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Abstract

This thesis investigates how to optimize stable wind production along the coast of Norway.

The research is carried out by studying how well a compound dependency model, consisting

of a time series and copula model, for simulation of wind power data performs compared

to historical data when optimizing a portfolio for wind power production areas. The

weights for the areas in the portfolio are computed so that the areas with the most stable

joint power production are included. The findings of this research will contribute to the

understanding of how effective different optimization approaches for offshore wind park

placements are and provide insights into the selection of optimal areas for offshore wind

power development in Norway.

The study’s findings indicate that portfolio optimization performed on simulated data

performs better than on historical data. Consequently, zero and low production values are

reduced, and stability is increased for the portfolio made with simulated data. Moreover,

Value at Risk (VaR) is argued to be a better performance measure for stable wind

production than variance. The portfolio distribution when maximizing VaR is more

left-skewed than the portfolio minimizing variance. Thus, maximizing VaR results in a

higher variance, but less zero and low production values, and a higher average production

which is argued to be more important.

The positive effect of dispersed wind parks regarding stable wind production is evident.

Following the pattern of diminishing correlation as distance increases, the optimal

combination of wind parks includes places throughout the Norwegian coast. All areas are

included in the optimal solution, but the most influential areas which should be prioritized

are Sørlige Nordsjø 2, South of Kristiansand, West of Tromsø, and North of Tanafjorden.

When the criteria for stable wind production is extended to include a penalty factor for

low average production, diversification is partly de-prioritized to include areas with high

average production, among these, more southern areas are included.

Keywords – Offshore wind, Norwegian wind conditions, renewable energy production,

copula, time series, portfolio approach, NORA3-WP.
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1 Introduction

1.1 Motivation and Purpose
In recent years the Norwegian and global energy markets have gained increased attention

in public discussions for a number of environmental, political, and economic reasons. The

Norwegian energy-producing facilities’ increased contribution of energy supply to the

continent highlights the importance of generating a stable energy flow both within the

country’s borders and abroad. Further, increased public environmental awareness and

political actions to ensure green industries and emissions reduction emphasize the need

to use environmentally friendly energy sources. Among the political measures taken, the

Paris Agreement from 2015 might be one of the most important (United Nations, 2016).

The agreement states that the overarching goal is to hold the increase in the global average

temperature to well below 2 degrees above pre-industrial levels and pursue efforts to limit

the temperature to increase to 1.5 degrees above pre-industrial levels. It is estimated that

the global greenhouse gas emission must decrease by 43% by 2030 to achieve the goal.

However, the proposals and opportunities for reaching the goals are countless and diverse,

and conflicting views complicate the matter further. For this reason, research and expert

opinions could play an important role in facilitating decision-making and shedding light

on the fundamental features of the challenges ahead.

In the case of energy production in Norway, the country is known for its high proportion

of green energy production through its hydropower plants. To reduce the country’s

emission levels, the government incentivizes the use of environmentally friendly solutions

(Regjeringen, 2022a). In later years, consumers and industries have shifted from fossil-

based equipment to more use of electricity-based solutions, for instance, cars and heavy

machinery. With increasing electricity export and a high consumption within own borders,

the need for increased power production arises. In the search for a solution, the Norwegian

government has started the work of granting licenses for the development of offshore

wind power plants for several production sites, where the sites Utsira Nord and Sørlige

Nordsjø II are the first areas that are approved for production, with more areas pending

for clearance. On orders from the Norwegian Ministry of Petroleum and Energy, the

Norwegian Water Resources and Energy Directorate (NVE) delivered a report including

20 areas for further investigation in April 2023 (NVE, 2023).
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2 1.2 Research Question

The potential of offshore wind as a source of energy is high, but a common critique of

the production method is the intermittent character of wind (Cai and Bréon, 2021). As a

result, it is difficult to anticipate the production of wind parks over short time horizons.

It makes it challenging for producers to determine how much electricity will be provided

to the market. In a market like the electricity market, where prices are set based on

short-term supply and demand, this detail may prove crucial for both the electricity prices

in the market but also the profitability of the producers. Therefore, this thesis focuses on

investigating methods to reduce uncertainty for Norwegian offshore wind power production

at a high temporal resolution.

1.2 Research Question
Through several reports in the later years, NVE has guided the government in selecting

areas to grant licenses for production. The selection criteria are based on a compound

qualitative and quantitative analysis of an extensive list of considerations. However,

despite how detailed and comprehensive the reports are, it is without a doubt hard to

capture the full complexity of a matter while at the same time keeping realistic features

in the estimates. The analyses from NVE elaborate thoroughly upon features like the

coastal area needed for production, capacity, and integration in the power grid and park

types. Through this thesis, we intend to add to the work done by NVE and others to

improve the selection method of areas up for evaluation, mainly based on the criterion of

stabilizing power output.

To stabilize the production of wind power, two aspects should be considered. Firstly, each

location’s power generation varies over time, and we expect time dependency between

observations for each site. Secondly, we expect a varying degree of dependence between

locations due to weather conditions. Utilizing these two dependencies, the power output

may be stabilized by combining wind power production from several sites that balance

out one another. Therefore the thesis is based on the following research question:

When determining weights in the optimization for a portfolio with the most stable production

for offshore wind park areas in Norway, how well does a compound dependency model for

the simulation of wind power data perform compared to historical data, and which areas

are included?
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1.2 Research Question 3

The thesis is structured as follows. An overview of the Norwegian offshore wind park

situation and prior research on the diversification of wind power production is presented

in Chapter 2. The data utilized for the analysis is described in Chapter 3, along with how

the data’s characteristics affect the choice of methods used. A presentation of the methods

is included in Chapter 4. The method consists of a compound dependency model with

time series and copula models, followed by portfolio optimization. The complete analysis

of the compound dependency model and portfolio optimization is covered in Chapter

5, together with the findings. In Chapter 6, the results are analyzed and interpreted in

light of the method’s limitations. Lastly, the conclusion for the research question and

recommendations for further research are provided in Chapter 7.
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2 Background

2.1 The Electricity Market - Norway and Integration

with Other Markets

The Norwegian electricity market is part of a joint Nordic market along with Sweden,

Denmark, and Finland which again are enclosed in the European electricity market via

transmission connections to bordering countries (Energifakta Norge, 2022). Further,

Norway transmits electricity to Germany and the UK through the Nord Link and North

Sea Link cables. The European market coupling covers countries that stand for close to 90

percent of the European power consumption. The interconnected character of the market

may allow for efficiency gains in power production and consumption through proper power

allocation and utilization of power grid capacity. It may also be beneficial in getting a

higher proportion of consumption based on renewable energy sources.

The bidding for the wholesale market is organized through the day-ahead market, where

typical agents are power producers, brokers, power suppliers, energy companies, and large

industrial customers (Nord Pool, 2023). An hourly price for the next day is set based on

the buy and sell bids so that the market is cleared. To account for the imbalance in power

production (e.g., weather changes) between the closing and opening of the bidding in the

day-ahead market, the intra-day market has continuous trading until one hour before the

operation. This allows the agents to correct potential mismatches in their bid position

and actual production or consumption. The market structure highlights the importance

for agents to predict the production amount precisely. An estimate at high temporal

resolution is therefore valuable to accurately set the bids and increase the efficiency of the

market.

Due to transmission inefficiencies in the Norwegian power grid, the country is divided

into five pricing areas (Energifakta Norge, 2022). This means that the power price may

differ between locations. The area prices reflect the regional differences in the power

situation that vary from hour to hour and season to season. These differences may cause

power scarcity in one area and surplus in another. The price difference occurs when

the transmission capacity is too low to transfer the power required to account for the

4

2 Background

2.1 The Electricity Market - Norway and Integration

with Other Markets

The Norwegian electricity market is part of a joint Nordic market along with Sweden,

Denmark, and Finland which again are enclosed in the European electricity market via

transmission connections to bordering countries (Energifakta Norge, 2022). Further,

Norway transmits electricity to Germany and the UK through the Nord Link and North

Sea Link cables. The European market coupling covers countries that stand for close to 90

percent of the European power consumption. The interconnected character of the market

may allow for efficiency gains in power production and consumption through proper power

allocation and utilization of power grid capacity. It may also be beneficial in getting a

higher proportion of consumption based on renewable energy sources.

The bidding for the wholesale market is organized through the day-ahead market, where

typical agents are power producers, brokers, power suppliers, energy companies, and large

industrial customers (Nord Pool, 2023). An hourly price for the next day is set based on

the buy and sell bids so that the market is cleared. To account for the imbalance in power

production (e.g., weather changes) between the closing and opening of the bidding in the

day-ahead market, the intra-day market has continuous trading until one hour before the

operation. This allows the agents to correct potential mismatches in their bid position

and actual production or consumption. The market structure highlights the importance

for agents to predict the production amount precisely. An estimate at high temporal

resolution is therefore valuable to accurately set the bids and increase the efficiency of the

market.

Due to transmission inefficiencies in the Norwegian power grid, the country is divided

into five pricing areas (Energifakta Norge, 2022). This means that the power price may

differ between locations. The area prices reflect the regional differences in the power

situation that vary from hour to hour and season to season. These differences may cause

power scarcity in one area and surplus in another. The price difference occurs when

the transmission capacity is too low to transfer the power required to account for the



2.2 Wind Power Production in Norway 5

imbalance in power demand and supply. When the transmission capacity is sufficient,

the prices between areas will turn out the same. However, the evaluation of power grid

capacity and power balance is outside the scope of the thesis.

2.2 Wind Power Production in Norway

With currently seven floating windmills, Hywind Tampen is the only notable site in the

current offshore wind power generation on the Norwegian continental shelf (Equinor,

2023). However, the Norwegian government aims to become a leading nation in offshore

wind power production (Regjeringen, 2022b). The Norwegian government acknowledges

that offshore wind power will be essential in meeting the demand for renewable energy in

Norway and Europe in the coming years. Their goal is to assign areas for offshore wind

park installation with a capacity of 30 GW within the year 2040.

For now, the two areas, Utsira Nord (UN) and Sørlige Nordsjø 2 (SN2), are the only areas

approved for the installation of offshore wind parks. However, in April 2023, the Norwegian

Water Resources and Energy Directorate (NVE) delivered a report including 20 areas

for further investigation (NVE, 2023). Birkeland et al. (2023) further investigated the

effects Sørlige Nordsjø 2 will have on the Norwegian power market. The implementation

of energy grid solutions and it’s impact on Norway and Europe was discussed. It is

concluded that wind power will contribute more energy to the Norwegian power system,

but to a small degree help the power balance. Further, a growing share of wind power

with intermittent character will require that the rest of the power system has available

flexibility (Energifakta Norge, 2021). The intention is to present a method to reduce

the issue of intermittency by stabilizing wind power production. By combining power

production from some or all of the 20 areas, wind power could considerably help the power

balance. Our analysis was performed before the 20 areas were identified, meaning that

our research was done using 13 other locations. The method is, however, transferable to

other areas, so the difference does not notably impact the relevance of the thesis.
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2.3 Previous Research on Diversification of Wind Power

Production

Several studies have examined how the geographic dispersion of wind farms or the size of

regions affects the smoothing effect of wind power. The first to examine these effects for

arrays of various sizes was Kahn (1979). He discovered that the output reliability of wind

power rose as the array size grew but with a declining marginal advantage. Additionally,

more recent research demonstrates that interconnected parks help to reduce aggregate

variability like Archer and Jacobson (2007). They found that scheduled and unscheduled

outage times for interconnected parks could match the outage time for coal plants in the

US. Therefore, the intermittency in stand-alone parks is moderated by interconnecting

parks on the grid.

The sequence of methods used in this thesis is inspired by an article by Grothe and

Schnieders (2011) on optimal wind power allocation in Germany. The authors present a

selection method of weights for the wind park portfolio that improves stability in output

by reallocating capacity for German wind parks. The main features of the modeling are

executed similarly on the time series in this thesis. Nevertheless, the study differs in

multiple ways. In the article by Grothe and Schnieders (2011) the data is on wind speed,

not wind power which may lead to slight modeling differences. The geographical area in

question differs, which may affect the results. Further, the article takes on a reallocation

of resources for existing wind parks, while this is not the case in the current study. This

means we do not have a real-life benchmark scenario for comparison, which must be

accounted for in the analysis when evaluating the results.

The thesis draws further inspiration from a master thesis written by Osnes and Nesheim

(2023) and uses the same data set they analyzed to compare the methods used to optimize

the portfolio. The modeling approach in our thesis differs from Osnes and Nesheim in

how the dependency between areas is modeled. The intention is to contribute to a more

involved dependency calculation and compose a model that may surpass the results from

using historical data alone. The optimization goal is altered in our thesis to avoid violating

assumptions for the methodology used. Both theses draw on the research by Solbrekke

and Sorteberg (2022) including data from NORA3-WP.
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3 Data

In the following section, we present the data and the descriptive features of the variables

used for the analysis. The data pre-processing is performed to more thoroughly understand

the behavior of wind power generation along Norway’s coastal line. This establishes the

foundation for the analysis’ methodology.

