2

Literature review

This section presents a literature review and key findings that provide an
overview of the current state of the art and the main challenges in the field
of traffic forecasting. Since there is limited research specifically focused on
tunnel traffic forecasting, this review incorporates relevant studies on traffic
forecasting for regular road traffic. The review emphasizes the variations in
research methodologies and the diverse range of machine-learning strategies
that have been employed in the field.

The literature review is presented in two parts. First, the key findings are
presented in terms of the currently used model and techniques that are used
to achieve improved results. The second summarizes the key challenges that
are faced in this field of study,

2.1 Shift towards data-driven models

In general, advancement in traffic prediction is gravitating towards the de-
velopment of more complex and sophisticated models that are capable of
handling big data, dynamic input matrices and non-stationary data. Early
methodologies for estimating traffic behaviour heavily relied on statistical
models such as ARIMA [6]. The limitation of statistical models in captur-
ing the inherent randomness and variability of traffic patterns has led to a

6



2.2 RNN for traffic forecasting

shift towards data-driven models due to statistical models not able to model
non-linearity.

However, the advancement of technology and the emergence of new statisti-
cal methods soon underscored the limitations of these models, particularly
their inability to forecast multiple variables [6]. The data-driven models
are able to capture the dynamic nature of traffic. They are able to uncover
hidden patterns and find correlations and dependencies over time that can
give us a better understanding of the nature of the data.

2.2 RNN for traffic forecasting

The two commonly used models for traffic prediction that have shown
promising results are Long-Short-term Memory (LSTM) and Recurrent
Neural Networks (RNNs) [1], [5]. Recurrent Neural Networks (RNNs) and
Long Short-term Memory (LSTM) networks have proven to be successful
in predicting traffic flow, specifically to capture temporal dependencies in
traffic data, and have been widely used in traffic prediction studies [1]. Ac-
cording to [1] the LSTM and SAE models showed great results compared to
the other models. In another paper [5] which predicts traffic flow with an
RNN model, and auto-encoders using DataInn/AutoPass data from NPRA,
the RNN and auto-encoders outperformed the other models.

2.3 Introduction of additional data features

The addition of new features into the deep learning models is an approach
that has been explored in numerous studies. Moreover, researchers have
been concentrating on leveraging data from different sources, including GPS
and social media information, with the objective of enhancing prediction
accuracy focused on traffic in work zones with both long-term and short-
term forecasting [7]. Together with traffic flow at one station, they used an
upstream and downstream station to evaluate performance gain[7]. Addi-
tionally, they added other features such as the workday, hour in day, and
speed limit. The results however showed that these extra parameters had
little significance for the models’ accuracy [7].
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2.4 Key challenges identified

The work in [8] looked at the relevance of the spatial and temporal features
of traffic registration stations. Their results revealed that using the spatio-
temporal similarities of the stations provided a higher model accuracy rather
than the physically closest station [8]. As stated in both [9] and [10] the
spatial and temporal features are seemed to be the most influential on the
traffic. Additionally, it is suggested in [9] that the amount of data is also
an important factor improving model accuracy.

[9] tested out Logistic Regression, Neural Networks and classification trees
for traffic prediction using big data. The results demonstrated that an
increasing window size gave an improved model accuracy. In addition they
performed clustering techniques to group similar stations together, which
further enhanced the accuracy levels [9].

The work presented in [11] studies the effect of normal and abnormal traffic
conditions, where abnormal conditions are defined at as conditions like un-
foreseen incidents that have interrupted the regular flow. The paper models
and compares three machine learning models using error feedback mecha-
nism to see if has an effect. Among the used tools, KNN-based prediction
models with error feedback performed well for short-term traffic predictions
[11].

2.4 Key challenges identified

This section highlights the key challenges that have been identified during
the literature review.

1. Urban vs inter-city highways

2. Introduction of features

3. Parameter sensitivity

8



2.4 Key challenges identified

2.4.1 1. Urban vs inter-city highways

One of the challenges is the lack of similar traffic scenarios across the var-
ious research efforts on traffic prediction and deep learning. This has led
to a wide range of models that are fit to the data from a specific traffic
setting. The literature review indicates that while no single model is uni-
versally optimal, LSTM and RNNs have over the years demonstrated the
best performance in capturing different types of traffic environments [5].

Many state-of-the-art models exhibit strong performance when trained and
tested on specific datasets that are representative of a particular country,
region, or local traffic patterns [5]. However, this raises concerns about their
ability to generalize across diverse contexts, indicating potential limitations
in their design or a lack of consideration for important features [5].

To address these concerns, it is crucial to evaluate models using a wide range
of traffic data from various settings. A study conducted by researchers in
[1] aimed to enhance the ability to generalize their model by employing a
strategic approach to data arrangement. They used three weeks of data
from each month as training set, while the rest of each month was utilized
as test set.

2.4.2 2. Introduction of features

The study by [5] observed that incorporating additional features such as
timestamps and vehicle gaps into the feature vector negatively impacted
the performance of deep neural networks. Conversely, it positively affected
the performance of SSAE and RNN models. However, as per the insights
from [1], feature engineering might not play a central role in the success
of deep learning models. The justification for this is that deep learning
models are inherently capable of discerning long-term relationships, which
are predominantly present in the raw data [1].

Various attempts have been made in order to find hidden correlations be-
tween traffic and the surrounding elements. In research conducted by [12]
they attempted to incorporate historical data about the upstream and
downstream area around the specific road as it can reveal hidden corre-
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2.4 Key challenges identified

lations to the traffic predictions [12].

2.4.3 3. Parameter sensitivity

As presented in [1], the high sensitivity to parameters in certain deep learn-
ing models is a topic warranting further investigation. If the parameters
sensivity is high, this means that a small change in the parameters of the
model can lead to a big change in the performance of the model.

The following table presents the papers that are studied for the literature
review and the key highlights from each.
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2.4 Key challenges identified

Author(s) Title Key highlights
Vlahogianni, E. I., Kar-
laftis, M. G., & Golias,
J. C. (2014)

Short-term traffic forecasting:
Where we are and where we’re
going

• Model selection is often based on
accuracy rather than considering
the characteristics of the system,
such as the road.

• To improve model selection, non-
linear features of spatio-temporal
traffic evolution and the non-
stationarity of traffic should be
considered.

• Research predominantly focuses
on hybrid neural network models,
which outperform statistical mod-
els in traffic analysis.
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2.4 Key challenges identified

Li, C. S., & Chen, M. C.
(2013)

Identifying important vari-
ables for predicting travel time
of freeway with non-recurrent
congestion with neural net-
works

• Loop detector data from the Na-
tional Freeway in Taiwan was
used to model a Multilayer Per-
ceptron.

• Three factors that influence traffic
flow behavior were characterized:
geometric variables (slope, hori-
zontal curve, etc.), traffic char-
acteristics (average daily traffic,
rush hours), and environmental
factors (rain).

• Different coding schemes for the
weekday variable were tested, and
encoding Monday-Sunday as 1-
7 performed better than other
schemes.

• Adding rainfall as a feature did
not improve accuracy, but includ-
ing the day of the week, morn-
ing/afternoon, and historic travel
time improved performance.
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2.4 Key challenges identified

Mallick, Tanwi, et al.
(2020)

Graph-Partitioning-Based
Diffusion Convolutional Re-
current Neural Network for
Large-Scale Traffic Forecast-
ing

• Diffusion convolutional recurrent
networks are effective for traffic
modeling but have high computa-
tional complexity.

• Graph partitioning is used to de-
compose a large California high-
way into smaller parts for individ-
ual training

• Simultaneous forecasting of speed
and flow is achieved using this
model.

• Overlapping nodes are imple-
mented to maintain relationships
between road parts.

Per Øyvind Kanestrøm
(2017)

Traffic flow forecasting with
deep learning

• Deep learning approach on data
from NPRA

• Focus on spatiotemporal data,
with spatial information found to
have more influence.

