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Abstract. This study aimed to differentiate individuals with Parkinson's disease (PD) from those with other neurological disorders (ND) by analyzing voice 
samples, considering the association between voice disorders and PD. Voice samples were collected from 76 participants using different recording devices 

and conditions, with participants instructed to sustain the vowel /a/ comfortably. PRAAT software was employed to extract features including 

autocorrelation (AC), cross-correlation (CC), and Mel frequency cepstral coefficients (MFCC) from the voice samples. Principal component analysis 
(PCA) was utilized to reduce the dimensionality of the features. Classification Tree (CT), Logistic Regression, Naive Bayes (NB), Support Vector Machines 

(SVM), and Ensemble methods were employed as supervised machine learning techniques for classification. Each method provided distinct strengths 

and characteristics, facilitating a comprehensive evaluation of their effectiveness in distinguishing PD patients from individuals with other neurological 
disorders. The Naive Bayes kernel, using seven PCA-derived components, achieved the highest accuracy rate of 86.84% among the tested classification 

methods. It is worth noting that classifier performance may vary based on the dataset and specific characteristics of the voice samples. In conclusion, 

this study demonstrated the potential of voice analysis as a diagnostic tool for distinguishing PD patients from individuals with other neurological 

disorders. By employing a variety of voice analysis techniques and utilizing different machine learning algorithms, including Classification Tree, Logistic 

Regression, Naive Bayes, Support Vector Machines, and Ensemble methods, a notable accuracy rate was attained. However, further research 

and validation using larger datasets are required to consolidate and generalize these findings for future clinical applications. 

Keywords: voice analysis, Parkinson’s disease, MFCC, PCA, naive Bayes kernel, machine learning 

KLASYFIKACJA CHOROBY PARKINSONA I INNYCH ZABURZEŃ NEUROLOGICZNYCH 

Z WYKORZYSTANIEM EKSTRAKCJI CECH GŁOSOWYCH I TECHNIK REDUKCJI 

Streszczenie. Przedstawione badanie miało na celu różnicowanie osób z chorobą Parkinsona (PD) od osób z innymi zaburzeniami neurologicznymi 
poprzez analizę próbek głosowych, biorąc pod uwagę związek między zaburzeniami głosu a PD. Próbki głosowe zostały zebrane od 76 uczestników 

przy użyciu różnych urządzeń i warunków nagrywania, a uczestnicy byli instruowani, aby wydłużyć samogłoskę /a/ w wygodnym tempie. Oprogramowanie 

PRAAT zostało zastosowane do ekstrakcji cech, takich jak autokorelacja (AC), krzyżowa korelacja (CC) i współczynniki cepstralne Mel (MFCC) z próbek 
głosowych. Analiza składowych głównych (PCA) została wykorzystana w celu zmniejszenia wymiarowości cech. Jako techniki nadzorowanego uczenia 

maszynowego wykorzystano drzewa decyzyjne (CT), regresję logistyczną, naiwny klasyfikator Bayesa (NB), maszyny wektorów nośnych (SVM) 

oraz metody zespołowe. Każda z tych metod posiadała swoje unikalne mocne strony i charakterystyki, umożliwiając kompleksową ocenę ich skuteczności 
w rozróżnianiu pacjentów z PD od osób z innymi zaburzeniami neurologicznymi. Naiwny klasyfikator Bayesa, wykorzystujący siedem składowych PCA, 

osiągnął najwyższy wskaźnik dokładności na poziomie 86,84% wśród przetestowanych metod klasyfikacji. Należy jednak zauważyć, że wydajność 

klasyfikatora może się różnić w zależności od zbioru danych i konkretnych cech próbek głosowych. Podsumowując, to badanie wykazało potencjał analizy 
głosu jako narzędzia diagnostycznego do rozróżniania pacjentów z PD od osób z innymi zaburzeniami neurologicznymi. Poprzez zastosowanie różnych 

technik analizy głosu i wykorzystanie różnych algorytmów uczenia maszynowego, takich jak drzewa decyzyjne, regresja logistyczna, naiwny klasyfikator 

Bayesa, maszyny wektorów nośnych i metody zespołowe, osiągnięto znaczący poziom dokładności. Niemniej jednak, konieczne są dalsze badania 
i walidacja na większych zbiorach danych w celu skonsolidowania i uogólnienia tych wyników dla przyszłych zastosowań klinicznych. 

Słowa kluczowe: analiza głosu, choroba Parkinsona, MFCC, PCA, naiwne jądro bayesowskie, uczenie maszynowe 

Introduction 

Parkinson's disease, which was initially described by 

Dr. James Parkinson in 1817, is a progressive nervous system 

condition that deteriorates over time and affects physical 

movements, including speech [23]. It is the second most prevalent 

neurological disorder, surpassed only by Alzheimer's, Multiple 

System Atrophy (MSA), brain tumors, epilepsy, and other 

neurodegenerative conditions. The disease is caused by the 

degradation of pigment cells in the basal ganglia, resulting 

in a deficiency of dopamine and disruption of neurotransmission 

in the Substantia Nigra region of the midbrain, which 

is responsible for regulating motor function. Motor problems 

result from dopamine insufficiency. Symptoms include 

bradykinesia, postural instability, tremors, and hypokinetic 

movement abnormalities. Although this condition 

is straightforward to diagnose in its advanced stages, 

effective therapy is difficult [22]. There is presently no curative 

medicinal therapy for Parkinson's disease. 

