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Abstract 

The paper investigates a multi-period supply channel facing uncertain and price-history-

dependent demands and environmental regulations. The knowledge about the demands is 

limited to its mean and standard deviation in each period, i.e., there is incomplete information 

on the actual distribution. A distributional robust approach is conducted to address 

incompleteness. The chain is incorporating environmental policies such as pollution constraints 

and (optimal) corrective taxes. A single contract covers all periods. Numerical examples 

highlight the benefits of a single contract. 
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1. Introduction 

With rapid global economic development, environmental challenges have been deteriorating 

constantly (Yang, Zheng, & Xu, 2014). The major source of this problem has been regarded as 

greenhouse gas emitted by production, services, and consumption (Song & Leng, 2012). This 

problem has attracted more countries' attention since the 1980s (Ma, Zheng, Zhang, Li, & Ma, 

2022). Nowadays, sustainability is a key subject for environmentalists, economists, 

industrialists, consumers, academia, and governments (Manupati, Jedidah, Gupta, Bhandari, & 

Ramkumar, 2019; Yang, Zheng, & Xu, 2014). With the aim of environmental protection and 

reduction of pollution, many governments have agreed to contribute to the goal of emissions 

reduction by at least 50% by 2050 as reported by the International Energy Agency (Liu, 

Holmbom, Segerstedt, & Chen, 2015; Song & Leng, 2012). Furthermore, because of consumer 

awareness development, many governments and companies have implemented pollution 

reduction policies and displayed their attempts to reduce their footprint by pasting a tag on their 

products, like Tesco and Boots. The actions that increase consumer awareness of environmental 

concerns, encourage them to opt for a product with a lower environmental footprint if its price 

is affordable. However, actions with lower pollution may result in a higher cost for the channel 

players (Yang, Zheng, & Xu, 2014). 

Among all environmental pollution reduction policies, two types of policies, emissions capacity 

constraint, and emissions tax regulation have been analyzed by many countries or regions, such 

as the European Union (EU), Canada, China, and the IMO (Bai, Xu, Gong, & Chauhan, 2022). 

Emissions capacity constraints involve setting a maximum limit, or carbon cap, on the level of 

emissions allowed within the supply channel. In contrast, emissions tax regulation imposes a 

cost on each unit of production or pollution, requiring the channel to pay a tax fee for each unit 

of pollution generated through production or consumption. According to Luo, et al., emissions 

tax is considered one of the most effective market-based mechanisms and enjoys widespread 

acceptance worldwide. More than 20 countries, including Canada, Australia, the United 

Kingdom, and the United States, have already implemented emissions tax policies (Luo, Zhou, 

Song, & Fan, 2022). For instance, the Dutch government has planned to impose a CO2 

emissions tax on industrial companies starting in 2021, initially set at 30 euros per ton of CO2 
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emitted. This amount would increase to 125-150 euros by 2030, ensuring the sustainability of 

industrial firms (Blomberg1). 

As economic globalization has deepened, the world economy has evolved into a complex and 

interconnected system. However, a significant challenge remains in establishing crucial 

pollution reduction targets within such a complex economic framework (Jiang, 2022) and 

encouraging industries to collaborate. This underscores the importance of developing an 

algorithm capable of identifying optimal solutions while considering environmental pollution 

reduction constraints. Supply channels have increasingly prioritized ecological sustainability in 

alignment with the United Nations’ Sustainable Development goals (Kannan, Solanki, Kaul, & 

Jha, 2022). Therefore, it is vital to examine the impact of pollution reduction activities on 

economic players (Yang, Zheng, & Xu, 2014). 

Kannan et al. analyzed the barriers to implementing pollution reduction policies in India. They 

employed the Best Worst method to determine the relative importance of the barriers, focusing 

on regulatory policies. They establish interrelationships among the barriers of pollution 

reduction policies, using the Decision-Making Trial and Evaluation Laboratory. Regarding 

their categories, the economic category was found to carry the highest weight, followed by the 

organizational and environmental categories. Their finding highlights several key observations, 

including the lack of initial funding, hidden costs, uncertain carbon market price, lack of 

research and development, lack of support from the authorities, lack of alternative energy 

sources, unaccountability of production waste, fear to shift to a new system, lack of in-house 

reverse logistics, irrational current taxes, unaccountability of supply chain actors and lack of 

social demand (Kannan, Solanki, Kaul, & Jha, 2022). 

Wu et al. review the progress made in carbon neutrality efforts. They note that 120 countries 

worldwide have proposed carbon-neutral goals, such as China, accompanied by national 

development, different cities and industries have actively included carbon neutrality in their 

development plans (Wu, Tian, & Guo, 2022). In a study by Xu et al., the performance of 

emissions tax policy in a supply chain composed of one supplier and two financially asymmetric 

manufacturers was investigated under Cournot competition. The researchers argue that 

emissions tax plays a crucial role in restricting carbon emissions and improving environmental 

performance for climate change mitigation (Xu, Fang, & Govindan, 2022). 