3.1 NORA3-WP

The thesis is based on a selection of feasible wind park areas derived from the work

in "NORA3-WP: A high-resolution offshore wind power data set for the Baltic, North,

Norwegian, and Barents Seas" (Solbrekke and Sorteberg, 2022). NORA3-WP is an open-

access data set designed for use in research, government management, and for stakeholders

to obtain pertinent information on wind resources and wind power throughout the

development phase of new wind farm projects. The data set provides an overview of 25

wind resources and wind power-related characteristics for three chosen turbines every

month. Additionally, the data set includes hourly wind speed and wind power generation

for the three selected turbines. For this thesis, hourly wind power generation is used for

the analysis.

In NORA3-WP, the wind resource and wind power variables are based on hourly wind

speed data, air temperature, and air pressure from NORA3 (Haakenstad et al., 2021). The

wind power variables are calculated using three turbines with different specifications. Table

3.1 lists the specifications for the turbines. The three turbines are the floating turbine

called SWT-6.0-154 from Siemens, DTU-10.0-RWT, the known reference turbine from the

Technical University of Denmark, and IEA-15-240-RWT the new reference turbine from

the National Renewable Energy Laboratory. As a result of the different specifications,

maximum production and responses to wind speed vary between the three turbines. Wind

farm effects or other disturbances that can affect wind power production are not accounted

for, meaning that an assumption of a stand-alone wind turbine is made (Solbrekke and

Sorteberg, 2022). As this thesis focuses on the relationship between areas and not between

turbines, it is argued that the choice of turbine will not affect the result as long as the

same turbine is used for all areas. Therefore, the reference turbine from the National
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Renewable Energy Laboratory, IEA-15-240-RWT, is used for the rest of the thesis. For

convenience, the IEA-15-240-RWT turbine will be referenced as the turbine.

Table 3.1: Specifications Turbines (Solbrekke and Sorteberg, 2022).

The period included in the data set is from 1996 to 2019. The grid resolution is 3 x

3 km, and the data spans the eastern parts of the Norwegian Sea, the North Sea, the

Baltic Sea, and parts of the Barents Sea. This makes for a data set with 652 grid

points in the longitude direction and 1149 grid points in the latitude direction (Solbrekke

and Sorteberg, 2022). To understand the behavior of wind power generation along the

Norwegian coast and locate beneficial placements that stabilize one another, it is argued

that a representation of locations along the Norwegian coastline is satisfactory. Therefore,

13 grid points representing different parts of the Norwegian coast, retrieved from Osnes

and Nesheim (2023), are chosen to be a part of the report.

The 13 locations are presented in Figure 3.1. The locations are selected based on a

qualitative analysis with factors like ocean depth, distance to an electricity grid, nature

reserves, wind speed, and production output. They found that the area outside the

southern part of Norway had the best wind conditions. A majority of locations were

therefore chosen from this area. Further, they found that the correlation between the

northern areas and the others was low, giving a benefit when combined. Areas that were too

deep were excluded, and areas close to existing electricity grids were prioritized. Further,

areas in danger of destroying nature reserves were excluded. With these characteristics

as deciding factors, the 13 areas were chosen to represent viable areas along the entire

coast of Norway. The Norwegian government has already made it possible to apply for a

concession for wind power projects in Utsira Nord and Sørlige Nordsjø 2. These two areas

are therefore included among the 13 locations.
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SWT-6.0-154 DTU-10.0-RWT IEA-15-240-RWT

Rated power, C, ( \,V) 6000 000 10 000 000 15 000 000

Hub height (m) 101 119 150

Rotor diameter (m) 154 178.3 240

Specific rated power C / A (Wm-2) 161.1 200.3 165.8

cut-in (ms-1) 4.0 4.0 3.0

rated (ms-1) 13.0 11.4 10.59

cut-out (ms-1) 25.0 25.0 25.0
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Figure 3.1: Map over the 13 locations used in the thesis.

In short, the data set analyzed in this thesis consists of hourly power production data

from 13 areas along the coast of Norway between 1996 and 2019, estimated using the new

reference turbine from the National Renewable Energy Laboratory, IEA-15-240-RWT.

3.2 Descriptive Statistics

To understand the behavior of wind power generation, we will investigate the descriptive

statistics of the data in the following section. The data is based on the amount of power

a turbine can produce over the time period specified. The turbines have limitations

regarding maximum output and for which wind speeds power production is possible. The

turbine specifications in Table 3.1 shows a cut-in value of 3.0 m/s, a cut-out value of

25.0 m/s, and a rated value of 10.59 m/s. This means that the turbine is not producing
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Figure 3.1: Map over the 13 locations used in the thesis.

In short, the data set analyzed in this thesis consists of hourly power production data

from 13 areas along the coast of Norway between 1996 and 2019, estimated using the new

reference turbine from the National Renewable Energy Laboratory, IEA-15-240-RWT.

3.2 Descriptive Statistics

To understand the behavior of wind power generation, we will investigate the descriptive

statistics of the data in the following section. The data is based on the amount of power

a turbine can produce over the time period specified. The turbines have limitations

regarding maximum output and for which wind speeds power production is possible. The

turbine specifications in Table 3.1 shows a cut-in value of 3.0 m / s , a cut-out value of

25.0 m/s , and a rated value of 10.59 m/s . This means that the turbine is not producing
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power when the wind speed is lower than 3.0 m/s and when the wind speed is higher

than 25 m/s. The rated value is a measure for which wind speed the turbine reaches

maximum production: when the wind speed is higher than or equal to 10.59 m/s and

less than 25.0 m/s, the maximum production level is achieved. This can be observed in

Figure 3.2. Further, the figure shows how the power curve changes depending on the

implementation of different storm control schemes through the lines for type 1 (SC1) or

type 2 (SC2) storm control (Solbrekke and Sorteberg, 2022). The thesis does not account

for the differences between various storm control schemes.

Figure 3.2: Power curves for the turbines (Solbrekke and Sorteberg, 2022).

As a result of the limitations in power production at different wind speeds, the distribution

of the data is skewed. The nature of the data makes many values center around the

maximum hourly output of 15 MW and 0 MW production, as observed in Figure 3.3.

The limitations of the turbine set these upper and lower limits, leading to a non-normal

distribution at the hourly level. Unlike data with a normal distribution, calculating the

arithmetic mean and standard deviation will not guarantee representative values for the

power production distribution. Therefore, a thorough descriptive analysis with adequate

statistical features representing the data will be performed to understand the underlying

characteristics of wind power production.
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Figure 3.2: Power curves for the turbines (Solbrekke and Sorteberg, 2022).

As a result of the limitations in power production at different wind speeds, the distribution

of the data is skewed. The nature of the data makes many values center around the

maximum hourly output of 15 MW and 0 MW production, as observed in Figure 3.3.

The limitations of the turbine set these upper and lower limits, leading to a non-normal

distribution at the hourly level. Unlike data with a normal distribution, calculating the

arithmetic mean and standard deviation will not guarantee representative values for the

power production distribution. Therefore, a thorough descriptive analysis with adequate

statistical features representing the data will be performed to understand the underlying

characteristics of wind power production.
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Figure 3.3: Hourly wind power production for Utsira Nord (UN).

The distribution of power production indicates large variability. This is further illustrated

in the subsequent time series plots. The variability could potentially lead to high risk

and problems in regard to balancing the demand and supply of the power market. To

make decisions for the purpose of reducing the intermittency of power production, it is

necessary to gain insight into how power production is behaving. Looking at how wind

power behaves at different temporal resolutions assists in understanding the underlying

characteristics of wind power production and further helps to reach the goal of reducing

risk related to intermittency. In addition to the hourly power production, the data is

aggregated, and the descriptive analysis is carried out at daily, weekly, and monthly time

horizons. As observed in Figure 3.4, the distribution of power production changes when

it is aggregated. On a daily level, the general shape remains with a slight increase in

concentration around the middle values, while for the power production on a weekly

level, the shape changes drastically, in closer resemblance to a normal distribution. This

follows the Central Limit Theorem that says that the distribution of sample means is

approximately normally distributed when the sample gets large (Ganti, 2023). Similarly,

monthly values are also approximately normally distributed.
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Figure 3.3: Hourly wind power production for Utsira Nord (UN).

The distribution of power production indicates large variability. This is further illustrated

in the subsequent time series plots. The variability could potentially lead to high risk

and problems in regard to balancing the demand and supply of the power market. To

make decisions for the purpose of reducing the intermittency of power production, it is

necessary to gain insight into how power production is behaving. Looking at how wind

power behaves at different temporal resolutions assists in understanding the underlying

characteristics of wind power production and further helps to reach the goal of reducing

risk related to intermittency. In addition to the hourly power production, the data is

aggregated, and the descriptive analysis is carried out at daily, weekly, and monthly time

horizons. As observed in Figure 3.4, the distribution of power production changes when

it is aggregated. On a daily level, the general shape remains with a slight increase in

concentration around the middle values, while for the power production on a weekly

level, the shape changes drastically, in closer resemblance to a normal distribution. This

follows the Central Limit Theorem that says that the distribution of sample means is

approximately normally distributed when the sample gets large (Ganti, 2023). Similarly,

monthly values are also approximately normally distributed.



12 3.2 Descriptive Statistics

Figure 3.4: Daily and weekly wind power production for Utsira Nord (UN).

Table 3.2 shows descriptive statistics for all 13 locations on daily data. The mean of

power production varies from approximately 180 to 239 MW in average power production,

with the southern areas having the highest average. All areas have a negative kurtosis,

indicating that the distributions should be light-tailed. Most areas also have a negative

skewness, meaning a left-skewed distribution because of the concentration of values around

the max production. For the areas with the lowest mean production, the skewness is

positive because of a higher concentration of zero values. Corresponding observations are

made for the hourly, weekly, and monthly data.

Areas Mean Sd Kurtosis Skewness
South of Lindesnes (SLI) 239.13 MW 113.46 -1.01 -0.57
Sørlige Nordsjø 2 (SN2) 234.85 MW 115.26 -1.07 -0.53
West of Flekkefjord (WFF) 233.06 MW 114.66 -1.08 -0.50
North of Sørlige Nordsjø 1 (NSN1) 229.73 MW 117.36 -1.15 -0.47
South of Kristiansand (SKS) 223.86 MW 116.50 -1.21 -0.38
Utsira Nord (UN) 214.00 MW 120.63 -1.32 -0.30
West of Fitjar (WFI) 209.86 MW 122.31 -1.36 -0.27
North of Tanafjorden (NTF) 207.08 MW 116.81 -1.32 -0.18
North-East of Honningsvåg (NEH) 206.86 MW 116.03 -1.31 -0.18
South-East of Vardø (SEV) 197.48 MW 117.56 -1.36 -0.06
North of Rørvik (NRV) 185.93 MW 119.15 -1.40 0.05
North of Vega (NVG) 182.13 MW 121.43 -1.42 0.08
West of Tromsø (WTR) 180.49 MW 118.14 -1.34 0.11

Table 3.2: Descriptive statistics of the locations based on daily data.
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Figure 3.4: Daily and weekly wind power production for Utsira Nord (UN).
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North of Tanafjorden (NTF) 207.08 MW 116.81 -1.32 -0.18
North-East of Honningsvåg (NEH) 206.86 MW 116.03 -1.31 -0.18
South-East of Vardø (SEV) 197.48 MW 117.56 -1.36 -0.06
North of Rørvik (NRV) 185.93 MW 119.15 -1.40 0.05
North of Vega (NVG) 182.13 MW 121.43 -1.42 0.08
West of Tromsø (WTR) 180.49 MW 118.14 -1.34 0.11

Table 3.2: Descriptive statistics of the locations based on daily data.
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The average wind power production shows that the southern areas have the best wind

conditions to produce the most power. However, high average production is not the only

consideration. The irreversible character of investing in wind parks makes it important

to have a balanced production. Once you build a wind park, you cannot move it, which

requires long-term stability in power production to remain profitable. Short-term stability

in production is required to ensure efficiency in the price and quantity provided to the

electricity market. Therefore, we are interested in finding the dependency between the

areas in an attempt to reduce the overall variability. Figure 3.5 show the correlation

between the 13 areas. The locations are ordered with the southern areas on the left and

the northern locations on the right. It is evident that locations close to one another

correlate more strongly than locations that are far apart.

Figure 3.5: Correlation between the 13 areas.

Producing wind power in several areas with low correlation at the same time can be

beneficial. This benefit results from the fact that there is a higher likelihood of other

locations producing power while one place is not. To further investigate this effect, a

regression is run where distance (km) is used as an explanatory variable to explain the

correlation in power production between the locations. For all time horizons, the coefficient

is significant and tells us that when distance increases, the correlation decreases. Figure

3.6 shows this relationship between distance and the correlation between the areas. The

slope of the curve changes when distance increases and the effect is diminishing for longer

distances. The diminishing effect means that there is a lower change in correlation for

the longest distances than for short-distance areas. This difference in correlation between

areas suggests that there are opportunities to diversify the risk (intermittency) of wind

power production by including multiple locations in a joint portfolio of sites.
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Figure 3.6: The relationship between distance and correlation across all 13 locations.
Correlation in wind power production decreases when distance increases.

