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A B S T R A C T

We solve a supply vessel planning problem arising in upstream offshore petroleum logistics. A
fleet of supply vessels delivers all the necessary equipment and materials to a set of offshore
installations from an onshore supply base, according to a delivery schedule or sailing plan.
Supply vessels, being the major cost contributor, are chartered on a long-term basis. The planning
of supply vessels implies resolving the trade-off between the cost of the delivery schedule and the
reliability of deliveries on the scheduled voyages, i.e. the service level. The execution of a sailing
plan is affected by stochastic demands at the installations since a high demand fluctuation quite
often leads to insufficient vessel capacity to perform a voyage according to the sailing plan. In
addition, the average demand level at the installations may change over time, while the number
of vessels in the sailing plan remains the same. Maintaining a reliable flow of supplies under
stochastic demand therefore leads to additional costs and reduced service level. We present a
novel methodology for reliable supply vessel planning and scheduling, enabling planners to
construct delivery schedules having a low expected total cost. The methodology involves the
construction of delivery schedules with different reliability levels using an adaptive large
neighborhood search metaheuristic algorithm combined with a discrete event simulation pro-
cedure for the computation of the expected solution cost.

1. Introduction

In the problem under study, a fleet of supply vessels performs deliveries to offshore installations on a regular basis from an
onshore supply base, according to a sailing schedule constructed for a time horizon of D days, and applicable for a period of one to
three-six month. Supply vessels represent the major cost contributor in offshore upstream logistics. The daily supply vessel charter
cost varies around 25,000 USD and therefore planners always try to minimize the fleet size needed to serve the installations. The
execution of the vessel schedule is quite often disrupted by uncertain demand at the installations, so that the total demand of a voyage
may exceed the capacity of the vessel performing it. Such situations require changes in the schedule, which entail additional costs,
and may even require the use of an extra vessel. Therefore, uncertain demand conditions should be taken into account during the
construction of the schedule. There already exist several studies dedicated to different variations of the studied problem in its
deterministic variant (Borthen et al., 2017; Kisialiou et al., 2018a) and in its stochastic variant under uncertain weather conditions
(Halvorsen-Weare and Fagerholt, 2011; Norlund et al., 2015; Kisialiou et al., 2018b), and as well as rich literature on the vehicle
routing problem with uncertain demand (Gendreau et al., 2014, 2016). Other sources of uncertainty, such as bunker prices, have also
been considered in the maritime transportation literature (Wang et al., 2018). However, our problem has not previously been studied.
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Here we introduce a methodology for the generation of reliable vessel schedules with respect to the total expected cost for problem
instances of realistic sizes and uncertain demand.

1.1. Problem description

In the upstream petroleum industry, equipment and materials for the offshore installations are delivered by a set of supply vessels
from an onshore supply base. Every supply base serves a predefined set of installations where the delivery of cargo takes place. The
research focus of this paper is the problem of supply vessel tactical planning and scheduling which is known as the Periodic Supply
Vessel Planning Problem (PSVPP), an extension of the well-known periodic vehicle routing problem (PVRP) which is NP-hard. In the
PSVPP each installation requires a certain number of deliveries from the base over the planning period (one week in our case) and has
a cargo demand to be supplied evenly across the deliveries. Deliveries take place according to the planned vessels schedule con-
structed for the planning period.

For each installation, the service time for the loading operations performed by a supply vessel is defined as a function of the
delivered amount of cargo. Some installations have opening hours only during the day and are closed at night for servicing. Each
supply vessel possesses technical characteristics such as its daily charter cost (the main cost contributor), deck capacity, sailing speed,
fuel consumption rate (when sailing, servicing and waiting at an installation, and at the base), and the time required for the loading
operations at the base (hereinafter referred to as the turnaround time). Similarly to the installations, the supply base has opening
hours (for example, from 8:00 to 18:30) which define a time window during which a vessel can perform loading operations. Each
vessel has a predefined set of possible daily departure time options from the base (referred to as flexible departures). In addition, each
vessel belongs to a certain type which is defined by the vessel’s capacity and its ability to serve a certain set of installations. Both the
installations and the supply base require predictability of departures to installations, which is why the vessels schedule is performed
repeatedly over the period of several month or a season referred to as the schedule execution horizon. The repetitive schedule ex-
ecution implies that the planning period is cyclic, i.e., the vessel may depart on a voyage at the end of a planning period (Saturday)
and arrive at the beginning of the next one (Monday). Since the planning period is circular, any two vessels of the same type may
swap their voyages on every subsequent week (in general this depends on the length of the planning horizon). Vessels swapping their
schedules are referred to as coupled (for a mathematical formulation of the PSVPP with flexible departures and coupled vessels see in
Kisialiou et al., 2018a). The specificity of the delivery process and of the service requirements at the installations stems from practical
restrictions such as the base capacity (defined by the maximum number of departures that can be performed by all vessels per day), as
well as the delivery lead time constraints which limit the maximum voyage duration and the number of installations that can be
served during a voyage. The departure days of the vessels that serve a given installation should be evenly spread throughout the
planning period to ensure a steady supply of cargo. In addition, voyage non-overlap constraints mean that a vessel cannot start
loading operations at the base until it has returned from its previous voyage.

