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Abstract. We focus on two different approaches to automatic program repair,
based on formal verification methods. Both repair techniques consider infinite-
state C-like programs, and consist of a generate-validate loop, in which poten-
tially repaired programs are repeatedly generated and verified. Both approaches
are incremental – partial information gathered in previous verification attempts is
used in the next steps. However, the settings of both approaches, including their
techniques for finding repairs, are quite distinct. The first approach uses syntactic
mutations to repair sequential programs with respect to assertions in the code.
It is based on a reduction to the problem of finding unsatisfiable sets of con-
straints, which is addressed using an interplay between SAT and SMT solvers.
A novel notion of must-fault-localization enables efficient pruning of the search
space, without losing any potential repair. The second approach uses an Assume-
Guarantee (AG) style reasoning in order to verify large programs, composed of
two concurrent components. The AG reasoning is based on automata-learning
techniques. When verification fails, the procedure repeatedly repairs one of the
components, until a correct repair is found. Several different repair methods are
considered, trading off precision and convergence to a correct repair.

1 Introduction
This work is concerned with automated program repair. It focuses on two specific ap-
proaches, presented in [50,48] and [22,21], that demonstrate many of the guiding prin-
ciples in program repair, when it is based on formal methods. While the two approaches
have much in common, they are also quite distinct, due to their different settings, in-
cluding their type of programs, specifications and repair mechanisms.

Both approaches handle infinite-state C-like programs, for which both the syntax
and the semantics must be taken into account. The syntax refers to the program code,
which might be updated for the purpose of repair. In [50] a predefined set of mutations
is used for syntactic update, where [22] uses abduction to derive constraints that are
added to the program code. In both cases, SMT solvers are used to answer semantic
questions that arise during verification.

As often with program repair, the entire process can be seen as a generate-validate
loop. Generate produces a candidate program, and validate checks whether it is a good
repair, that is, whether the candidate program satisfies the given specification.

In order to prune the search space of candidate programs when validation fails, the
goal is not only to remove the failed candidate program, but also to remove “similar”
candidates that are likely to fail as well.



In [50] the search space consists of all mutated programs and the goal is to return
all good repairs that are minimal. A notion of must-fault localization is developed in
order to guarantee that similarly failed programs will not be considered in the future.
This makes the repair process much more efficient.

In [22], the search space consists of sets of executions of the original program,
which can be represented by a Control Flow Graph (CFG). Once the current program
fails to satisfy the specification, faulty executions are removed by altering the CFG of
the program. Several repair methods are proposed, some may remove more executions
than necessary. This allows to trade efficiency for completeness. This approach too is
incremental, meaning that the current validation step makes use of previous validation
steps, thus increasing efficiency.

As stated, the differences between the two approaches are quite significant. [50]
exploits a predefined set of mutations for repair. Its goal is to return all minimal repairs
and its focus is on the notion of must-fault localization, which achieves efficiency and
completeness. Its verification notion is bounded. [22], on the other hand, focuses on
making the validation step more scalable. To this end, it exploits the Assume-Guarantee
(AG) learning-based paradigm for compositional verification [39,46] and adapts it to the
setting of infinite-state communicating C programs. The CFG of the verified program
is viewed as an automaton, in order to enable automata-learning (e.g., via L∗ [4]). Its
verification is unbounded.

Next, we present a high-level description of each of the approaches, followed by a
more detailed description.

1.1 The Must-Fault Localization Approach

The first approach we present focuses on repair of imperative, sequential, programs
with respect to assertions in the code. We use a bounded notion of correctness. That is,
for a given bound wb, we consider only bounded computations, along which the body
of each loop is entered at most wb times and the maximum depth of the call stack is
wb. We say that a program is repaired if whenever a bounded computation reaches an
assertion, the assertion is evaluated to true.

Our repair method is sound, meaning that every returned program is repaired (i.e.,
no violation occurs in it up to the given bound). Just like Bounded Model Checking,
this increases our confidence in the returned program.

