Master's degree thesis

LOG953 Sustainable Energy Logistics

Short-term scheduling of support vessels in wind farm maintenance

Manru Xue

Number of pages including this page: 75

Molde, Monday May 2023

Mandatory statement

Each student is responsible for complying with rules and regulations that relate to examinations and to academic work in general. The purpose of the mandatory statement is to make students aware of their responsibility and the consequences of cheating. Failure to complete the statement does not excuse students from their responsibility.

Plea	Please complete the mandatory statement by placing a mark in each box for statements 1-6			
bela	below.			
1.	I/we hereby declare that my/our paper/assignment is my/our own			
	work, and that I/we have not used other sources or received			
	other help than mentioned in the paper/assignment.	\boxtimes		
2.	I/we hereby declare that this paper	Mark each		
	1. Has not been used in any other exam at another	box:		
	department/university/university college	1. 🖂		
	2. Is not referring to the work of others without			
	acknowledgement	2. 🖂		
	3. Is not referring to my/our previous work without			
	acknowledgement	3. 🖂		
	4. Has acknowledged all sources of literature in the text and in			
	the list of references	4. 🖂		
	5. Is not a copy, duplicate or transcript of other work			
		5. 🖂		
	I am/we are aware that any breach of the above will be			
3.	considered as cheating, and may result in annulment of the			
	examination and exclusion from all universities and university			
	colleges in Norway for up to one year, according to the <u>Act</u>			
	relating to Norwegian Universities and University Colleges,			
	section 4-7 and 4-8 and Examination regulations section 14 and			
	15.	\boxtimes		
4.	I am/we are aware that all papers/assignments may be checked			
	for plagiarism by a software assisted plagiarism check	\boxtimes		
5.	I am/we are aware that Molde University College will handle all			
	cases of suspected cheating according to prevailing guidelines.	\boxtimes		
6.	I/we are aware of the University College's rules and regulation			
	for using sources	\boxtimes		

Personal protection

Personal Data Act Research projects that processes personal data according to Personal Data Act, should be notified to Norwegian Agency for Shared Services in Education and Research (SIKT) for consideration. Have the research project been considered by SIKT? **□yes ⊠no** - If yes: Reference number: - If no: I/we hereby declare that the thesis does not contain personal data according to Personal Data Act.: 🖂 Act on Medical and Health Research If the research project is effected by the regulations decided in Act on Medical and Health Research (the Health Research Act), it must be approved in advance by the Regional Committee for Medical and Health Research Ethic (REK) in your region. Has the research project been considered by REK? □yes ⊠no - If yes: Reference number:

Publication agreement

ECTS credits: 30

Supervisor: Paulo Cesar Ribas

Agreement on electronic publication of master thesis		
Author(s) have copyright to the thesis, including the exclusive right to publish the document		
(The Copyright Act §2).		
All theses fulfilling the requirements will be registered and published in Brage HiM, with the		
approval of the author(s).		
Theses with a confidentiality agreement will not be published.		
I/we hereby give Molde University College the right to, free of		
charge, make the thesis available for electronic publication:	⊠yes □no	
Is there an agreement of confidentiality?	□yes ⊠no	
(A supplementary confidentiality agreement must be filled in)		
- If yes:		
Can the thesis be online published when the		
period of confidentiality is expired?	□yes □no	
Date:		

Preface

This thesis aims to find a solution for determining the optimal short-term dispatch of support ships in the maintenance of offshore wind farms, thereby reducing costs and improving economic efficiency. It is necessary to find the best route to maintain the turbines for the Service Operating Vessel (SOV) and Crew Transfer Vessel (CTV) to solve this problem by researching and discussing different methods.

When completing my graduation thesis, I need to thank many people.

First, I would like to thank my supervisor, Paulo Cesar Ribas. Without his dedicated help, I would not be able to successfully complete the thesis. In the discussion meeting every week, he patiently guided me and gave a lot of valuable comments and carefully corrected every draft I updated. Thanks a lot for all of that.

Next, I would like to thank my wonderful parents for their unwavering spiritual support; they were solid backing me throughout my studies. I would also like to thank my friends for their company and for helping me ease my homesickness. I could not have done it without their encouragement and support. I am grateful for the opportunity to meet them and want to give my warmest wishes to everyone.

Molde May 22, 2023 Manru Xue

Abstract

With the continuous negative impact of traditional energy sources, the emergence of new sustainable energy sources with many advantages is welcomed by the society. Offshore wind energy is one of the most widely used sustainable energy sources. It has the advantages of cleanness, greenness, sustainability, low operating cost, and space-saving., but the expense of operating and maintaining logistics also puts enormous pressure on wind farm operators to cut costs for generating profitable energy. Improperly planned maintenance operations on large vessels such as Service Operation Vessels (SOV) and Crew Transfer Vessels (CTV) can lead to a low-reliability maintenance plan and high fuel consumption, increasing overall maintenance costs. Therefore, planning offshore wind farms' day-to-day operation and maintenance is a crucial issue. This thesis contains a study of different algorithms combined with the specific conditions of actual cases. By analyzing data from several groups, a set of models for supporting the short-term dispatch of ships in wind farm maintenance is established and implemented using AMPL coding. These models could be used to generate a reliable maintenance plan.

Keywords: Wind Energy, Offshore Wind Farm, Operation and maintenance, Short-term scheduling, Mathematical Modelling.

List of abbreviations:

CTVs	Crew transfer vessels
OWF	Offshore Wind Farm
O&M	Operation and maintenance
SOVs	Service Operation Vessels
SPIV	Self-propelled Installation vessels
GA	Genetic Algorithm
TSP	Traveling salesman problem
MTZ	Miller-Tucker-Zemlin
VRPPD	Vehicle routing problem with pickups and deliveries
VRPTW	Vehicle routing problem time windows
SMRP	Stochastic maintenance routing problem
DSS	Decision Support System

Contents

1.	0 In	troduction	6
	1.1	Description	6
	1.2	Research Objective	8
	1.2.	1 Research questions	8
	1.2.2	2 Research tasks	8
	1.3	Structure of the thesis	8
2.	0 Li	terature review1	0
	2.1	O&M tool: an arc-flow model & a path-flow heuristic method. (Stålhane et al.	
	2015)	10	
	2.1.	1 Arc-flow model 1	.0
	2.1.2	2 Path-flow model 1	0
	2.2	Solve the Routing and Scheduling Problem of a Maintenance Fleet for Offshore	
	Wind	Farms (RSPMFOWF) model (Dawid et al. 2016) 1	.0
	2.3	Genetic Algorithm (GA) (Stock-Williams and Swamy 2019)	. 1
	2.4	Mixed Integer Linear Programming (MILP) Model (Irawan et al. 2021)	. 1
	2.5	OptiRoute (Lazakis and Khan 2021)1	. 1
	2.6	A two-stage stochastic programming model (Stålhane et al. 2016)	2
	2.7	Three-stage stochastic programming model (Gundegjerde et al. 2015) 1	2
	2.8	A new two-stage stochastic programming model (Stålhane et al. 2019) 1	3
	2.9	A Decision Support System (DSS) (Li et al. 2016) 1	3
	2.10	A dual level stochastic fleet size and mix problem for OWF Q&M (Stålhane e	t
	al. 202	21) 1	.3
	2.11	OW turbine O&M: A state-of-the-art review (Ren et al. 2021) 1	.4
	2.12	Location-allocation problem (Manupati et al. 2021)1	.4
	2.13	Miller–Tucker–Zemlin model (MTZ) (Campuzano et al. 2020) 1	5
	2.14	Vehicle routing problem with pickups and deliveries (VRPPD) (Hoff et al.	
	2009)	15	
	2.15	Vehicle Routing Problem with Time Windows (Kallehauge et al. 2005) 1	6
	2.16	Vehicle routing problem with time windows (VRPTW) (El-Sherbeny 2010).	.6
	2.17	A multi-objective maintenance strategy optimization framework for OWF	
	consid	ering uncertainty (Li et al. 2022)1	6
	2.18	Literature Review Summary 1	.7

3.0 General problem description	19		
3.1 Wind Energy	21		
3.1.1 Offshore Wind	22		
3.2 The wind farm introduction	25		
3.3 Offshore wind – operation and maintenance	29		
3.3.1 Improve economic efficiency by reducing costs	31		
3.4 An optimal plan for O&M	32		
4.0 Methods	35		
4.1 Location & Allocation	35		
4.2 TSP (MTZ: Miller-Tucker- Zemlin) with sub-cycle elimination	36		
4.3 VRPPD (Vehicle Routing Problem with Pickups and Deliveries) and Time			
Windows	37		
5.0 Case description	42		
5.1 Doggerbank	42		
5.2 Data	44		
5.2.1 Common data for 3 models	44		
5.2.2 Data for model Task 1	46		
5.2.3 Data for model Task 2	48		
5.2.4 Data for model Task 3	48		
6.0 Results	50		
6.1 Task 1	50		
6.2 Task 2	52		
6.3 Task 3	54		
7.0 Conclusions	57		
7.1 Future works	57		
8.0 References	59		
Appendix 1- Relevant data	62		
Appendix 2- html code for AMPL			
Appendix 2- html code for Solution			

List of Figures

Figure 1 - Energy consumption in the world by source (Source:
https://ourworldindata.org/energy-production-consumption)
Figure 2 - Estimated BAU Air-Pollution Mortalities in 2016 and 2050 by World Region 7
Figure 3 -The types of renewable energy.
(https://c8.alamy.com/comp/H3MMDC/renewable-energy-types-power-plant-icons-
vector-set-renewable-alternative-H3MMDC.jpg)
Figure 4 -How the world's electricity is consumed
Figure 5 -Onshore Wind (Source: https://www.istockphoto.com/photo/windmill-on-hill-
gm501226210-81223513)
Figure 6 -Offshore Wind
Figure 7 -Compound Annual Growth Rate. Source: GWEC Market Intelligence, June 2022
Figure 8 -Market Status 2021. Source: GWEC Market Intelligence, June 2022
Figure 9 - Global offshore map. (Source: https://map.4coffshore.com/offshorewind) 24
Figure 10 -Compound Annual Growth Rate. (Source: GWEC Market Intelligence, June
2022)
Figure 11 -the main components of an OWF: (a) Wind turbines; (b) Collection cables; (c)
Export cables; (d) Transformer station; (e) Converter station; (f) Meteorological mast; (g)
Onshore stations
Figure 12 - How an offshore wind farm works. (Source:
https://bloximages.newyork1.vip.townnews.com/nola.com/content/tncms/assets/v3/editoria
l/e/02/e0213c3e-472b-11ec-866c-6b334608aaf8/6196abd5d5caf.image.gif)
Figure 13 -Effect of wind speed factor on energy. (Source: Kim et al. 2018)
Figure 14 -Effect of wind density factor on energy. (Source: Mokhi and Addaim, 2020). 26
Figure 15 -Shapes of OWF. Source: Rodrigues et al. (2015)
Figure 16 -Location of turbines within the shape. Source: knowablemagazine.org27
Figure 17 -OWF Substation Location. Source: El Mokhi and Addaim, 2020
Figure 18 -Optimized cable routing. Source: El Mokhi and Addaim, 2020
Figure 19 - Cost factors in offshore wind. Source: Renewable UK (2011)
Figure 20 - GL Garrad Hasson's A Guide to UK Offshore Wind Operations and
Maintenance

Figure 21 -Crew transfer

vessels. https://i.ytimg.com/vi/ubwNTWfDOF8/maxresdefault.jpg	30
Figure 22 - Service operation vessels	31
Figure 23 - One-period planning vs multi-period planning	33
Figure 24 - An organization of maintenance accommodations for OWF	34
Figure 25 - Solution Approach	35
Figure 26 - The Dogger Bank Location map. Source: Dogger Bank 2023	42
Figure 27 - The Dogger Bank A Location map. Source: Dogger Bank 2023	43
Figure 28 - The Dogger Bank B Location map. Source: Dogger Bank 2023	43
Figure 29 - The Dogger Bank C Location map. Source: Dogger Bank 2023	44
Figure 30 - The location of the turbines	46
Figure 31 - The schedule of the SOV staying point for the 12 days	51
Figure 32 -The turbines which need to be fixed for each day	52
Figure 33 - The route of the SOV sailing during the 12 days	54
Figure 34 - The location and route of the CTV based on the position of the SOV	55

List of Tables

Table 1 - The location of turbines.	. 45
Table 2 -The maintenance work data.	. 46
Table 3 - The distance between the individual turbines	. 47
Table 4 - The time to be used for each works.	. 48
Table 5 -calculated the distance between the turbine and depot.	. 48
Table 6 -The time of SOV sailing from each turbine	. 48
Table 7 - The work time and number of passengers of for each turbine.	. 49
Table 8 -The total maintenance cost time includes the distance between the turbines	
allocated to each place.	. 50
Table 9 - The schedule of the SOV staying point for 12 days and the turbines to be fixed	l.
	. 51
Table 10 - The minimum total cost of all used edges (including the model running time).	.52
Table 11 - The SOV loading points and route for the period of 12 days	. 53
Table 12 -The route of each CTV.	. 54
Table 13 - The number of Deliver, Pickup, and hours (et) of each CTV	. 55
Table 14 - The total costs for distance of pickups and deliveries of CTV	. 56

1.0 Introduction

With the ongoing development of the global economy, energy consumption is increasing. At the same time, due to the impact of the epidemic that lasted for more than two years, the energy supply has become tighter, and the most direct impact is reflected in the rise in oil and gas energy prices. The resulting increase in production and transportation costs, and even the rise in prices, has led to an increase in people's living costs and a series of adverse effects.

1.1 Description

When we discuss energy mixes today, we consider a wide range of sources, including coal, oil, gas, nuclear, hydropower, solar, wind, and biofuels. Currently, oil provides most of the world's energy consumption, followed by coal, gas, and hydroelectric power. The energy mix is broken down by country in the charts below. First, a higher-level breakdown of fossil fuels, nuclear, and renewable energy is provided. Then there is the breakdown by source, which includes coal, gas, oil, nuclear, hydro, solar, wind, and other renewable energy (including bioenergy, wave, and tidal) (Figure 1).

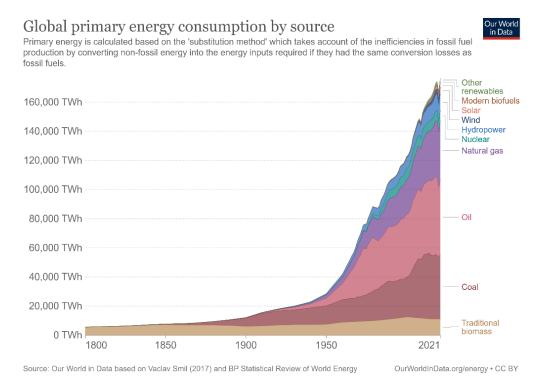


Figure 1 - Energy consumption in the world by source (Source: <u>https://ourworldindata.org/energy-production-</u> consumption)

However, three-quarters of global greenhouse gases come from burning coal, oil, and natural gas. This has caused the warming of the Earth and endangered the living environment of human beings. To avoid global warming of 1.5°C, we must stop at least 80% of all energy and non-energy fossil fuel and biofuel emissions as soon as possible. (Figure 2) (Jacobson, M.,2019)

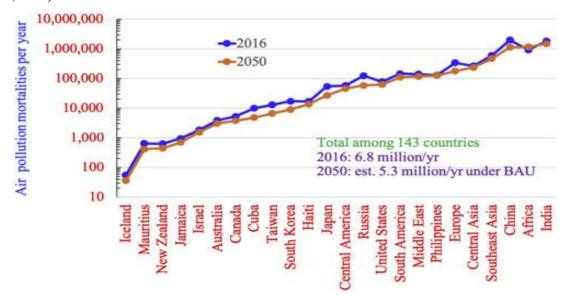


Figure 2 - Estimated BAU Air-Pollution Mortalities in 2016 and 2050 by World Region.

To prevent further deterioration of environmental problems, it is urgent to find a dry-friendly and sustainable energy source to replace fossil fuels. With the continuous exploration by people, several clean and relatively high-value sustainable energy sources have been discovered, including wind energy. Wind energy is a type of energy produced by air currents. In recent years, it has become common to separate between onshore wind power and offshore wind power. However, the effort to explore the offshore wind power industry has intensified due to certain geographical and environmental restrictions on onshore wind power. Although offshore wind power has become very popular, its industrial cost is also high. This includes not only the high manufacturing and installation costs of the turbines but also the associated high maintenance and operating costs (Lazakis and Khan, 2021). Among them, the route planning and scheduling of the daily maintenance fleet is one of the critical factors affecting the overall operation and maintenance cost. Determining an optimal maintenance plan has become a significant challenge for operators.

To solve this problem, we defined mathematical models for creating a maintenance plan for offshore windmills. For example, when there is an offshore wind farm, we need to formulate a plan to optimize daily operation and maintenance to minimize the total maintenance cost.

So assuming that a large service operating vessel (SOV) can carry two smaller crew transfer vessels (CTV) to complete a two-week maintenance mission. The SOV stops at different places every day, and the CTVs need to complete the maintenance tasks of the day and return to the SOV according to the plan. The distribution of maintenance points is random, and different personnel will complete the corresponding work duties. It seems easy to divide the schedule into two parts, one for the SOV and another for the CTVs.