 
1 https://www.bloomberg.com/news/articles/2019-06-28/dutch-government-plans-co2-emissions-levy-for-

industrial-firms 
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Luo et al. developed the Stackelberg game to evaluate the impact of the emissions tax on 

(re)manufacturing decisions within a closed-looped supply chain. They examined both 

scenarios with no investment in pollution reduction technology, as well as with investment in 

centralized and decentralized closed-loop supply chains. Their finding suggests that emissions 

tax encourages manufacturers to invest in pollution reduction technology or engage in 

remanufacturing. Moreover, when the tax is low, the pollution level in the centralized closed-

loop supply chain exceeds that of the decentralized model (Luo, Zhou, Song, & Fan, 2022). 

Choi and Cai discuss the environmental challenges arising from shorter lead times in the 

production process, which can result in inadequate control of chemical and material processing 

operations. To address this issue, they propose the imposition of an environmental tax on 

suppliers to incentivize investment in green technologies (Choi & Cai, 2020). Zhang et al. 

explore a single-period Stackelberg model considering three regulatory approaches, tax, 

subsidy, and tax-subsidy policies. Their study aims to assess the effects of each method on 

channel profit and environmental pollution (Zhang, Hong, Chen, & Glock, 2020). 

Hong et al. explore the integration of tax regulations and green product design strategies, where 

the decision variables are the degree of product greenness and retail price being made by the 

manufacturer and the retailer respectively (Hong, Wang, & Gong, 2019). Manupati et al. 

investigate different production-distribution and inventory problems in a multi-echelon supply 

chain, considering three pollution reduction policies viz tax, strict capacity caping, and a cap-

and-trade system. They also incorporate lead-time considerations using a non-linear mixed 

integer programming model (Manupati, Jedidah, Gupta, Bhandari, & Ramkumar, 2019). In a 

study by Song et al., a stochastic production capacity problem is expanded to incorporate cap-

and-trade and pollution tax regulations. The researchers found that firms increase their capacity 

when capacity investment is low enough, leading to higher unit profit (Song, Govindan, Xu, 

Du, & Qiao, 2017). The manufacturer in Chen et al.’s model employs two different techniques, 

standard and green technology using cap-and-trade and capacity constraints to reduce pollution. 

They demonstrate that emissions trade yields higher profits compared to capacity constraints 

(Chen, Chan, & Lee, 2016). Choi incorporates pollution tax policy into a fashion apparel 

problem and examines the implementation of a quick response system through reduced lead 

time, faster delivery mode, and local sourcing instead of offshore sourcing (Choi T. M., 2013). 
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Zhang and Xu study a newsvendor multi-item production plan with stochastic, but constant 

demand2, considering both cap-and-trade and pollution tax regulations (Zhang & Xu, 2013). 

In our model, a Stackelberg game composed of a manufacturer and a retailer is considered, 

wherein the manufacturer leads the channel in a multi-period setting. The retailer faces a 

demand that is time and price-history dependent, i.e., the current and prior prices determine the 

demand in each period. Moreover, the incomplete information on demand distribution leads to 

opting for a distributional-robust (DR) approach. The proposed algorithm operates under a 

single contract, wherein the players consider their decisions and the resulting consequences 

across all periods simultaneously. The primary objective is to ensure the attainment of the 

highest possible value. In the following, we study two environmental pollution reduction 

policies: pollution tax and capacity constraint and propose optimal algorithms satisfying the 

environmental policies. The decision variables are the prices. However, in the pollution tax 

model, the tax fee is also a decision made by the regulator. He addresses the chain problem by 

endogenizing the pollution externalities. The contributions of this paper are hence 

• to solve multi-period Stackelberg distributional-robust game, 

• with a dynamic and price-history-dependent demand, 

• under a single contract, compared to periodic contracts, which makes significantly different 

results by utilizing more information and freedom to decide, 

• propose an algorithm with environmental constraints, viz capacity constraints and pollution 

tax,  

• acquiring the corrective tax that the regulator puts on the leader to fully compensate for the 

pollution produced. 

 

2. Model Framework 

In our model, demand is dynamic and price history-dependent for a perishable commodity 

produced by the manufacturer and sold by the retailer. The manufacturer leads and the retailer 

follows him, while both aim at maximizing their expected values by making pricing policies, 

leading to order quantity decisions under a single contract. With a single contract, the players 

can improve their expected value by regulating their decisions when they can observe the 

connected decisions' reactions. The players have a certain number of periods and decide on all 

their variables simultaneously. Unlike periodic contracts, a single contract is not subgame 

 
2 A stochastic constant demand can be formed as 𝐷 = 𝜇 + 𝜎𝜀, where 𝜇 and 𝜎 are constant values representing the 

mean and standard deviation of the demand and 𝜀 is a distribution with mean zero and variance 1. 
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perfect, but if the players cling to the contract, both may obtain higher values. This can be 

exploited in DR settings as well as in more unrealistic situations with complete demand 

information. 

The channel produces an externality in the form of pollution such that the order quantity may 

be obliged to follow environmental protection policies to reduce the environmental footprint. 

We employ two policies: capacity constraints and environmental taxes. In the capacity 

constraint system, the pollution produced in period 𝑘 by manufacturing the ordered quantity 𝑞𝑘 

is 𝑒𝑘𝑞𝑘 which cannot exceed a certain cap 𝑀𝑘, i.e., 0 ≤ 𝑒𝑘𝑞𝑘 ≤ 𝑀𝑘. The tax can be split into 

two subcases: Any given tax on a unit of production or order quantity (environmental or not) 

and a corrective tax that exactly endogenizes the cost of eliminating pollution flow in the chain. 