The study of voice abnormalities associated with neurological 

conditions, which can be caused by various factors that affect 

muscle tone [29], has significantly advanced. These conditions are 

categorized as either hypotonia, which refers to low muscle tone, 

or hypertonia, which refers to high muscle tone. Hypotonia 

is characterized by reduced loudness, changes in fundamental 

frequency, and voice instability, while hypertonia is characterized 

by vocal pauses, voice instability [3], and changes in voice quality 

[27]. Neurological conditions such as vocal tremors, spasmodic 

dysphonia, and vocal cord paralysis can all impair the voice. 

Moreover, Parkinson's disease can impact speech and voice, 

leading to diminished pitch and loudness fluctuations, decreased 

overall loudness, and a breathy quality in the voice due 

to insufficient closure of the vocal cords. Subjective approaches 

are routinely used by clinicians and vocal pathologists to evaluate 

speech impairments in Parkinson's disease patients, which can 

have a substantial impact on communication and quality of life. 

These approaches utilize acoustic characteristics including 

fundamental frequency, sound intensity level, tremor, shimmer, 

ratio of low-frequency to high-frequency components, cephalic 

peak prominence, and harmonics-to-noise ratio within the signal 

for assessment [1, 20, 31]. In contrast, recent research has shifted 

towards utilizing acoustic parameters derived from time-based 

data, along with spectrum and cepstral measurements, for more 

objective evaluations [2]. These evaluations provide a more 

precise understanding of the severity and characteristics of speech 

disorders in Parkinson's disease (PD) patients and are crucial 

for effective management. PD commonly results in voice 

weakening in about 90% of patients [21], typically occurring 

in those over 60 years old, although it can also affect younger 

individuals, albeit rarely. Additionally, gender appears to play 

a role in PD prevalence, with men being more affected than 

women [10]. Recent research has focused on developing objective 

methods to diagnose vocal problems by measuring voice quality 

in the temporal, spectral, and cepstral domains, including 

parameters such as fundamental frequency (F0), absolute sound 

pressure level, jitter, shimmer, and harmonicity [18, 19, 25]. 
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In [12], the authors proposed a method for diagnosing PD 

using speech signals. They collected a dataset of speech 

recordings from individuals with PD and healthy controls. The 

method involved extracting resonance and time-frequency-based 

features from the speech signals, but the paper lacked specific 

details on the algorithms and parameters used. The extracted 

features were fused using an undisclosed technique, and machine 

learning classifiers were employed for PD diagnosis. However, 

the paper did not specify the classifiers used or provide 

information on the training and evaluation procedures. The paper 

also lacked crucial details regarding the dataset, feature extraction, 

fusion technique, classifiers, and performance evaluation metrics. 

A comprehensive discussion of the results and their interpretation 

was also missing. Addressing these limitations would improve 

the study's scientific rigor and impact. 

The authors in [24] presented an approach to diagnose 

PD by utilizing cepstral features extracted through MFCC 

and dimensionality reduction techniques. However, the paper 

did not provide sufficient information regarding the dataset, 

feature extraction parameters, dimensionality reduction methods, 

SVM classifier parameters, and performance evaluation 

metrics. Furthermore, the study lacked in-depth discussions 

and interpretations of the results, which diminished its overall 

strength. To improve the research's scientific rigor and impact, 

it is crucial to address these limitations and provide 

comprehensive details and analysis. 

The primary focus of the study described in [26] is the 

investigation of feature extraction and classification techniques 

specifically designed for dysphonic speech disorder in individuals 

with PD. The main objective is to identify effective methods 

for extracting pertinent features from dysphonic speech signals 

and to compare different classification techniques to achieve 

accurate diagnosis of PD-related dysphonia. The paper thoroughly 

examines various feature extraction techniques and provides 

detailed information on the algorithms and parameters employed. 

Furthermore, it assesses different classification methods using 

performance metrics. The findings of this study contribute 

to enhancing our understanding of dysphonic speech in PD 

and offer valuable insights into the diagnosis of PD-related 

dysphonia. 

While most studies focus on distinguishing between patients 

with Parkinson's disease and healthy individuals, our research 

stands out by focusing on classifying Parkinson's disease and other 

neurological disorders. The objective of our study is to provide 

an objective method for diagnosing vocal problems in Parkinson's 

disease patients and differentiating them from patients with other 

neurodegenerative diseases. By collecting voice recordings 

from patients with Parkinson's disease, Multiple System Atrophy, 

and other neurological disorders, we built a database of 76 voice 

samples. Through the utilization of cepstral domains, we extracted 

acoustic features from each voice sample, and principal 

component analysis (PCA) was employed to select the most 

relevant features. We then employed various supervised machine-

learning techniques for classification. The combination of the 

Naive Bayes kernel with linear classification and 7 components 

of PCA achieved a maximum classification accuracy of 86.84%. 

This machine learning method, along with artificial intelligence 

techniques, can aid in the detection of Parkinson's disease, 

Multiple System Atrophy, and other neurological diseases. 

Once the algorithm is trained to recognize these patterns, it can 

effectively classify patients based on their health status, 

distinguishing Parkinson's disease patients from those with similar 

symptoms but other neurodegenerative disorders. Our study 

has the potential to enhance the accuracy of diagnosis, leading 

to improved management and treatment of Parkinson's disease. 

