
Computers & Industrial Engineering 150 (2020) 106965

Available online 8 November 2020
0360-8352/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Multi-objective sustainable location-districting for the collection of 
municipal solid waste: Two case studies 

Sobhan Mostafayi Darmian a, Sahar Moazzeni b, Lars Magnus Hvattum c,* 

a Department of Industrial Engineering, University of Kurdistan, Pasdaran Boulevard, Sanandaj, Iran 
b Department of Industrial Engineering, Shiraz University of Technology, Modarres Boulevard, Shiraz, Iran 
c Faculty of Logistics, Molde University College, Norway   

A R T I C L E  I N F O   

Keywords: 
Multi-objective optimization 
Local search 
Best-worst method 

A B S T R A C T   

This paper presents a multi-objective location-districting optimization model for sustainable collection of 
municipal solid waste, motivated by strategic waste management decisions in Iran. The model aims to design an 
efficient system for providing municipal services by integrating the decisions regarding urban area districting 
and the location of waste collection centers. Three objectives are minimized, given as 1) the cost of establishing 
collection centers and collecting waste, 2) a measure of destructive environmental consequences, and 3) a 
measure of social dissatisfaction. Constraints are formulated to enforce an exclusive assignment of urban areas to 
districts and that the created districts are contiguous. In addition, constraints make sure that districts are 
compact and that they are balanced in terms of the amount of waste collected. A multi-objective local search 
heuristic using the farthest-candidate method is implemented to solve medium and large-scale numerical in-
stances, while small instances can be solved directly by commercial software. A set of randomly generated test 
instances is used to test the effectiveness of the heuristic. The model and the heuristic are then applied to two 
case studies from Iran. The obtained results indicate that waste collection costs can be reduced by an estimated 
20–30%, while significantly improving the performance with respect to environmental and social criteria. Thus, 
the provided approach can provide important decision support for making strategic choices in municipal solid 
waste management.   

1. Introduction 

Urban development, population growth, and lifestyle changes, 
including consumption patterns, have created a great deal of problems, 
and making efforts to tackle them are inevitable. Nowadays, with the 
increase of waste generation in urban communities, waste management 
systems can be considered as part of a comprehensive management 
system, which is currently one of the most important public issues. 
Developing efficient municipal solid waste (MSW) management systems 
is one of the most important efforts to protect resources, the environ-
ment, and public health. MSW management regulates the processes of 
production, warehousing or storage, collection, transfer and trans-
portation, recycling, and disposal of solid waste, in which the best 
practices for health, economic and social considerations, as well as 
administrative, financial, and planning methods are applied (Fernández- 
Nava, Del Rio, Rodríguez-Iglesias, Castrillón, & Marañón, 2014). 

Household waste, food waste, industrial waste, commercial waste, 

construction waste, and sanitary waste are known as solid waste 
(Edjabou et al., 2015). The focus in this paper is on MSW, which ex-
cludes hazardous waste and recyclable materials. MSW management is 
influenced by many environmental, social, financial, political, and 
technical factors considered directly in urban management (Agamuthu 
& Masaru, 2014). The important problems of MSW management include 
waste collection (Chi, Wang, & Reuter, 2014), waste treatment (Jou-
hara, Nannou, Anguilano, Ghazal, & Spencer, 2017), waste routing 
(Rabbani, Heidari, Farrokhi-Asl, & Rahimi, 2018), waste disposal 
(Şener, Sener, & Karagüzel, 2011), and waste location (Rabbani et al., 
2018). 

Operations research (OR) has many applications in solid waste 
management (Ghiani, Laganà, Manni, Musmanno, and Vigo, 2014). One 
of the most important applications is the collection network design in 
the form of a multi-echelon logistics structure including the location of 
collection centers and allocation of demand areas using mathematical 
models (Eiselt & Marianov, 2015), optimization algorithms (Rabbani 
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et al., 2018), and multi criteria decision making (MCDM) methods 
(Soltani, Hewage, Reza, & Sadiq, 2015). The disposal collection and 
location problem has been studied both from a strategic perspective 
(Bing et al., 2016) and from a tactical perspective (Eiselt & Marianov, 
2014). 

This paper focuses on finding locations for collection centers and 
allocating urban areas to those centers. Three objective functions are 
proposed based on (Jaehn, 2016) in order to implement the sustain-
ability concept. Sustainable development focuses on economic, envi-
ronmental, and social dimensions which are conflicting in many cases 
(Silvestre & Ţîrcă, 2019). In particular, selecting more central locations 
may require higher costs to ensure similar environmental and social 
standards. 

A main contribution is to integrate the decisions of locating collec-
tion centers and creating districts based on workload balance and con-
tiguity constraints, which are fundamental constraints in districting 
problems (Kalcsics, 2015). There are three former studies that have 
considered a districting problem jointly with waste management, by Lin 
and Kao (2008), Ghiani, Manni, Manni, and Toraldo (2014), and Cor-
tinhal, Mourão, and Nunes (2016). The contiguity of districts was not 
considered in the aforementioned papers; however, this fundamental 
constraint can reduce movements, decrease the number of required 
trucks to provide service, and facilitate management decisions to 
improve the level of service (Kalcsics, 2015). 

In location problems, the main questions are where to establish fa-
cilities, how many to establish, and which type of facilities to establish. 
How to allocate customers to facilities is important, since the perfor-
mance of facilities can only be evaluated after allocating customers to 
the established facilities. On the other hand, districting problems aim to 
create groups of areas that belong together. The criteria for deciding this 
involves making sure that the areas are geographically related, and that 
they are not spread out too much. This means that location problems and 
districting problems have different structures, as illustrated in Fig. 1. For 
location problems, any customer can be assigned to any facility, whereas 
in districting problems, only physically adjacent areas can be linked. 
Hence, location problems are typically defined on complete graphs, so 
that each vertex can be allocated to a specific facility, whereas dis-
tricting problems are defined on planar graphs that better represent a 
geographically connected, urban structure. The typical location problem 
structure is not suitable for allocating urban areas to facilities, as it does 
not guarantee a contiguous allocation of urban areas to each facility. 

Both location and districting problems are NP-hard (Kalcsics, 2015), 
and a multi-objective local search heuristic based on Chen, Zeng, Lin, 
and Zhang (2014) is presented for the combined problem. An initial 
population is generated and improved using local search, resulting in a 
better population. The new population for the next generation is 
generated based on the non-dominated ranking method on the set of 
solutions in the previous population and its improved solutions. The 

farthest-candidate method (FCM) (Tran, Taniar, & Safar, 2009) is used 
to improve the diversity of solutions, leading to an appropriate level of 
variation in the final set of solutions. In addition, the best-worst method 
(BWM) (Rezaei, 2015) is applied to select the most preferred solutions 
from the final population. 

The remainder of the paper is structured as follows. In Section 2, the 
related research literature is reviewed, and research gaps are identified. 
The problem description and a mathematical model are given in Section 
3. The proposed multi-objective local search heuristic is presented in 
Section 4. In Section 5, the computational results obtained from random 
generated instances and two case studies are reported, and sensitivity 
analysis is performed. The managerial implications are discussed in 
Section 6, after which Section 7 concludes the paper. 

2. Literature review 

Most applications of OR in MSW management involve a location 
problem to find strategic decisions (Ghiani, Laganà, et al., 2014). An 
appropriate allocation of urban areas to the established collection cen-
ters has rarely been considered and formulating the associated conti-
guity restrictions mathematically is challenging (Kalcsics, 2015). In the 
following we consider relevant studies over the last ten years in chro-
nological order. The studies most central to the developments in this 
paper are listed and classified in Table 1. Additional references on multi- 
objective optimization in waste management, including older refer-
ences, are given by Yu and Solvang (2017). 

Lin and Kao (2008) partitioned urban areas using a mixed-integer 
programming (MIP) model with the aim of minimizing deviations of 
district sizes from the mean value; however, contiguity was not included 
in the model, and feasible districts were generated using a control 
parameter for district compactness. Faccio, Persona, and Zanin (2011) 
proposed a vehicle routing problem to optimize solid waste collection 
with a new traceability technology applied in an Italian city. Their 
approach led to the reduction of total costs and adverse environmental 
effects. 