The latter tends to depend on quantity or production volume. It depends on the damage function 

or the flow of externality costs. We consider a corrective tax where either the manufacturer or 

the retailer incorporates this decision in their formulation and pays the tax. All taxes and 

pollution or production caps are allowed to be dynamic. 

The next subsection deals with the price-history-dependent demand structure. The DR model 

under a single contract is introduced in subsection 2.2. It is formed for the DR model, but the 

algorithm is applicable in the case with complete information by replacing the profits and 

quantity functions corresponding to the actual demand distribution. In the following, 

subsections 2.3 and 2.4 organize the single contract model for capacity constraints and 

corrective taxes. Each proposed model is provided with a non-trivial example in section 3. 

2.1. Demand Structure 

The demand in period 𝑘 ∈  {1, … , 𝑛} as a dynamic function of prices is modeled as 

𝐷𝑘(�⃗� 𝑘) = 𝜇𝑘(�⃗� 𝑘) + 𝜎𝑘(�⃗� 𝑘) 𝜀𝑘, �⃗� 𝑘 = (𝑟1,⋯ 𝑟𝑘) (1) 

where 𝜇𝑘 and 𝜎𝑘 are deterministic functions of time and retail prices and represent the mean 

and standard deviation of demand at period 𝑘. The epsilons are uncorrelated random variables 

independent of prices with mean and standard deviation equal to 0 and 1 respectively. 

Incomplete information in the present setting means that the distributions for the 𝜀𝑘 are 

unknown. This is typically the situation in most real-world cases, either the complete 

information is not accessible, or it is too costly to obtain it. Hence, it is worthwhile to implement 

an approach that does not rely on the specificities of the 𝜀𝑘-distributions, i.e., a distributional-

robust (DR) approach is the way forward. It implies replacing the retailer’s expected 
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value/profit with a tight lower bound, i.e., at least one set of distributions results in an expected 

value equal to this bound and no other distribution implies a lower expected value. That is, no 

fully informed situation will have a lower expected profit for the same set of means and 

variances. 

2.2. Model Formulation 

The retailer orders 𝑞𝑘 from the manufacturer with the wholesale price 𝑤𝑘 considering the 

demand 𝐷𝑘 and sells the amount of min(𝐷𝑘, 𝑞𝑘) to the customers at the price 𝑟𝑘 in period 𝑘. 

The time scope is divided into 𝑛 discrete intervals referred to as periods. If 𝑞𝑘 exceeds the 

demand, (𝑞𝑘 − 𝐷𝑘)+ can be salvaged (discarded) at a price (cost) of 𝑠𝑘. The retailer’s profit 

function in period 𝑘 is3  

𝜋𝑘
𝓇(�⃗� 𝑘, 𝑤𝑘, 𝑞𝑘) =  𝑟𝑘 min(𝐷𝑘, 𝑞𝑘) + 𝑠𝑘 (𝑞𝑘 − 𝐷𝑘)+ − 𝑤𝑘𝑞𝑘 + 𝐵𝑘

𝓇(𝑞𝑘), (2) 

where the first term represents the revenue of sold items, the second indicates the revenue (or 

cost) of the leftovers, the third term is the cost of purchase, and the last term addresses any other 

gains or costs by acquiring 𝑞𝑘. The function 𝐵𝑘
𝓇 may be non-linear. An example of this non-

linear part can be a damage function. The retailer’s objective function is then the expected 

values of profits, 

𝐸[𝜋𝑘
𝓇]  =  𝑟𝑘 (𝜇𝑘 − 𝐸(𝐷𝑘 − 𝑞𝑘)

+) + 𝑠𝑘(𝑞𝑘 − 𝜇𝑘 + 𝐸(𝐷𝑘 − 𝑞𝑘)
+) − 𝑤𝑘 𝑞𝑘

+ 𝐵𝑘
𝓇(𝑞𝑘) 

= (𝑟𝑘 − 𝑠𝑘) 𝜇𝑘 − (𝑤𝑘 − 𝑠𝑘) 𝑞𝑘 − (𝑟𝑘 − 𝑠𝑘) 𝐸[𝐷𝑘 − 𝑞𝑘]
+ + 𝐵𝑘

𝓇(𝑞𝑘). 

(3) 

The demand distribution, if known, provides a solution for the term 𝐸[𝐷𝑘 − 𝑞𝑘]
+. However, 

Cauchy- Schwartz inequality (Fakhrabadi & Sandal, 2023)4 assists with 

𝐸[𝐷𝑘 − 𝑞𝑘]
+ ≤ 

1

2
(√𝜎𝑘

2 + (𝑞𝑘 − 𝜇𝑘)2 − 𝑞𝑘 + 𝜇𝑘). 
(4) 

By replacing 𝐸[𝐷𝑘 − 𝑞𝑘]
+ in Eq. (3) by the right-hand side of Eq. (4), the expected DR approach 

for the retailer is obtained as a lower bound for the model with known distribution as follows 

 
3 See list of notations list in Appendix 1 
4 See Appendix 2. 

Πk
𝓇(�⃗� 𝑘, 𝑤𝑘) ≡ 𝐸[𝜋𝑘

𝓇]𝐷𝑅

= (𝑟𝑘 − 𝑠𝑘) 𝜇𝑘 − (𝑤𝑘 − 𝑠𝑘) 𝑞𝑘 − (𝑟𝑘 − 𝑠𝑘) 
√𝜎𝑘

2 + (𝑞𝑘 − 𝜇𝑘)2 − 𝑞𝑘 + 𝜇𝑘

2
+ 𝐵𝑘

𝓇(𝑞𝑘) ≤ 𝐸[𝜋𝑘
𝓇]𝐷, 

(5) 
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where 𝐸[𝜋𝑘
𝓇]𝐷 represents the profit of the same model with known distribution. From now on 

we use the term 'profit' for this bound (Πk
𝓇). 