Figure 3.7: Scatterplot of the power production in South of Lindesnes (SLI) and North
of Tanafjorden (NTF).
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Figure 3.8: Scatter plot of the power production Utsira Nord (UN) and West of Fitjar
(WFI).

As mentioned, the dependency between locations differs for the pairs. The scatter plots

in Figure 3.7 and Figure 3.8 show the dependency between South of Lindesnes and North

of Tanafjorden, and Utsira Nord and West of Fitjar, respectively. South of Lindesnes and

North of Tanafjorden are the locations with the furthest distance apart and have a low

correlation in wind power production. On the other hand, a clear correlation is evident

between Utsira Nord and West of Fitjar, with high and low production values correlating.

To be able to take advantage of these differences in dependencies, it is important to notice

that there exists non-linear dependency in hourly and daily data. For the pair South of

Lindesnes and North of Tanafjorden in Figure 3.7, the non-linear dependency is present

in both hourly and daily production, while for the pair Utsira Nord and West of Fitjar

in Figure 3.8, it is present in the hourly production. For all other pairs of locations, the

same non-linear dependency is present in the hourly data and for many of the pairs in the

daily data. The non-linear dependency can be observed as clustering in the scatter plots.

There are clusters throughout the maximum production line, which is partially a function

of the constraints of the turbines. Further, there are more concentrated observations for

the lower values in the hourly data and more concentrated observations for higher values

for select pairings of the daily data. These are clusterings that are not well explained

by linear relationships. When modeling the dependency between locations, this must be

taken into consideration.
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Figure 3.8: Scatter plot of the power production Utsira Nord (UN) and West of Fitjar
(WFI).
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Figure 3.9: Average power production (MW) monthly. Shows seasonal elements in data.

The wind conditions for the areas are different across seasons, leading to a difference in

average power production throughout the year. From Figure 3.9, it is apparent that power

production peaks during the winter months and drop during the summer months. This

indicates a seasonal pattern spanning over one year for all locations. The seasonal effect

seems predictable as the variations occur for all locations, but to varying extents.

3.3 Time Series and Dependency Structure in the Data

The data demonstrate significant auto-correlation between lags, which makes the data

non-stationary and dependent over time (Figure 3.10 and 3.11). In other words, an

observation in time t in the series can be expressed as a function of observations from

previous t’s. To account for this in the analysis we attempt to fit models that can capture

the time dependency in the observations.

Figure 3.10: Autocorrelation plot Utsira Nord (UN) hourly.
Shows autocorrelation between lags. Extract of time series included (Jan 2019 - Dec 2019).
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Figure 3.9: Average power production (MW) monthly. Shows seasonal elements in data.

The wind conditions for the areas are different across seasons, leading to a difference in

average power production throughout the year. From Figure 3.9, it is apparent that power

production peaks during the winter months and drop during the summer months. This

indicates a seasonal pattern spanning over one year for all locations. The seasonal effect

seems predictable as the variations occur for all locations, but to varying extents.

3.3 Time Series and Dependency Structure in the Data

The data demonstrate significant auto-correlation between lags, which makes the data

non-stationary and dependent over time (Figure 3.10 and 3.11). In other words, an

observation in time t in the series can be expressed as a function of observations from

previous t 's. To account for this in the analysis we attempt to fit models that can capture

the time dependency in the observations.
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Figure 3.10: Autocorrelation plot Utsira Nord (UN) hourly.
Shows autocorrelation between lags. Extract of time series included (Jan 2019 - Dec 2019).
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Figure 3.11: Autocorrelation plot Utsira Nord (UN) daily.
Shows autocorrelation between lags. Extract of time series included (year 2018 - 2019).

After presenting and investigating the data, it is apparent that we are dealing with

non-normal data. The marginal distribution of wind power production is non-normal

partly because of wind characteristics and partly because of the restrictions imposed by

the wind turbine’s upper and lower capacity. Additionally, we have found non-linear

dependency structures between the locations. This should be accounted for to make a

model that sufficiently explains how areas can be combined to stabilize wind production.

The following section elaborates on time series and copula methods as ways to model

these aspects of the data before it can be applied for portfolio optimization.
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Figure 3.11: Autocorrelation plot Utsira Nord (UN) daily.
Shows autocorrelation between lags. Extract of time series included (year 2018 - 2019).

After presenting and investigating the data , it is apparent that we are dealing with

non-normal data . The marginal distribution of wind power production is non-normal

partly because of wind characteristics and partly because of the restrictions imposed by

the wind turbine's upper and lower capacity. Additionally, we have found non-linear

dependency structures between the locations. This should be accounted for to make a

model that sufficiently explains how areas can be combined to stabilize wind production.

The following section elaborates on time series and copula methods as ways to model

these aspects of the data before it can be applied for portfolio optimization.
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4 Methodology

The thesis investigates how different methods of modeling the dependency between wind

power production sites can contribute to reduce variability in power production. The

wind power data used is sequential and exhibit a serial correlation, meaning that there are

time dependencies that can be modeled. We observe that the data also show non-linear

dependency structures between the locations. The first part of the subsequent section

elaborates on the methods used to model these dependencies through time series models

and bi-variate copula models to make simulated wind power production. The last part of

the methodology section elaborates on different optimization methods used to analyze

to what extent production locations should be included in the optimal power production

portfolio.

4.1 Time Series Modeling

4.1.1 STL Decomposition and Season NAIVE Model

A Seasonal and Trend decomposition using Loess (STL) is performed to get an impression

of the components of the time series. The method was developed by Cleveland et al. (1990).

It allows for a versatile decomposition method with all types of seasonality and allows

for changes in the seasonal component over time. The components for the decomposition

are an expression of the season St, trend Tt, and the remainder Rt for an observation.

The components are then modeled with a seasonal NAIVE model assuming additive

components. The model can be expressed as yt = St + At, where At is the seasonally

adjusted data consisting of the trend Tt and the remainder Rt.

4.1.2 Dynamic Harmonic Regression and ARMA Model

Dynamic Harmonic Regression is performed to model the dependence between lags in the

wind power time series. The method uses Fourier terms to account for more extended

period seasons that are not easily handled by methods such as the seasonal ARMA.

The latter better handles shorter-term seasonal patterns (Hyndman and Athanasopoulos,

2018). The Fourier seasonal component of the series is complemented by ARMA errors to
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model the short-term dynamics of the series. The resulting model should therefore be

able to capture both the long and short-term patterns in the series. The models are fitted

separately to each series, and the coefficients are selected for the model with the lowest

Akaike Information Criteria (AIC). We use a step-wise algorithm proposed by Hyndman

and Athanasopoulos (2021) to estimate the coefficients for the AR- and MA-processes

in the series. The documentation of the algorithm can be found in the ARIMA function

from the r-package fable (O’Hara-Wild et al., 2022).

The model has an intercept, a seasonal component St, and an error term. St is expressed

as Fourier terms and uses sin and cos terms to smooth the seasonal element of the time

series. If m is the seasonal period, the first few Fourier terms will be given by the following

equations for time t (Hyndman and Athanasopoulos, 2021):

x1,t = sin
(
2πt
m

)
, x2,t = cos

(
2πt
m

)
, x3,t = sin

(
4πt
m

)
, (4.1)

x4,t = cos
(
4πt
m

)
, x5,t = sin

(
6πt
m

)
, x6,t = cos

(
6πt
m

)
. (4.2)

The maximum number of sin and cos pairs is m/2. The equivalent of using m/2 pairs is

creating m− 1 dummy variables for the periods. An advantage of using Fourier terms is

that it often requires fewer variables than for the dummy approach, and the efficiency

of the estimate increases. A downside is that the seasonality is constant. How many sin

and cos terms K are used to model the seasonality for a given location is judged by the

model’s fit through the AIC. The entire model can be expressed in mathematical terms as:

yt = bt+
K∑
j=1

[
αjsin

(
2πjt

m

)
+ βjcos

(
2πjt

m

)]
+ ηt (4.3)

where ηt is an ARMA(p,q) process:

ηt =

p∑
i=1

ϕiηt−i +

q∑
i=1

θiϵt−i + ϵt (4.4)

The AR and MA coefficients ϕ and θ constitute the estimate’s dependence on previous

observations as well as previous errors ϵ. In the Dynamic Harmonic Regression, the AR

coefficients are based on the part of the observation not already accounted for by the

seasonal Fourier term.
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where T/t is an ARMA(p,q) process:

p q

T/t = I: <l>iT/t-i + I: e i f t - i + ft

(4.3)

(4.4)
i = l i = l
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observations as well as previous errors c In the Dynamic Harmonic Regression, the AR

coefficients are based on the part of the observation not already accounted for by the

seasonal Fourier term.
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In cases for which the seasonal component is less prominent in the data, judged by the

selection criteria, an ARMA(p,q) process with a constant is selected:

yt = c+

p∑
i=1

ϕiyt−i +

q∑
i=1

θiϵt−i + ϵt (4.5)

4.2 Vine Copula Theory

To model a high-dimensional dependence structure, a D-vine copula structure is used. The

regular vine copulas (R-vine) method was initially introduced by Joe (1996). This method

extends the use of bi-variate copulas to higher dimensions. The result is a more flexible

dependence modeling between uni-variate distributions than the multivariate copula

approach, which assumes a homogeneous dependence structure across the dimensions.

The flexibility is added by fitting different copula families across dimensions to capture

the dependence between variables.

A copula is a function that enables the joint distribution to be represented in terms of its

marginals and the dependence structure among the marginals (Aas et al., 2009). Consider

having a d-dimensional vector X = (X1, ..., Xd) with the joint distribution function F =

F (x1, ..., xd) with marginals F1 = F1(x1), ..., Fd(xd). According to Sklar’s theorem (1959),

the copula associated with F is a d-dimensional distribution function C: [0, 1]d −→ [0, 1] that

satisfies F (x1, ..., xd) = C(F1(x1), ..., Fd(xd); β). β is the parameter vector measuring the

dependence between the marginals (Kim et al., 2013). The joint density function can be

obtained from the previous equation as: f(x1, ..., xd) = c1...d(F1, ..., Fd(xd)) ·
∑d

k=1 fk(xk),

where c1...d(·) is a uniquely identified d-variate copula density. The density can be written

as a product of pair copulas using conditional marginal densities (Aas et al., 2009).

Vine copulas allow for representation of the density for a d-dimensional multivariate

distribution using d(d− 1)/2 bi-variate copulas in a hierarchical manner. The first d− 1

copulas have the dependence structures of ordinary bi-variate copulas, while the remaining

copulas are in the form of conditional bivariate distributions. Researchers frequently use

C- and D-vine copulas due to their restricting of possible vine structures, which serves

well for computational purposes, interpretation, and to avoid issues with overfitting (Kim

et al., 2013). In this thesis, we focus on the D-vine structure. The D-vine copula for d
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dimensions uses d− 1 levels or trees to represent the full dependence structure. For the

D-vine, the trees are structured so that each node has a maximum of 2 degrees - edges

attached to a node. For a graphical representation of the tree structure of a D-vine copula,

consult figure 5.8 on page 34.

The copula model is fitted to the residuals ϵt in equation 4.4 or 4.5, depending on the time

series model that has been fitted for the areas. The objective is to model any dependency

that cannot be represented as a function of prior observations; hence the residuals ϵt are

used as input and transformed to the marginal interval using the empirical cumulative

density function. Further, the resulting model will be used to create simulated wind

power data. The simulated series consists of the time series estimates with sampled

residuals for each area from the joint distribution to generate new observations. We use

the simulated series to broaden the data basis for the optimization as an alternative

approach to optimizing based on historical data. The optimization method is presented

further in the next section. From the copula model fit, N samples are drawn for the

variables in the joint distribution to form series for approximately 1000 years. The samples

are expressed in the form of the marginal densities and are therefore transformed back

using the quantile function (F−1
i : inverse of the marginal). The resulting distributions

are sampled residuals where the dependency between the variables is intact. Next, the

1000 years of wind power data are constructed using the model specifications from the

time series analysis, with starting values from the original series and sampled residuals

from the D-vine copula.

