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ABSTRACT
We study the connection between morphology and dynamical state of the simulated galaxy clusters in 𝑧 ∈ [0, 1.031] from The
Three Hundred Project. We quantify cluster dynamical state using a combination of dynamical indicators from theoretical
measures and compare this combined parameter, 𝜒, with the results from morphological classifications. The dynamical state of
the cluster sample shows a continuous distribution from dynamically relaxed, more abundant at lower redshift, to hybrid and
disturbed. The dynamical state presents a clear dependence on the radius, with internal regions more relaxed than outskirts. The
morphology from multi-wavelength mock observation of clusters in X-ray, optical, and Sunyaev–Zel’dovich (SZ) effect images,
is quantified by 𝑀 – a combination of six parameters for X-ray and SZ maps and the offsets between the optical position of
the Brightest Central Galaxy (BCG) and the X-ray/SZ centroids. All the morphological parameters are highly correlated with
each other, while they show a moderately strong correlation with the dynamical 𝜒 parameter. The X-ray or SZ peaks are less
affected by the dynamical state than centroids, which results in reliable tracers of the cluster density peak. The principal source
of contamination in the relaxed cluster fraction, inferred from morphological parameters, is due to dynamically hybrid clusters.
Compared to individual parameters, which consider only one aspect of cluster property (e.g. only clumping or asymmetry), the
combined morphological and dynamical parameters (𝑀 and 𝜒) collect more information and provide a single and more accurate
estimation of the cluster dynamical state.

Key words: galaxies:cluster:general – Galaxies: clusters: intracluster medium – methods:numerical

1 INTRODUCTION

Galaxy clusters represent the most massive, gravitationally bound
structures in the Universe. The capability to recover a complete de-
scription of their gravity potential or their matter distribution is rel-
evant for cosmological studies since their formation and growth are
closely related to the underlying cosmological model (e.g. Voit 2005;
Pratt et al. 2019). Most of the cluster cosmological constraints are
based on the mass function, i.e., the number of clusters per mass and
redshift bin. However, the cluster total mass is not directly observable
but can be inferred through several complementary observational
approaches. Some of these are based on certain assumptions on the
clusters dynamical state. Even under these hypotheses, the measure-
ment of the mass of clusters is not a simple task because these objects
are complex systems made up of several mutually interacting com-
ponents. Most of the mass in a typical cluster (𝑀 ∼ 1014 −1015M�)
is in the form of Dark Matter (DM) that holds together the baryonic

★ E-mail: federico.deluca@roma2.infn.it

components: hundreds of galaxies and the hot X-ray emitting gas
or Intra-Cluster Medium (ICM). For a virialized and dynamically
“relaxed” cluster, the assumption of the hydrostatic equilibrium to
describe the gas state might be accurate. However, during merging
events or when turbulent motions or compression or non-thermal
heating of the ICM dominate, the equilibrium is no more in place
and it is not trivial to derive the cluster mass from the radial profiles
of the thermodynamical properties of the gas (density, pressure and
temperature).

The impact of an ‘active’ dynamical state on the mass reconstruc-
tion can be investigated using numerical simulations. Indeed, despite
a non-uniform definition of relaxed or disturbed clusters, several au-
thors found similar deviations from hydrostatic equilibrium (Nagai
et al. 2007; Rasia et al. 2012; Henson et al. 2016; Biffi et al. 2016;
Pearce et al. 2020) and identify similar causes: turbulence, shock
fronts, temperature inhomogeneities in the X-ray-emitting ICM, den-
sity inhomogeneities or clumps (Rasia et al. 2014; Nelson et al. 2014;
Biffi et al. 2016; Planelles et al. 2017; Ansarifard et al. 2020). In this
context, the masses of the disturbed clusters are underestimated up
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2 F. De Luca et al.

to 30%, with evidence of mass dependencies (Pearce et al. 2020;
Gianfagna et al. 2021).
The cluster dynamical state is also linked to other halo properties,

such as halo formation time (e.g. Mostoghiu et al. 2019; Haggar et al.
2020) or halo concentration (e.g. Neto et al. 2007). For these reasons,
its determination would be extremely useful for the cosmological use
of clusters. Likely, the cluster dynamical state has direct repercus-
sions on the cluster appearance. For this, the cluster morphology has
been abundantly studied in the literature, especially using X-ray im-
ages (see e.g. Buote & Tsai 1995; Lotz et al. 2004; Rasia et al. 2013;
Parekh et al. 2015; Lovisari et al. 2017; Lopes et al. 2018; Ge et al.
2018; Cialone et al. 2018).
This work continues this series of investigations by extending the

analysis to unprecedented statistics of massive clusters. We use the
galaxy cluster catalogues from The Three Hundred Project1: a set
of 324 cluster-centric regions of 15 ℎ−1Mpc radius simulated with
hydrodynamics which includes radiative physics and different sub-
grid models to describe the stellar and black-holes populations. For
each cluster, we produce and analyse optical, X-ray and 𝑦 maps,
where the 𝑦 maps are the distribution of the Comptonization pa-
rameter 𝑦, related to the thermal Sunyaev-Zel’dovich effect (or tSZ,
Sunyaev & Zeldovich 1972, 1980) and observed in the microwave
band as a distortion of the Cosmic Microwave Background (CMB).
Our specific goal is to determine how to best use the morphological
information derived from these maps to efficiently describe the true
dynamical state of a cluster, which in this work is parametrized by
theoretical indicators computed directly from the 3D information of
the simulated clusters.
This paper is structured as follows: in Sec. 2 we present some

details of the simulations, the cluster catalogues, and the synthetic
maps. In Sections 3 and 4 we introduce the dynamical and morpho-
logical indicators used in our analysis. Our results are discussed in
Sec. 5 and our findings are summarised in Sec. 6.

2 DATASET

2.1 The Three Hundred cluster catalogue

The numerical cluster samples studied in this work belong to The
Three Hundred Project, introduced in Cui et al. (2018) and used
in Wang et al. (2018); Mostoghiu et al. (2019); Arthur et al. (2019);
Haggar et al. (2020); Kuchner et al. (2020). This consists of a se-
ries of zoomed hydrodynamic simulations of 324 cluster regions
extracted fromMDPL2, The MultiDark Planck 2 simulation (Klypin
et al. 2016), a 1ℎ−1Gpc DM-only simulation with a cosmology con-
sistent with Planck Collaboration et al. (2016). The clusters were
initially selected fromMDPL2 simulation by their virial2 halo mass
(𝑀𝑣𝑖𝑟 > 8 × 1014ℎ−1M� at 𝑧 = 0), which is identified by the
Rockstar halo finder (Behroozi et al. 2012). This results in the most
massive 324 clusters which were used to regenerate the zoomed-in
initial conditions for the hydrodynamic runs. As shown in the ap-
pendix of Cui et al. (2018), most of them are still the most massive
clusters at𝑀200 and𝑀500 but with a slightly lower value for the mass
completeness thresholds: 𝑀200 > 6.4×1014 and 𝑀500 > 4.6×1014.
The Lagrangian areas of these spherical regions were computed from

1 https://the300-project.org
2 In this paper, we indicate with 𝑅Δ the radius of the sphere whose density is
Δ times the critical density of the Universe at that redshift 𝜌(𝑅Δ) = Δ𝜌𝑐𝑟 (𝑧) .
We specifically use overdensities equal to Δ = 500, 200, and vir, where Δ𝑣𝑖𝑟

corresponds roughly to 98 for the assumed cosmological model.

a low-resolution version of the MDPL2 and initial conditions were
produced using the ginnungagap code (Cui et al. 2018), with mul-
tiple levels of mass refinements, keeping the original mass reso-
lution of the MDPL2 simulation for the particles within the La-
grangian region and spawning one gas particle per DM particle.
Accordingly to the Planck estimate of the cosmic baryon fraction,
the gas particles in the highest-resolution volume have an initial mass
equal to 2.36 × 108ℎ−1𝑀� while the mass of the DM particles is
1.27 × 109ℎ−1𝑀� . In order to reduce the computational costs of
the simulations, the mass resolution of Dark Matter outside the La-
grangian region has then been degraded in such a way as to preserve
the same tidal field.
Within The Three Hundred Project, the same 324 Lagrangian

regions are re-simulated with different codes, however, for the spe-
cific analysis presented here, we focus only on the catalogues ex-
tracted from the gadget-x hydrodynamical simulations (Murante
et al. 2010; Rasia et al. 2015). This code is a modified version of
gadget3 Tree-PM code and includes an improved SPH scheme with
Wendland interpolating C4 kernel, artificial thermal diffusion and
time-dependent viscosity. Other main features of these runs are gas
cooling with metal contributions, star formation with chemical en-
richment and feedback from stars in the asymptotic giant branch,
supernovae, and active galactic nuclei. For a more detailed descrip-
tion of The Three Hundred Project, see the recent works based
upon these simulations of Li et al. (2020); Knebe et al. (2020); Rost
et al. (2021); Mostoghiu et al. (2021); Kuchner et al. (2021).
During the simulation production phase, we store the data for 128

different snapshots in the redshift range between 𝑧 = 17 and 𝑧 = 0.
In this work we analyse clusters coming from 10 selected redshifts:
0, 0.116, 0.193, 0.304, 0.457, 0.557, 0.663, 0.817, 0.900 and 1.031.
This choice has been made to study the redshift evolution of both
the morphological parameters and the dynamical state indicators.
The partial redshift overlap with Cialone et al. (2018, hereafter C18)
allows us to compare the results with those from the MUSIC sim-
ulation. For each region of the simulation, halos and sub-halos are
identified with the Amiga Halo Finder, AHF3 (Knollmann & Knebe
2009), whenever the structure has at least 20 particles. From the
output of AHF, we select for the analysis the most massive central
clusters at each redshift, for a total of 3240 objects. The mass range
of the galaxy clusters is𝑀500 = (0.15-17.58)×1014ℎ−1M� (median
2.79 × 1014ℎ−1M�).

2.2 Mock optical, X-ray and SZ maps

We generate three maps per cluster reproducing optical, X-ray and
millimetre observations. The last category is aimed to mimic maps
from the tSZ effect. They are produced considering a spherical
region of radius 1.4𝑅200, centred on the projected position of the
theoretical cluster centre defined here as the maximum of the density.
In order to mimic observation maps, clusters at 𝑧 = 0 are replaced at
𝑧 = 0.05 for the three maps with different angular resolutions. Only
the projection along the z-direction is used in this paper. However,
we note here that the other projections give similar results. All
synthetic maps are produced without including the contribution of
other sky contaminants or instrumental noise. Finally, the resolution
of each map is specified based on the target observation.