Site selection for waste landfill disposal was studied by Şener et al. 
(2011). The main criteria were weighted using an analytical hierarchy 
process and locations were mapped using a geographic information 
system (GIS). Suitable locations for a case study were determined by 
remote sensing. Samanlioglu (2013) developed a multi-objective 
mathematical model for location-routing of industrial hazardous 
waste. The model minimized total costs and different risk measures and 
was solved using the lexicographic weighted Tchebycheff method. 

Mes, Schutten, and Rivera (2014) investigated a reverse inventory 
routing problem focusing on routing and container selection. The au-
thors tuned the problem’s parameters by combining optimal learning 
techniques with simulation. Ghiani, Manni, et al. (2014) extended a non- 
integrated location and districting approach to collect solid waste. They 

Fig. 1. Typical graph structure for districting problems (left) and location problems (right).  
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first determined locations for collection centers using an exact algo-
rithm, and then used a heuristic for districting. Contiguity was not 
considered as a constraint, and each urban area was allocated to districts 
based on a predetermined coverage radius. 

Eiselt and Marianov (2014) proposed a bi-objective optimization 
model to determine the location and size of landfills and transfer sta-
tions, while considering the minimization of total cost and pollution 
levels. The model was applied to a case study in Chile. Das and Bhat-
tacharyya (2015) presented a MIP model to determine the shortest waste 
collection and transportation strategy. They then proposed a heuristic to 
solve the problem. Eiselt and Marianov (2015) discussed some location 
decision-making models for MSW facilities and surveyed different 
models of landfill location. The authors then proposed a mathematical 
model to minimize cost. 

Niziolek, Onel, Hasan, and Floudas (2015) considered production of 
liquid transportation fuel from MSW. Son and Louati (2016) modeled a 
generalized vehicle routing mathematically to optimize the total dis-
tance, emission, and cost in the MSW collection context. Cortinhal et al. 
(2016) divided a service territory of residential waste collection into 
sectors. The authors then considered routing decisions for vehicle trips 
to minimize the total travel time. 

Asefi and Lim (2017) utilized a MCDM method in a GIS tool to 
develop a sustainability indicator for MSW management. They pre-
sented a multi-objective model to obtain locations for the system’s fa-
cilities, type of treatment technology, load of waste, and routes between 
different components of the system. Hu, Liu, and Lu (2017) concentrated 
on the importance of waste to energy facilities in MSW management. A 
bi-objective two-stage robust model was proposed to find the best lo-
cations for these facilities under the minimization of government 
spending and environmental disutility. 

Harijani, Mansour, Karimi, and Lee (2017) developed a mathemat-
ical optimization model to build a sustainable network for MSW, 
considering recycling and disposal decisions. The proposed model 
determined the optimal location of treatment facilities, allocation of 
waste to the facilities, and the amount of distributed waste in the 
network. The allocations were made based on considering parameters 
such as distance and sustainability. The model was applied to a case 
study in Tehran. 

Habibi, Asadi, Sadjadi, and Barzinpour (2017) proposed a sustain-
able multi-objective optimization model to locate MSW processing and 
disposal facilities, optimize capacity allocation of different facilities, and 
determine the best technology and the number of transport vehicles. 
Gilardino, Rojas, Mattos, Larrea-Gallegos, and Vázquez-Rowe (2017) 
developed an optimization model to decide MSW collection sites. Then 
they determined collection routes by a vehicle routing heuristic. Rab-
bani et al. (2018) addressed a location-routing problem for industrial 

hazardous waste. Their multi-objective model minimizes total costs and 
the related risks. 

Sharif, Pishvaee, Aliahmadi, and Jabbarzadeh (2018) developed a bi- 
level programming model to make decisions about network design 
(involving treatment center locations and outsourcing of different op-
erations) and pricing problems in MSW management. The model was 
converted to a single-level model and applied to a case study. Hoang, 
Fujiwara, Phu, and Nguyen (2018) proposed a sustainable multi- 
objective model to manage MSW systems by allocating waste flow and 
determining the capacity of disposal facilities while minimizing costs, 
landfills, and emissions. 

Yadav, Karmakar, Dikshit, and Bhurjee (2018) proposed an interval- 
valued facility location model to find the best locations for transfer 
stations. They investigated the uncertainty of MSW management sys-
tems by interval analyses. Asefi, Shahparvari, Chettri, and Lim (2019) 
presented a MIP model to determine the locations of different kinds of 
centers and vehicle routing decisions in MSW management system. They 
also proposed a heuristic to solve the problem. 

Gambella, Maggioni, and Vigo (2019) developed a two-stage sto-
chastic programming formulation to determine facility location, waste 
flow, and excess waste in a tactical MSW management system, and 
demonstrated the benefits of considering uncertainty when planning. 
Rathore and Sarmah (2019) found locations of transfer stations, mini-
mized the overall cost of MSW management, and used GIS tools for the 
creation of datasets. 

Yousefloo and Babazadeh (2019) presented a multi-objective model 
to design a MSW management network considering risk and cost ob-
jectives. The model suggests to managers how to establish transfer sta-
tions and waste collection centers, with decisions spanning allocation, 
transportation, and choice of technology. The model was solved by the 
ε-constraint method for a case study in Qazvin, Iran. Azadeh, Ahmad-
zadeh, and Eslami (2019) developed a multi-objective optimization 
model to find locations for pre-sorting and processing centers. They also 
determined the quantities of transported MSW between different sites. 
The objectives included considered health, safety, environment, and 
economic indicators. These were converted to a single objective by the 
weighted sum method. The model was solved for a case study with 360 
population centers in Tehran. 

Pouriani, Asadi-Gangraj, and Paydar (2019) studied MSW manage-
ment by developing a bi-level MIP model. The lower level considered the 
location and establishment costs of solid waste collection stations, 
whereas the upper level considered the allocation of waste to centers. 
Several studies have focused on the determination of aspects related to 
transfer stations, especially regarding suitable locations. Asefi, Lim, 
Maghrebi, and Shahparvari (2019) addressed a multi-echelon fleet size 
and mix vehicle routing problem to optimize an integrated MSW 

Table 1 
Selected recent studies in the field of MSW management.  

Meta-heuristic Exact Multi-objective Linear Districting Routing Location Case study Reference  

✓ N Y ✓   ✓ (Lin & Kao, 2008) 
✓  Y Y  ✓  ✓ (Faccio et al., 2011)  

✓ Y Y  ✓ ✓ ✓ (Samanlioglu, 2013) 
✓  N Y  ✓  ✓ (Mes et al., 2014)  

✓ Y Y   ✓ ✓ (Eiselt & Marianov, 2014) 
✓  N Y  ✓  ✓ (Das & Bhattacharyya, 2015)  

✓ Y Y  ✓  ✓ (Son & Louati, 2016) 
✓  N Y ✓ ✓  ✓ (Cortinhal et al., 2016)  

✓ Y Y   ✓ ✓ (Asefi & Lim, 2017)  
✓ Y Y   ✓ ✓ (Hu et al., 2017)  
✓ Y Y   ✓ ✓ (Habibi et al., 2017) 

✓  Y Y  ✓ ✓  (Rabbani et al., 2018) 
✓  N Y   ✓ ✓ (Sharif et al., 2018) 
✓  N Y   ✓ ✓ (Yadav et al., 2018)  

✓ Y Y  ✓ ✓ ✓ (H Asefi et al., 2019)  
✓ N Y   ✓ ✓ (Gambella et al., 2019) 

✓  Y Y ✓  ✓ ✓ The current paper  
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management system. They minimized the transportation cost and the 
deviation from a fair load allocation to transfer stations. 

In most of the previous studies, a direct connection between centers 
and all urban areas has been assumed, corresponding to the complete 
graph in Fig. 1. As argued, it is more realistic to consider a planar graph 
for the areas when reflecting an urban environment. This leads to the 
concept of districting, also known as zoning or territory design in the 
literature. 

According to the literature review, only three studies (Cortinhal 
et al., 2016; Ghiani, Manni, et al., 2014; Lin & Kao, 2008) have inves-
tigated the districting problem for MSW management. However, they 
did not consider the contiguity of districts. Enforcing contiguous dis-
tricts can help to reduce travel distances and the number of required 
vehicles, as well as to improve the service level. Surveying the special-
ized literature, there has been no research on integrated optimization of 
location and districting problems in MSW management. Moreover, 
criteria for sustainable development have not been addressed in previ-
ous studies. To cover these gaps, a sustainable multi-objective model 
integrating the minimization of establishment and waste collection cost, 
destructive environmental impacts, and social dissatisfaction is pro-
posed in this paper. 

