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ABSTRACT
Orbital data from the MESSENGER spacecraft show that a significant portion of Mercury’s
northern hemisphere is covered by smooth plains, which are interpreted to be flood
volcanic material and/or impact melt. The smooth plains show pervasive tectonic structures
and encompass a broad raised bulge of uncertain geophysical interpretation. In this work,
we focus on the mapping of all the morphostructures within the northern smooth plains,
aiming at providing a useful dataset for further studies about the mapped area. The
structural map is obtained through a twofold process: first with an automatic mapping,
using an algorithm to identify all the lineaments from a DEM; and second with a visual
inspection and classification of the results of the algorithm in a GIS environment. The final
maps are drafted at two different scales, 1:300,000 and 1:600,000. With this approach, we
mapped and characterized more than fifty thousand lines marking scarps on the surface,
creating a database with several morphometric attributes for each of the identified scarps
(e.g. length, azimuth, and height), which can be used for geostatistical study of smooth
plains tectonics. Our structural map reveals that: (i) the area is broadly dominated by wrinkle
ridges, ghost crater assemblages of lineaments, and scarps related to impact crater
processes (e.g. radial faults, secondary crater chains, ejecta emplacement) and that (ii) the
amount of strain was not evenly accommodated throughout the northern smooth plains.
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1. Introduction

Orbital data acquired by the Mercury Dual Imaging
System (MDIS) instrument onboard the NASA MES-
SENGER (Mercury Surface, Space Environment, Geo-
chemistry, and Ranging) mission (Solomon Sean,
et al., 2001, 2008) enabled the completion of the first
mapping of Mercury’s north polar region (50–90° of
latitude). Previously, Mariner 10 and MESSENGER
flyby image coverage (Danielson et al., 1975; Solomon
et al., 2008; Trask & Guest, 1975) showed large regions
of smooth plains surrounded by cratered terrains
(Denevi et al., 2009; Head et al., 2011; Spudis &
Guest, 1988; Strom et al., 2008). New orbital data
acquired by MDIS (Hawkins et al., 2007) provided
full coverage of the northern region of Mercury at
high resolution, allowing a better understanding of
the geomorphology of the area.

Two main geological terrains characterize the Mer-
cury’s north polar region: the northern heavily cratered
terrain (NHCT) and the northern smooth plains (NSP)
(Ostrach et al., 2015). The first unit is characterized by
densely cratered areas (Fassett et al., 2011; Trask &

Guest, 1975). The northern smooth plains are instead
uniform with far fewer craters than the cratered terrain
(Guest & Gault, 1976; Strom et al., 1975) and geomor-
phological features similar to the lunar maria (Head
et al., 2008, p. 2011; Strom et al., 1975), though with
different composition (e.g. Nittler et al., 2011; Vander
Kaaden et al., 2017). Mariner 10 imagery showed that
the NSP have a lower density of impact craters and
are younger than the NHCT (Denevi et al., 2009;
Head et al., 2011; Strom et al., 1975, p. 1975). The lim-
ited spatial resolution of the Mariner 10 dataset (Malin,
1978; Milkovich et al., 2002) did not permit the identifi-
cation of volcanic features, but a volcanic origin of the
NSP was hypothesized due to their distribution, young
age, visible color properties, and overlapping relation-
ships with tectonic structures (Murray, 1975; Robinson
& Lucey, 1997; Robinson & Taylor, 2001; Spudis &
Guest, 1988). It is also possible that the NSP are widely
distributed due to effusive volcanism (Byrne et al., 2013;
Denevi et al., 2009, 2013; Fassett et al., 2009; Freed et al.,
2012; Goudge et al., 2014; Head et al., 2008, 2009, p.
2011; Hurwitz et al., 2013; Kerber et al., 2009, 2011;
Klimczak et al., 2012; Murchie et al., 2008; Robinson
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et al., 2008; Solomon et al., 2008). Furthermore, volca-
nic activity in the NSP could be related to phenomena
of partial flooding of the crater floors (Head et al., 2009)
or to the record of volcanically resurfaced impact crater
regions (Ostrach et al., 2015). Finally, the NSP area is
characterized by the widespread occurrence ofmorpho-
logic scarps as investigated in previous studies about the
tectonics of the region based on digital mapping (e.g.
Crane & Klimczak, 2019).