The optical maps of the clusters reproduce the optical r band
of the Sloan Digital Sky Survey (SDSS), with the same angular

3 http://popia.ft.uam.es/AHF
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resolution of 0.396′′ per pixel. The main sources in this band are
galaxies whose stellar luminosities are derived applying a stellar
population synthesis code described in Cui et al. (2011, 2014,
2016). Each star particle in simulation is treated as a simple stellar
population with a Chabrier initial mass function (Chabrier 2003),
which is also adopted in gadget-x. The spectrum from each star
particle is thus produced by interpolating the stellar evolution
library of Bruzual & Charlot (2003) with its metallicity and age.
Then the spectra of the star particles within the same pixel are sum
up to convolve with the SDSS response file to produce the r-band
luminosity which is in units of erg s−1 cm−2.

In X-ray band, galaxy clusters are strong and extended sources.
The X-ray emission is due to the process of thermal bremsstrahlung
in which hot electrons are scattered by ions in the ICM. The surface
brightness Σ𝑋 along the line of sight can be written as:

Σ𝑋 (𝜈) = 1
4𝜋(1 + 𝑧)3

∫
𝑛𝑒𝑛𝑖Λ𝑋 (𝑇, 𝑍, 𝜈)𝑑𝑙, (1)

where 𝑛𝑒, 𝑛𝑖 are the electrons and ions number densities and
Λ𝑋 (𝑇, 𝑍, 𝜈) is the cooling function which depends on the frequency
𝜈, the metal abundances 𝑍 and the temperature of the plasma 𝑇 .
X-ray images are produced using pyXSIM code (ZuHone et al.
2014; ZuHone & Hallman 2016) based on the PHOX algorithm
(Biffi et al. 2012). We adopt the APEC model from AtomDB4 as
the thermal spectral model in pyXSIM for generating photons.
We further include the Tuebingen-Boulder (Wilms et al. 2000)
absorption model with the neutral hydrogen column density in units
of 0.1 × 1022atoms cm−2 for the foreground galactic absorption.
The X-ray maps are in terms of number counts of detected photons
with 10ks exposure time and their spectral band is 0.1-15𝑘𝑒𝑉 . We
use the responses associated with the WFI instrument which will be
on-board the Athena satellite (Rau et al. 2013).

The SZ effect is originated through inverse Compton scattering of
CMB photons with ICM hot electrons. The distortion is caused both
by the random thermal motion of electrons (thermal SZ effect) and by
the overall bulk motion of the cluster with respect to the Hubble flow
(kinematic SZ effect). Clustermaps inmicrowave band are dominated
by the thermal SZ, since for the expected velocities of galaxy clusters
(few hundred km s−1), and typical cluster temperatures (few keV)
the kinematic contribution is about 10 per cent of the thermal one
(Birkinshaw 1999; Carlstrom et al. 2002). Therefore in our analysis,
we study only the thermal SZmaps that could be described in terms of
the 2D distribution of the dimensionless Comptonization parameter
𝑦. It is defined as:

𝑦 =

∫
𝑛𝑒𝜎𝑇

𝑘𝑇𝑒

𝑚𝑒𝑐
2 𝑑𝑙, (2)

where 𝑚𝑒 and 𝑇𝑒 are the electron mass and temperature, 𝜎𝑇 is
the Thomson cross section, 𝑐 the speed of light, 𝑘 the Boltzmann
constant and 𝑑𝑙 is the line of sight length. Operationally, we compute
a discretised version of Eq. (2) for which we assume that 𝑑𝑉 = 𝑑𝐴𝑑𝑙

and 𝑑𝐴 is the pixel area (Sembolini et al. 2012; Cui et al. 2018):

𝑦 =
𝜎𝑇 𝑘

𝑚𝑒𝑐
2𝑑𝐴

∑︁
𝑖

𝑇𝑖𝑁𝑒,𝑖𝑊 (𝑟, ℎ𝑖), (3)

where 𝑁𝑒,𝑖 is the number of electrons, ℎ𝑖 the SPH smoothing length
and𝑊 (𝑟, ℎ𝑖) the SPH smoothing kernel used in the simulation. The

4 http://www.atomdb.org/index.php

𝑦 maps are produced by the pyMSZ code5, which can also generate
the kinematic SZ effect maps simultaneously (see Baldi et al. 2018,
for an application to the MUSIC simulation). By passing the cluster
centre and radius, the package will load the simulation snapshot (it
supports different snapshot formats) for all necessary information
for calculation. It will output the y-map in fits file with the given
projection direction, angular resolution and the redshift where the
cluster locates.
Both ICMmaps have a fixed spatial comoving resolution of 10 kpc

pixel−1. Notice that the X-ray and 𝑦 maps give complementary infor-
mation about the cluster structure. SZ effect data are more effective
in describing the cluster outskirts compared to X-ray images since
the 𝑦 signal is roughly linearly dependent on the electron density
while the X-ray emission is instead proportional to density square.
The following analysis based on the maps considers the map cen-

troids as the centre of reference instead of the theoretical cluster
centre to not bias our results by a priori knowledge of the true cluster
centre. The centroids of the X-ray and 𝑦 maps are calculated con-
sidering the emission of all pixels within a circle of radius equal to
𝑅500, centred on the theoretical cluster centre.
All maps are used to extract the morphological parameters de-

scribed in Sec. 4.1, while in the next Section we introduce the indi-
cators of the dynamical state computed using the 3D information.

3 DYNAMICAL STATE INDICATORS

In the case of hydrodynamical simulations, all the physical properties
of each particle are known. Therefore for a given object, it is possi-
ble to estimate all the physical quantities in interest, such as density,
gravitational potential, pressure, mass, etc. The theoretical indicators
of the dynamical state applied to simulations use this advantage and
thus refer to quantities computed in 3D that would be unreachable
from an observational analysis. Barnes et al. (2017) and Pearce et al.
(2020) consider, for example, the ratio between the kinetic and ther-
mal energy of the particles inside the halo to estimate the dynamical
state of the clusters, while the dimensionless measure of the Dark
Matter halo rotation (the spin parameter 𝜆) is used in Macciò et al.
(2007); Klypin et al. (2011).
Throughout this paper, we use five indicators of the cluster

dynamical state: (𝑖) the mass fraction of all sub-halo in the cluster,
𝑓𝑠 , (𝑖𝑖) the ratio between the masses of the most massive substructure
and the cluster, 𝑓𝑠,𝑚𝑚, (𝑖𝑖𝑖) the offset between the cluster centre and
the centre of mass, Δ𝑟 , (𝑖𝑣) the ratio between thermal and potential
energy, 𝜂, and (𝑣) the relaxation parameter 𝜒 (Haggar et al. 2020). In
the following, we will describe each of them in more detail, but not
before underlining that in the literature there are many applications
of these parameters for the relaxation definition (see Neto et al.
2007; Ludlow et al. 2012, 2014; Meneghetti et al. 2014; Henson
et al. 2016; Planelles et al. 2017, and references therein).

By identifying with AHF all the sub-halos present inside a spheri-
cal region of a cluster with radius 𝑅ap, the total sub-halomass fraction
𝑓𝑠 is defined as the ratio between the sum of all the sub-halo masses
and the cluster mass within such volume, 𝑀ap:

𝑓𝑠 =

∑
𝑖 𝑀𝑖

𝑀ap
. (4)

The other mass fraction indicator, 𝑓𝑠,𝑚𝑚, is built considering only

5 https://github.com/weiguangcui/pymsz
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the contribution of the most massive substructure in the cluster:

𝑓𝑠,𝑚𝑚 = 𝑀𝑚𝑚/𝑀ap. (5)

The virial ratio 𝜂 is based on the virial theorem and it is defined
as:

𝜂 =
2𝑇 − 𝐸𝑠
|𝑊 | , (6)

where 𝑇 is the total kinetic energy, 𝐸𝑠 is the surface pressure energy
from both collisionless and gas particles, and𝑊 is the total potential
energy (see Klypin et al. 2016; Cui et al. 2017; John et al. 2019, for
details or applications).
The offset of the centre of mass Δ𝑟 is widely used in the literature

(e.g. Macciò et al. 2007, 2008; Duffy et al. 2008; Sembolini et al.
2014). It is quantified as:

Δ𝑟 =
|rcm − rc |
𝑅ap

, (7)

where rcm is the centre-of-mass position of the cluster and rc is the
theoretical centre of the cluster which we identify as the position of
the highest density peak.
Finally, in order to describe the degree of relaxation Haggar et al.

(2020) proposed to use the inverse square root of the normalised
quadratic mean of various indicators, generically indicated as 𝑥𝑖 :

𝜒 =


∑
𝑖

(
𝑥𝑖
𝑥0,𝑖

)2
𝑁


−1/2

, (8)

where 𝑥0,𝑖 are the classification thresholds used to distinguish be-
tween relaxed and disturbed clusters.
Unfortunately, in literature, there is not a unique selection of these

thresholds and also of the set of 3D dynamical indicators (𝑥𝑖) that are
the most suitable to segregate among relaxed and disturbed clusters
(see also Cui et al. 2017). The variety of choices made by different
authors is partially justified from the fact that different kinds of
simulationswere involved (e.g. DMversus hydrodynamical runswith
different treatments for the baryon physics) or because the dynamical
state indicators were extracted from different volumes such as those
within 𝑅vir or 𝑅200 or 𝑅500. In fact, by including the most external
regions, the cluster will be less virialized, which could be caused by
the inclusion of more substructures that are still in the process of
merging into the cluster. Studying these dependencies is one of the
goals of this paper.
In addition to the usage of a continuous parameter, such as the

combined 𝜒 parameter defined above, we also classify the clusters
in three separate classes called ‘relaxed’, ‘hybrid’, and ‘disturbed’.
These classes are defined by using the parameters 𝑓𝑠 (Eq. (4)) and
Δ𝑟 (Eq. (7)). Specifically, we defined relaxed (disturbed) all objects
for which the two conditions 𝑓𝑠 < 0.1 and Δ𝑟 < 0.1 ( 𝑓𝑠 > 0.1 and
Δ𝑟 > 0.1) are simultaneously verified. The hybrid class includes all
other clusters, i.e., those for which the two inequalities have different
signs. This class-based division will be useful to compare with other
works present in the literature.
In this work, we study the dynamical state of the Three Hundred

clusters in Sec. 5.1 and we compare the results of different relaxation
criteria on The Three Hundred sample in Sec. 5.2. In particular, we
compare the result of the relaxation criteria used in Cui et al. (2018)
and C18with our findings.We select and tune the best morphological
parameters among those that better segregate relaxed from disturbed
clusters by using as prior our knowledge on the systems’ dynamical
state as measured from the 3D dynamical indicators. The procedure
will be described in Sec. 4 and applied in Sec. 5.3.