1.2 Research Objective

- Can research on modeling improve the short-term scheduling of SOVs used as the base for CTVs?
- ▶ How can the use of SOVs in wind farm maintenance be improved if it is feasible?

1.2.1 Research questions

- ➢ How to ensure the execution of maintenance tasks at a minimum cost?
- ➤ Is it possible to create a suitable model for solving the short-scheduling problems?
- How should the model be used to optimize the route of vessels in wind farm maintenance?
- Does the model work in a realistic case inspired on Dogger Bank wind farms?

1.2.2 Research tasks

- > Find the maximum number of tasks that can be completed.
- > Find the minimal travel time (delivery time and pickup time).
- Verify the feasibility of the model.

1.3 Structure of the thesis

This work proposes a model for enabling short-term scheduling of wind farm overhaul ships by studying and debating several existing approaches to discover the optimum way to maintain service operation vessel (SOV) and crew transfer vessel (CTV) turbines. The goal is to reduce operational and maintenance costs, which relieves pressure on wind farm operators and increases economic benefits.

The remaining part of the thesis is organized as follows: Section 2 consists of a literature review, and Section 3 states the general problem description. Section 4 shows the methods, the case description is demonstrated in Section 5, and the results are provided in Section 6 before the conclusions are presented in Section 7.

2.0 Literature review

When planning the maintenance of offshore wind farms, it is necessary to find an effective solution to solve the deterministic maintenance problem of offshore wind farms by researching and discussing different methods from many case studies. There are currently several typical optimization methods and simulation tools.

2.1 O&M tool: an arc-flow model & a path-flow heuristic method. (Stålhane et al. 2015)

2.1.1 Arc-flow model

The goal is to find a network path for each ship, minimizing the overall cost of performing maintenance tasks. To address this problem, the paper shows an arc flow model with three sets of variables. Finally, constraints require that the delivery node be visited before the corresponding pickup node, and each x variable must be binary.

2.1.2 Path-flow model

The objective function aims to reduce the sum of the navigation cost and the penalty cost for failing to perform maintenance. Constraints require all maintenance tasks to be completed, or a penalty cost will be incurred. The constraints ensure that each ship sails on precisely one course. Finally, constraints specify that all the y and x variables must be binary. If costs are reduced, the arc flow model allows for a delay in the start of precautionary allocations. To apply the same flexibility to the labeling algorithm, a linear program for each complete path may need to be solved. This means the path flow model must be classified as a heuristic if preventive assignments are included.

2.2 Solve the Routing and Scheduling Problem of a Maintenance Fleet for Offshore Wind Farms (RSPMFOWF) model (Dawid et al., 2016)

This Short-term decision-making O&M tool may save time and resources while extending the effective remediation window.

The model is based on an actual case of offshore wind farms, and it enables efficient resource planning by automating the logistical decision-making process for offshore wind farm maintenance actions. Besides that, models that optimize decision-making may save time and resources while extending the effective repair window. The process produces user-friendly outputs that help visualize the policy, making it appealing to practitioners. This model's application is not limited to CTVs. Helicopters are increasingly common and can also be captured by the model.

2.3 Genetic Algorithm (GA) (Stock-Williams and Swamy 2019)

The goal of this model is to find the best possible transfer plan from a huge set of possible options.

Service orders are prioritized by sorting the reference list based on the decision vector value, and technicians are allocated using a cumulative curve, which must be converted to integer values for technicians. The Princess Amalia study uses only one crew transfer vessel for routine maintenance, based on data provided by Eneco for a case set up for the Princess Amalia wind farm in the Netherlands. This is accomplished by optimizing only small maintenance operations, and because wind farms are relatively small and managed by experienced dispatch teams, newer wind farms can produce higher returns.

2.4 Mixed Integer Linear Programming (MILP) Model (Irawan et al. 2021)

This model is designed to optimize the schedule and route of each vessel (maintenance within a planned period of several days), and the ability of the vessel to transport spare parts. An optimization model and solution method for the deterministic maintenance routing problem were evaluated using nine instances of each case study (based on the reference wind farm scenario developed in the EU FP7 LEANWIND project (http://www.leanwind.eu/) and the Sarnet wind farm in England layout). To deal with uncertain conditions, an SMRP simulation-based optimization algorithm was proposed to solve stochastic problems. This included Monte-Carlo simulations and a proposed combined metaheuristic. Extensive computational experiments were used to evaluate the performance of the proposed stochastic model for the maintenance routing problem under uncertainty (SMRP), making it more applicable to offshore wind farm operations. These models can be mixed with O&M strategic models to provide a more comprehensive decision support framework that takes strategic, tactical, and operational timescales into consideration.

2.5 OptiRoute (Lazakis and Khan 2021)

This tool is used for daily or short-term O&M based on route planning and scheduling while minimizing the cost under different operational constraints.

It is a new optimization heuristic framework for optimal route planning of offshore wind maintenance vessels, utilizing clustering techniques to complete offshore wind turbine maintenance with the lowest number of vessels, combined with climate data, vessel specifications, wind turbine failure/location, cost, pickup and drop-off of technicians, using both Service Operational Vessels (SOVs) and Crew Transfer Vessels (CTVs) to best demonstrate the combination of case studies.

2.6 A two-stage stochastic programming model (Stålhane et al. 2016)

This paper considers the problem of determining the optimal fleet size and mix of ships to support maintenance activities, proposing a two-stage stochastic programming model in which uncertainties in demand and weather conditions are considered. The model is designed to consider the entire lifecycle of an offshore wind farm while still being solvable for realistically sized problem instances, and to determine the cost-optimal mix of fleet size and offshore wind farm O&M activities for long-term planning. Emphasis is placed on developing models that can solve real-scale problem instances. Computational studies have shown that, in some cases, it is valuable to account for uncertainty in demand and weather conditions.

2.7 Three-stage stochastic programming model (Gundegjerde et al. 2015)

This research looks at the fleet size and mixing challenges that arise during offshore wind farm maintenance operations and presents a new three-stage stochastic programming model. In Phases 1 and 2, fleet size and mix decisions are established, and the fleet is deployed to execute maintenance operations in Phase 3. Uncertain parameters include ship spot rates, meteorological circumstances (wind speed and wave height), electricity prices, and failure uncertainty. The model was tested on real-world problem situations, and the results revealed that adopting a stochastic model exceeded the deterministic option. The proposed model can be used to deal with the problem on a large scale and serves as a significant decision-support tool for offshore wind farm operators. It can be used to establish not just the mix of vessel fleet size and O&M activities, but also to evaluate vessel willingness to pay and the potential cost savings of sharing a fleet with another offshore wind farm.

2.8 A new two-stage stochastic programming model (Stålhane et al. 2019)

This paper analyzes the topic of identifying the ideal fleet to support offshore wind farm maintenance operations, presenting a two-stage stochastic programming (SP) model of the problem to determine the optimal fleet to minimize an offshore wind farm's total O&M cost. The first step is to decide which bases to use and which ships to charter on long and short-term contracts. The daily deployment of a given fleet is modeled in the second stage using an ad hoc Dantzig-Wolfe decomposition to derive an estimate of ship operating costs and wind farm downtime costs. The model accounts for weather uncertainty as well as the rate of remedial O&M actions. The model presented in this work was created in partnership with the Norwegian offshore wind operators Equinor (previously Statoil) and Statkraft, and it has been used to give decision support during the development phase of multiple offshore wind farms.

2.9 A Decision Support System (DSS) (Li et al. 2016)

The paper describes a Decision Support System (DSS) for optimizing maintenance costs at an offshore wind farm (OWF). The DSS is intended for usage by numerous stakeholders in the OWF sector with the general purpose of guiding maintenance strategy and hence lowering total OWF lifecycle maintenance costs. The DSS is supported by two optimization models. The first is a deterministic model designed for stakeholders that have access to accurate failure rate data. The second is a stochastic model designed for stakeholders with less certainty regarding failure rates. As an example, solutions for both models are shown using a UK OWF that is currently under construction. By comparing the findings of the two models, conclusions about the value of failure rate data are reached. The turbine failure rate frequency and number of turbines at the site are subjected to sensitivity analysis, with nearlinear trends identified for both. Finally, overall conclusions are presented in the context of OWF maintenance planning.

2.10 A dual level stochastic fleet size and mix problem for OWF Q&M (Stålhane et al. 2021)

The paper investigates the issue of two-tier fleet sizing and mixing to support offshore wind farm O&M activities. The goal is to investigate strategic fleet sizing and blending challenges for offshore wind farm maintenance. For reducing the expense of performing maintenance

at one or more wind farms, a mathematical model for a two-level stochastic programming model was proposed, that the model includes both strategic and operational level uncertainties, taking into consideration both short-term operational uncertainty and longterm strategic uncertainty. Furthermore, the authors develop an ad-hoc integer-shaped method with a custom optimal cut for the main problem and symmetry-breaking constraints and effective inequalities for the subproblems. The model supports wind farm owners in making strategic decisions regarding the number, arrangement, lease term, and charter type to meet maintenance needs throughout the lifecycle of the wind farm.

2.11 OW turbine O&M: A state-of-the-art review (Ren et al. 2021)

This article analyzes the most recent OWT maintenance research, including strategy selection, schedule optimization, field operations, maintenance, evaluation criteria, recycling, and environmental challenges. In the paper, summarizing and comparing numerous ways, meanwhile, the limitations of OWT operation and maintenance research, as well as the lack of industrialization development, are discussed. Furthermore, the negative impact of offshore maintenance on marine animals, greenhouse gas emissions, and waste recovery are reviewed. Finally, attractive topics for future maintenance strategy development are indicated. It also serves as a foundation for developing maintenance strategies for future offshore wind-generating deployments. OWT maintenance research develops and accumulates in tandem with technical advancement and theoretical innovation in a variety of related fields. These technologies and their use are gradually lowering electricity costs while increasing market competition for offshore wind power.

2.12 Location-allocation problem (Manupati et al. 2021)

This research discusses the issue of convalescent plasma banking facility location allocation. It recommends a novel plasma supply chain model that takes into consideration stochastic parameters impacting plasma demand as well as the plasma supply chain's distinctive properties. It develops an effective mixed integer linear programming (MILP) model by balancing two conflicting objective functions: the minimization of total plasma transit time and the overall cost of the plasma supply chain network, which includes inventory costs to reduce waste. The MILP function is then solved using a CPLEX-based optimization approach. A comparative analysis using the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) and the suggested modified NSGA-III confirms the practicality of the results. The suggested model's applicability is assessed by implementing it in a real-world case study

in India. The optimized numerical results, as well as their sensitivity analyses, offer decisionmakers significant decision support. Furthermore, plausibility and sensitivity analyses were carried out to explore the impact of random parameters on solution quality. The optimized numerical results, as well as their sensitivity analyses, provide decision-makers with significant decision support.

2.13 Miller-Tucker-Zemlin model (MTZ) (Campuzano et al. 2020)

In this paper, an easy-to-implement algorithmic approach is proposed for improving the computational performance of the Miller–Tucker–Zemlin (MTZ) model of the asymmetric traveling salesman problem (ATSP) by efficiently generating efficient inequalities from fractional solutions. It can help practitioners solve real-life problems to a near-optimal degree using standard optimization solvers and may help solve various routing problems using MTZ-type subtours to eliminate constraints, greatly improving the performance of MTZ-based formulations performance and obtain solutions that are competitive with those reported by recent state-of-the-art metaheuristics. This approach can also be extended to speed up other well-known ATSP models reported in the literature and can be used to enhance ranking-based models reported for multiple asymmetric traveling salesman problems.

2.14 Vehicle routing problem with pickups and deliveries (VRPPD) (Hoff et al. 2009)

This article is based on the case study of Oskar Sylte, a Norwegian beverage distributor. Taking into consideration the vehicle routing issue for pickup and delivery (VRPPD), where the same customer may require both delivery and pickup, a tabu search heuristic capable of generating lasso-solutions for the pickup and delivery vehicle routing problem is developed. The results of tests on a set of 35 examples demonstrate that, while generic solutions assaulted other solution types in terms of cost, their computation can be time-consuming. In general, an optimum lasso solution obtained within a certain time constraint exceeds an ideal general solution developed with the same computational effort. If each customer is replicated and the Hamiltonian route is built on the expanded graph, it can also produce a general solution where the same customers can be visited twice without the exact lasso structure of the solution. In practice, some organizations prefer to use lasso methods because they facilitate the handling of goods within the vehicle.

2.15 Vehicle Routing Problem with Time Windows (Kallehauge et al. 2005)

In this book chapter, the Vehicle Routing Problem with Time Windows is covered along with its mathematical model, organizational structure, and decomposition options. It includes the master problem and the subproblem, respectively, for the column generation method, shows a branch-and-bound framework and discusses acceleration techniques for branch-and-price approaches. Additionally, it discusses how the issue can be extended as well as gives computational outcomes for the traditional Solomon test sets. It has emphasized the important advancements for the VRPTW's best column generation techniques. The best-performing algorithms up to the publication date are those that apply to branch and cutting to solutions found using Dantzig-Wolfe decomposition. For this class of issues, valid inequalities have shown to be a crucial tool in supporting LP relaxation.

2.16 Vehicle routing problem with time windows (VRPTW) (El-Sherbeny 2010)

In this paper the vehicle routing problem with time windows (VRPTW) is reviewed together with certain limited exact methods, heuristics, and metaheuristics. Many areas of mathematics, computer science, and operations research use this problem as a model. The solution methods help managers in making decisions with their strong solutions that deliver high-quality answers to crucial applications in business, engineering, economics, and science in reasonable time frames. There are several constrained variations of the many approximate methods, including precise, heuristic, and metaheuristic approaches.

2.17 A multi-objective maintenance strategy optimization framework for OWF considering uncertainty (Li et al. 2022)

This research develops a general structure for combining maintenance techniques, decisionmaker goals, and uncertainty modeling. The model takes into consideration uncertainties such as the stochastic nature of failure times, differences between actual and expected failure times of components, and unreliable maintenance effects. In the face of uncertainties, the suggested framework is applied to a basic 150 MW offshore wind farm in the North Sea, where the performance of the maintenance strategy deteriorates, and the solution exhibits wider dispersion. The proposed optimization framework is a useful decision-making tool for guiding long-term maintenance strategies for offshore wind farms in real-world conditions with considerable uncertainty. This method, in comparison to previous studies, is built for a more realistic maintenance decision-making environment, with the goal of measuring the influence of uncertainty on maintenance performance and presenting a set of maintenance methods.

2.18 Literature Review Summary

A large body of literature, including (Stålhane et al., 2015), (Stålhane et al., 2016), (Gundegjerde et al. 2015), (Stålhane et al., 2019), and (Stålhane et al., 2021). (Irawan et al., 2021) is based on expected turbine failure and optimally simulated operation planning for a wind farm's whole lifecycle.

Similar to the traveling salesman issue used for offshore wind farm route planning, (Stock-Williams and Swamy, 2019) provide a meta-heuristic optimization method to identify the strengths and weaknesses of any maintenance program and provide an estimate of the investment in implementation.

(Dawid et al., 2016) studied an O&M tool for short-term decision-making that saves time and costs while extending the effective remedy window. (Lazakis and Khan, 2021) create a novel optimization heuristic framework for daily or short-term operations based on route planning and scheduling, with the goal of reducing costs under various operational constraints. (Li et al., 2016) developed a decision support system (DSS) to reduce OWF maintenance costs. The DSS is designed to be used by a broad range of stakeholders in the OWF industry to guide maintenance strategies, eventually reducing the overall cost of OWF life cycle maintenance.

(Irawan et al., 2021) suggested an optimization approach for solving stochastic issues under unknown situations based on SMRP simulation. The model was created to optimize each ship's repair schedule and route over a period of many days, as well as the ship's ability to transfer spare parts. (Li et al., 2022) provided an optimization methodology to guide longterm maintenance strategies for offshore wind farms under actual settings with significant uncertainty. In comparison to earlier research, this technique is established for a more realistic maintenance decision-making environment, with the goal of quantifying the influence of uncertainty on maintenance performance and providing a set of maintenance methods.

(Ren and colleagues, 2021) The newest OWT maintenance research is examined in this study, including strategy selection, schedule optimization, field operations, maintenance, evaluation criteria, recycling, and environmental challenges. This paper analyzes the

constraints of OWT operation and maintenance research as well as the lack of industrialization progress while describing and comparing different methodologies.

(Manupati et al., 2021) offer a novel plasma supply chain model that creates an efficient Mixed Integer Linear Programming (MILP) model by balancing two opposing objective functions. It also serves as the foundation for the model developed in Section 4.1 of this article.

(Campuzano et al., 2020) provide a simple algorithmic strategy for improving the computation of the Miller-Tucker-Zemlin (MTZ) model of the Asymmetric Traveling Salesman Problem (ATSP) by effectively generating efficient inequalities from fractional solution performance. This strategy is used to generate the model in Section 4.2 of this study. Different phases of research on the vehicle routing problem with time windows (VRPTW) have been conducted (Kallehauge et al., 2005), (El-Sherbeny, 2010). The models provided in the literature provide useful inspiration for the development of the 4.3 model in this paper.

