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Abstract

Quantitative probability in the subjective theory is assumed to be
finitely additive and defined on all the subsets of an underlying state
space. Functions from this space into an Euclidian n-space create a
new probability space for each such function. We point out that the
associated probability measures, induced by the subjective probabil-
ity, on these new spaces can not be finitely additive and defined on
all the subsets of Euclidian n-space, for n ≥ 3. This is a consequence
of the Banach-Tarski paradox. In the paper we show that subjec-
tive probability theory, including Savage’s theory of choice, can be
reformulated to take this, and similar objections into account. We
suggest such a reformulation which, among other things, amounts to
adding an axiom to Savage’s seven postulates, and then use a version
of Carathéodory’s extension theorem.

KEYWORDS: The Banach-Tarski paradox, the axiom of choice,
Savage’s theory of choice, monotone continuity, countable additivity,
Carathéodory’s extension theorem, syndicates, contingent claims.

1 Introduction.

The classical representation of expected utility is due to John von Neumann
and Oskar Morgenstern (von Neumann and Morgenstern (1944)). Several

∗Special thanks to Bernt Øksendal for stimulating discussions on topics of the paper.
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years earlier, Frank P. Ramsey outlined a theory of subjective probability
and expected utility (Ramsey (1931)). Subjective probability was developed
independently by de Finetti (1937), and is also treated by Borel (1924),
Koopman (1940a,b), Venn (1886), and others. Émile Borel (1924) has an in-
teresting discussion of a theory of probability put forward by John Maynard
Keynes (Keynes (1921)). Much of this received little notice until the ap-
pearance of Savage’s classic on the foundations of statistics (Savage (1954)).
Building on Ramsey as well as von Neumann and Morgenstern for expected
utility and de Finetti for subjective probability, Savage presented the first
complete axiomatization of subjective expected utility.

Bruno de Finetti insisted that probability should be finitely additive and
defined on all subsets of a state space. Koopman and de Finetti derived
a probability measure from a qualitative probability under the assumption
that, for any integer n, there are n mutually exclusive, equally probable
events. Savage showed that this strong assumption is unnecessary, in that
if a qualitative probability is just fine and tight, then there is one and only
one probability measure compatible with it. Also Savage restricted attention
to finite additivity on the set of all subsets in the state space. This is in
contrast to the famous fundaments of probability theory set forth by A. N.
Kolmogorov (Kolmogorov (1933)), where a probability measure is defined on
the measurable events of a σ-algebra, and is countably additive.

In this paper we point out that if the range space in the theory of Sav-
age (1954) is Euclidian n-space, with n ≥ 3, one must follow Kolmogorov’s
choice in order to avoid serious paradoxes, like the Banach-Tarski paradox.
To accomplish this, we suggest that the theory is reformulated to take this
objection into account. We demonstrate an extension which involves an as-
sumption of monotone continuity of the subjective probability, which we add
as a postulate to Savage’s 7 other postulates.

With this in place we first use the result that the quantitative probability
measure P is countably additive as a result of this postulate, in which case
we can the Hahn-Kolmogorov theorem, a version of the Carathéodory’s ex-
tension theorem, which is a rather deep result in measure theory. This gives
us a unique countable additive probability measure on the sigma-algebra
generated by the algebra in Savage’s model, which agrees with the subjec-
tive probability on the sigma-algebra. This structure can be carried over to
the range spaces, in which case the paradoxes mentioned are avoided. As
a consequence the basic other structures of Savage’s approach remain. The
importance of this can hardly be exaggerated, considering the high standing
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of this theory, in particular in economics of uncertainty, decision theory and
related fields.

In the last section we present two examples that connect the subjective
probability theory to the theory of syndicates as well as contingent claims
evaluation. We indicate that probability, like prices, should be internalized,
and how this interpretation could be applied more widely.

2 Subjective expected utility.

In this section we give a brief sketch of the subjective expected utility theory
of Leonard Savage. In addition to Savage (1954), we also follow Fishburn
(1970, 82 and 86). The basic primitives are a set Z of consequences, a set
S of states of the world, and a preference relation �, a weak order, on the
set H of all functions f, g, . . . from S into Z. The elements of H := ZS are
denoted by acts. If the agent selects f and state s ∈ S occurs, then she will
experience ”consequence” f(s) ∈ Z. The agent is facing uncertainty about
what state will occur, which is quantified by a finitely additive probability
measure P on the set A0, the algebra of all subsets of S. An element A ∈ A0

is called an event, and P (A) is a quantitative measure of the agent’s degree
of belief that event A occurs. That is, P (A) is the individual’s personal,
quantitative probability of the event A that agrees with � (see below).