4 MORPHOLOGICAL INDICATORS

Historically, the morphology of clusters has been studied using sev-
eral parameters applied to the different multi-wavelength maps (e. g.
Okabe et al. 2010; Meneghetti et al. 2014; Lovisari et al. 2017; Bar-
talucci et al. 2019; Cao et al. 2021, with references therein). Most of
the ICM morphological indicators have been originally introduced
for X-ray cluster maps (Santos et al. 2008; Nurgaliev et al. 2013;
Mantz et al. 2015) to detect the presence of substructures (Mohr
et al. 1993; Buote & Tsai 1995; Poole et al. 2006; Jeltema et al.
2008) and were borrowed and adapted from optical studies on the
galaxy morphology (Rasia et al. 2013), or even from optical analysis
as the application of Zernike polynomials to cluster maps (Capalbo
et al. 2020). The cluster dynamical state can also be inferred from
some optical substructure estimators (Pinkney et al. 1996; Roberts
et al. 2018), based on galaxies properties such as local deviations
from global mean and dispersion of radial velocities, magnitude dif-
ference between the Brightest Central Galaxy (BCG) and the second
brightest galaxy (e.g. Lavoie et al. 2016; Lopes et al. 2018, and ref-
erence therein), and offsets between the BCG and the X-ray peak
or X-ray centroid (Sanderson et al. 2009; Mann & Ebeling 2012;
Mahdavi et al. 2013; Cui et al. 2016; Rossetti et al. 2016; Lopes et al.
2018; Zenteno et al. 2020).
In this paper, we apply six ICM morphological indicators on both

mock X-ray and 𝑦 maps, plus a combination of them. The combi-
nation of various parameters into one is a strategy already used in
literature (Rasia et al. 2013) since each parameter highlights only
a particular aspect of a typical disturbed system and, at times, the
efficacy of one parameter in describing the cluster dynamical status
depends on the chosen line of sight as projections might influence the
result (C18). Together with this set of parameters based on the ICM
appearance, we also study parameters based on the offsets between
BCG and X-ray and 𝑦 peaks or centroids positions.
The definitions of all these parameters are described in Sections

4.1 and 4.2, while in Sec. 4.3 the diagnostic ability of morphological
parameters is studied by using the Kolmogorov-Smirnov (KS) two-
tail test, and the analysis of the Receiver Operating Characteristic
(ROC) curve (see e.g. Swets 1988; Fawcett 2006, for a more detailed
introduction of ROC diagnostic test). Finally, the segregation ability
of the morphological parameters is tested comparing them with the
3D dynamical indicator 𝜒 in Sec. 5.

4.1 ICM morphological indicators

The morphological indicators for X-ray and 𝑦 maps used in this work
are the same as described in C18 for the MUSIC simulation:

𝐴, Asymmetry (Schade et al. 1995; Okabe et al. 2010; Zhang et al.
2010) is a normalised difference between the original map and a
rotated one. For our analysis, we analyse 4 different rotations of the
maps (90◦, 180◦ and the flipped images along the main axes) and
then we consider, for each cluster, the rotation which maximises 𝐴;
𝑐, Light Concentration Ratio (Santos et al. 2008) is the ratio of the
surface brightness, computed inside two concentric apertures;
𝑤, Centroid Shift (Mohr et al. 1993; Poole et al. 2006; O’Hara
et al. 2006; Böhringer et al. 2010) is the average of the shifts of the
centroids obtained from various concentric circles with increasing
radius;
𝑃, Power Ratio (Buote & Tsai 1995) is based on a multipole de-
composition applied to the maps of the ICM which are thought to
represent the projected mass distribution;
𝐺, Gaussian Fit (C18) is the ratio of the two standard deviations of
a 2D Gaussian fit to the X-ray and 𝑦 maps;

MNRAS 000, 1–17 (2021)
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𝑆, Strip (C18) is defined as a normalized difference of 𝑁 light
profiles, passing through the centroid. Following C18, we compare
4 strips inclined by 45◦ to each other.

As the definition of the 3D dynamical indicators, the morphological
indicators depend on the aperture, 𝑅ap, used to estimate them. To de-
termine which aperture is the most efficient in separating the clusters,
we employ the same procedure illustrated in C18. For each aperture,
we create two distributions of the morphological parameters relative
to the clusters of both the relaxed and disturbed classes introduced
at the end of the last Section. With these two distributions as input,
we compute the KS test and consider as the best aperture the one
that corresponds to the minimum of the median of all KS-p values,
over the entire redshift range. The results of this tuning are shown
in Sec. 5.3. All these tuned parameters 𝑉𝑖 are then collected in the
combined parameter 𝑀 , defined as in C18:

𝑀 =
1∑
𝑖𝑊𝑖

(∑︁
𝑖

𝑊𝑖

log10 (𝑉
𝛼𝑖

𝑖
)− < log10 (𝑉

𝛼𝑖

𝑖
) >

𝜎log10 (𝑉
𝛼𝑖
𝑖

)

)
, (9)

where 𝛼𝑖 = ±1, depending on how the 𝑖-th parameter is related to
the dynamical state. 𝑀 parameter represents a weighted average of
the standardised indicators described above, to enhance and have a
single parameter to characterise the morphology. The logarithm of
the minimum KS-p median value over the entire redshift range is
used as a weight,𝑊𝑖 , in 𝑀 definition (Eq.(9)), for each parameter:

𝑊𝑖 =

����log10 (
𝑚𝑖𝑛

{
𝐾𝑆-𝑝𝑖,𝑧

}
𝑅𝑎𝑝

)���� . (10)

4.2 Offset morphological indicators

On top of the ICM-based morphological indicators, we use also the
offset between the BCG position and both the centroids and the peaks
of the X-ray and 𝑦 maps (Lavoie et al. 2016; Lopes et al. 2018). As an
example, we visualise all relevant positions in Fig. 1. In general, the
BCG position is expected to trace the position of the matter density
peak inside clusters (Cui et al. 2016), as postulated in the "Central
Galaxy Paradigm" (Tremaine 1990; Postman & Lauer 1995; Lin &
Mohr 2004; Lopes et al. 2018). We discuss the validity of the Central
Galaxy Paradigm and the efficiency of these offset parameters in
Sec. 5.4.

4.3 Methods to estimate the efficiency of the morphological
parameters

In this work, we study the performance of our morphological classi-
fiers using two different tests: the Kolmogorov-Smirnov test and the
analysis of ROC curves to which we associate and study several diag-
nostic parameters. The KS test is a statistical non-parametric test that
determines whether two samples are representative of the same dis-
tribution by comparing their cumulative distribution function. This
test returns the maximum deviation between the two curves and a
parameter referred to as 𝑝 value which provides the significant level
of the result. A small 𝑝 value implies that the two distributions are
different.
As explained in Sec. 4.1, the KS test is used to retrieve the best

aperture to calculate the six morphological parameters. In particular,
using the dynamical state classification as a prior, we can compare the
relaxed and disturbed distributions of the morphological parameters
estimated in different aperture with the KS test. This process is
repeated for all redshifts. Then for each morphological parameter, we
consider the median of the KS-p values as a reference to determine

Figure 1. An illustrative example of a combination of the mock multi-
wavelength maps described in Sec. 2.2, for the central galaxy cluster at
𝑧 = 0.46, in region 85 of the simulation. The 𝑦 colourmap and the contours of
the X-ray photon counts, in log scale, are superimposed on the optical SDSS
r band. Isocontour levels are logarithmic equispaced by a factor log 2. The
symbols in the figure mark the position of the relevant cluster centres for the
offset parameters, described in Sec. 4.2. The position of the BCG is marked
with a yellow dot, the X-ray and 𝑦 peaks with a grey and green triangle, and
the centroids with crosses, respectively, of the same colours. The 𝑅500 radius
of the cluster is shown in the left corner of the figure.

the best overall aperture. These medians are used also to compute
the combined parameters, as in Eq. (10).
Generally, for the classification of clusters in observations, con-

tinuous morphological parameters 𝑉 are applied to divide them into
sub-samples. To do that, a threshold 𝑉𝑇 is selected on those param-
eters above (below) at which the clusters are morphological regular
(disturbed). This classification will reflect the dynamical state ac-
cording to the efficiency of the parameters, which can be described
in terms of false and true detections. If a cluster is dynamically
relaxed but does not satisfy the morphological threshold, we can
define this case as a false negative (𝐹𝑁), wrong classification. Clas-
sifying instead a disturbed cluster as regular we will have a false
positive (𝐹𝑃) case. Vice versa, the proper selections are defined as
true positive (𝑇𝑃, the morphologically and dynamically relaxed) or
true negative (𝑇𝑁 , the morphologically and dynamically disturbed)
objects. All these outcomes are generally collected together in the
contingency (or confusion) matrix. Several evaluation metrics can
be defined from these four classes, as the completeness (𝐶), the pu-
rity (𝑝) (Rasia et al. 2013), or the Matthews correlation coefficient
(𝑀𝐶𝐶). The selection of the threshold 𝑉𝑇 is crucial for the classi-
fication, since changing this value we will modify the result of the
classification and the diagnostic power of the used classifier. To char-
acterise that dependence for our morphological parameters, we study
the ROC curves associated with the dynamical state described by the
three classes defined in Sec. 4.

Completeness. The completeness quantifies howmany correct iden-
tifications are performed in the test and it is defined as the true positive
rate, 𝑇𝑃𝑅, the number of correct classifications divided by the total
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number of relaxed clusters:

𝐶 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 . (11)

Purity The purity describes the presence of contaminants in the
selected sub-sample of only regular clusters, and it is defined as:

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 . (12)

Matthews correlation. The 𝑀𝐶𝐶, equivalent to the Pearson 𝜙 co-
efficient, is defined considering all the terms of the confusion matrix,
taking care of unbalanced samples distribution:

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√︁

(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁)
. (13)

ROC curves. Leaving the threshold 𝑉𝑇 to vary, the ROC curve
is defined as the graph of 𝑇𝑃𝑅 (the completeness 𝐶) against the
false positive rate 𝐹𝑃𝑅, the number of disturbed clusters incorrectly
recognised as relaxed, in terms of the total number of disturbed
objects:

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃 . (14)

The ROC curve is a powerful graphical test: in the case of a perfect
classifier, the associated ROC curve will be described in the 𝑇𝑃𝑅-
𝐹𝑃𝑅 plane by a unit step function. On the contrary, an indicator that
has an equal probability to recognise a cluster as relaxed or disturbed
is instead described in the same plane by the identity line. From the
properties of this curve, several summary statistics for the diagnostic
power are commonly drawn, such as the area under the curve (𝐴𝑈𝐶),
with 𝐴𝑈𝐶 = 0.5 associated with random guess and 𝐴𝑈𝐶 = 1 to the
perfect case, or the Youden’s 𝐽 statistics. 𝐽 is defined as:

𝐽 = 𝑇𝑃𝑅 + 𝑇𝑁𝑅 − 1, (15)

where 𝑇𝑁𝑅 is the true negative rate (the number of clusters that are
correctly recognised as non-relaxed over the total number of non-
relaxed clusters). It represents, graphically, the ROC height above
the random guess line.