The manufacturer’s expected profit is calculated as  

Π𝑘
𝓂(𝑞

𝑘
, 𝑤𝑘) =  𝐸[𝜋𝑘

𝓂] =  (𝑤𝑘 − 𝑐𝑘
𝓂) 𝑞𝑘 + 𝐵𝑘

𝓂(𝑞𝑘), (6) 

where the first term represents the manufacturer revenue, and the second term addresses any 

other linear or non-linear gains or losses associated with 𝑞𝑘. In the Stackelberg game, the 

manufacturer declares his price first, conditioned on the retailer’s optimal reaction (𝑟𝑘, 𝑞𝑘). In 

the multi-period problem, both the retailer and manufacturer aim to optimize their values given 

by   

J1
x = α1 Π1

x  + α2 Π2
x  + α3Π3

x + ⋯+ αn Πn
x    for  x ∈ {𝓂,𝓇}, (7) 

where 𝑛 is the number of periods and {𝓂,𝓇} indicates the manufacturer (𝓂) and the retailer 

(𝓇). The parameter α represents 

𝛼𝑘 = 𝛽1 ∙ 𝛽2 ∙ ⋯ ∙ 𝛽𝑘, (8) 

where 𝛽𝑘 is discounting factor for period 𝑘, and 𝛼1 = 𝛽1 = 1.  In a single contract, 𝑤∗ =

[𝑤1
∗, … , 𝑤𝑛

∗]  is revealed and then 𝑟∗ = [𝑟1
∗, … , 𝑟𝑛

∗] and 𝑞∗ = [𝑞1
∗, … , 𝑞𝑛

∗ ] are declared. The 

players can observe the consequences of their decisions simultaneously and change their 

decisions, if necessary, before finalizing the optimization process and signing a contract. The 

price history-dependent demand may allow for strategic decisions by manipulating future 

demand to improve optimal return. The manufacturer knows exactly his profit when the single 

contract is written. The retailer has all the risk by knowing a lower bound on his expected total 

return. The key findings are summarized in the following propositions.   

Proposition 1 Optimal Order Quantity 

The optimal order quantity 𝑞𝑘 for any pair (𝑤𝑘, 𝑟𝑘) is given by 

(𝑤𝑘 − 𝑠𝑘)  −
1

2
(𝑟𝑘 − 𝑠𝑘) 

[
 
 
 

𝑞𝑘 − 𝜇𝑘

√𝜎𝑘
2 + (𝑞𝑘 − 𝜇𝑘)2

− 1

]
 
 
 

+
𝜕𝐵𝑘

𝓇(𝑞𝑘)

𝜕𝑞𝑘
= 0. (9) 

The special case 𝐵𝑘
𝓇(𝑞𝑘) ≡ 0 yields 

𝑞𝑘(�⃗� 𝑘, 𝑤𝑘) = 𝜇𝑘(�⃗� 𝑘) +
𝜎𝑘(�⃗� 𝑘)

2
 

2𝜂𝑘 − 1

√𝜂𝑘  (1 − 𝜂𝑘)
  𝑎𝑛𝑑  𝜂𝑘 = 

𝑟𝑘 − 𝑤𝑘

𝑟𝑘 − 𝑠𝑘
. (10) 
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Proposition 2 Single Contract Key Feature 

The manufacturer gains at least a payoff equal to the subgame perfect total payoff. 

Proof.  

A single-contract model benefits from taking into consideration all decisions simultaneously. 

The subgame perfectness restricts the choice of decisions. Hence, the decision space for a single 

contract covers the subgame perfect choices.  

A single contract may create significantly different results by utilizing this freedom to allow for 

strategic pricing when all periods are considered simultaneously, i.e., optimizing without a fixed 

term structure. This leads to the manufacturer’s benefits JSC
𝓂 ≥ JPC

𝓂 , where SC and PC represent 

the single and periodic contracts respectively. 