• Models using multiple features
from different stations of interest.

• Experiment results showed differ-
ing performance of RNN, DNN,
and SSAE.

13



2.4 Key challenges identified

L. Cai et al. (2020) Traffic transformer: Captur-
ing the continuity and period-
icity of time series for traffic
forecasting

• Traffic Transformer is a deep
learning architecture that cap-
tures the continuity, periodicity,
and spatial dependencies of time
series data.

• Traffic Transformer outperforms
baseline models such as ARIMA,
historical average, LSVR, FNN,
and LSTM.

• Future work is needed to address
the contribution of different roads
at different times and further im-
prove the model’s performance.

J. Salotti et al. (2018) Comparison of traffic forecast-
ing methods in Urban and
SubUran Context • Evaluation of ten methods for

short-term urban road traffic fore-
casting.

• Multivariate approaches are cru-
cial for accurate forecasting.

• Nonparametric K-NN method
performs best in the city center
context.

• Variable selection mechanisms
and algorithm choice depend
on road type and forecasting
horizon.

Table 2.1: List of papers for literature review
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Chapter 3

Theory

This section presents the general traffic flow theory and how the different
variables in traffic can be related to each other. This section also explain
how how different traffic-related terms are used in this paper. Then it
presents a general description of traffic characteristics and the challenges it
poses for modelling. Finally it presents a brief introduction to tunnel traffic
and in what ways it can be different from otherwise regular traffic.

3.1 Traffic flow theory

Understanding the principles of traffic flow theory is essential in order to
interpret the traffic prediction values correctly. The predicted values for
traffic flow at a certain hour can be different between tunnels. However, due
to their geographical specifications and road capacity the prediction must
be evaluated in the right context. The dynamic and complex behaviour
of traffic can be quantified by different variables, such as speed, flow and
density. First, the speed of the vehicle is defined as the distance traveled
per unit of time [8]. The average speed, also called the space mean speed,
can be the average of aggregations by hour, day, months or so on.

15



3.1 Traffic flow theory

3.1.1 Traffic flow

Traffic flow is the number of vehicles passed in a given frame of time, and
is defined as

q =
n

∆T

The movement of vehicular traffic can be classified into two distinct cate-
gories, namely uninterrupted flow and interrupted flow. Uninterrupted traf-
fic flow is characterized by the uninterrupted movement of vehicles, which is
determined only by the natural interactions between vehicles, without any
external factors affecting the flow [8]. Nevertheless, certain variables such as
weather conditions and time-related factors may exert an influence on this
particular pattern of flow. In contrast, the regulation of interrupted flow
is dependent upon a variety of factors, which include traffic signals, road
infrastructure, pedestrian crossings, and other flow control mechanisms. As
a result, the flow is subject to greater regulation and external influences [8].

In traffic theory, the speed, flow and density of traffic are related to each
other. In an uninterrupted traffic flow scenario, the equation given below
depicts this relationship [8]. This indicates that when either the density
or speed is zero, the flow becomes zero. Additionally, it also portrays that
a given combination of density and speed can reveal the maximum of flow
for the given road. This can be seen during free flow when the traffic runs
smoothly, and the density is low, and speed is high. On the contrary, during
traffic congestion when the traffic flow is very low, it is caused by a high
density and low speed. This relationship indicates that both the density
and speed are relevant to calculate the traffic congestion in an uninterrupted
traffic pattern.

Free flow Free flow is the state when traffic is flowing freely, and is below
the critical density. It can be defined as

flow = speed ∗ density

16



3.2 Uninterrupted flow

3.1.2 Traffic density

Traffic density is the count of total vehicles present per unit length of a
road. Any road will have a critical density above which traffic congestion
takes place. A higher value of density indicates that the vehicles are closer,
while a low value showcases that the vehicles are further apart.

q(flow) = k(density) ∗ v(speed)

Jam or critical density is when the traffic comes to complete stop. This is
when the density becomes very high.

3.2 Uninterrupted flow

According to Greenshield’s Model, when the traffic flow is uninterrupted the
speed and density are linearly related [8]. The equation below shows the re-
lation between speed (v), A and B (constants), and k (flow density). Values
of A and B can be determined through field observations using techniques
such as linear regression [8].

v = A−B ∗ k

When combing Greenshield’s assumption together with the relationship be-
tween flow, density, and speed, we can model an equation that showcases the
non-linear relationship between flow and density. This can be seen in figure
3.2. A continual increase in density after the maximum flow is reached, the
flow will start to decrease until jam density. This is when the flow becomes
zero, and the vehicles are completely at stop [8].

Although the Greenshield model is helpful to explain the uninterrupted
flow, the interrupted flow is a bit more complex and requires a deeper
understanding of the dyanmics involved [8].
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3.3 General traffic flow characteristics

Figure 3.1: The relationship between flow and density

3.3 General traffic flow characteristics

Traffic data exhibits several characteristics that pose challenges for predic-
tion models due to its dynamic and non-stationary nature. Firstly, traffic
data is temporal, as it is time-dependent and subject to changes over time,
making it challenging to predict with traditional statistical models due to
the presence of dynamic underlying patterns. Moreover, traffic data also
have a tendency to be spatial, as it is influenced by specific locations such
as intersections or roads, and can exhibit spatio-temporal dependencies,
where traffic conditions in one location at a certain time can impact traffic
in nearby locations at different times.

Another challenge in predicting traffic data is its non-stationarity, as it can
be influenced by external events such as festivals, weather conditions, road
works, and other factors that can cause fluctuations and changes in traffic
patterns. Accounting for these dynamic and non-stationary characteristics
of traffic data it is crucial in developing accurate and robust prediction
models in the field of traffic prediction research.

3.4 Tunnel traffic

There exist additional factors that can impact the tunnel traffic. The ca-
pacity of a tunnel is a crucial determinant, which is influenced by various
factors such as the number of lanes, tunnel dimensions, and the presence of

18



3.4 Tunnel traffic

Figure 3.2: The relationship between flow and speed

roundabouts within the tunnel. Furthermore, tunnels commonly have lim-
ited entry and exit points and are subject to special regulation to control
traffic congestion and uphold safety measures. The controlled environment
of a tunnel may have lane control signals and speed limits that deviate from
those observed on regular roads. Moreover, owing the confined structure of
tunnels, incidents like accidents, breakdowns, or fire can have much more
serious consequences, leading to a higher risk associated with tunnel traffic.
The aforementioned risks can cause drivers to be more cautious, and even
slower, compared to regular traffic.

The emission levels from from heavy vehicles have the potential to degrade
the quality of air, necessitating lower speed or restricted entry to ensure
safe conditions. It is worth emphazising that the lighting conditions in a
tunnel can also impact the traffic flow. The shift from daylight to artificial
light can have an impact on the perceptibility and response times of drivers,
making tunnel traffic behavior different from that on open roads.
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3.5 Terminology

3.5 Terminology

This section describes the terminology used in this paper and how they are
defined in this work.

• Urban: Densely populated area, where there live more than 200 per-
sons per square kilometer (1 km x 1 km).

• Sub-urban: Less densely populated area where there live less than
and equal to 200 persons per square kilometer (1 km x 1 km).

• Rush hour: Time(s) of the day during which the traffic flow reaches
a maximum. Typically this is between 06.00 to 09.00 in the morning,
and 15.00 to 16.00 in the evening.

• Horizon: This is the time steps in future that the model predicts
for. This work finds a prediction for one step in the future, hence it
is performing a short-term forecasting. The horizon depends on the
granularity of the data, and the time step already present in the data.

• Tunnel tube: Directly translated from ’tunelløp’ in NVDB. In this
work this means a tunnel with 1 or more tubes, either in opposite
direction or in the same direction.
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Chapter 4

Reasearch method

This section describes the methodology that was used in the study. It uses
a combined methodology that incorporates both statistical analysis and
computational techniques as foundation to identify patterns, and trends in
the data.