Unlike [12, 18, 19, 25], the significance of evaluating acoustic 

characteristics for Parkinson's disease diagnosis is emphasized 

in this study, regardless of whether dimension reduction 

is employed. Certain features have exhibited high accuracy 

in distinguishing Parkinson's disease from other disorders. 

Additionally, another study utilizing dimension reduction has also 

shown promising outcomes. 

In contrast to previous studies [24, 26], the comparison 

of various machine learning classifiers such as Classification Tree 

(CT), Logistic Regression, Naive Bayes (NB), Support Vector 

Machines (SVM), and Ensemble methods reveals their 

effectiveness in accurately detecting and distinguishing between 

patient groups, thereby assisting in clinical diagnosis. 

To the best of our knowledge, this study represents the only 

existing research focused on classifying patients with Parkinson's 

disease from other neurological diseases with similar symptoms. 

Furthermore, our study goes beyond previous research 

by considering a larger and more diverse dataset, allowing 

for a more comprehensive analysis of the classification between 

patients with Parkinson's disease and those with other neurological 

disorders. 

The paper is organized as follows: Section 1 presents the 

methodology and database used in this study, Section 2 discusses 

the evaluation metrics, Section 3 presents the obtained results and 

discussion, and Section 4 provides the conclusion. 

1. Methodology 

In this research, we utilized the cepstral technique to extract 

cepstral coefficients from acoustic recordings. We then employed 

PRAAT software to analyze and extract features, specifically 

Mel-frequency cepstral coefficients (MFCC), from these samples. 

This section provides a comprehensive overview of the complete 

procedure involved in these three approaches, along with their 

categorization. 

1.1. Dataset 

All participants in the study provided self-reported diagnoses 

of Parkinson's disease, MSA, or other ND. Voice recordings were 

collected using two methods: some participants used their own 

devices to record their voices, while others were recorded 

by physicians using a smartphone microphone. The study utilized 

a database obtained from a previous study [4], which consisted 

of 76 voice samples. Out of these, 56 samples were collected from 

Parkinson's disease patients, who were divided into three groups 

based on the recording method: the first group used smartphones 

(10 females and 22 males), the second group used tablets 

(5 females and 3 males), and the third group used a computer 

(6 females and 10 males). Additionally, voice recordings were 

obtained from 20 patients with various other neurological 

disorders, including Multiple System Atrophy 9 patients 

(2 females and 7 males), Functional Neurological Disorders 

5 patients (3 females and 2 males), Essential Tremor (1 female), 

Dystonia (2 males and 1 female), Cervical Dystonia (1 female), 

and Somatization (1 female). All voice samples were saved 

in WAV format and recorded in mono-channel mode. 

1.2. Feature extraction 

Some individuals with vocal cord pathology may struggle 

to maintain stable phonation when pronouncing a sustained vowel 

/a/ [5]. Voice recordings and pre-processing alone may not be 

sufficient to accurately assess voice disorders. Therefore, we opted 

to utilize the acoustic software PRAAT to extract a comprehensive 

set of information on speech characteristics. We employed two 

methods: autocorrelation (all parameters) to pitch (ac), and cross-

correlation method to pitch (cc). A total of 73 parameters were 

extracted for speech analysis, including 10 jitter parameters 

(dc and ac) [jitter (local), jitter (local, absolute), jitter (rap), jitter 

(ppq5), jitter (ddp)], 12 speckle parameters (dc and ac) [(speckle 

(local), speckle (local, dB), speckle (apq3), speckle (apq5), 

speckle (apq11), speckle (dda)], 6 harmonicity parameters 

(dc and ac) (mean autocorrelation, mean noise/harmonic ratio, 

mean harmonic/noise ratio), 10 pitch parameters (cc and ac) 

(median pitch, mean pitch, standard deviation, minimum pitch, 

maximum pitch), 8 pulse parameters (cc and ac) (number 

of pulses, number of periods, mean period, standard deviation 

of period), 6 vocalization parameters (fraction of locally unvoiced 
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pitch frames, number of voicing breaks, degree of voicing breaks), 

frequency of formants 1, 2, and 3, maximum, minimum, and mean 

intensity, as well as 15 first coefficient of MFCC. 

Jitter and Shimmer are significant metrics used in the 

evaluation of vocal cord pathology in patients who are affected. 

Jitter measures the variation in the fundamental frequency (F0) 

of the voice from cycle to cycle [16, 17], while Shimmer measures 

the variation in voice cycle width [32]. The algorithm used 

to calculate Jitter and Shimmer involves computing the mean 

of the disparities in duration or amplitude or amplitude 

of consecutive periods. These measurements are useful in aiding 

the diagnosis and monitoring of vocal cord pathology, as well 

as evaluating the effectiveness of treatments. 

PCA (Principal Component Analysis) is a popular statistical 

approach for reducing the dimensionality of voice data and 

extracting the most important information. After applying PCA 

to the speech data, we obtained 13 principal components, ranging 

from the first principal component, which accounts for the highest 

variance, to the 13th principal component, which captures the least 

variance. The basic idea behind PCA is to describe the variance 

in a multidimensional dataset using a collection of uncorrelated 

variables that are linear combinations of the original variables. 