3. Problem description 

MSW management has always been a major concern in urban man-
agement (Hugos, 2018), because it directly deals with the basic needs of 
communities. In some countries like Iran, individual municipalities are 
responsible for waste collection management. They must identify some 
locations as collection centers and assign urban areas to districts sur-
rounding each center. These decisions are subject to several types of 
constraints:  

• Exclusive assignment: Each urban area should be allocated to one 
district (Butsch, Kalcsics, & Laporte, 2014)  

• Contiguity: In a certain district, there exists a path from each two 
urban areas without leaving the district (Tavares-Pereira, Figueira, 
Mousseau, & Roy, 2007) 

• Workload balance: Each collection center should process approxi-
mately the same amount of waste. In other words, the related service 
should be distributed over districts (Camacho-Collados, Liberatore, 
& Angulo, 2015)  

• Compactness: Travel distances within each district should be modest, 
often implying that each district should have a relatively round shape 
(Ricca, Scozzari, & Simeone, 2011) 

Each urban area can be served by only one center. Criteria such as 
establishment costs, waste collection costs, destructive environmental 
impacts, and social dissatisfaction come into play when selecting 
collection centers. In this paper, these criteria are divided into economic, 
environmental, and social objectives. 

The first objective involves the cost of establishing collection centers 
and the cost of waste collection. The cost of establishing a center varies 
based on the geographical location, proximity to commercial, recrea-
tional, and residential centers, and the proximity to the city. The second 
objective considers destructive environmental impacts. Since the infra-
structure and environmental requirements in each potential location are 
different, the emissions resulting from constructing the collection center 
in each potential location differ. This is taken into account as the first 
part of the second objective. The transportation of municipal waste in 
urban environment also releases environmental pollutants in case of 
improper performing waste transportation operations (Expósito- 
Márquez, Expósito-Izquierdo, Brito-Santana, & Moreno-Pérez, 2019), 
and this constitutes the second part of the second objective. 

The third objective focuses on the social dissatisfaction, such as 
traffic jams caused by waste vehicles transportation, inappropriate 
appearance in urban space, and the effect on the value of residential and 

commercial lands around the established sites. To collect data related to 
the social dimension, a researcher-made questionnaire was used, with 
criteria based on Fattahi (2020). The questionnaire was completed by a 
number of experts and the final score of each criterion determined using 
BWM. Finally, the rank of each potential location is obtained, yielding 
values forming the third objective. 

Collection centers are established at district centers. Each district 
consists of a contiguous set of urban areas. Fig. 2 illustrates how a lack of 
contiguity can result in abnormal structures. 

3.1. Mathematical formulation 

The districting problem can be defined on an undirected graph G =

(V,E) with a vertex set V = {1,2,⋯, |V| } and an edge set E⊆V × V. Each 
vertex, i, is represented by two coordinates

(
xi, yi

)
. In this paper V rep-

resents the set of urban areas, and E represents the set of links between 
urban areas, such that taking the urban areas as vertices and the links as 
edges forms a planar graph. The planarity is useful when considering 
districting (Dorn, Penninkx, Bodlaender, & Fomin, 2010). A main dif-
ficulty in districting problems is to design contiguous districts (Kalcsics, 
2015). In this paper, a flow-based approach applied in (Shirabe, 2009) is 
used to tackle this difficulty. This guarantees that a district will be 
contiguous if there exists a positive flow from the district center to the 
urban areas allocated to it.  

Sets 

V Set of urban areas (vertices) 
P Set of districts (|P| is equal to the number of established centers)  
VC  Set of potential locations for collection centers (vertices), VC⊆V  
E Set of pairs of adjacent urban areas (edges) 
Indices 
i,j Urban areas i, j ∈ V  
p,p’  Districts p,p’ ∈ P  
Parameters 
Di  Demand of urban area i [tons] 
WMAX  Maximum acceptable difference [%] between the workloads of established 

centers 
CC  Waste collection cost per unit per kilometer 
AC  Pollutant emission amount of waste collection per ton of waste 
Lij  Distance between urban area i and urban area j 
LMAX  Maximum allowed distance between urban areas in each district 
CE

i  Establishment cost of a collection center in urban area i ∈ VC  

AE
i  Pollutant emission amount in case of establishing centeri ∈ VC  

SE
i  Amount of social dissatisfaction in case of establishing centeri ∈ VC  

Variables 
xip  Equals 1 if urban area i is assigned to district p, and 0 otherwise  
wip  Equals 1 if location i is used for the collection center of district p, and 

0 otherwise  
yijp  Auxiliary flow variable used to enforce contiguous districts by creating an 

artificial flow from district centers to urban areas associated to the same 
district  

Min : Z1 =
∑

i∈VC

∑

p∈P
CE

i wip +
∑

i∈VC

∑

p∈P

∑

j∈V
CCLijDjxjpwip (1.a)  

Min : Z2 =
∑

i∈VC

∑

p∈P
AE

i wip +
∑

i∈VC

∑

p∈P

∑

j∈V
ACDjxjpwip (1.b)  

Min : Z3 =
∑

i∈VC

∑

p∈P
SE

i wip (1.c)  

s.t 
∑

i∈V
Dixip −

∑

i∈V
Dixip’ ≤

∑

i∈V
DiWMAX , p, p’ ∈ P : p ∕= p’, (2)  

xip + xjp ≤ 1, i, j ∈ V : Lij ≥ LMAX , p ∈ P, (3)  

S. Mostafayi Darmian et al.                                                                                                                                                                                                                  



Computers & Industrial Engineering 150 (2020) 106965

5

∑

p∈P
xip = 1, i ∈ V, (4)  

∑

i∈VC

wip = 1, p ∈ P, (5)  

∑

j:(i,j)∈A

yijp −
∑

j:(j,i)∈A

yjip ≥ xip − |V|wip, p ∈ P, i ∈ V, (6)  

∑

j:(j,i)∈A

yjip ≤ (|V| − 1 )xip, p ∈ P, i ∈ V, (7)  

wip ∈ {0, 1}, p ∈ P, i ∈ VC, (8)  

yijp ≥ 0, xip ∈ {0, 1}, p ∈ P, (i, j) ∈ E, i ∈ V, (9) 

The first objective function (1.a) is to minimize the cost of estab-
lishing collection centers and collecting waste. The second objective 
function (1.b) is to minimize destructive environmental impacts caused 
by establishing collection centers and pollutant emission of waste 
collection. The third objective function (1.c) is to minimize the social 
dissatisfaction caused by establishing collection centers. This amount is 
calculated based on BWM using criteria of customer satisfaction defined 
in (Xiao & Boutaba, 2007) and some criteria in (Fattahi & Govindan, 
2018), as shown in Fig. 3. In this method, complete dissatisfaction and 
complete satisfaction are equal to 9 and 1, respectively. This objective 
function will result in minimizing social dissatisfaction or, equivalently, 
maximizing social satisfaction. 

Constraints (2) limit the maximum difference between the workloads 
of districts to a percentage of the total demand. This guarantees the 
workload balance in districts. Constraints (3) enforce compact districts 
by limiting the distance allowed between urban areas. Determining an 

appropriate value of LMAX is important, since too large values will make 
the constraints redundant and too low values can make these constraints 
too strict, resulting in an infeasible instance. Constraints (4) ensure that 
each urban area is allocated to only one district. Based on constraints 
(5), only one urban area can be selected as the center of each district. 
Constraints (6) and (7) ensure contiguity of districts: Urban area i can be 
allocated to district p when a positive flow exists between the estab-
lished center and urban area i. Constraints (7) guarantee that the 
maximum output flow from the established center to other urban areas 
in the district is not more than |V| − 1. In other words, each district p has 
a center i and at most |V| − 1 additional urban areas. Based on con-
straints (6), vertex i can be allocated to district p if the difference be-
tween output and input flows of vertex i is greater than 1 or when urban 
area i is the center of district p (wip = 1). Constraints (8) and (9) restrict 
the domains of the variables. 