The method also applies predictive analytics, utilizing statistical algorithms
and deep learning techniques to predict future values based on historical
information. This includes statistical analysis, geographical understanding,
and neural network capabilities to predict future values within time series
data.

In this paper the area of focus for the predictions will be tunnels in Roga-
land, a province in Norway on the west coast side.

A predictive model requires a comprehensive data set that showcases the
traffic at different times. However, at the time of writing this thesis, there
was no public data set that was prepared for only tunnel traffic in Norway.
Therefore a data set is created by retrieving traffic data from two different
data sources of NPRA, and joining them together through a spatial analysis.
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4.1 Data foundation

This section presents the data sources used in this work.

4.1.1 Norwegian National Road database (NVDB)

Norwegian National Road database (NVDB) is open source data made avail-
able by the Norwegian Public Road Administration (NPRA) [13], under the
Norwegian licence for official data (NLOD). [14]. The data is collected and
maintained by the NPRA. The input to the NVDB is managed by con-
tractors or other building companies who are doing alterations in the road
network and need to report to the NPRA. NPRA ensure that the data is
maintained and updated frequently and is updated according to current
regulations and requirements [15]. However, NPRA does not take any re-
sponsibility of its accuracy at all times [15].

The Norwegian National road database (NVDB) is a database with infor-
mation about the national road reference system. It includes among others,
the main road network, consisting of the national highways, but also major-
ity of the county and municipality roads. It also includes entities that are
related to a road, for instance an accident, a tunnel, or traffic registration
stations. NPRA provides an API that can be used to fetch the data, using
different filters and specifications to obtain the data that is relevant for the
given purpose. Full details about the NVDB can be found at [16].

4.1.2 Trafikkdata

Trafikkdata [17] is a separate database about traffic data on the Norwe-
gian road network, and is also owned by the NPRA. The traffic registration
stations consist of physical infrastructure by the road, while the traffic reg-
istration points (found in Trafikkdata) are the actual physical location on
the road where the data is captured [17].

Traffic data is collected from inductive loop sensors installed on the road.
When a vehicle drives over them, it captures information such as its length,
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4.1 Data foundation

speed, vehicle class, distance to the preceding vehicle, lane of travel, and
direction [18]. Cars overtaking or driving between lanes are likewise handled
by the system [18].

Traffic data is used to fetch the information about the different sensors that
are located on the roads, and the corresponding hourly traffic flow per traffic
registration point.

The traffic flow data is available for the public, however the related speed
data is restricted and requires special access [19]. Therefore, only the hourly
aggregated traffic flow will be used in this thesis.

4.1.3 Unknown link between NVDB and Trafikkdata sen-
sors

A set of objects in NVDB are the traffic registration stations which serve
as the primary monitoring stations for nearby registration points (sensors).
These stations are not the physical sensors where the data is collected, and
must be considered separately from the points. Secondly, the NVDB also
includes another set of objects known as traffic detectors (NVDB-id:167).
However, upon performing a geo analysis of the stations and detectors to-
gether with the sensors from Trafikkdata, it comes clear that they do not
share the exact same geographical location. Therefore it is worth high-
lighting that as of the time of writing this thesis, there is no established
relationship between the traffic registration stations in NVDB, and the reg-
istration points in traffic data. This relation is necessary in order to find
which sensor is close to or inside a tunnel. However, both data sources
serves the geographical coordinates that will be used in this work to find
the relation between tunnels and points.

4.1.4 Statistics Norway (SSB)

Statistics Norway is the national institute of Norway responsible for pro-
ducing official statistics [20]. In addition to official statistics, SSB provides
several statistics by geographical location, known as grid maps [21]. Pop-
ulation count for the different areas of the country can be found through

23



4.2 Data retrieval

such a grid map called the ’Population Statistics on grid’ and can be found
at [21]. This map is added to QGIS as a separate layer by connecting to [21]
through the WFS service. The population data is used to evaluate whether
a tunnel is urban or not.

4.2 Data retrieval

This section describes how the data was retrived from the different sources.

1. Fetch tunnel tubes from NVDB through API

2. Fetch traffic registration points from NVDB through API

3. Find points that are near a tunnel using spatial join

4. Find categories of tunnel tubes using GIS-tool

4.2.1 NVDB Rest API

The Norwegian Public Roads Administration (NPRA) provides an inter-
face to the Norwegian Road Database(NVDB) via a Representational State
Transfer (REST) application programming interface (API) [22]. The data
from the NVDB is retrieved using the NVDBAPI-v3 Python library. This
library is maintained by Chief Engineer Jan Kristian Jensen at NPRA and
can be found at [23]. The library includes two main objects: ’NVDBFag-
Data’ which are objects that are related to a road network such as a tunnel.
The other is the ’NVDBVegNett’ which is the road network itself and is
formed with different road segments attached to each other through links.
The documentation for the API can be found at [24] and the GitHub repos-
itory with the python library is given at [23].

4.2.2 Trafikkdata API

The Trafikkdata database is a GraphQL database, and the web interface to
their API can be found at [25]. The connection to this API is by using the
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4.2 Data retrieval

requests library for python.

1. Get traffic registration points

The query sent in through the POST request is a GraphQL query inspired
by the query example showcased at [25], but amended for the need of
this work. The query can be seen at listing 4.1 and can be found in the
get_data.py file. The following parameters are added to the query:

• IsOperational: true

• TrafficType: VEHICLE

• RegistrationFrequency: Continuous

• CountyNumbers: 11

• fromAccordingToRoadLink

• Location coordinates in latitude and longitude

The query is fetching the id, name, direction and geographical location for
the different traffic registration system that is present in Rogaland (province
id: 11). This province id is the same as in NVDB. The different ids for the
provinces can be found at https:/nvdbapiles-v3.atlas.vegvesen.no/omraderfylker.

2. Get hourly traffic for a given traffic registration point

A different graphQL is constructed to fetch the hourly traffic data flow
through the API, or the data can be downloaded directly from their web
interface. The data exported from the web interface is further preprocessed
and prepared for analysis. However, during development the API was not
able to fetch large amounts of data. Therefore by the end of the thesis, the
web interface was used for hourly data export.
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4.3 Data integration with geo-spatial analysis

1 {
2 trafficRegistrationPoints(searchQuery:
3 {isOperational: true, trafficType: VEHICLE, ...

registrationFrequency: CONTINUOUS, ...
countyNumbers:11}) {

4 id
5 name
6 direction {fromAccordingToRoadLink}
7 location {
8 coordinates {
9 latLon {

10 lat
11 lon
12 }
13 }
14 }
15 }
16 }

Figure 4.1: GraphQL query to fetch traffic registration points from
Trafikkdata.no APi

4.3 Data integration with geo-spatial analysis

This section presents the steps taken to add the different data sets into the
GIS-tool, and how the geo-spatial analysis is performed..

1. Adding Layers in GIS Tool with Python and QGIS

2. Find registration points near the tunnels using spatial join & nearest
neighbours

3. Define urbanization of tunnel through spatial intersection

4.3.1 Adding layers in GIS Tool with Python and QGIS

Each data source is added as a separate layer in the QGIS. Through the
Python library NVDBAPI-V3 mentioned earlier, there comes separate files
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4.3 Data integration with geo-spatial analysis

Figure 4.2: Diagram showing the steps taken to fetch the data

that allow integration of NVDB with QGIS. This library has copyright (c)
by Jan Kristian Jensen and is available under the MIT lisence. The tunnel
tubes are fetched from the NVDB using road object id = 67 with a filter
set on province = 11 for Rogaland. The population grid from SSB is added
through the WFS service, and the open street MAP is added through in-
built functionality in QGIS.