4.3 Portfolio Theory

Optimization of wind park portfolios is performed for the final part of our analysis. The

optimization is performed using both historical data and simulated data, with the aim

to analyze the impact of different inputs on the optimization. Further, a comparison of

performance between different optimization methods is performed. The methods used

are Markowitz minimum variance portfolio, unconstrained non-linear optimization of 5%

VaR, and an unconstrained non-linear optimization of 5% VaR with penalized average

return, and will be presented in the following section.
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4.3 Portfolio Theory
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to analyze the impact of different inputs on the optimization. Further, a comparison of

performance between different optimization methods is performed. The methods used

are Markowitz minimum variance portfolio, unconstrained non-linear optimization of 5%

VaR, and an unconstrained non-linear optimization of 5% VaR with penalized average

return, and will be presented in the following section.
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4.3.1 Markowitz Minimum Variance Portfolio

Markowitz (1952) introduced the Efficient Frontier (EF) as a financial tool to help investors

select a desirable portfolio of assets. This is the foundation of the mean-variance analysis,

one of the most frequently used portfolio optimization methods. The EF is based on a rule

where the investor finds the expected return a desirable feature and the variance of the

return undesirable. Following Markowitz, the mean-variance optimization problem will be

presented in the following section (Würtz et al., 2015). To lower risk in the portfolio, the

following objective function is used:

min
w

wT Σ̂w (4.6)

s.t. wT µ̂ = r̄ (4.7)

wT1 = 1 (4.8)

The objective function 4.6 expresses that variance-covariance risk measure is to be

minimized σ̄2 = wT Σ̂w, where the matrix Σ̂ is an estimate of the covariance of the assets.

Covariance is a statistical measurement used to establish how two random variables vary

with respect to each other (Hayes, 2022). The first constraint (4.7) ensures that any

return goals r̄ are met, and it is expressed by multiplying the mean of the assets µ̂ with

the respective weights invested. The vector w is the individual investments subject to

the constraint in equation 4.8 that ensures that all available capital is invested. Based on

this, the EF is calculated and shows the feasible region of portfolios. All portfolios on the

EF are combinations of portfolios where no other portfolios give the same return with the

same or lower risk. A variant of Markowitz’s mean-variance method, minimum variance, is

used for our optimization. The minimum variance portfolio is the portfolio with the lowest

risk on the EF. The set of weights in the portfolio in the minimum variance portfolio

can be expressed as: w∗ = Σ−11
1TΣ−11

. The minimum variance portfolio is made with the

R-package fPortfolio (Wuertz et al., 2020).

To use covariance to calculate the risk between assets in the portfolio, an assumption

of bivariate normally distributed assets and linear relationships between the variables is

made (Kent State University Libraries, 2023). As observed in the data section, this is not

the case for the wind power data. To account for the non-normal data, an unconstrained
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non-linear optimization method that maximizes the portfolio distribution’s lower quantiles

is introduced.

4.3.2 Unconstrained Non-linear Optimization of VaR

We use Value at Risk (VaR) as our performance measure to maximize the lower quantiles.

Value at Risk is most commonly used in financial portfolios. VaR is a measure of the

value of the observation at a particular quantile of a distribution. The interpretation

of VaR in financial data is the probability of a potential loss (Kenton, 2023). Financial

data have negative values in the lower tail, while wind power only have positive values.

This changes the interpretation slightly: we want to stabilize wind power production, and

by maximizing the 5% VaR, we make the values in the lower quantiles of the portfolio

distribution as high as possible. Hence, zero and low wind power production events are

minimized. Applying VaR also handles the issue of non-normality, as measuring the lower

tail is not dependent on the distribution. Based on the previous, we argue that VaR seems

like an appropriate performance measure for evaluating stability.

A non-linear unconstrained optimization method is used to maximize the VaR. A non-linear

optimization problem is when either the objective or one of the constraints are non-linear

functions of the decision variables (Bradley et al., 1977). Making the decision variables not

restricted between any values makes the optimization unconstrained. We aim to maximize

the 5 percent quantile of the portfolio distribution as shown in the objective function (4.9).

The portfolio Yt is made by summing the weighted wind production from each of the 13

areas i at time t as demonstrated by equation 4.10. Xit is the wind production from the

k areas and wi is the weights of each area in the portfolio. For the optimization, we are

maximizing the lower quantiles for both the historical data and the simulated data made

through time series and copula as explained in Chapter 4.2. Depending on which data is

used, Xit represent simulated or historical wind power production. By finding optimal

allocation for historical data and simulated data, we are able to compare the performance

of the two methods when applying the weights to unseen test data.
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max
v

Quantile(Yt, 0.05) (4.9)

Yt =
k∑

i=1

Xitwi (4.10)

w.r.t: wi =
[1, exp(v1), ..., exp(vk−1)]

1 +
∑k−1

i=1 exp(vi)
(4.11)

defined by (v1, ..., vk−1)

which ensures
k∑

i=1

wi = 1 and wi ∈ (0, 1) (4.12)

To make the optimization unconstrained, the weights wi are calculated as shown with

equation 4.11, defined by the decision variables in vector v. By having k − 1 decision

variables, but creating k weights in eq. 4.11, the calculation makes the weights implicitly

meet the conditions in 4.12, causing the weights to sum to 1 and have values between 0

and 1. When the decision variables in vector v is used in equation 4.11 to optimize the

objective function (4.9), the decision variables are not restricted between any values and

are chosen freely. For the practical implementation of the optimization in R, the function

optim from the package stats is used (R Core Team, 2022).

The BFGS algorithm is used for the optimization. The BFGS optimization algorithm

belongs to the category of algorithms known as Quasi-Newton methods. The method

leverages the second-order derivative of the objective function to locate optima and is one

of the most used second-order methods for numerical optimization (AICorespot, 2021).

The BFGS algorithm demands initial weights as an estimate of the optimal weights. For

each step, the algorithm converges towards the objective function’s optima. The initial

weights can therefore influence the result as different optima can be located based on the

initial weights. We find no information suggesting that unevenly distributed initial weights

should be chosen for the wind park locations in question. Therefore, for the optimization

problems in the thesis, evenly distributed weights summing to 1 are selected. By applying

evenly distributed weights, all areas have equal possibilities for reaching high and low

percentage involvement in the portfolio. Since the decision variables are transformed

within the optimization, we must account for this to provide the correct input for initial

weights. To find the initial weights v, the following equations are used:
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w = (w1, . . . , wk) =

(
1

13
, . . . ,

1

13

)
(4.13)

v =

(
log

(
w2

w1

)
, . . . , log

(
wk

w1

))
(4.14)

4.3.3 Unconstrained Non-linear Optimization of VaR with

Penalized Average Return

In the previous sub-chapter, a model improving stability based on the maximization of

VaR was presented. As an extension of the previous model, a model including a penalty

factor for average production below a threshold P is introduced. The method offers an

approach to balance the importance of minimal zero and low production values, and a high

average production. The maximization of 5% VaR is still included, but if a portfolio has

a lower average production than the threshold, a negative value is added to the objective

function. This makes the optimization more inclined to select portfolios producing close

to or over the threshold. The alternative objective function is presented in equation 4.15.

The rest of the optimization is the same as in equations 4.10 through 4.12. At the end

of the objective function, a constant is added to scale the importance of the penalty

factor. The penalty factor is multiplied by s to scale the impact of the penalty so that

the objective function prefers portfolios with higher average production. The threshold P

and scaling factor s are determined in the analysis.

max
v

Quantile(Yt, 0.05) +min(0, (mean(Yt)− P )) · s (4.15)
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The rest of the optimization is the same as in equations 4.10 through 4.12. At the end

of the objective function, a constant is added to scale the importance of the penalty

factor. The penalty factor is multiplied by s to scale the impact of the penalty so that
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max Quanti le(½,0.05) + min(0, (mean(½) - P) ) · s
v

(4.15)
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4.4 Method for Optimization on Simulated and

Historical Wind Power Data

For clarity, the sequence of methods used in the thesis is presented in the following

list. The list explains the process of making N observations of simulated wind power

production through drawing residuals from the copula and substituting it into the time

series models, and further optimizing portfolios for three different objective functions using

the simulated data. Additionally, optimization is performed using historical data. For

historical data, step 1-3 is omitted, and Xit = historical wind power data (year 1996-2016).

The optimal weights obtained from the optimizations are used on the test data (Wind

power production, year 2017-2019) to compare the performance of the optimizations. This

forms the basis for the portfolio results in Table 5.1 and the weights in Table 5.2 in the

Analysis chapter.

Portfolios as a function of w1, . . . , wk is computed as follows:

1. Draw (U1, . . . , Uk) from d-dimensional copula C

2. Compute sampled residuals (ϵs1, . . . , ϵ
s
k) through F−1

i (Ui)

F−1
i is the inverse of the empirical cumulative density function used to back-transform the marginals from [0,1].

3. Simulated power production Xit = TS-estimate with ϵsi from copula

(a) For DHR models: Following equation 4.3 and 4.4 substituting ϵt with ϵsi

(b) For ARMA models: Following equation 4.5 substituting ϵt with ϵsi

Any values breaching the limits of the turbine is adjusted to the minimum or maximum value.

– Repeat step 1-3 N times to obtain (X11, . . . , Xk1), . . . , (XN1, . . . , XkN) –

4. Make Portfolio Y = (Y1, . . . , YN) via Yt =
∑k

i=1 Xitwi

5. Optimize objective function using Y :

(a) Compute empirical 5% VaR

(b) Compute Markowitz minimum variance

(c) Compute empirical 5% VaR with penalized avg return

– Repeat step 4-5 until convergence for optimal weights (eq. 4.6 to 4.15) –

6. Apply optimal weights to test data and compare performance (table 5.1)
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5 Analysis and Results

In this section, the implementation of the methodology on the wind power data is

presented. The section is structured sequentially in the order the steps are performed:

time series modeling, modeling of dependency between locations using time series residuals,

simulation of data through the recomposed time series using sampled residuals, and lastly,

a comparison of optimization methods and results.

5.1 Estimating Time Series with Dynamic Harmonic

Regression Models

We estimate time series models for each location separately. The time series models

use historical data to predict future values for the variables, and each series generally

consist of three main components: trend, seasonality, and remainder (Hyndman and

Athanasopoulos, 2021). In this section, we fit models to capture potential trend and

seasonality components in the data.

We analyze time series with different temporal resolutions: mainly hourly and daily. The

wind power data exhibit a noticeable difference in characteristics over the time horizons,

mainly in terms of the noisiness of the data. Following the law of large numbers, the noise

in the data is less influential in the aggregated data. For the hourly and daily data, we

experience truncation to a larger extent than for weekly and monthly data caused by the

maximum production capacity of the wind turbine. The occurrence of hourly and daily

production at maximum capacity is not uncommon for any of the locations of interest.

However, to claim that the production level is stable around the maximum capacity would

be an exaggeration, as the volatility in production is high at the hourly and daily levels.

Since the time series are independently estimated for each location, the outcome of the

model specifications and the necessity for pre-processing of the data differs for each series.

From the initial descriptive analysis, we expect the series to have at least a yearly seasonal

pattern with peaks for the winter months and low points for the summer months. Each

time series is decomposed to get an impression of the trend and seasonality. Further, we fit

Dynamic Harmonic Regression models, ARMA models, and a season NAIVE model based
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on STL decomposition to each time series and compare the accuracy of the models. We

use the season NAIVE with a simple yearly season as the benchmark model of comparison.

The models seem capable of capturing the most prevailing information in the series.

We start by using hourly data because of the relevance of high temporal resolution to the

mechanisms of the electricity market. The season NAIVE models give relatively poor

in-sample fits, but the decomposition serves as a helpful tool to reveal that the data

exhibit seasonal patterns. The data has no noteworthy trend component, and the most

prevailing season is for the yearly period. The season NAIVE models suggest shorter

period seasonality for daily, weekly, and monthly periods, but the subsequently presented

models outperform the models’ fit.

The accuracy varies among the model specifications for the Dynamic Harmonic Regression

variations and ARMA models fitted to the data. For most cases, the seasonal element

expressed as Fourier terms gives better in-sample fits than the seasonal ARMA models

estimated through minimizing AIC. The exception is for SKS in daily data, where a

non-seasonal ARMA model provides the best fit. Shorter period seasonality than yearly

does not seem to provide a better fit for the Dynamic Harmonic Regression models. A

list of the model components used for each series can be found in the appendix A1.

Figure 5.1: Residual plots for Dynamic Harmonic Regression model on hourly data for
Utsira Nord (UN).

After fitting a model with Fourier terms and ARMA processes on the regression residuals

η, we get time series residuals ϵ as shown in Figure 5.1. These results are consistent for

all locations. The residuals show non-linearity and are not normally distributed. Further,
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Figure 5.1: Residual plots for Dynamic Harmonic Regression model on hourly data for
Utsira Nord (UN).

After fitting a model with Fourier terms and ARMA processes on the regression residuals

T/, we get time series residuals c as shown in Figure 5.1. These results are consistent for

all locations. The residuals show non-linearity and are not normally distributed. Further,
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there is significant auto-correlation present in the residuals. Judged by the auto-correlation,

the residuals are not resembling white noise in contrast to a well-fitted time series model.

This is confirmed by the p-values from the Ljung-Box test, rejecting the null hypothesis

of independently distributed residuals. The time series model is struggling to capture all

information in the data, meaning that it is likely that there is remaining information in

the residuals.

Figure 5.2: Residual plots for Dynamic Harmonic Regression model on daily data for
South of Lindesnes (SLI).