2.3. The Model Formulation Under Capacity Constraints 

If the regulator's strategy to reduce pollution generated by the manufacturer is defined as a 

capacity constraint, 𝑒𝑘𝑞𝑘 ≤ 𝑀𝑘 must hold, where 𝑒𝑘 represents the pollution from producing 

one unit of product, and 𝑀𝑘 is the maximum pollution permitted in period 𝑘. Hence, the 

manufacturer has to constrain his optimization by 𝑞𝑘 ≤ 𝑞𝑘
𝑐 = 𝑀𝑘/𝑒𝑘. Hence utilizing Eq. (5) 

and Eq. (6) as the players' profits and Eq. (7) as their payoffs, the game is 

𝑚𝑎𝑥
𝑤∈�̅�

𝐽1
𝓂    s.t.  (𝑟, 𝑞) =  arg max

(𝑟,𝑞)∈ℛ
𝐽1
𝓇 .    (11) 

 𝒲 and ℛ represent constraints on the manufacturer and retailer optimization, where 

{𝑞𝑘 ≤ 𝑞𝑘
𝑐} ∈ 𝒲. The outputs of this optimization are 𝑤∗, 𝑟∗, 𝑞∗ and the periodic returns for the 

chain members. 

2.4. The Model Formulation Under the Pollution Tax Policy 

If the government decides to implement a corrective tax policy, the channel is required to pay 

tax for each unit of pollution or spend a cost to clean the pollution it has caused. Since our 

channel consists of a manufacturer and a retailer, we address the problem of each player when 

facing the pollution tax. 

2.4.1 Manufacturer as Tax Collector  

The regulator, cognizant of the problem formulations faced by the players, imposes a Pigouvian 

tax (Corrective tax). Notice that a damage function can be internalized by the manufacturer, by 

issuing the quantity-dependent tax 𝜏𝑘 = 𝜏𝑘(𝑞𝑘)  
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Π𝑘
𝓂(𝑤𝑘, 𝑞𝑘) = (𝑤𝑘 − 𝑐𝑘

𝓂 − 𝜏𝑘) ∙ 𝑞𝑘 = (𝑤𝑘 − 𝑐𝑘
𝓂)𝑞𝑘  + 𝐵𝑘

𝓂(𝑞𝑘), (12) 

and the retailer’s problem stays unchanged. Here 𝐵𝑘
𝓂(𝑞𝑘) are the damage functions implied by 

the tax issued. The Corrective tax is   

𝜏𝑘(𝑞𝑘) = −
𝐵𝑘

𝓂(𝑞𝑘)

𝑞𝑘
. (13) 

Hence, this tax is issued as a non-fixed tax that depends on the actual production. It 

automatically generates a cost that exactly pays for the damage and the manufacturer considers 

it when he makes his decisions. Therefore, the manufacturer internalizes the pollution damage 

(𝐵𝑘
𝓂) and his optimization gives the optimal quantity (𝑞𝑘

∗) and thereby the tax 𝜏𝑘
∗(𝑞𝑘

∗) that is 

imposed on the manufacturer to mitigate their environmental footprint or the cost they would 

incur to remove the pollution. 

2.4.2 Retailer as Tax Collector  

According to the retailer profit function in Eq. (5),  any given periodic tax (𝜏𝑘) can be 

accommodated by setting 𝐵𝑘
𝓇(𝑞𝑘) = −𝜏𝑘𝑞𝑘, resulting in  

Πk
𝓇(�⃗� 𝑘, 𝑤𝑘 , 𝑞𝑘) =  (𝑟𝑘 − 𝑠𝑘) 𝜇𝑘 − (𝑤𝑘 + 𝜏𝑘 − 𝑠𝑘) 𝑞𝑘

− (𝑟𝑘 − 𝑠𝑘) 
√𝜎𝑘

2 + (𝑞𝑘 − 𝜇𝑘)2 − 𝑞𝑘 + 𝜇𝑘

2
. 

(14) 

This is equal to the case without 𝐵𝑘
𝓇, but with  𝑤𝑘 replaced by 𝑤𝑘 + 𝜏𝑘.   The best order quantity 

𝑞𝑘 for any given set of parameters (𝑟𝑘, 𝑠𝑘, 𝜏𝑘, 𝑤𝑘), is then given by Eq. (10) where  𝑤𝑘 is 

replaced by 𝑤𝑘 + 𝜏𝑘. If the tax is only on sold items, it is equivalent with 𝐵𝑘
𝓇 = 0 and 𝑟𝑘 replace 

with 𝑟𝑘 − 𝜏𝑘 in Eq. (10). 

A Pigouvian tax will endogenize a damage cost function 𝐵𝑘
𝓇(𝑞𝑘), and Eq. (10) determines the 

best order quantities for any given set of (𝑟𝑘, 𝑠𝑘, 𝑤𝑘). The damage function is revealed by the 

quantity-dependent tax 𝜏𝑘(𝑞𝑘) issued by the regulator as 

𝐵𝑘
𝓇(𝑞𝑘) = −𝑞𝑘 ∙ 𝜏𝑘(𝑞𝑘). (15) 

In this case, there are no shortcuts to determine the best order quantities. The full version of Eq. 

(9) must be applied. 



11 
 

Both sections 2.3 and 2.4 are solved under a single contract. The periodic backward induction 

algorithm, which is commonly utilized to solve such problems, cannot solve the price history-

dependent problems under the ordering/production constraints. 

3. Numerical Implementation 

We begin the numerical illustration by comparing an unconstraint single contract with a 

periodic contract. Later, in section 3.2 we move on to the unconstraint single contract model 

with a short memory and its extension to the models with capacity constraint and tax policies.  