Probability. Another simple way to estimate the diagnostic ability
of the parameters and the contamination of non-relaxed classes is to
define a probability, 𝑃, to count in our sample a relaxed, hybrid or
disturbed cluster for a given value of the classifier 𝑉 . A simple merit
function to quantify this can be defined as:

𝑃
𝑟 ,ℎ,𝑑
𝑧 (𝑉) =

𝑁
𝑟 ,ℎ,𝑑
𝑧 (𝑉)

𝑁𝑟
𝑧 (𝑉) + 𝑁ℎ

𝑧 (𝑉) + 𝑁𝑑
𝑧 (𝑉)

, (16)

where 𝑁𝑟 ,ℎ,𝑑
𝑧 is the number of relaxed (subscript r), hybrid (h) or

disturbed (d), objects that have a certain value 𝑉 for redshift 𝑧. The
purity 𝑝 corresponds to the integral of 𝑃: 𝑝 =

∫
𝑃𝑑𝑉 .

In this work, we use the ROC curve, 𝐴𝑈𝐶, 𝐽, 𝑀𝐶𝐶, 𝐶, 𝑝 and
𝑃 to study the efficiency and the purity of sub-samples when a
threshold is applied to morphological parameters. In particular, we
use𝑀𝐶𝐶 and 𝐽 to infer a suitable and not arbitrary threshold (𝑉𝑇 ) on
morphological parameters to divide relaxed objects from the other
cases. In fact, 𝐽 and 𝑀𝐶𝐶 can be used as a score for the performance
of the test: their (absolute) value ranges from 1 through 0, depending
on whether the test is able or not to discriminate between the two
classes. Considering that the performance of the test changes if the
discrimination threshold is varied, we can choose as threshold the one
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Figure 2. Percentage of relaxed (red lines), hybrid (green), disturbed (blue)
clusters along the redshift, using the dynamical state indicators and the re-
laxation criterion discussed in Sec. 3. The solid and dashed lines show the
results using a volume radius of 𝑅500 or 𝑅200, respectively.

that maximises these two evaluation metrics. A detailed discussion
of the consistency of relaxed sub-samples inferred with different
criteria is beyond the goal of this paper. However, we still compare
the fraction of relaxed clusters available in the literature (see also
Rasia et al. 2013; Mantz et al. 2015; Rossetti et al. 2016; Lovisari
et al. 2017; Cao et al. 2021, and references therein) with our findings
in Sec. 5.5.

5 RESULTS

In this Section, we discuss the dynamical state of clusters and the
efficiency of the morphological parameters described in Sections 4.1
and 4.2. Then in Sec. 5.5, we compare our morphological results
with other clusters samples, available in the literature.

5.1 Dynamical state of The Three Hundred Galaxy Clusters

In Fig. 2 we show the percentage of relaxed, hybrid and disturbed
classes, defined in Sec. 3, as a function of redshift. Dashed and solid
lines refer to measurements done within 𝑅200 and 𝑅500, respectively.
The relaxed and hybrid populations show a redshift evolution with
reverse trends: the fraction of relaxed clusters decreases while the
hybrid fraction increases from 𝑧 = 0 to 𝑧 = 1. At the same time, the
disturbed class remains almost constant. This redshift evolution is
expected since clusters start to relax at about 𝑧 ∼ 1 but the majority
reaches a virialization status only by 𝑧 = 0 (Muldrew et al. 2015).
The hierarchical cluster evolution can also explain the quite different
percentage of objects defined as relaxed within 𝑅500 (above 50 per
cent at 𝑧 = 0) and within 𝑅200 (30 per cent at 𝑧 = 0). The strong
decrease associated with the largest volume suggests that several
substructures are present in the cluster outskirts and they have not
reached a relaxation status yet. Although, since the disturbed class
does not dramatically change, the cluster outskirts affect only one of
the two parameters entering into the relaxation definition (either 𝑓𝑠
or Δ𝑟 ). As already noted, we recall that the exact value of the relaxed
cluster fraction depends not only on the volume considered but also
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Figure 3.Distribution of the combined 𝜒 indicator, defined in Sec. 3 and using
in its definition the dynamical indicators calculated inside 𝑅500. All the 3240
studied galaxy clusters are considered in the distribution, with blue, green
and red curves corresponding to the disturbed, hybrid and relaxed classes.

on the chosen threshold (𝑥0) as we will explore in the next Section
and in Fig. 4.
For the study of the connection between the dynamical state and

morphology of clusters,we decide to limit our analysis only to regions
inside 𝑅500. This choice was made to study the same region com-
monly achievable in observations and, therefore, we will consider the
dynamical state defined within this aperture. In Fig. 3 we show the
distribution of the continuous 𝜒 dynamical indicator obtained from
the same parameters (𝑥𝑖 = ( 𝑓𝑠 ,Δ)) and thresholds (𝑥0,𝑖 = 0.1 for
both) that we use for the dynamical classification scheme. The dis-
tribution is drawn including all clusters at all redshifts. Over-plotted
we also show the distributions of the relaxed, hybrid, and disturbed
classes (see Sec. 3) in red, green, and blue, respectively. By defini-
tion, relaxed (disturbed) systems have 𝜒 greater (lower) than 1. The
hybrid systems, instead, occupy the region between the two extreme
population.

5.2 Impact of different criteria on dynamical state

In this Section, wewant to compare our findings with previous results
in the literature. For this, we adopt the same criteria used in C18
and Cui et al. (2018) and, as before, we compute the dynamical
indicators within both 𝑅500 and 𝑅200. In C18 the dynamical state
of the MUSIC galaxy clusters is studied within 𝑅𝑣𝑖𝑟 , using Δ𝑟 and
𝑓𝑠,𝑚𝑚. Relaxed clusters are those who have at the same time Δ𝑟

and 𝑓𝑠,𝑚𝑚 less than 0.1. Instead, in Cui et al. (2018) The Three
Hundred relaxed clusters are defined by adopting more stringent
criteria since all the following conditions, measured within 𝑅200,
needed to be simultaneously satisfied: |1− 𝜂 | < 0.15, Δ𝑟 < 0.04 and
𝑓𝑠 < 0.1.
The fractions of The Three Hundred relaxed clusters adopting

these criteria, calculated for 𝑅200 (solid lines) and 𝑅500 (dashed
lines) are shown in Fig. 4. Applying the C18 criteria to our samples,
we recover one of the results highlighted in that paper: the fraction
of relaxed clusters is constant in the redshift range considered. Note
here that it is more extended (0 < 𝑧 < 1) than in C18 (0.4 < 𝑧 <

0.8). Furthermore, the relaxed fraction remains almost constant both
considering 𝑅500 or 𝑅200. It is, however, striking the difference in
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Figure 4. Percentage of relaxed clusters applying the relaxation criteria
adopted in this work (Sec. 3, red lines), in Cui et al. (2018) (orange) and
C18 (black), in the examined 10 redshift snapshots of the simulation. Dashed
and solid lines show the results using respectively 𝑅200 or 𝑅500.

the number of relaxed clusters: up to 70% here (black lines) and
close to 50% in C18 paper. This discrepancy is again explained
by the fact that in C18 all quantities were defined within 𝑅vir and
therefore contained the less virialized external regions. To be sure
that this interpretation is correct, we analysed only for sake of this
comparison also The Three Hundred runs carried out with the
same simulation code gadget-music as for the MUSIC clusters.
We consider only 𝑧 = 0 clusters and evaluate all parameters within
𝑅vir. As such, it is recovered the same fraction of MUSIC relaxed
clusters. The absence of a dynamical evolution is mainly due to the
fraction in mass indicator ( 𝑓𝑠,𝑚𝑚) used in C18 paper. This parameter
significantly changes only when a great substructure enters into the
dominant halo and does not consider all the other substructures as
𝑓𝑠 does (Fig. 2). Therefore, for this work we prefer to consider 𝑓𝑠
because more sensitive to even minor mergers which are expected to
perturb the ICM at the same level.
As shown in Fig. 4, the criteria of Cui et al. (2018) return, instead,

a much smaller percentage of ‘relaxed’ objects for two main reasons:
they consider as a factor also the energy virial ratio and they impose
a stronger condition on Δ𝑟 (0.04 versus 0.1). As a result, less than
20% of the clusters are now recognised as relaxed, with a redshift
dependence similar to the one found here (Fig. 2). Interestingly, using
these criteria the results related to 𝑅200 and 𝑅500 are almost the same.
We verified that the absence of an aperture dependency is due to the
introduction of 𝜂: this parameter has an opposite dependency on the
explored volume than the others. When we consider exclusively the 𝜂
parameter, we have more relaxed clusters at 𝑅200 (63% at 𝑧 = 0) than
at 𝑅500 (close to 34%). This is due to the definition of 𝜂: it was initially
introduced to study the dynamical state of isolated objects. Therefore,
estimating it inside the clusters leads to other contribution in 𝐸𝑠 due
to the interaction between the external regions of the clusters and
the inner ones. Therefore this criterion could be used to restrict the
analysis only to the "very relaxed" cluster sub-sample considering
𝑅200, for which the hydrostatic assumption is more fulfilled.
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Table 1. Radii of the best apertures, in units of 𝑅500, and relative weights
(𝑊𝑖/

∑
𝑖 𝑊𝑖) of all the morphological parameters for X-ray and 𝑦 maps. In the

case of the 𝑐 parameter, the two radii of the concentric apertures are listed.