These new variables, dubbed "principal components", 

are arranged in decreasing order of significance, with the first 

representing the most variance in the original data. Subsequent 

components are chosen to have the least amount of variance while 

staying uncorrelated with the prior components. 

1.2.1. Jitter measurement 

Jitter is a parameter that measures micro-perturbation 

of the fundamental period and has several parameters [28]: 

 Jitter (relative or local) refers to the timing variations 

or fluctuations of a signal relative to a reference signal or a clock, 

expressed as the difference in timing between the expected 

timing and the actual timing of signal transitions with respect 

to a reference signal [11]. Is calculated as follows: 

Jitter (relative) =

1
𝑁 − 1

∑ |𝑇𝑖 − 𝑇𝑖+1|𝑁−1
𝑖=1

1
𝑁

∑ 𝑇𝑖
𝑁
𝑖=1

 

Where 𝑇𝑖 represents the period lengths of the extracted 

fundamental frequency 𝐹0 s and 𝑁 is denotes the total number 

of extracted 𝐹0 periods. 

Table 1. Time-frequency-based features given by Praat acoustic analysis software 

Groups Features 

Pitch parameters 

Median pitch (Hz) 

Mean pitch (Hz) 

Standard deviation (Hz) 

Minimum pitch (Hz) 

Maximum pitch (Hz) 

Pulses parameters 

Number of pulses 

Number of periods 

Mean period (s) 

Standard deviation of period (s) 

Voicing parameters 

Fraction of locally unvoiced frames (%) 

Number of voice breaks 

Degree of voice breaks (%) 

Jitter parametrs 

Jitter (local) (%) 

Jitter (local. absolute) (s) 

Jitter (rap) (%) 

Jitter (ppq5) (%) 

Jitter (ddp) (%) 

Shimmer parameters 

 Shimmer (local) (%) 

Shimmer (local. dB) (dB) 

Shimmer (apq3) (%) 

Shimmer (apq5) (%) 

Shimmer (apq11) (%) 

Shimmer (dda) (%) 

Mean autocorrelation 

Harmonicity parameters 
Mean noise-to-harmonics ratio 

Mean harmonics-to-noise ratio 

Frequence formant F1  F2  F3 (Hz) 

Intencity Max inten  Min inten  mean inten 

 

 Jitter (absolute) is the change in fundamental frequency F0 

[25] from cycle to cycle, represented as [5]: 

Jitter (absolute) =
1

𝑁 − 1
∑|𝑇𝑖 − 𝑇𝑖+1|  

𝑁−1

𝑖=1

 

 Jitter in Praat is a measure of how much the period (or pitch) 

of speech signals varies or perturbs. Praat offers different variants 

of jitter, such as Jitter (RAP), Jitter (PPQ5), and Jitter (ddp), 

which differ in the number of points used for calculation and the 

way they are expressed [11]. These variants provide different 

perspectives on the variation in pitch, allowing for more nuanced 

analysis of speech signals. 

1.2.2. Shimmer measurement 

Shimmer is a parameter that identifies micro-perturbations 

of the signal amplitude, and is measured using the parameters 

listed below [32]: 

 Shimmer (relative) is used to describe a measure 

of the variation or amplitude perturbation in the intensity 

or loudness of speech signals. It is calculated as the relative 

change in amplitude between consecutive speech frames, 

expressed as a percentage [25]. 

Shimmer (relative) =

1
𝑁 − 1

∑ |𝐴𝑖 − 𝐴𝑖+1|𝑁−1
𝑖=1

1
𝑁

∑ 𝐴𝑖
𝑁
𝑖=1

 

where Ai represents the extracted peak-to-peak amplitude data, 

and N denotes the number of extracted fundamental frequency 

periods F0. 

Shimmer (dB) is a speech and voice analysis measure that 

quantifies the amplitude or intensity variation in a vocal signal. 

It is expressed in decibels (dB) [11], it can be expressed as: 

Shimmer (dB) =  
1

𝑁 − 1
∑ |20 log (

𝐴𝑖+1

𝐴𝑖
)| 

𝑁−1

𝑖=1

 

 Shimmer, also referred to as Amplitude Perturbation 

Quotient (APQ), is a parameter used to assess the perturbation 

or fluctuation in the amplitude of speech signals. Various versions 

of shimmer exist, such as Shimmer (APQ3), Shimmer (APQ5), 

Shimmer (APQ11), and Shimmer (dda), which vary in terms 

of the number of data points utilized in the calculation 

and the manner in which they are expressed [11]. 

1.2.3. Harmonicity 

The Mean Harmonics-to-Noise Ratio (HNR), which measures 

the proportion of harmonic components in the signal [7], and the 

Mean Noise-to-Harmonics Ratio (NHR), which evaluates the ratio 

of noise to harmonic energy in different frequency bands [8]. 

These measures are useful for analyzing the periodicity 

and noisiness of speech signals in various applications. 

1.3. MFCC process  

MFCCs (Mel-frequency cepstral coefficients) are a widely 

used feature extraction technique in audio processing and speech 

recognition. The Mel-scale is created by stacking triangular filters, 

usually ranging from 15 to 30, that are linearly spaced up to 1 kHz 

and logarithmically spaced above 1 kH [4]. The following stages 

are commonly included in computing MFCCs. 