3.2. Linearization of the proposed model 

The proposed model is a nonlinear MIP model due to the multipli-
cation of xjp by wip in the first and the second objective functions. An 
auxiliary variable is defined to linearize these terms as follows: 

uijp = xjpwip,

By considering this variable, the following constraint should be 
added to the mathematical model. 

xjp + wip − 1 ≤ uijp ≤
xjp + wip

2
, p ∈ P, i ∈ V, j ∈ V, (10)  

uijp ∈ {0, 1}.p ∈ P, i ∈ V, j ∈ V, (11) 

Therefore, the proposed linear mathematical programming model is 

Fig. 2. Example of non-contiguous districts (left) and contiguous districts (right).  

Fig. 3. Hierarchy of the decision-making problem.  
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as follows. 

Min : Z1 =
∑

i∈VC

∑

p∈P
CE

i wip +
∑

i∈VC

∑

p∈P

∑

j∈V
CCLijDiuijp (12.a)  

Min : Z2 =
∑

i∈VC

∑

p∈P
AE

i wip +
∑

i∈VC

∑

p∈P

∑

j∈V
AEDiuijp (12.b)  

Objective function 3 (1.c)

s.t  

Constraints (2) to (11).

4. Solution method 

A multi-objective problem is generally defined as: 

Minimize : F(X) = (F1(X),⋯,Fm(X) )

Subject to : X ∈ S 

Here, F : S→Rmdefines m objective functions values, S is the set of 
feasible solutions, andRmis the space of objective function values. Let 
X1and X2 be two solutions. If Fi(x1) ≤ Fi(x2)holds for all i ∈ {1,2,⋯,m}

and Fi(x1) < Fi(x2) holds for at least one of i ∈ {1,2,⋯,m}, X1is said to 
dominate X2, represented byX2 ≺ X1. The situation where X1 does not 
dominate X2 and X2 does not dominate X1 is denoted by X1 ≺≻ X2. So-
lution X is Pareto optimal if there is no X’ such that X ≺ X’. The Pareto 
set PS is defined to contain all non-dominated solutions. The Pareto front 
is defined as PF =

{
F(X) ∈ Rm|X ∈PS

}
. 

The augmented ε-constraint method can be applied to find optimal 
solutions for small instances (Mavrotas & Florios, 2013). Location 
(Sharif et al., 2018) and districting (Farughi, Tavana, Mostafayi, & 
Santos Arteaga, 2019) problems are both NP-hard, exact solution 
methods cannot reliably obtain good solutions for large instances in a 
reasonable running time. Therefore, a heuristic is proposed. 

4.1. Solution representation and initial solutions 

Solutions are represented using a structure proposed in (Steiner, 
Datta, Neto, Scarpin, & Figueira, 2015). This involves an encoding 
where each solution is stored as a vector of |P| + |V| real-valued ele-
ments, each in the range [0,1]. The first |P| of these elements are used to 
determine which locations are selected as collection centers, whereas 

the last |V| elements are used to determine the assignment of areas to 
districts. The decoded solution is stored as two strings, with S1 storing 
the indices of |P| selected collection centers, and S2 storing the districts 
to which each of |V| areas are assigned. 

Fig. 4 illustrates the solution encoding, in the vector X, for an 
instance with 

⃒
⃒VC
⃒
⃒ = 10, |P| = 5, and |V| = 20. Initial solutions are 

generated randomly by drawing each element of X from a uniform dis-
tribution over [0,1]. To generate S1 and S2, the real-valued elements of X 
must be converted to a discrete solution. 

For S1, elements of X are divided into 
⃒
⃒VC
⃒
⃒ ranges and suitable lo-

cations are determined through a mapping from [0,1] to 
{
1,⋯,

⃒
⃒VC
⃒
⃒
}
. As 

S1 cannot contain repeated values, in the case that an element of X is 
mapped to an already used location, the next higher unused location is 
chosen. S2 is similarly generated by converting the corresponding real- 
values entries into values from S1. 

From the instance illustrated in Fig. 4, the range [0,1] is divided into 
⃒
⃒VC
⃒
⃒ = 10 sections for X1, ⋯, X5. The generated number in X1 is 0.51, 

which is in the sixth range and consequently is converted to 6. To 
generate S2, the values in [0, 1] are divided into |P| = 5 ranges. The 
number corresponding to urban area 1 is X6 = 0.44, which is in the third 
range and consequently should be converted to the third entry of S1, 
which is 5. 

The creation of contiguous districts is not guaranteed by these allo-
cations; therefore, a BFS based method (Sbihi, 2007) is applied to ensure 
contiguity. The urban areas assigned to each center p are extracted from 
S2 and stored in Hp. To guarantee contiguity, the BFS is used to assign |
Hp| urban areas to each collection center p. To prevent infeasible dis-
tricts, a rejection strategy is used. For this purpose, equation (13) and 
(14) are designed for the calculation of infeasibility that may occur in 
constraints (2) and (3). 

Q = max
p,p’∈P

p∕=p’

(
∑

i∈Hp

Di −
∑

i∈Hp’

Di

)

, (13)  

H = max
p∈P

⎛

⎜
⎜
⎜
⎜
⎝

max
(
Lij
)

i,j∈Hp

i∕=j

⎞

⎟
⎟
⎟
⎟
⎠
, (14) 

For Q >
(
WMAX ×

∑
i∈VDi

)
, the amount of F1 =

Q −
(
WMAX ×

∑
i∈VDi

)
, and for H > LMAX, the amount of F2 =

Fig. 4. Structure of initial solutions generation.  
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H − LMAXshow the value of infeasibility for constraints (2) and (3), 
respectively. Each solution with F1 > 0 or F2 > 0 is excluded from the 
population, and replaced by another randomly selected solution with F1,
F2 ≤ 0. This process continues until a population of size pop_size has 
been reached. 

4.2. Local search (evolutionary strategy) 

In this paper, a population-based local search strategy is used based 
on (Chen et al., 2014) to improve solutions in an iterative process. Let X 
be a solution that should be improved. Each component j from X is 
considered in turn. For each component, two other solutions, U and V, 
from the current population is drawn randomly. A perturbation factor c 
is then drawn randomly from a normal distribution, N(μ,σ2). Two new 
solutions, W+ and W− , are then created by setting: 

W+
j = Xj + c(Uj − Vj) (15)  

W −
j = Xj − c(Uj − Vj) (16)  

where for components i ∕= j, no change is made: W+
i = W−

i = Xi. As each 
component of the resulting solutions must be in the range [0, 1], any 
values outside of this range is mapped back into the range. 

The perturbation factor c affects the performance of the heuristic. 
Factors μ and σ should be set to reasonable values. Large absolute values 
of μ can lead to large perturbations, whereas too low absolute values can 
lead to slow convergence of the heuristic. Similar arguments can be 
made for σ. In the computational testing, both μ and σ have been con-
strained to the range [0,1]. 

Having generated W+ and W− , the solution X is potentially updated, 
before moving on to the next component. If we consider two solutions, X 
and a neighboring solution W, there are three situations that can occur: 
1) Solution X is dominated by solution W, 2) Solution W is dominated by 
solution X, or 3) Neither solution is dominated by the other. 

In the local search, the replacement strategy used considers three 
solutions at once, and decides whether or not to replace X with either 
W+ or W− according to the steps in Fig. 5. The heuristic converges to a 
final solution by replacing the current solution with a neighboring so-
lution, as long as the current solution does not dominate both neighbors 
generated for a given component. To increase solution convergence, a 
neighbor solution replaces X also in the case of W+ ≺≻ X or W− ≺≻ X. 

4.3. Population management 

The population size used in each iteration is equal to pop_size. A 
population pop_current is generated in iteration t, and a better population 
pop_improved is generated based on the local search heuristic presented 
in Section 4.2. Finally, a new population for next generation is generated 
using the non-dominated sorting method and FCM on the set of solutions 
in pop_current ∪pop_improved. 

An efficient multi-objective algorithm requires both that the non- 
dominated solutions are diverse, and that an appropriate convergence 
to good solutions is achieved (Deb, 2014). In this paper, the FCM is 
applied on solutions in pop_current ∪pop_improved to generate a new 

population based on (Tran et al., 2009). The FCM is inspired by the best- 
candidate sampling algorithm (Mitchell, 1991) in sampling theory. 
Suppose that we are going to iteratively select the K best points from F 
points. Whenever a new point is to be selected, the candidate points in 
the unselected points which is farthest from the selected points is 
accepted. The pop_size best solutions among a total of 2 × pop_size so-
lutions should be selected such that each new member has the largest 
Euclidean distance to the previous members. Boundary solutions are 
selected first, and then the other solutions are selected for the new 
population iteratively. 