Significant improvements in digital mapping pro-
cedures and new photo interpretation techniques
along with the availability of high-resolution datasets
have greatly improved the analysis of planetary sur-
faces. Several automatic mapping methods have been
applied in planetary sciences to characterize geomor-
phologic features such as aeolian bedforms at different
scales (Borraccini et al., 2007; Cardinale et al., 2020;
Foroutan & Zimbelman, 2017; Vaz and Silvestro,
2014; Vaz et al., 2015); crater counting (Bandeira
et al., 2007; Bue & Stepinski, 2006); and drainage net-
works (Stepinski & Collier, 2004). Here, we use the
mapping technique introduced by Vaz (2011): a
method aimed at extracting lineaments that represent
topographic discontinuities from digital elevation
models (DEM), which can be used to characterize tec-
tonic structures in planetary surfaces (Vaz et al., 2014)
without being affected by possible bias due to the illu-
mination conditions of imagery.

In this work we apply this semi-automatic
approach described in Vaz et al. (2014) to Mercury
for the first time, producing a detailed morphotectonic
map of the Borealis Planitia region. We defined our
mapping area following the boundaries of the north-
ern smooth deposits (NSP) as in Denevi et al. (2009
and 2013). Substantial parts of NSP are included in
Mercury quadrangles H02 (Victoria) and H05 (Hoku-
sai) both of which have been geologically mapped at
1:3M (Galluzzi et al., 2016; Wright et al., 2019) We
adopt a semi-automatic procedure based on a digital
elevation model (DEM) rather than imagery, resulting
in the identification of tens of thousands of structures
within the NSP (Figure 1), which represents a signifi-
cantly wider geodatabase with respect to the previous
maps obtained using traditional mapping techniques
(e.g. Crane & Klimczak, 2019). The numeric attributes
of each of the mapped lineaments can be used for
quantitative studies to better characterize the density
and spatial distribution of tectonic features and
improve our understanding of the tectonic evolution
of the NSP. Finally, Mercury’s structural maps derived
from imagery photogeologic interpretation might
often be biased by the variable resolution and illumi-
nation conditions of the used basemaps. Indeed,
more recent investigations based on MESSENGER
data (Solomon et al., 2008), led to the revision of pre-
vious results based on Mariner imagery (e.g. Di
Achille et al., 2012; Watters & Nimmo, 2010; Watters

et al., 1998, 2004, 2009). In contrast, our mapping
approach is unaffected by the imagery illumination
conditions and variable resolution, since it is based
on the use of a fixed resolution datasets, such as a
equally spaced DEM.

2. Data and methods

MESSENGER MDIS visible imagery (Denevi et al.,
2016; Hawkins et al., 2007) with a resolution of 166
meters per pixel was used as a basemap. Topography
was reprocessed using the raw Mercury Laser Alti-
meter (MLA) data (Denevi et al., 2016; Hawkins
et al., 2007), creating a final DEM with 500 m/pix to
better characterize the tectonic lineaments and
measure morphometric parameters (e.g. length, azi-
muth, scarp height). Elevation points were integrated
using a block median operator (Wessel & Smith,
1998), and a natural neighbor algorithm was used
for the interpolation. The first iteration revealed that
some of the orbits presented a noticeable vertical
offset. Therefore, we identified and removed 128 orbits
from the dataset, obtaining a more uniform DEM.

With these datasets, we implemented a Geographical
Information System (GIS) project in stereographic pro-
jection (centered at the NSP, 70° N and 30° E) and cre-
ated a geo-structural map of the surface (Figures 2 and
3). Our map is obtained through a twofold process: (1)
automatic mapping using an algorithm to identify all
the lineaments from a DEM (Vaz, 2011; Vaz et al.,
2014), and (2) visual inspection and classification of
the results in a GIS environment. The final maps were
drafted at two different scales, 1:300,000 and 1:600,000.
With this approach, we mapped and characterized
more than fifty thousand linesmarking tectonic features
on the surface, creating a database with several morpho-
metric attributes (e.g. length, azimuth, tectonic linea-
ments height – a list of all the derived parameters and
their description is provided in the Supplementary
materials) that can be used for the geostatistical study
of the smooth plains’ tectonics. With respect to tra-
ditional mapping based on visible interpretation of ima-
gery and topography, the techniqueused in thiswork is a
more robust and detailed approach since it recognizes
and maps all scarps present in the DEM; however, this
means that a scarp/lineament classification stage is
needed in order to study a specific set/type of structure.
This is achieved through the second mapping step (the
visual inspection of the results of the automatic pro-
cedure) by overlaying the mapped lineaments onto the
image mosaics in a GIS interface, allowing a user to
interpret the geomorphological meaning/origin of the
automatically mapped features. In this classification
stage, we recognized the tectonic structures and
excluded other features that were not relevant for the
structural analysis, some of whichwere not recognizable
in the imagery or were clearly associated with DEM
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artifacts. In this way, we extracted 45,012 lines from the
DEM (Figure 2) and classified them as wrinkle ridges,
lobate scarps, ghost craters, craters, and crater ejecta.