Savage sets up seven postulates for � on H. These contain a typical
ordering axiom, several independence axioms, a tightness axiom saying that
the state space is fine and tight, and a dominance axiom. From these it
follows that there exists a unique, finitely additive probability measure P
defined on all the subsets A0 of S and a bounded, unique up to a positive
affine transformation, real-valued function u : Z → R such that

f � g ⇔
∫
S

u(f(s))dP (s) >

∫
S

u(g(s))dP (s). (1)

For any f ∈ H, P ◦f−1(·) is a probability measure on an algebra B0 of subsets
of Z defined by

Pf (B) := P ◦ f−1(B) = P{s ∈ S : f(s) ∈ B}, for any B ∈ B0.

We return to a specification of the set B0 and its extension below, which
depends on the structure of Z. We call the probability space (Z,B0, Pf ) the
range space of f induced by P .
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With this connection in mind, the numerical representation in (1) can be
reformulated as

f � g ⇔
∫
Z

u(z)dPf (z) >

∫
Z

u(z)dPg(z), (2)

where the integrals are in the sense of Lebesgue-Stieltjes. In the classical
interpretation we would thus associate the acts with stochastic variables.

Savage’s axioms also imply that the events inA0 are continuously divisible
in the sense that, for any A ∈ A0 and any α ∈ [0, 1] there exists a B ⊆ A such
that P (B) = αP (A). Despite the fact that this forces S to be uncountably
infinite, Z can have as few as two elements.

This representation clearly draws from de Finetti and von Neumann and
Morgenstern. Consider the binary relation � defined on A0 instead, with
A � B interpreted as ”A is more probable than B”. The construction is
such that A � B if and only if f � g whenever c and d are consequences in
Z such that c is preferred to d, f(s) = c for all s ∈ A, f(s) = d for all s ∈ Ac,
g(s) = c for all s ∈ B, and g(s) = d for all s ∈ Bc. That is, A � B if the
individual would rather take her chances on A than B to obtain the desired
consequence.

It is then proven that the axioms imply that there is a unique, atomless,
finitely additive probability measure P on A0 for which

A � B ⇔ P (A) > P (B), for all A,B ⊆ S. (3)

Whenever this is the case, we say that P on A0 agrees with the comparative,
or qualitative probability relation �.

The axioms are found reasonable by many persons provided that the state
that obtains does not depend on the act that is actually implemented.

The theory of Savage has, as mentioned, a high standing in decision
theory, in particular in economics where uncertainty plays a role. In his book
on the theory of choice, David Kreps (1988) calls this theory ”the crowning
achievement of single-person decision theory”.

We next turn to our main objection against the two choices in subjective
probability theory; finite additivity on the set of all subsets of a range space.
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3 Intuitive probability of non-intuitive events:

The Banach-Tarski Paradox.

Consider Euclidian spaces. In the present theory this would mean that Z
is Euclidian. If one seeks a measure which is a generalization of distance
on [0, 1] in R, one should restrict attention to a σ-algebra of subsets, for
example the Borel-sets B or the Lebesgue measurable sets L. In tis case it
is impossible to extend the Lebesgue measure to all subsets 2(0,1] of [0, 1].
This refers to a countably additive extension, of course. If one is content
with finite additivity, there is an extension to 2(0,1]. The same is true for the
unit square in in R2 (see for example Billingsley (1995)). However, by the
Banach-Tarski paradox (S. Banach and A. Tarski (1924)), for the unit cube
in R3 it is not even possible with finite additivity if it is required that the
measure is defined on all subsets of the unit cube in R3. Non-measurable sets
in the domain of a probability measure may thus lead to strange situations,
and hard paradoxes. Euclidian n-spaces, where n ≥ 3 are important and
common in probability theory, be it subjective, objective or otherwise.