Figure 5.3: Residual vs. fitted values for Dynamic Harmonic Regression model on daily
data for South of Lindesnes (SLI).

As with hourly data, it is clear from Figure 5.2 that the residuals of the time series model

for daily data are not normally distributed and exhibit some autocorrelation between lags.

This is an example of the models on a daily level and is similar for all locations with some

nuances. The residual plots tell us that there may still be information in the residuals
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This is confirmed by the p-values from the Ljung-Box test, rejecting the null hypothesis

of independently distributed residuals. The time series model is struggling to capture all

information in the data, meaning that it is likely that there is remaining information in

the residuals.
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Figure 5.2: Residual plots for Dynamic Harmonic Regression model on daily data for
South of Lindesnes (SLI).
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Figure 5.3: Residual vs. fitted values for Dynamic Harmonic Regression model on daily
data for South of Lindesnes (SLI).

As with hourly data, it is clear from Figure 5.2 that the residuals of the time series model

for daily data are not normally distributed and exhibit some autocorrelation between lags.

This is an example of the models on a daily level and is similar for all locations with some

nuances. The residual plots tell us that there may sti l l be information in the residuals
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that we have not managed to include in the model. The p-value from the Ljung-Box test

confirms this suspicion for some of the locations, and the models may be be improved upon

with more sophisticated modeling of the variance. Further, Figure 5.3 shows non-linear

effects in the residuals. This is partly a result of the truncated power production data.

The maximum and minimum values from the turbines create limitations for how large the

residual can be on specific values, resulting in the clear-cut edges in the plot. Through

testing for significant auto-correlation in residuals, we experience larger problems with

dependency between lags for hourly models than for daily models. Although not perfect,

the models for daily data do a better job of capturing the relevant information in the

data.

Now that the time series models largely capture the time dependency, we aim to model the

dependency between areas based on the dependency in the residuals of different locations

at the same time t. As seen in Figure 5.2, the marginal distributions of the residuals

are non-normal. Further, it can be observed in Figure 5.4 that there exists a non-linear

dependency between locations, based on the clustering in the scatter plots. A copula model

can help in modeling these features. Copula functions can model dependency between

variables with different marginal distributions, including non-normal distributions. At the

same time, copula functions can model the marginal distributions and the dependency

structure separately, making it possible to model any type of dependency structure between

variables (Bessis, 2010). The copula will be further addressed in the next sub-chapter 5.2.

Figure 5.4: Dependency between residuals for West of Flekkefjord (WFF) and North-
East of Honningsvåg (NEH).

For the copula method to be justified, the dependency of the residuals should be captured

fully in lag 0 of the residuals, and the dependency should be constant over time (Grothe

and Schnieders, 2011). This is important because if the dependency is captured in other
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Figure 5.4: Dependency between residuals for West of Flekkefjord (WFF) and North-
East of Honningsvåg (NEH).

For the copula method to be justified, the dependency of the residuals should be captured

fully in lag 0 of the residuals, and the dependency should be constant over time (Grothe

and Schnieders, 2011). This is important because if the dependency is captured in other
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lags than 0, the copula model cannot sufficiently capture the dependency between the

residuals. Similarly, the dependency between the residuals of the different locations must

be somewhat stable over time so that we know the optimal placement of wind parks does

not change over time. To ensure that all of the dependency is present in the concurrent

residuals, pairwise cross-correlation is performed for all 13 locations. The desired result

is to have no cross-correlation for lags not equal to 0. As observed in Figure 5.5, this is

done on hourly and daily data. The shown example is of Utsira Nord and West of Fitjar,

which we know from before are highly correlated locations. The lagged cross-correlation

of the hourly data shows that multiple significant dependencies are located in other lags

than lag zero. This result is consistent for all pairs of locations on hourly data. For the

daily data, we observe that all dependency is located in lag 0.

Figure 5.5: Cross-correlation of residuals for Utsira Nord (UN) and West of Fitjar (WFI)
with hourly and daily data.

Daily data seems promising in regards to dependency being located in lag 0. Further

analysis shows that there are some differences between pairs. Figure 5.6 shows two examples

of pairwise cross-correlation. A high dependency is found in lag 0 for locations with

high correlation. On the other hand, for locations with low correlation, low dependency

is found in lag 0. Across most pairwise cross-correlations, other lags show significant

dependency. This might be a result of the time series models’ incapability to remove all

auto-correlation in the residuals. However, no trend is found in these dependent lags,

giving reason to believe that the information captured by other lags is negligible.
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Daily data seems promising in regards to dependency being located in lag 0. Further

analysis shows that there are some differences between pairs. Figure 5.6 shows two examples

of pairwise cross-correlation. A high dependency is found in lag O for locations with

high correlation. On the other hand, for locations with low correlation, low dependency

is found in lag 0. Across most pairwise cross-correlations, other lags show significant

dependency. This might be a result of the time series models' incapability to remove all

auto-correlation in the residuals. However, no trend is found in these dependent lags,

giving reason to believe that the information captured by other lags is negligible.
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Figure 5.6: Cross-correlation between lags for pairs Sørlige Nordsjø 2 (SN2) - West of
Flekkefjord (WFF) & North of Sørlige Nordsjø 1 (NSN1) - North of Tanafjorden (NTF).

Finally, the dependency between the locations should be stable over time. In Figure 5.7

below, it can be observed that the correlation of the residuals of the extracted pairs of

locations is relatively stable over time. We can therefore use the data to decide wind park

locations since the optimal location will not change over time.

Figure 5.7: Correlation between locations over time for an extract of location pairs.

Based on the analysis done of the time series models and the resulting residuals, we have

decided to only move forward with daily data. The time series models fitted on hourly

data do not seem to adequately capture the behavior of the series, which reduce the

reliance on the estimates. The dependency will not be able to sufficiently be modeled

with copulas on the hourly data due to correlation in the residuals across lags. In the

following section, copula models will be introduced based on the marginal distributions

and the dependency structure in the daily residuals.
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Finally, the dependency between the locations should be stable over time. In Figure 5.7

below, it can be observed that the correlation of the residuals of the extracted pairs of

locations is relatively stable over time. We can therefore use the data to decide wind park

locations since the optimal location will not change over time.
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Figure 5. 7: Correlation between locations over time for an extract of location pairs.

Based on the analysis done of the time series models and the resulting residuals, we have

decided to only move forward with daily data . The time series models fitted on hourly

data do not seem to adequately capture the behavior of the series, which reduce the

reliance on the estimates. The dependency will not be able to sufficiently be modeled

with copulas on the hourly data due to correlation in the residuals across lags. In the

following section, copula models will be introduced based on the marginal distributions

and the dependency structure in the daily residuals.
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5.2 Finding Copula Structure and Simulating Data

So far, the models explain wind power at a location based on previous observations

and error terms through the time series modeling. Further, we attempt to model the

dependency between areas by modeling the dependence structure of the ARMA residuals

(the error term ϵt of the time series models) for different locations through a d-dimensional

distribution. In other words, the dependence between locations is modeled for effects

not captured by the components of the time series estimates. By simulating errors while

preserving the dependence between the locations, we can reconstruct the components

of the data to make arbitrary long simulated sets of wind power data to use in the

optimization.

A D-vine copula approach is performed here due to the distributions of the data: A

pairwise assessment of the areas shows that the dependency structure differs from pair

to pair. To model the dependencies between locations, we fit bi-variate and conditional

bi-variate copulas to the residuals by using D-vine trees: The D-vine is a tree-like structure,

with each node denoting a pair of variables, and each edge representing a bi-variate copula

that models their dependence. The D-vine is built by repeatedly conditioning on pairs

of variables until all pairings are linked. To find the tree structure for the 13 variables,

we order the nodes using the shortest Hamiltonian path in terms of weights based on

the absolute value of the empirical Kendall’s Tau, as suggested in the R-documentation

for the VineCopula package (Nagler et al., 2023). The first four levels of the resulting

structure are presented in figure 5.8.
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Figure 5.8: First four levels in the D-vine tree for the model fitted to daily data.

We use copulas from the Gaussian and Archimedean families using maximum likelihood

estimation and AIC as selection criteria for the model fit. The advantage of combining

Gaussian and Archimedean families is that they allow for many different dependence

structures to be fitted, where the dependency in the tails is modeled differently (Embrechts

et al., 2001). We fit a multivariate Gaussian copula for reference to evaluate the model’s

fit. To estimate parameters for the model, the residuals need to be transformed to the unit

interval, uniformly distributed [0,1]. The transformation is performed using the empirical

cumulative distribution function (ECDF). For the multivariate copula, the estimation

method requires a scaling factor of the ECDF of n/(n + 1) to manage the parameter

estimation. The difference in transformation is negligible for the parameter estimation for

the D-vine copula.

The resulting model has an AIC of −72354.57 and consists of a majority of non-Gaussian

families: Gaussian 9, Student t 18, Clayton 3, Gumbel 1, Frank 25, Joe 3, rotated Clayton

(180◦) 4, rotated Gumbel (180◦) 2, rotated (180◦) Joe 2, rotated Clayton (90◦) 4, rotated

Clayton (270◦) 5, rotated Gumbel (270◦) 2. For a full summary of the model’s fit, consult

the appendix A2.1. The overweight of Archimedean copulas makes it reasonable to assume

a non-linear dependence structure between the variables. The benchmark model confirms

this: The multivariate Gaussian copula fit obtains an AIC of −66567.
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a non-linear dependence structure between the variables. The benchmark model confirms

this: The multivariate Gaussian copula fit obtains an AIC of -66567.
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We use the selected D-vine model to simulate 365 000 residual values (approximately

1000 years worth of values) for each of the variables. Since the simulated values are on

the unit interval, we back-transform them using the inverse of the empirical cumulative

distribution function. The next step is reconstructing the time series using the time series’

model fit and the simulated residuals. The reconstruction is performed to obtain 1000

years of sequential daily wind power data for the locations to provide sufficient input for

the optimization problem. The new series are assembled manually, modeling the data

following equation 4.3 through 4.5 using the first few data points from the original data

sets as starting points for the calculation. The size of the simulated series leads to some

extreme values beyond the known limits of the turbine. Therefore, values below the

minimum production and above the maximum daily capacity are rounded to the closest

limit value of 0 and 360 MW. An arbitrarily selected three-year period from the simulated

series is presented along with the original series in figure 5.9.

Figure 5.9: Simulated data vs. historical data of daily power production.
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After applying the time series and copula model to construct 1000 years of wind power

data, the data will be used to find wind park locations that stabilize the output of wind

power production on a daily basis. The thesis aims to investigate whether the optimization
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5.3 Optimization of Wind Park Portfolios and Results

After applying the time series and copula model to construct 1000 years of wind power

data, the data will be used to find wind park locations that stabilize the output of wind

power production on a daily basis. The thesis aims to investigate whether the optimization
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of VaR on the simulated data can make a better combination of wind park sites than

an approach using historical data directly. Further, different optimizing approaches are

evaluated: Markowitz’s minimum variance, optimization of VaR, and VaR with penalized

average production. The optimization methods, VaR and Markowitz, are trained on both

the simulated 1000 years of wind power data and the historical wind power data from

1996 to 2016, with a daily temporal resolution. The models aim to make well-performing

portfolios for future wind production values. Therefore, the optimal weights from each

method is tested on unseen test data, which none of the models are trained on. The test

data is three years of historical daily wind power production from the year 2017 to 2019.

Additionally, an analysis of the best combinations of areas is performed. The method with

a penalty factor for portfolios with an average production below a threshold is included in

this part to observe the difference in area combinations when high average production is

considered important in addition to stable production.

Our analysis is based on the understanding that the best measure for stable wind power

production is maximizing the lower quantiles of the portfolio distribution. This is founded

on the basis that VaR is not dependent on normally distributed data and that by

maximizing the lower quantiles, we minimize zero and low production periods. Zero and

low production is an unfavorable characteristic of wind power that makes it difficult to

provide stable production. Minimizing zero and low production periods will therefore

lead to more stable wind production. The variability in wind power is hard to remove

completely, but by maximizing the 5% quantile, we limit a higher portion of the variation

to higher production values.

Since there is no baseline portfolio available, the analysis is built around a comparison

of the methods. The performance measures of all methods can be observed in Table

5.1. The table includes performance measures (VaR, average production, and standard

deviation) when the weights of each portfolio are applied to the unseen test data (daily

power production year 2017-2019). The method for achieving the results in the table

is summarized in the methodology sub-chapter 4.4. The values are in the form of a

percentage value of installed capacity (maximum production). For instance, the 5% VaR

of the maxVaR portfolio trained on simulated data thereby means that 95% of the time,

more than 29.1% of the installed capacity is being produced.
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Portfolio VaR 0.05 Average VaR 0.95 St.dev.
Simulated Data

maxVaR 29.1 % 58.8 % 86.5 % 18.1 %
Markowitz 27.6 % 57.1 % 86.2 % 17.8 %
maxVaR+Penalty 26.7 % 62.9 % 92.3 % 20.8 %

Historical data
maxVaR 27.0 % 59.7 % 88.7 % 18.6 %
Markowitz 27.8 % 57.3 % 85.7 % 17.7 %

Table 5.1: Performance measures for all portfolios. Weights from each portfolio tested
on unseen test data (daily wind power production, the year 2017-2019). Values are in the
form of a percentage of installed capacity.

