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We have conducted a comparison between three types of recurrent neural networks and
their ability to predict anomalies occurring in oil wells using a publicly available dataset.
We have included two types of well-known state-of-the-art recurrent neural networks
and a new type with neurons evolved specifically for the dataset using automatic
programming. We show that the new type of recurrent neuron offers a massive
improvement over the state of the art. The overall test accuracy of the new network type
is 94.6%, which is an improvement by 18.3%, or 14.6 percentage points. We also show
that a network with the new neuron performs better than any other solution proposed
for the dataset.

INTRODUCTION

There are thousands of oil wells in maintenance
in the world, and the number is expected to
remain stable in the foreseeable future. The

safe operation of these oil wells is critical to both our
way of life and the environment.

Early prediction of anomalies and undesirable events
would facilitate safe operation and could prevent poten-
tially catastrophic events, but the complexity of the
problemmakes it difficult to do this manually. Petrobras,
a Brazilian state-owned multinational company, has
released a dataset suitable for training machine learning
algorithms1 for this purpose. The dataset is called 3W
since it contains data from three types of oil wells. Most
of the data were captured from real oil wells, but they
have been augmentedwith data from simulated oil wells
and handcrafted data to reduce the imbalance between
the different event types.

Attempts to utilize machine learning on the 3W data-
set have so far been limited. One study2 investigated
three possible approaches and concluded that the ran-
dom forest (RF) algorithm coupled with advanced pre-
processing of the data and Bayesian optimization of the

hyperparameters is the best solution. The researchers
report an overall accuracy of 94%, which is the best
published result for the dataset to our knowledge.
Another study3 compared the performance of several
well-known classification algorithms, and the inves-
tigators concluded that conventional decision trees
together with clever feature engineering offers the best
performance. Both studies were limited to real-world
and simulated instances, they exclude one of the event
types due to a limited amount of data, and they perform
comprehensive data processing and data augmentation
to optimize the results. These are reasonable techniques
to improve results, but they the dataset less representa-
tive of actual live data. A recent study with autoen-
coders for feature extraction4 offers a better solution in
terms of being able to handle live data, but it, too,
reduces complexity by not considering transient states
and removing handcrafted instances.

In this article, we investigate the performance of
three deep recurrent neural networks (RNNs) on the
3W dataset. We did preliminary experiments with feed
forward, convolutional, and RNNs and found the last of
these to be best suited for the dataset. In general, time
series is the natural application domain for RNNs due
to their ability to remember and extract essential infor-
mation from series. The most common RNN is long
short-term memory (LSTM),5 which we use as a base-
line for our experiments. There are several derivatives
of LSTM, such as gated recurrent units,6 that we have
not employed since they typically give similar results.

This work is licensed under a Creative Commons Attribution 4.0
License. For more information, see https://creativecommons.org/
licenses/by/4.0/
Digital Object Identifier 10.1109/MIS.2023.3252446
Date of publication 3 March 2023; date of current
version 10 April 2023.

March/April 2023 Published by the IEEE Computer Society IEEE Intelligent Systems 73



We chose, instead, to include a more recent and quite
different architecture compared to LSTM, namely, Inde-
pendently RNNs (IndRNNs)7 that, for some datasets,
beat LSTM by a wide margin. We have also included
ADATE recurrent neural (ARN) networks, which are
based on a new recurrent neuron that has been evolved
specifically for the 3W dataset. We also included two
types of ensemble classification algorithms similar to
that of Marins et al.2 for reference.

This is a comparative study, so we chose to make
the problem as challenging as possible and the com-
parison fair rather than trying to optimize for the best
results. We have used the entire 3W dataset (all well
and event types) and no data processing or feature
engineering, and we have used a time window of only
64 s. The problem we attempt to solve is, therefore,
more challenging than that in previous works.2–4 By
using the entire dataset and no data processing, we
also ensure that the trained models will be more likely
to handle live data in an actual well, which likely would
contain similar imperfections.

We present and compare the results of the LSTM,
IndRNN, and ARN networks on the 3W dataset. We
show that the ARN network outperforms the other
recurrent networks by 18.3% or more in terms of overall
accuracy and that similar improvements have been
achieved in the other performance metrics we have
employed. We also show that the ARN network per-
forms better than the ensemble classification algo-
rithms and that it performs as well as or better than
the best known solution,2 despite being trained and
tested on a more challenging dataset and with less
information available.