For example, suppose we have a finitely additive probability measure P
on Euclidian 3-space based on volume. Let V be the volume of a ball with
radius r = 1/2. Then it is possible, by the Banach-Tarsky paradox, to divide
the ball of volume V (where P (V ) = V ) into five parts, all non-measurable,
and put the parts together again to two balls each of which has the same
volume V as the original. This can be done where two of these five parts can
be put together (without stretching or twisting, by rotation and translation
only) to a new unit ball and the three others can be put together to another
unit ball. The point is that none of these five parts are Borel-measurable,
and one can not attach any kind of volume to them.1

With probability allowed on non-measurable sets this would imply that

P (V ) =
π

6
=

5∑
i=1

P (Vi) =
2π

6
,

or V = V + V . Since P (V ) > 0 this gives 1 = 2, a contradiction.
The existence of these five sets is constructed by the axiom of choice,

which says the following:

1For an account of these prodigies, see Wagon (1985).
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Axiom of Choice: Given an arbitrary family C of non-empty sets, there
exists a new set which consists of exactly one element from each of the sets
in C.

This sounds innocuous (and if the family C is countable, there is no
problem). The problem is that the family may be uncountable, and then it
is not obvious. The axiom of choice tells us something about the existence
of certain sets.

Kurt Gödel (1940) has shown that this axiom is independent of the other
axioms of mathematics. If one accepts the axiom of choice, which most
mathematicians do, then there is no finitely additive measure on Rn for n ≥ 3
which is translation- and rotation-invariant and which have finite measure
on the unit-ball.

If you do not accept the axiom of choice, there is no Banach-Tarski para-
dox, and no Hahn-Banach Theorem. Also, most classifications of events into
classes have proofs based on this axiom, like ”if A occurs, then Ac does not
occur”, etc.

Provided the starting point is the volume-measure m, then the largest
possible family of sets on which m can be defined is the set of Lebesgue-
measurable sets. This family of sets contains the Borel-sets, in addition to
some other subsets of R3 (but not all).

For any subset E of R3 the outer measure of E is defined by m∗(E) :=
inf{m(A);A is Borel-measurable, E⊆A}, and the inner measure of E, m∗(E),
by m∗(E) := sup{m(B);B is Borel-measurable, B⊆E}. Then we have equal-
ity, i.e., m∗(E) = m∗(E) if and only if E is Lebesgue-measurable.

In dynamical situations we have in ordinary probability theory stochastic
processes [Xt : t ∈ T ], a collection of random variables (acts) on a probability
space (Ω,F , P ), where T is a set of time points. A process is usually described
in terms of distributions it induces on Euclidian space. For each k-tuple
(t1, t2, . . . , tk) of distinct elements of T the random vector (Xt1 , Xt2 , . . . , Xtk)
has over Rk some distribution

P [(Xt1 , Xt2 , . . . , Xtk) ∈ B], B ∈ Bk,

the finite-dimensional distributions of the stochastic process [Xt : t ∈ T ].
This system does not necessarily completely determine the properties of the
process, but under certain conditions it does (such as the Kolmogorov’s ex-
istence theorem). The probability measure is thus defined on Borel-sets Bk

in Euclidian k-space, for all k, and the subjective probability theory should
obviously be able to handle basic situations like this.
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Moreover, as information accrues, there is typically an associated se-
quence of increasing σ-fields Ft, interpreted as information at time t, where
Fs ⊆ Ft when s ≤ t, for example in martingale theory, and the theory of
stochastic processes in general. In this theory one is confronted by conditional
probability, and conditional expectation with respect to such a filtration of
σ-fields. Provided the subjective theory is extended to dynamic models,
the theory should be able to handle standard situations like this. The de-
velopment of ordinary probability theory should also benefit the subjective
interpretation of probability.

There are of course also reasons why the finite additivity approach on
all subsets has been developed. De Finetti, a pioneer in the field, defended
this choice by various arguments. In particular, Dubins and Savage (1965)
in their book on gambling, explains this choice by reference to simplicity.
About the standard approach they write: ”If this tradition were followed in
this book, tedious technical measurability difficulties would beset the theory
from the outset.” If, on the other hand, the result of this approach is met
with hard paradoxes, the choice should be easy.

4 A modification of Savage’s theory to count-

able additive probability P on a σ-algebra.