Figure 4.3: Map in QGIS with tunnels (red), urban points (orange) and sub-
urban points (turqoise)
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4.3 Data integration with geo-spatial analysis

4.3.2 Find registration points near the tunnels using nearest
neighbours

A graphQL query is sent to Trafikkdata to fetch the traffic registration
points and their id, name, and most importantly its coordinates. Several
points are not located close to a tunnel, or there may be an cross-sectioning
road between the tunnel entrance and the traffic registration point. The
target was to find the points that are located close to a tunnel without any
crossing road in between, which can give us the traffic that is either going
in/out of a tunnel or through a tunnel. This is achieved by performing a
spatial join between the points spatial coordinates, and the tunnels. The
spatial join is performed using the sjoin_nearest() method of Geopandas
library. This function performs a spatial join of the both to find overlap,
and is given a distance within which it can look for neighbouring tunnels
and points. The distance is set på 0.002. This find the points that are
very near the tunnels geometry. The drawback here is that if the tunnel
is underwater, or a bridge, the registration points that are above or under
those in real, will appear as if thery are in the same place. However, this
is a limitation as this work is being performed in a 2D space. Finally, the
resulting geo dataframe is written to to file.

The points returned by the API are converted from latitude and longitude
into a geometric coordinate, and converted to the right coordinate reference
system (crs).

1 gdf = gpd.sjoin_nearest(tunnels, points, max_distance=dist)

4.3.3 Define category of tunnel through spatial intersection

The following steps are performed to categorize the tunnels as urban or
sub-urban.

• Select from the population grid from SSB only the grids that have a
population above 200 per square km

• Add the data to a geo dataframe and create a geometry column
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4.3 Data integration with geo-spatial analysis

• Read in data from file that has tunnels and their nearest points

• Loop through each points and check if it is intersecting with the se-
lected population grid

• Write the resulting dataframe to file

This is achieved using the functions defined in the get_category_of_tunnels.py
file through the python console in QGIS. First, the relevant population grids
are selected. In this work a value of 200 is set, so only grids where the pop-
ulation is above 200 per square km are selected. The file with the nearest
points and tunnels is read into a dataframe, and looped through to see if
the geometry of the points is intersecting with the grids. If a point is inter-
secting within the grid or the polygon geometry, the point is categorized as
urban, otherwise sub-urban.

The subset of the resulting dataframe is presented in figure 4.4.

Figure 4.4: Geo dataframe with details about the registration points

In addition, the points are converted to POINT objects using Shapely li-
brary. Population grids are converted to POLYGONS.

The returned object returns also Gang og sykkelveg, and sykkeveg which
are filtered out for the sake of this work.
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Chapter 5

Data analysis

Time series analysis establishes a robust and scientific basis for utilizing
temporal data, augmenting both the theoretical understanding and practi-
cal applications of deep learning methodologies. This section presents the
data analysis performed on the acquired data set.
The following are the questions that are the basis for this analysis:

• What is the trend and seasonality pattern of tunnel traffic?

• Does the technical features of a tunnel relate to its daily traffic?

• Investigate the impact of urban/sub-urban feature of a tunnel on traf-
fic flow

The data utilized in this analysis is exclusively derived from Lane 1 for each
tunnel, for the year 2021 and the scope of our analysis encompasses the
following tunnels:

• Storhaugtunnelen, Urban, 1275 m

• Auglendtunnelen, Urban, 390 m

• Iglatjørntunnelen, Suburban, 447 m

• Kleppetunnelen, suburban, 515 m
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5.1 Data preprocessing

1. First select that only one side of the road is shown, this is so that the
data is not aggregated because both the points have the same name 2. The
roads are named as 1, 3, and 2 and 4. So i select only 1 and 3. 1 and
2 is for regular, but for tunnels that have more than 1 lane that lane is
named 3 and 4 respectively in each direction. 3. The data from the hourly
trafikkdata is used for feature engineering of the data 4. The data is added
a DateTimeIndex so its easier to perform resampling.

This data includes the hourly traffic for both lanes in a tunnel, respectively
for lane 1 and 2 going in opposite direction. For tunnels that are tube
tunnels, and have more than one lane, are numbered 3 and 4 respectively.
The data from this file is separate into a dataframe with data for lane 1 and
3, and for lane 2 and 4. This separation ensures that the traffic patterns of
both directions are not overlapped and disturb the actual traffic patterns.

The tunnels that are needed are downloaded from the trafikkdata web in-
terface. The resulting data consists of several fields, where the following
fields are selected for this thesis:

• Traffic Registration Station ID

• Traffic Registration Station Name

• From

• To

• Lane

• Traffic flow

• Degree of coverage

Handling missing values

The data did not contain a lot of missing values. However, some data
points were labeled with a - for missing values for traffic flow for that hour.
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5.2 Data exploration

This could be due to issues with the sensor, during data transmission to the
database, or because the count was so low that the data had to be eliminated
due to GDPR. In the selected tunnels, there were very few missing values.
Ideally, an informed choice must be made to select the best technique to fill
in missing values.

Data scaling

The majority of the tunnels follow a similar pattern in terms of seasonality
and trend. However, the amount of traffic in the tunnels is the factor that
differentiates them most. Some tunnels like Auglendtunnelen or Austrått
have very high levels of traffic, compared to for instance Iglatjørntunnelen.
The RobustScaler from sklearn is used to scale the data, as this is not
sensitive to extreme values. This scales the data based on statistics such as
the median and interquartile range.

5.2 Data exploration

The graph in figure 5.1 is showing the total traffic flow per 6 hours, for
one week. Each tunnel in the sample follow a more or less similar pattern,
with two local maximums each day on the weekdays and one maximum on
Saturday and Sunday. However, the magnitude of the traffic flow for each
tunnel, is very different. Additionally, the tunnel with the highest volume
also has the highest change between minimum and maximum during the
day. It can also be noted that the Iglatjørntunnelen has very less traffic
compared to the others.

When inspecting more in depth into the daily trend of the tunnels, two daily
maximums are seen. This can be seen in figure 5.2. The first peak depicts
the morning rush hour, while the second one showcases the mid day rush
hour. However, the Iglatjørntunnelen does clearly follow this trend. This
can be due to this tunnel not being surrounded by many with the typical
9-5 working hours.

The graph in figure 5.3 shows the trend based on the day of the week. Based
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Figure 5.1: Total traffic flow per 6 hours for different tunnels in one week

on the given sample, the data indicates a difference between the traffic
pattern between the weekday Monday to Friday, and weekend. During the
weekend the increase in traffic is on average later than the rest of the week,
and has a smooth increase and decrease during the day.

Figure 5.5 indicates that for sub urban tunnels, the traffic volume shows
an increase in the weekend in contrast to urban tunnels. The urban traffic
tends to show a stronger seasonality compared to the urban traffic. This
could potentially be related to the holidays, and people tend to travel to
norwegian suburbs for holidays. Additionally, the figure in 5.4 shows the
weekly sum of traffic volume based on the tunnel category (urban/sub-
urban). The visualization suggest a high variability during summers.

5.3 Feature engineering

As stated in the literature review - the spatiotemporal features seems to be
the most important features that has helped models perform better.

In the context of time series data, feature extraction is extracting useful
information from timestamps in order to improve the data’s understanding
and predictive power.One method for extracting features from time series
data is to use the DateTimeIndex capability in the pandas library and the
datetime module in Python. This enables access to different characteristics
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5.3 Feature engineering

Figure 5.2: Hourly traffic in a day for various tunnels in Rogaland

and methods to extract relevant features by transforming the timestamp
data into a DateTimeIndex. The DateTimeIndex extracts features such as
the day of the month, month and day name (e.g., Monday, Tuesday), and
hour.