The remainder of the article is structured as fol-
lows. We start with a description of the 3W dataset and
then present the RNN technology used. Then, we move
on to describing how we compared the different mod-
els before presenting and discussing the results. The
article is concluded with a brief discussion of what our
results imply for the future of oil well event prediction
and artificial neural networks.

OIL WELL EVENT DATA
The 3W dataset1 is the first publicly available dataset
for event prediction with multivariate time series data.
It contains observations from three types of oil wells.
The primary source of data has been real oil wells, but,
to overcome challenges with sparse observations for
certain types of events, they have also included obser-
vations from simulated wells and handcrafted data.
There are 1984 instances in total: 1025 real wells, 939
simulated wells, and 20 handcrafted wells.

Each well has a variable number of observations,
and there are eight sensor values in each observation.
The values stem from sensors measuring the pressure,
temperature, and flow rate at critical locations in the
well such as the downhole safety valve (DHSV) and
production choke (PCK), and their measurements are
in pascals, degrees Celsius, and cubic meters, respec-
tively. There is one observation per second for all of the
well types.

The dataset contains eight different event types,
which are listed in Table 1 together with the number of
instances of each type. Abrupt basic sediment and
water (BSW) increase signifies that there is a sudden
increase in the amount of sediment and water in
the flow. Spurious DHSV closure is when the DHSV
valve closes without proper cause. Severe slugging is a
critical event that occurs when there are extreme fluc-
tuations in the flow due to large liquid slugs. Flow insta-
bility is a significant but tolerable instability in the flow
that potentially could lead to severe slugging. Rapid
productivity loss is a sudden decrease in the productiv-
ity of the oil well. Quick PCK restriction occurs when
there is a restriction in the control valve over a short

TABLE 1. Event types in the 3W dataset and their
corresponding number of instances.*

Description Real Simulated Drawn Total

Normal 597 0 0 597

Abrupt BSW
increase

5 114 10 129

Spurious DHSV
closure

22 16 0 38

Severe slugging 32 74 0 106

Flow instability 344 0 0 344

Rapid
productivity
loss

12 439 0 451

Quick PCK
restriction

6 215 0 221

Scaling in the
PCK

4 0 10 14

Hydrate in the
production line

3 81 0 84

Total 1025 939 20 1984

Percentage of
total

51% 47% 10% 100%

*Basic sediment and water (BSW) is the amount of water and sediment
in the flow. The downhole safety valve (DHSV) is a valve mounted in
the drill hole as a fail-safe mechanism. The production choke (PCK) is a
device that controls the amount of fluids produced.
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period of time. Scaling in the PCK is an accumulation
of inorganic deposits in the control valve. Hydrate in
the production line is when water and natural gas com-
bine under high pressure into a substance that can
cause blockage.

RNNs
RNNs are artificial neural networks in which we have
one or more layers of recurrent neurons. These neu-
rons differ from conventional artificial neurons in that
they have cyclic connections to themselves, and they
are invoked recurrently on a sequence of inputs.

LSTM Networks
LSTM networks were introduced as a solution to allow
recurrent neurons to successfully store information
over time.5 In this study, LSTM serves as the starting
point for the synthesis of the ARN neuron presented in
the next section.

There are several versions of the LSTM neuron. In
our experiments, we have chosen the vanilla LSTM
neuron with peephole connections as described in
Greff et al.8 A full description is beyond the scope of
this article. We have, however, included a version of an
LSTM without peepholes in the diagram in Figure 1 to
give an overview of the most important concepts.

The diagram presents a single neuron, but the for-
mulas are expressed in vector and matrix notation.
This is done to account for having multiple neurons in
each layer and makes it possible to perform all of the

calculations for the entire layer at once. Each neuron has
an internal state ct. If a network has n neurons in a hid-
den layer, then the collected internal states for all of the
neurons are represented by a vector ct ¼ ½ct0, ct1, :::, ctn�.
The equation boxes in the diagram are defined as

f t ¼ Ufy
t�1 þWfx

t þ bf (1)

it ¼ Uiy
t�1 þWix

t þ bi (2)

zt ¼ Uzy
t�1 þWzx

t þ bz (3)

ot ¼ Uoy
t�1 þWox

t þ bo (4)

where the dimensions of the weight matrices are
defined by the dimensionality of the input and the
number of LSTM neurons.