As mentioned before, the demand may be affected by previous periods' price decisions. Indeed, 

an increase in the price today may bring about a decrease (increase) in the customer base 

tomorrow. Hence, price settings in one period may change the future customer base, and 

therefore change the future demand and modify the supply channel’s values. Although, the 

effect of each period’s price might fade out over time. This effect can be labeled as memory 

and denoted by Φk(�⃗� 𝑘−1), where Φ1 = 1 and �⃗� 𝑘 = (𝑟1, … , 𝑟𝑘) and 𝑘 ∈ {2,… , 𝑛}. 

In the rest of this paper, we deal with a demand scaled by the price history such that the 

coefficient of variation only depends on the current price, i.e., 

𝐷𝑘(�⃗� 𝑘) =  Φk(�⃗� 𝑘−1) 𝑑𝑘(𝑟𝑘) 

where  𝑑𝑘(𝑟𝑘) = 𝜇𝑘(𝑟𝑘) + �̃�𝑘(𝑟𝑘)𝜀𝑘.  (16) 

So, from Eq. (1)  

For the numerical examples, we apply the following scaled demand terms 

The parameters are set to constant over time by 𝑐𝑘
𝓂 =  2, 𝑠𝑘 = 1, 𝛽𝑘 = 0.96  for all 𝑘 ∈

{1,… , 12}  in all examples. We utilize two different kinds of scaling factors representing long-

term (section 3.1) and short-term (the rest of the examples) memory. We have limited the 

scaling factor to perform in the range [0.7, 2], meaning Φk = max (min(2,Φk) , 0.7) at each 

arbitrary period 𝑘. 

3.1. Case 1, Single Contract vs. Periodic Contract 

We have structured this paper on a single contract in section 2.2, but it is worth comparing the 

same problem set with a periodic contract where the algorithm commences from the last period 

and steps back to the first. We exemplify these cases by the scaling factor 

𝜇𝑘(�⃗� 𝑘) = Φk(�⃗� 𝑘−1) �̃�𝑘(𝑟𝑘) 

𝜎𝑘(�⃗� 𝑘) =  Φk(�⃗� 𝑘−1) �̃�𝑘(𝑟𝑘). 
(17) 

𝜇𝑘(𝑟𝑘) =
100(10+

1

1+𝑘
)

𝑟𝑘
2 ,    �̃�𝑘(𝑟𝑘) =

�̃�𝑘(𝑟𝑘)

2√3
. (18) 
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Φ𝑘(�⃗� 𝑘−1) = ∏ 𝑔𝑖(𝑟𝑖−1)
𝑘
𝑖=2 ,      and   𝑔𝑘 = 𝑒𝛾𝑘(𝐾𝑘−𝑟𝑘−1). (19) 

𝐾𝑘 is the market price preference and 𝛾𝑘 represents the strength of a current deviation on the 

future demand (marginal log scale). The parameters are set to 𝐾𝑘 = 6, 𝛾𝑘 = 0.04. 

For a DR periodic problem, the players’ total value, 

𝐽𝑘
𝑥 = 𝜋𝑘

𝑥 + 𝛽𝑘+1  ∙  𝑔𝑘+1  ∙  𝐽𝑘+1
𝑥             𝑥 ∈ {𝓂,𝓇} (20) 

is optimized in each period 𝑘, i.e., the players optimize their current situation in the game, 

ensuring a subgame-perfect solution by starting at the end (Fakhrabadi & Sandal, 2023; 

Gholami, Sandal, & Ubøe, 2021). In Eq. (20), 𝐽𝓂 and 𝐽𝓇 address the manufacturer and retailer 

values respectively. Utilizing Eq. (7) for the single contract and Eq. (20) for the periodic 

contract, Figure 1. illustrates players' profits. 

 

 

Figure 1:  Optimal profits, single contract (SC) vs. periodic contract (PC) 

SC and PC are the models with single and periodic contracts respectively. The players’ total 

value was revealed as 
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𝐽𝑆𝐶
𝓂 = 555 > 𝐽𝑃𝐶

𝓂 = 433,     𝐽𝑆𝐶
𝓇 = 670 > 𝐽𝑃𝐶

𝓇 = 408 

This is equivalent to a relative increase of 28 % and 64% in the total returns of the manufacturer 

and the retailer by utilizing a single contract instead of periodic ones. It is observed that this 

single contract is beneficial for both the manufacturer and retailer which is compatible with the 

statement in 2.4. 

Embedding the optimal SC wholesale prices (𝑤∗) into the periodic contract algorithm and 

solving the problem for retail price yields 𝐽𝓂 = 471 and 𝐽𝓇 = 491. This outcome highlights a 

significant finding: the periodic framework fails to recognize the superior values identified by 

the SC, even when the optimal wholesale prices 𝑤∗ are provided.  

The optimal prices are plotted in Figure 2. The lower prices obtained by the single contract (SC) 

are accompanied by higher quantities leading to a larger market (Figure 3) and higher returns. 

The leader collects more profit in the beginning and the follower in the end in the SC case. 

 

 

Figure 2: Optimal prices, single contract (SC) vs. periodic contract (PC) 

Figure 3 mirrors the effectiveness of each contract form in stimulating market growth. The 

results reveal that the single contract model consistently bolsters the market, while the periodic 
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contract deviates from this trend from the third period and begins to contract the market at 𝑘 =

6. The red line represents the threshold that separates the market stimulation and market 

contraction phases based on the price-history effects.  