The NVDB tunnel data have their names, lengths, width, and several other
metadata about the tunnels. The resulting data set included different types
of tunnels. However, the following types were removed. tunnels = tun-
nels[(tunnels["typeVeg"] != ’Gang- og sykkelveg’) & (tunnels["typeVeg"] !=
’Sykkelveg’)]

Using the hourly traffic data, a summation of the yearly traffic for each tun-
nel is computed. For example, the total yearly traffic volume for Austrått
tunnel is 3 021 000 cars/year. This gives an idea of the difference between
the volumes for different tunnels.
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5.4 Correlation matrix

Figure 5.3: Hourly traffic flow in a day for every day of the week

5.4 Correlation matrix

The correlation heat matrix is produced based on the data from the tun-
nels fetched from NVDB. The features that are collected are displayed in
a matrix in order to see whether any features are related to each other,
and in particular to the total traffic quantity. The correlation matrix shows
that there are some linear relationships present between the length of the
tunnel and the opening year, the tunnel profile and width, type of road,
and width. Additionally, a linearity between the type of tunnel and cat-
egory is present. When inspecting data further there is a special type of
tunnel that is present mostly in urban areas which is the cut and cover type
(lokk tunnel). The yearly traffic (vol_by_thousand) is slightly correlated
to municipality (kommune), category and road number (vegnummer).

5.5 Summary statistics

Table 5.8 shows the summary statistics of all tunnels that are fetched from
NVDB. This particular visualizatin is performed on all tunnels retriavable
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5.5 Summary statistics

Figure 5.4: Aggregated weekly sum of traffic volume for urban and suburban

from NVDB. The count shows the number of rows present in this dataframe,
however in this data set there are 1447 unique tunnels. The duplicates occur
if there are both canalized road and normal road present in the tunnel, or
if the tunnel is separated into several parts. The width can be seen is
present only for 1123 tunnels, while the height is only for 376. The strong
correlation of width in the correlation matrix can be related to the missing
values.

In Trafikkdata only one point is present in the nearby location of a tunnel.
Therefore when a spatial join is performed, the same registration point can
be merged with three different tunnels in NVDB, as is shown in figure 5.9.

Finally, it is also worth mentioning that 2021 summer has a higher traffic
towards suburbs in summer could be due to the corona virus pandemic. The
two major seasonal factors for both traffic patterns are easter and summer
holidays. However, this must be further investigated using more tunnels
and more data.
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Figure 5.5: Total yearly volume for urban and sub urban tunnels aggregated per
week day

Figure 5.6: Table
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Figure 5.7: Correlation heat matrix

Figure 5.8: Summary statistics of tunnel_with_points dataframe main features

Figure 5.9: Three different tunnel names merge with the same registration point
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Chapter 6

Experiments

The following tunnels are used in the experiments. The data sets are down-
loaded directly from Trafikkdata.no web interface and prepared in Microsoft
Excel by removing unnecessary columns, renaming columns and adding cat-
egorical feature. However, this can be automated and created using Labe-
lEncoder by time opportunity.

The data is from 01 June 2022 until 01 June 2023. The experiments are
based on the same model in the next section. The intention is to create
different combination of tunnels, and features to see how the performance
changes.

The following tunnels are used in these experiments:

• Sub-urban tunnel 1: Iglatjørntunnelen using registration point 93763V320622

• Sub-urban tunnel 2: Drengstigtunnelen using registration point 41663V319808

• Sub-urban tunnel 3: Nesflaten using registration point 51143V319682

• Urban tunnel 1: Storhaugtunnelen using registration point 57279V320244

• Urban tunnel 2: Auglendtunnelen using registration point 66678V320582

• Urban tunnel 3: Kleppetunnelen using registration point 72379V1688678
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Experiments

The following experiments are performed.

1. Train RNN model on a all urban tunnel, and evaluate its performance

2. Train RNN model on only Storhaugtunellen with temporal features
and evaluate its performance

3. Train RNN model on all six tunnels

4. Train RNN model on all six tunnels with category feature

5. Train RNN model on all six tunnels with category feature and tem-
poral features

In experiment #1 the model is trained on only urban tunnels. The purpose
of this is to see how well the model performs on sub-urban tunnels. The
model’s performance on sub-urban tunnels can provide an indication of how
distinct both categories are. If the performance is good, it can indicate that
the underlying pattern for both categories are not so different.

In experiment #2 the model is trained only on Storhaugtunnelen, but with
temporal features. The temporal features DayNumber, Hour, Month, Day-
OfMonth are extracted from the given time stamps in the data set.

In experiment #3 the model is trained all six tunnels. The goal of this
experiement is to see how well the model is able to generalize when it has
seen both types of tunnels. However, no other feature is given, and the
model is only learning from the inherent temporal dependencies in the data.

In experiment #4 the model is trained on all six tunnels, together with the
category features. The performance gain can reveal the significance of this
feature, and also the accuracy of the category feature as it is created in this
thesis. If this feature provides a good improvement, it may indicate that
the spatial location of the tunnel is of high significance.

In experiment #5 the model is trained on all six tunnels, together with the
category and temporal features. In this experiment, both types of features,
and all tunnels are added to evaluate the performance gain.
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Chapter 7

Model

This section describes the deep learning approach - the recurrent neural
network model that is implemented in this thesis, and the baseline model
that is used for comparison. First the baseline model is described, followed
by a description of the RNN model. Finally a description of the model
implementation is presented.

The RNNs model is implemented using Tensorflow, while also using several
other useful libraries such as Numpy, and Pandas.

7.1 Baseline model

The baseline approach is a simple memory less model that is used to eval-
uate relative performance against the RNN model. This model is a naive
approach where the predicted value is equal to the previous value. That
implies that in a set of consequent time series values, if the last known value
is yt then the next value in the sequence is yt+1 = yt.

The evaluation metrics RMSE and MAE are utilized for evaluation, and the
equation for each can be seen in equation 7.1 and 7.2. These calculations
use the difference between two consequent values.
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7.2 Recurrent Neural Network

RMSE =

√√√√ 1

n

n∑
i=1

(y[i]− y[i− 1])2 (7.1)

MAE =
1

n

n∑
i=1

|y[i]− y[i− 1]| (7.2)

7.2 Recurrent Neural Network

RNNs were originally developed for natural language processing, but has
paved its way into time series in the recent years. The literature review
suggested that RNNs are well adapted to traffic forecasting, particularly in
terms of simulating sequential data. As mentioned in in the introduction,
traffic data is a time series by definition which implies that it has temporal
dependencies. The traffic flow at a given period may have dependencies on
traffic flow in the past. The literature review also revealed that RNNs have
been a deep learning model that has outperformed others in terms of traffic
forecasting.

RNNs, are built to deal with time dependencies. They accomplish this by
retaining a form of ’memory’ about prior inputs in the sequence via hidden
state vectors, allowing them to remember previous information. Further-
more, RNNs can describe non-linear correlations in data that traditional
statistical methods may fail to capture. RNNs may learn and improve with
new data over time, which corresponds to the dynamic nature of traffic
patterns.

The general equation for the output for each hidden layer in a simple RNN
is as shown in equation 7.3.

hj(k) = σh(Wj−1h
j−1(k) + Ujh

j(k − 1) + bc) (7.3)

• h(Wj−1h
j−1(k) is the ouput from hidden layer j
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• k is the time step

• Wj−1 and Uj are the input and recurrent matrices

The general equation for the output of the prediction layer of a simple RNN
is as shown in equation 7.4

ŷ(k) = WLh
L(k) (7.4)

• ŷ(k) is the predicted value the output layer produces

• WL is the output matrix

Generally, for RNNs different loss functions may be utilized. In this work
the mean squared error is used during model training to adjust the weights
between the neurons. The mean squared error is a suitable options for a
simple RNN performing a regression task. It is computationally efficient to
work it, it also has the ability to penalize larger error. That implies that if
the predicted traffic flow is far off, it will be quantified significantly in this
measure.

MSE =

m∑
k=0

∥y(k)− ŷ(k)∥2 (7.5)

Similar to the baseline model, the same evaluation metrics are utilized for
the RNN. In this case, the difference between the actual and predicted value
is used to calculate how far oss the prediction is. The formula for root mean
squared error can be seen in equation 7.2 and for the mean absolute error
can be seen in equation 7.2

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ȳ)2
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MAE =
1

n

n∑
i=1

|yi − ȳ|

7.3 Model implementation

This section presents the steps and preparations performed on the data
set and the implementation of the simple recurrent neural network that is
utilized in this thesis.