The diagram can be written in equation form as
follows:

ct ¼ rðitÞ � /ðztÞ þ ct�1 � rðf tÞ (5)

yt ¼ rðotÞ � /ðctÞ (6)

where r is the sigmoid function, and / is hyperbolic tan-
gent. The operator � denotes elementwisemultiplication.

The internal state ct of the neuron can store infor-
mation. The input xt as well as the output yt�1 and
internal state ct�1 from the previous time step are
passed through three separate gates that together
control what gets stored and deleted in the internal
state.

ARNs
ARNs are recurrent neurons that have been synthe-
sized by the ADATE system,9,10 which is a general sys-
tem for the automatic inference of algorithms using
evolutionary principles. ADATE uses a functional pro-
gramming language to synthesize recursive programs.
In this case, the programs represent recurrent neurons.
ARNs are evolved by inferring and testing millions of
possible neurons, as described by Olsson et al.11

The ARN presented in this article has been evolved
specifically for the 3W dataset. A circuit diagram of the
neuron can be seen in Figure 2. The ARN neuron intro-
duces an extra bias:

b0 ¼ 0:18� 10�4: (7)

The calculations start with multiplying the input xðtÞ

with four weight matrices W0, W1, W2, and W3, the
dimensions of which are defined by the input size and
the number neurons in the layer. The new bias b0 is
also weighted and added to the weighted inputs:

f t ¼W0x
t þ a0b0 (8)

gt ¼W1x
t þ a1b0 (9)

ht ¼W2x
t þ a2b0 (10)

it ¼W3x
t þ a3b0: (11)

FIGURE 1. A circuit diagram of the long short-term memory

(LSTM) neuron. Here, xt, ct, and yt are the input, the internal

state, and output of the neuron at time t, respectively. The

blue boxes r and / are the sigmoid and hyperbolic tangent

activation functions. The white circles are operators. The

green equation boxes are defined in (1–3), and (4).
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Here, ai2f0,1,2,3g are auxiliary weights. The neuron uses a
set of activation functions defined as

reluðxÞ ¼ aðxÞ ¼maxð0,xÞ (12)

sreluðxÞ ¼ bðxÞ ¼maxð�1,minð1,xÞÞ (13)

/ðxÞ ¼ tanhðxÞ (14)

//ðxÞ ¼ tanhðtanhðxÞÞ (15)

rreluðxÞ ¼ dðxÞ ¼ reluðsreluðxÞÞ (16)

where relu is a widely used activation function for deep
learning,12 and srelu is a saturating relu function that has
been used in automatic programming.11 The rrelu func-
tion has been synthesized by ADATE for this neuron.

We have abstracted some of the transformations
into separate equations to simplify the notation and
highlight how they operate:

jt ¼ �dðitÞ � ct�1
0 (17)

kt ¼ ct�1
0 � //

jt

ct�1
0

� �
(18)

lt ¼ ct�1
2 þ aðct�1

0 Þ � kt: (19)

The final equations are defined as follows:

ct0 ¼ /ðf tÞ � ct�1
1 (20)

ct1 ¼ ct�1
0 (21)

ct2 ¼ /ðhtÞ � gt (22)

yt ¼ /½ct�1
2 þ bðltÞ�: (23)

The neuron has three internal states ct0, c
t
1, and ct2

and produces an output yt. It operates totally discon-
nected from the other neurons in the layer. This makes
the neuron similar to IndRNNs.7

Another noteworthy characteristic is that the neu-
ron does not consider any outputs. It primarily oper-
ates by maintaining its own internal states. It has been
optimized to work ideally in a single layer, so each neu-
ron would operate in complete isolation even with mul-
tiple layers of neurons.

The neuron also features a temporal skip connec-
tion for the internal state c

ðt�1Þ
0 , which is forwarded to

c
ðtÞ
1 without any alteration. This skip connection can be

used to accumulate information more easily over time
than would otherwise be possible.

HOW WE COMPARED
PERFORMANCE

This section describes how we conducted our experi-
ments to compare the performance of the recurrent
networks and the classification algorithms.

Dataset Preparation
The 3W dataset contains eight event types,1 as seen in
Table 1. The dataset instances are organized in such a
way that only one event can occur per oil well. Each
instance is labeled with a single code representing
either normal operation or that some type of event has
occurred within the instance. All observations within
an instance are labeled either as normal, in transition,
or in a stable event state.

Not every instance has all types of observations.
There are three possible situations: In the normal
instances, all of the observations are labeled normal. In
the severe slugging and flow instability instances, there
is no transition, so all of the observations are labeled
as stable. The remaining instances start out in normal
operation before transitioning to an event.