Fig. 6 shows the FCM procedure for a population with pop_size 
members, where K < pop size solutions must be selected from a popu-
lation. In this pseudo-code, Paccept stores the selected solutions, D[X]
stores the minimum Euclidean distance between X and the unselected 
points, and dis(X,X’) is a function calculating the Euclidean distance 
between solution X and X’. 

4.4. Selection of the final solution from the heuristic solutions 

The selection of a final solution from the Pareto set can be a man-
agement concern in real-world problems. BWM is a powerful technique 
to solve MCDM problems. In this paper, BWM is used to obtain more 
consistent results using a low number of pairwise comparisons (Gupta, 
2018). Many researchers have recently employed BWM in different 
applications. For more details, see (Rezaei, 2016). 

Following the BWM, the objective functions are considered as 
criteria and their ratings can be calculated based on experts’ opinions. A 
unique rank is then assigned to each Pareto member through the 
multiplication of the objective functions rating matrix by the values of 
objective functions. Fig. 7 shows how the calculations are performed, 
enabling the identification of the Pareto member with the highest score. 

5. Computational study 

The proposed MIP model has been implemented in IBM ILOG CPLEX 
Optimization Studio and solved by CPLEX 12.6. The proposed heuristic 
has been coded in C# and run on a PC with 3.2 GHz processor and 16 GB 
of RAM. 

Fig. 5. The replacement strategy steps.  Fig. 6. Pseudo-code of the farthest-candidate method.  
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5.1. Evaluation metrics 

There are different ways to compare solution methods for multi- 
objective optimization problems. When tuning parameters and when 
evaluating the performance of the heuristic compared to the solutions 
obtained by commercial solvers, this paper uses the three measures 
known as mean ideal distance (MID), spread of non-dominance solutions 
(SNS), and maximum spread (MS). The MID was proposed by Karimi, 
Zandieh, and Karamooz (2010), and can be stated as follows: 

MID =
∑|Q|

i=1

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1

(
Fj(Xi) − Fj(Xbest)

Fj(Xmax) − Fj(Xmin)

)2
√
√
√
√

⎞

⎠
/
|Q| (18)  

where Fj(Xi) is the value of the j-th objective function for solution i, and 
Fj(Xbest) is the ideal solution of the j-th objective function, calculated as 
Fj(Xbest) =

{
min
(
Fj(X1)

)
,min

(
Fj(X2)

)
,⋯,min

(
Fj
(
X|Q|

) ) }
. Fj(Xmax) and 

Fj(Xmin) are respectively the maximum and the minimum values among 
all Pareto optimal solutions of the j-th objective function, |Q| is the 
number of non-dominated solutions, and m is the number of objective 
functions. The ideal solution is typically unobtainable, as illustrated in 
Fig. 8. 

The SNS (Maghsoudlou, Kahag, Niaki, & Pourvaziri, 2016) and MS 
(Samadi, Mehranfar, Fathollahi Fard, & Hajiaghaei-Keshteli, 2018) are 
defined in Equations (19) and (20). SNS evaluates the standard deviation 
of the distance of an ideal point from a non-dominated set, and MS 
calculates the spread of non-dominated solutions. Therefore, higher 
values of SNS and MS indicates better solution quality, as opposed to 
MID, where lower values are better. 

SNS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑|Q|

i=1

(
MID −

∑m
j=1Fj(Xi)

)2

|Q| − 1

√
√
√
√

(19)  

MS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1

(
Fj(Xmax) − Fj(Xmin)

)2

√
√
√
√ (20) 

To calculate the MID, the ideal solution is first obtained for each 
objective j, providing the values for Fj(Xbest). This is done either by 
solving the corresponding model using CPLEX, or by applying the heu-
ristic in single objective mode if the instance is too large to be solved by 

CPLEX. The method to be evaluated is then used to solve the multi- 
objective version of the problem, obtaining a set of Pareto solutions 
and their corresponding objective function values. This step is per-
formed either using the epsilon-constraint method with CPLEX and the 
mathematical model, or with the heuristic in multi-objective mode. For 

each j, one can then obtain Fj(Xmax) = Fj

(

max
i
(Xi)

)

and Fj(Xmin) =

Fj

(

min
i
(Xi)

)

, and MID, SNS, and MD can be calculated. 

When evaluating heuristics for multi-objective problems, the 
Euclidean distance between the members of the algorithm’s Pareto front 
and the ideal point is among the most useful criteria (Li & Yao, 2019). 
Another important criterion is the spread of the solutions. MS calculates 
the Euclidean distance between the upper and lower bounds of the 
Pareto front (Zitzler, Deb, & Thiele, 2000). The drawback of MS is that it 
may present a Pareto front with a great distance from the global optimal 
Pareto front as an efficient one only due to the large spread between the 
upper and lower bounds of the front. Therefore SNS is proposed, 
calculating the standard deviation of the Pareto front members of the 
algorithm and the ideal point (Farughi, Mostafayi, & Arkat, 2019). 

5.2. Evaluation of heuristic solution method 

The performance of the proposed heuristic is sensitive to the user- 
defined parameters, including pop_size, max_iteration, σ, and μ. Since 
the performance of heuristics may differ when solving problems with 
different sizes, the parameters for small, medium, and large size prob-
lems are set separately (Chalmardi & Camacho-Vallejo, 2019). Table 2 
shows the range of possible parameter values considered. 

To set these parameters for solving test problems with different sizes, 
response surface methodology (RSM) experimental design (Bezerra, 
Santelli, Oliveira, Villar, & Escaleira, 2008) is applied. The response 
variable is calculated as in Equation (17). 

Reponse Variable = S(MID) + S(SNS) + S(MS (17)  

where S(MID), S(SNS), and S(MS) are standardized values of MID, SNS, 
and MS given in Equations (18) to (20). The RSM requires much fewer 
experiments than a full factorial design (Bezerra et al., 2008). For more 
information, see (Hadavandi, Mostafayi, & Soltani, 2018). Table 3 pre-
sents the final parameters for small, medium, and large instances. 

To evaluate the heuristic, it is compared to the performance of 
CPLEX when directly solving the mathematical model using the 
augmented ε-constraint method (Mavrotas & Florios, 2013). The latter is 
achieved using the software GAMS and involves solving 492 instances 
with different weights on the objective functions. Since the proposed 
model cannot be used to solve large-scale instances, ten small and two 

Fig. 7. The computational structure to select the best Pareto member.  

Fig. 8. An example for MID calculation.  

Table 2 
The interval values of parameters.  

Standardized factors  

1 0 − 1 

3× |V| 1.5× |V| |V| pop_size 
2000 1050 100 max_iteration 
1 0.5 0 σ  
1 0.5 0 μ   
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medium size, randomly generated, instances are studied. 
In the randomly generated instances, a number of urban areas |V| and 

districts |P| are given, resulting in a planar graph. The coordinates of the 
urban areas are generated from a uniform distribution on the interval 
[10, 1000]. The demand of each urban area is generated from a uniform 
distribution on the interval 

[
50 × 103, 300 × 103] t/year. Finally, the 

number of potential locations is randomly selected from [2|P|,3|P| ]. 
To compare the quality of the heuristic Pareto front with the optimal 

Pareto front, the distance between the heuristic solutions and ideal so-
lutions and the distance between optimal solutions and ideal solutions 
are calculated separately. Table 4 shows the gap between MID for the 
optimal Pareto front and MID for the heuristic solutions. 

The largest instance that can be solved by using the mathematical 
model has 100 urban areas, 10 potential locations, and 5 districts. It 
takes much more time to solve larger problems, and it can be observed 
that the CPU time of the model increases exponentially. On the other 
hand, the heuristic can solve the largest instance in less than 5 min for 
200 iterations. 

As the size of instances increases, the MID Gap% value increases for 
all values of WMAX. In the largest instance, the selected centers and the 
created districts are approximately the same for different values of the 
parameter WMAX. 