7.3.1 Data scaling

As presented in section 5 the traffic flow for different tunnels possess a
different magnitude of fluctuations, meaning some tunnels are highly busy
compared to other. Therefore the data needed to be scaled to normalize
the data set into a given range. During development several scalers from
the sklearn library were attempted. However, the RobustScaler was the one
that was able to squeeze the amplitudes of the tunnels into the given range.
Importantly, because the model is designed to take as input both single or
multiple tunnels,it is important that the same scaler is used across all tunnel
features. Therefore the features for all tunnels are concatenated together,
before the RobustScaler is applied. Performing the scaling separately for
each tunnel would not normalize the values within similar range due to the
tunnels having different maximum flows. Similarly, the features and target
are scaled with a separate instance of the scaler. The scaled data is then
split into train and test.

7.3.2 Validation set

The validation set is used actively during development to monitor the model
performance. This set is given to the model during training. However, it
is not able to train on this data, but rather evaluate its performance on
unseen data during training. The purpose of the validation test is to identify
how well the model is able to generalize to unseen data, and is used as an
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indicator to monitor when to stop the training to prevent overfitting. The
validation and testing set are selected to be the last portions of the the data
set to respect the integrity of time series. The given data set is from 01.
June 2022 to the same day the year after, the testing is performed on the
last four weeks of the data set.

7.3.3 Creating sequence samples

The data set is divided into sequences of consequent values. The sequence
length is set to two weeks in this work. However, more elaborate testing can
be performed to determine the optimal sequence length. This can given an
indication of how far in history the data is time-dependent. These sequences
of 2 weeks and the selected number of features creating a matrix of features
x sequence_length. Furthermore, these are then divided into batches that
are served to the model. The usability of creating batches is that they can
be processed in parallel and can potentially speed up the training process.
The batch size is how much of the data is presented to the model at one
time and is able to adjust the weights using the mean squared error between
the actual and predicted values. A smaller batch size mean that the model
updates the weights more frequently and the learning process may be faster.
However, such frequent updates may introduce noise into the model.

7.3.4 Create model

The RNN is created such that different hyperparameters can be chosen by
sending them in as parameters to the create_model() functino, as seen in
listing given below. This is an example of how the model can be trained
by inserting different parameters and hyper parameters. The intention re-
mains that the by changing these parameters and monitoring the change in
performance, an optimal combination of these can be achieved.

1 model = create_model(MODEL_TYPE=model_type, ...
layers=number_layers_NN, ...
units_num=number_units_per_layer_NN, ACT="tanh", ...

...
loss_func="mean_squared_error",X_train=X_train_datasets, ...
y_train=y_train_datasets, epochs=epochs, ...
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7.3 Model implementation

batch_size=X_train_datasets.shape[0], ...
X_val=X_val_datasets,y_val=y_val_datasets, ...
shuffle=False, ret_seq=True,dropout_rate=0.1, ...
learning_rate=0.001, optimizer="adam", ...

...
early_stopping_pmt=1,_Flag_time_features=Flag_time_features,

2 _Flag_category_features=Flag_category_features)

7.3.5 Features

In this thesis two types of features are used in the model to evaluate the per-
formance. That includes the temporal features Day Number, Hour, Month,
and Day of Month, extracted from the ’To’ timestamp. These features are
added to see if the seasonal or cyclical patterns can be detected by the
model using these features. The other feature that is used is the category
that is obtained during the geo-spatial analysis presented in section 4.3.

The combinations of adding different features and amount of tunnels for
training, is controlled by using a set of boolean variables.

• Flag_all_datasets: Set to ’True’ if predictions are performed on all
tunnels

• Flag_category_features: Set to ’True’ if the the category feature is
included

• Flag_time_features: Set to ’True’ if the temporal features DayNum-
ber, Hour, Month are used. DayOfMonth extracted from the "To"
timestamps are included

The create_model() function uses these boolean variables to handle the
input from a single tunnel or from multiple tunnels. In the beginning, the
code uses the Flag_time_features and Flag_category_features variables
to figure out which features to use. The first one means that only the
temporal features are used by the model, while the second one means that
the category feature (urban/sub-urban) is used. This can be advantageous
when experimenting with different combinations of features to see which
one provides the largest performance gain.
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7.3 Model implementation

7.3.6 Input layer

The input to the model is created such that the model can be trained on
a single tunnel or multiple tunnels having the same amount of data points.
This means that the model is able to handle a dynamic shape of the input
data, where the dimensions can be changed by the sequence_length and
the number of features used.

In terms of neural networks, deep architectures can learn more advanced
patterns compared to shallow neural networks [26]. However, with the hy-
pothesis that tunnel traffic may not be as complex as otherwise regular
traffic is, a shallower network is trained rather than a deeper in terms of
layers.

The following hyper-parameters are used to train the simple RNN model:

Hyper parameter Value
Layers 2
sequence_length 336 hours
Activation function tanh
neurons per layer 128
loss function mse
optimizer adam
learning rate 0.001
time_step 1 hour
epochs 400

The number of layers, epochs and neurons are set to 2, 400 and 128 where
there is 1 input layer, 1 hidden layer and 1 output layer. The values are
based on the model’s performance on the validation set. Using the val-
idation set to monitor how the validation loss is behaving together with
the training loss, gives an indication of which hyper parameters can be a
good combination. However, the search for the optimal combination is not
extensive.

The time horizon used in this model is set to 1, due to the time step already
present in the data.
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7.3 Model implementation

7.3.7 Addressing overfitting

Several techniques are added in order to prevent overfitting of the model to
the training set. Each layer is followed by a drop out layer which implies
that it stochastically eliminates a portion of the inputs during the training
phase. This is monitored by the drop_out rate, which is the fraction of
features that are nullified. This techniques regulates the training of the
model and forces it to learn more robust features that may be useful.

The other technique that is added is early stopping. This allows the model
to stop the training earlier if the performance on the validation set does not
improve. Early stopping can save computational resources. If early_stopping_pmt
is set to 1, it uses an "early stopping" mechanism that stops training when
the model’s performance on the validation set stops improving.
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Chapter 8

Results

This section explains the results acquired by performing the experiments
mentioned in 6.

8.1 Analytical results

The exploratory analysis and time series decomposition reveal a seasonality
on different levels, such as on a daily, weekly, and yearly level. In the day
there are usually two peak hours of traffic, on average starting from 05.00
until 09.00, and the afternoon rush starting from 15.00 until 16.00. On the
weekly basis, the traffic shows a rapid decrease in traffic during weekends.
However, this decrease is not equally strong for all tunnels, but can actually
maintain its level throughout the whole week.

8.2 Model predictions

This section shows the results acquired by running different experiments.
The different experiments are using different set of tunnels and features so
observe the change in performance and to gain a deeper understanding of
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8.2 Model predictions

the underlying patterns.

8.2.1 Experiment #1

The model is trained on data for all three urban tunnels. The results for
this experiment can be found in Experiment1.txt.

Prediction on Baseline
RMSE

Model
RMSE

Baseline
MAE

Model
MAE

Sub-urban tunnel 1 11.3 16.1 7.5 12.1
Sub-urban tunnel 2 10.5 15.9 6.9 11.8
Sub-urban tunnel 3 6.7 12.1 4.2 8.7
Urban tunnel 1 65.5 41.1 48.3 31.1
Urban tunnel 2 272.3 112.3 163.3 69.5
Urban tunnel 3 125.9 60.6 77.5 41.5

The model is performing better than baseline model based on the RMSE
and MAE for the urban tunnels.