Our programs are repaired using a predefined set of mutations, applied to expres-
sions in conditionals and assignments (e.g., replacing a + operator by a −), as was
shown useful in previous work [16,47]. We impose no assumptions on the number of
mutations needed to repair the program and are able to produce repairs involving mul-
tiple buggy locations, possibly co-dependent. To make sure that our suggested repairs
are as close to the original program as possible, the candidate repaired programs are ex-
amined and returned in increasing number of mutations. In addition, only minimal sets
of mutations are taken into account. That is, if a program can be repaired by applying
a set of mutations Mut , then no superset of Mut is later considered. Intuitively, this is
our way to make sure all changes made to the program by a certain repair are indeed
necessary.
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Our method is complete in the sense of returning all minimal sets of mutations that
create a repaired program. Specifically, if no repair is found, one can conclude that the
given set of mutations is not enough to repair the program.

Our algorithm, FL-AllRepair, is based on the translation of the program into a set of
SMT constraints called the program formula, which is satisfiable iff the program con-
tains an assertion violation. This was originally done for the purpose of bounded model
checking in [11]. Our key observation is that mutating an expression in the program
corresponds to replacing a constraint in the set of constraints encoding the program.
Thus, searching the space of mutated programs is reduced to searching unsatisfiable
sets of constraints.

The search is conducted using an interplay between SAT and SMT solvers, which
realizes a generate-validate loop: The SAT solver is used to sample the search space of
mutated programs and to efficiently block sets of undesired programs. The SMT solver
is used to verify whether a mutated program is repaired.

Two key factors make this search process efficient: incremental solving, and prun-
ing via blocking. Incremental solving is used in both the SAT solver and the SMT
solver, which means that each of them retains learned information between successive
calls. Using an SMT solver incrementally constitutes a novel way to exploit informa-
tion learned while checking the correctness of one program for the process of checking
correctness of another program. Note, that if the programs are similar, their encoding as
sets of SMT constraints will also be similar (due to our observation presented above),
resulting in bigger savings when using incremental SMT.

The second key contributing factor to efficiency is pruning. Pruning occurs after the
validate stage, based on its results. Whenever a program is found to be repaired, we use
it to prune other mutated programs based on non-minimality. If, however, the program
is found to be buggy (i.e., not repaired) our algorithm makes use of fault localization to
prune other buggy programs.

Although fault localization and automated program repair have long been combined,
our use of fault localization to block undesired programs is non-standard. Traditionally,
fault localization suggests a set of locations F in the program that might be the cause of
the bug. Then, repair attempts to change those suspicious locations in order to eliminate
the bug. Pruning based on such an approach would mean blocking mutated programs
where lines outside ofF are changed. However if fault localization is too restrictive (i.e.,
F is too small), we will be missing potential repairs. In fact, a recent study has shown
that for test-based repair imprecise fault localizations happen very often in practice
[34]. On the other hand, if fault localization is too permissive, this blocking might cause
redundant search work.

This identifies the need for fault localization that can narrow down the space of
candidates while still promising not to lose potential causes for a bug. For this purpose,
we define the concept of a must location set. Intuitively, such a set includes at least one
location from every repair for the bug. Thus, it must be used for repair. In other words, it
is impossible to fix the bug using only locations outside this set. A fault localization
technique is considered a must algorithm if it returns a must location set for every buggy
program and every bug in the program.
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The blocking done in our repair process whenever a buggy mutated program is
discovered is based on a must-fault-localization algorithm. This blocking ensures that
we do not lose repairs, and therefore do not damage completeness.

We implemented FL-AllRepair in an open-source tool available on GitHub 4, com-
pared it with the methods of [29,30] and got very encouraging results.

1.2 The Assume-Guarantee-Repair (AGR) Approach

The second approach focuses on the Assume-Guarantee (AG) style compositional veri-
fication [39,46], which enables making the verification of large systems more scalable.
The simplest AG rule checks whether a system composed of components M1 and M2

satisfies a property P by checking that M1 along with an assumption A satisfies P , and
that any system containing M2 as a component satisfies A. Several frameworks have
been proposed to support this style of reasoning. Finding a suitable assumption A is a
common challenge in such frameworks.

Our fully-automated framework, called Assume-Guarantee-Repair (AGR), applies
the Assume-Guarantee rule, and while seeking a suitable assumption A, iteratively re-
pairs the given program in case the verification fails. Our framework is inspired by [44],
which presented a learning-based method for finding an assumption A for finite-state
programs represented by labeled transition systems (LTS). The assumptions are found
using the L∗ [4] algorithm for learning regular languages.