In this section we point out how to modify the theory of Savage and de Finetti
to account for the objections of the previous section. For completeness, let us
recall some properties of a countable additive probability measure: Given is
a probability space (S,A, P ), where S is the set of states, A is a σ-algebra of
measurable events, and P is a countable additive probability measure defined
onA. This means that if {An} is any denumerable sequence of disjoint events,
then

P (
∞⋃
i=1

Ai) =
∞∑
i=1

P (Ai).

It follows immediately from the axioms of probability that P is also finitely
additive, that is, for any natural number n the following holds: P (

⋃n
i=1 Ai) =∑n

i=1 P (Ai) for any finite set of pairwise disjoint events Ai. Furthermore if
An ⊂ An+1, n = 1, 2, . . . , then P (

⋃∞
n=1An) = limnP (An).
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4.1 Countable additive probability on the state space.

In order to reformulate Savage’s theory to avoid the paradoxes, consider the
following properties of the qualitative probability �: First it satisfies the
four basic axioms of de Finetti: weak order, nontriviality, nonnegativity, and
additivity.

Villegas (1964) identifies a key assumption on � for countably additivity.
Modified to accomodate a Boolean algebra that is not also a sigma-algebra,
the postulate is:

P8: Monotone continuity : For all A,B,A1, A2, · · · in A, if A1 ⊆ A2, . . .,
A =

⋃∞
i=1Ai and B�Ai for all i, then B�A.

Thus, if the nondecreasing sequence Ai converges to a limit event A, then
the judgement that B is at least as probable as Ai for all i cannot be reversed
in the limit.

Villegas (1964) proves that if A is a σ-algebra and if P0 is a finitely ad-
ditive probability measure that agrees with �, then P0 is countably additive
if and only if � is monotonely continuous. This remains true even when A
is not a σ-algebra (see Chateauneuf and Jaffray (1984)).

We give a short demonstration of the the main elements in the proof:
Assume that P0 on A0 that agrees with � is countable additive. Consider
a sequence of events An ↑ A and assume that B � An for all n. Since this
is equivalent to P0(An) ≤ P0(B) for all n, by countable additivity P0(A) =
P0(∪∞n=1An) = limnP0(An) ≤ P0(B), which is equivalent to A � B. Thus �
is monotonely continuous.

The reverse is built on the following result: If P0 is a finitely additive
probability measure on an algebra A0, and if An ↓ ∅ for sets An ∈ A0 implies
P0(An) ↓ 0, then P0 is countably additive (see Billingsley (1995) p. 25). This
property is called continuity from above at the empty set.

Assume from now on that � is monotonely continuous. We then have
the following situation: We are given an algebra A0 and a finitely additively
probability measure P0 defined on this algebra which is also countably addi-
tive by this postulate.

We can then use the Hahn-Kolmogorov theorem, which is a version of
Carathéodory’s extension theorem, a deep result in measure theory. It states
that if P0 is a finitely additive probability measure on an algebra A0 which
is also countably additive, then P0 extends uniquely to a countably additive
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probability measure P on the σ-algebra A generated by the algebra A0 (see,
for example, Ash (1999) or Kallenberg (2002)).

Since the countably additive probability measure P whose existence is
assured by this result satisfies

P (A) = sup{P0(A0) : A0 ⊂ A,A0 ∈ A0}

for any A ∈ A, it follows that, if the given probability measure P0 is atomless
as in Savage’s theory, then P is also atomless (see, for example, Sirkorski
(1960)).

Next, from Villegas (1964) we have the following two results: (i) If a sub-
jective probability algebra is fine and tight, it can be extended to a subjec-
tive probability sigma-algebra; (ii) If a subjective probability sigma-algebra
is atomless, it is fine and tight.

From the above it follows that in Savage’s theory there exists a unique
countably additive extension P , defined on the sigma-algebra A generated
by A0, that agrees with �, where the latter is atomless, fine and tight. We
summarize as follows:

Theorem 1 Suppose in the theory of Savage that � is monotonely contin-
uous. Then the model can be extended from the probability algebra (A0, P0)
to the probability σ-algebra (A, P ), where the relation (1) holds. Here P is a
uniquely determined quantitative probability measure defined on the σ-algebra
A of measurable events generated by A0. The corresponding subjective prob-
ability � is atomless, fine and tight, where the relationship (3) holds with P
defined on A.