 

Figure 3: Scaling factor, single contract (SC) vs. periodic contract (PC) 

3.2. Case 2, Unconstraint Single Contract Problem with a Short Memory 

In this example, we only implement a single contract with scaling factors 

The explicit memory effect of each price only lasts for two periods. Therefore, 

Φ = {1, 𝑒𝛾2(𝑅−𝑟1), 𝑒𝛾3(𝑟1−𝑟2), 𝑒𝛾4(𝑟2−𝑟3), … }. (22) 

Φ is the effective scaling factor and 𝑅 is a given reference price (model parameter) for the 

second period. The parameters are set to 𝛾𝑘 = 0.04, and 𝑅 = 10 for 𝑘 ∈ {1,… , 12}. Figure 4 

illustrates the optimal profits for the manufacturer and retailer. 

Φ𝑘 = 𝑒𝛾𝑘(𝑟𝑘−2−𝑟𝑘−1). 
(21) 
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Figure 4: Optimal profits 

The total values, denoted as 𝐽𝓂 =  246 and  𝐽𝓇 =  475, are obtained from the analysis. The 

observed pattern reflects the scaling factor structure. The players strategically make decisions 

as a volatile set to maximize their profits. It is worth mentioning that this strategy capitalizes 

on the fact that any price changes are forgotten after a span of two periods (Figure 5). 

 

Figure 5: Optimal prices 

The retail price decisions result in the scaling factor that is illustrated in Figure 6. 

 

Figure 6: Scaling factor for a short memory 
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The red line separates the region where the retail prices are boosting /shrinking the market. The 

volume ordered at each period is mirrored in Figure 7.  

 

Figure 7: Optimal order quantity 

3.3. Case 3, Single Contract under Capacity Constraints 

The pollution capacity constraint, determined by the regulator and denoted as 𝑞𝑐 (associated 

with the emissions amount), represents the maximum allowance of production, serving an upper 

bound for the maximum pollution that might be generated by the manufacturer. It is crucial to 

adhere to this constraint and ensure that it is not violated. By utilizing Eq. (22), Figure 8 

illustrates the profits and volume associated with three distinct capacity constraints (a, b, c).  
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Figure 8: Optimal quantity and profits under capacity constraint policy (red curve) 

In the order quantity plot, red crosses represent the unconstrained results, the capacity constraint 

is depicted by the black line, and the blue circles indicate the optimal solution under capacity 

constraint. The subscripts a, b, and c correspond to different cases with different capacity 

constraints. An intriguing finding emerges when comparing the volumes in the constrained and 

unconstrained models: there are periods when the unconstrained solution operates below the 

capacity limit, with no requirement to order reduction, but the constrained algorithm 

intentionally chooses a lower volume, such as period 3 in the plot (a). The total values in each 

model are 

𝐽𝑎
𝓂 = 246, 𝐽𝑏

𝓂 = 246, 𝐽𝑐
𝓂 = 245 

 𝐽𝑎
𝓇 =  462, 𝐽𝑏

𝓇 =  463, 𝐽𝑐
𝓇 =  457, 

where the unconstrained problem’s results (base model, example 2, section 3.2) are 𝐽𝓂 =

246 and 𝐽𝓇 = 475. The findings indicate that in total, these cases reduce the emissions by 

5.9, 5.2, and 7.9% in a, b, and c cases respectively. Hence, regarding the priorities which can 
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be either pollution reduction or economic growth, case c is the greenest, while case b brings the 

highest economic return. Figure 9 pictures the price decisions. 

 

Figure 9: Optimal prices under capacity constraint policy 

3.4. Case 4, Pollutions Corrective Tax 

According to the discussion in section 2.4, we present an illustrative example where either the 

manufacturer or the retailer collects a tax following Eq. (12) or Eq. (14). In this example, a 

player 𝑥 applies 𝐵𝑘
𝑥(𝑞𝑘) = −𝑎𝑘𝑞𝑘

2 in their problem where the damage-intensity factor, 𝑎𝑘, is 

chosen to be 0.04. Consequently, the tax derived from Eq. (13) or Eq. (15) takes the form of 

𝜏𝑘
∗ = 𝑎𝑘 𝑞𝑘

∗ , representing the amount paid per unit in period 𝑘 to mitigate the pollution 

associated with that unit. Figure 10 illustrates corresponding profits and quantities in both cases 

where either the manufacturer or the retailer integrates the tax inside their objective functions. 
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Figure 10: Optimal results 

As depicted in Figure 10, the calculated values for this example are 

 𝐽𝓂  𝐽𝓇 

The manufacturer is the tax collector 209 345 

The retailer is the tax collector 187 368 

Notably, this example showcases the effectiveness of the proposed method in reducing 

pollution. In comparison to the base model (example 2, section 3.2), the application of tax 

policy results in a significant 48% and 47% reduction in pollution overall, when the 

manufacturer and retailer are tax collectors respectively.   

The analysis of two tax models within the supply channel, where the responsibility for 

collecting the pollution tax lies with either the manufacturer or the retailer, reveals that each 

player achieves higher profits when individually responsible for managing the pollution tax. 
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The results demonstrate that when the manufacturer takes charge of tax collection, the channel’s 

earnings amount to 554 units of currency, while if the retailer assumes this responsibility, the 

channel’s earnings increase to 555 units, where the model free of tax makes 739 units. 