3.0 General problem description

Based on such the urgent situation, the Paris Agreement (UN 2015) was proposed and passed at the 21st United Nations Climate Change Conference (Paris Climate Conference) on December 12, 2015, and officially implemented on November 4, 2016. The agreement is a binding international treaty about climate change signed by 178 countries around the world, and it is a unified arrangement for global actions to deal with climate change after 2020. The Paris Agreement has 29 articles, including goals, mitigation, adaptation, loss and damage, funding, technology, capacity building, transparency, and global stocktaking. The agreement states that all parties will strengthen the global response to the threat of climate change, control the increase in the global average temperature above the pre-industrial level within 2 degrees Celsius, and strive to control the temperature rise within 1.5 degrees Celsius. Only when the world reaches the peak of greenhouse gas emissions as soon as possible and achieves net-zero emissions of greenhouse gases in the second half of this century can we reduce the ecological risks brought by climate change to the Earth and the survival crisis brought to human beings. (UN 2015)

Faced with so many situations, the world is beginning the transition to clean, renewable energy. The development of sustainable energy would be an effective way to change energy demand.

There are many types of renewable energy, the most common of which are the following (Figure 3):

- > Hydropower
- Wind energy
- > Solar
- ➢ Bio-power
- Geothermal
- Ocean power

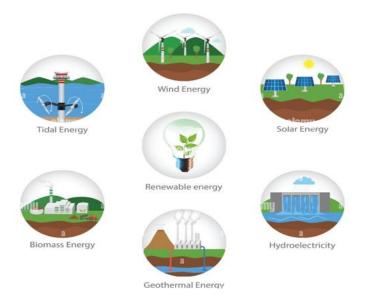


Figure 3 -The types of renewable energy. (https://c8.alamy.com/comp/H3MMDC/renewable-energy-types-power-planticons-vector-set-renewable-alternative-H3MMDC.jpg)

Figure 4 shows the distribution between different energy sources. About 30 percent of the world's electricity comes from renewable energy, including hydropower, solar and wind among others:

ELECTRICITY

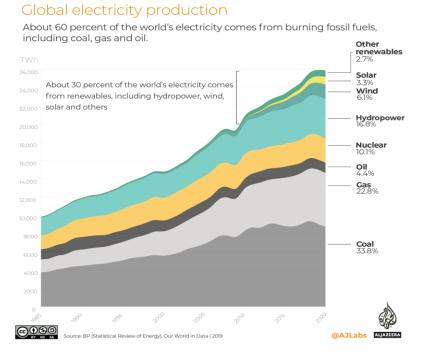


Figure 4 -How the world's electricity is consumed.

(Source: https://www.aljazeera.com/news/2022/1/20/interactive-how-much-of-your-countrys-electricity-is-

renewable-infographic)

According to Figure 4, we can see that wind energy is an important source of renewable energy, which is in line with the values of sustainable development.

Also, Wind Energy has many pros:

- Clean, Green, and Renewable source of energy
- Low running costs
- Space efficient source of energy
- Jobs Opportunities
- ➢ Freely available
- Reduces dependency on conventional fuels

3.1 Wind Energy

There are two main ways of wind power generation, one is onshore wind power as shown in Figure 5 and the other is offshore wind power as shown in Figure 6.

Figure 5 -Onshore Wind (Source: <u>https://www.istockphoto.com/photo/windmill-on-hill-gm501226210-</u> <u>81223513</u>)

Figure 6 -Offshore Wind

(Source: <u>https://www.istockphoto.com/photo/wind-turbines-in-an-offshore-wind-park-producing-electricity-</u> <u>during-sunset-gm1341414270-421170885</u>)

However, onshore wind power has some negative issues such as geographical limitations and impact on the environment, and hence, offshore wind power has many advantages (Baidu 2022):

- The wind conditions at sea are good.
- The equipment is conveniently transported, and the power generation efficiency is high.
- The utilization rate of wind power is higher.
- No land occupation, no disturbance to the people.

3.1.1 Offshore Wind

Based on the benefits mentioned above, countries have gradually shifted from onshore wind power to offshore wind power in recent years, and, as technology develops, costs fall, and political support grows, global investment in offshore wind energy is expected to rise in the coming decades. (Figure 7) New offshore installations 2006-2021 (MW)

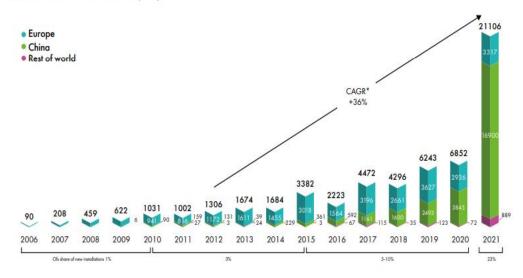


Figure 7 -Compound Annual Growth Rate. Source: GWEC Market Intelligence, June 2022

Market Status 2021

Figure 8 -Market Status 2021. Source: GWEC Market Intelligence, June 2022

From Figure 8 and Figure 9, we can know clearly about the market status of Global distribution of offshore wind farms.

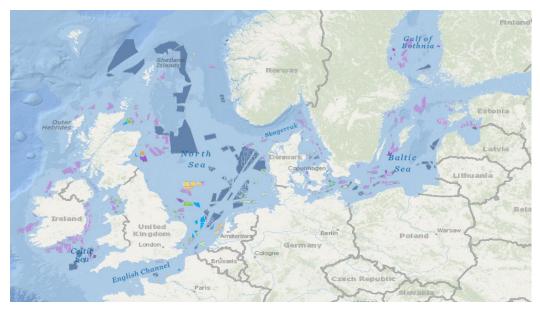
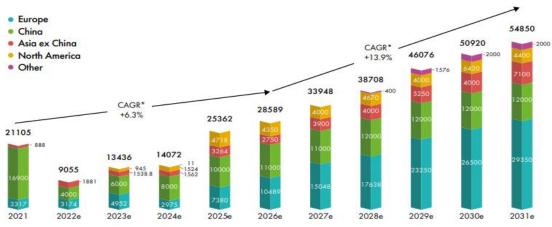
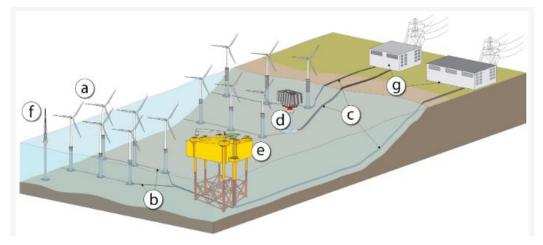



Figure 9 - Global offshore map. (Source: https://map.4coffshore.com/offshorewind)

At the UN climate change conference COP26 in 2021, global commitments to net zero gained any traction. Coupled with the renewed policy urgency for achieving energy independence from Russian oil and gas - and overall fossil fuel volatility - caused by Russia's invasion of Ukraine, the global offshore wind market outlook looks extremely promising in the medium and long term. As shown in Figure 10, with a compound annual growth rate of 6.3% until 2026 and 13.9% until the beginning of the next decade, new installations are expected to exceed 30 GW in 2027 and 50 GW by the end of this decade.

New offshore installations, global (MW)


Figure 10 -Compound Annual Growth Rate. (Source: GWEC Market Intelligence, June 2022)

Nowadays, OW always faces many logistical challenges. For example, increasing sizes of wind turbine components, increasing distances from the coast, deeper water, larger sites for assembly and storage in ports, limited numbers of specialized vessels and fleet spread, long-term and multi-period planning, construction and operation in the same area, tasks

performed in parallel, simultaneous planning of cargo and personnel, materials breakdown and failures, weather uncertainty factors, and emergency issues, etc.

3.2 The wind farm introduction

An electric power plant includes a few turbines that are linked to an internal grid for power transfer, one or more offshore substations, and an export cable that transmits power to the local grid. (Figure 11 and Figure 12)

Figure 11 -the main components of an OWF: (a) Wind turbines; (b) Collection cables; (c) Export cables; (d) Transformer station; (e) Converter station; (f) Meteorological mast; (g) Onshore stations.

(Source: Rodrigues at al. (2016))

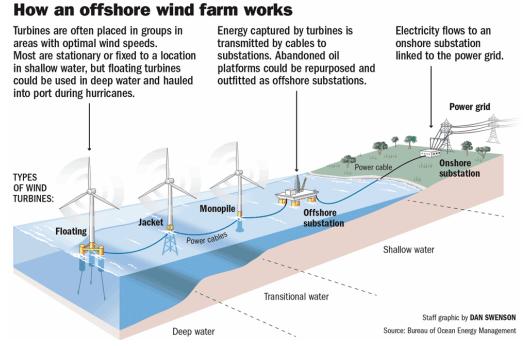


Figure 12 - How an offshore wind farm works. (Source:

https://bloximages.newyork1.vip.townnews.com/nola.com/content/tncms/assets/v3/editorial/e/02/e0213c3e-472b-11ec-866c-6b334608aaf8/6196abd5d5caf.image.gif An important part considered for an Offshore Wind Farm (OFW) is early design, it includes:

- Total farm capacity
- Site location (area) selection
- Shape selection
- Orientation selection
- Location of turbines within the shape
- Cable layout selection

For the Site location (area) selection, turbine parameters/model, distance from shore, and response to wind speed (Figure 13) and wind direction (Figure 14) should be considered.

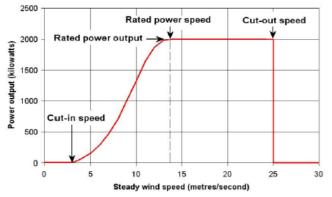


Figure 13 -Effect of wind speed factor on energy. (Source: Kim et al. 2018)



Figure 14 -Effect of wind density factor on energy. (Source: Mokhi and Addaim, 2020)

There are many shapes of OWF (Figure 15), it depends on different project.

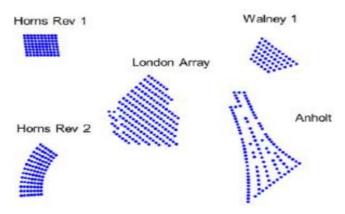


Figure 15 -Shapes of OWF. Source: Rodrigues et al. (2015)

Floating wind turbines may require joint optimization of location and wind direction response:

When a wind turbine is going to be connected other turbines in a wind farm, its efficiency is reduced. A wind turbine behind another turbine, particularly, is strongly influenced if the distance between the two turbines in the wind direction is insufficient. As a result, location selection is vital.

Location of turbines within the shape (Figure 16):

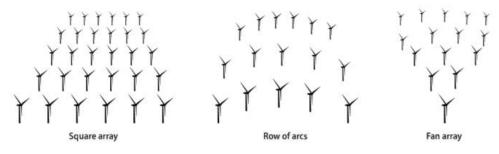


Figure 16 -Location of turbines within the shape. Source: knowablemagazine.org

OWF Substation Location: (Figure 17)

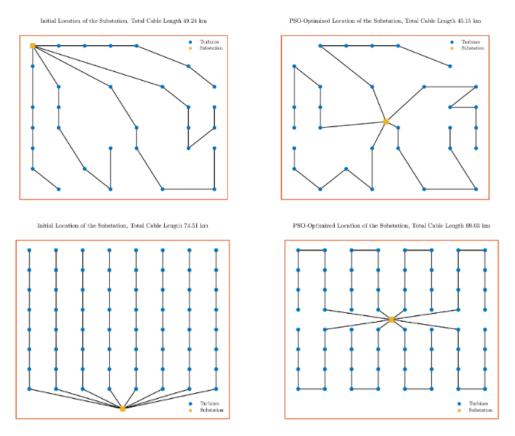


Figure 17 -OWF Substation Location. Source: El Mokhi and Addaim, 2020

For a wind farm with already optimized substation location, the optimizing of the collector topology (cable routing) is found as a solution to the single-depot Multiple Hamiltonian Path Problem. (Figure 18)

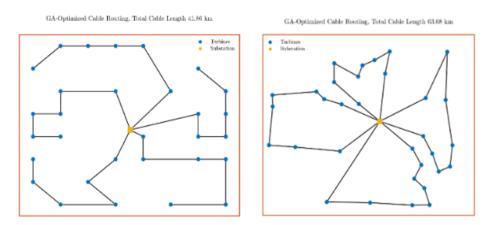


Figure 18 -Optimized cable routing. Source: El Mokhi and Addaim, 2020

Offshore wind farms are currently being installed away from the coast in search of locations that meet space and wind conditions to increase energy production. These locations may be suitable for the deployment of wind turbines and have optimal conditions for energy production, but the logistics of carrying out operations and maintenance are becoming increasingly complex. Wind farm operators are under considerable pressure to cut costs to make energy production profitable.

3.3 Offshore wind – operation and maintenance

Apart from continuous technological development, how to reduce costs more effectively has become an important topic for the development of offshore wind power. Offshore wind construction includes two main phases: Construction and Operation and Maintenance. And different phases have different logistics needs. The key elements of energy costs are Turbine, O&M, Installation, Foundation, Electrical, and Project. Figure 19 shows that O&M is the second largest element in among the energy costs.

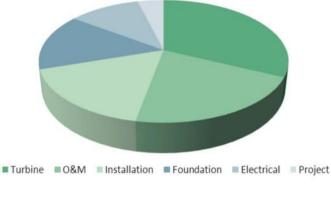


Figure 19 - Cost factors in offshore wind. Source: Renewable UK (2011)

Figure 20 shows an overview of activities within operations and maintenance for offshore wind parks.

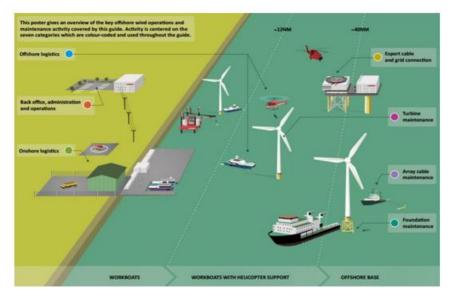


Figure 20 - GL Garrad Hasson's A Guide to UK Offshore Wind Operations and Maintenance.

OWF typically requires two types of vessels: installation vessels and heavy-lift vessels. Installation vessels include lifeboats, jack-up barges, self-propelled installation vessels (SPIV), and heavy-lift vessels. The other category is cable laying vessels, which includes export cable laying vessels such as inner-array cable laying vessels (modified offshore supply vessel, and main installation vessel and export cable vessel can be used). Also, there are some common vessel types that can be used at the OWF: tugs, dive support, multicast, scour protection vessels, crew transfer vessels (CTV), and service operation vessels (SOV). Features of the vessel types of CTV and SOV used for O&M of wind farms are shown below:

- Crew transfer vessel (CTV) (Figure 21)
 - The "traditional" wind farms have been supporting:
 - Wind farm close to shore; usually between 0 and 60 km
 - CTVs are small:
 - 8-12 passengers
 - Little cargo (enough to support 1 day of work)
 - Relatively high sensitivity to waves (max approx. 1,0-1,2 m)
 - Straightforward logistics planning:
 - 1-day separate vessel logistics planning
 - Economic consequences of non-optimal planning are low

Figure 21 -Crew transfer vessels. <u>https://i.ytimg.com/vi/ubwNTWfDOF8/maxresdefault.jpg</u>

Service Operation Vessels (SOV) (Figure 22)

- The "new" wind farms will be supporting in the future:
 - Wind farm far from shore; usually between 60 and 300 km
 - SOVs are large:
 - 60-80 passengers
 - Large quantity of cargo (enough to support 14 days of work)
 - Less sensitivity to waves (max approx. 3,0-3,5 m)
 - Complex logistics planning:
 - 2-weeks joint SOV daughter craft helicopter logistics planning
 - Economic consequences of non-optimal planning are high
 - Introduction of the "Service Train & Pit Stop" logistics philosophy

Figure 22 - Service operation vessels

(Source: <u>https://i.guim.co.uk/img/media/b784d5303b245fdb4de93beb5720e375e7d39ef0/0_0_4762_2859/master/4762.j</u>pg?width=1200&height=900&quality=85&auto=format&fit=crop&s=39e8faa29c087d0b0b30513e08862c80)

3.3.1 Improve economic efficiency by reducing costs

Offshore wind farms are currently being installed away from the coast in search of locations that meet space and wind conditions to increase energy production (World-Energy, 2022). These locations may be suitable for the deployment of wind turbines and have optimal conditions for energy production, but the logistics of carrying out operations and maintenance are becoming increasingly complex. Wind farm operators are under considerable pressure to cut costs to make energy production profitable. Maintenance operations are one of the most expensive components of an offshore wind farm, accounting for up to 25% of the total costs (Stålhane, 2015).

Offshore wind power has a longer industrial chain than onshore wind power. As a result, there is more room for cost-cutting and efficiency improvement. The offshore wind power industrial chain includes pre-coordination work, main engine equipment during project construction, electrical (offshore boost), power transmission (cable), installation and construction, and so on, as well as project operation and maintenance. Every day, wind farm operators make logistical decisions that necessitate the efficient use of resources to maximize wind turbine availability. Due to multiple constraints such as weather, type of failure, and available vessels and technicians, deciding which turbines to maintain, the order in which to access them, and the route of the vessel is difficult. Poor maintenance operations planning on large vessels such as Service Operation Vessels (SOVs) and Crew Transfer Vessels (CTVs) can result in high fuel consumption, increasing overall maintenance costs and, more importantly, contributing to the carbon footprint of offshore wind farms. As a result, planning the day-to-day operation and maintenance of offshore wind farms is a key but complex and difficult problem. To solve this problem, it is necessary to find the best route to maintain the turbines for the Service Operating Vessel (SOV) and Crew Transfer Vessel (CTV) to minimize the total cost. It apart from continuous technological development, how to reduce costs more effectively has become an important topic for the development of offshore wind power.