5.3.1 Simulated and Historical Data

The results reveal that the non-linear unconstrained optimization of 5% VaR (maxVaR)

on simulated data is performing best in regards to 5% VaR on the test data. Compared

with the optimal weights retrieved from the same method using historical data, simulated

data leads to an increase in 5% VaR of 7.8% (from 27.0% to 29.1%). This difference in

VaR means that for 95% of the time the minimum proportion of installed capacity that

produces wind power is 2.1% higher when using weights derived from the optimization

of simulated data compared to historical data. Therefore, the modeling of dependence

structures through the time series and copula shows clear improvements in the optimal

wind park allocation when using VaR as the objective function. Judging by the standard

deviation and return for the Markowitz portfolio, the impact of simulating data is not

improving the output of the model.

5.3.2 VaR and Variance as Objective Function

When comparing the maxVaR portfolio with the Markowitz portfolio using simulated data,

the 5% VaR is as expected worse as a consequence of the objective function. Similarly,

the average production is lower using the Markowitz minimum variance method. This

method, combined with wind power data with non-normal distributions, consistently

creates portfolios with lower average production. An interesting observation, however,

is that the Markowitz minimum variance method on historical data results in a higher

5% VaR than the approach of maximizing the lower quantiles on historical data. It

seems reasonable to believe that because these two portfolios are made using only 21

years of historical data from the year 1996 to 2016, there are not enough observations to
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The results reveal that the non-linear unconstrained optimization of 5% VaR (maxVaR)

on simulated data is performing best in regards to 5% VaR on the test data. Compared

with the optimal weights retrieved from the same method using historical data, simulated

data leads to an increase in 5% VaR of 7.8% (from 27.0% to 29.1%) . This difference in

VaR means that for 95% of the time the minimum proportion of installed capacity that

produces wind power is 2.1% higher when using weights derived from the optimization

of simulated data compared to historical data . Therefore, the modeling of dependence

structures through the time series and copula shows clear improvements in the optimal

wind park allocation when using VaR as the objective function. Judging by the standard

deviation and return for the Markowitz portfolio, the impact of simulating data is not

improving the output of the model.

5.3.2 VaR and Variance as Objective Function

When comparing the maxVaR portfolio with the Markowitz portfolio using simulated data,

the 5% VaR is as expected worse as a consequence of the objective function. Similarly,

the average production is lower using the Markowitz minimum variance method. This

method, combined with wind power data with non-normal distributions, consistently

creates portfolios with lower average production. An interesting observation, however,

is that the Markowitz minimum variance method on historical data results in a higher

5% VaR than the approach of maximizing the lower quantiles on historical data . It

seems reasonable to believe that because these two portfolios are made using only 21

years of historical data from the year 1996 to 2016, there are not enough observations to
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make the weights stable for future values. Overall, the maximization of 5% VaR shows

clear improvements compared to the Markowitz minimum variance portfolio when the

dependency structure is modeled through time series and copula.

The output Yt (see eq. 4.10), as a percentage of max capacity, of maxVaR and Markowitz

made from the simulated data can be observed in Figure 5.10. The weights of the portfolios

are applied to both the simulated data and the test data. The distribution of the maxVaR

and Markowitz portfolio is visually very similar, except the maxVar portfolio being slightly

more left-skewed. It has a small increase in variance, but it has less zero and low values

and a higher average production which is argued to be more important. This supports

the use of VaR for optimization compared to variance for optimal combinations of wind

production sites.

Figure 5.10: Histogram of the maxVaR and Markowitz portfolio made from simulated
data.

5.3.3 The Areas Included in the Portfolios

The optimal weights used to achieve the portfolios with the most stable wind power

production can be observed in Table 5.2. The weights can be interpreted as the proportion

of available wind turbines that should be sited at each location. For the method ensuring

the most stable wind power production, maxVaR with simulated data, it is clear that
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5.3.3 The Areas Included in the Portfolios

The optimal weights used to achieve the portfolios with the most stable wind power

production can be observed in Table 5.2. The weights can be interpreted as the proportion

of available wind turbines that should be sited at each location. For the method ensuring

the most stable wind power production, maxVaR with simulated data , it is clear that
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diversification benefits the result since all areas are included in the portfolio. SKS and NTF

have the largest shares and, consequently, are the most influential in terms of obtaining

the best result. Further, SN2, WTR, and NEH are included with a high percentage

share of the portfolio. These are representations of the whole coast of Norway, expressing

the importance of distance between wind parks to achieve the most stable production.

It is clear by comparing these weights to the weights of the other portfolios (excluding

maxVaR+Penalty) that the regions SN2, SKS, WTR, and NTF have a high involvement

rate. Therefore, it may be claimed that the combination of these areas yields the most

promising outcomes in a portfolio for stable wind generation.

Simulated Data Historical Data
Location maxVaR Markowitz maxVaR+Penalty maxVaR Markowitz
Utsira Nord (UN) 4.05 % 0.00 % 2.08 % 5.59 % 0.00 %
Sørlig Nordsjø 2 (SN2) 10.90 % 6.65 % 8.83 % 9.52 % 7.57 %
South of Lindesnes (SLI) 4.98 % 0.00 % 24.04 % 11.81 % 1.41 %
South of Kristiansand (SKS) 19.69 % 19.17 % 13.97 % 10.70 % 15.95 %
West of Flekkefjord (WFF) 2.11 % 4.36 % 7.82 % 9.11 % 7.94 %
West of Fitjar (WFI) 0.38 % 9.07 % 0.54 % 2.95 % 8.96 %
North SN1 (NSN1) 6.41 % 4.46 % 13.00 % 4.19 % 0.71 %
North of Vega (NVG) 3.67 % 9.60 % 0.12 % 0.92 % 3.59 %
North of Rørvik (NRV) 6.54 % 4.00 % 0.10 % 1.10 % 8.34 %
West of Tromsø (WTR) 11.69 % 16.36 % 0.04 % 11.28 % 17.46 %
North-East of Honningsvåg (NEH) 10.12 % 4.52 % 20.10 % 2.72 % 2.20 %
South-East of Vardø (SEV) 5.04 % 8.49 % 0.13 % 13.35 % 9.54 %
North of Tanafjorden (NTF) 14.41 % 13.32 % 9.22 % 16.76 % 16.33 %

Table 5.2: Optimal Wind Park Portfolios.
The portfolios are made on both simulated data through time series and copula and historical
data (1996-2016). In addition, the VaR optimization is compared with a Markowitz portfolio
and a VaR optimization with a penalty factor for mean production under 62.5%.

For the optimization including a threshold of minimum desired average production, the

threshold P (see eq. 4.15) is set to 62.5% of installed capacity (225MW
360MW

). The threshold is

set to 62.5% to get a substantial increase from the portfolios maximizing 5% VaR while

still leaving enough room to allow for diversification. The maximum average production

possible is 66.4% (239.13MW
360MW

) when all the production is allocated to SLI (see table 3.2).

The lower quantile value will, by nature, be substantially larger than the penalty factor.

The scaling factor s is therefore set to 2.5 to make the impact of the penalty large enough

to make the optimization prefer portfolios with higher average production. The optimal

solution results in a 5% VaR of 26.7% and an average production of 62.9%. Comparing

the maxVaR and maxVaR+Penalty portfolios, the latter is more left-skewed with a higher

concentration of high production volumes, shown in Figure 5.11. To achieve a more dense
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concentration of high production volumes, the portfolio has a fatter lower tail, meaning

more zero and low production volumes.

Figure 5.11: Histogram of the maxVaR and maxVaR+Penalty portfolio made from
simulated data.

Since the maxVaR+Penalty model rewards higher production, a different combination

of areas is optimal. The diversification is not as evident, leading to more areas having

close to zero percent involvement. Consequently, the contribution of a few areas with high

average production becomes more impactful in this portfolio. The seven locations with

the highest average production are included: UN, SN2, SLI, SKS, WFF, and NSN1. To

balance the output from the high average production sites, we observe that the portfolio

assigns relatively high weights to the northern areas NEH and NTF. As established in

the descriptive analysis, these are areas with low correlation to the southern high average

production areas. The degree of importance given to a high average portfolio return has

a large impact on the portfolio composition, compared with only optimizing the lower

quantiles of the portfolio distribution. Thus, when deciding on locations to develop for

wind power production, the decision of objective function is fundamental for finding the

optimal allocation of resources.
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Since the maxVaR+Penalty model rewards higher production, a different combination
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close to zero percent involvement. Consequently, the contribution of a few areas with high

average production becomes more impactful in this portfolio. The seven locations with

the highest average production are included: UN, SN2, SLI, SKS, W F F , and NSNl. To

balance the output from the high average production sites, we observe that the portfolio

assigns relatively high weights to the northern areas NEH and NTF. As established in

the descriptive analysis, these are areas with low correlation to the southern high average

production areas. The degree of importance given to a high average portfolio return has

a large impact on the portfolio composition, compared with only optimizing the lower

quantiles of the portfolio distribution. Thus, when deciding on locations to develop for

wind power production, the decision of objective function is fundamental for finding the

optimal allocation of resources.
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From the analysis, it is clear that the unconstrained non-linear optimization of 5% VaR

using simulated data results in the portfolio with the most stable production. The map

in Figure 5.12 is a visual presentation of the capacity allocation for the optimal solution

using the objective function from the maxVaR approach. If the objective was to cover

the Norwegian government’s goal of 30 GW installed capacity, for example, 2000 wind

turbines with a capacity of 15 MW are needed (Regjeringen, 2022b). This would mean

allocating 288 wind turbines to NTF assuming that the spatial requirement is fulfilled.

Figure 5.12: Map over the 13 locations with size of points corresponding with weights
in the optimal portfolio for maxVaR.

The weights achieved from maximizing the model on daily data are also evaluated on

hourly data. The results show a worse 5% VaR for our approach compared to Markowitz,

but similarly to daily data, a higher average return is achieved compared to Markowitz.

The weights obtained from maxVaR on 1000 years of simulated data are therefore not

transferable to hourly data.
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The weights achieved from maximizing the model on daily data are also evaluated on

hourly data. The results show a worse 5% VaR for our approach compared to Markowitz,

but similarly to daily data, a higher average return is achieved compared to Markowitz.

The weights obtained from maxVaR on 1000 years of simulated data are therefore not

transferable to hourly data.
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6 Discussion

The following section discusses the results and what insights they may provide.

Additionally, the limitations of the study and its implications are discussed.

According to the analysis, our findings demonstrate that the method of simulating 1000

years of wind power production for each area based on the dependency structure through

time series and copulas provides a stronger basis for determining the ideal weights for the

combination of wind park locations. Further, the unconstrained non-linear optimization

of VaR seems to be a better measurement than the variance for the purpose of reducing

intermittency. For example, when comparing the maxVaR and Markowitz methods on

simulated data, there is an increase of 5.4% in the 5% VaR and a 3.0% increase in average

daily wind power production. This means that with the maxVaR method, the portfolio

reduces zero and low production values, resulting in higher average production. Over

several years, the benefit of choosing the maxVaR method could be valuable.

Through the optimization of portfolios, it is apparent that the application of VaR as

performance measurement leads to many portfolios with very similar objective values.

Changes in the initial values for the optimization result in different combinations of areas

that maximizes the 5% VaR. The objective function arrives at approximately the same

value, but the weights change. Despite arriving at different final weights for different

initial weights, it is still possible to draw insightful conclusions from the results in terms of

the placement of wind parks. Some areas are consistently present with a high percentage

in the portfolios: SKS, WTR, NEH, and NTF. Many of these areas have a low correlation,

making the combined production more stable. However, this attribute of the model makes

it difficult to recommend specific weights for each site, as many combinations can lead to

approximately the same result. Further, changing the objective function to maximize 1%

or 10% VaR instead of 5% VaR will also slightly change the optimal portfolio’s weights.

However, the trend with SKS, WTR, NEH, and NTF being substantial participators in

the portfolio remains.

The weights in the maxVaR optimal portfolio are distributed across all locations,

emphasizing the positive effect of combining wind power production from dispersed

wind parks. For example, if the optimal portfolio is compared to a portfolio including
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only UN and SN2 since these are the only areas currently approved for offshore wind

parks, the improvement in 5% VaR is major. The 5% VaR increases from 12.8% in the

portfolio with UN and SN2 to 29.1% in the optimal portfolio, an increase of 127%. On

the other hand, the average production of the maxVaR portfolio only decreases by 7.1%

(from 63.3% to 58.8%) from the UN and SN2 portfolios. The benefit achieved from the

portfolio in terms of an increase in the 5% VaR can therefore be argued to be larger than

the loss in average production.