In contrast to [44], our AGR framework handles communicating programs. These are
infinite-state C-like programs, extended with the ability to synchronously read and write
data over communication channels. We model such programs as finite-word automata
over an action alphabet, which reflects the program statements. The accepting states in
the automaton model points of interest in the program that the specification can relate to.
The automata representation, which enables exploiting automata-learning algorithms, is
similar in nature to that of control-flow graphs.

The composition of the two program components M1 and M2, denoted M1||M2,
synchronizes on read-write actions on the same channel. Between two synchronized
actions, the individual actions of both systems interleave. Fig. 1 presents the code of
a communicating program (left) and its corresponding automaton M2 (right). The au-
tomaton alphabet consists of constraints, assignment actions, and communication ac-
tions. For example, enc!xpw sends the value of variable xpw over channel enc, and
getEnc?xpw2 reads a value to xpw2 on channel getEnc.

The specification P is modeled as an automaton that does not contain assignment
actions. It may contain communication actions in order to specify behavioral require-
ments, as well as constraints over the variables of both system components, that express
requirements on their values in various points in the runs.

Consider, for example, the program M1 and the specification P seen in Fig. 2, and
the program M2 of Fig. 1. M2 reads a password on channel read to the variable xpw,
and once the password is long enough (at least four digits), M2 sends the value of xpw
to M1 through channel enc. The component M1 reads this value to variable ypw and

4 Fl-AllRepair is an extension of the AllRepair tool, available here: https://github.
com/batchenRothenberg/AllRepair. FL-AllRepair is currently enabled by adding
the --blockrepair slicing option to the AllRepair tool.
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1: while(true)
2: password:=readInput;
3 while(password≤ 999)
4: password:=readInput;
5: password2:=encrypt(password);

q0

q1

q2

q3

q4

read?xpw

xpw≤999

read?xpw

999<xpw

enc!xpw

getEnc?xpw2

Fig. 1: Modeling a communicating program as an automaton M2

then applies a simple function that changes its value, and sends the changed variable
back to M2. The property P reasons about the parallel run of the two programs. The
pair (getEnc?xpw2, getEnc!ypw) denotes a synchronization of M1 and M2 on channel
getEnc. The specification P requests that the parallel run of M1 and M2 first reads
a value and only then encrypts it – a temporal requirement. In addition, it makes sure
that the value after encryption is different from the original value, and that there is no
overflow – both are semantic requirements on the program variables. In case that one
of the requirements does not hold, P reaches the error state r4. Note that P here is not
complete, for simplicity of presentation.

The L∗ algorithm aims at learning a regular language U . Its entities consist of a
teacher – an oracle that answers membership queries (“is the wordw in U?”) and equiv-
alence queries (“is A an automaton whose language is U?”), and a learner, which it-
eratively constructs a finite deterministic automaton A for U by submitting a sequence
of membership and equivalence queries to the teacher. In using the L∗ algorithm for
learning an assumption A for the AG-rule, membership queries are answered accord-
ing to the specification P : A trace t should be in A iff M1||t satisfies P . Once the
learner constructs a stable system A, it submits an equivalence query. The teacher then
checks whether M1||A satisfies P , and whether the language of M2 is contained in the
language of A. According to the results, the process either continues or halts with an
answer to the verification problem. The learning procedure aims at learning the weak-
est assumption Aw, which contains all the traces that in parallel with M1 satisfy P .
The key observation that guarantees termination in [44] is that the components in this
procedure – M1, M2, P and Aw – are all regular.

p0M1

p1

p2

enc?ypw

ypw :=2·ypw

getEnc!ypw

r1

r2

r0

r4

r3

P

read?xpw

(getEnc?xpw2,getEnc!ypw)

read?xpw

xpw !=xpw2

ypw<264

xpw==xpw2ypw≥264

Fig. 2: The program M1 and the specification P
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Our setting is more complicated, since the traces in the components – both the pro-
grams and the specification – contain constraints, which are to be checked semantically.
These constraints may cause some traces to become infeasible. For example, if a trace
contains an assignment x := 3 followed by a constraint x ≥ 4 (modeling an “if” state-
ment), then this trace does not contribute any concrete runs, and therefore does not
affect the system behavior. Thus, we must add feasibility checks to the process, and
there is more here to check than standard language containment. Moreover, in our set-
tingAw above may no longer be regular, see Example 3. However, our method manages
overcoming this problem.