To further examine the performance of the heuristic, a sensitivity 
analysis is performed over different values of WMAX. Ten small, ten 
medium, and ten large-scale instances are generated and evaluated 
using SNS and MS. The SNS and MS metrics are usually used to compare 
a set of algorithms (Deb, 2014). However, in this paper, they are applied 
also in the sensitivity analysis. Tables 5 and 6 show the obtained results 
for different values of the parameter WMAX related to small and large size 
instances. Results for medium size instances are not reported, but show 
the same behavior as the results for small and large instances. 

When the parameter WMAX is decreased, the feasible region becomes 
smaller, and more CPU time is required, as shown in “Seconds” column 
of Tables 5 and 6. According to Table 5, MS has the minimum value for 
WMAX = 0.3 and the maximum for WMAX = 0.45. The trends of variation 
in MS and SNS are similar for small, medium, and large instances. 
Increasing WMAX leads to more diversity in the solutions found. With 
increasing problem dimensions, the CPU time increases as a polynomial 

function. For the larger instances in Table 6 the CPU time varies from 
1000 to 3000 s. These instances are similar in size to the largest expected 
real-world instances. 

5.3. Case study 1 

A MSW collection problem in Birjand, in the East of Iran, is consid-
ered as the first case study. The related input parameters are presented 
in Tables 7 and 8 and Fig. 9. All input parameters are gathered from 
Birjand municipality, which is the responsible organization for MSW 
management in Birjand. As the resulting instance is relatively small, it is 
solved with CPLEX using the augmented ε-constraint method. If instead 
using the heuristic, the obtained MID Gap% is 12.7, based on 37 solu-
tions in the heuristic Pareto front. 

Four potential locations are considered for construction of waste 
collection centers to cover the demands of 30 urban areas. To provide 
services, two centers must be established, resulting in two districts. The 
workload balance percentage in districts is WMAX = 0.3 and it is also 
considered that LMAX = max

i,j∈V

(
Lij
)
/2. The value of CC is 0.1 M Rial and AC 

is 36 cubic feet CO2 per ton of waste. 
Fig. 9 shows the urban structure of Birjand (left) and the connections 

between urban areas (right). The available information in the munici-
pality database of Birjand from 2014 to 2018 is presented in Table 7. The 
demand of all urban areas is between 35 and 65 thousand tons per 
month. The values for the establishment cost, the pollutant emission 
amount, and the social dissatisfaction are presented in Table 8. The 
establishment cost is provided by the department of construction and 
development of Birjand municipality, and related data about the 
pollutant emission and social dissatisfaction are provided by the 
department of statistics and information of the environmental organi-
zation of Birjand. The distances between the urban areas are calculated 
using their UTM coordinates and GIS maps. 

Fig. 10 shows the 50 Pareto optimal solutions generated. The value of 
the first objective function is between 2.15× 108and 2.35× 108, and 
that of the second objective function is between 3.6× 105and 4.4× 105. 
The third objective function varies between 10 and 13. How to select one 
of the Pareto members to implement in real-world applications is 
important (Mavrotas, Figueira, & Siskos, 2015). In this paper, BWM is 
applied to select the preferred solution from the Pareto front. To this 
end, questionnaires were completed by eight waste management experts 
in Birjand. The ratings for each criterion are presented in Tables 9 and 
10. 

To determine the weights of the criteria, the linear model in BWM 
was implemented in GAMS and solved by CONOPT. The mean weights 
for each criterion are shown in Table 11. The value of the consistency 
indicator ξL* is close to zero; therefore, the obtained weights are reliable 

Table 3 
Final parameters of the heuristic.   

pop_size max_iteration σ  μ  

Small size 1.1× |V| 200  0.12  0.27 
Medium size 1.8× |V| 800  0.16  0.54 
Large size 2.6× |V| 1400  0.37  0.68  

Table 4 
Comparison of the obtained results.  

WMAX = 0.35 WMAX = 0.3 WMAX = 0.2 Instance Instances Size 

MID Gap% Run time (s) MID Gap% Run time (s) MID Gap% Run time (s) 

Heuristic CPLEX Heuristic CPLEX Heuristic CPLEX 

8.07 24 35  6.92 26 37  6.84 21 32 N10P3D2 Small 
11.09 29 56  10.46 27 60  7.94 23 47 N12P3D2 
14.35 29 93  10.78 27 96  10.55 23 74 N15P3D2 
16.54 31 115  13.26 32 102  10.91 25 91 N18P4D2 
17.70 39 145  15.54 39 145  13.05 31 122 N20P5D3 
18.07 53 284  16.40 54 264  14.32 44 219 N25P5D3 
19.37 58 515  17.95 56 510  15.37 45 412 N30P6D3 
19.39 55 802  19.01 54 802  15.98 47 617 N35P6D3 
19.42 70 1328  19.03 71 1328  16.10 55 1046 N45P6D3 
20.06 75 1463  19.87 73 1631  16.66 67 1295 N50P6D3 
21.65 194 3563  20.69 194 3535  17.52 174 2784 N100P10D5 Medium 
– 267 >3000  – 294 >3000  – 243 >3000 N110P12D5 

N = nodes P = Potential Location D = districts. 
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and can be used to rank the Pareto members. The selected centers and 
the created districts are illustrated in Fig. 11. 

The total cost, the emission amount, and the social dissatisfaction 
amount are equal to 221,495,485 rial, 418,432 cubic feet, and 12, 
respectively. The social dissatisfaction has no unit and is calculated 
based on experts’ opinion. The obtained value is the sum of the scores of 
locations selected in the final solution. It can be normalized by dividing 
by 
∑

i∈Vc SE
i . In this case study, the social dissatisfaction is 50%. 

5.4. Case study 2 

In this section, the proposed heuristic is applied to a MSW manage-
ment problem in Tehran as the second case study. With CPLEX and the 
augmented ε-constraint method, the solver runs out of memory after 2 h 
of computing time. Based on the strategic planning of the municipality 
of Tehran, it is necessary to establish a number of waste collection 

centers in different regions of the city so that they can provide required 
services to urban areas (Damghani, Savarypour, Zand, & Deihimfard, 
2008). 

Tehran is currently divided into 22 regions. According to the avail-
able datasets of Tehran municipality, 65% of the total waste in Tehran is 
solid waste. The waste generation varies between regions by a factor of 
up to seven. The lack of adequate infrastructure to separate collected 
waste in collection centers is a serious problem; only about 17% of the 
waste is currently separated. This increases pollution, social dissatis-
faction, and destruction cost of non-separated waste. Therefore, man-
agers plan to determine suitable locations for waste collection centers 
and to separate the collected waste. Fig. 12 shows a map of Tehran and 
potential locations determined by experts. 

According to the available information, it is necessary to select 11 
centers among the 30 potential locations. Thus, 

⃒
⃒VC
⃒
⃒ = 30, |P| = 11, 

while |V| = 3,147. Furthermore, WMAX = 0.1, CC = 0.22, AC = 44, and 

Table 5 
Evaluation of heuristic results related to small size instances.  

WMAX = 0.35 WMAX = 0.3 Instance 

MS SNS Seconds MS SNS Seconds 

2311.6 2043.1 21 1708.35 2535.2 24 N10P3D2 
4016.5 5568.6 25 3244.75 5905.9 28 N12P3D2 
5736.1 8238.2 27 4561.73 9243.9 28 N15P3D2 
5757.5 11,606.7 28 5686.10 11,417.0 26 N18P4D2 
6736.4 16,628.4 32 7037.30 17,580.9 32 N20P5D3 
10,392.6 23,576.1 53 7728.97 22,835.3 51 N25P5D3 
8327.2 24,266.8 55 8415.40 24,627.4 56 N30P6D3 
8792.2 30,820.0 50 8634.20 31,497.9 48 N35P6D3 
10,603.0 43,974.2 66 11,558.77 49,986.3 69 N45P6D3 
13,661.9 49,151.3 71 12,219.21 52,579.9 85 N50P6D3 
WMAX = 0.45 WMAX = 0.4 Instance 
MS SNS Seconds MS SNS Seconds 
2816.3 2503.7 22 2393.26 2018.8 21 N10P3D2 
5197.6 5745.3 23 4496.16 6749.9 25 N12P3D2 
5403.7 7915.5 29 5045.03 8064.4 23 N15P3D2 
6411.1 10,483.3 27 5681.68 10,551.8 32 N18P4D2 
8357.9 17,337.2 31 7402.32 18,508.6 36 N20P5D3 
11,643.0 23,443.2 53 8702.00 22,872.2 55 N25P5D3 
9358.6 25,504.5 53 8566.71 24,784.8 51 N30P6D3 
9434.8 32,625.2 47 8544.10 32,144.6 48 N35P6D3 
13,844.7 42,918.1 60 13,029.76 45,837.0 70 N45P6D3 
15,613.4 52,075.3 71 14,117.13 45,328.4 79 N50P6D3  

Table 6 
Comparison of heuristic results related to large-scale instances.  