3.4 An optimal plan for O&M

The main goal for the case is to use them to find an optimal plan for O&M. It can be divided into Tactical Maintenance Planning and Strategic Maintenance Planning.

For Tactical Maintenance Planning should achieve the following goals:

- Transportation of technicians and spare parts from onshore port(s) or offshore station to individual wind turbines by vessels or helicopters to perform a set of maintenance tasks.
- For each route with a schedule should be designed to access a set of turbines including several types of technicians (electrical, mechanical, etc.) required by the vessel.
- The objective is to minimize maintenance costs including turbine downtime costs. Each maintenance task consists of delivery of personnel and a subsequent pickup.
- Each task may require several visits to complete.
- Tasks may be performed in parallel.

It can be considered into two types, One-period planning, and multi-period planning. (Figure 23)

For the One-period planning:

- Daily Routing planning.
- Vessels return to base at the end of the day.

And for Multi-period planning:

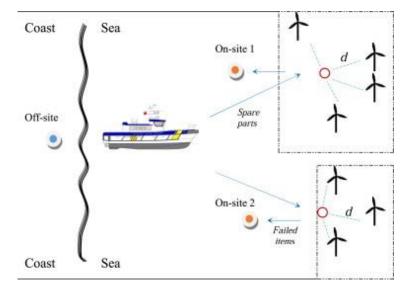
- Multi-day planning
- Vessels can return or stay offshore for several days.

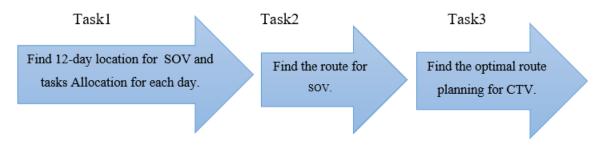


Figure 23 - One-period planning vs multi-period planning

For Strategical planning one should consider

- Annual or longer time horizon.
- ➢ Fleet size and mix.
- > Other strategic decisions to be considered.
- ➤ Analyses to conduct, for example:
 - How does the distance from shore influence the fleet choices?
 - How does vessel capabilities (wave height compatibility) influence the downtime costs.
 - How to plan preventive maintenance. (Figure 24)




Figure 24 - An organization of maintenance accommodations for OWF.

(Source: https://ars.els-cdn.com/content/image/1-s2.0-S0960148114007605-gr4.jpg)

4.0 Methods

First, we set up a research project on improving the short-term scheduling of wind farm maintenance ships. We analyze a maintenance cycle of 12 days, using one SOV and two CTVs as maintenance ships, and define a mathematical model to solve with AMPL for finding the best sailing route for daily maintenance ships.

The overall case is divided into three tasks:

In task 1, we will use the wind farm location data, assuming the working cycle and working time and obtaining a 12-day location of the SOV through the model. This includes a grouping of the turbines that must be repaired each day (Allocation). Next, in task 2, based on the position data of the wind turbines, the model will find the optimal route for the 12day stops for the SOV is obtained. Task 3 consists of finding the optimal routing for the CTVs by considering the tasks location, the number of people, and the working time of the operations defined for the single days obtained in the previous steps.

The following sections contain a further explanation of the three created models.

4.1 Location & Allocation

For Task 1, we aim to find a 12-day schedule for the SOV. The mathematical model is created based on the Location & Allocation Problem. (Manupatiet et al., 2021). Sets and parameters:

P: Set of turbines where there are tasks to be done and where it is possible for the ship to stay a day.

 W_i : Time spent to performer task j

 a_{ii} : The distance between two turbines

Maximum distance allowed between task and site max_a: n:

The number of chosen sites

Variables:

s:

$$\begin{split} X_{ji} &= \begin{cases} 1 & if \ task \ j \ is \ served \ by \ site \ i, \ (i, j) \in P \\ 0 \ otherwise \end{cases} \\ Y_i &= \begin{cases} 1 & if \ i \ s \ used \ as \ a \ site \ for \ the \ mother \ ship, \ i, j \in P \\ 0 \ otherwise \end{cases} \end{split}$$

The objective function aims to minimize the total maintenance cost time, which includes the distance between two turbines spent to perform task j. The objective function is expressed as follows:

$$\min \sum_{i \in P} \sum_{j \in P} a_{ij} w_j X_{ji}$$
(1.1)

Constraints

$Y_i \ge X_{ji}$	$\forall (i,j) \in P$	(1.2)
$\sum_{i \in P} Y_i = n$	$\forall i \in P$	(1.3)
$\sum_{i\in P} X_{ji} = 1$	$\forall (i,j) \in P$	(1.4)
$\sum_{j \in P} w_j X_{ji} \le s$	$\forall \ (i,j) \in P$	(1.5)

$$a_{ij}X_{ji} \le \max _a \quad \forall \ (i,j) \in P \tag{1.6}$$

Constraint (1.2) makes sure that a task cannot be served by a site unless the site is established.

Constraint (1.3) ensures that the number of turbines to be located is fixed.

Constraint (1.4) ensures that a turbine can be assigned to only one location site.

Constraint (1.5) ensures that time spent on performer task j should be less or equal to the net available working time for each day on the ship.

Constraint (1.6) ensures that the distance between two turbines should be less than or equal to the maximum distance allowed between the task and the site.

4.2 TSP (MTZ: Miller-Tucker- Zemlin) with sub-cycle elimination

Task 2 is used to find the location for the SOV based on the solution of Task 1 by including the Miller-Tucker-Zemlin (MTZ) Campuzano et al. 2020) sub-cycle prohibiting constraints. Sets and parameters:

A: The set of arcs
cost_A: time spent to performer task j
N: The number of nodes
Variables

 $X_{ji} = \begin{cases} 1 & if arc (i,j) is used, (i,j) \in N \\ 0 & otherwise \end{cases}$

 y_i : where y_i are continuous variables interpreted as the number of units of load after visiting node i

The objective function

$$\min \sum_{(i,j)\in A} c_{ij} X_{ij} \tag{2.1}$$

Constraints

2)
)

$$\sum_{(i,j)\in A} x_{ij} = 1, \ \forall j \in N$$

$$x_{ij} \in \{0,1\}, \ \forall (i,j) \in A$$
(2.3)
(2.4)

$$y_j \ge y_i + 1 + (n-1)(x_{ij} - 1) \ \forall \ (i,j) \in N$$
 (2.5)

The objective function (2.1) expresses that we need minimize the total costs for all used edges.

Constraints (2.2) represent that in the solution out from every node i there must go exactly one arc.

Constraints (2.3) represent that there must go exactly one arc into each node.

Constraints (2.4) x_{ij} decision variables should be binary (1 if arc (i, j) is used, 0 otherwise).

Constraints (2.5) represent the connectivity requirements.

4.3 VRPPD (Vehicle Routing Problem with Pickups and Deliveries) and Time Windows

According to the last two tasks, we created the Task 3 by researching the route planning. The mathematical model to find the route to CTVs for each day.

Sets

K: The *set of vehicles k* Parameters n: number of customers į

m: number of vehicles k

 $cost_A$: travel costs along the arc $(i, j), A \in ARCS$

d_i: demand to delivery passengers at i

pi: demand to pick up passengers at i

Qk: capacity of vehicles k

 t_{ij} : time to travel form i to j + time to delivery (or pickup) the passengers at point j

et_i: time to performe (execute) the task i

M: big number.

Variables:

 $x_{i,i,k}$: route variable i, j locations and k vehicle

 $\begin{aligned} y_{ik} &= \begin{cases} 1 & if \ the \ vehicle \ k \ performs \ delivery \ at \ i, \ i \in 1..2n, k \in K \\ 0 & otherwise \end{cases} \\ z_{ik} &= \begin{cases} 1 & if \ the \ vehicle \ k \ performs \ pick \ up \ at \ i, \ i \in 1..2n, k \in K \\ 0 & otherwise \end{cases} \\ w_{ik} &= \begin{cases} 1 & if \ the \ vehicle \ k \ performs \ pick \ up \ or \ delivery \ at \ i, \ i \in 1..2n, k \in K \\ 0 & otherwise \end{cases}$

rik: integer, sequence of visit of vehicle k at i

vik: delivery load of vehicle k, in poin i

uik: pickup load of vehicle k, in point i

 s_{ik} : the time when vehicle k starts to service turbine i.

sd_i: the time when the delivery service in turbine i starts.

sp_i: the time when the pick-up service in turbine i starts.

The objective function

$$\min \sum_{k \in K} \sum_{i=0}^{2n} \sum_{j=0}^{2n} \cos t_{ij} x_{ijk}$$
(3.1)

Constraints

$$\sum_{j=1}^{2n} x_{0jk} = 1, \forall k \in K$$
(3.2)

$$\sum_{j=0}^{2n} x_{ijk} = \sum_{j=0}^{2n} x_{jik}, \forall i \in 0..2n; k \in K$$
(3.3)

$$\sum_{k \in K} \sum_{j=0}^{2n} \sum_{ijk}^{j
(3.4)$$

$$\sum_{j=0}^{2n\,[j<>i]} x_{ijk} \ge y_{ik}, \forall i \in 1..2n, \forall k \in K$$

$$(3.5)$$

$$\sum_{j=0}^{2n \, [j<>i]} x_{ijk} \ge z_{ik}, \forall i \in 1..2n, \forall k \in K$$
(3.6)

$$u_{0k} = 0, \forall k \in K \tag{3.7}$$

$$u_{jk} \ge u_{ik} + p_j z_{jk} - (1 - x_{ijk}) * Q_k , \forall i \in 0..2n; j \in 1..2n; k \in K$$
(3.8)

$$u_{jk} \le u_{ik} + p_j z_{jk} + (1 - x_{ijk}) * Q_k , \forall i \in 0..2n; j \in 1..2n; k \in K$$
(3.9)

$$v_{0k} = \sum_{i=1}^{n} d_i y_{ik} \quad , \forall \ k \ \in K$$
(3.10)

$$v_{jk} \ge v_{ik} - d_j y_{jk} - (1 - x_{ijk}) * Q_k , \forall i \in 0..2n; j \in 1..2n; k \in K$$
(3.11)

$$v_{jk} \le v_{ik} - d_j y_{ik} + (1 - x_{ijk}) * Q_k , \forall i \in 0..2n; j \in 1..2n; k \in K$$
(3.12)

$$0 \le u_{ik} + v_{ik} \le Q_k , \forall i \in 0..2n; k \in K$$
 (3.13)

$$x_{ijk} \le y_{ik} + z_{ik} , \forall i \in 1..2n; \ j \in 0..2n; \ k \in K$$
(3.14)

$$s_{ik} + t_{ij} - M(1 - x_{ijk}) \le s_{jk} , \forall i \in 1..2n; \forall j \in 0..2n; k \in K$$

$$(3.15)$$

$$t = M(1 - x_{ijk}) \le s_{ijk} , \forall i \in 1..2n; k \in K$$

$$(3.16)$$

$$t_{0j} - M(1 - x_{0jk}) \le s_{jk} , \ \forall j \in 1..2n; \ k \in K$$
(3.16)

$$sd_i \ge s_{ik} - M(1 - y_{ik}), \forall i \in 1..2n; k \in K$$
 (3.17)

$$sd_i \le s_{ik} + M(1 - y_{ik}), \forall i \in 1..2n; k \in K$$
 (3.18)

$$sd_i + et_i \le sp_{i+n}, \forall i \in 1..n$$
(3.19)

$$sp_i \ge s_{ik} - M(1 - z_{ik}), \forall i \in 1..2n; k \in K$$
 (3.20)

$$sp_i \le s_{ik} + M(1 - z_{ik}), \forall i \in 1..2n; k \in K$$
 (3.21)

$$w_{ik} \ge z_{ik}, \forall i \in 1..2n, \forall k \in K$$
(3.22)

$$w_{ik} \ge y_{ik}, \forall i \in 1..2n, \forall k \in K$$

$$(3.23)$$

$$w_{ik} \le y_{ik} + z_{ik}, \forall i \in 1..2n, \forall k \in K$$

$$(3.24)$$

$r_{jk} \ge r_{ik} + 1 + 2 * n * (x_{ijk} - 1)$, $\forall i \in 12n; j \in 12n; i \neq j; k \in K$	(3.25)
$r_{ik} \leq M * w_{ik}, \forall i \in 12n, \forall k \in K$	(3.26)
$r_{ik} \ge w_{ik}, \forall i \in 12n, \forall k \in K$	(3.27)
$sp_i \leq M/2, \forall i \in 12n; k \in K$	(3.28)
$sd_i \leq M/2, \forall i \in 12n; k \in K$	(3.29)
$\sum_{k \in K} y_{ik} * M \ge d_i, \forall i \in 12n$	(3.30)
$\sum_{k \in K} y_{ik} \le d_i, \forall i \in 12n$	(3.31)
$\sum_{k \in K} z_{ik} * M \ge p_i, \forall i \in 12n$	(3.32)
$\sum_{k \in K} z_{ik} \le p_i, \forall i \in 12n$	(3.33)

The objective function (1) expresses that we should minimize the total costs for distance of pickups and deliveries.

Constraints (3.2) represent that each vehicle should leave the depot.

Constraint (3.3) ensures that the number of vehicles leaving and returning to the depot is equal.

Constraints (3.4) represent the connection of outgoing and incoming arcs in a location.

Constraints (3.5 & 3.6) states that the number of passengers on the CTV should be more or equal to the number of deliver or pick up.

Constraints (3.7) represent the initial cargo pick up.

Constraints (3.8 & 3.9) represent that the control the cargo between pick up load of vehicle and pick up of point.

Constraint (3.10) represents Initial cargo to delivery.

Constraint (3.11 & 3.12) represent that the control the cargo to delivery between delivery load of vehicle and delivery of point.

Constraint (3.13) represents that cargo to delivery and pick up should not more than vehicles capacity.

Constraint (3.14) if the CTV travel by x_{ijk} (x_{ij} =1), so pick up or deliver in *i*.

Constraint (3.15) represents that the visit time when vehicle k starts to service turbine i and the time which to travel form i to j and to deliver the passengers at point j should be less or equal to the time when vehicle k starts to service turbine j.

Constraint (3.16) represents that the visit time when vehicle k travel form starts point should be less or equal to the time when vehicle k starts to service turbine j.

Constraint (3.17) represents that the delivery time when vehicle k delivers the passengers to point i should be more or equal to the time when vehicle k starts to service turbine j if the vehicle k performs delivery at i.

Constraint (3.18) represents that the delivery time when vehicle k delivers the passengers to point i should be less or equal to the time when vehicle k starts to service turbine j if the vehicle k performs delivery at i.

Constraint (3.19) represents that time pick up time after finish service should be more or equal to the time when the delivery service in turbine *i* starts.

Constraint (3.20) represents that the pickup time when vehicle k picks up the passengers to point i should be more or equal to the time when vehicle k starts to service turbine j if the vehicle k performs pick up at i.

Constraint (3.21) represents that the pickup time when vehicle k picks up the passengers to point i should be less or equal to the time when vehicle k starts to service turbine j if the vehicle k performs pickup at i.

Constraint (3.22) represents that if the vehicle k has pick up, then w_{ik} will be 1.

Constraint (3.23) represents that if the vehicle k has delivered, then w_{ik} will be 1.

Constraint (3.24) represents that if the vehicle k does not have delivered or pick up, then w_{ik} will be 0.

Constraint (3.25) represents that if x_{ij} is equal to 1, r_i is smaller than r_j .

Constraint (3.26) represents that if w_i is 0, r_i is 0.

Constraint (3.27) represents that if w_i is 1, r_i is not 0.

Constraint (3.28 & 3.29) represents that the limit time when the delivery or pickup service in turbine i starts.

Constraints (3.30) represent that if a demand for delivery exists at turbine *i*, then at least one vehicle needs to visit the turbine.

Constraints (3.31) represent that no vehicle should visit a turbine for delivery unless it is a demand for delivering passengers at the turbine.

Constraints (3.32) represent that if a demand for pickup exists at turbine i, then at least one vehicle needs to visit the turbine.

Constraints (3.33) represent that no vehicle should visit a turbine for pickup unless it is a demand for picking up passengers at the turbine.

5.0 Case description

Based on the mathematical models shown above, we have tested their feasibility to find a short-term scheduling of support vessels in wind farm maintenance for the Doggerbank A's case.

5.1 Doggerbank

Dogger Bank is a sandbar in the middle of the southern North Sea that straddles the waters of the United Kingdom, Germany, Denmark, and the Netherlands. Studies and evidence of human activity, vegetation, and mammal remain indicate that the region was once the land bridge connecting the United Kingdom and continental Europe. This area is known as Doggerland. The Dogger Bank offshore development is located between 125 and 290 kilometers off the east coast of Yorkshire and encompasses an area of roughly 8,660 square kilometers with ocean depths ranging from 18 to 63 meters. (Figure 26) SSE Renewables, Equinor, and Vårgrønn collaborated on the first three phases of the Dogger Bank wind farm (known as Dogger Bank A, B, and C). The project, which will be located more than 130 kilometers off the coast of Yorkshire, will provide enough renewable energy to power 6 million UK households. Onshore work began in 2020 and is still ongoing, while offshore building at Dogger Bank A began in April 2022. Dogger Bank A and B are expected to be operational for the first time in the summers of 2023 and 2024, respectively.