A vessel delivery schedule is defined by a set of charter vessels and their associated voyages to be performed within the planning
period. A vessel voyage starts and ends at the supply base and is defined by a set of installations to be visited in a certain sequence, a
departure time from the base and duration. Fig. 1 depicts a vessel schedule for a weekly planning period plus one day (Monday) of the
next one. This schedule involves three vessels (marked V1, V2 and V3), each having a set of voyages (marked with bold lines and
containing a set of installations marked with three capital letters) with turnaround times at the base (marked as “B”). The last voyage
of vessel V2 violates the non-overlap constraint. Such an infeasibility is eliminated by the coupling of vessel V2 with either vessel V1
or V3 when the coupled vessels may swap their voyages in the subsequent periods.

A new schedule is constructed for a new season or when there are changes in the number of installations, their locations, planned
activities and demand. The construction of the vessels schedule involves decisions on the fleet composition, the assignment of
voyages to vessels, the voyages departure time, the assignment of installations to voyages and their sequencing. The aim of the PSVPP
is to construct a feasible vessels schedule with minimized vessel charter and fuel costs, subject to constraints such as base capacity,
vessel capacity, spread of departures, voyage non-overlap, maximum voyage duration, and maximum number of visits on a voyage.
Each installation must receive the required number of visits within the planning period.

1.2. Uncertainty in supply vessel scheduling

In practice, the repetitive execution of the planned schedule is hardly possible due to the influence of stochastic factors. Uncertain
weather conditions affect the sailing and service times durations, which often results in delays and schedule disruptions. Delayed
deliveries of material and equipment from the suppliers to the base may also create uncertainty in the voyage departure time from the

Fig. 1. Example of a weekly vessels schedule.
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base. The frequency of deliveries to the installations and the weekly volume of cargo to be delivered may vary from week to week due
to the changing level of activities at the installations and ad hoc situations. To keep the scheduled departure times, logistics planners
modify the planned voyages and if necessary plan additional voyages which require extra resources.

In this study, we deal specifically with the uncertain demand at the installations. The demand at an installation varies from
delivery to delivery, especially on drilling rigs where the processes are rather unstable due to the relatively unpredictable exploration
activity. Therefore, there is always a risk that the total demand of the installations to be visited on a voyage will exceed the vessel’s
capacity. The probability of such an event depends on the average load of a vessel and on the level of demand fluctuation at the
installations. In addition, there may be ad hoc demands, i.e. extra calls for unplanned deliveries, which also make the number of
deliveries uncertain. Uncertainty in demand may result not only in the vessels’ deck capacity violations, but also in service time
variations at the installations since the duration of the loading operations depends on the delivered amount of cargo. For this reason,
in the event of demand surges, the voyage duration may increase, so that the non-overlap constraints may become violated, especially
when there are some night-closed installations to visit during the voyage. For this reason, it is essential that the schedule be con-
structed with some incorporated measures accounting for the uncertainty to reduce the use of extra resources.

When the voyage non-overlap constraints or the capacity constraints are violated, the logistics planners perform operational
modifications or recourse actions, by relocating part of visits (i.e., part of demand) from infeasible voyages to some other feasible
voyages. There are several alternatives of recourse actions. First, the excess demand may be delivered on other planned voyages
having some free deck space. Another way to deliver the excessive demand is to use an available charter vessel to perform an
unplanned voyage. In this case, the charter vessel must be available and all the constraints inherent to the PSVPP must be satisfied.
Finally, a spot vessel hired on a short term basis at a higher cost may be used to perform some unplanned deliveries. It is worth noting
that logistics planners do not require that deliveries on voyages be always performed by the vessels used in the planned schedule and
according to the visit sequence defined in that schedule. For them it is more important to stick to the planned voyages departure days
and planed daily fleet of vessels. The main problem is that several alternatives of recourse actions may be applied simultaneously in
different combinations, and for each combination there are many ways to reinsert visits. Recourse actions generate additional costs,
the largest of which is considered to be the hiring of spot vessels since their rates are significantly higher than those of the charter
vessels. Since the installations require predictable and stable delivery schedules, these should be constructed so as to be reasonably
immune to uncertain phenomena and so that the cost after recourse is minimized.

The objective of the PSVPP with uncertainty is then to construct a vessels schedule with minimized expected vessels and fuel costs
after application of recourse actions. The problem can be modeled through a simple modification of the deterministic model pre-
sented in Kisialiou et al. (2018a). First, the demands are now random variables instead of being known constants. Second, a term
must be added to the objective function to account for the expected recourse value.