8.2.2 Experiment #2

Prediction on Baseline
RMSE

Model
RMSE

Baseline
MAE

Model
MAE

Sub-urban tunnel 1 11.3 17.9 7.5 11.9
Sub-urban tunnel 2 10.6 16.9 6.9 11.0
Sub-urban tunnel 3 6.7 15.4 4.2 9.1
Urban tunnel 1 65.5 39.1 48.4 28.5
Urban tunnel 2 272.3 106.9 163.4 65.2
Urban tunnel 3 125.9 59.1 77.5 39.0

In this particular experiment no major change is detected. A small im-
provement is seen in RMSE for urban tunnels.
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8.2 Model predictions

8.2.3 Experiment #3

Prediction on Baseline
RMSE

Model
RMSE

Baseline
MAE

Model
MAE

Sub-urban tunnel 1 11.3 15.0 7.5 11.0
Sub-urban tunnel 2 10.6 15.3 6.9 11.3
Sub-urban tunnel 3 6.7 14.2 4.2 10.0
Urban tunnel 1 65.5 38.5 48.4 28.7
Urban tunnel 2 272.3 104.0 163.4 62.9
Urban tunnel 3 125.9 58.0 77.5 39.0

A small improvement is seen in the RMSE, but so significant. The perfor-
mance compared to the baseline is very similar for all tunnels. However,
by introducing sub-urban data into training set, the RMSE for sub-urban
tunnel 2 which is Drengstig tunnel has improved from experiment 3. Fur-
thermore, the RMSE for experiment for this tunnel remains the best so far
based on the performed experiments.

8.2.4 Experiment #4

In this experiment the model is trained on all six tunnels and the category
feature is added, and an evaluation of the model’s performance can give
an indication of the significance of this feature. This category feature is
acquired through a spatial join between the location of points and tunnel.
This is explained in section 4.3.

Prediction on Baseline
RMSE

Model
RMSE

Baseline
MAE

Model
MAE

Sub-urban tunnel 1 11.3 15.8 7.5 11.2
Sub-urban tunnel 2 10.6 15.2 6.9 11.7
Sub-urban tunnel 3 6.7 11.2 4.2 8.1
Urban tunnel 1 65.5 40.4 48.4 28.5
Urban tunnel 2 272.3 116.8 163.3 72.7
Urban tunnel 3 125.9 65.0 77.5 43.2

The change in performance is negative and the values have started to in-
crease for all of the tunnels.
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8.2 Model predictions

8.2.5 Experiment #5

In this experiment the model is trained on all six tunnels and both the
category and temporal features are added.

Prediction on Baseline
RMSE

Model
RMSE

Baseline
MAE

Model
MAE

Sub-urban tunnel 1 11.3 19.6 7.5 13.9
Sub-urban tunnel 2 10.6 17.8 6.9 12.8
Sub-urban tunnel 3 6.7 15.3 4.2 10.1
Urban tunnel 1 65.5 43.7 48.4 31.0
Urban tunnel 2 272.3 112.6 163.4 68.8
Urban tunnel 3 125.9 60.3 77.5 41.5

It is worth mentioning that the subset of tunnels used in the experiments are
not necessarily representative of the population, but rather a small sample.
In 2022 there are 1260 tunnels in Norway [2], and this sample is very small
subset of it. Therefore more data and elaborate testing may be performed
to find conclusive remarks.
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Chapter 9

Discussion

The experimental results are preliminary, and does not serve the basis for
any clear conclusion. However, based on what is performed in this thesis,
and the results acquired on the sample used, this section discusses different
aspects of it.

Based on the results presented in section 8, and the experiments explained
in section 6 the RNN model did perform better than the baseline for the
urban tunnels. However, for the sub-urban tunnels the model was not able
to show good results.

Q1: What are the trends and seasonal patterns observed in tunnel
traffic data?

Based on the aggregated hourly traffic flow that is available publicly at the
time of writing this thesis, the real-time traffic behaviour cannot be seen.
However, based on the given data set the larger trends can be seen. The data
analysis in section ??, shows that the majority of tunnels follow a cyclical
behaviour during the day, depicting the two rush hours from 05.00 to 09.00
and 15.00 to 16.00. This patterns is relatively recurring for all tunnels, while
the magnitude of traffic flow and the amplitude of the cyclical fluctuations
is what sets the tunnels apart. Tunnels like Auglend tunnel has a very high
traffic flow during rush hours at 09.00 compared to the Drengstigtunnel at
the same time. This is naturally due to their location. However, what is

53



Discussion

also revealed is that the sub-urban tunnels can have a higher traffic volume
during weekends. This aligns with what can be expected as several of these
tunnels are located near holiday destinations.

Q2: How does an RNN model trained on a single tunnel perform
vs on multiple tunnels?

In experiment #2 the model is trained only on a single urban tunnel, the
Storhaugtunnel, together with the temporal features. The goal was to eval-
uate if the patterns in one tunnel is enough to recognize the other, while
also providing potentially helpful features. Compared to the previous ex-
periment, the predictions on sub-urban tunnels got worse, while a small
improvement in RMSE for the urban tunnels are seen.

Q3: Does adding the category feature (urban, or suburban) or
temporal features improve the model performance?

The introduction of additional features such as the category and temporal
features did not provide any significant performance gain. In experiment
#2 when the model is trained on Storhaug tunnel together with the tem-
poral features, the performance for urban tunnels are improved a little, but
not significantly. The addition of category feature in experiment #4 did not
improve the performance for any. Similarly, in experiment #6 both the tem-
poral and category feature is added, providing the worst results compared
to the other experiments.

What is interesting is that the results from experiment #2 did not provide
results very different from the other experiments which includes more data.
This can be related to that the urban tunnels posses a more typical or
cyclical pattern seen in an urban tunnel like Storhaugtunnel. However,
based on the experiments alone it can not be inferred if this feature is
relevant or not. More tunnels can be introduced, as well as more traffic
data. The literature review presented in the start of this work also indicated
in some of the papers that additional features did not significantly improve
the model.
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9.1 Why is the model not performing well on sub-
urban tunnels?

The fact that the model is not able to perform as good on sub-urban tunnels
as it is on urban tunnels, does give an indication that there is a distinction
of tunnels we are touching upon. There can be various reasons why it is
unable to recognize the patterns in the sub-urban tunnels.

1. This can be related to that urban tunnels possess a more cyclical or
predictive pattern based on the rush-hours. However, it is important
to keep in mind that the data does not reveal the real-time behaviour
of the traffic.

2. One of the major reason can be the need for more data. In this case
the model is only seeing data worth of one year, where the first months
are used for training, and the last months for testing. That means that
the data the model is predicting on, it has never seen those patterns
before. One idea is to add at least 1 more year of data to see if it
is able to produce any significant changes in the performance. The
other ways to tweak the performance can be to add more neurons, or
more epochs or layers.

3. The choice of scaler could be a significant factor that can influence
the model performance. The scaler used in this thesis, squeezed the
tunnels into a 25th and 75th percentile which is standard for the Ro-
bustScaler. However, it may have been that the magnitude of varia-
tions between the tunnels may have got lost somewhere, as the model
is not able to identify the sub-urban tunnels.

4. In this work, the population density is set to 200 in QGIS and this
decides whether a tunnel is urban or not. This value was set based on
visualization of the tunnels and points in QGIS, and also familiarity
with the local area the tunnels are present in.

5. An idea is to investigate whether the urban and sub-urban traffic can
be linked to the concepts of uninterrupted and interrupted traffic. Ur-
ban traffic tends to be more interrupted, influenced by traffic signals,
congestion, and other urban factors.
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9.2 Model performance

However, there can be several reasons for why the model is not performing
that well even after adding the cateogory feature. Firstly, the selected
temporal features may not be as relevant for the sub-urban as they may be
for urban. Features that quantify the amplitude during rush-hours, or other
cyclical features, and also features such as the weekend should be used to
evaluate further what works. As stated in both [9] and [10] the spatial and
temporal features are suggested to be the most influential on the traffic.
As stated in [9] the amount of data is also a big factor improving model
accuracy, compared to using less data. Therefore other temporal features
may be used, and more data must be utilized to be able to see the big
picture.