We proceed to describe the repair process in case that the verification fails. An AG-
rule can either conclude thatM1||M2 satisfies P , or return a counterexample, which is a
computation t of M1||M2 that violates P . Instead of returning t, we repair M2 in a way
that eliminates it. Our repair is either syntactic or semantic. For semantic repair we use
abduction [45] to infer a new constraint, which makes the counterexample t infeasible.

Consider againM1 and P of Fig. 2 andM2 of Fig. 1. The compositionM1||M2 does
not satisfy P . For example, if the initial value of xpw is 263, then after encryption the
value of ypw is 264, violating P . Our algorithm finds a bad trace t during the AG stage,
which captures this bad behavior. In the repair stage, the abduction finds a constraint
xpw < 263 that eliminates t, and adds it to M2.

Following this step we now have an updated M2, and we apply the AG-rule again,
using information we have gathered in the previous steps. In addition to removing the
error trace, we update the alphabet of M2 with the new constraint. Continuing our ex-
ample, in a following iteration AGR will verify that the repaired M2 together with M1

satisfy P , and terminate.
In case that the current system does satisfy P , we return the repaired M2 together

with an assumption A that abstracts M2 and acts as a smaller proof for correctness.
We have implemented a tool for AGR and evaluated it on examples of various sizes

and of various types of errors. Our experiments show that for most examples, AGR
converges and finds a repair after 2-5 iterations of verify-repair. Moreover, our tool
generates assumptions that are significantly smaller than the (possibly repaired) M2,
thus constructing a compact and efficient proof of correctness.

1.3 Related Work

There is a wide range of techniques for automated program repair using formal meth-
ods [41,38,6,27,53,28,14,42]. Both [16] and [47] also use fault localization followed by
applying mutations for repair. But, unlike this work, fault localization is applied only
to the original program. The tool MUT-APR [5] fixes binary operator faults in C pro-
grams, but only targets faults that require one line modification. The tools FORENSIC
[7] and MAPLE [43] repair C programs with respect to a formal specification, but they
do so by replacing expressions with templates, which are then patched and analysed.
SEMGRAFT [37] conducts repair with respect to a reference implementation, but relies
on tests for fault localization of the original program.

Assume-guarantee style compositional verification [39,46] has been extensively
studied, using learning-based approaches [13,25,23,8,9,26,10,19,20,36,40]. All these
works are limited to finite state systems, and do not repair the system but only address
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the verification problem. [33] addresses L∗-based compositional verification and syn-
thesis, but it only targets finite-state systems.

The work of [32,2] use logical abduction for synthesis and repair, however, their
setting is sequential, while here we target concurrent systems. [51] computes the inter-
face of an infinite-state component, but it only analyzes one component at a time. In
contrast, we use both components of a system to compute the necessary assumptions.

2 Mutation-Based Repair with Iterative Fault Localization

2.1 Setting

Programs and Program Correctness For our purposes, a program is a sequential pro-
gram composed of standard statements: assignments, conditionals, loops and function
calls with their standard semantics. Each statement is located at a certain location (or
line) li, and all statements are defined over the set of program variables X . The desired
behavior of the program is expressed through assume and assert statements. An
assume statement is used to restrict executions to only those of interest (if an assume
is violated, execution ends without an error), and an assert statement is used to ex-
press a desired property (if an assert is violated, execution ends in an error).

A program P has a bug on input I if an assertion violation occurs during the execu-
tion of P on I . If no assertion violation occurs during the execution of P on I , then the
program is correct for I . If P has a bug on some input I then P is said to be erroneous,
otherwise it is correct.

In this work, we focus on bounded executions of the program. A wb-bounded ex-
ecution of a program P , for some integer bound wb, is an execution of P where the
body of each loop is entered at most wb times and the maximum depth of the call stack
is wb. A program P where no assertion violation occurs during any of its wb-bounded
executions is said to be wb-violation-free. Our algorithm repairs programs with respect
to a fixed, user-supplied, bound wb. Therefore, we refer to a wb-violation-free program
as a repaired program, for short.