In the next section we turn to the structure of the range space in the
situation where the space Z can be Euclidian of dimension n ≥ 3, where the
real problems lie. In the latter case the σ-field B in Z is assumed to be the
Borel σ-field (generated by the open sets in Z).

4.2 Countable additive probability measures on the
range spaces.

We now demonstrate that when the probability measure P given by Theorem
1 is countably additive, the probability measures Pf , f ∈ H in the range space
are countably additive as well.
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Towards this end, let P = {Pf : f ∈ H} be the set of all probability
measures induced by P . Assume that the functions f ∈ H are measurable,
i.e., f−1(B) = A ∈ A for any B ∈ B. Since P is countably additive, so is Pf

for all f ∈ H: Let {Bi} be a sequence of disjoint, Borel-measurable sets, and
let Ai = f−1(Bi). Then by the mere property of f being a function, {Ai}
is a sequence of disjoint A-measurable sets. Accordingly,

∑∞
i=1 Pf (Bi) =∑∞

i=1 P
(
f−1(Bi)

)
=
∑∞

i=1 P (Ai) = P (
⋃∞

i=1 Ai), where the latter equality
follows from the countable additivity of P . On the other hand, Pf (

⋃∞
i=1Bi) =

Pf−1(
⋃∞

i=1Bi) = P (
⋃∞

i=1 f
−1(Bi)) = P (

⋃∞
i=1 Ai). Together this shows that

Pf is countably additive for f ∈ H. We summarize as follows:

Corollary 1 Under the conditions of Theorem 1, assume that the acts f ∈ H
are measurable. Then the probability measures Pf induced by P are countably
additive and defined on a σ-algebra of measurable events B in Z, where the
relationship (2) holds.

With this result we can proceed as in Savage’s theory, where we obtain
the representation (2), except that now the measures Pf and Pg are countable
additive and defined on the Borel sets in the respective range spaces when
Z is Euclidian. Thus the Banach-Tarski paradox is avoided as well as the
problem that finite additivity on Euclidian n-spaces is not possible for n ≥ 3.

Also Savage suggests that something like this can be be done. He writes
about the construction of subjective probability measure: ”First, there is no
technical obstacle to work with a limited domain of definition, and except for
expository complications, it might have been mildly preferable to have done
so throughout. Second, it is a little better not to assume countable additivity
as a postulate, but rather as a special hypothesis in certain contexts. A
different and much more extensive treatment of these questions has been
given by de Finetti.”

Fishburn (1986) remarks that (he) ”would not hesitate to invoke it (count-
able additivity) when its denial would create mathematical complexities ..”

Wakker (1989) also claims that the finite additivity of the resulting prob-
ability measure in Savage’s theory is essentially a technical requirement, that
can be removed by an additional assumption.

The central point is to make sure that the we consider countably additive
probability measures on the measurable sets B ∈ B in Euclidian n-spaces.
When n ≥ 3 it is not enough with finite additivity. As explained above,
this can be achieved by first extending to countable additive probability

10



measure P on the σ-algebra A in the state space. This in turn leads to an
associated extension to the σ-algebra of events B in Euclidian space E(n).
The connection to the σ-algebra A in S is such that f−1(B) ⊂ A for all
f ∈ H, where P is defined on the measurable subsets A ∈ A, whith A =
σ{∪f∈Hf−1(B)}.2 With these extensions we avoid the paradox and other
complications mentioned, and the theory is better founded.

There are other obvious advantages with this reformulation. One is that
we can now use ordinary probability theory, and still retain the subjective
interpretation if we so wish. This represents an improvement for many rea-
sons, in particular regarding limit theorems, but also extensions to dynamical
systems under uncertainty, containing increasing filtrations of sigma algebras
{Ft}Tt=0 where Ft ⊂ Fs when s ≥ t, with all the applications that are de-
veloped in this direction, and which continue to move modern probability
theory forward.

5 Applications to Pareto optimality and pric-

ing of contingent claims.