1.3. Literature review

In this section we describe solution approaches to the vehicle routing problem with stochastic demand (VRPSD) which are
relevant to the study of the stochastic PSVPP, and provide an overview of the literature dedicated to the deterministic and stochastic
PSVPP under weather uncertainty.

1.3.1. VRPSD
In a more general perspective, solution approaches to the VRPSD are subdivided into two-stage stochastic programming with

recourse, reoptimization, robust optimization, and chance-constrained programming.
Most solution approaches to the VRPSD rely on two-stage stochastic programming with recourse and are based on a priori

optimization (Bertsimas et al., 1990). There exist several exact algorithms (e.g., Gendreau et al., 1995; Laporte et al., 2002;
Christiansen and Lysgaard, 2007; Jabali et al., 2014; Salavati-Khoshghalb et al., 2018), as well as heuristics (e.g., Lei et al., 2011;
Pandelis et al., 2012; Mendoza and Villegas, 2013). Most of these approaches apply the so-called classical recourse action which
assumes that in case of failure, the vehicle returns to the depot to replenish its capacity and resumes its route starting at the point of
failure, although other recourse actions exist (see Gendreau et al., 2014, 2016; Oyola et al., 2016, 2017 for recent surveys).

In contrast to a priori optimization, reoptimization algorithms (e.g., Dror et al., 1989; Zhu et al., 2014) reoptimize the routes
while information on demand is dynamically revealed during their execution. Reoptimization outperforms a priori optimization in
terms of efficiency, being a proactive approach, but loses in terms of operational convenience (Gendreau et al., 2016).

Robust optimization (see, e.g., Ben-Tal and Nemirovski, 1999; Bertsimas and Sim, 2004; Bertsimas et al., 2011) offers solutions
yielding protection against the worst-case outcome within an uncertainty set. It enables the construction of high-quality solutions
without the need to know the distribution of stochastic parameters. Unlike two-stage stochastic programming with recourse, it does
not offer a solution with minimized expected cost and does not apply any recourse actions, which are frequently present in real-life
problems. Applications of robust optimization to vehicle routing can be found in Bertsimas and Simchi-Levi (1996), Sungur et al.
(2008) and Gounaris et al. (2013).

Chance-constrained programming is similar to robust optimization but does not work with an uncertainty set. Instead it ensures
that the probability of satisfying constraints with uncertain parameters is above a certain reliability level (Birge and Louveaux, 1997).
The main drawback of chance-constrained programming is the difficulty of computing general distributions, which is usually done
via analytical methods or Monte Carlo approximations. An application to routing problems can be found in Laporte et al. (1989).
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1.3.2. PSVPP
There exist several studies dedicated to the PSVPP under weather uncertainty that apply a robust optimization methodology.

Thus, Halvorsen-Weare and Fagerholt (2011), Norlund et al. (2015) and Kisialiou et al. (2018b) introduced robust approaches
involving combination of optimization and simulation. Halvorsen-Weare and Fagerholt (2011) suggested computing a robustness
measure for voyages, Norlund et al. (2015) generated schedules with given robustness requirements and Kisialiou et al. (2018b)
considered voyage specific slacks in construction of vessel delivery schedules.

Pure robust and chance-constrained optimization do not suit us since they do not imply any recourse actions. Reoptimization does
not fit tactical planning. The only approach in our case is two-stage stochastic programming with recourse which, however, cannot be
applied in the classical way. In our problem, the voyages in the schedule last more than one day and the recourse actions performed
on any day depend on the recourse actions performed on previous days i.e., for a given first-stage solution the second-stage problem
should be solved dynamically for each day of the planning period (sequentially, starting from Monday). Recourse actions applied to
infeasible voyages of a certain day are performed simultaneously and are interdependent, which involves approximating the cost of
recourse (for a given day) simultaneously for all the voyages departing on this day. Furthermore, the possibility of coupling vessels
involves swapping their voyages from week to week (in the case of a one-week planning period) and the demand scenario for each
visit of each installation is created for the full execution horizon of the schedule. All this makes it almost impossible to solve a
mathematical formulation (in the context of the two-stage programming with recourse). A heuristic coupled with simulation mod-
elling seems to be a good alternative to approximate the cost of recourse (provided that there are no serious simplification as-
sumptions).

1.4. Contribution and organization of the paper

The objective of this research is to propose a methodology for the periodic supply vessel routing problem with uncertain demands.
We apply a chance-constrained programming to control the probability of generating infeasible solutions, which we embed within a
metaheuristic capable of constructing cost-effective and reliable vessel schedules with respect to demand fluctuations. Our meta-
heuristic is based on the adaptive large neighborhood search (ALNS) metaheuristic developed by Kisialiou et al. (2018a) for the
PSVPP with flexible departures and coupled vessels. It accounts for the uncertain demand by incorporating chance constraints.
Finally, we develop a simulation model allowing for the assessment of the schedule’s performance over a certain time horizon and for
the computation of its expected cost. To this end, our simulation model incorporates several recourse actions alternatives aimed at
preventing schedule infeasibility. Both the optimization metaheuristic algorithm and the simulation model are integrated within a
single decision support tool enabling the generation of reliable schedules with minimized expected cost for large-size PSVPP in-
stances. To demonstrate how the proposing methodology works, we performed computational experiments using two real-life in-
stances provided by the Norwegian offshore oil and gas operator Equinor.