9.2 Model performance

The RNN model is performing better than baseline for the urban tunnels.
However, it is worth mentioning that the RNN is not a memoryless model
as the baseline is. The RNN is given a sequence of 2 weeks, while the
memoryless model only has the last value. The comparison can potentially
reveal whether the traffic flow time series data possess temporal linearity
or not. We can see from the results that for the sub-urban tunnels, the
RNN did not outperform the baseline. Revisiting the Greenshield model
explained in chapter 3.1.1 the uninterrupted traffic may possess linearity.
Sub-urban traffic can be investigated further of the potential linearity and
whether deep learning is the correct approach.

9.3 Why a simple RNN was selected?

The decision to employ a simple RNN model stemmed from the hypothesis
that tunnel traffic exhibits less complexity compared to regular traffic, pri-
marily due to the reduced occurrence of various disruptions such as animal
crossings, traffic lights, or pedestrian activities. This does not mean that
tunnel traffic patterns are not complex, but based on the literature review
several advanced models were used for traffic forecasting due to its dynamic
and non-linear nature. The more advanced a model is and the more pa-
rameters it has, the more extensive tuning and testing is required to fully
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understand its way or working.

9.4 Limitations

Acquiring relevant data proved to be the foremost challenge in this thesis.
The majority of research paper data sets were not publicly available, neces-
sitating the creation of a new data set, which became a significant challenge.
Additionally, establishing the relationship between NVDB and Trafikkdata
was another challenge. Despite both being owned by the Norwegian Public
Road Administration, both data sources are maintained separately. This
connection was crucial for linking the hourly traffic data to the correspond-
ing tunnels. The connection to Trafikkdata’s API was a necessary step to
fetch the geographical coordinates of each traffic registration point, which
was otherwise unavailable through the web interface.

A limitation of this thesis is the limited availability of data. Although sev-
eral tunnels had nearby traffic registration points, not all of them had it.
Furthermore, certain tunnels had intersections or other traffic deviations be-
tween them and the registration point, further limiting the dataset’s scope.
Consequently, the dataset used in this study represents a small subset due
to these limitations. However, the installation of more registration points
near tunnels by NPRA can gradually expand this dataset.

Time constraints also posed a limitation. To meet deadlines, certain tasks,
such as file preprocessing, were performed using Excel.
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Chapter 10

Conclusion

This work proposed a method for obtaining and integrating data from two
different data sources NPRA to construct a data set of tunnel traffic. On
this data set, a deep learning approach is proposed to predict the traffic
flow for the next hour. The model is a simple RNN model that is able
to handle single or multiple tunnels. Additionally, different experiments
are run that tests the performance using temporal features and categorical
features. Based on the sample used for testing, the addition of temporal
features or categorical feature such as urban or sub-urban, did not improve
the results drastically. The model performed better than baseline for urban
tunnels, but was unable to capture the sub-urban patterns. This observation
indicates that the catgory feature may be a valid distinction between them.
However, as a feature fed into the model it does not provide significant
changes. The results in this thesis are preliminary, and more extensive
testing must be performed to reach any clear conclusive remarks.

10.1 Future work

The model is an simple RNN model that can be further tweaked or analyzed
to detect any errors the model may have produced. The function that
runs the model is created such that the user can insert parameters directly
into it, and test with different combinations without having to deal with
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10.1 Future work

the back-end. Furthermore, other experiments can be performed to see
the performance. Experiements testing with different lag features can be
used, to see which lag features perform the best. This can indicate how
far in history the temporal dependencies may exist. Secondly, a linear
model such as an ARIMA model can be constructed for a comparison of
performance. This can indicate whether the temporal dependencies between
the traffic flow are linear or not. Additionally, the process can be automated
by combining the output from the data fetch into the model, which requires
more work. Finally, other machine learning models can be implemented for
comparison of performance. This can indicate whether the deep learning
approach is too complex for this tas. Also, the model can be run of a
different data set to evaluate how well it is able to generalize. Finally,
more values can be created in the category feature, such as semi-urban, or
semi-sub-urban.

The github repository associated with this thesis can be found at https:
//github.com/TunnelSafety/Tunnel-Traffic.

,,
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Motivation & goal: 

Tunnel traffic prediction using machine learning

Challenges:

Findings:

• Norway has over 1000 tunnels, some of which have a 
history of accidents and tunnel fires resulting in severe 
consequences.

• Statens Vegvesen owns traffic data with unrevealed
potential.

• Leverage the potential of data using machine learning.
• Attempt to create a model that is generalized across

different tunnels in Norway.

Can we use the potential in available tunnel traffic data to forecast congestion in tunnels? 

• The process involves comprehending the data and its 
interdependencies, and identifying approaches to integrate them into 
a cohesive dataset.

• Underwater tunnels in Norway present challenges for 2D data analysis.
• Develop a versatile model for predicting outcomes across various types 

of Norwegian tunnels.
• Discovering reliable data sources and constructing a comprehensive 

dataset from scratch has presented a notable challenge.
• Hourly aggregated data removes the detail or patterns in the data.

• RNN model preserves time-
dependency in time series.

• SimpleRNN model in 
tensorflow performs well on 
single urban tunnel.

• Non-urban tunnel training 
captures seasonality, but 
struggles with cycle amplitude.

Main idea:

• Integrate traffic data from multiple open source 
databases owned by Statens Vegvesen into a unified 
dataset.

• Conduct spatial analysis to identify traffic registration 
points that are in close proximity to a tunnel and do not 
intersect with other roads beforehand.

• Utilize population data to determine the categorization of 
tunnels as urban or suburban.

Data collection:

• Data cleaning includes 
handling missing values and 
implementing dateTime
indexing.

• To facilitate easier 
comparison and mitigate 
variations in traffic volume 
magnitudes across different 
tunnels, the data is scaled to a 
similar axis.

• The dataset is transformed 
into a windowed format to 
serve as input for the RNN 
model.

Data preprocessing:

• Temporal: Temporal data is inherently time-
dependent, necessitating the preservation of the 
order of data points.

• Spatial: traffic is dependent on location, and also
to nearby locations

• Non-linear nature

Traffic data characteristics:

• Spatial join performed using geo dataframes, 
finding nearest traffic registration points within a 
specified distance, accounting for tunnels, 
resulting in a geo dataframe combining tunnel 
data with corresponding traffic registration 
names.

• Urban and suburban tunnels are identified by 
checking if their start and end points fall within 
selected 1 km x 1 km squares with a population 
above 200, and the results are written back to 
the file.

• The program initially attempts to fetch hourly 
data for multiple traffic registration points from 
an API, but due to server time-outs and 
occasional None responses, a manual approach 
is used to download the data from the 
trafikkdata.no API interface.

• The data from the file is separated into two 
dataframes: one for lane 1 and 3, and another 
for lane 2 and 4, ensuring that the traffic 
patterns of both directions are distinct and do 
not overlap.

- Extracted temporal features such as hour, 
month, dayofMonth

- The tunnels are categorized as urban or 
suburban based on their presence within a 
yellow box on the map, representing a grid 
where the total population in 2019 
exceeded 200. If the whole tunnel is inside 
the grid/box the tunnel urban, or if one of
the ends of the tunnel is inside the tunnel is
categorized as sub-urban
Time series decomposition was conducted 
to partition the components of a time series 
into distinct parts, aiming to gain insights 
into their individual behavior.

Feature extraction:

Model:

Aman Riaz, Spring 2023 – Masters in Data Science – University of Stavanger

Correlation matrix

QGIS – tunnels, points and urban areas

• Tunnel traffic is less complex than regular 
traffic as it lacks external factors like traffic 
lights and pedestrians.

• A big differentiating factor for tunnel traffic 
volume is whether the tunnel is categorized as 
urban or suburban.

• Tunnels exhibit consistent trends and 
seasonality throughout the year, with summer 
showcasing the highest variability across 
multiple tunnels (refer to graph on the right).

• Certain suburban tunnels in Norway 
experience higher traffic volumes during 
summers, mainly because they are situated 
along or in close proximity to popular holiday 
destinations.