morphological X maps 𝑦 maps
parameters 𝑅𝑎𝑝 KS-p 𝑊 𝑅𝑎𝑝 KS-p 𝑊

𝐴 0.50 8.6e-15 0.17 1.00 1.2e-11 0.15

c 0.025 3.4e-20 0.24 0.05 6.6e-21 0.290.25 0.25

𝑃 0.25 5.3e-17 0.20 0.50 1.2e-9 0.13

𝑤 0.75 1.2e-16 0.19 0.75 4.7e-19 0.26

𝐺 0.50 4.7e-5 0.05 0.25 9.3e-4 0.04

𝑆 1.00 4.1e-13 0.15 1.00 5.7e-10 0.13

5.3 X-ray and y maps morphology

With the procedure described in Sections 4.1 and 4.3, we use the
dynamical state classification results in theKS test to estimate the best
aperture and the weights (Eq. (10)) of the morphological parameters
for X-ray and 𝑦 maps. For the KS test, we calculate the parameters
inside 4 equally spaced fractions of 𝑅500, and in the case of the
𝑐 parameter, we consider 10 equally spaced inner radii varying in
the range [0.1 − 1]𝑅ap. The tuning procedure of X-ray and 𝑦 maps
morphological indicators with the KS test returns small probability
p-values, but their variance changes of several orders of magnitudes
over redshift. As an example, we have 𝑝 ∼ 10−7 (𝑧 = 0) and 𝑝 ∼ 10−3
(𝑧 = 1) for 𝑦 maps 𝑃 parameter, with an aperture of 𝑅500. Although a
decrease of performances is expected for most of the parameters for
higher redshifts, we decided to use the median of KS-p value in C18
tuning procedure, instead of average, to be less affected by outlier
and to obtain a single best aperture suitable for all the redshifts. In
Table 1 the best apertures from the KS-test tuning procedure and
weights for the 𝑀 parameter are listed. The weights are expressed as
fractions of𝑊𝑇 =

∑
𝑖𝑊𝑖 , with𝑊𝑇 = 82 for X-ray and𝑊𝑇 = 71 for

𝑦 maps, to clearly show which parameter contributes more in 𝑀 .
Although most of the parameters are originally defined for X-ray

observations, they show similar results also on 𝑦maps. Two examples
are the parameters 𝑐 and 𝑤 that weight even more in 𝑦 maps than
in X-ray ones. The results of the KS analysis in the two sets of
maps mostly differ for the identification of the best aperture to be
used to compute the morphological indicators. The indicators that
are influenced by small-scale variations favour a small aperture in
the X-ray maps where the substructures are more evident. Indeed,
some small central clumps might be in pressure equilibrium and
therefore are hidden in the 𝑦 maps. Vice versa, the parameters that
mostly consider large-scale inhomogeneity are better traced with a
larger aperture in X-ray in order to capture more of the external
signal, which is weaker with respect to the 𝑦 maps. Looking at the
weights that each parameter carries, we notice that the 𝐺 parameter,
as highlighted also by C18, is the least effective parameter and it
contributes to the combined parameter 𝑀 only three or four times
less. This is because 𝐺 gives a global estimation of how much a
cluster is prolate or oblate and does not take into account the detailed
internal structure of ICM. Moreover, the spherical shape assumption
is a rare case even for a relaxed cluster: most clusters are better
described by an ellipsoidal shape and the 𝐺 parameter, thus, become
less robust because it can strongly vary depending on the chosen
projection.
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Figure 5. Scatter plot and marginal distributions of the relaxed (red), hy-
brid (green), and disturbed (blue) morphological combined 𝑀 parameter
computed on X-ray and 𝑦 maps for all the 3240 clusters in the 10 redshift
snapshots. A linear fit is also plotted in the figure, along with the 95% confi-
dence contour level of the data distribution. The result of the fit is shown in
the legend of the figure.

A linear correlation between the combined parameters estimated
in the two maps (𝑀𝑦 and 𝑀𝑋 ) is present, as shown in Fig. 5, with a
Spearman correlation coefficient of 𝜌 = 0.80. From this figure and
hereafter, all the fits are performed with a least-square algorithm to
reduce the effect of outliers or leverage points present in the data.
For the 𝑀𝑦-𝑀𝑋 relation, the best fit is in agreement with the line
of equality, indicating that, on average, this set of indicators works
efficiently both on X-ray or 𝑦 maps. From the marginal distributions
in the top and side panels of Fig. 5, the most common clusters in our
sample are morphological hybrid clusters, since the peaks of the 𝑀
distributions are close to 𝑀 ∼ 0, while the two tails are associated
with the more relaxed (negative tail) and more disturbed (positive)
clusters. It is relevant to stress how both these distributions are re-
markably similar to the 𝜒 distribution already shown in Fig. 2. The
relation between the dynamical and morphological state is shown
in Fig. 6, where the scatter plot between the two parameters, 𝜒 and
𝑀 , is studied. The Spearman coefficient indicates a relatively strong
correlation: 𝜌 ∼ −0.66, using 𝑀 from either 𝑦 or X-ray maps. As a
result, the M parameter derived from these maps could be used as a
single good proxy of the dynamical state of galaxy clusters, since it
represents a dynamical state weighted combination of different mor-
phological aspects of clusters. In Fig. 5 and Fig. 6 we use colours
to distinguish the three classes defined in Sect. 3: relaxed, hybrid,
and disturbed. We intend to show how a rigid morphological classi-
fication based on the thresholds of these morphological parameters,
in order to infer the dynamical state, could lead to contamination by
other classes. Considering the dynamical classification in𝑀 distribu-
tion, the hybrid clusters in the figures show, in fact, a non-negligible
superimposition over the other classes. Instead, the relaxed and dis-
turbed distributions are enough separated, as also highlighted by
the low KS-p values in Table 1, returned by the tuning procedure.
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Figure 6. Scatter plot, in semilog scale, between the dynamical 𝜒 indicator
and the morphological 𝑀 parameter for 𝑦 maps, with their distributions in
the marginal plots. The straight line in this figure corresponds to a linear fit of
the data and red, green, blue colours are associated with the relaxed, hybrid
and disturbed dynamical classes. The 95% confidence level of the data is also
shown in the figure. The slope and the vertical intercept of the linear fit are
listed in the legend of the figure. Similar results are obtained also for the X-ray
𝑀 parameter.

Table 2. Median of relaxed, hybrid and disturbed distributions for the 𝑀

parameter, at 𝑧 = 0, 𝑧 = 1, and considering all the redshift. The first rows
correspond to the 𝑦 maps, while the second ones to the X-ray maps. The 16th
and 84th percentiles are also listed in the table, with a ± near the median
values.

𝑀 𝑧 = 1 𝑧 = 0 all

Relaxed −0.50+0.53−0.69 −0.50+0.76−0.65 −0.45+0.62−0.66
−0.42+0.78−0.83 −0.48+0.66−0.58 −0.48+0.69−0.68

Hybrid −0.06+0.59−0.44 0.34+0.45−0.66 0.10+0.58−0.59
−0.08+0.60−0.54 0.28+0.74−0.62 0.14+0.65−0.60

Disturbed 0.63+0.50−0.61 0.84+0.57−0.58 0.78+0.50−0.55
0.67+0.57−0.91 0.73+0.78−0.67 0.74+0.64−0.68

To quantify what is visually represented in the figures, the median
values, with 16th and 84th percentiles of the three dynamical state
distributions of 𝑀 , are summarised in Table 2. The superimposition
between the three distributions also depends mildly on 𝑧, since in
the past clusters are less relaxed than at 𝑧 = 0. Looking at low and
high redshift clusters, the median in Table 2 of the relaxed, hybrid
and disturbed distributions are closer among each other at 𝑧 = 1 than
at 𝑧 = 0, where hybrid and disturbed medians move towards higher
values of 𝑀 . However, the large spread of 𝑀 values described by the
percentiles in Table 2 do not show any statistical significant redshift
evolution of 𝑀 parameter.
An even more effective way to quantify the level of contamination

is to perform a ROC analysis, introduced in Sec. 4.3 and largely em-
ployed in Appendix A. In particular, in the upper left panel of Fig. A1

Table 3. Purity and completeness, in percentage, for a selected sample of 𝑀
values estimated in 𝑦 maps for the relaxed and non-relaxed (disturbed plus
hybrid) classes.

Relaxed Non-relaxed

𝑀𝑦 𝑝 𝐶 𝑝 𝐶

-2 100 1.04 22.45 100

-1.5 90.48 5.29 22.88 99.56

-1 87.38 19.76 24.70 97.73

-0.5 78.33 46.90 29.62 89.63

0 68.00 77.04 41.14 70.99

0.5 56.64 92.28 56.73 43.59

1 48.36 97.70 75.07 16.86

1.5 45.12 99.72 84.38 3.33

2 44.43 100 83.33 0.33

we use this analysis to highlight how the morphological parameter
𝑀 can effectively separate the dynamical classes defined through 𝜒
and, specifically, the relaxed clusters from the disturbed (blue), the
hybrid (green), and from all the non-relaxed (grey), e.g. disturbed and
hybrid. Considering only the disturbed cluster, the associated ROC
curve is closer to the perfect case (with 𝐴𝑈𝐶 ∼ 0.9meaning that the
two classes are very well separated) than if we consider only the hy-
brid (𝐴𝑈𝐶 ∼ 0.74) or taking hybrid and disturbed clusters together
(𝐴𝑈𝐶 ∼ 0.80). Therefore the contamination is mainly due to hybrid
clusters when a threshold is chosen. From the maximum values of
𝑀𝐶𝐶 and 𝐽, the two statistics give similar thresholds for 𝑀 , all close
to the expected separation value of 0: 𝑀𝑀𝐶𝐶 = −0.02, 𝑀𝐽 = −0.01
for 𝑦 maps and 𝑀𝑀𝐶𝐶 = −0.13, 𝑀𝐽 = −0.04 for X-ray ones. In
Tables 3 and 4, the purity 𝑝 and the completeness 𝐶 of the relaxed
and non-relaxed sub-samples are shown, for a set of 𝑀 values. In
Fig. 7 themerit function 𝑃 defined in Eq.(16) (Sec. 4.3) is shownwith
respect to the𝑀 parameters considering all the simulated clusters. To
calculate 𝑃, we divide𝑀 values into ten equally spaced bins between
their minimum and maximum values. The corresponding values of 𝑃
for X-ray and 𝑦maps are shown separately in the two panels of Fig. 7.
Considering that negative values of 𝑀 are associated with relaxed
clusters and disturbed to positive ones, it is not surprising that the
trends of the relaxed and disturbed clusters are opposite and reach
their maximum in the extreme values. Without the hybrid clusters,
the contamination of the disturbed clusters is contained: at 𝑀 ∼ 0 it
is at the level of ∼ 13-20% and lower for 𝑀 < 0. Therefore, hybrid
clusters represent the major source of contamination for relaxation
definition, with 𝑃 close to 45% at 𝑀 ∼ 0 and 𝑃 ∼ 20% at 𝑀 ∼ −1.