To our knowledge we are the first to solve the large-scale PSVPP with stochastic demand. Our methodology is not limited to the
periodic supply vessel planning, but may also be applied to stochastic large-scale VRPs with uncertain demand requiring reliable
solutions. A special feature of the developed method is that it enables the generation of schedules of minimum expected cost pos-
sessing a certain degree of reliability against the uncertainty. In addition, our approach does not impose any limitations on the types
of demand distributions. It can also handle multiple and complex route-dependent recourse actions which are applied simultaneously
in various combinations. Our study exemplifies the application of emerging operations research technologies to the solution of a
complex transportation planning problem which cannot be solved by means of traditional exact algorithms. We have combined
optimization and simulation to improve the performance of a transportation system, namely in what concerns efficiency, level of
service and reliability. To our knowledge, our methodology enables, for the first time, the solution of a highly complex and significant
stochastic logistics problem arising in oil and gas offshore operations.

The remainder of this paper is organized as follows. In Section 2 we introduce a methodology allowing the control of voyage
reliability under uncertain demand. We present a heuristic for the construction of vessels schedules with incorporated reliability
control, and a discrete-event simulation model for the assessment of the schedule’s performance. In Section 3 we conduct experiments
and we analyze the behavior of the algorithm with respect to the reliability and expected cost of the solution. Conclusions are derived
in Section 4.

2. Solution methodology

In this section, we present a methodology for the reliable supply vessel routing and scheduling problem with uncertain demand.
Our algorithm heuristically solves a two-stage stochastic programming problem with recourse, and instead of exploring the whole set
of feasible solutions in the first phase, it reduces the search to several solutions generated with a preset minimal reliability level. We
combine optimization and simulation (e.g., Sörensen and Sevaux, 2009; Takes and Kosters, 2010), by which several solutions are
generated and evaluated within a simulation process. The key idea of such an approach is to (1) use a search algorithm to find
strategy settings and (2) use a discrete event simulation to model the operations as close as possible to the real world and to evaluate
the performance of the selected strategy (Zhou et al., 2018). Our simulation model accounts for the schedule’s feasibility, after the
demand at the installations is revealed, by applying recourse actions to infeasible voyages. Such an approach allows a reduction of the
computational complexity of the heuristic and is capable of handling the specific stochastic structure of the problem (Bierlaire, 2015),
which is heavy for traditional stochastic programming algorithms.

We first address the issue of approximating the demand probability distribution at the installations. We then develop a chance-
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constrained based metaheuristic that allows for the construction of solutions in which voyages have some degree of protection against
demand uncertainty. This is followed by a simulation model for the computation of the expected cost of the generated delivery
schedule for a certain value of the reliability level. Finally, we integrate both the optimization algorithm and the simulation model
into a single method for the controlled generation of reliable schedules with minimized expected cost after recourse.

2.1. Approximating the demand probability distribution

Here we propose a methodology to approximate the demand probability distribution at the installations. We assume that there is
no correlation between the demands i.e., the demands at the installations are independent random variables following some prob-
ability distribution. Although there may be some correlation caused by weather conditions we omit it assuming that the demand is
only dependent on the processes at the installation having their own production plan. In our test instances, the number of in-
stallations to be served fluctuates around 30 and their demands follow various distributions such as normal, Erlang or Weibull, and
they can even be bimodal (Fig. 2). In other words, they exhibit a high degree of variation. In this context, a reasonable methodology
to estimate the demand probability distribution is to approximate the cumulative distribution function (CDF) by means of the fast
Fourier transform (FFT) algorithm (Van Loan, 1992). Often applied in signal processing, the FFT methodology is very efficient for the
computation of the convolution products. There are several benefits to this approach. First, we deal directly with the CDF (although
discretizing), which increases the accuracy, and second, there is no need to generate a large-size sample as in case of Monte Carlo
sampling, which leads to a higher computing speed. As demonstrated by several authors (Sakamoto et al., 1997; Rao and Rajib, 2008;
Pillay and O’Hara, 2011; Bormetti and Cazzaniga, 2011; Ibrahim et al., 2014), the FFT algorithm significantly outperforms Monte
Carlo simulation in terms of speed and accuracy.