Figure 26 - The Dogger Bank Location map. Source: Dogger Bank 2023

Dogger Bank A

The Dogger Bank wind farm's first phase is about 131 kilometers from the nearest point of the coast, with a development area of around 515 square kilometers. Its installed capacity will be 1.2 GW when completed. The distance between the two extremes is 38 kilometers, which comprises 100 turbines. (Figure 27)

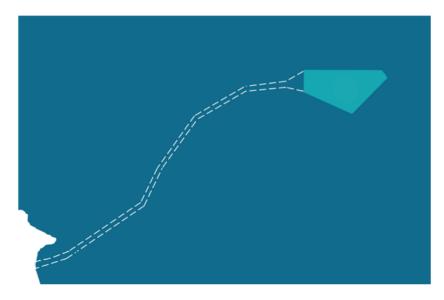


Figure 27 - The Dogger Bank A Location map. Source: Dogger Bank 2023

Dogger Bank B

The greatest of these projects, with a total development area of around 599 square kilometers, is located approximately 131 kilometers from the nearest coast. Dogger Bank B will also have 1.2 GW of installed capacity. (Figure 28)

Figure 28 - The Dogger Bank B Location map. Source: Dogger Bank 2023

Dogger Bank C

It will also contain 1.2GW of installed capacity and will cover 560 square kilometers, 196 kilometers from the coast. The link will be built to Teesside's existing Rakenby substation. (Figure 29)

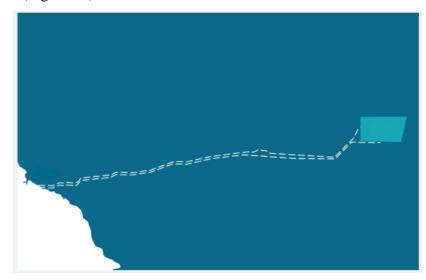


Figure 29 - The Dogger Bank C Location map. Source: Dogger Bank 2023

5.2 Data

To evaluate our model, several data were used to build the models. Some data is real, some are realistic data based on different real operations.

5.2.1 Common data for 3 models

We are using the real field location, and the real number of turbine. The Average distance between two turbines is 1300 m, and we used this distance to generate a realistic turbine position (uniform distribution) at Dogger Bank A (Table 1) as the common data, Task 1 used to find the location (12 days) for the SOV, Task 2 used it to calculate the minimal route for the SOV.

Turbine	Latitude	Longitude	Turbine	Latitude	Longitude
1	54.8075	1.7691667	51	54.749167	2.0958333
2	54.784167	2.09	52	54.690833	1.9966667
3	54.813333	2.1541667	53	54.7725	1.8041667
4	54.679167	1.9791667	54	54.731667	1.8216667
5	54.731667	1.8508333	55	54.819167	1.9791667
6	54.7025	1.8975	56	54.784167	2.0375

7	54.708333	2.0141667	57	54.8075	1.7983333
8	54.749167	1.95	58	54.825	2.1716667
9	54.714167	1.9908333	59	54.749167	1.9616667
10	54.661667	1.9675	60	54.778333	2.0083333
11	54.778333	1.9091667	61	54.7025	1.9791667
12	54.795833	1.74	62	54.79	2.0433333
13	54.778333	1.9966667	63	54.760833	1.9383333
14	54.813333	2.0958333	64	54.830833	2.0083333
15	54.7025	2.0025	65	54.714167	1.8333333
16	54.725833	2.055	66	54.825	2.1075
17	54.795833	2.0083333	67	54.79	1.8683333
18	54.766667	1.95	68	54.755	1.6816667
19	54.755	1.775	69	54.72	1.915
20	54.72	1.9208333	70	54.7725	1.7691667
21	54.801667	1.7575	71	54.731667	1.9966667
22	54.825	2.1833333	72	54.836667	2.1016667
23	54.778333	1.8216667	73	54.714167	2.0258333
24	54.708333	1.8216667	74	54.685	1.9675
25	54.8075	1.8275	75	54.755	1.6641667
26	54.760833	1.8158333	76	54.778333	2.0725
27	54.766667	2.0491667	77	54.825	2.0958333
28	54.7725	1.8975	78	54.778333	1.95
29	54.731667	1.8333333	79	54.760833	1.8975
30	54.749167	1.9266667	80	54.819167	1.74
31	54.708333	1.8916667	81	54.813333	2.0783333
32	54.784167	2.0375	82	54.795833	1.9383333
33	54.725833	1.7866667	83	54.801667	1.9733333
34	54.825	2.1658333	84	54.836667	2.125
35	54.708333	1.9266667	85	54.749167	2.055
36	54.766667	1.8275	86	54.7725	1.9383333
37	54.743333	1.7225	87	54.760833	1.9616667
38	54.819167	2.0725	88	54.801667	1.635
39	54.8075	1.7458333	89	54.725833	1.8975
40	54.743333	1.7166667	90	54.760833	2.0841667
41	54.795833	1.95	91	54.778333	2.0025
42	54.7375	1.9966667	92	54.813333	1.9325
43	54.708333	1.81	93	54.778333	1.9733333
44	54.685	1.9966667	94	54.760833	2.1366667
45	54.749167	1.8566667	95	54.7725	2.1191667
46	54.813333	1.6525	96	54.731667	2.0783333
47	54.743333	2.0316667	97	54.79	1.8566667
48	54.7375	1.74	98	54.7725	1.8683333
49	54.7725	1.775	99	54.795833	2.0375
50	54.7375	1.9733333	100	54.825	1.6466667

Table 1 - The location of turbines.

The locations for the turbines are shown in Figure 30:

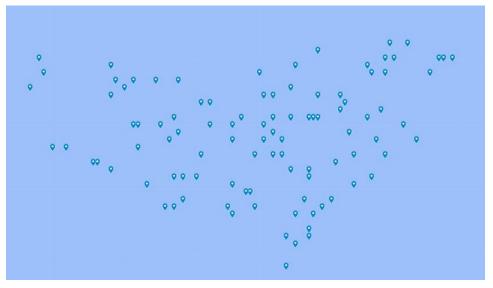


Figure 30 - The location of the turbines.

We also classify the maintenance work (Stålhane et al. 2021) into 5 situations and set relevant data according to different situations of operation. (Table 2)

Туре	Num Tech	Hours
Preventive	18	10
Reset	2	3
Minor	2	7.5
Major	12	8.666667
Medium	8	8.25
	Preventive Reset Minor Major	Preventive18Reset2Minor2Major12

Table 2 - The maintenance work data.

In Table 2, the Num Tech means the number of technicians, and hours is the time to fix the problem. These data will be used in the tasks.

5.2.2 Data for model Task 1

We used the location data to calculate the distance between the individual turbines (Table 3) and used this as data to run the model, the data is to one scenario. (The '1' is the turbine which SOV need to stay; it is also the one need to be fixed)

Turbines	1	Turbines	1
Turbines	Distance	Turbines	Distance
1	0	26	7.53923073
2	0	27	16.4052583
3	9.16037663	28	6.9737006
4	8.65852181	29	3.15
5	10.3944697	30	17.5559107
6	10.8556437	31	5.47836655
7	8.46537064	32	7.98122798

8	18.9808456 33		8.26029661
9	10.8556437	34	2.82179021
10	6.11248722	35	15.962456
11	16.1038039	36	2.66552059
12	16.7305858	37	19.2627231
13	2.66552059	38	3.22684056
14	11.5711927	39	1.10679718
15	15.7188581	40	8.40728851
16	10.0224747	41	21.1047388
17	12.7401923	42	9.12688337
18	3.15	43	9.12688337
19	18.5334832	44	7.07831195
20	22.1856936	45	9.12688337
21	6.26099034	46	27.3201849
22	6.26099034	47	12.0686578
23	4.27229447	48	1.44308697
24	21.1858443	49	3.22684056
25	18.9129585	50	3.22684056

Table 3 - The distance between the individual turbines.

The time for each works also be used. (Table 4)

Turbines	Fix time	Turbines	Fix time
1	10	26	7.5
2	3	27	3
3	3	28	3
4	3	29	7.5
5	3	30	3
6	7.5	31	3
7	3	32	3
8	7.5	33	3
9	3	34	10
10	10	35	3
11	3	36	3
12	3	37	3
13	3	38	7.5
14	3	39	7.5
15	3	40	3
16	3	41	3
17	3	42	10
18	7.5	43	8.66666667
19	3	44	3
20	3	45	3
21	10	46	3
22	3	47	3
23	3	48	3
24	3	49	3
25	3	50	7.5

5.2.3 Data for model Task 2

In this task, we calculated the distance (Table 5) between the turbine and depot based on SOV schedule of Task 1 to run Task 2. (The table is the data of one scenario, the base is the depot.)

Turbines	Base
Base	0
2	212.818626
22	218.286876
32	209.673859
42	207.411324
50	206.015
62	210.003278
65	197.749127
72	213.361107
76	211.790757
82	203.693565
82	203.693565
19 194.070246	

Table 5 -calculated the distance between the turbine and depot.

5.2.4 Data for model Task 3

In Task 3, we used the distance data from the Table 3, calculated the time data of SOV sailing from each turbine (Table 6), and found the corresponding data for each turbine in Table2 (Table 7):

Turbines	time	
65	0	
24	0.85652476	
29	0.91	
31	1.40349129	
54	0.95238859	
89	1.48262379	
24	0.85652476	
29	0.91	
31	1.40349129	
54	0.95238859	
89	1.48262379	

Table 6 -The time of SOV sailing from each turbine.

Task	Turbine	Point	Deliver	Pickup	Hours(et)
Depot	T65	0			
	T24	1	2		3
	T29	2	2		3
	T31	3	2		3
	T54	4	2		3
	T89	5	2		3
	T24	6		2	
	T29	7		2	
	T31	8		2	
	T54	9		2	
	T89	10		2	

Table 7 - The work time and number of passengers of for each turbine.

The Depot in Table 7 is the turbine which SOV need to stay, CTV will start from SOV to the turbines.

6.0 Results

For showing that the model is general, it was run with data from ten different scenarios. For each task, we will use the solution from one scenario to show the result for the next, i.e. the solution from Task 1 is used to run Task 2, which again gives the solution used for running Task 3.

6.1 Task 1

In this task, we will find the minimum of the total maintenance cost time including the distance between the turbines allocated to each place. The results when solving for the ten scenarios are shown in Table 8:

Task	Total cost	Total solving time (s)
S1	902.363	0.875
S2	79.6805	1.15625
S3	859.466	1.125
S4	574.261	1.46875
S5	646.601	0.484375
S6	949.303	1.3125
S7	796.926	0.6875
S8	847.928	0.921875
S 9	1110.21	1.89062
S10	938.73	1.07812
Average	770.54685	1.099999
0 551 1 1		

Table 8 -The total maintenance cost time includes the distance between the turbines allocated to each place.

The total cost is shown as the distance/hours traveled for maintenance between the turbines allocated to each place.

The total solving time is the time, in seconds, used for solving the AMPL model. The average is around 1.1 seconds, so it is speedy.

For one representative scenario, the solution found is shown in Table 9. The table shows the schedule for the SOV staying point for 12 days. For example, on day 1, the SOV will post at Turbine 2 point and fix the same turbine. On day 3, the SOV will post at Turbine 32 to fix turbines 27, 32, 47, 56, and 99. The green cells show which turbine the SOV should stay for operating a full day, while the blue cells show the position of the SOV when also serving other turbines the same day.

Task	Post		The turbines need to be fixed										
Day 1	T2	T2											
Day 2	T22	T22											
Day 3	T32	T27	T32	T47	T56	Т99							

Day 4	T42	T42									
Day 5	T50	T30	T42	T50	T4	T59	T61	Т8	T10	T20	
Day 6	T62	T62									
Day 7	T65	T24	T29	T31	T54	T65	T89				
Day 8	T72	T58	T66	T72							
Day 9	T76	T2	T76	Т90	T96						
Day 10	T82	T28	T55	T78	T82	T83	T86	T11	T18		
Day 11	T82	T82									
Day 12	T19	T23	T33	T37	T48	T49	T57	T70	T80	T88	T19

Table 9 - The schedule of the SOV staying point for 12 days and the turbines to be fixed.

The two maps in Figures 31 and 32 show the results more intuitively. Figure 31 shows the post of the turbines for each day, while Fig 32 shows the group of turbines to be fixed for the different days. While the SOV in Day 1 and Day 2 only will fix the same turbine as it is posted at, on Day 3, it is posted and fixing the issues at Turbine 32, and it also delivers a CTV to fix the Turbines 27, 47, 56 and 99.

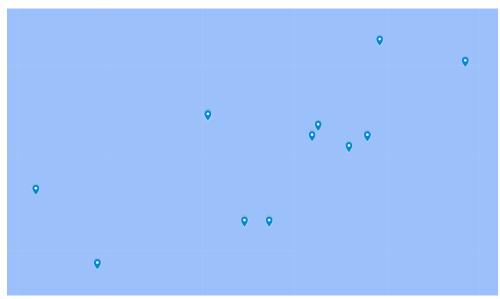


Figure 31 - The schedule of the SOV staying point for the 12 days.

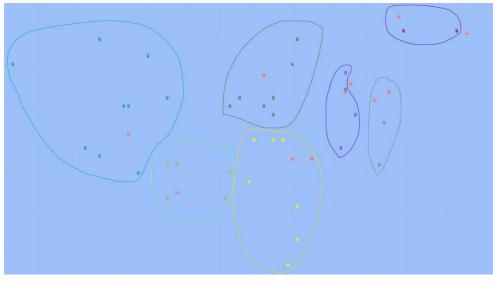


Figure 32 -The turbines which need to be fixed for each day.

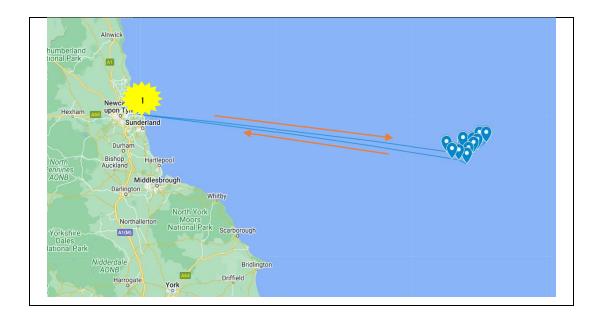
6.2 Task 2

Using the result shown in Table 9 to find the turbine's location where the SOV should stay and run with data from 10 scenarios in Task 2, we got the minimum total cost of all used edges for all the scenarios. The result is shown in Table 10 (including the model running time):

Task	Total cost (n mile)	Total solving time (s)
S1	429.619	16.1562
S2	441.8	13.9844
S3	439.268	4.78125
S4	438.259	2.42188
S5	436.8	3.70312
S6	435.64	10.7188
S7	433.752	67.0781
S8	432.417	2.375
S9	429.308	3.78125
S10	434.404	16.9062
Average	435.1267	14.19062

Table 10 - The minimum total cost of all used edges (including the model running time).

Table 10 shows the total time cost of all used edges for all the tasks, and the average time is 435.1267 n miles, and the time for solving the AMPL model is on average 14.19 seconds, which is acceptable.


The solution from one of the scenarios is shown in Table 11. It shows the SOV loading points and route for the period of 12 days.

Day	Loading point
0	1
1	13
2	11
3	12
4	4
5	7
6	9
7	3
8	2
9	10
10	5
11	6
12	8
13	1

Table 11 - The SOV loading points and route for the period of 12 days.

Table 11 shows the routing of the SOV over a 12-day planning period. It starts at the depot in loading point 1 and visits point 13 on the first day. Then it continues to point 11 on the second day before visiting point 12 on the third day, and so on. The last visit at point 8 is performed on day 12, and after finishing all the maintenance work, the SOV returns to the depot at point 1.

This solution can be visualized in Figure 33, which shows the position related to the base in Teesside, UK, and the route details between the loading points.

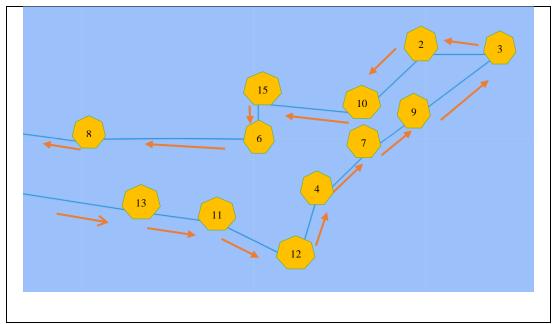


Figure 33 - The route of the SOV sailing during the 12 days.

6.3 Task 3

By using the location and route of SOV found in Task 2, we run Task 3 to determine the route of the CTVs for each day:

CTV	Route
K1	0-1-6-2-4-9-7-0
К2	0-3-8-5-10-0

Table 12 - The route of each CTV.