We included all states in our experiments, so we
ended up with 15 different ground-truth labels: two for
the six event types that transition from normal opera-
tion to an event state, and one for normal operation
and the two event types that have only stable observa-
tions. Table 2 contains a list of all event types and their
labels.

The observations are stored as a time series with a
frequency of 1 Hz. We tried sampling sequences with
lengths in a power-of-two series (2, 4, 8, :::, 256), and
we settled on using a length of 64 since this gave
the best result in our preliminary experiments. For nor-
mal, severe slugging, and flow instability instances, we

FIGURE 2. A circuit diagram of the ADATE recurrent neural

(ARN) neuron. Here, xt is the input; ct0, c
t
1, and ct2 are internal

states; and yt is the output at time t. The equation boxes are

defined in (8–11,17,18), and (19).
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extracted the observations directly from the first
observations. For the remaining instance types, we
found the location of the two event transitions with a
linear search with a step size equal to the sample size.

The dataset was split into three parts using strati-
fied sampling to ensure an equal distribution of the
event types: 50% were used for training, 25% were
used for validation, and 25% were used for the final
testing. This partitioning was used for training and eval-
uating the performance of the RNNs.

The training of the tree ensemble algorithms was
done on the concatenation of the training and valida-
tion datasets with threefold cross validation repeated
10 times. This gives the ensemble algorithms validation
folds of the same size as the validation data for the
neural networks (25% of the total), but it also gives the
ensemble methods more training data.

The Neural Networks
We used the same simple neural network architecture
in both our experiments with LSTM and ARN. The
layers in the network are as follows:

8 input neurons.
128 LSTM/ARN neurons.
15 hyperbolic tangent activation neurons.
15 linear activation neurons.

The number of hidden recurrent neurons was
chosen by doing preliminary tests with 2n : n 2
f2, 3, 4, 5, 6, 7, 8g neurons and 128 gave the best result.
We also tested with more than one hidden layer, but
without any increase in performance. The experiments
with IndRNN were done with a slightly different archi-
tecture. The first and last layers are the same, but
two middle layers are replaced by two layers with

256 recurrent neurons. This configuration was found in
a manner similar to how we found the number of recur-
rent neurons for ARN/LSTM.

We tested both the ADAM13 and NADAM14 algo-
rithms for training the networks. We found no signifi-
cant difference between the two, so we decided to use
the ADAM optimizer.

The Ensemble Classifiers
We included two ensemble classification techniques in
our experiments to allow us to compare our results to
techniques similar to the ones used by Marins et al.2

and Turan and J€aschke.3 We used the classifium
GB (CGB) algorithm,15 a version of gradient boosting,
and RF.16

Hyperparameter Tuning
We found the data window size and the number of hid-
den recurrent neurons by doing preliminary tests as
described earlier. We tuned all of the hyperparameters
in the ADAM optimizer as suggested by Choi et al.17 to
allow for the best possible conditions for finding opti-
mal weights when training the networks. The optimal
values of the hyperparameters were found when using
LSTM neurons, and then we used the same parameter
values to evolve the ARNs.

The hyperparameters for the CGB algorithm are auto-
matically tuned with a complex pipeline as described by
Olsson and Acharya.15 The hyperparameters for the RF
algorithm and IndRNN were optimized using a grid
search.

Target Functions and Other Metrics
We used categorical cross entropy (CCE) as the target
loss function when training both the recurrent net-
works and the tree ensemble classification algorithms.
CCE is defined as

CCE ¼ �ln
eytXC

j¼1
eyj

0
@

1
A (24)

where t is the target class, yi is the ith output of model
y, and C is the number of target classes. We used the
CCE and the accuracy metrics to evaluate the final per-
formance on test data. Accuracy is defined as nc=n,
where nc is the number of instances correctly classi-
fied, and n is the number of instances in total.

We also calculated the information retrieval charac-
teristics precision (P), recall (R), and F-measure (F).
These measurements can be defined using the true
positive count pt, the false positive count pf, and the
false negative count nf:

TABLE 2. Event types and their class labels.