1.3.1. Farming 

To account for the non-stationary character of speech 

waveforms over longer durations, a short-term analysis approach 

is utilized to efficiently analyze speech signals. Because 

the movement of speech articulators is physically restricted, 

frames of 10-30 ms are deemed stable for study. The analysis 

is carried out in regular time periods or frames, each with a fixed 

duration. This entails separating the voice signal into N-sample 

frames with an M-sample gap between consecutive frames (where 

M is fewer than N) [9]. 
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1.3.2. Pre-emphasis 

In this step, we amplify the energy in the voice stream 

by emphasizing higher frequencies. This is accomplished 

by solving the following first-order difference equation 

for the samples {𝑠𝑛, 𝑛 = 1, … , 𝑁} [9]: 

𝑠𝑛
′ = 𝑠𝑛 − 𝑘 ∗ 𝑠𝑛−1 

The value of k in the equation represents the pre-emphasis 

coefficient, which is required to be within the range of 0 ≤ k < 1. 

according to reference [9]. For our investigation, we used a pre-

emphasis coefficient of k = 0.97. 

1.3.3. Fast Fourier Transform (FFT) 

The audio frames that have undergone pre-processing are then 

subjected to the Fourier transform, which converts the signal 

from the time domain to the frequency domain. This process 

results in a representation of the audio signal in terms 

of its spectral content, which is defined for the set of N samples 

{𝑠𝑛, 𝑛 = 0,1,2, … , 𝑁 − 1} as follow [4, 13]: 

 𝑠𝑛 = ∑ 𝑠𝑘 ∗ 𝑒−2𝜋𝑗𝑘𝑛 𝑁⁄𝑁−1
𝑘=0   

1.3.4. Mel-frequency wrapping 

The Mel-filterbank is applied to the spectral representation 

of the audio signal using a set of triangular filters uniformly 

spaced in the Mel-scale, which mimics the frequency perception 

of the human ear. This filterbank is used to compute the energy 

in each Mel-frequency band. The Mel scale is logarithmic above 

1000 Hz and linear below 1000 Hz, with a reference tone 

of 1 KHz at 40 dB above the perceptual hearing threshold set 

at 1000 mels. An approximate formula is used to determine the 

mels of a given frequency in Hz [13, 30]. 

𝑀𝑒𝑙(𝑓) = 2595 ∗ 𝑙𝑜𝑔10 (1 +
𝑓

700⁄ ) 

1.3.5. Cepstrum 

The compressed Mel-filterbank energies are subjected to 

a Discrete Cosine Transform (DCT), which serves to decorrelate 

the energies and capture cepstral features that represent 

the spectral shape of the audio signal. In order to transform 

the logarithm of the Mel spectrum into the time domain, 

the cepstral representation of the speech spectrum is utilized, 

achieved by applying the DCT to the log filter bank amplitudes 

using a specific formula. The MFCCs are valuable for frame 

analysis in speech processing, as they effectively capture the local 

spectral features of the speech signal [30]. 

𝑐𝑖 = √
2

𝑁
∑ 𝑚𝑗 ∗ cos (

𝜋𝑖

𝑁
(𝑗 − 0.5))

𝑁

𝑗=1

 

The value of N corresponds to the total number of filter bank 

channels employed in the computation. 

1.3.6. Liftering 

Liftering is a technique in audio and speech signal processing 

that modifies MFCCs by applying a window function, such 

as a raised cosine window, to emphasize or attenuate specific 

frequency bands. It is commonly used to adjust spectral features 

in audio signals. One potential issue is that higher-order cepstral 

coefficients can become very small, which may pose challenges. 

To address this, cepstral liftering is employed, which involves 

normalizing the amplitudes of the cepstral coefficients using 

a specific formula [4, 9]. 

𝑐𝑛
′ = (1 +

𝐿

2
∗ sin (

𝜋 ∗ 𝑛

𝐿
) ∗ 𝑐𝑛 

The value of L in the equation corresponds to the cepstral sine 

lifter parameter, and we employed L = 22 in this work. 

2. Machine learning classifiers 

After the feature selection process, the subsets of features are 

utilized in various machine learning algorithms to differentiate 

between PD patients and healthy individuals. We have employed 

three classifiers, namely Classification Tree (CT), Logistic 

Regression, Naive Bayes (NB), Support Vector Machines (SVM), 

and Ensemble methods. 

The Classification Tree (CT) algorithm is an approach that 

uses decision tree principles to recursively split data based 

on feature values. It builds a tree structure where internal nodes 

represent features, and leaf nodes indicate class labels. The splits 

are determined by criteria like the Gini index or information gain, 

aimed at optimizing the separation between classes. This decision 

tree is a flowchart-like structure, where internal nodes symbolize 

functions or attributes, branches represent decision rules, and leaf 

nodes signify outcomes. The root node, situated at the top, decides 

the partitioning based on attribute values. Recursive partitioning 

is a technique for repeatedly dividing the tree. This flowchart-like 

representation aids in decision-making and closely mirrors human 

thinking processes. Consequently, decision trees are easily 

understandable and intuitive [15]. 

Logistic Regression is a popular mathematical method 

for predicting binary outcomes, where the class variable 𝑦 takes 

values of 0 or 1. It differs from linear regression, which is more 

suitable for continuous outcomes, as logistic regression 

is specifically designed for categorical outcomes. It employs 

the standard logistic function, which is an S-shaped curve given 

by the equation:  

𝑓(𝑥) =
1

1 + 𝑒−𝑥 

to calculate the probability of belonging to a particular class. 