The Mutation Repair Scheme We use the notion of a repair scheme to define which
changes to a program are allowed by a repair method. A repair scheme S is a function
mapping a statement to a set of statements. Intuitively, the image of a statement in this
function represents all options to replace it allowed by the repair method.

The repair scheme used in our algorithm is the mutation scheme. The mutation
scheme, Smut, is a repair scheme constructed using a finite list of mutation operations,
M1, · · · ,Mk. A mutation operator Mi can be any partial function mapping a program
expression to another program expression of the same type. Applying a mutation oper-
ator Mi to a statement st, denoted Mi(st), means applying Mi to the expression of st5.
This application is only defined if the expression of st is in the domain of Mi, in which
case we say thatMi is applicable to st. For a program statement st, Smut(st) is defined
as {Mi1(st), · · · ,Min(st)}, where Mi1 , · · · ,Min are all the mutation operators from
M1, · · · ,Mk applicable to st.

5 If st is an assignment of the form x:=e then its expression is e. If st is a conditional statement,
then its expression is the condition.
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Example 1. Suppose we have M1 which replaces a + operator with a - operator, M2

which replaces a < operator with a > operator, and M3 which allows increasing a nu-
merical constant by 1. Let st be the statement x:=y+1. The expression of st is thus
y+1, and the mutation operators applicable to st are M1 and M3. Therefore,

Smut(st) = {x:=y-1,x:=y+2}

Let S be a repair scheme. An S-patch of a program P is thus a set of pairs,
{(l1, str1), · · · , (lk, strk)}, where li is a program location and stri is a statement, for
which the following holds: for all 1 ≤ i ≤ k, let sti be the statement in location li in
P , then stri ∈ S(sti). In addition, for every i 6= j, li 6= lj . Applying an S-patch τ to
a program P means replacing the statement sti with stri in every location li in τ . The
size of the patch is the number of mutated statements (k).

We refer to the result of applying an Smut-patch to a program as a mutated program.
The set of all mutated programs created from a program P is the search space of P .

2.2 The FL-AllRepair Algorithm

In this section we present algorithm FL-AllRepair, which gets a program P and returns
all minimal repairs from within the search space of P , where minimality is defined
with respect to inclusion between patches. A high level description of the algorithm
is presented in Figure 3. The algorithm follows a generate-validate loop: the generate
stage chooses a mutated program P ′ from the search space and the validate stage checks
whether P ′ is correct. In both cases, a blocking stage occurs that removes irrelevant
programs from the search space. If the program was correct, blocking is based on non-
minimality. Otherwise, it is based on the results of a fault localization component.

The following subsections dive into the details of the individual components.

Find an
unexplored

mutated program PM

Generate

Check if
PM is fully repaired

Validate

Fault localization

output
PM

PM yes

noblock
based on

F F

block based on non-minimality

Fig. 3: Outline of algorithm FL-AllRepair for iterative mutation-based program repair.

2.3 Generate

To choose a mutated program from the search space we need to choose which mutation
operator to apply to which line. We encode this choosing process in a propositional for-
mula. Specifically, for every mutation operator M and line l, there is a boolean variable

8



BM (l) in the formula, which is true if and only if M is applied to line l. Additionally,
for every line l there is a variable BO(l), which is true if and only if line l is not mu-
tated. Then, the formula is constructed by requiring that for every line l exactly one of
the variables BO(l), BM1(l), · · · , BMk

(l) be true. This way, there is a 1-1 correspon-
dence between models of the formula and mutated programs in the search space. Hence,
the generate stage can be realized using a SAT solver that solves this formula.

The advantage of this SAT encoding is that it allows an easy removal (blocking)
of mutated programs from the search space. Such a removal can be realized by simply
adding a blocking clause to the propositional formula. For example, to prevent all pro-
grams where mutation operator M is applied to line l from being considered, one can
simply add the clause ¬BM (l).

Another advantage of this encoding is that it let’s us easily control the size of patches
being explored: we can limit the number of variables allowed to be set to true to at
most s, for the desired size s. We then explore patches in increasing size by repeatedly
increasing s as soon as the formula becomes unsatisfiable.