The same methods have previously been validated
with MOLA (Mars Orbiter Laser Altimeter, 231 m/
pixel) data and proved to be an effective way to map
and analyze tectonic morphologies on other planets,
producing tectono-structural maps that are comparable
tophotointerpretations (Vaz et al., 2012).We then inves-
tigated the regional stress fields using the orientation of
the mapped tectonic lines, representing them in a rose
diagram and computing circular statistics (Figure 4).
Finally, we present line density maps weighted by the
length and by the average height of the scarps computed
on a circular kernel with 100 km radius (Figure 5). Par-
ticularly,weextracteda linedensitymaps for the tectonic
structures (Figure 5(a)) and a density map weighted for
the product of line length by line height (Figure 5(b)).

3. Results

We divided the identified lineaments into the follow-
ing units: tectonic lines (e.g. wrinkle ridges, lobate
scarps), ghost craters (buried and/or subdued impact
craters with circular outlines) still visible in the
elevation data as annular ridges; Head et al., 2009),
craters (rims and central peaks), and crater ejecta
(materials excavated from a crater cavity during

impact or erupted from a volcanic vent – Hargitai,
2021). The photo-interpretation and inspection of
the automatically identified features resulted in the
exclusion of about 5% of the original lineaments, redu-
cing the final identified lineaments to about 45,000
(Figure 2). The excluded lineaments were mostly rep-
resented by small (few kilometer long) elements that
could not be associated to any of the defined structural
units based on visual inspection of images and topo-
graphy and their geological context. These lineaments
were most likely due to DEM artifacts at km-scale.
Within the investigated area, 27.5% of the mapped fea-
tures correspond to tectonic features (wrinkle ridges
and lobate scarps), 4.3% to ghost craters, 24.7% to cra-
ters, and 43.5% to crater ejecta. Tectonic features are
spread over the entire area (Figures 3(a)–(b)) with
lengths ranging between 4 and 180 km. The mapped
scarps form complex arrays of wrinkle ridges and
lobate scarps with average height of 245 ± 131 m. We
also mapped ghost craters (Figure 3(a)–(b)). These
features are widespread throughout the NSP area
and outline impact features with diameters ranging
from a few to several hundreds of kilometers (Figure
3(a)). The largest basin (Figure 3(a)) within the
studied area, near Borealis Planitia, has a diameter of
about 200 km and may contain graben structures in
the crater floor (Head et al., 2011). In this area, we
also mapped craters with diameters ranging between

Figure 1. Northern hemisphere of Mercury: color coding from MLA topography. The investigated area is outlined by the black
contour in the upper left inset.
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80 and 200 km (Figure 3), including both rims and
central peaks in the same class. A separate unit has
been defined for the crater ejecta (Figure 3).

An overview of the lineament density map (Figure
5(a)) does not show clear tectonic clusters. The overall
spatial anisotropy of the features shows a few gaps
occurring in the central zone of the map. These gaps
are related to the obliteration of features by impact
crater structures since the gaps are associated with
relatively young craters showing well-developed ejecta
blankets (compare Figure 2 and Figure 5(a)). How-
ever, at the regional scale several high spatial density
zones are localized in association with topographic

rises and ghost craters. Contrary to the homogeneity
of the spatial distribution of the lineaments, a plot of
the Cartesian azimuth of the structural features
shows a clear bimodal distribution at ∼50° and
∼135° (Figure 4). It is unclear whether the latter bimo-
dal distribution might be related to a global stress field
compatible with the overall geodynamic evolution of
Mercury (e.g. Di Achille et al., 2012; Dombard, and
Hauck, 2008; Melosh & Dzurisin, 1978). In addition,
more detailed observations are needed to evaluate
the different hypotheses to explain the tectonic evol-
ution of Mercury’s northern smooth plains. Standard
line density (obtained by dividing the partial length of