According to the convolution theorem, the Fourier transform of a convolution of two signals (functions) is the pointwise product
of their corresponding Fourier transforms (for details on the Fourier Transforms properties, see Bracewell, 2000). A Fourier transform
provides the decomposition of a signal (represented as function of time) into the frequencies that make it up. We use the term “signal”
as an example since originally the Fourier transform was applied to signal processing. The result of the Fourier transform is a
complex-valued function of frequency showing the components of a signal at any given frequency. The convolution property of the
Fourier transform states that a convolution in the time domain equals to the pointwise multiplication in the frequency domain
(Broughton and Bryan, 2008). It worth noting that a Fourier transform is not limited to functions of time, i.e., this is just a matter of
representations, and the domain of the original function (CDF in our case) is referred to as the “time” domain (just to have a unified
language). To perform a Fourier transform is used the FFT algorithm which computes a discrete Fourier transform (DFT) of a
sequence (transforms a discretized function into its frequency domain). Thus, according to the convolution theorem, taking any two
CDFs Fx and Fy and descritizing them we have

=F F F F( ) ( )· ( ),x y x y (1)

where denotes Fourier transform operator, the dot (·) denotes point-wise multiplication, and the asterisk ( ) denotes a convolution.
Performing the inverse Fourier transform 1 by using the inverse FFT, we compute the inverse DFT (transform into the “time”
domain) which provides the convolution product of Fx and Fy:

=F F F F( ( )· ( )).x y x y
1 (2)

The computation of a general convolution S using such point-wise multiplication can be performed for any number of functions
simultaneously:

= … = …F F F F F F F( ( )· ( )· · ( )).S n n1 2
1

1 2 (3)

Thus, utilizing the property of the convolution theorem, for any voyage we can define the CDF of its total demand. Such approach,
applied in the context of the heuristic used for the schedule construction, results in a high accuracy of the demand convolution and at
the same time, yields a relatively fast performance.

Fig. 2. Four examples of demand distributions.

Y. Kisialiou, et al. Transportation Research Part C 104 (2019) 305–316

309



2.2. Metaheuristic algorithm for the construction of reliable vessel schedules

We now briefly describe a metaheuristic for the construction of reliable PSVPP solutions. We adapt the ALNS heuristic developed
by Kisialiou et al. (2018a) to incorporate into it chance constraints accounting for stochastic demand.

The brief pseudo-code of our ALNS metaheuristic with incorporated reliability control is provided in Algorithm 1. The algorithm
is applied for n restarts of iterations each. The reliability level , defining the lower bound on the probability that the demand
exceeds the vessels capacity is used as an input to the algorithm. The best known solution found by the algorithm during the search is
defined as g . At the beginning of each restart an initial solution g0 is randomly constructed and an attempt is then made to reduce its
cost for iterations. At the beginning of each iteration, the current solution g is partially destroyed by randomly removing q visits
from it. The removal of the visits is performed by using a destroy operator which is selected according to a discrete probability
distribution from a set : random voyage removal, Shaw removal (Shaw, 1997) and worst removal. Each of the operators has its own
logic, which ensures the diversity of visits removal from solution g and an efficient search of the solution space. All the visits removed
from the current solution g are stored in a pool S of removed visits and the partially destroyed solution is defined as g . An attempt is
then made to reinsert the visits contained in S back into g by using a repair operator which is selected from a set : deep greedy
insertion, 2-regret insertion and 3-regret insertion. If the reinsertion is successful, a new solution g is then obtained and the algorithm
resumes its search for a better solution in the neighbourhood of solution g . To this end, several improvement operators are applied to
solution g in a given sequence while its cost decreases. The list of improvement operators we use is deep greedy relocation, deep greedy
swap, number of voyages reduction, daily departure relocation and reduce the fleet size. Using the Eq. (3) introduced in Section 2.1 we can
compute the CDF Fv of the total demand for any voyage v in either g or g . Whenever a voyage is constructed or modified (a visit is
added or reassigned to another vessel), the condition

F Q( ) .v v (4)

is checked (lines 3, 7 and 10), where Fv is the CDF of voyage’s v total demand, Qv is a capacity of the vessel sailing voyage v and is
the reliability level used in chance-constrained programming. If the condition is not satisfied, the voyage modification is rejected.
Such checks are implemented within each repair and improvement operator. After the application of the improvement operators, the
solution g is compared with the best known solution g and with the current solution g. We denote by g( ) the cost of solution g. If

>g g( ) ( ), a simulated annealing acceptance criterion is applied (line 17) which accepts solution g with a certain probability
depending on g g( ), ( ) and a parameter called the temperature. The initial value of is equal to (g0). At each iteration, is
multiplied by a cooling rate µ (0, 1), which is dependent on the number of iterations and a user-defined parameter (line 4). After
the last iteration of the last restart, the algorithm returns the best known solution g . For more details on the general ALNS principles,
see Ropke and Pisinger (2006).