5.4 Morphological offset parameters results

The BCGs, estimated from r optical band maps of the clusters de-
scribed in Sec. 2.2, have been identified as the most luminous galaxy
inside an aperture of 0.5𝑅500 centred on the maximum density peak
of the clusters. This is done in order to reduce the selection error of
a BCG gravitationally bound to a substructure present in the outskirt
of the clusters. We recall that the pixel resolution is fixed in arcsec,
one pixel in physical units span from 0.75 to 6.67 kpc moving from
𝑧 = 0 and 𝑧 = 1. These limits are, on average, smaller than 0.05 and
0.5 per cent of 𝑅500.
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Figure 7. Probability functions 𝑃 applied to the combined morphological parameter 𝑀 for X-ray (left panel) and 𝑦 (right panel) maps, as defined in Eq.(16)
(Sec. 4.3), for all the 3240 studied clusters in the sample. The three colours correspond to the dynamical classes of relaxed (red), hybrid (green) and disturbed
(blue) clusters.

Table 4. Purity and completeness, in percentage, for a selected sample of 𝑀
values estimated in X-ray maps for the relaxed and non-relaxed (disturbed
plus hybrid) classes.

Relaxed Non-relaxed

𝑀𝑋 𝑝 𝐶 𝑝 𝐶

-2 93.75 2.02 22.57 99.89

-1.5 92.98 7.38 23.16 99.56

-1 88.73 21.92 24.96 97.78

-0.5 79.52 48.36 29.63 90.02

0 66.36 75.37 38.68 69.55

0.5 55.87 92.35 53.06 41.71

1 49.18 97.91 65.17 19.30

1.5 45.76 99.51 73.91 5.99

2 44.58 99.86 66.67 1.05

In Fig. 8 the distribution of the offset between the BCG position
and the theoretical centre, Δ𝐷𝑃−𝐵𝐶𝐺 , is shown. Independently of
the redshift, almost 92% of the clusters in the simulation presents an
offset Δ𝐷𝑃−𝐵𝐶𝐺 < 0.05𝑅500, while the large majority has an offset
below 0.02𝑅500 (see the insert of the figure). The clusters with a large
offset are associated with objects with low values of 𝜒 or large values
of 𝑀 and typically are classified as non-relaxed objects. Only 3%
of relaxed clusters present large offsets due to relaxation processes
still in action, highlighted by irregular morphology (𝑀 > 0) or with
a farther, slightly brighter galaxy than the one nearest to the peak
density. Another result concerning the BCG position is its variation
with the redshift. Considering the median of the offset distribution, it
linearly decreases by a factor of 5 from high redshift to lower redshift
clusters, independently on the dynamical state as also shown in the
inset in Fig. 8. The yellow area in the inset corresponds to the 16th
and 84th percentile of the distributions.
We can conclude that, in general, the BCG position in The Three

Hundred cluster sample does not depend strongly on the dynamical
state and its position can be used in observations as a good tracer
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Figure 8.Histogram, in log scale, of theBCG-density peak offset,Δ𝑃𝑑−𝐵𝐶𝐺 ,
and themedian values of the distributions across the redshift in the inset figure.
Δ𝑃𝑑−𝐵𝐶𝐺 is in units of 𝑅500 and red, blue, green, and black lines correspond
respectively to the relaxed, disturbed, hybrid and total distributions. The left
limit in the histograms corresponds to the maximum resolution limit of the
optical maps. The yellow area in the inset plot corresponds to the values
between the 16th and 84th percentile of the distributions.

of the total density peak of galaxy clusters, except for a few (∼ 8%)
disturbed clusters. A detailed discussion of this topic is beyond the
goal of this paper, but the BCG Paradigm is weakly fulfilled, since
most BCGs in The Three Hundred sample are close to the density
peak, but not completely at rest. For a more detailed study of this
topic, see the papers of Coziol et al. (2009); Cui et al. (2016); Harvey
et al. (2017); Lopes et al. (2018); De Propris et al. (2020).
We move now to compute the offsets between the BCG centre

and the ICM centres identified as ICM peaks or as ICM centroids
from the X-ray and 𝑦 maps (see Sec. 2.2). As expected, the offsets
with respect to the positions of the peaks, Δ𝐵𝐶𝐺−𝑃𝑋,𝑦

, show no
clear correlation with the dynamical state. Furthermore, the ROC
curves present in the lower right panel of Fig. A1 in the Appendix
confirm their inefficiency: all the curves are close to the randomguess
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Figure 9. Scatter plots and distributions for the offset parameter, Δ, between the BCG and the X-ray (left column) or 𝑦 (right) centroids. The offset parameters
are calculated in terms of 𝑅500 and considering all the 3240 clusters at the different redshifts. The upper row shows the correlation, in log-log scale, between
the two offset parameters and the dynamical 𝜒 indicator defined in Sec. 3. The lower row shows the result of the comparison between the offset parameters and
the combined morphological 𝑀 parameter for X-ray (left) and 𝑦 maps. Red, green, blue colours are associated with relaxed, hybrid and disturbed clusters. The
best fit and the 95% confidence level of the data distribution are also shown in the figures, with the slope and y-intercept listed in the legends of the panels.

line, with a median average AUC close to 0.61, for the binary test
of the relaxed population against the non-relaxed one. In absence of
strong inhomogeneities or disturbances in the ICM (likemajormerger
events, as for cluster A370, Molnar et al. 2020), the ICM peaks are
almost coincident with the total density peaks used before. Therefore
both the map peaks and the BCG position are good estimates of the
cluster centre.

However, regarding the positions of the centroids, relaxed, dis-
turbed and hybrid clusters show different offsets with respect to all
centres discussed before (the theoretical one or the total density peak,
the ICM peaks and the BCG position). The centroids results are more

affected by inhomogeneities, or more in general by disturbances, in
the overall ICM structure. The offset between the BCG and the two
centroids,Δ𝐵𝐶𝐺−𝐶𝑋,𝑦

, shows a relatively strong correlation with the
dynamical state 𝜒 indicator: 𝜌 = −0.63 for 𝑦 centroid and 𝜌 = −0.69
for X-ray maps. Moreover, these offsets have also a high correlation
with 𝑀: 𝜌 = 0.80 for 𝑦 maps and 𝜌 = 0.79 for X-ray maps. In Fig. 9
the scatter plots and the distributions of these indicators respective
to 𝜒 and 𝑀 are shown. These results are corroborated by the perfor-
mance analysis of ROC curves. The centroid parameters detach from
the random guess, showing for Δ𝐵𝐶𝐺−𝐶𝑋

an 𝐴𝑈𝐶 ∼ 0.83 (0.78 for
Δ𝐵𝐶𝐺−𝐶𝑦

) if we consider the non-relaxed class and 𝐴𝑈𝐶 ∼ 0.94
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(0.93) considering instead only the disturbed clusters. As expected,
there are slightly better results with X-ray data, which again empha-
sise the presence of even small substructures, with AUC values that
are generally larger than 𝑦 counterparts. In Fig. A1 in the Appendix,
the ROC curves for the offset parameters Δ𝐵𝐶𝐺−𝐶𝑋

, Δ𝐵𝐶𝐺−𝑃𝑋
,

and Δ𝑃𝑋−𝐶𝑋
are shown. The other possible offsets of the centroids

with the other tracers, as the peak positions, show similar results to
the BCG one. For the thresholds on BCG-centroids offset parame-
ters, the maximum of 𝐽 and 𝑀𝐶𝐶 are slightly different for X-ray and
𝑦 data. For the offsets with X-ray centroid, the suggested threshold
is at 0.05 × 𝑅500 while for 𝑦 centroid it is at 0.06-0.07 × 𝑅500.

5.5 Comparison with the observational estimates of relaxed
fraction of galaxy clusters

The estimation of the fraction of relaxed galaxy clusters has been
extensively studied in observations. However, a direct comparison is
not straightforward for the results obtained with different morpho-
logical parameters and based on different samples, as highlighted
by Cao et al. (2021). Morphological parameters are often differently
defined depending on the main topic of the paper or the limitation
of the analysis procedure. Furthermore, the comparison between dif-
ferent clusters samples could be affected by selection effects, as the
Malmquist bias, especially for flux-limited X-ray samples (Hudson
et al. 2010; Chon & Böhringer 2017). In fact, Rossetti et al. (2017);
Andrade-Santos et al. (2017); Chon & Böhringer (2017) have high-
lighted the presence of a bias between the SZ and X-ray sample of
cool core (CC) and non-cool core (NCC) fractions and in the relaxed
cluster fraction (52 ± 4%) vs ∼ 74% Rossetti et al. 2016). In SZ-
selected clusters, Lopes et al. (2018) have found a higher fraction of
substructures than X-ray selected clusters. Jeltema et al. (2008) and
Maughan et al. (2008) found with numerical simulations and obser-
vations a redshift evolution of the dynamical state. Instead, Bartalucci
et al. (2019) found a weak evolution of their combined morpholog-
ical parameter with 𝑧, while Nurgaliev et al. (2017) and McDonald
et al. (2017) found no significant statistical difference using pho-
ton asymmetry, 𝐴𝑝ℎ𝑜𝑡 , and centroid shift parameters in describing
X-ray morphology of X-ray and SZ selected clusters samples used,
over the explored redshift range. Therefore, the number of clusters
classified as relaxed varies significantly in the literature according
to the different samples or morphological parameters used in each
paper.
We summarise several values for the fractions of relaxed galaxy

clusters that can be found in the literature in Table 5 and compare
them with the results shown in this work. Considering the cool-core
clusters as relaxed clusters, we also list their fractions obtained from
thresholds on the concentration ratio parameter 𝑐. For some of the
works listed, the authors do not specify the number of relaxed clusters
from the used morphological indicators. The fractions in Table 5
are then calculated according to their criteria, considering the data
present in their tables or figures. These values are marked in the table
with a (*), near the reference. We further note that this unbiased
selection merely includes all the works with different observations,
methods, criteria and thresholds. No normalisation nor correction is
included.
The relaxed cluster fraction that we can infer from morphological

parameters in our simulated sample is close to Bartalucci et al. (2019)
(∼ 46%) or SZ clusters of Rossetti et al. (2016) (∼ 52%) and Lopes
et al. (2018) (49 ± 8) for the morphological indicator based on the
offsets. If we apply the thresholds from 𝑀𝐶𝐶 and 𝐽 to the combined
parameter 𝑀 , we recover a fraction of 44-49% of relaxed clusters,
while from the dynamical analysis in Sec. 5.1, the total fraction of
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Figure 10. Distribution of 𝑀𝐶𝐶 (black solid line) and 𝐽 (red dashed line)
merit functions, defined in Sec. 4.3, for the offset parameter between BCG and
𝑦 centroids, in units of 𝑅500. The inferred thresholds on the morphological
parameter are represented as vertical lines in the figure.