Table 12 shows the routing of the two CTVs. The five actual locations are each split into one delivery and one pickup location. To distinguish easily, we define turbines 1, 2, 3, 4, and 5 as the sending location, while 6, 7, 8, 9, and 10 are the corresponding pickup locations. The solution shows that the route for K1 is 0-1-6-2-4-9-7-0. This means that the vessel starts at node 0 and then visits Turbine 1 to deliver passengers before picking up passengers from Turbine 6, which is the same location. This means that the vessel has to wait at the node until the operations performed by the workers are completed. Next, it performs delivery at Turbine 2 before continuing to Node 4 for delivery and pickup at the same location (Turbine 9). On the way back, the vessel stops for pickup at Turbine 7, which previously was visited for delivery as Turbine 2. Hence, the actual route is 0-1-1-2-4-4-2-0. Looking at the K2 vessel, it performs delivery and pickup at the same visit, since Turbine 3 corresponds to 8 and Turbine 5 corresponds to 10, so the real route is 0-3-3-5-5-0.

We also got the number of passengers that deliver and pickup for each CTV (Table 13):

Point	Deliver	Pickup	Hours (et)
0			
1	2		3
2	2		3
3	2		3
4	2		3
5	2		3
1		2	
2		2	
3		2	
4		2	
5		2	

Table 13 - The number of Deliver, Pickup, and hours (et) of each CTV.

Table 13 shows we should deliver 2 passengers at Turbine 1, 2, 3, 4 and 5, and pick up the same number of passengers from the same turbines. This estimated time for the operations to perform is 3 hours for each of the locations.

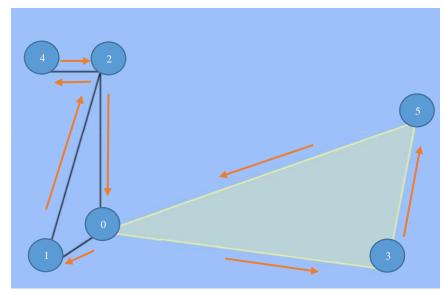


Figure 34 - The location and route of the CTV based on the position of the SOV.

Fig.34 shows the route presented in Table 12 graphically. Vessel K1 is starting from the SOV and delivering passengers (2) to Turbine 1 and then waiting for their work to be finished before picking them up from the same location. Then it continues to Turbine 2 for delivering passengers (2), continues to Turbine 4, waiting for the passengers (2) to finish their job and picking them up, going back to Turbine 2 for picking up passengers (2) left there on the previous visit, and return back to the SOV. For the vessel K2, it is also starting from the SOV, and then delivering passengers (2) to Turbine 3, waiting for them to finish

the job and then picking them up, travelling to Turbine 5 for delivery, waiting and then picking them up, and returning to the SOV.

Task	Total cost (n miles)	Total solving time (s)	Number of Stops
S3	6.88682	0.28125	8 (4 turbines)
S5	24.9788	870.812	16 (8 turbines)
S7	13.3352	2.89062	10 (5 turbines)
S8	10.0811	0.0625	4 (2 turbines)
S9	8.08198	0.15625	6 (3 turbines)
S10	19.684	396.594	14 (7 turbines)
S12	With Out Result	Time Limit	18 (9 turbines)
Average	13.84	211.80	

Table 14 - The total costs for distance of pickups and deliveries of CTV.

Table 14 shows the distance for six scenarios with pickups and deliveries of CTVs, where the average cost in these scenarios is 13.84 n miles. And S1, S2, S4, S6, S11 are huge jobs, SOV will stay the whole day, so no CTV to be used.

The table also shows the solving time for the model, and here we can see a very high variation between the scenarios, where some are solved within less than a second (for the small instances), and it used up to 15 minutes for the instances with 16 stops. This is still within an acceptable solving time for such a model.

The S12 instance has 18 stops; it took more than 3 hours to run the model and did not find a result. To solve instances of this size or bigger future work will be done focusing on improving the model's performance.

7.0 Conclusions

This thesis has presented a mathematical model for solving the problem of planning the maintenance of offshore windmill parts. It also analyzed related research problems through relevant literature research, and many data calculations were performed to test the model. After several tests, a satisfactory result was obtained on the test cases based on real-world data.

At the beginning of the thesis work, we introduced the background of the problem and explained the tasks needing to be done to formulate the research question. Next, we determined the direction for the research by studying many works of literature and existing models.

Then, based on the actual case, mathematical models were defined for solving the three stages of the actual problem, and several calculations were performed to test the models. After completing the analysis and research, the conclusion is that the model can be used for improving the short-term scheduling of service operation vessels as the base for the crew transfer vessels for performing maintenance operations on offshore wind farms.

Through Model 1, we find the minimum value of the total maintenance cost time, including the distance between the turbines assigned to each place. And found the 12-day stay of SOV and the schedule of turbines to be repaired. Then by Model II, we find the minimum total cost of all used edges for all scenarios and SOV loading points and routes for a period of 12 days. Finally, by running Model 3, the distances of the six cases in the CTV pickup and delivery scenarios, as well as the location of the CTV and the location of the SOV based on the route, are found.

7.1 Future works.

The content of this thesis is mainly based on a real case study inspired by the Dogger Bank wind farm. While this shows relevant information about the problem, there are still many tasks to be done in the future:

- The next step is to improve the model to solve task 3 to solve all size problems that exist in the real case.
- So modelling the application with real locations and real forecasted demand.
- After that, an integrated model could be developed by combining, for its solution, mathematical modeling and heuristics.

8.0 References

Baidu (2022). "*The difference between onshore wind power and offshore wind power*". <u>https://baijiahao.baidu.com/s?id=1738750286747762775&wfr=spider&for=pc</u>

Campuzano, G., Obreque, C. & Aguayo, M. M. (2020). "Accelerating the Miller–Tucker– Zemlin model for the asymmetric traveling salesman problem ". Expert Systems with Applications, 148, 113229, ISSN 0957-4174.

Dalgic, Y., Lazakis, I., Dinwoodie, I., McMillan, D. & Revie, M. (2015). "Advanced logistics planning for offshore wind farm operation and maintenance activities". Ocean Engineering, 101, 211-226.

Dawid, R., McMillan, D., & Revie, M. (2016). "Development of an O&M tool for short term decision making applied to offshore wind farms". WindEurope Summit 2016.

Dogger Bank (2023). " Dogger bank wind farm". https://doggerbank.com/

El Mokhi, C. & Addaim, A. (2020). "Optimization of Wind Turbine Interconnections in an Offshore Wind Farm Using Metaheuristic Algorithms". Sustainability, 12, 5761.

El-Sherbeny, N. A. (2010). "Vehicle routing with time windows: An overview of exact, heuristic and metaheuristic methods". Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt.

Gao, C. K., Na, H.M., Song, K-H., Dyer, N., Tian, F., Xu, Q-J, & Xing, Y.H. (2019). "Environmental impact analysis of power generation from biomass and wind farms in different locations". Renewable and Sustainable Energy Reviews, 102, 307-317.

Gundegjerde, C., Halvorsen, I. B., Halvorsen-Weare, E. E., Hvattum, L. M., & Nonås, L. M. (2015). "A stochastic fleet size and mix model for maintenance operations at offshore wind farms". Transportation Research Part C: Emerging Technologies, 52, 74-92.

Gutierrez-Alcoba, A., Hendrix, E. M. T., Ortega, G., Halvorsen-Weare, E. E. & Haugland, D. (2019). "*Identifying route selection strategies in offshore emergency situations using decision trees*". European Journal of Operational Research, 279 (1), 124-131.

Hoff, A., Gribkovskaia, I., Laporte, G. & Løkketangen, A. (2009). "*Lasso solution strategies for the vehicle routing problem with pickups and deliveries*". European Journal of Operational Research, 192 (3), 755-766, ISSN 0377-2217.

Irawan, C. A., Eskandarpour, M., Ouelhadj, D., & Jones, D. (2021). "*Simulation-based optimisation for stochastic maintenance routing in an offshore wind farm*". European Journal of Operational Research, 289(3), 912-926.

Jacobson, M., Delucchi, M., Cameron, M., Coughlin, S., Hay, C., Manogaran, I., Shu, Y. & von Krauland, A., (2019). "Impacts of Green New Deal Energy Plans on Grid Stability, Costs, Jobs, Health, and Climate in 143 Countries". One Earth, 1(4), pp.449-463.

Kallehauge, B., Larsen, J., Madsen, O.B., Solomon, M.M. (2005). "*Vehicle Routing Problem with Time Windows*". In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds) "Column Generation". Springer, Boston, MA

Kim, C. S., Lee, G. S., Choi, H., Kim, Y. J., Yang, H. M., Lim, S. H., Lee, S-G & Cho, B. J. (2018). "*Structural design of a flexible thermoelectric power generator for wearable applications*". Applied Energy 214, 131-138.

Lazakis, I. & Khan, S. (2021). "An optimization framework for daily route planning and scheduling of maintenance vessel activities in offshore wind farms". Ocean Engineering, 225, 108752.

Li, X., Ouelhadj, D., Song, X., Jones, D., Wall, G., Howell, K. H., Igwe, P., Martin, S., Song, D. & Pertin E. (2016). "*A decision support system for strategic maintenance planning in offshore wind farms*". Renewable Energy, 99, 784-799, ISSN 0960-1481.

Li, M., Jiang, X., Carroll, J., Negenborm, R. R. (2022). "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty". Applied Energy 321, 119284.

Linnerud, K., Dugstad, A. & Rygg, B. J. (2022). "Do people prefer offshore to onshore wind energy? The role of ownership and intended use". Renewable and Sustainable Energy Reviews, Volume 168, 2022, 112732.

Manupati, V. M., Schoenherr, T., Wagner, S. M., Soni, B., Panigrahi, S. & Ramkumar, M. (2021). "*Convalescent plasma bank facility location-allocation problem for COVID-19*". Transportation Research Part E: Logistics and Transportation Review, 156, 102517, ISSN 1366-5545.

Msigwa, Joshua O. Ighalo, Pow-Seng Yap. (2022). " Considerations on environmental, economic, and energy impacts of wind energy generation: Projections towards sustainability initiatives ". Science of The Total Environment, Volume 849, 2022, 157755.

Musharraf, M., Smith, J., Khan, F. & Veitch, B. (2020). "On offshore wind farm maintenance scheduling for decision support on vessel fleet composition". European Journal of Reliability Engineering & System Safety, 194, 106179.

Neves-Moreira, F., Veldman, J. & Teunter, R. H. (2021). "Service operation vessels for offshore wind farm maintenance: Optimal stock levels". Renewable and Sustainable Energy Reviews, 146, 111158.

Rahman, A., Farrok, O. & Haque, M. M. (2022). "Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic." Renewable and Sustainable Energy Reviews, 161,112279.

Ren, Z., Verma, A. S., Li, Y., Teuwen, J. E. & Jiang, Z. (2021). "*Offshore wind turbine operations and maintenance: A state-of-the-art review*". Renewable and Sustainable Energy Reviews, 144, 110886, ISSN 1364-0321.

Renewable UK (2011). " UK renewable energy roadmap 2011" https://www.gov.uk/government/publications/renewable-energy-roadmap

Rodrigues, S., Restrepo, C., Katsouris, G., Pinto, R. T., Soleimanzadeh, M., Bosman, P. & Bauer, P. (2016). "A Multi-Objective Optimization Framework for Offshore Wind Farm Layouts and Electric Infrastructures". Energies 9 (3), 216. <u>https://www.mdpi.com/1996-1073/9/3/216</u>

Rodrigues, S., Restrepo, C., Kontos, E., Teixeira Pinto, R. & Bauer, P. (2015). "*Trends of offshore wind projects*," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), 1114-1135.

Schrotenboer, A. H., uit het Broek, M. A. J., Jargalsaikhan, B. & Roodbergen, K. J. (2018). "*Coordinating technician allocation and maintenance routing for offshore wind farms*". Computers & Operations Research, 98, 185-197.

Shafiee, M. (2015)." *Maintenance logistics organization for offshore wind energy: Current progress and future perspectives* ". Renewable Energy, 77, 182-193.

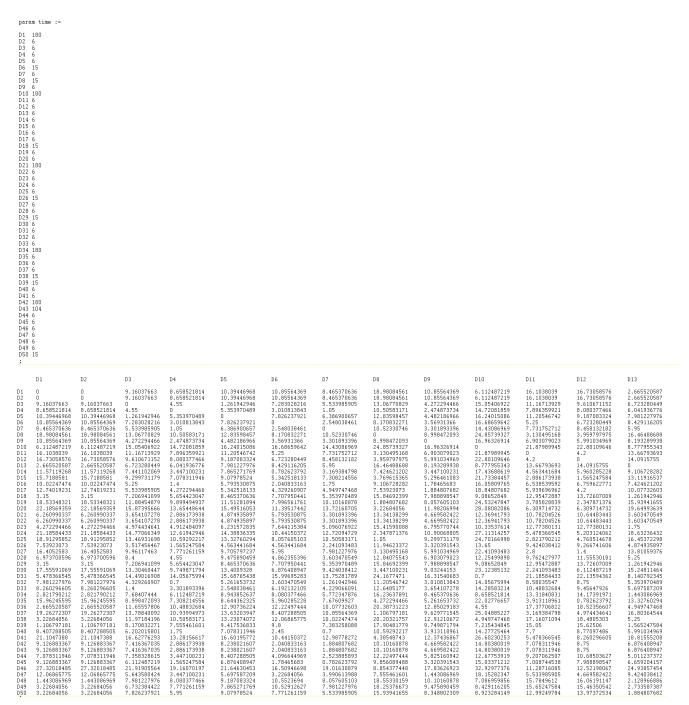
Stock-Williams, C., & Swamy, S. K. (2019). "Automated daily maintenance planning for offshore wind farms". Renewable Energy, 133, 1393-1403.

Stålhane M., Bolstad K.H., Joshi, M., Hvattum L.M. (2021). "A dual-level stochastic fleet size and mix problem for offshore wind farm maintenance operations". INFOR: Information Systems and Operational Research, 59 (2), 1-33.

Stålhane M., Halvorsen-Weare E.E., Nonås L.M. & Pantuso G. (2019). "*Optimizing vessel fleet size and mix to support maintenance operations at offshore wind farms*". European Journal of Operational Research 276 (2), 495-509.

Stålhane, M., Hvattum, L. M., & Skaar, V. (2015). "*Optimization of routing and scheduling of vessels to perform maintenance at offshore wind farms*". Energy Procedia, 80, 92-99.

Stålhane, M., Vefsnmo, H., Halvorsen-Weare, E. E., Hvattum, L. M., & Nonås, L. M. (2016). "Vessel fleet optimization for maintenance operations at offshore wind farms under uncertainty". Energy Procedia, 94, 357-366.


UN (2015). " Paris Agreement". United Nations. https://unfccc.int/sites/default/files/english_paris_agreement.pdf

World-Energy (2022). " Wind power". https://www.world-energy.org/article/27732.html

Appendix 1- Relevant data

1. data

set POINT :=D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31 D32 D33 D34 D35 D36 D37 D38 D39 D40 D41 D42 D43 D44 D45 D46 D47 D48 D49 D50 ;