Algorithm 1. ALNS for the PSVPP with chance-constraints

1: State Set the cost of the best known solution =g( ) ;
2: for n restarts do
3: Construct initial solution g0 satisfying (4);
4: g g g g g µ; ; ( ); 1 /0 0 0 ;
5: for iterations do
6: g g q S( , , ), remove q visits;
7: g g q S( , , ), insert q visits while satisfying (4);
8: if S = and g is feasible then
9: while g improves do
10: Run the set of improvement operators while satisfying (4);
11: end while
12: if g g( ) ( ) then
13: g g g g; ;
14: else if g g( ) ( ) then
15: g g ;
16: else

17: g g with probability e g g( ( ) ( ))/ ;
18: end if
19: end if
20: µ ;
21: end for
22: end for
23: return g

2.3. Evaluation of a schedule

We now describe the discrete event simulation model that enables the assessment of a schedule’s expected cost and incorporating
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recourse actions, in order to eliminate potential schedule infeasibilities.

2.3.1. Simulation model
In discrete event simulation a process is represented as a flow of events occurring at certain points in time. We simulate vessel

schedule execution for the period the schedule is to be applied. In our case, discrete events are defined by the scheduled voyages’
starts from the base. The demand for each installation visit on a voyage is sampled from the corresponding probability distribution.
We distinguish between two types of vessel schedule costs: the planned schedule cost, i.e., the cost of the schedule generated by the
ALNS heuristic, and the expected schedule cost calculated as an average for all simulation replications. In addition, we distinguish
between planned and simulated installation’s demands.

The pseudo-code describing the simulation model is provided in Algorithm 2. As an input, the simulation model uses the vessel
schedule g ( ), generated for a certain value of the reliability level (see condition (4)) by Algorithm 1, and the modelled demand.
The simulation is performed for replications. Within each replication the schedule execution is simulated for N consecutive schedule
planning periods which in total constitute a simulation time horizon. For each planning period = …n N1, , the copy g ( )n

mdf of
schedule g ( ), generated by Algorithm 1, is created to reflect recourse actions according to the available alternatives. For each day

= …d D1, , of the schedule planning period, the feasibility of voyages started on day d is ensured by applying recourse actions (see
Section 2.3.2). It is assumed that the installations’ demands on a voyage are known one day before the voyage starts.

After the demand simulation, the service times of the installations to be visited on voyages starting on days d and +d( 1) mod D
are recalculated and the voyages are rerouted to find a lower cost. The service time at an installation is defined by adjusting up or
down the value of the planned service time proportionally to the increase or the decrease of the simulated demand relative to the
planned demand. After the rerouting, the set V d of all voyages departing on day d and infeasible in terms of the vessel capacity or
duration constraints is defined.

The least cost recourse actions are performed by feasibly relocating visits from V d to other voyages departing on either day d or
+d( 1) mod D or both (see Section 2.3.3). Rerouting and recourse actions are applied in planning period number n yield a modified

schedule g ( )n
mdf of cost n. After each replication = …i 1, , , the algorithm computes the average cost i

av of the modified vessels’
schedule for this replication. After the last replication the algorithm returns the average expected schedule cost ( )exp computed over
all replications.

Algorithm 2. Schedule simulation

1: Modelled demand;
2: for =i 1 to do
3: for =n 1 to N do
4: g ( )n

mdf g ( );
5: for =d 1 to D do
6: if =d 1 and =n 1 then
7: Simulate demand for each visit on voyages started on days d and +d( 1) mod D;
8: Recalculate service times and reroute planned voyages;
9: end if
10: Simulate demand for each visit on voyages started on day +d( 1) mod D;
11: Recalculate service times and reroute planned voyages;
12: V d Find infeasible voyages;
13: if V d then
14: g ( )n

mdf Perform the least cost recourse actions for voyages in V d (Algorithm 3);
15: end if
16: end for
17: Calculate cost n of modified schedule g ( )n

mdf ;
18: end for

19: Calculate = = N/i
av

n
N

n1 ;
20: end for
21: return = =( ) /exp

i i
av

1

2.3.2. Recourse actions
We now describe the recourse actions alternatives applied to the schedules with the simulated demand where planned voyages

may be rerouted. We consider three alternatives, each implying the relocation of the excess amount of cargo from the infeasible
voyages in V d to other feasible voyages so that they remain feasible in terms of vessel capacity and duration constraints. Feasible
voyages used for the insertion of visits are referred to as target voyages. Below we provide the description of the recourse actions
ensuring the feasibility of voyages for each day = …d D1, , :

(a) Relocation of visits into the planned voyages
For all infeasible voyages departing on day d, some visits are relocated into feasible target planned voyages departing on days d or
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+d( 1) mod D.
(b) The use of available charter vessels

As an alternative to the relocation of visits from voyages in V d into the feasible planned voyages, visits may be relocated to the
newly created empty voyages starting on day d and performed by available charter vessels. A charter vessel is considered to be
available for departure on day d if it has no planned departure on a voyage on that day and has returned from a planned voyage
early enough to start an unplanned voyage on day d.