A dilemma of what to prioritize arises when finding optimal combinations of wind

production sites: minimal risk by maximizing 5% VaR or increasing risk to achieve higher

average production. If the average output is fully prioritized, all production should be

allocated to the South of Lindesnes because this location has the best wind conditions.

The portfolio maxVaR+Penalty is weighting this concern of minimizing intermittency

through maximization of 5% VaR and keeping average production high. Diversification

is in this portfolio partly de-prioritized for achieving higher average production, leaving

more areas almost entirely out of the portfolio. Sites with good wind conditions (high

average production) are in this portfolio represented with a higher percentage. The change

in objective function leads to a decrease in 5% VaR of 8.2% (from 29.1% to 26.7%) and

an increase in average production of 7.0% (from 58.8% to 62.9%). The maximum average

output for one area, and consequently the highest average production that could be

achieved for all portfolios, is 66.4% (239.13MW
360MW

), as shown in Table 3.2 under the data

section. This indicates that it is possible with this method to achieve a portfolio producing

close to maximum average output while reducing the zero and low production values to

make production more stable.

Based on our results, it is apparent that by diversification through the interconnection

of wind parks along the coast of Norway, intermittency in wind power production can

be reduced. However, there are some limitations to our method. Firstly, as discussed in

our analysis of the Dynamic Harmonic Regression models, our time series model is not

able to capture all the information that is available in the data. The time series model is

an imperfect representation of the data, meaning there might be patterns in the data we

cannot utilize fully. Additionally, the optimization method used does not guarantee that

a global optimum is found. Depending on initial weights, different local optimums can be
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found. The weights can therefore vary depending on initial weights, and it constitutes a

risk of not reaching the optimal solution. Furthermore, because the research was done

solely using data for wind power estimated for a single turbine, wake effects, maintenance,

and other aspects were not considered. These are factors that can have a considerable

impact on where wind parks are located. Consequently, the results in this thesis will

only be able to offer one of many aspects regarding the optimal placement of wind parks.

Finally, as of today, Norway is split into five pricing areas for power trading and does

not have the infrastructure to take advantage of the interconnection of wind parks across

the whole coast of Norway. As a result, the outcome is not directly applicable to the

Norwegian case in its current state. However, the results of the method still show the

positive effect of interconnected sites on the joint stability in power production. The

method can be applied to other data, whether that is the currently suggested areas from

NVE or different compositions of locations. An interesting approach would be to apply

the method within pricing areas or between pricing areas where the interconnection of

grid points may be feasible. With such an approach, the impact of the portfolio could be

more closely linked to the price of electricity in the areas by altering the balance between

supply and demand.
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7 Conclusion

Due to global warming, emission goals, and increased energy consumption, renewable

energy production has been on the agenda in Norway for several years. The subject

of offshore wind power has surged as a candidate but has, among other things, been

criticized for its intermittency. With Norway’s ambitious production goals, reducing the

intermittency in production should be of high interest to both the government and the

power producers. The thesis has analyzed the interconnectedness of offshore wind parks

along Norway’s coast, focusing on stable conditions for wind power production as the

main criteria. The analysis has taken on the following research question:

When determining weights in the optimization for a portfolio with the most stable production

for offshore wind park areas in Norway, how well does a compound dependency model for

the simulation of wind power data perform compared to historical data, and which areas

are included?

To create simulated wind power data, different methods to represent the time dependency

in the historical data were compared, and the dependency between locations was modeled

through a D-vine copula on the time series’ residuals. The time series were modeled on

daily time resolution to sufficiently capture significant cross-correlation between the areas

for the same time t. The sampling of residuals from the copula model constituted the

new error component in the simulated series. Different optimization methods are then

evaluated to find suitable combinations of locations with stable production as the decision

criteria.

We find that maximizing Value at Risk (VaR) has favorable characteristics for what could

be considered a stable production portfolio. Maximization of 5% VaR as opposed to

minimizing variance leads to an improvement of 5.4% in the 5% VaR and a 3.0% increase

in average production. The portfolio distributions of the optimization of 5% VaR and

the Markowitz minimum variance are similar, except the portfolio distribution of the

maximization of VaR is more left-skewed. Thus, the maximization of VaR has a slightly

larger variance, but it has less zero and low values and a higher average production which

is argued to be more important.
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The study’s findings show that portfolio optimization performed on simulated data

performs better than on historical data. The 5% VaR increases by 7.8% when using

simulated data instead of historical data. Higher 5% VaR reduces the occurrences of zero

and low production values in the portfolio, making the production more stable. When

computing the weights for the portfolio with the most stable production for offshore wind

park areas in Norway, it is clear that using VaR as objective function and a compound

dependency model for simulation of wind power data is preferable. Using this method, all

areas are included in the portfolio, emphasizing the importance of diversification. However,

the most influential areas which should be prioritized are Sørlige Nordsjø 2, South of

Kristiansand, West of Tromsø, and North of Tanafjorden. When the objective function is

altered to include a penalty factor for average production under 62.5%, diversification

is partly de-prioritized to include areas with high average production. Thus, a higher

portion is allocated to the southern areas. When prioritizing high average production,

some areas have close to zero percent involvement, making the contribution of a few areas

more influential.

For further research, making a better-performing time series model for daily and hourly

data could be valuable. The design of hourly trading on the power market makes finding

a suitable method for hourly data especially insightful. Investigating how this method can

be combined with effects related to wind turbines and scaling of wind parks, like wake

effect and maintenance, would further enrich the results. Lastly, using the method within

the borders of pricing areas, future interconnected grids, or combining wind power with

other energy sources could give results for a portfolio closer to a real-life scenario.
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Appendix

A1 Time Series Model Specifications
- Time series - hourly

UN: Icpt. + Fourier season with 6K + ARIMA(3,0,3) error
SN2: Icpt. + Fourier season with 3K + ARIMA(4,0,2) error
SLI: Icpt. + Fourier season with 4K + ARIMA(2,0,3) error
SKS: Icpt. + Fourier season with 3K + ARIMA(3,0,3) error
WFF: Icpt. + Fourier season with 3K + ARIMA(2,0,3) error
WFI: Icpt. + Fourier season with 3K + ARIMA(3,0,2) error
NSN1: Icpt. + Fourier season with 3K + ARIMA(2,0,2) error
NVG: Icpt. + Fourier season with 3K + ARIMA(1,0,5) error
NRV: Icpt. + Fourier season with 3K + ARIMA(1,0,5) error
WTR: Icpt. + Fourier season with 2K + ARIMA(2,0,4) error
NEH: Icpt. + Fourier season with 2K + ARIMA(2,0,4) error
SEV: Icpt. + Fourier season with 5K + ARIMA(3,0,3) error
NTF: Icpt. + Fourier season with 2K + ARIMA(4,0,2) error

- Time series - daily:
UN: Icpt. + Fourier season with 3K + ARIMA(2,0,2) error
SN2: Icpt. + Fourier season with 3K + ARIMA(1,0,3) error
SLI: Icpt. + Fourier season with 3K + ARIMA(1,0,1) error
SKS: Icpt. + ARIMA(4,0,2)
WFF: Icpt. + Fourier season with 6K + ARIMA(1,0,1) error
WFI: Icpt. + Fourier season with 3K + ARIMA(2,0,2) error
NSN1: Icpt. + Fourier season with 3K + ARIMA(2,0,2) error
NVG: Icpt. + Fourier season with 1K + ARIMA(3,0,2) error
NRV: Icpt. + Fourier season with 3K + ARIMA(2,0,2) error
WTR: Icpt. + Fourier season with 1K + ARIMA(2,0,2) error
NEH: Icpt. + Fourier season with 2K + ARIMA(3,0,0) error
SEV: Icpt. + Fourier season with 5K + ARIMA(3,0,0) error
NTF: Icpt. + Fourier season with 2K + ARIMA(2,0,0) error
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Appendix

Al Time Series Model Specifications
- T i m e series - h o u r ly

UN: lept. + Fourier season with 6K + ARIMA(3,0,3) error
SN2: lept. + Fourier season with 3K + ARIMA(4,0,2) error
SLI: lept. + Fourier season with 4K + ARIMA(2,0,3) error
SKS: lept. + Fourier season with 3K + ARIMA(3,0,3) error
WFF: lept. + Fourier season with 3K + ARIMA(2,0,3) error
WFI: lept. + Fourier season with 3K + ARIMA(3,0,2) error
NSNl: lept. + Fourier season with 3K + ARIMA(2,0,2) error
NVG: lept. + Fourier season with 3K + ARIMA(l,0,5) error
NRV: lept. + Fourier season with 3K + ARIMA(l,0,5) error
WTR: lept. + Fourier season with 2K + ARIMA(2,0,4) error
NEH: lept. + Fourier season with 2K + ARIMA(2,0,4) error
SEV: lept. + Fourier season with 5K + ARIMA(3,0,3) error
NTF: lept. + Fourier season with 2K + ARIMA(4,0,2) error

- T i m e series - dai ly:
UN: lept. + Fourier season with 3K + ARIMA(2,0,2) error
SN2: lept. + Fourier season with 3K + ARIMA(l,0,3) error
SLI: lept. + Fourier season with 3K + ARIMA(l,0,1) error
SKS: lept. + ARIMA(4,0,2)
WFF: lept. + Fourier season with 6K + ARIMA(l,0,1) error
WFI: lept. + Fourier season with 3K + ARIMA(2,0,2) error
NSNl: lept. + Fourier season with 3K + ARIMA(2,0,2) error
NVG: lept. + Fourier season with lK + ARIMA(3,0,2) error
NRV: lept. + Fourier season with 3K + ARIMA(2,0,2) error
WTR: lept. + Fourier season with lK + ARIMA(2,0,2) error
NEH: lept. + Fourier season with 2K + ARIMA(3,0,0) error
SEV: lept. + Fourier season with 5K + ARIMA(3,0,0) error
NTF: lept. + Fourier season with 2K + ARIMA(2,0,0) error
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A2 Copula Model Specifications
Node Pairs, Families, Parameters, Kendall’s tau, Upper and Lower Tail Dependencies for the Fitted Copulas

t: t-copula, F: Frank, N: Gaussian, C: Clayton, G: Gumbel, J: Joe, S: survival 90, other degrees

tree edge family cop par par2 tau utd ltd

1 4,3 2 t 0.67 4.86 0.47 0.33 0.33

1 3,5 2 t 0.73 4.32 0.52 0.40 0.40

1 5,2 2 t 0.73 4.45 0.52 0.39 0.39

1 2,7 2 t 0.75 5.18 0.54 0.39 0.39

1 7,1 2 t 0.73 4.51 0.52 0.39 0.39

1 1,6 2 t 0.94 3.75 0.78 0.71 0.71

1 6,9 5 F 1.04 0.00 0.11 0.00 0.00

1 9,8 2 t 0.88 4.65 0.68 0.57 0.57

1 8,10 5 F 1.44 0.00 0.16 0.00 0.00

1 10,11 5 F 1.69 0.00 0.18 0.00 0.00

1 11,12 5 F 4.18 0.00 0.40 0.00 0.00

1 12,13 5 F 3.34 0.00 0.34 0.00 0.00

2 4,5 | 3 1 N -0.14 0.00 -0.09 0.00 0.00

2 3,2 | 5 2 t 0.41 4.74 0.27 0.18 0.18

2 5,7 | 2 2 t 0.32 5.61 0.21 0.11 0.11

2 2,1 | 7 2 t 0.10 11.05 0.06 0.01 0.01

2 7,6 | 1 2 t -0.02 8.51 -0.01 0.01 0.01

2 1,9 | 6 2 t -0.02 30.00 -0.01 0.00 0.00

2 6,8 | 9 33 C270 -0.05 0.00 -0.02 0.00 0.00

2 9,10 | 8 1 N -0.10 0.00 -0.06 0.00 0.00

2 8,11 | 10 5 F 0.25 0.00 0.03 0.00 0.00

2 10,12 | 11 14 SG 1.02 0.00 0.02 0.00 0.02

2 11,13 | 12 2 t 0.54 6.24 0.36 0.18 0.18

3 4,2 | 3,5 2 t -0.09 16.53 -0.06 0.00 0.00

3 3,7 | 5,2 2 t -0.25 8.27 -0.16 0.00 0.00

3 5,1 | 2,7 2 t 0.44 7.25 0.29 0.11 0.11

3 2,6 | 7,1 2 t -0.22 14.57 -0.14 0.00 0.00

3 7,9 | 1,6 5 F -0.38 0.00 -0.04 0.00 0.00

3 1,8 | 6,9 1 N -0.05 0.00 -0.03 0.00 0.00

3 6,10 | 9,8 33 C270 -0.03 0.00 -0.02 0.00 0.00

3 9,11 | 8,10 2 t -0.04 30.00 -0.02 0.00 0.00

3 8,12 | 10,11 16 SJ 1.02 0.00 0.01 0.00 0.02

3 10,13 | 11,12 33 C270 -0.02 0.00 -0.01 0.00 0.00

4 4,7 | 3,5,2 3 C 0.14 0.00 0.07 0.00 0.01

4 3,1 | 5,2,7 1 N -0.15 0.00 -0.09 0.00 0.00

4 5,6 | 2,7,1 5 F -2.39 0.00 -0.25 0.00 0.00

4 2,9 | 7,1,6 6 J 1.01 0.00 0.01 0.01 0.00

4 7,8 | 1,6,9 5 F -0.13 0.00 -0.01 0.00 0.00

4 1,10 | 6,9,8 6 J 1.01 0.00 0.01 0.02 0.00

4 6,11 | 9,8,10 1 N -0.03 0.00 -0.02 0.00 0.00

4 9,12 | 8,10,11 23 C90 -0.01 0.00 0.00 0.00 0.00

4 8,13 | 10,11,12 23 C90 -0.02 0.00 -0.01 0.00 0.00
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A2 Copula Model Specifications
N o d e P a i r s , F a m i l i e s , P a r a m e t e r s , K e n d a l l ' s t a u , U p p e r a n d L o w e r T a i l D e p e n d e n c i e s for t h e F i t t e d C o p u l a s