relaxed clusters is ∼ 44% (considering all the 3240 galaxy clusters
in 𝑧 ∈ [0, 1.031]). Note that our sample is not mass-complete at
redshift 𝑧 > 0. Considering the offset parameters between BCGs and
centroids, the relaxed cluster fractions for 𝑀𝐶𝐶 and 𝐽 thresholds
are, respectively, 49% and 47% for Δ𝐵𝐶𝐺−𝐶𝑋

and 57% and 47% for
Δ𝐵𝐶𝐺−𝐶𝑦

. The difference between𝑀𝐶𝐶 and 𝐽 for the 𝑦 offset is due
to the different thresholds suggested by the two summary statistics.
The peak of 𝑀𝐶𝐶 distribution is flatter compared to 𝐽, as shown
in Fig. 10, suggesting a higher threshold and, consequently, a larger
fraction of relaxed clusters. The different number of relaxed clusters
from dynamical to morphological parameters comes from contami-
nation of hybrid and disturbed clusters, as explained in Sec. 5.3. The
clusters that are identified as relaxed both with dynamical indica-
tors and 𝑀 are just 31-33% of the total, while the fraction of false
detection (the non-relaxed clusters by dynamical indicators identi-
fied as relaxed by 𝑀 with these thresholds) is close to 13-16%. For
completeness, the number of relaxed clusters from dynamical state
indicators that are not recognised as such by 𝑀 is ∼ 11-14%. The
samples in Table 5 differ both in redshift and mass ranges, but our
results are still in agreement with Rossetti et al. (2016) or Lopes et al.
(2018) if we compare sub-samples with similar redshift range and
medians of the previously cited work. Considering only The Three
Hundred clusters with 𝑧 ≤ 0.116, the fraction of relaxed clusters
from𝑀𝑋 is 45-49% (48-49% for𝑀𝑦), while for 𝑧 ≤ 0.304 it is ∼ 49-
50% (44% for 𝑀𝐶𝐶 threshold in 𝑀𝑋 ). For clusters in 𝑧 ≤ 0.557
or 𝑧 ∈ [0.116, 0.663] we have a percentage of 49-50% (45% again
from 𝑀𝐶𝐶 threshold for 𝑀𝑋 ) of relaxed clusters.
Morphological parameters have also been studied intensively with

numerical simulations. Pinkney et al. (1996) examined several sta-
tistical tests for substructure detection in optical maps, while Rasia
et al. (2013) review the performances of X-ray based morphological
parameters. On mock SZ maps, Cialone et al. (2018) study the clus-
ter morphology using morphological parameters originally defined
for X-ray, while Capalbo et al. (2020) apply a Zernike polynomial
decomposition for the morphological analysis. Several works take
advantage of simulation to study the correlation between the mass
bias or, more in general, the mass estimates and the cluster morphol-
ogy (Piffaretti, R. & Valdarnini, R. 2008; Rasia et al. 2012; Green
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Table 5. The fraction of relaxed clusters for different observational samples available in the literature, compared with The Three Hundred results. The total
number of objects and the redshift ranges of the cluster samples are also reported in the table. The (*) symbol denotes that these works do not explicitly quote
the fraction of relaxed clusters, so we derived them from their tables or figures. For The Three Hundred sample, we excluded the fraction of relaxed clusters
from the 𝑦 centroid-BCG positions offset parameter, using the 𝑀𝐶𝐶 threshold. It is equal to 57% due to the flatness of the 𝑀𝐶𝐶 peak.

Paper Number of objects relaxed cluster redshift range
fractions [%] 𝑧𝑚𝑖𝑛 𝑧𝑚𝑎𝑥

The Three Hundred 3240 44-49 - < 1.031

Santos et al. (2008) (low z) 11 64 0.15 0.3
Santos et al. (2008) (high z) 15 73 0.7 1.39

Sanderson et al. (2009) 65 37 0.15 0.3

Zhang et al. (2010)* 12 42 0.15 0.3or Okabe et al. (2010)*

Cassano et al. (2010)* 32 44 0.2 0.4

Böhringer et al. (2010)* 31 48 0.06 0.18

Mann & Ebeling (2012)* 108 44 0.15 0.7

Maughan et al. (2012)* 114 18 − 25 0.1 1.3

Mahdavi et al. (2013)* 50 26 − 28 0.15 0.55

Nurgaliev et al. (2013) 36 33 0.3 0.9

Parekh et al. (2015) 84 23 0.02 0.9

Mantz et al. (2015) 361 16 0.05 1.2

Lavoie et al. (2016) 85 65 0.043 1.05

Rossetti et al. (2016) (SZ sample) 132 52 ± 4 0.02 0.87

Rossetti et al. (2017) (SZ sample) 169 29 ± 4 0.04 0.87
Rossetti et al. (2017) (X-ray) 104 59 ± 5 0.15 0.7

Andrade-Santos et al. (2017) (SZ sample) 164 28-39 - < 0.35
Andrade-Santos et al. (2017) (X-ray) 100 44-64 0.025 0.3

Lovisari et al. (2017)* 120 32 0.01 0.55

Chon & Böhringer (2017) (Volume limited sample) 93 29 - < 0.1
Chon & Böhringer (2017) (Flux limited sample 1) 51 41 - < 0.1
Chon & Böhringer (2017) (Flux limited sample 2) 42 43 - < 0.1

Lopes et al. (2018) (X-ray sample, optical indicators) 62 47-66 0.01 0.1
Lopes et al. (2018) (X-ray sample, X-ray indicators) 62 65-69 0.01 0.1
Lopes et al. (2018) (SZ sample, optical indicators) 40 38-63 0.01 0.1
Lopes et al. (2018) (SZ sample, X-ray indicators) 40 48-53 0.01 0.1

Bartalucci et al. (2019)* 74 46 0.08 1.13

Zenteno et al. (2020) 288 14 0.1 0.9

Yuan & Han (2020) 964 51.2 0.003 1.75

et al. 2019; Barnes et al. 2020) or with other cluster properties as
the mass accretion rate (Rasia et al. 2014; Chen et al. 2019), the
correlation between centre offsets and gas velocity dispersion (Li
et al. 2018), the ICM thermodynamical profiles (Ruppin, F. et al.
2019) and turbulence (Valdarnini 2019). In a recent work by Cao
et al. (2021), the consistency of relaxed cluster fractions and the
thresholding problem in the relaxation definitions are studied with
simulated galaxy clusters taken from IllustrisTNG (Marinacci et al.
2018), BAHAMAS (McCarthy et al. 2016) and MACSIS (Barnes
et al. 2016) simulation suites. They found that the effectiveness of
a single relaxation threshold and the consistency of relaxed sub-
samples from different parameters are limited due to the intrinsic

scatter of the morphological parameters, numerical resolution and
subgrid physics, dependency by redshift and mass or the arbitrary
nature of relaxation threshold values.
The introduction of combined parameters (Rasia et al. 2013;

Meneghetti et al. 2014; Lovisari et al. 2017; Cialone et al. 2018;
Bartalucci et al. 2019), like 𝑀 , could contribute to reducing the
variation in the fraction of relaxed galaxy clusters. Representing a
weighted average of different clusters dynamical feature, the single
definition of each used parameter lose importance in the choice of a
threshold on 𝑀 , avoiding non-trivial cross consistency check among
different indicators. Furthermore, it gives a unique and continuous
estimation of galaxy clusters regularity or relaxation, even if the per-
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formances of combined parameters must first be investigated with the
advantage of numerical simulations, as was done previously in Rasia
et al. (2013) and C18. Concerning these two works, in this paper we
test the performance of combined parameters for a larger sample of
galaxy clusters, both in redshift and size (in Rasia et al. (2013) they
use 60 Chandra-like images of 20 simulated galaxy clusters, while
in C18 there are 258 clusters, studied in 4 redshift snapshots) and
studied with a multi-wavelength approach.

6 CONCLUSIONS

In the literature, there is no consensus, both in simulations and obser-
vation (e.g. Cui et al. 2017; Cao et al. 2021), in how to divide clusters
according to their dynamical state with both dynamical or morpho-
logical indicators. In this paper, we study the performance of these
kinds of indicators using galaxy clusters from The Three Hundred
Project gadget-x simulation. From each of the ten redshift snap-
shots between 𝑧 ∈ [0; 1.031] that we used, we have extracted the 324
most massive central galaxy clusters for a total of 3240 objects with
masses: 𝑀500 = (0.15-17.58) × 1014ℎ−1M� . From this sample, we
estimated and compared the dynamical state of clusters using three
different relaxation classifications. For this purpose, we used in total
five 3D indicators commonly used in simulations: the total sub-halo
and the most massive substructure fractions in mass 𝑓𝑠 and 𝑓𝑠,𝑚𝑚,
the viral ratio 𝜂, the centre of mass offset Δ𝑟 and the relaxation pa-
rameter 𝜒. For the same clusters, synthetic multi-wavelength images
have been produced to characterise the morphological state and test
the performance of the morphological indicators. In particular, we
used the same six indicators, plus a combination of them, already
adopted in C18, for our X-ray and SZ (described by the Comptoniza-
tion parameter 𝑦) mock images. From the optical maps, the positions
of the BCGs were determined to infer the dynamical state from in-
dicators based on offsets between BCGs and X-ray or 𝑦 peaks or
centroids positions. Our findings can be summarised as follows:

Considering the relaxation criteria from Cui et al. (2018), C18,
and a new one introduced in this work, the fraction of relaxed clus-
ters strongly depend on which dynamical indicators are used, on the
discrimination thresholds, and on the selected volume in which pa-
rameters are calculated. No remarkable difference between 𝑅200 and
𝑅500 is present for Cui et al. (2018) criterion due to the influence
of 𝜂 dynamical indicator, while a slight increase is obtained with
C18 one, which is due to the suppression of redshift evolution of
the dynamical state induced by 𝑓𝑠,𝑚𝑚. Instead, the redshift evolution
and the volume dependence are recovered considering the dynamical
classification of this work. The dynamical state, however, is better
described by continuous indicators rather than classes. The introduc-
tion of the 𝜒 indicator by Haggar et al. (2020), as a combination
of dynamical indicators, has the advantage to combine the different
dynamical property of the other parameters giving a single continu-
ous indicator for the dynamical state to compare with morphological
indicators.
As for the dynamical state, the morphology of galaxy clusters in