4. Concluding Remarks 

We introduce a comprehensive single-contract framework aimed at optimizing a multi-period 

Stackelberg game with a dynamic, price history-dependent, and DR demand. Our results 

demonstrate the superiority of the single-contract model over the periodic-contract model, 

although, the single-contract is not sub-game perfect.  This can be attributed to the freedom and 

awareness embedded within the single contract model. Unlike the periodic contracts model, 

where players make decisions in each period, the single-contract model identifies an optimal 

decision at least as good as a periodic-contract framework. The single contract allows for better 

utilization of the strategic potential in the market. 

We illustrate the effectiveness of the single-contract model using two different types of price-

history dependency in our examples and observe how this effect is reflected in the output. The 

algorithm leverages the price history effect to achieve optimal order quantities and maximize 

values. 

Furthermore, we extend the model to address environmental constraints, specifically the 

pollution capacity constraint and tax. These policies have been widely implemented in many 

countries. Both systems impose limitations on the channel that may require a reduction in the 

quantity. 

An intriguing finding from the model incorporating a capacity constraint is that there are cases, 

where the algorithm subject to constraints leads to a lower order quantity compared to the 

unconstrained solution, even though the specified cap permits a higher volume. In other words, 

there are periods when the unconstrained solution operates below the capacity limit, with no 

requirement to order reduction, but the constrained algorithm intentionally chooses a lower 

volume. This behavior highlights a strategic decision-making capability inherent in a single-

contract approach that may not be evident in a periodic approach. Furthermore, it underscores 

the interconnectedness of decisions across different periods, where changes in one period can 

impact decisions in preceding and subsequent periods. 

With the emissions tax policy, the channel faces a cost to mitigate the pollution it has generated, 

as dictated by the imposed damage function. It is important to note that the constraint 
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framework cannot be effectively implemented in a periodic contract form, highlighting the 

advantages of the single-contract model in handling environmental constraints. 

In conclusion, our proposed single-contract framework outperforms the periodic-contract 

model in terms of optimization and value maximization but also provides a means to address 

environmental constraints through policies such as (pollution) capacity constraints and 

corrective tax inclusion. Our dynamic distributional robust settings are closer to real-world 

situations and adapted to fully utilizing strategic potentials in the markets with memory. By 

incorporating these factors, our model offers valuable insights and strategies for decision-

making in complex dynamic supply channel scenarios. Future research could explore other 

environmental policies and different types where the players are sharing exposure to the market 

risk. 

Appendix 1: Notation List 

𝛽 = {𝛽1, … , 𝛽𝑛} Discount factor over individual periods5 

𝑐𝑚 = {𝑐1
𝑚, … , 𝑐𝑛

𝑚} Manufacturer cost 

𝑠 = {𝑠1, … , 𝑠𝑛} Salvage price/cost 

𝑤 = {𝑤1, … , 𝑤𝑛} Wholesale price (Decision variable) 

𝑟 = {𝑟1, … , 𝑟𝑛} Retail price (Decision variable) 

𝑞 = {𝑞1, … , 𝑞𝑛} Order quantity (Decision variable) 

𝑘 = {1, … , 𝑛} Time or period 

𝐷 = {𝐷1, … , 𝐷𝑛} Demand. 𝐷𝑘 = 𝜇𝑘(𝑟) + 𝜎𝑘(𝑟) 𝑧𝑘,  is Demand in period k 

𝜇 = {𝜇1, … , 𝜇𝑛} Mean of demand 

𝜎 = {𝜎1, … , 𝜎𝑛} The standard deviation of demand 

𝜋𝑚 = {𝜋1
𝑚, … , 𝜋𝑛

𝑚} Manufacturer profit (present value) 

𝜋𝑟 = {𝜋1
𝑟 , … , 𝜋𝑛

𝑟} Retailer profit (present value) 

𝜏𝑘 = {𝜏1, … , 𝜏𝑛} Emission tax 

 

Appendix 2: Cauchy- Schwartz Inequality 

Cauchy-Schwartz inequality reads |E(xy)|2 ≤ E(x2) ∙ E(y2). If we choose x =  |q − D| =

|(q − μ) − σϵ|  and   y = 1 and utilizing that 𝐸(𝜀) = 0  and  𝐸(𝜀2) = 1, we obtain 

 
5 The discount factors related to the start (t=0) are 𝛼𝑘 = 𝛽1 ∙ 𝛽2 ∙ ⋯ ∙ 𝛽𝑘 . Individual periods may be of different 

length. 
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|E(|q − D|)|2 ≤ E(|q − D|2) = E[  (q − μ)2 − 2(q − μ)σϵ + σ2𝜖2 ] = (𝑞 − 𝜇)2 + 𝜎2   

and thereby  E(|q − D|) ≤ √σ2 + (q − μ)2. Applying the equality (𝐷 − 𝑞)+ =
1

2
{|𝐷 − 𝑞| +

(𝐷 − 𝑞)}, we obtain directly 

E(D − q)+ ≤
1

2
{√σ2 + (q − μ)2 − 𝑞 + 𝜇}. 

The equality holds for the deterministic case and certain two valued distributions.  
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