(c) Hiring of a spot vessel
A spot vessel is hired when it is impossible to achieve schedule feasibility with the insertion of visits into the planned and
unplanned empty voyages performed by charter vessels. Similarly to what is done in the previous case, a relocation of visits from
V d is performed into an empty voyage of a spot vessel departing on day d.

When performing these recourse action a target voyage non-overlap and capacity constraints are checked. It is worth of noting
that the simulation of the schedule for planning period n is partially dependent on the result of the schedule simulation in planning
period n 1. This is because some visits from voyages starting at the end of the planning horizon n 1 may be relocated to the
voyages departing at the beginning of the schedule of the planning period n.

2.3.3. Recourse action implementation
Algorithm 3 describes the procedure applied to implement recourse actions in case of voyage infeasibilities on day = …d D1, , .

For all voyages in V d the set U of all possible removal combinations of visits is generated, by full enumeration using a power set
recursive procedure (Pinter, 2014) so that the removal of visits according to any removal combination u U from voyages in V d

results in the elimination of their infeasibility in terms of capacity and duration. The generation of each combination is executed in
such a way that it contains the minimal number of removed visits required to eliminate the infeasibility. The relocation of visits from
infeasible voyages into possible target voyages, created according to available visits relocation alternatives, is performed for one of
the visits removal combinations u of the set U. In our algorithm, several recourse actions may be applied simultaneously. For
example, these can be the relocation of visits from infeasible voyages partially into the planned voyages, and partially into empty
unplanned voyages of available charter vessels. For every visit removal combination u U there may exist several combinations of
visit insertions into target voyages based on the feasible visits relocations.

In our algorithm the schedule is first analyzed to identify feasible planned voyages departing on days d and +d( 1) mod D
(defined in the set V pl). If there are any available charter vessels on day d, an empty voyage for each vessel is created with the
departure on day d. We also create empty voyages of available spot vessels departing on day d. Thus, for each day d we define setsV ch

and V sp including voyages of the available charter and spot vessels, respectively. The sets V V,pl ch and V sp constitute the set V target of
target voyages for potential demand relocation from infeasible voyages. Further, for each visit removal combination u the least cost
(with respect to voyages feasibility and base capacity) relocation option pu is defined. Recourse actions are performed according to
the best feasible insertion option p .

Algorithm 3. Perform recourse actions for day d

1: Generate set U of all possible visit removal combinations for voyages in V d;
2: V pl Find feasible planned voyages departing on day d and +d( 1) modD;
3: V ch Find available charter vessels and create empty voyages departing on day d;
4: V sp Create empty voyages of spot vessels departing on day d;
5: Define set of all target voyages for visits relocation V V V Vtarget pl ch sp;
6: p - best feasible visits relocation option;
7: =c Cost of the best visit relocation;
8: for each u U do
9: pu Find a feasible insertion option of visits from u into voyages in V target yielding the least cost c p( )u ;
10: if <c p c( )u then
11: c c p( )u ;
12: p pu;
13: end if
14: end for
15: Perform relocation of visits according to the insertion option p ;

2.3.4. The algorithm for the planning under uncertain demand
Algorithm 4 describes our optimization-simulation solution methodology for the construction of PSVPP schedules with different

levels of reliability and allowing to define a schedule with the minimized expected cost. The algorithm takes as an input a set A of
values for reliability parameter , the parameter defining the number of simulation replications, and the parameter N defining the
number of planning periods for which the schedule is executed within a simulation time horizon. For each A the ALNS meta-
heuristic constructs a solution g ( ) which is saved in the list =R g A{ ( ): } of solutions. The solution g ( ) and the parameters
and N are taken as inputs to the simulation model. The expected schedule cost ( )exp computed after simulation is saved in the list of
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simulation costs =C A{ ( ): }exp . The algorithm returns the list of schedules with different reliability levels and corresponding
expected schedules costs.

Algorithm 4. Optimization-simulation algorithm

1: Set A of values;
2: - the number of simulation replications;
3: N - the number of times the schedule is executed within the simulation horizon;
4: for each A do
5: g ( ) run ALNS( );
6: Save g ( ) in a list R;
7: ( )exp Schedule simulation g N( ( ), , );
8: Save ( )exp in a list C;
9: end for
10: return R and C;

3. Computational experiments

We now describe the computational experiments we have performed to study the behavior of the optimization-simulation al-
gorithm and to assess the stability of the results in terms of the schedule’s expected cost. The ALNS metaheuristic and the simulation
model were coded in the C# programming language. Experiments were conducted on a computer with 16 GB of RAM and Pentium 8
Core processor of 2.3 GHz under the Windows operating system.