WMAX = 0.35 WMAX = 0.3 Instance 

MS SNS Seconds MS SNS Seconds 

3575.2 3184.6 691 2834.8 3628.7 989 N700P50D5 
6463.4 7801.3 1323 5613.0 7153.8 1107 N750P80D10 
6962.0 11,029.9 1364 6983.1 11,223.0 1251 N800P100D12 
8021.4 15,409.4 1975 7261.0 17,854.4 1397 N850P120D12 
10,586.0 24,331.3 1977 10,068.5 26,408.9 1663 N900P140D15 
13,636.1 26,792.1 2173 12,299.6 28,989.1 1931 N950P140D15 
11,540.2 35,101.4 2376 11,401.9 38,280.2 1984 N1000P150D18 
10,760.4 41,352.7 2507 11,587.0 41,382.8 2481 N1100P160D18 
16,978.2 64,755.0 2826 16,773.4 59,862.3 2621 N1500P180D20 
19,516.8 66,038.5 2903 17,614.6 74,033.6 2956 N2000P200D20 
WMAX = 0.45 WMAX = 0.4 Instance 
MS SNS Seconds MS SNS Seconds 
7720.7 8763.7 583 7559.0 7532.0 542 N700P50D5 
7744.8 10,702.0 670 7542.7 10,622.8 853 N750P80D10 
8682.9 14,047.1 1076 11,382.6 16,728.5 1693 N800P100D12 
16,948.8 24,489.4 1386 6433.7 23,414.8 1710 N850P120D12 
16,462.7 27,436.4 1387 10,728.1 26,405.2 2185 N900P140D15 
13,172.8 35,572.4 1530 12,391.3 32,843.4 2285 N950P140D15 
11,806.3 43,046.2 1699 10,003.5 37,762.3 2776 N1000P150D18 
18,610.1 66,025.2 1868 18,823.1 54,510.8 2779 N1100P160D18 
22,913.4 66,999.6 2813 18,730.5 73,668.7 2852 N1500P180D20 
23,412.1 67,125.8 2908 19,142.1 73,919.1 3107 N2000P200D20  
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LMAX = 4,079. The connections and distances between urban areas are 
obtained from the Transportation and Traffic Organization of Tehran 
municipality. Additional information necessary to calculate the objec-
tive functions is presented in Table 12. 

Fig. 13 shows the 97 members of the heuristic Pareto front gener-
ated. The value of the first objective function is between 7.1 × 109 and 
7.7× 109, and that of the second objective function is between 7 × 103 

and 9× 103. The third objective function varies between 50 and 80. The 
first and the second objective functions of Pareto members are mostly in 
the intervals [7.4,7.7] × 109 and [7,8] × 103, respectively, as can be 
observed in Fig. 13a. To select one final solution, 12 experts from the 
waste management department of Tehran municipality were chosen to 
assess cost, environmental, and social criteria through a questionnaire 

according to BWM. After doing the required calculations as for case 
study 1, the obtained weights of cost, pollutant emission, and social 
dissatisfaction are 0.623, 0.271, and 0.106, respectively. 

After running BWM, one of the 97 solutions in the Pareto front is 
selected as the final solution. Fig. 14 displays the final structure of 
selected locations and the created districts, and Fig. 15 shows the 
amount of waste collected in each district. 

The highest and the lowest amounts of waste are in districts 9 and 10, 
respectively. The maximum difference in workload is 14,520 t, corre-
sponding to 5.06% of the total demand. The workload balance will be 
different when changing the value of LMAX. Therefore, a sensitivity 
analysis over parameters LMAX and WMAX is carried out and reported in 
Tables 13–16. All the calculations in the tables are done by running the 
proposed heuristic for different parameter values, reporting the highest- 
ranked solution. 

All three objective functions worsen by decreasing parameter LMAX 

because constraints (2) become stricter. Table 13 indicates a high 
sensitivity of solutions to different WMAX values. Therefore, this 
parameter should be specified carefully. The heuristic cannot obtain 
feasible solutions for WMAX < 0.2, LMAX = 2000 and also WMAX = 0.05,
LMAX = 2500. 

Based on Table, when WMAX decreases and LMAX increases, the 
workload balance is improved. The sensitivity to changes of LMAX varies 
for different values of WMAX. In fact, the more the parameter WMAX in-
creases, the more the solutions change when LMAX decreases. According 
to the analysis, the proposed heuristic has a logical behavior in gener-
ating final solutions and can be used as a new development tool for MSW 

Table 7 
Geographic coordinates and demand of urban areas.  

Di × 103 (t/month)  Coordinates (UTM) node Di × 103 (t/month)  Coordinates (UTM) node 

y-dimension x-dimension y-dimension x-dimension  

60.83 715,913 3,639,489 16  35.91 717,410 3,636,540 1  
58.75 716,469 3,639,036 17  37.25 716,683 3,637,358 2  
41.33 716,529 3,639,016 18  65.50 716,173 3,637,763 3  
40.75 717,306 3,639,081 19  54.08 715,707 3,638,006 4  
56.16 717,317 3,637,451 20  62.00 714,496 3,638,268 5  
61.34 717,143 3,641,265 21  53.91 714,482 3,639,063 6  
54.16 717,925 3,640,672 22  58.41 713,880 3,639,691 7  
62.00 717,811 3,640,242 23  62.58 713,776 3,639,854 8  
37.41 718,220 3,639,427 24  63.00 713,026 3,640,477 9  
37.34 717,759 3,639,709 25  41.25 713,404 3,641,811 10  
52.16 718,766 3,641,289 26  46.16 713,864 3,640,546 11  
50.84 719,355 3,641,150 27  41.41 714,089 3,640,142 12  
36.00 719,194 3,640,628 28  41.83 714,132 3,640,134 13  
50.81 719,949 3,641,091 29  40.58 715,083 3,639,490 14  
64.08 719,531 3,639,320 30  62.00 715,894 3,639,436 15  

Table 8 
Related information of potential locations.  

SE
i 

(score)  
AE

i (cubic 
foot)  

CE
i (M 

rial)  
Corresponding 
nodes 

Potential 
centers 

7 442,474 4310 7 Potential Center 
1 

6 657,742 6120 1 Potential Center 
2 

5 485,547 5880 24 Potential Center 
3 

6 524,688 4750 21 Potential Center 
4  

Potential Nodes
Basic Units

Fig. 9. Map of Birjand city in the East of Iran.  
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management problems. 

6. Discussion 

Determining suitable locations of waste collection facilities and an 
appropriate allocation of urban areas to them are strategic decisions. To 
provide proper waste collection services, two main criteria are conti-
guity and workload balance. Municipalities and private sector com-
panies are responsible for providing MSW collection services. Their 
goals naturally involve economic criteria, including the minimization of 
establishment and waste collection cost. However, environmental and 

social objective functions follow as additional criteria in accordance 
with the laws of environmental protection and laws related to the rights 
of citizens. These criteria together can lead to more sustainable mana-
gerial decisions to minimize environmental and social rights 
vulnerability. 

The first case study dealing with MSW management in Birjand is 
solved by the augmented ε-constraint method. The results show that 
considering environmental and social objective functions together with 
the economic objective leads to a variety of solutions that can provide 
managers with alternative options. Information about the current waste 
collection system in Birjand was gathered directly from conversations 
with local representatives by the first author. Taking into account that 
there is currently only one waste collection center in Birjand, adequate 
services are not provided to some urban areas. This is due to the extreme 
workload of the main center and the lack of proper manpower allocation 
to provide complete service to all parts of the city. According to in-
terviews with the waste management experts in South Khorasan, the 
collection center is currently in an inappropriate location in terms of 
environmental and social aspects. 