Based on gambling theory and horse race lotteries one may be led to think
that an independent bookmaker is needed in economic models in addition to
the traditional auctioneer, provided we prefer the subjective interpretation of
probability. First the bookmaker coordinates the final probabilities relevant
for pricing such that the axioms of probability are met (coherence), then the
auctioneer determines the marginal utility part of the pricing problem, which
in theory is solved by a sup convolution type procedure. Thus we require
that not only relative prices, but also probabilities are intenalized. However,
even when these two parts can be separated into a representative marginal
utility times a consensus probability measure, still a complex interdependence
between probability and preferences may remain.

1. Syndicates. To illustrate, consider the theory of syndicates (Borch
(1962), Wilson (1968)). With homogeneous probability beliefs, and under
conditions where agents have affine risk tolerances with identical cautious-
ness, there is unanimity on the management of risk in the syndicate. The
attitude towards the aggregate risk of each member of the pool is identical

2In Savage’s model, similarly ∪f∈Hf−1(B0) ⊆ A0, for B0 the algebra of all the subsets
of E(n).
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and equal to the one of the central planner after pooling has taken place,
despite the fact that the members have different preference to start with.
A Pareto optimum is characterised by the existence of non-negative agent
weights λi and a real function u such that λiu

′
i(yi(x)) = u′(x) for all agents i.

Here the ui are the utility functions of the agents and x signifies the aggregate
risk, whereas yi(x) is member i’s position after pooling of risk.

The aggregate risk x = g(α, z), where g is a real function of the state z and
a decision variable α. The state is represented by a probability distribution,
for example given by a density function f(z). In this situation the pricing
kernel turns out to have the form u′(x)f(z) in the homogeneous case. The
function u is interpreted as the utility function of the central planner, or
the syndicate, and in this case it is assumed to be of HARA type with risk
tolerance equal to the sum of the agent’s risk tolerances. In this situation
one might separate the two tasks of the bookmaker and the auctioneer, and
probability does not explicitly depend on preference parameters.

With heterogenous probability beliefs this is different. Assuming that the
pool members hold probability beliefs represented by density functions fi(z),
mutually absolutely continuous with respect to each other, conditions exist
when the pricing kernel still has the simple product form u′(x)f(z) for some
density function f , called a surrogate probability assessment or consensus
probability density, and function u′(x) which is called the surrogate marginal
utility function (see Wilson (1968) for details), or marginal utility function
of the representative agent. However, the consensus probability function will
typically not be determined from the individual fi’s only, but also depends
on the pool members’ utility functions as well.

In an example, where the fi(z) are all normal probability densities with
means mi and variances vi, the function f(z) is a normal probability density
with associated mean m and variance v, where both m and v depend on all
the mi and vi, and also the individual risk tolerances ρi of the agents as well as
the risk tolerance ρ of the pool. Moreover, the Pareto optimum exists in this
situation only in the case where the pool members have negative exponential
utility functions with constant risk tolerances ρi, and the syndicate is also
now unanimous. Also, probability calculations with more than 3 members
in the syndicate will take place using Euclidian-n space (n ≥ 3), where the
associated joint probability measure can not be defined on all subsets of Rn

for reasons explained.
With different probability beliefs, not only is it harder to obtain a Pareto

optimum (and consequently an equilibrium), but when it exists and when
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surrogate marginal utility and probability exist, the ”separation” u′(x)f(z)
can be rather complex in that the surrogate probability depends on preference
parameters of the members in the syndicate. If in this situation the the
market clearing mechanism is carried out by a bookmaker and an auctioneer,
these must indeed cooperate.

Wilson remarks that the behavioral significance of surrogate functions
for a syndicate can be characterized by the observation that Savage’s fourth
postulate (Savage (1954), p. 31) is equivalent to the existence of surrogate
functions. With densities representing probability beliefs, it is also clear that
Postulate 8 suggested above with its associated extension is relevant for a
syndicate, in order to avoid the paradoxes.

In this type of model the agents know their own probability distribution
as well as all those of the other agents. Accordingly the model can not be
used directly to analyze asymmetric information. However, close variants of
the model have been utilized for this topic as well. An example is the model
of Holmstrøm (1979), who analyses the situation of moral hazard with two
agents, a principal and an agent. Only the agent can make the decision,
which can not be observed by the principal, which is where the asymmetric
information comes in.