Transitional Stable Event Description

0 Normal

1 2 Abrupt BSW increase

3 4 Spurious DHSV closure

5 Severe slugging

6 Flow instability

7 8 Rapid productivity loss

9 10 Quick PCK restriction

11 12 Scaling in the PCK

13 14 Hydrate in the production
line
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P ¼ pt
pt þ pf

R ¼ pt
pt þ nf

F ¼ 2 � P �R
P þR

:

These metrics are calculated per event type and aver-
aged to find the final scores.

RESULTS AND DISCUSSION
The results of the LSTM and ARN networks on both val-
idation data and test data can be seen in Table 3. The
ARN network is far superior in terms of both accuracy
and CCE. The CCE has been reduced to 49.0% of the
LSTM CCE result on test data—a reduction of more
than 50%. The accuracy of the ARN network is 18.3%,
or 14.6 percentage points, better than the LSTM net-
work on test data. We conducted a McNemar test18 to
ensure the statistical significance of this result, and
the result was a p value of 1.14�10�21—well below any
reasonable limit.

These results show that the ARN network performs
significantly better than LSTM and IndRNN on the 3W
dataset. The accuracy result is also better than that
reported by Marins et al.,2 Turan and J€aschke,3 and
Gatta et al.4 These results are not directly comparable,
but the comparison should be beneficial for Marins
et al.,2 Turan and J€aschke,3 and Gatta et al.4 since they
used a simplified dataset and significantly bigger win-
dow sizes to train their models. In the cases of Turan
and J€aschke3 and Gatta et al.,4 the data were also
processed extensively.

The results of CGB and RF are better than the
results of LSTM and IndRNN, but both perform worse
than the ARN network. In both cases, the amount is
significant enough to suggest that the ordering is cor-
rect. This is strengthened by the fact that the CGB and
RF models were trained using more data (75% of the
total instead of 50%).

The average precision, recall, and F-measure for the
two network types can be seen in Table 3. The ARN
network has an average F-measure and recall above

0.84 and an average precision above 0.88, which are far
better than the corresponding scores for LSTM and
IndRNN. The ensemble methods CGB and RF perform
better than LSTM and IndRNN but worse than ARN.

The per-event prediction performance can be seen
in the confusion matrices in Figure 3. The precision and
recall characteristics for both LSTM and IndRNN are
quite good for many of the individual classes, but the
scores are considerably worse for several others. It is
apparent that the results for the ARN network are
much more stable across all event types. The only
clearly visible issue remaining is flow instability, which
continues to be confused with normal operation for
some instances, but there is a visible improvement
over both LSTM and IndRNN.

A BRIEF LOOK AHEAD
In this article, we demonstrate that a new type of neu-
ron that has been evolved specifically to predict rare
and undesirable events in oil wells is able to achieve
far better results than two state-of-the-art general-
purpose recurrent neurons. The amount by which it
has improved suggests that similar results can be
achieved on other datasets with multivariate time
series. This coincides with the earlier findings.11 These
findings are by no means conclusive in saying that sim-
ilar results can be found for multivariate time series in
general, but they suggest a very interesting possibility
and certainly warrant more attention.

We also demonstrate that a simple deep neural net-
work with specialized recurrent neurons is able to out-
perform the best proposed machine learning solutions
for the dataset. Thesemethods have required advanced
feature processing and feature engineering, and they
have been trained and tested with considerably larger
time windows. The network proposed here is able to
predict with a significantly higher degree of certainty
and within, at most, 64 s what state the well is in. The

TABLE 3. The collected results of all of the networks and ensemble methods.*

Validation
Accuracy

Validation
CCE

Test
Accuracy Test CCE Precision Recall F-Measure

ARN 0.955 0.187 0.946 0.215 0.882 0.841 0.850

LSTM 0.845 0.385 0.800 0.437 0.784 0.728 0.733

IndRNN 0.844 0.340 0.795 0.488 0.776 0.710 0.718

CGB 0.912 — 0.915 — — — —

RF 0.898 — 0.902 — 0.795 0.760 0.777

*The first columns contain the accuracy and CCE for the validation and test data, and the last three columns are the precision, recall, and
F-measure on the test data. ARN: ADATE recurrent neural; CCE: categorical cross entropy; CGB: classifium GB; IndRNN: independently recurrent
neural network; LSTM: long short-termmemory; RF: random forest.
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novel neural net that we present in this article could,
therefore, likely be used as a subsystem in a real-time
management system.

We are currently working on solutions for extending
the work done with ARNs11 to automatically evolve
neural network architectures as well as the neurons,
which could lead to a solution for synthesizing opti-
mized neural networks for any problem.
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