2.4 Validate

The validation of a mutated program PM is based on a translation of the program P
into a set of constraints, whose conjunction constitutes the program formula. In addition
to representing assignments and conditionals, the program formula includes constraints
representing assumptions, and a constraint representing the negated conjunction of all
assertions. Thus, a satisfying assignment (a model) of the program formula represents
an execution of P that satisfies all assumptions but violates at least one assertion.

From Programs to Program Formulas Next, we explain how the program is trans-
lated into a set of constraints. The translation, following [11], goes through four stages.
Figure 4 demonstrates certain steps of the translation. First, the program is simplified
and each of the branch conditions is replaced with a fresh boolean variable. In the ex-
ample, g replaces the conditionw > 3. Second, the body of each loop and each function
is inlined wb times. Next, the program is converted to static single assignment (SSA)
form. In particular, variables are indexed so that each indexed variable is assigned at
most once. Finally, the program in SSA form is translated to a set of constraints, whose
conjunction forms the formula ϕwb

P .
For a more detailed description see [50].

Theorem 1 ([12]) A program P is repaired iff the formula ϕwb
P is unsatisfiable.

Validation via SMT Solving Based on Theorem 1, we realize the validate stage using
an SMT solver that solves the program formula ϕwb

PM of the mutated program PM in
question. If ϕwb

PM is determined unsatisfiable, PM is added to the list of possible repairs
returned to the user.

Incrementality To facilitate the repeated verification of mutated programs during dif-
ferent iterations, we make use of incrementality. A naive, non-incremental, approach
would require translating each mutated program into a formula and solving it from
scratch during each iteration. Instead, we translate only the original program into a
formula as a preliminary step, before the generate-validate loop begins. Then, during
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proc. foo(x, w)
1: t := 0
2: y := x - 3
3: z := x + 3
4: if (w > 3) then
5: t := z + w
6: assert (t < x)
7: y := y + 10

8: assert (y > z)

proc. simFoo(x, w)
t := 0
y := x - 3
z := x + 3
g := w > 3
if (g) then

t := z + w
assert (t < x)
y := y + 10

assert (y > z)

proc. SSAFoo(x, w)
t0 := 0
y0 := x0 - 3
z0 := x0 + 3
g0 := w0 > 3
t1 := z0 + w0
assert (g0 → t1 < x0)
y1 := y0 + 10
t2 := g0 ? t1 : t0
y2 := g0 ? y1 : y0
assert (y2 > z0)

ϕfoo = {
t0 = 0,
y0 = x0 − 3,
z0 = x0 + 3,
g0 = w0 > 3,
t1 = z0 + w0,

y1 = y0 + 10,
t2 = ite(g0, t1, t0),
y2 = ite(g0, y1, y0),
¬(y2 > z0)∨
¬(g0 → t1 < x0)}

Fig. 4: Example of the translation process of a simple program

each iteration we make the necessary changes to the formula and use incremental SMT
solving, which reuses relevant partial results from the previous iteration.

The key observation that makes this process efficient is that replacing one mutated
program with another requires making only small changes to the program formula.
Consider, for example, the foo program of figure 4. Replacing y := x - 3 with y
:= x * 3 on line number 2 would only require replacing the constraint y0 = x0 − 3
with the constraint y0 = x0 ∗ 3 in the program formula. Similarly, any changes made
to the right-hand-side of an assignment or to the expression in a condition only require
replacing a single constraint in the formula. Therefore, this is a promising application
for incremental SMT solving.

2.5 Blocking Based on Non-minimality

As mentioned, FL-AllRepair aims at returning all minimal repairs. Next, we formally
define minimality: Let PM , PM ′ be two mutated programs constructed using patches
pat, pat′, resp. We say that PM ⊆ PM ′ if pat ⊆ pat′. This intuitively means that all
lines that are mutated in PM are mutated in PM ′, using the same mutation operators,
but PM ′ contains additional mutated lines.

Definition 1 (minimal repair) A mutated program PM is said to be a minimal repair
if it is a repair, and there is no other mutated program PM ′ s.t. PM ′ ⊆ PM and PM ′

is a repair.