D14	D15	D16	D17 I	18	D19	D20	D21	D22	D23	D24	D25	D26
11.57119268 11.57119268 7.441102069 3.447100231	15.7188581 15.7188581 9.299731179 7.078311946	10.02247474 10.02247474 5.25 1.4	12.74019231 3 5.533985905 7	.15 .15 .206941099 .654423047	18.53348321 18.53348321 11.88454879 9.899494937	22.18569359 22.18569359 15.87395666 13.65448644	6.260990337 6.260990337 3.654107278 2.886173938	6.260990337 6.260990337 3.654107278 2.886173938	4.272294466	21.18584433 21.18584433 14.77066349 12.61942946	18.91295852 18.91295852 13.46931698 10.59292217	7.53923073 7.53923073 3.517456467 1.565247584
7.865271769 D.782623792 3.169384798 7.424621202	9.07978524 5.342518133 7.308214556 3.769615365	5.793530875 2.040833163 1.75	5.342518133 8 4.329260907 7 4.949747468 5	.465370636 .707950441 .353970489 5.84692399	11.51281894 7.996561761 10.10160878 1.884807682	15.49516053 11.39517442 13.72160705 3.22684056	4.874935897 5.793530875 3.301893396 13.34138299	4.874935897 5.793530875 3.301893396	6.231572835 7.644115384 5.096076922		13.32760294 8.057605103 10.50583171	4.563441684 4.563441684 2.241093483 11.94623372
3.447100231 17.43688619 4.563441684	5.296461083 21.73384457 2.886173938	9.106728282 1.78465683 16.05809765 6.538539592	1.884807682 7 18.84807682 9 5.939696962 1	.988898547 .08652849 2.95472887	8.057605103 24.53247847 3.785828839	11.98206994 28.08082086 6.309714732	4.669582422 12.36941793 10.78204526	13.34138299 4.669582422 12.36941793 10.78204526	2 6.795770744 10.33537614 12.77380131	10.90068805 27.11314257 5.478366545	1.05 9.299731179 24.70166998 2.821790212	3.320391543 13.65 9.424038412
5.960285228 9.106728282 0 4.563441684	1.565247584 13.11916537 4.563441684 0	6.759622771 7.424621202 2.241093483 5.697587209	10.07732603 1 3.865876356 8 3.769615365 1	3.72607009 .261942946 .429116205 2.6485177	2.347871376 15.93941655 7.215434845 2.821790212	6.309714732 19.64993639 10.64483443 6.686740611	10.64483443 3.603470549 6.309714732 9.806248008	10.64483443 3.603470549 6.309714732 9.806248008	1.75 8.238021607 11.92057046	18.63236432 9.68052168 5.61092684	4.760514678 16.45372298 7.35 4.272294466	9.266741606 4.874935897 5.011237372 8.407288505
2.241093483 3.865876356 8.429116205 7.215434845	5.697587209 3.769615365 12.6485177 2.821790212	0 3.22684056 6.973700596 8.515867542	0 9.862301963	.973700596 .862301963 5.45161804	8.515867542 6.386900657 15.45161804 0	12.25499898 10.36496503 19.05813475 3.990613988	4.257933771 6.538539592 3.720551034 12.61942946	4.257933771 6.538539592 3.720551034 12.61942946	2 8.658521814 2.474873734	11.22185368 9.266741606 18.0682733 2.886173938	9.207062507 7.988898547 15.76554788 2.886173938	2.886173938 5.203124062 4.760514678 11.22185368
10.64483443 6.309714732 6.309714732 8.238021607	6.686740611 9.806248008 9.806248008 11.92057046	12.25499898 4.257933771 4.257933771 6.309714732	6.538539592 3 6.538539592 3	9.05813475 .720551034 .720551034 .474873734	3.990613988 12.61942946 12.61942946 14.73745229	0 16.45372298 16.45372298 18.55	16.45372298 0 0 2.128966886	16.45372298 0 0 2.128966886	18.55 2.128966886 2.128966886 0	17.50349965	3.603470549 13.46476884 13.46476884 15.49911288	15.05406922 1.4 1.4 3.517456467
9.68052168 7.35 5.011237372 5.167688071	5.61092684 4.272294466 8.407288505 0.7	11.22185368 9.207062507 2.886173938 6.386900657	7.988898547 1 5.203124062 4	8.0682733 5.76554788 .760514678 3.32760294	2.886173938 2.886173938 11.22185368 2.128966886	1.106797181 3.603470549 15.05406922 5.991034969	15.4 13.46476884 1.4 10.50583171	15.4 13.46476884 1.4 10.50583171	17.50349965 15.49911288 3.517456467 12.61942946	0 2.969848481 14 4.912484097	2.969848481 0 12.08387355 3.720551034	14 12.08387355 0 9.106728282
5.643580424 8.429116205 6.309714732 16.74888056	10.20416582 12.6485177 5.011237372 21.05825254	5.25 6.973700596 8.458132182 15.38806356	9.862301963 0 8.170832271 1 18.2 8	.081666326 4.41813095 .414570696	12.83598457 15.45161804 4.949747468 23.8539829	16.05809765 19.05813475 5.960285228 27.39183272	5.011237372 3.720551034 12.61942946 11.73935688	5.011237372 3.720551034 12.61942946 11.73935688	2.474873734 14.51972796	5.467174773	12.56592615 15.76554788 2.523885893 24.0075509	4.912484097 4.760514678 11.30884609 13.00663292
4.096644969 6.45368112 8.812774818 5.203124062	7.771261159 8.923284149 13.07707918 1.05 17.37706822	2.1 4.214558103 7.416367035 5.980802622	4.862355396 5 5.261653732 6 10.33537614 0 3.517456467 1	.011237372 .021627687 .494974747 2.95	10.59292217 11.6345391 15.87395666 2.886173938	14.35426766 15.59366859 19.45257052 6.876408947	2.213594362 2.347871376 4.214558103 9.899494937	2.213594362 2.347871376 4.214558103 9.899494937	2 4.214558103 3.990613988	13.31840831 14.50284455 18.47058472 5.772347876	11.28716085 12.95 16.1342028 4.949747468	0.989949494 2.128966886 5.25 8.515867542
12.98778272 7.7 12.84075543 10.50583171	17.37706822 4.563441684 17.28872465 14.620619	11.76541542 9.553140845 11.73935688 8.923284149	14.72081859 4 8.297288714 1	.862355396 6.11521021 .974434641 .128966886	20.14857315 2.990401311 20.03578049 17.43688619	23.61397891 3.301893396 23.42909516 21.1047388	8.472602906 13.81059376 8.665592882 5.167688071	8.472602906 13.81059376 8.665592882 5.167688071	15.84692399 7	22.6663848 2.733587387 22.50094442 20.09987562	20.19715326 0.35 19.9745463 17.85343104	9.610671152 12.42869663 9.731007142 6.434671709
3.169384798 9.856089488 2.821790212 2.821790212	7.53923073 7.67609927 7.383258088 7.383258088	2.241093483 11.96160524 2.886173938 2.886173938	5.467174773 9 11.27086953 1 5.95 9	.261653732 7.97310491 .991034969 .991034969	10.29380882 6.260990337 10.02247474 10.02247474	13.81059376 4.669582422 13.32760294 13.32760294	3.720551034 16.16075493 4.949747468 4.949747468	3.720551034 16.16075493 4.949747468 4.949747468	5.331041174 18.08182789 6.425145913	12.83598457 4.9 12.4040316 12.4040316	10.50583171 3.5 9.899494937 9.899494937	2.821790212 14.83273407 4.081666326 4.081666326
4.874935897 2.45 15.84692399 2.8	9.391485505 6.759622771 12.61942946 3.865876356	4.214558103 1.565247584 17.78124011 2.241093483	7.441102069 3 4.760514678 9 16.38657988 2 1.106797181 9	.990613988 .991034969 4.17281531	12.08894123 9.521029356 10.1741093 6.65	15.45161804 13.06770829 6.309714732 10.5523694	4.096644969 4.081666326 22.03888609 5.991034969	4.096644969 4.081666326 22.03888609 5.991034969	5.867069115 24.05597639	14.51972796 12.08387355 7.383258088 9.475890459	12.02798819 9.8 8.58035547 7.865271769	3.85 2.969848481 20.661861 4.603531253
11.22185368 11.12317401 8.515867542	15.15140258 14.7 12.84075543	9.475890459 9.16037663 7.215434845	11.97184196 3 11.28716085 3	.130495168 .990613988 .7	17.97310491 17.50349965 15.62506	21.72538837 21.36147233 19.16070197	5.433461144 4.912484097 4.272294466	5.433461144 4.912484097 4.272294466	3.320391543 2.886173938	20.69740322 20.30301702 18.18990104	18.56320285 18.36416347 15.8120998	6.795770744 6.309714732 5.203124062
D27 16.4052583	D28 6.973700596	D29 3.15		31	D32 7.981227976	D33 8.260296605	D34 2.821790212	D35 15.9624559	D36 5 2.66552058	D37 7 19.26272307	D38 3.22684056	D39 1.106797181
16.4052583 9.96117463 7.771261159 9.705797237	6.973700596 8.4 4.55 9.475890459	3.15 7.206941099 5.654423047 8.465370636	17.55591069 5 13.30460447 1 9.749871794 1	.478366545 4.49016908 4.05675994 5.68765438	7.981227976 4.329260907 0.7 5.261653732	8.260296605 1.4 3.301893396 2.548038461	2.821790212 7.68407444 6.112487219 8.943852637	15.9624559 8.99847209 7.30821455 8.64436232	5 2.66552058 3 11.6555780 6 10.4883268	7 19.26272307 5 13.78840092 4 10.93994973	3.22684056 11.97184196 10.50583171 13.23074072	1.106797181 8.170832271 7.555461601 9.417536833
5.95 7.981227976 3.130495168 5.991034969	4.862355396 3.603470549 12.84075543 6.903079023	7.707950441 5.353970489 15.84692399 7.988898547	6.876408947 1 9.424038412 1 3.447100231 2	5.99695283 3.75281789 4.1677471 6.31540683	3.603470549 1.261942946 11.20546742 3.010813843	6.192132105 4.229066091 12.6485177 3.654107278	8.080377466 5.772347876 16.23637891 8.465370636	5.96028522 7.67609927 4.27229446 5.26165373	8 12.2249744 10.07732603 6 20.38731223	4 8.407288505 3 10.85564369 3 1.106797181	12.06865775 10.02247474 20.20321757 12.91210672	9.8 7.383258088 17.90481779 9.749871794
22.41093483 2.8 1.4 13.81059376	12.25499898 9.762427977 11.55530181 5.25	9.08652849 12.95472887 13.72607009 1.261942946	23.12385132 0 2.241093483 2 6.112487219 2	.7 1.18584433 2.13594362 .140792345	14.05675994 8.58035547 8.75 5.353970489	14.28583214 10.48832684 9.45647926 5.697587209	8.658521814 13.31840831 14.17391971 1.443086969	22.0277665 3.91311896 0.78262379 13.3276029	7 4.55 1 17.37706822 2 18.5235660	25.04885227 2 3.169384798 7 4.974434641	4.949747468 17.16071094 18.4805303 5.25	7.215434845 15.05 15.62506 1.565247584
5.167688071 0.7 6.386900657 4.427188724	5.643580424 10.20416582 5.25 8.472602906	8.429116205 12.6485177 6.973700596 9.862301963	6.309714732 1 5.011237372 2 8.458132182 1 8.170832271 1	6.74888056 1.05825254 5.38806356 8.2	4.096644969 7.771261159 2.1 4.862355396	6.45368112 8.923284149 4.214558103 5.261653732	8.812774818 13.07707918 7.416367035 10.33537614	5.20312406 1.05 5.98080262 3.51745646	2 12.9877827 17.3770682 2 11.7654154	2 7.7 4.563441684 9.553140845 8.297288714	12.84075543 17.28872465 11.73935688 14.76651618	10.50583171 14.620619 8.923284149 11.6345391
13.32760294 2.128966886 5.991034969 10.50583171	4.081666326 12.83598457 16.05809765 5.011237372	0 15.45161804 19.05813475 3.720551034	4.949747468 2 5.960285228 2	.414570696 3.8539829 7.39183272 1.73935688	5.011237372 10.59292217 14.35426766 2.213594362	6.021627687 11.6345391 15.59366859 2.347871376	0.494974747 15.87395666 19.45257052 4.214558103	12.95 2.88617393 6.87640894 9.89949493	7 23.61397893	2.990401311 3.301893396	4.974434641 20.03578049 23.42909516 8.665592882	2.128966886 17.43688619 21.1047388 5.167688071
10.50583171 12.61942946 4.912484097 3.720551034	5.011237372 5.533985905 15.16352532 12.56592615	3.720551034 2.474873734 18.0682733 15.76554788	14.51972796 9 5.467174773 2	1.73935688 .724710793 6.42673835 4.0075509	2.213594362 4.214558103 13.31840831 11.28716085	2.347871376 3.990613988 14.50284455 12.95	4.214558103 2.886173938 18.47058472 16.1342028	9.89949493 12.0279881 5.77234787 4.94974746	9 6.68674061 6 22.6663848	1 15.84692399 2.733587387 5 0.35	8.665592882 7 22.50094442 19.9745463 9.731007142	5.167688071 3.22684056 20.09987562 17.85343104
9.106728282 0 10.81041165 13.32760294	4.912484097 10.81041165 0 4.081666326	4.760514678 13.32760294 4.081666326 0	4.760514678 2	3.00663292 1.73384457 1.55530181 .414570696	0.989949494 8.465370636 4.329260907 5.011237372	2.128966886 9.610671152 7 6.021627687	5.25 13.75281789 4.229066091 0.494974747	8.51586754 1.26194294 10.7820452 12.95	6 18.04113356 6 7.70795044 4.862355396	3.990613988 12.90736224	17.94240787 7.424621202 4.974434641	6.434671709 15.30824941 6.112487219 2.128966886
4.760514678 21.73384457 8.465370636 9.610671152	10.8725572 11.55530181 4.329260907 7	14.41813095 8.414570696 5.011237372 6.021627687	22.42459587 0 10.40624812 1 12.54641383 1	2.42459587 3.39636145 3.69032505	10.40624812 13.39636145 0 2.990401311	12.54641383 13.69032505 2.990401311 0	14.73745229 7.981227976 5.478366545 6.510376333	5.98080262 21.3614723 7.98122797 8.77795534	3 3.85 6 9.862301963 3 10.64483443	24.35456836 3 11.6345391 3 13.28156617	18.28394104 4.257933771 9.905680189 10.90068805	16.54282322 6.57590298 6.876408947 7.215434845
13.75281789 1.261942946 18.04113356 3.990613988	4.229066091 10.78204526 7.707950441 12.90736224	0.494974747 12.95 4.862355396 16.11521021	5.980802622 2 18.57969322 3 2.733587387 2	.981227976 1.36147233 .85 4.35456836	5.478366545 7.981227976 9.862301963 11.6345391	6.510376333 8.777955343 10.64483443 13.28156617	0 13.39636145 4.38548743 16.48347658	13.3963614 0 17.7433086 5.20312406	17.7433086 0 2 20.54294283		4.482186966 17.69837563 0.782623792 20.31809538	1.884807682 14.85748969 3.5 18.20336507
17.94240787 15.30824941 8.193289938 7.181399585	7.424621202 6.112487219 3.010813843 14.35	4.974434641 2.128966886 5.261653732 17.97310491	16.54282322 6 9.266741606 1 3.56931366 2	.257933771 .57590298 3.59154149 5.90236476	9.905680189 6.876408947 1.884807682 13.94740119	10.90068805 7.215434845 4.874935897 15.96629262	4.482186966 1.884807682 5.643580424 18.28394104	17.6983756 14.8574896 7.98889854 8.42911620	9 3.5 7 9.856089488 5 22.0527776	18.20336507 10.85564369 3.301893396	U 3.913118961 9.749871794 21.72538837	3.913118961 0 7.35 20.09987562
7.988898547 7.988898547 10.02247474 7.416367035 11.96160524	2.821790212 2.821790212 1.106797181 3.720551034 20.67667768	5.991034969 5.991034969 3.990613988 5.991034969	8.429116205 1 10.50583171 1 8.658521814 1	4.10895106 4.10895106 1.98206994 4.35	3.130495168 3.130495168 3.22684056 1.979898987	6.112487219 6.112487219 5.960285228 4.862355396	6.309714732 6.309714732 4.257933771 6.386900657 24.50999796	7.98122797 7.98122797 9.90568018 7.20694109 13.0066329	6 10.29975720 9 8.17083227 9 10.62755852	10.24609682 1 12.37436867 2 10.15	10.10160878 10.10160878 7.981227976 10.52912627	8.118189453 8.118189453 6.112487219 8.057605103
4.563441684 15.84692399 15.4	7.441102069 7.206941099 7.935048834	24.17281531 9.1 3.130495168 3.990613988	7.707950441 1 17.37706822 6 17.40524346 7	2.23042041 7.4929986 .510376333 .919595949	19.85151128 4.096644969 7.383258088 7.078311946	21.49011401 5.096076922 7.206941099 6.202015801	9.559550199 3.010813843 4.081666326	3.91311896 15.3082494 14.7374522	1 13.9342204 1 4.09664496 9 5.86706911	7 8.193289938 9 18.91295852 5 18.71109297	28.07863957 13.93861543 4.669582422 6.45368112	26.28730682 10.96232183 1.261942946 2.821790212 2.347871376
13.51018135 D40	3.769615365 D41	0.7 D42	14.36706303 8	D44	5.342518133 D45	6.603786792 D46	0.494974747 D47	13.1936537	8 4.55 D48	16.16075493 D49	4.563441684	2.34/0/13/6
8.407288505 8.407288505 6.202015801	21.1047388 21.1047388 16.62776293	9.126883367 9.126883367 7.416367035	9.126883367 9.126883367 7.416367035	7.0783119 7.0783119 7.3583286	46 9.12688 46 9.12688	3367 27.320 3367 27.320)18485 12.)18485 12.	06865775	1.443086969 1.443086969 7.981227976		3.22684056 3.22684056 7.826237921	
1.75 7.078311946 2.45 0.7	13.28156617 16.60195772 10.44150372 12.98778272	2.886173938 8.238021607 2.040833163 1.884807682	2.886173938 8.238021607	3.4471002 8.4072885 4.0966449 2.5238858	31 1.56524 05 6.87640 69 1.78465	7584 19.160 3947 21.646 583 16.509	070197 3.4 30453 5.6 946698 3.2	47100231 97587209 2684056	8.080377466 9.187083324 10.5523694 8.057605103	7.771261159 7.865271769 10.52912627 7.981227976	5.95 9.07978524 7.771261159 5.533985905	
10.59292217 3.913118961 14.27725464 7.7	4.38548743 12.37436867 26.60230253	10.10160878 4.669582422 14.80380019 7.078311946	10.10160878 4.669582422 14.80380019	12.224974 5.8251609 12.677539 9.2070625	44 9.85608 42 3.32039 19 15.0337	9488 8.8543 1543 17.836 1212 32.929	377448 7.5 526923 1.4 977376 18.	55461601 43086969 15282347	18.55330159 10.10160878 7.086959856 15.7849612	18.25376673 9.475890459 8.429116205	15.93941655 8.348802309 8.923284149 12.99249784	
8.77097486 5.991034969 3.169384798	5.478366545 8.260296605 18.81555208 9.856089488	8.75 6.876408947 2.821790212	8.75 6.876408947 2.821790212	10.685036 5.0112373 4.8749358	27 7.98889 72 6.65920 97 2.45	3547 12.52 4157 24.930 15.840	198067 4.6 357454 9.4 392399 2.8	69582422 24038412	16.06191147 2.128966886 11.22185368	15.65247584 15.46350542 2.733587387 11.12317401	13.97372534 1.884807682 8.515867542	
7.53923073 2.241093483 5.467174773 5.261653732	7.67609927 11.96160524 11.27086953 17.97310491	7.383258088 2.886173938 5.95 5.991034969	2.886173938 5.95 5.991034969	9.3914855 4.2145581 7.4411020 3.9906139	03 1.56524 69 4.76051 88 5.99103	7584 17.78 4678 16.386 4969 24.172	24011 2.2 57988 1.1 281531 9.1	41093483 06797181	15.15140258 9.475890459 11.97184196 3.130495168	14.7 9.16037663 11.28716085 3.990613988	12.84075543 7.215434845 10.20416582 0.7	
10.29380882 13.81059376 3.720551034 3.720551034	6.260990337 4.669582422 16.16075493 16.16075493	10.02247474 13.32760294 4.949747468 4.949747468	13.32760294 4.949747468	12.088941 15.451618 4.0966449 4.0966449	04 13.0677 69 4.08166	0829 6.3097 5326 22.038	14732 10. 888609 5.9	5523694 91034969	17.97310491 21.72538837 5.433461144 5.433461144	17.50349965 21.36147233 4.912484097 4.912484097	15.62506 19.16070197 4.272294466 4.272294466	
5.331041174 12.83598457 10.50583171 2.821790212	18.08182789 4.9 3.5 14.83273407	6.425145913 12.4040316 9.899494937 4.081666326	6.425145913 12.4040316 9.899494937	4.9497474 14.519727 12.027988 3.85	68 5.86706 96 12.0838	9115 24.055 7355 7.3832 8.5803	97639 8.1 58088 9.4 5547 7.8	18189453 75890459 65271769	3.320391543 20.69740322 18.56320285 6.795770744	2.886173938 20.30301702 18.36416347 6.309714732	3.169384798 18.18990104 15.8120998 5.203124062	
8.193289938 3.010813843 5.261653732	7.181399585 14.35 17.97310491	7.988898547 2.821790212 5.991034969	7.988898547 2.821790212 5.991034969	10.022474 1.1067971 3.9906139 10.505831	74 7.41636 81 3.72055 88 5.99103	7035 11.963 1034 20.676 1969 24.172	160524 4.5 167768 7.4 281531 9.1	63441684 41102069	15.84692399 7.206941099 3.130495168 17.37706822	15.4 7.935048834 3.990613988	13.51018135 3.769615365 0.7 14.36706303	
9.266741606 13.59154149 1.884807682 4.874935897	3.56931366 25.90236476 13.94740119 15.96629262	8.429116205 14.10895106 3.130495168 6.112487219	14.10895106 3.130495168 6.112487219	11.982069 3.2268405 5.9602852	94 14.35 6 1.97989 28 4.86235	32.230 3987 19.853 5396 21.490	042041 17. 151128 4.0 011401 5.0	4929986 96644969 96076922	6.510376333 7.383258088 7.206941099	6.202015801	8.238021607 5.342518133 6.603786792	
5.643580424 7.988898547 9.856089488 10.85564369	18.28394104 8.429116205 22.0527776 3.301893396	6.309714732 7.981227976 10.29975728 10.24609682	10.29975728 10.24609682	4.2579337 9.9056801 8.1708322 12.374368	89 7.20694 71 10.6275 67 10.15	1099 13.006 5852 28.384 8.2380	63292 3.9 54685 13. 021607 8.1	13118961 93422047 93289938	3.010813843 15.30824941 4.096644969 18.91295852	14.73745229 5.867069115 18.71109297	0.494974747 13.19365378 4.55 16.16075493	
9.749871794 7.35 0 12.83598457	21.72538837 20.09987562 12.83598457 0	10.10160878 8.118189453 1.261942946 11.98206994	8.118189453 1.261942946 11.98206994	7.9812279 6.1124872 1.9798989 14.039319	19 8.05760 87 0.78262 78 12.2249	5103 26.283 3792 18.953 7444 6.3869	30682 10. 178092 4.4 900657 10.	96232183 54772721 98464838	4.669582422 1.261942946 8.118189453 20.94451002	6.45368112 2.821790212 8.193289938 20.96789212	4.563441684 2.347871376 5.353970489 17.90481779	
1.261942946 1.261942946 1.979898987 0.782623792	11.98206994 11.98206994 14.03931978 12.22497444	0 0 2.128966886 1.4	1.4	2.1289668 2.1289668 0 2.7335873	86 1.4 2.73358 87 0	18.283	336507 4.8 6.4 394104 3.7	62355396 34671709 20551034	8.998472093 8.998472093 7.086959856 8.777955343	7.571657678 8.75	5.95 5.95 3.865876356 6.112487219	
18.95178092 4.454772721 8.118189453 8.193289938	6.386900657 10.98464838 20.94451002 20.96789212	18.20336507 4.862355396 8.998472093 9.240265148	18.20336507 4.862355396 8.998472093 9.240265148	20.3 6.4346717 7.0869598 7.5716576	18.2839 09 3.72055 56 8.77795 78 8.75	4104 0 1034 16.394 5343 27.06 26.929	16. 10538 0 113449 11.	3940538 39517442	27.06113449 11.39517442 0 1.78465683	0	24.1525361 9.391485505 3.5 4.563441684	
5.353970489	17.90481779	5.95	5.95	3.8658763		7219 24.153			3.5	4.563441684	0	