t: t - c o p u l a , F: F r a n k , N: G a u s s i a n , C: C l a y t o n , G: G u m b e l , J: J o e , S: s u r v i v a l 9 0 , o t h e r d e g r e e s

tree edge family cop p a r par2 t a u utd ltd

l 4,3 2 t 0.67 4.86 0.47 0.33 0.33

l 3,5 2 t 0.73 4.32 0.52 0.40 0.40

l 5,2 2 t 0.73 4.45 0.52 0.39 0.39

l 2,7 2 t 0.75 5.18 0.54 0.39 0.39

l 7,1 2 t 0.73 4.51 0.52 0.39 0.39

l 1,6 2 t 0.94 3.75 0.78 0.71 0.71

l 6,9 5 F 1.04 0.00 0.11 0.00 0.00

l 9,8 2 t 0.88 4.65 0.68 0.57 0.57

l 8,10 5 F 1.44 0.00 0.16 0.00 0.00

l 10,11 5 F 1.69 0.00 0.18 0.00 0.00

l 11,12 5 F 4.18 0.00 0.40 0.00 0.00

l 12,13 5 F 3.34 0.00 0.34 0.00 0.00

2 4,5 I 3 l N -0.14 0.00 -0.09 0.00 0.00

2 3,2 I 5 2 t 0.41 4.74 0.27 0.18 0.18

2 5,7 I 2 2 t 0.32 5.61 0.21 0.11 0.11

2 2,1 I 7 2 t 0.10 11.05 0.06 0.01 0.01

2 7,6 I l 2 t -0.02 8.51 -0.01 0.01 0.01

2 1,9 I 6 2 t -0.02 30.00 -0.01 0.00 0.00

2 6,8 I 9 33 C270 -0.05 0.00 -0.02 0.00 0.00

2 9,10 I 8 l N -0.10 0.00 -0.06 0.00 0.00

2 8,11 I 10 5 F 0.25 0.00 0.03 0.00 0.00

2 10,12 I 11 14 SG 1.02 0.00 0.02 0.00 0.02

2 11,13 I 12 2 t 0.54 6.24 0.36 0.18 0.18

3 4,2 I 3,5 2 t -0.09 16.53 -0.06 0.00 0.00

3 3,7 I 5,2 2 t -0.25 8.27 -0.16 0.00 0.00

3 5,1 I 2,7 2 t 0.44 7.25 0.29 0.11 0.11

3 2,6 I 7,1 2 t -0.22 14.57 -0.14 0.00 0.00

3 7,9 I 1,6 5 F -0.38 0.00 -0.04 0.00 0.00

3 1,8 I 6,9 l N -0.05 0.00 -0.03 0.00 0.00

3 6,10 I 9,8 33 C270 -0.03 0.00 -0.02 0.00 0.00

3 9,11 I 8,10 2 t -0.04 30.00 -0.02 0.00 0.00

3 8,12 I 10,11 16 SJ 1.02 0.00 0.01 0.00 0.02

3 10,13 I 11,12 33 C270 -0.02 0.00 -0.01 0.00 0.00

4 4,7 I 3,5,2 3 c 0.14 0.00 0.07 0.00 0.01

4 3,1 I 5,2,7 l N -0.15 0.00 -0.09 0.00 0.00

4 5,6 I 2,7,1 5 F -2.39 0.00 -0.25 0.00 0.00

4 2,9 I 7,1,6 6 J l.Ol 0.00 0.01 0.01 0.00

4 7,8 I 1,6,9 5 F -0.13 0.00 -0.01 0.00 0.00

4 1,10 I 6,9,8 6 J l.Ol 0.00 0.01 0.02 0.00

4 6,11 I 9,8,10 l N -0.03 0.00 -0.02 0.00 0.00

4 9,12 I 8,10,11 23 C90 -0.01 0.00 0.00 0.00 0.00

4 8,13 I 10,11,12 23 C90 -0.02 0.00 -0.01 0.00 0.00
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5 4,1 | 3,5,2,7 5 F 0.22 0.00 0.02 0.00 0.00

5 3,6 | 5,2,7,1 5 F 0.72 0.00 0.08 0.00 0.00

5 5,9 | 2,7,1,6 5 F 0.34 0.00 0.04 0.00 0.00

5 2,8 | 7,1,6,9 33 C270 -0.02 0.00 -0.01 0.00 0.00

5 7,10 | 1,6,9,8 1 N 0.00 0.00 0.00 0.00 0.00

5 1,11 | 6,9,8,10 6 J 1.00 0.00 0.00 0.01 0.00

5 6,12 | 9,8,10,11 5 F 0.11 0.00 0.01 0.00 0.00

5 9,13 | 8,10,11,12 13 SC 0.01 0.00 0.01 0.00 0.00

6 4,6 | 3,5,2,7,1 5 F 0.26 0.00 0.03 0.00 0.00

6 3,9 | 5,2,7,1,6 5 F 0.50 0.00 0.06 0.00 0.00

6 5,8 | 2,7,1,6,9 5 F -0.20 0.00 -0.02 0.00 0.00

6 2,10 | 7,1,6,9,8 33 C270 -0.01 0.00 0.00 0.00 0.00

6 7,11 | 1,6,9,8,10 5 F 0.07 0.00 0.01 0.00 0.00

6 1,12 | 6,9,8,10,11 34 G270 -1.00 0.00 0.00 0.00 0.00

6 6,13 | 9,8,10,11,12 5 F -0.07 0.00 -0.01 0.00 0.00

7 4,9 | 3,5,2,7,1,6 5 F 0.64 0.00 0.07 0.00 0.00

7 3,8 | 5,2,7,1,6,9 1 N -0.04 0.00 -0.02 0.00 0.00

7 5,10 | 2,7,1,6,9,8 3 C 0.01 0.00 0.00 0.00 0.00

7 2,11 | 7,1,6,9,8,10 4 G 1.01 0.00 0.01 0.01 0.00

7 7,12 | 1,6,9,8,10,11 5 F -0.04 0.00 0.00 0.00 0.00

7 1,13 | 6,9,8,10,11,12 5 F 0.11 0.00 0.01 0.00 0.00

8 4,8 | 3,5,2,7,1,6,9 1 N -0.03 0.00 -0.02 0.00 0.00

8 3,10 | 5,2,7,1,6,9,8 34 G270 -1.00 0.00 0.00 0.00 0.00

8 5,11 | 2,7,1,6,9,8,10 13 SC 0.01 0.00 0.00 0.00 0.00

8 2,12 | 7,1,6,9,8,10,11 14 SG 1.01 0.00 0.01 0.00 0.01

8 7,13 | 1,6,9,8,10,11,12 23 C90 0.00 0.00 0.00 0.00 0.00

9 4,10 | 3,5,2,7,1,6,9,8 5 F -0.04 0.00 0.00 0.00 0.00

9 3,11 | 5,2,7,1,6,9,8,10 23 C90 -0.01 0.00 0.00 0.00 0.00

9 5,12 | 2,7,1,6,9,8,10,11 13 SC 0.02 0.00 0.01 0.00 0.00

9 2,13 | 7,1,6,9,8,10,11,12 16 SJ 1.00 0.00 0.00 0.00 0.01

10 4,11 | 3,5,2,7,1,6,9,8,10 5 F 0.14 0.00 0.02 0.00 0.00

10 3,12 | 5,2,7,1,6,9,8,10,11 5 F 0.03 0.00 0.00 0.00 0.00

10 5,13 | 2,7,1,6,9,8,10,11,12 5 F -0.07 0.00 -0.01 0.00 0.00

11 4,12 | 3,5,2,7,1,6,9,8,10,11 3 C 0.01 0.00 0.01 0.00 0.00

11 3,13 | 5,2,7,1,6,9,8,10,11,12 1 N 0.01 0.00 0.01 0.00 0.00

12 4,13 | 3,5,2,7,1,6,9,8,10,11,12 13 SC 0.01 0.00 0.01 0.00 0.00

Table A2.1: D-Vine Copula Tree
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5 4,1 I 3,5,2,7 5 F 0.22 0.00 0.02 0.00 0.00

5 3,6 I 5,2,7,1 5 F 0.72 0.00 0.08 0.00 0.00

5 5,9 I 2,7,1,6 5 F 0.34 0.00 0.04 0.00 0.00

5 2,8 I 7,1,6,9 33 C270 -0.02 0.00 -0.01 0.00 0.00

5 7,10 I 1,6,9,8 l N 0.00 0.00 0.00 0.00 0.00

5 1,11 I 6,9,8,10 6 J 1.00 0.00 0.00 0.01 0.00

5 6,12 I 9,8,10,11 5 F 0.11 0.00 0.01 0.00 0.00

5 9,13 I 8,10,11,12 13 SC 0.01 0.00 0.01 0.00 0.00

6 4,6 I 3,5,2,7,1 5 F 0.26 0.00 0.03 0.00 0.00

6 3,9 I 5,2,7,1,6 5 F 0.50 0.00 0.06 0.00 0.00

6 5,8 I 2,7,1,6,9 5 F -0.20 0.00 -0.02 0.00 0.00

6 2,10 I 7,1,6,9,8 33 C270 -0.01 0.00 0.00 0.00 0.00

6 7,11 I 1,6,9,8,10 5 F 0.07 0.00 0.01 0.00 0.00

6 1,12 I 6,9,8,10,11 34 G270 -1.00 0.00 0.00 0.00 0.00

6 6,13 I 9,8,10,11,12 5 F -0.07 0.00 -0.01 0.00 0.00

7 4,9 I 3,5,2,7,1,6 5 F 0.64 0.00 0.07 0.00 0.00

7 3,8 I 5,2,7,1,6,9 l N -0.04 0.00 -0.02 0.00 0.00

7 5,10 I 2,7,1,6,9,8 3 c 0.01 0.00 0.00 0.00 0.00

7 2,11 I 7,1,6,9,8,10 4 G l.Ol 0.00 0.01 0.01 0.00

7 7,12 I 1,6,9,8,10,11 5 F -0.04 0.00 0.00 0.00 0.00

7 1,13 I 6,9,8,10,11,12 5 F 0.11 0.00 0.01 0.00 0.00

8 4,8 I 3,5,2,7,1,6,9 l N -0.03 0.00 -0.02 0.00 0.00

8 3,10 5,2,7,1,6,9,8 34 G270 -1.00 0.00 0.00 0.00 0.00

8 5,11 2,7,1,6,9,8,10 13 SC 0.01 0.00 0.00 0.00 0.00

8 2,12 7,1,6,9,8,10,11 14 SG l.Ol 0.00 0.01 0.00 0.01

8 7,13 1,6,9,8,10,11,12 23 C90 0.00 0.00 0.00 0.00 0.00

9 4,10 3,5,2,7,1,6,9,8 5 F -0.04 0.00 0.00 0.00 0.00

9 3,11 5,2,7,1,6,9,8,10 23 C90 -0.01 0.00 0.00 0.00 0.00

9 5,12 2,7,1,6,9,8,10,11 13 SC 0.02 0.00 0.01 0.00 0.00

9 2,13 7,1,6,9,8,10,11,12 16 SJ 1.00 0.00 0.00 0.00 0.01

10 4,11 3,5,2,7,1,6,9,8,10 5 F 0.14 0.00 0.02 0.00 0.00

10 3,12 5,2,7,1,6,9,8,10,11 5 F 0.03 0.00 0.00 0.00 0.00

10 5,13 2,7,1,6,9,8,10,11,12 5 F -0.07 0.00 -0.01 0.00 0.00

11 4,12 3,5,2,7,1,6,9,8,10,11 3 c 0.01 0.00 0.01 0.00 0.00

11 3,13 5,2,7,1,6,9,8,10,11,12 l N 0.01 0.00 0.01 0.00 0.00

12 4,13 3,5,2,7,1,6,9,8,10,11,12 13 SC 0.01 0.00 0.01 0.00 0.00

Table A2.1: D-Vine Copula Tree