The logistic regression model assumes a linear relationship 

between the input features and the logarithm of the odds 

of the outcome. By estimating the probability and applying 

a predefined threshold, the algorithm assigns the appropriate class 

label to each instance [15]. 

Naive Bayes (NB) is a probabilistic classifier that applies 

Bayes' theorem with the assumption of feature independence. 

It calculates the probability of each class given the input features 

and assigns the class label with the highest probability. Despite 

its "naive" assumption, Naive Bayes has shown good performance 

in many classification tasks [15]. 

Naive Bayes classifier is a probabilistic machine learning 

model that is used for binary (two-class) and multi-class 

classification problems. The classifier is based on the Bayes 

theorem: 

𝑃(𝑦|𝑋) =
𝑃((𝑋|𝑦)𝑃(𝑦)

𝑃(𝑋)
  

The class variable 𝑦 and the parameter/feature variables 

represented by X = (x1, x2, ..., xn) are involved in Naive Bayes. 

The Naive Bayes classifier assumes that the attributes 

are independent of each other. Hence, it assumes that the presence 

or value of one attribute does not affect the presence or value 

of other attributes. 

𝑃(𝑦|𝑋) =
𝑃(𝑥1|𝑦)𝑃(𝑥2|𝑦) … 𝑃(𝑥𝑛|𝑦)𝑃(𝑦)

𝑃(𝑥1)𝑃(𝑥2) … 𝑃(𝑥𝑛)
 

For Gaussian Naive Bayes, the conditional probability 

is derived from a normal distribution, similar to a Gaussian 

distribution. 

𝑃(𝑥𝑖|𝑦) =
1

𝜎𝑦√2𝜋
𝑒

−
(𝑥𝑖−𝜇𝑦)²

2𝜎²𝑦
⁄

 

Support Vector Machines (SVM) is a supervised machine 

learning technique utilized for solving classification 

and regression problems. It distinguishes itself by identifying 

a hyperplane that effectively separates the classes. The hyperplane 

is determined by maximizing the margin, which is the distance 

between the hyperplane and the nearest data points from each 

class. In cases where the data is not linearly separable, the kernel 

trick is employed. The kernel function allows for transforming 

the input space from a lower dimension to a higher dimension, 

enabling the resolution of non-linear separable problems. 

In our research, we utilized the sigmoid function as the kernel 

for SVM [15]. 
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Ensemble methods combine multiple individual classifiers 

to make predictions. Techniques such as Random Forest, Bagging, 

or Boosting can be used for ensemble methods. These methods 

create an ensemble of classifiers and aggregate their predictions 

to make a final decision. Ensemble methods often improve 

classification accuracy and help mitigate overfitting. 

3. Evaluation metrics 

In order to evaluate the effectiveness of our classifiers 

in distinguishing between PD patients and patients with different 

ND, we used many performance criteria, including accuracy, 

sensitivity, and specificity, to assess the usefulness of our 

classifiers in differentiating between PD patients and patients with 

other ND [4, 6]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

True positives (TP) are Parkinson’s disease patients 

successfully diagnosed by the classifier. True negatives (TN) 

are patients with ND who have been appropriately classified. False 

positives (FP) are ND patients who were wrongly categorized. 

False negatives (FN) are Parkinson’s disease individuals who were 

misclassified [6, 30]. Accuracy quantifies the classifier’s 

performance in discriminating between the two groups, sensitivity 

measures the accuracy of PD patient recognition, and specificity 

gauges the accuracy of detecting patients with other 

neurodegenerative diseases [6, 9]. Additionally, we included two 

more variables along with accuracy, sensitivity, and specificity. 

Matthews’ correlation coefficient (MCC) and Probability Excess 

(PE). MCC is a reliable measure of the quality of binary 

classification and ranges from 0 (for random algorithms) 

to 1 (for perfect algorithms). PE, on the other hand, also ranges 

from 0 (for random prediction) to 1 (for perfect prediction) [4]. 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑁 × 𝐹𝑃

√((𝐹𝑁 + 𝑇𝑃)(𝐹𝑃 + 𝑇𝑁)(𝐹𝑃 + 𝑇𝑃)(𝐹𝑁 + 𝑇𝑁))

 

𝑃𝐸 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑁 × 𝐹𝑃

(𝐹𝑁 + 𝑇𝑃)(𝐹𝑃 + 𝑇𝑁)
 

Table 2. Confusion matrix used in the analysis 

  Result Of classification 

  ND PD 

Diagnosed 
ND TP FP 

PD FN TN 

  Sensitivity Specificity 

4. Results and discussion 

In our research, we utilized cepstral analysis to extract features 

and coefficients from voice samples in order to classify patients 

into two categories: those with Parkinson’s Disease (PD) 

and those without (ND). We employed various classifiers 

and kernels, such as Classification Tree (CT), Logistic Regres-

sion, Naive Bayes (NB), Support Vector Machines (SVM), 

and Ensemble methods, to accurately differentiate between 

the two groups and gain insights into the potential use of voice 

analysis in PD diagnosis. To address the issue of overfitting, 

we con-ducted cross-validation experiments with different 

numbers of folds, including 5, 10, 20, and 30, on our dataset 

which com-prised 76 samples with 75 features each. After careful 

analysis of the results, we determined that using 20 folds for cross-

validation provided accurate performance estimation. 