param n := 12 ; param s := 180; param max_s:= 25;

2. data

param n := 13;

param cost: 1 1 2 212.8186263 3 218.2868763 4 209.6738591 5 207.4113236 6 206.0150001 7 210.003278 8 197.7491274 9 213.361107 10 211.7907568 11 203.6935654 12 203.6935654 13 194.0702456 ;	2 212.8186263 0 6.112487219 3.15 6.260990337 7.53923073 2.821790212 15.96245595 3.22684056 1.106797181 9.126883367 9.126883367 18.98084561	3 218.2868763 6.112487219 0 9.08652849 12.36941793 13.65 8.658521814 22.02776657 4.949747468 7.215434845 14.80380019 14.80380019 24.85739327	4 209.6738591 3.15 9.08652849 0 3.720551034 4.760514678 0.494974747 12.95 4.974434641 2.128966886 5.991034969 5.991034969 15.84692399	5 207.4113236 6.260990337 12.36941793 3.720551034 0 1.4 4.214558103 9.899494937 8.665592882 5.167688071 4.949747468 4.949747468 13.34138299	6 206.0150001 7.53923073 13.65 4.760514678 1.4 0 5.25 8.515867542 9.731007142 6.434671709 4.081666326 4.081666326 11.94623372	7 210.003278 2.821790212 8.658521814 0.494974747 4.214558103 5.25 0 13.39636145 4.482186966 1.884807682 6.309714732 6.309714732 16.23637891
8 197.7491274 15.96245595 22.02776657 12.95 9.899494937 8.515867542 13.39636145 0 17.69837563 14.85748969 7.981227976 7.981227976 4.272294466	9 213.361107 3.22684056 4.949747468 4.974434641 8.665592882 9.731007142 4.482186966 17.69837563 0 3.913118961 10.10160878 10.10160878 20.20321757	10 211.7907568 1.106797181 7.215434845 2.128966886 5.167688071 6.434671709 1.884807682 14.85748969 3.913118961 0 8.118189453 8.118189453 17.90481779	$\begin{array}{c} 11\\ 203.69356\\ 9.1268833\\ 14.803800\\ 5.9910349\\ 4.9497474\\ 4.0816663\\ 6.3097147\\ 7.9812279\\ 10.101608\\ 8.1181894\\ 0 & 0\\ 0 & 0\\ 10.101608\end{array}$	67 9.1268 19 14.803 69 5.9910 68 4.9497 26 4.0816 32 6.3097 76 7.9812 78 10.101 53 8.1181 10.101 10.101	83367 18 80019 24 34969 15 47468 13 66326 11 14732 16 27976 4.3 60878 20 89453 17 60878 60878 60878 60878	= 4.0702456 98084561 85739327 84692399 94623372 23637891 272294466 20321757 90481779

3. data

param cost: 2 0 1 3 4:= 0 0 4.257933771 0.782623792 4.257933771 0.782623792 4.257933771 3.85 0 1 0 3.85 2 0.782623792 3.85 0 3.85 0 4.257933771 0 3.85 3 3.85 0 3.85 4 0.782623792 3.85 0 0 ; param demand:=1 2 2 2 3 0 4 0 ; param pickup:=1 0 2 0 3 2 4 2 ; param capacity:=1 12 2 12; param t: 2 3 4:= 0 1 1.551586754 0.856524758 0 1.551586754 0.856524758 0 1.551586754 1 0 1.47 0 1.47 0.856524758 1.47 1.47 0 0 2 3 0 1.47 0 1.47 0.856524758 1.47 0 1.47 0 4 ; param et:=1 3 2 3; param M:= 20;

Appendix 2- html code for AMPL

The Task 1.

```
< model.File>
set POINT;
param time{j in POINT};
param distance{i in POINT, j in POINT};
param n;
param s;
param max_a;
var X{i in POINT, j in POINT}binary>=0;
var Y{i in POINT}binary>=0;
minimize Total_Cost:
sum{i in POINT, j in POINT}distance[i,j]*X[j,i]*time[j];
subject to Balance{i in POINT, j in POINT}:
Y[i]>= X[j,i];
subject to Number:
sum{i in POINT}Y[i] = n;
subject to Travel{j in POINT}:
sum{i in POINT}X[j,i]= 1;
subject to Time{i in POINT}:
sum{j in POINT}time[j]*X[j,i]<= s;</pre>
subject to Limit{i in POINT, j in POINT}:
distance[i,j]*X[j,i]<= max_a;</pre>
```

The Task 2.

```
< model.File>
param n;
set ARCS := {i in 1..n, j in 1..n: i<>j};
param cost {ARCS} >=0;
var Route {ARCS} binary;
var Load {2..n} >=1, <= n-1;
minimize Total_Cost:
sum {(i,j) in ARCS} cost[i,j] * Route[i,j];
subject to Out_Of {i in 1..n}:
sum {(i,j) in ARCS} Route[i,j] = 1;
subject to In_To {i in 1..n}:
sum {(j,i) in ARCS} Route[j,i] = 1;
subject to Load_Continuity{i in 2..n, j in 2..n: i<>j}:
Load[j] >= Load[i] + 1+ (n-1)*(Route[i,j] - 1);
```

The Task 3.

< model.File>

```
param n := 5;
param m := 2;
set K := 1..m;
set I := 1..n;
set II := 0..2*n;
set III:= 1..2*n;
param cost { II, II} >= 0;
param demand {1..2*n}>= 0;
param pickup {1..2*n}>= 0;
param capacity{1..m} >= 0; #12
param t {i in II, j in II}>= 0;
param et{i in 1..n}>= 0;
param M; # 20
var X {0..2*n, 0..2*n, 1..m} binary;
var Y {1..2*n, 1..m} binary;
var Z {1..2*n, 1..m} binary;
var W {1..2*n, 1..m} binary;
var R {i in 1..2*n, k in K}integer,>=0;
var D {i in II, k in K}>= 0;
var P {i in II, k in K}>= 0;
var Sk {i in II, k in K}>= 0;
var Sd {i in 1..2*n}>= 0;
var Sp {i in 1..2*n}>= 0;
minimize Total_Cost:
        sum {i in II, j in II, k in K} cost [i, j] * X [i, j, k];
#2
subject to Out_De{k in K}:
         sum {j in 1..2*n} X [0, j, k] =1;
#3
subject to Balance_F{i in II, k in K}:
         sum { j in II } X [i, j, k] = sum { j in II } X [j, i, k];
#4
subject to Ex_Po {i in 1..2*n}:
        sum {k in K, j in II: (j<>i)}X [i, j, k] =1;
#5
subject to Logical_d{i in 1..2*n, k in K}:
         sum {j in II: (j \leftrightarrow i)}X [i, j, k]>=Y[i,k];
#6
subject to Logical_d1{i in 1..2*n, k in K}:
        sum {j in II: (j<>i)}X [i, j, k]>=Z[i,k];
#7
subject to Initial_p{k in K}:
         P[0, k] = 0;
#8
subject to Cargo_p {i in II, j in 1..2*n, k in K}:
         P[j, k]>= P[i, k] + pickup[j]*Z[j, k]-(1- X[i, j, k]) * capacity[m];
#9
subject to Initial_d{k in K}:
         D [0, k] = sum {i in 1..n} demand[i]*Y[i, k];
```

```
#10
#10 - 1
#11
#12
subject to Logical_p_d {i in 1..2*n, j in II, k in K}:
        X [i, j, k] <= Y [i, k] + Z [i, k];</pre>
#13
#13-1
subject to Visit_time_1 {j in 1..2*n, k in K}:
    t[0, j]- M * (1- X [0, j, k]) <= Sk[j, k];</pre>
#14
subject to De_t1{i in 1..2*n, k in K}:
    Sd[i] >= Sk[i, k]- M * (1- Y [i, k]);
#15
subject to De_t2{i in 1 ..2*n, k in K}:
    Sd[i] <= Sk[i, k] + M * (1- Y [i, k]);</pre>
#16
subject to Pick_after_f {i in 1..n}:
    Sd[i] + et[i] <= Sp[i +n];</pre>
#17
subject to Pu_t1{i in 1..2*n, k in K}:
        Sp[i] >= Sk[i, k]- M * (1- Z [i, k]);
#18
subject to Pu_t2{i in 1..2*n, k in K}:
    Sp[i] <= Sk[i, k] + M * (1- Z [i, k]);</pre>
#19
subject to Count_stops_1{i in 1..2*n, k in K}:
       W[i,k] >= Z[i,k];
#20
subject to Count_stops_2{i in 1..2*n, k in K}:
       W[i,k] > = Y[i,k];
#21
subject to Count_stops_3{i in 1..2*n, k in K}:
       W[i,k]<= Y[i,k]+Z[i,k];
#22
#23
#24
subject to Load_Cont_3{i in 1..2*n, k in K}:
       R[i,k] \ge W[i,k];
#25
subject to Limit_P{i in 1..2*n, k in K}:
         Sp[i] <= M/2;
#26
subject to Limit_D{i in 1..2*n, k in K}:
         Sd[i] <= M/2;
#27
subject to Delivery_pass{i in 1..2*n}:
         sum{k in K)Y[i,k] * M >=demand[i];
#28
subject to Delivery_pass1{i in 1..2*n}:
         sum{k in K)Y[i,k]<=demand[i];</pre>
#29
subject to Pickup_pass{i in 1..2*n}:
         sum{k in K}Z[i,k] * M >=pickup[i];
#30
subject to Pickup_pass1{i in 1..2*n}:
         sum{k in K}Z[i,k]<=pickup[i];</pre>
```

Appendix 2- html code for solution

The Task 1.

Total_Cost = 560.819

X [* D1 D10 D13 D16 D18 D21 D22 D23 D26 D29 D3 D32 D33 D4 D5 D50 D9		D10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D18 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0	D19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D21 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D26 0 1 0 1 0 1 0 1 1 1 1 1 1 1	:=
: D12 D14 D15 D27 D28 D31 D34 D35 D36 D38 D39 D402 D43 D42 D43 D44 D45 D47 D48 D49 D6 D7	D27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D35 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D38 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0	D39 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1	D43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	:=

: D11 D19 D20 D24 D30 D37 D41 D46 D8 ;	D44 0 0 0 0 0 0 0 0 0 0	D45 0 0 0 0 0 0 0 0 0	D46 0 0 0 0 0 0 0 0 0	D47 0 0 0 0 0 0 0 0 0	D48 0 0 0 0 0 0 0 0 0	D49 0 0 0 0 0 0 0 0	D5 0 0 0 0 0 0 0 0	D50 0 0 0 0 0 0 0 0	D6 0 0 0 0 0 0 0	D7 0 0 0 0 0 0 0 0	D8 1 1 1 1 1 1 1 1	D9 0 0 0 0 0 0 0 0	:=
Y [* D1 D10 D18 D21 D26 D34 D35 D38 D39 D42 D43 D43 C43 ;	*]: 1 1 1 1 1 1 1 1 1	=											
-	-	ime : solve				5625							

The Task 2.

The Task 3.

Total_Cost = 10.0811 X := 0 1 1 1 0 2 2 1 1 3 1 1 2 4 2 1 3 0 1 1 4 0 2 1 ;	Sk := 0 1 11.5516 0 2 10.8565 1 1 7 1 2 20 2 1 20 2 2 7 3 1 10 4 2 10 ;
Y := 1 1 1 2 2 1 ;	Sd [*] := 1 7 2 7 3 10 4 10 ;
Z := 3 1 1 4 2 1 ;	Sp [*] := 1 10 2 10
W := 1 1 1 2 2 1 3 1 1 4 2 1 ;	3 10 4 10 ; t := 0 1 1.55159 0 2 0.856525
R := 1 1 1 2 2 1 3 1 2 4 2 2 ;	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
D := 0 1 2 0 2 2 ;	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
P := 1 1 10 2 2 10 3 1 12 4 2 12	4 1 1.47 4 3 1.47 ; _ampl_time = 0.015625
;	_total_solve_time = 0.0625