Available geographical maps in the municipality show that the cur-
rent waste collection center is located near agricultural fields where 
large amounts of microorganisms enter the area by wind, consequently 
polluting water supplies and potentially causing diseases. The current 
location of the center, near one of the main routes of the city, has led to a 
huge reduction in price of agricultural fields and houses in the sur-
rounding area. Due to the lack of proper management, there are 
currently only 24 people working in the center. This number is insuffi-
cient to handle the great amount of generated waste. However, there is 
no possibility for more human resources because of a lack of proper 
infrastructure in the center. Comparisons between the obtained solution 
and the existing situation shows the potential for more than 32% saving 
in waste collection cost. The corresponding establishment cost, howev-
er, is higher than in the existing situation, as two facilities are required. 
Environmental and social criteria are improved more than 83% and 
79%, respectively. 

Despite the fact that Birjand is located in desert parts of Iran, with 
limited facilities and resources, current efforts to preserve them appears 
insufficient. Social criteria such as the social acceptability of the 
collection center and the possibility of creating new jobs are not 
currently considered by the authorities. These criteria can also be 
improved if the optimal solution proposed is implemented. To sum up, 
applying results of this paper can improve environmental and social 
conditions in the province in addition to reducing the cost of waste 
collection. 

Fig. 10. The obtained Pareto front of the numerical example.  

Table 9 
Best to others vectors.  

Soc Env Cost The best criterion Experts 

9 3 1 Cost Expert 1 
3 4 1 Cost Expert 2 
4 6 1 Cost Expert 3 
8 3 1 Cost Expert 4 
9 2 1 Cost Expert 5 
4 3 1 Cost Expert 6 
6 5 1 Cost Expert 7 
3 6 1 Cost Expert 8  

Table 10 
Others to worst vectors.  

Expert 8 Expert 7 Expert 6 Expert 5 Expert 4 Expert 3 Expert 2 Expert 1 Experts 

Soc  Env  Soc  Soc  Soc  Soc  Env  Soc  The worst criterion  
criterion 

9 9 9 9 9 9 9 9 Cost  
8 1 3 4 4 5 1 5 Env  
1 5 1 1 1 1 6 1 Soc   

Table 11 
Weights of the effective criteria in selecting the Pareto member.  

Mean weights Experts Criteria 

Expert 8 Expert 7 Expert 6 Expert 5 Expert 4 Expert 3 Expert 2 Expert 1  

0.758  0.091  0.097  0.100  0.253  0.106  0.103  0.072  0.256 Cost   

0.159  0.236  0.246  0.095  0.104  0.097  0.256  0.139  0.099 Env   
0.083  0.091  0.101  0.129  0.029  0.034  0.077  0.096  0.033 Soc   
0.043  0.038  0.044  0.043  0.046  0.039  0.051  0.038  0.041 ξL*   
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Regarding the second case study, Habibi et al. (2017) stated that 
there are currently only five waste collection centers in Tehran that meet 
the community’s needs, according to statistics from the Tehran Waste 

Management Organization. There are some polluted areas in the 
southern parts of the city, and improper collection of municipal waste 
causes both urban environment pollution and social dissatisfaction. To 
tackle this problem, the Tehran municipality has set up some temporary 
waste collection centers in different parts of the city, most of which are 
located in urban traffic areas. This can also result in increased traffic and 
air pollution. Therefore, it is desirable that some permanent centers are 
established to collect waste. 

To compare our obtained solutions with the existing system, we have 
assumed that each urban area is currently assigned to its nearest 
collection center. According to the calculations, if the numerical results 
of the second case study are implemented, about 21% improvement in 
collection costs, 47% improvement in environmental criteria, and 37% 
improvement in social criteria can be achieved. These results indicate 
significant improvements to the current situation, which indicates that 
not enough attention is currently devoted to sustainable development 
measures. Hence, the results of this research can be given to managers of 
responsible organizations as management decisions. 

7. Conclusion 

In this paper, a multi-objective sustainable location-districting 

Fig. 11. The obtained districting structure based on the selected centers.  

Fig. 12. Map of Tehran and the potential locations for construction of waste collection centers.  

Table 12 
The required information to calculate the objective functions, with Cost in 
millions of rial, Env in thousands of cubic feet per month, and SOC without units.  

Location Cost Env SOC Location Cost Env SOC 

Gilan 8489 835 8 Golzar 7693 716 8 
Ardakan 9476 722 4 Alian 8924 858 7 
G-5 9212 898 4 Khoram 7885 758 4 
Apadana 8037 729 5 Arg 8022 885 8 
Pars 7228 708 4 SarSabz 6044 712 7 
Ziba 9270 859 5 Kurmesh 5409 706 5 
Sarder 7358 856 7 Melal 8350 899 4 
Post 8379 745 4 Alma 6836 745 7 
Keman 7474 740 9 Asil 7756 716 6 
Farahi 5843 869 5 Jordan 9917 809 8 
Monir 8611 795 7 Behest 9373 768 9 
Tadim 7031 751 8 Daani 8600 702 7 
Sareh 6025 813 8 Pardew 7967 776 4 
Shandiz 8114 783 5 Saei 9308 849 6 
Ab 6708 807 6 Sadr 7419 713 8  
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problem for MSW is presented. The proposed problem integrates loca-
tion and districting for the first time. Three objective functions are 
defined to cover the minimization of the cost of establishing collection 
centers and collecting waste, the minimization of destructive environ-
mental impacts caused by establishing collection centers and pollutant 

emission of waste collection, and the minimization of the social dissat-
isfaction caused by establishing collection centers. The workload bal-
ance in districts is modeled using explicit constraints, with another 
important set of constraints ensuring that the districts created are 
contiguous. 

Fig. 13. The three-dimensional Pareto front (a.) and its two-dimensional image for the case study.  
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Since location and districting problems are NP-hard, a heuristic 
based on local search is proposed to solve real-world instances. This 
heuristic first considers an initial population in each iteration. A better 
population is then generated based on applying a local search on each 
member of the population. A new population for the next generation is 
generated using the non-dominated sorting method. To improve the 
diversity of solutions, a FCM is proposed. 

To evaluate the efficiency of the proposed heuristic, the obtained 
results from CPLEX were compared to those of the heuristic on a set of 
twelve randomly generated instances. This confirmed the efficiency of 
the heuristic. Moreover, the sensitivity of the heuristic over WMAX was 
investigated on a number of small, medium, and large instances. 

A MSW problem in Birjand, Iran was studied as a first case study. For 

this case study 50 Pareto members were obtained by the augmented 
ε-constraint method. BWM, as a MCDM method, was then applied to 
select the final solution. In this method, each objective function is 
weighted as a criterion by experts. The second case study, determining 
the best locations for waste collection centers in Tehran, was solved by 
the heuristic. In addition, sensitivity analysis of the problem over some 
parameters was performed. Calculations showed the great effect of these 
parameters in the final structure of the location-districting problem. 

While the model used in this study enforces districts to be compact 
and contiguous, thereby restricting the travel distances within each 
district, it does not explicitly consider the routing of vehicles to collect 
waste. A potential extension of this work could therefore be to include 
the design of collection routes as an explicit part of the problem. This 

Fig. 14. The obtained location and districting structure of the case study.  
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Fig. 15. The amount of waste assigned to each district.  

Table 13 
Values of the first objective function for different values of LMAX and WMAX.   

LMAX = 3500 LMAX = 3000 LMAX = 2500 LMAX = 2000 

WMAX = 0.25  894.1  908.5 944.1 974.2 
WMAX = 0.2  936.8  982.3 1021.7 1104.1 
WMAX = 0.15  1039.6  1189.6 1219.3 infeasible 
WMAX = 0.1  1078.9  1207.9 1277.8 infeasible 
WMAX = 0.05  1099.8  1247.4 infeasible infeasible  

Table 14 
Values of the second objective function for different values of LMAX and WMAX.   

LMAX = 3500 LMAX = 3000 LMAX = 2500 LMAX = 2000 

WMAX = 0.25  81.4  83.4 86.7 90.1 
WMAX = 0.2  84.7  85.6 88.1 92.7 
WMAX = 0.15  91.2  93.5 95.4 infeasible 
WMAX = 0.1  99.3  104.8 107.2 infeasible 
WMAX = 0.05  102.1  106.3 infeasible infeasible  
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would enable us to study whether tactical decisions such as routing 
would influence the strategic decisions regarding districting and loca-
tion of collection centers, and to consider elements such as fuel con-
sumption (Tavares, Zsigraiova, Semiao, & da Graça Carvalho, 2008). 
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