The table 3 presents the classification performance of various 

acoustic features for differentiating Parkinson's Disease (PD) from

other neurodegenerative diseases (ND) without employing 

dimensionality reduction techniques such as PCA. The results 

demonstrate the accuracy, sensitivity, specificity, true positive 

(TP), true negative (TN), false positive (FP), false negative (FN), 

Matthewscorrelation coefficient (MCC), and classification 

error rate (PE) for each feature. Overall, the table shows that 

some features achieved high accuracy of 73.7% or 75% 

in differentiating PD from ND. However, it is important to note 

that several features, such as median pitch, mean pitch, standard 

deviation of pitch, minimum pitch, maximum pitch, mean period, 

standard deviation of period, jitter parameters, shimmer 

parameters, mean autocorrelation, and harmonicity parameters, 

all had an accuracy of 73.7% without distinguishing between PD 

and ND. These features did not provide sufficient discriminatory 

power for accurate classification. On the other hand, certain 

features exhibited higher accuracy and sensitivity values, such 

as the number of pulses (77.63%), number of periods (78.94%), 

fraction of locally unvoiced frames (73.68%), number of voice 

breaks (75%), degree of voice breaks (77.63%), jitter (ppq5) 

(75%), formant frequencies (F1, F2, F3) (77.5%), and the first 

15 coefficients of MFCC (75%). These features showed promise 

in differentiating PD from other ND with reasonable accuracy. 

However, it is crucial to consider the limitations of the study 

and the interpretation of these results. The sample size used 

in this study was relatively small, with only 56 PD patients 

and 20 patients with other ND. Therefore, the generalizability 

of the findings to a larger population should be carefully 

considered. Additionally, the specific classification algorithms 

and parameter settings used for the machine learning models 

are not provided in the table, making it difficult to assess 

the reproducibility and reliability of the results. 

In conclusion, the table highlights the classification 

performance of different acoustic features in distinguishing 

PD from other ND without employing dimensionality reduction 

techniques. Some features exhibited higher accuracy and 

sensitivity, while others showed limited discriminatory power. 

Further research with larger and more diverse datasets, along with 

detailed information on classification algorithms and parameter 

settings, is necessary to validate and improve the effectiveness 

of these features for accurate PD classification. 

The performance of various classifiers evaluated using linear 

PCA can be assessed by selecting the best 4 numbers from 

the 13th principal components. In Table 4, it was observed that 

Kernel NB, with numeric components 2, 4, 6, and 7, consistently 

demonstrated superior performance in terms of accuracy (ranging 

from 80.3% to 86.84%), sensitivity (ranging from 72.77% 

to 89.65%), specificity (ranging from 77.77% to 89.65%), 

and MCC (ranging from 0.5837 to 0.6743). Gaussian NB also 

showed relatively good performance with accuracy ranging 

from 75% to 78.94% and sensitivity ranging from 50% to 68.75%. 

The number of numeric components used in linear PCA appeared 

to impact the performance of certain classifiers. SVM 

and ensemble (Bugged trees) showed consistent accuracy 

of 73.7% across all numeric component values, indicating that 

the performance was not influenced by the number of components. 

However, Rus Boosted trees displayed a significant drop 

in accuracy from 34.21% to 28.57% as the number of components 

increased from 2 to 4. Sensitivity, also known as recall or true 

positive rate, measures the ability of a classifier to accurately 

identify positive cases, while specificity, also known as true 

negative rate, measures the ability to correctly identify negative 

cases. Higher sensitivity and specificity values are generally 

desired for a reliable classifier, as they indicate better capability 

in correctly classifying both positive and negative cases. MCC 

is a metric that assesses the quality of binary (two-class) 

classification, taking into account true positives, true negatives, 

false positives, and false negatives. A higher MCC value indicates 

better classification performance. PE measures the average 

prediction error of the classifier, with lower values indicating 

better performance. 
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Table 3. Classification Performance of Acoustic Features for Differentiating Parkinson's Disease and Other Neurodegenerative Diseases without Dimensionality Reduction 