The above model, on the other hand, leads to betting between the mem-
bers (see e.g., Aase (2022)), which may appear as an annoying side-issue. For
models of a neo-classical market economy homogeneous beliefs may therefore
be the preferred choice.

2. Contingent claims evaluation. Our last demonstration makes the as-
sumption about homogeneous beliefs, but in a considerably more advanced
market model from a probabilistic point of view, where also subjective prob-
ability can play a role. Consider the theory of contingent claims analysis,
where a claim X with maturity at time T in the future is to be priced at
any time t ∈ [0, T ). We are given a filtered probability space (Ω,F ,Ft, P )
where Ft is an increasing filtration of σ-fields, and where F = FT . There
is an underlying stock market, with price processes given by Ito-diffusions,
jump-diffusions or more generally by semi-martingales, governed by the prob-
ability measure P . The contingent claim is a real function of one or more of
the underlying assets. If there exists an equivalent probability measure Q,
under som additional technical conditions there are no arbitrage possibilities
in such a market, and the price of the contingent claim at any time t is given
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by the expression

Xt =
1

ζt

∫
Ω

ζT (ω)XT (ω)dPt(ω),

where Pt is the conditional probability measure at time t, given Ft, ξt is the
Arrow-Debreu state price at time t (in units of probability), ζt = ξte

−
∫ t
0 r(s)ds,

where r(t) is the spot risk-free interest rate at time t (see for example Aase
(2002)).

We can define the equivalent martingale measure Q in this setting as
follows: ξT = dQ/dP , where dQ/dP is the Radon-Nikodym derivative of
Q with respect to P . The state price ξt at time t can be recovered as
ξt = E(dQ/dP |Ft). In this theory the discounted price process can be ex-
pressed as a conditional expectation under Q, in which case the price X(t)
can alternatively be written:

X(t) = EQ(e−
∫ T
t r(s)dsXT |Ft).

The measure Q is a technical, albeit convenient construction, and represents
normalized prices rather than probabilities. The construction demonstrates
the close connection between probability and price.

In the range spaces where the calculation of X(t) is performed regardless
of which formula is being used, probability measures on Euclidian-n spaces
will result. Such measures must accordingly be countably additive and de-
fined on the Borel-sets only, according to our earlier observations.

If the probability measure P is subjective, the underlying probability
theory must account for this by satisfying Kolomgorov’s axioms in order to
avoid paradoxes. In this literature P is referred to as the ”physical measure”,
assumed given exogenously. Here, the agents in the model first determine the
probability measures Pt at any time t (possibly coordinated by a bookmaker)
to be coherent and free of paradoxes and next prices at each time t (possibly
cleared by an auctioneer or market maker) to be free of arbitrage possibilities.
For an equilibrium, market clearing is also required, among other things.

6 Conclusions.

Subjective probability is traditionally assumed to be finitely additive and
defined on all the subsets of an underlying state space S. Functions from
this space into Euclidian n-space create a new probability space for each such
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function. We point out that the associated probability measures, induced by
the subjective probability, on these new spaces can not be finitely additive
and defined on all the subsets of Euclidian n-space, for n ≥ 3. This creates
intolerable paradoxes as explained in the paper.

We considered the decision theory of Savage (1954) and suggested that
this theory can be reformulated by an extension to take this objection into
account. In the paper we demonstrated such an extension, which first in-
volved the additional assumption of monotone continuity of the subjective
probability. With this in place the finitely additive probability measure in
Savages approach that agrees with � on the algebra A0, will also be count-
ably additive. This paved the way for application of the Hahn-Kolmogorov
theorem, a version of the Carathéodory’s extension theorem. From this the-
orem we were allowed to extend to a unique countable additive quantitative
probability measure on the sigma-algebra generated by the algebra in Sav-
age’s model, which agrees with the corresponding subjective probability on
the sigma-algebra. This structure carries over to the range spaces, in which
case the Banach-Tarski paradox and other difficulties were avoided. The na-
ture of this extension was carried out in such a way that the basic remaining
structure of Savage’s approach remains in tact.

Lastly we related the subjective probability theory to the theory of syndi-
cates as well as contingent claims evaluations, and indicated how probability
in general can be rather naturally internalized in economic models, indicating
that the subjective interpretation can be applied more widely.
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