There are two types of input data for the algorithm: the data for the ALNS metaheuristic and the demand data for the simulation
model. The PSVPP instances used in the experiments were provided by the Norwegian operator Equinor. The input for the ALNS
includes data on the supply base, the installations, and the fleet of vessels. We used two instances with 14 and 26 installations and up
to eight vessels including spot vessels. For each installation, we defined the PDF based on the historical demand data of the season
corresponding to the simulation time horizon (winter 2016–2017). For those installations with insufficient demand observations we
assumed that the demands follow a PERT probability distribution defined by the minimal, maximal and most likely values a random
variable can take. The schedule planning period is one week. To assess the stability of the results we ran the algorithm 60 times for
each value of the reliability level to gather statistics. The simulation of a weekly vessel schedule was performed for 1000 re-
plications. The values of the user-defined input parameters are provided in Table 1.

The results are presented in Figs. 3 and 4. These figures depict the mean cost of the planned schedules, and the mean and the box
plot of the expected costs of the simulated schedules depending on the value of . The width of the box corresponds to the inter-
quartile range (IQR) and the whiskers are equal to 1.5×IQR. The red line connects the mean expected values of the simulated
schedule costs. Both figures show that an increase in the value of results in an increase of the planned schedule cost. For each
instance we can see surges in the planned schedule cost. There are two surges for the instance with 14 installations corresponding to
an value changing from 0.7 to 0.8, and from 0.9 to 1.0. For the instance with 26 installations the surges correspond to changing
from 0.6 to 0.7 and from 0.9 to 1.0. These cost surges indicate the fleet size increase resulting from the higher reliability requirements
imposed by the increase in the value. Regarding the expected schedule costs, for low values of (from 0.1 to 0.4), the simulated
schedules use three more vessels on average compared with the corresponding planned schedules. The expected schedule cost goes
down, gradually approaching the planned cost as the value of increases. After the expected cost reaches the planned cost (for the
instances with 14 and 26 installations corresponding values are 0.8 and 0.6) both type of costs behave synchronously with some
slight differences. The minimal expected costs for the instances are 3,601,251 and 6,068,985 with the corresponding values of 0.9
and 0.6. Concerning the results’ stability, the variability of the expected schedule’s cost (see the box plots) is maximal for the smaller
parameter value of and reduces as increases, becoming minimal when reaches 1.0. At this point, the cost variability is defined
purely by the variability of voyages’ travel times due to the dependency of service time durations on the demand. On average, the
variability of the expected schedule cost amounts to 0.5%.

The average computational time for both instances depending on the value of is depicted in Fig. 5. As we can see from this
figure, the computational time goes down as the value of increases. This time reduction is due to the fact that the more reliable

Table 1
Input parameters.

Parameter Description Value

n Number of restarts 2
Number of iterations 800
Cooling rate control parameter 7
Set A of values …[0.1, , 1.0]
Number of simulation replications 1000

N Number of schedule executions within the simulation horizon 12
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schedules require less computational effort in terms of the recourse actions assessment. The total computational time for all values,
for the instances with 14 and 26 installations, is 310 and 780min, respectively. On average for the instance with 14 installations it is
2.5 faster to run the algorithm compared with the instance with 26 installations for the same . It is worth noting that the total
running time of the algorithm may be reduced by cutting the number of simulation replications by half with no significant impact on
solution quality. In addition, there is no need to generate schedules with low values of . Since we aim to generate reliable schedules,
it is highly unlikely that schedules generated for values from 0.0 to 0.4 will have a lower expected cost after the simulation,
compared with those generated with higher values. Therefore, the total computational time, for both instances, may be reduced by
a factor of about four.

4. Conclusions

We have introduced a methodology for the solution of the periodic supply vessels planning problem with uncertain demand. The
determination of vessel schedules is seriously affected by uncertain demand at the installations, especially at the drilling rigs.

Fig. 3. Planned schedule costs and corresponding expected costs after simulation for the instance with 14 installations.

Fig. 4. Planned schedule costs and corresponding mean expected costs after simulation for the instance with 26 installations.
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Schedule disruptions require modifications, which quite often leads to an unplanned use of charted vessels, or to the hiring of spot
vessels, which results in additional costs. To cope with the influence of uncertain demand on the schedule performance, we have
imposed requirements on the reliability of voyages during the construction of the vessel schedules by means of an ALNS meta-
heuristic. The ALNS algorithm was used to generate multiple vessel schedules with different reliability levels and low expected cost.
To assess the performance of a schedule, we have developed a discrete-event simulation model incorporating several recourse actions
alternatives aimed at eliminating schedule infeasibilities caused by uncertain demands. For each schedule, the simulation model
computes the expected schedule after recourse and the schedule with the least expected cost is selected. Both the optimization
algorithm and the simulation model were integrated into a single decision support tool. We have conducted extensive computational
experiments to demonstrate how the methodology works in practice, to illustrate the behavior of the developed algorithm and to
assess the stability of the results. Our methodology enables decision makers to construct vessel schedules for large-size instances with
low expected cost and having some reliability level against stochastic demand.
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