Groups Features Accuracy (%) Sensitivity (%) Specificity (%) TP TN FP FN MCC PE 

Pitch parameters 

Median pitch 73.7 0 100 0 56 20 0 0 0 

Mean pitch 73.7 0 100 0 56 20 0 0 0 

Standard deviation 73.7 0 100 0 56 20 0 0 0 

Minimum pitch 73.7 0 100 0 56 20 0 0 0 

Maximum pitch 73.7 0 100 0 56 20 0 0 0 

Pulses parameters 

Number of pulses 77.63 63.63 80 7 52 13 4 0.3486 0.2823 

Number of periods 78.94 63.63 80.30 7 53 13 3 0.3891 0.4643 

Mean period 73.7 0 100 0 56 20 0 0 0 

Standard deviation of period 73.7 0 100 0 56 20 0 0 0 

Voicing parameters 

Fraction of locally unvoiced frames 73.68 5.3 75.71 3 53 17 3 0.1574 0.2571 

Number of voice breaks 75 10 75.34 2 55 18 1 0.1857 0.42 

Degree of voice breaks 77.63 80 77.46 4 55 16 1 0.3235 0.5746 

Jitter parametrs 

Jitter (local) 73.7 0 100 0 56 20 0 0 0 

Jitter (local. absolute) 73.7 0 100 0 56 20 0 0 0 

Jitter (rap) 73.7 0 100 0 56 20 0 0 0 

Jitter (ppq5) 75 3.44 75.67 2 56 18 0 0.275 0.7567 

Jitter (ddp) 73.7 0 100 0 56 20 0 0 0 

Shimmer parameters 

Shimmer (local) 73.7 0 100 0 56 20 0 0 0 

Shimmer (local. dB) 73.7 0 100 0 56 20 0 0 0 

Shimmer (apq3) 73.7 0 100 0 56 20 0 0 0 

Shimmer (apq5) 73.7 0 100 0 56 20 0 0 0 

Shimmer (apq11) 73.7 0 100 0 56 20 0 0 0 

Shimmer (dda) 73.7 0 100 0 56 20 0 0 0 

Harmonicity parameters 

Mean autocorrelation 73.7 0 100 0 56 20 0 0 0 

Mean noise-to-harmonics ratio 73.7 0 100 0 56 20 0 0 0 

Mean harmonics-to-noise ratio 73.7 0 100 0 56 20 0 0 0 

Frequence formant F1  F2  F3 77.5 60 72.22 6 52 14 4 0.2977 0.3878 

Intencity Max inten, Min inten,  mean inten 73.7 0 100 0 56 20 0 0 0 

Coefficient MFCC 15 firsts Coeff 75 3.44 75.67 2 52 18 0 0.275 0.7567 

 

Table 4. Performance Comparison of Different Classifiers with Varying Number of Numeric Components 

 

Classifiers 
Number numeric 

of components 
Acc (%) 

Sens 

(%) 

Spec 

(%) 
TP TN FP FN MCC PE 

CT 2   4   6   7 73.7 0 100 0 56 20 0 0 0 

LR 2   4   6   7 73.7 0 100 0 56 20 0 0 0 

 

 

 

 

Navies Bayes 

Gaussian NB 

2 75 53.85 79.37 7 50 13 6 0.2839 0.3321 

4 78.9 68.75 0.845 11 49 9 5 0.4934 0.5323 

6 75 53.85 79.37 7 50 13 6 0.2839 0.3289 

7 78.94 66.66 86.66 8 52 12 4 0.3968 0.4792 

Kernel 

NB 

2 80.3 77.77 80.59 7 54 13 2 0.4283 0.5837 

4 82.9 73.33 85.24 11 52 9 4 0.5295 0.5858 

6 84.21 72.77 87.93 13 51 7 5 0.5808 0.6015 

7 86.84 77.77 89.65 14 52 6 4 0.6510 0.6510 

SVM 2   4   6   7 73.7 0 100 0 56 20 0 0 0 

Ensemble 
Bugged trees 2   4   6   7 73.7 0 100 0 56 20 0 0 0 

Rus Boosted trees 2   4   6   7 34.21 28.57 100 20 6 56 0 0.6732 0.2857 

  
In summary, after analyzing the outcomes of linear PCA 

on various classifiers, it can be concluded that Kernel NB 

consistently demonstrates superior performance across different 

numeric component values, followed by Gaussian NB. However, 

the choice of the best classifier may also depend on specific 

requirements and goals of the classification task, and other 

factors like computational efficiency, interpretability, and ease 

of implementation should also be taken into consideration. 

It is crucial to thoroughly evaluate the performance of different 

classifiers using appropriate evaluation metrics and select the one 

that aligns with the specific needs of the task at hand. 

5. Conclusion  

The study aimed to assess speech impairments in patients with 

Parkinson's disease and other neurodegenerative diseases 

by anlyzing acoustic measurements over time, as well as spectral 

and cepstral measurements. The researchers extracted acoustic 

features and MFCCs from voice samples using cepstral domains, 

and then performed feature selection through PCA to differentiate 

between PD patients and those with other neurodegenerative 

diseases. The results showed that using PCA with the Naive Bayes 

kernel and linear classification, the maximum classification 

accuracy achieved was 86.84%. This study demonstrated 

the potential of using objective assessments and machine learning

techniques to accurately identify and differentiate speech disorders 

in PD patients, which could lead to improved management 

and treatment of these disorders, ultimately enhancing 

communication and quality of life for patients. The researchers 

utilized various classifiers and kernels, along with cross-

validation, to address overfitting and classify patients with PD 

and other neurodegenerative diseases based on voice samples. 

The Naive Bayes kernel with PCA yielded the most favorable 

results in terms of classification accuracy. However, when 

selecting the best classifier, specific task requirements and other 

factors such as computational efficiency, interpretability, and ease 

of implementation should be considered. Thorough evaluation 

of classifier performance using appropriate metrics is crucial 

in choosing the most suitable classifier for the task at hand. 

Future work should consider incorporating deep learning 

and convolutional neural networks (CNN) to assess the severity 

of the disease. This can improve the accuracy and specificity 

of speech disorder classification in Parkinson's disease (PD) 

and other neurodegenerative diseases. Furthermore, the inclusion 

of larger datasets and exploration of alternative machine learning 

algorithms can provide valuable insights and enhance the overall 

performance of classification models. These advancements have 

the potential to enhance our understanding of speech impairments 

in neurodegenerative diseases and contribute to personalized 

treatment approaches. 
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