X-ray and 𝑦 maps is better described by the continuous combined
parameter𝑀 . After the tuning procedure of the six parameters which
constitute 𝑀 , this parameter works efficiently and with comparable
results on the two maps: for 𝑀𝑦-𝑀𝑋 relation a Spearman correlation
of 𝜌 = 0.80 is present. Moreover, the best fit of the data is in agree-
ment with the identity line. Regarding the link between morphology
and dynamical state, 𝑀 shows a relatively strong correlation with the
dynamical state parameter 𝜒, for which 𝜌 ∼ −0.66. Considering the

dynamical classification, the major source of contamination on re-
laxed sub-sample is composed of hybrid clusters, as highlighted from
the analysis of ROC curves. Considering two dichotomous tests be-
tween relaxed and disturbed clusters and relaxed against non-relaxed
(disturbed plus hybrid) sub-samples, the ROC curves underline a
decrease of performances of 𝑀 discrimination ability when hybrid
objects are included in the test. The area under the ROC curve de-
creases by ∼ 11% using the non-relaxed sample, from 𝐴𝑈𝐶 ∼ 0.9
to ∼ 0.8. Consequently, the rates of contamination from disturbed
and hybrid clusters on relaxed sub-sample are different. From the 𝑃
merit function, the contamination is close to 𝑃 ∼ 45% for hybrid and
∼ 20% for disturbed at 𝑀 ∼ 0, while disturbed 𝑃 decreases faster
than hybrid one for negative values of 𝑀 .
For the offset parameters, the position of BCGs and X-ray or 𝑦

peaks are good tracers of the peak density of clusters: no remark-
able differences are present in their distributions depending on the
dynamical state. Therefore, the offset parameters between BCGs and
X-ray, 𝑦 peaks are not efficient dynamical state parameters, with ROC
curves close to the performance of a random guess classifier. Con-
sidering instead the offsets between BCGs and the centroids of 𝑦 or
X-ray maps, the efficiency of these offset parameters are comparable
to𝑀 , with 𝐴𝑈𝐶 ∼ 0.8 for the binary test of relaxed with non-relaxed
sub-samples. The correlation between 𝑀 and these offsets are high
(𝜌 ∼ 0.80), while the correlation with the dynamical state is different
for 𝑦 (𝜌 = −0.63) and X-ray (𝜌 = −0.69) centroids, but both rela-
tively strong. Similar results are obtained if peaks are used instead
of BCGs positions.
Considering the lack of consensus in the literature about the actual

fraction of relaxed galaxy clusters in observation, our relaxed sub-
sample is comparable with Rossetti et al. (2017) and Bartalucci et al.
(2019) results, and with the fraction of Lopes et al. (2018) obtained
by the offset with X-ray centroids and BCGs. To be not biased by an
arbitrary choice of the threshold with which segregate relaxed from
non-relaxed, we use two summary statistic related to ROC curves, the
Youden’s 𝐽 statistic and the Matthews correlation coefficient 𝑀𝐶𝐶.
In particular, we select as thresholds the values that maximise these
two scores. We obtain a median relaxed cluster fraction of ∼ 49%
from 𝑀 or the offset between BCGs and X-ray centroids. Instead,
the two scores return two different fractions for the BCG-𝑦 centroid
offset parameter: 47% for 𝐽 and 57% for 𝑀𝐶𝐶. This discrepancy
is due to the relation between the dynamical state and the offset
parameters. For the 𝑦 centroid, the 𝑀𝐶𝐶 peak is flatter than in the
J parameter, suggesting a slightly larger threshold (0.06-0.07𝑅500
instead of 0.05𝑅500). However, this corresponds to a variation of
10% in the fraction of relaxed clusters, underling how problematic
the thresholding problem could be for relaxation definition.
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APPENDIX A: ROC ANALYSIS ON MORPHOLOGICAL
PARAMETERS

ROC curves, initially introduced as a method to characterise radar
receivers, are now widely used in many scientific applications, as
medicine (Infantino et al. 2020) or machine learning techniques for
dichotomous (or more) classifiers. The main advantage of ROC anal-
ysis is that it represents, graphically, the diagnostic ability of a test
when an arbitrary threshold is varied. In our work, we decided to
use ROC curves in order to illustrate the thresholding problem of
the relaxation definition of galaxy clusters. As outlined in Sec. 5.5,
or more in detail by Cao et al. (2021), there is no consensus in the
literature on which threshold to use for a given morphological pa-
rameter. This leads to different relaxation criteria that could be very
restrictive or not. A ROC inspection of the diagnostic power could
provide a criterion to select which are the best parameters to use in
observation and give information about possible threshold on them,
binding their definition to some summary statistic drawn from the
curve, as has been done here with 𝐴𝑈𝐶, 𝑀𝐶𝐶, and 𝐽.
The ROC curves for morphological parameters 𝑀 on 𝑦 maps and

the offset between the BCG and the X-ray centroid (Δ𝐵𝐶𝐺−𝐶𝑋
) are

shown in the left column of Fig. A1. In all the panels, we consider in
the tests all the 3240 clusters in the sample. The confidence intervals
are computed by performing a bootstrap (with 4000 realisations) of
the efficiency estimators. Similar results to the ones show in Fig. A1
are also obtained for X-ray maps 𝑀 parameter and BCG-𝑦 centroid
offset parameter. The two morphological parameters are more ef-
ficient in separating the two extremes of the dynamical state. The
disturbed ROC curves are always higher than hybrid ones, as the area
under the curve: 𝐴𝑈𝐶 & 0.90 for disturbed and 𝐴𝑈𝐶 ∼ 0.74 when
we consider only the hybrid in the test. As a result, if we are interested
to extract a relaxed sub-sample, the possible contaminants consist
mainly of hybrid clusters. Comparing the relaxed and non-relaxed
objects, we have an intermediate performance with 𝐴𝑈𝐶 ∼ 0.82.
For the offset parameters, we show in the second row of Fig. A1 the
difference of performances when the peaks are used instead of cen-
troids. Comparing the curves in the two panels, a sharp drop in the
performance is evident when the peak is used: 𝐴𝑈𝐶 fells from 0.83
(for Δ𝐵𝐶𝐺−𝐶𝑋

, considering the relaxed versus the non-relaxed test)
to 0.61 (Δ𝐵𝐶𝐺−𝑃𝑋

) and the ROC curves are closed to the identity
line, that in this plane represents the performance of a random guess
classifier. This lack of performances is related to X-ray or 𝑦 peaks
positions, which are not good indicators of the dynamical state but
are reliable tracers of the peak density of galaxy clusters. Therefore
all the possible offsets between BCG, X-ray or 𝑦 peaks and peak den-
sity show no dependence from the dynamical state and have similar
ROC curves to the one presents in Fig. A1. As a result, using the
positions of the peaks or BCGs do not affect dramatically the results,
as illustrated in the upper right panel of Fig. A1, where the offset
Δ𝑃𝑋−𝐶𝑋

between the X-ray centroid and peak is shown. In this case,
the 𝐴𝑈𝐶 is slightly lower than BCG ones: 𝐴𝑈𝐶 ∼ 0.89 for disturbed
and 𝐴𝑈𝐶 ∼ 0.78 for non-relaxed classes.

APPENDIX B: CONVERGENCE OF EFFICIENCY
INDICATORS

The sample analysed in this work consists of a large collection of
simulated galaxy clusters, in a wide redshift range, compared to the
typically observed sample, as shown by Table 5 in Sec. 5.5. To test
if the results shown in this paper remain stable even for smaller
samples, we estimate the dispersion of the efficiency parameters in
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Figure A1.Median ROC curves considering all the 3240 galaxy clusters. Blue, green, and grey coloured areas correspond to the bootstrap 68-95-99% confidence
intervals for, respectively, the relaxed against only disturbed, hybrid, and disturbed plus hybrid ROC curves. The upper row shows the ROC curves for the 𝑀𝑦

parameter (left panel), and for the offset parameter between the X-ray peak and centroid (right). In the second row the difference of performance in the ROC
curves, when the X-ray centroid (left panel) or peak (right) positions are considered for the offset from BCG as a morphological parameter. The median 𝐴𝑈𝐶

is shown in each legend of the panels for the three tests, with a 99% confidence interval. The identity line in this plane corresponds to the performance of a
random guess classifier.

cases where the sample is reduced by 20, 40, 60 and 80 per cent. For
these resamplings, we realise 1000 realisations where the clusters are
randomly selected, without replacement, but keeping the fraction of
relaxed, hybrid and disturbed objects unchanged with respect to the
overall sample. Considering the ROC curves for the 𝑀𝑋 morpholog-
ical parameter, the deviations between the median of the realisations,
relative to the overall profile of the 𝑇𝑃𝑅, are shown in Fig. B1 as
solid black lines. The dispersion of 𝑇𝑃𝑅 values is represented, in
the same figure, with a blue filled area with upper and lower limits
relative to the 2.3th and 97.7th percentiles of the data. The intensities
of the colours in the figure are sorted in descending order, concerning
the sample reduction. The darkest blue is associated with a reduction
of 20%, while the lighter with a reduction of 80%. As expected, the
dispersion becomes larger when the number of clusters reduces, but,
statistically, the efficiency estimator converges to the overall profile.
We obtain similar results for the other efficiency parameters as 𝐹𝑃𝑅,
𝑀𝐶𝐶, and 𝐽, and considering the other morphological parameters.
For the efficiency parameters, the medians of the realisations con-
verge to the overall profiles but with different dispersion depending
on the parameter. The 𝐹𝑃𝑅 parameter has a dispersion generally
larger than 𝑇𝑃𝑅, while 𝑀𝐶𝐶 and 𝐽 show similar dispersion between

them. For the area under the ROC curve, the 𝐴𝑈𝐶 distributions have
a median compatible with the overall value, with an increasing dis-
persion for smaller samples. As an example, for the 𝑀𝑋 parameter
the median 𝐴𝑈𝐶 from all the resamplings converges to the overall
value of 0.80, but with an increasing dispersion from±0.02 (reducing
the sample of 20%) to ±0.05 (80%).
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Figure B1. Relative deviation from the overall 𝑇 𝑃𝑅 profile considering the
four resamplings, for the 𝑀𝑋 morphological parameter. The coloured filled
areas represent the 95% dispersion of the data. The intensities of the colours
are sorted in descending order concerning a reduction of 20, 40, 60, 80% of
the sample.
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