Figure 2.MLA shaded relief with superimposed geo-structural map. Lines were automatically extracted from the DTM and manu-
ally classified according to their geomorphologic significance using visible image mosaics for context.
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the lines that intersect the circular sampling neighbor-
hood and its area) is nearly uniform, excluding the
areas where craters and their ejecta obscure the tec-
tonic features (Figure 5(a)). However, the line density
weighted by the average height of the tectonic scarps;
i.e. the density that is weighted by the length*height
product and represents the vertical area deformed by
the tectonic processes, suggests that strains are not
uniform, with higher strains concentrated north-
northwest of the bulge. Indeed, the latter weighting
parameterization is a better proxy for the amount of
cumulative strain since it integrates 3D information
usually not considered in the classic 2D analysis of tec-
tonic lineaments.

Finally, we could not quantitatively compare our
results to previous mapping studies (e.g. Crane &
Klimczak, 2019; Galluzzi et al., 2016; Wright et al.,
2019) within the Borealis Planitia since none of
the published maps were publicly released in GIS
format. Moreover, Wright et al. (2019) and Galluzzi
et al. (2016) focused their mapping mostly on geo-
logical units, classifying main tectonic structures at
the mapped scale. While Crane and Klimczak
(2019) focused their mapping on the tectonic struc-
tures of Borealis Planitia following standard map-
ping approaches based on visual inspection of
datasets. They reported a main E-W trend for wrin-
kle ridges. Our results do not confirm the presence
of such E-W preferential orientation for wrinkle
ridges. This inconsistency might be explained con-
sidering the different mapping approaches and the

Figure 3. Close up of two regions (see Figure 2 for locations)
within the studied area, showing the mapped features based
on the photo-interpretation of DEM and visible data.

Figure 4. Scarps length- (blue) and height- (black) -weighted azimuth frequency distribution of the tectonic features.
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possibility that the E-W trend reported by Crane
and Klimczak (2019) might have been biased by
the imagery illumination conditions in relationship
with the sub-vertical inclination of the Mercury’s
axis that would enhance the visibility of E-W
oriented structures.

4. Summary

We present a high-resolution structural map of the
Mercury’s northern smooth plains produced using a
semi-automatic mapping approach based on a tailored
DEM. The new map revealed more than 45,000 mor-
photectonic lineaments over the northern smooth
plains of Mercury. The identified lineaments have
been archived into GIS vector shapefiles, including
several numeric attributes (e.g. azimuth, length,
height, slope, etc.) for each lineament. These morpho-
metric attributes allowed us to characterize the spatial
distribution of tectonic lineaments, which can be used
to perform tectonic structural studies about the NSP.
This map reveals that the area is broadly dominated
by wrinkle ridges, ghost crater assemblages of linea-
ments, and scarps related to impact crater processes
(e.g. radial faults, secondary crater chains, ejecta
emplacement). Our structural regional analysis may
be used as basemap for tectonic and geodynamic
studies to understand the evolution of the northern
smooth plains, as well as a target database for future
missions to Mercury, starting with the joint ESA-
JAXA BepiColombo mission.

Software

The tailored DEM used in this study was derived
reprocessing MESSENGER Mercury Laser Altimeter
(MLA) data (Denevi et al., 2016; Hawkins et al.,
2007), by integrating the elevation points using the
software Generic Mapping Tool (GMT, Wessel &
Smith, 1998) and its block median operator. MESSEN-
GER MDIS visible imagery (Denevi et al., 2016; Haw-
kins et al., 2007) were processed and mosaicked using
the USGS Astrogeology Research Program Integrated
Software for Imagers and Spectrometers (ISIS, http://
isis.astrogeology.usgs.gov) software. Imagery and
topography were subsequently used to implement a
Geographical Information System (GIS) project
using the QGIS software (http://www.qgis.org). The
automatic mapping was realized with an algorithm
to identify all the lineaments from a DEM (Vaz,
2011; Vaz et al., 2014) using the MATLAB software
and exported as linear Shapefile. The final maps
were drafted in QGIS using its Shapefile and layout
editing tools.
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