The rationale for considering only minimal repairs is the observation that the pro-
gram should remain as syntactically close to the original program as possible (we should
avoid making changes to the code if they are not necessary for repair).

Constructing a Blocking Clause Once a program PM is found to be correct dur-
ing the validate stage, we block every mutated program PM ′ s.t. PM ⊆ PM ′. This,
together with the fact that programs are explored in increasing patch size, guaran-
tees that only minimal repairs are returned. The blocking is realized as follows: let
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pat = {(l1,Mi1), · · · , (ln,Min)} be the patch used in creating PM . Then, the follow-
ing clause is added to the propositional formula of the generate stage:

¬BMi1
(l1) ∨ · · · ∨ ¬BMin

(ln).

This clause restricts the search space to those mutated programs where there exists an
index i for which line li is not mutated using mutation operator Mli . This will prune
from the search space all mutated programs created using a patch pat′ s.t. pat ⊆ pat′.
2.6 Blocking Based on Fault Localization

When a program PM is determined buggy by the validate stage, it is passed on to a
fault localization component in order to find the root cause of the bug and block other
unexplored programs that exhibit the same bug. Specifically, we want fault localization
to return a set of locations F whose content alone ensures the recurrence of the bug.
This way, all programs in which the content of F remains the same (as in PM ) can be
safely blocked. To formalize the above intuition we use the notions of a must-location-
set and must-fault-localization6.

Let P be a program with a bug on input I . A repair for I is a mutated program that
is (bounded) correct for I . A repairable location set (RLS) for I is a set of locations
F such that there exists a repair for I defined over F . An RLS for I is minimal if
removing any location from it makes it no longer an RLS for I . A location is relevant
to I if it is a part of a minimal RLS for I .

The aim of fault localization is to focus the programmer’s attention on locations
that are relevant for the bug. But, returning the exact set of locations relevant to I as
defined above can be computationally hard. In practice, what many fault localization
algorithms return is a set of locations that may be relevant: The returned locations have
a higher chance of being relevant to I than those that are not, but there is no guarantee
that all returned locations are relevant to I , nor that all locations that are relevant to I ,
are returned. We call such an algorithm may fault localization. In contrast, we define
must fault localization, as follows:

Definition 2 (must location set) A must location set for I is a set of locations that
contains at least one location from each minimal RLS for I .7

Definition 3 (must fault localization) A must fault localization algorithm is an algo-
rithm that for every program P and every buggy input I , returns a must location set.

Note that a must location set is not required to contain all locations relevant to I ,
but only one location from each minimal RLS for I . This notion is still powerful, since
it guarantees that no repair is possible without including at least one such element.

Also note, that the set of all locations visited by P during its execution on I is
always a must location set. This is because any patch where none of these locations is
included is definitely not a repair for I , since the same assertion will be violated along
the same path. However, this set of locations may not be minimal.

6 For brevity, the definitions brought here are an instantiation of the original definitions from [50]
to the mutation scheme. Originally, the definitions of both a must-location-set and must-fault-
localization depend on the repair scheme.

7 This is, in fact, a hitting set of the set of all minimal RLS for I .
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Fault Localization Algorithm Going back to FL-AllRepair, Let PM be a program
found to be buggy by the validate stage, and let µ be the model of the program formula
ϕPM obtained by the SMT solver. PM is then passed to a fault localization component,
which receives the formula ϕPM and the model µ and returns a set of locations F .
This component is realized using a formula slicing-based algorithm that agrees with the
definition of a must-fault-localization algorithm. For brevity, we omit the details of this
algorithm and refer the reader to section 5 in [50].

Constructing a Blocking Clause Let F be the set of locations returned by the fault lo-
calization component. Since the fault localization algorithm is a must-fault-localization
algorithm, F is a must-location-set. This means that all mutated programs which are
identical to PM on the locations in F can be safely removed from the search space. We
remove them by adding a blocking clause to the propositional formula, encoding that
at least one location from F should be changed. For example, suppose that F consists
of {l1, l2, l3}, where l1 was mutated with M1, where l2 was not mutated, and l3 was
mutated withM3. The constructed blocking clause will then be ¬BM1

(l1)∨¬BO(l2)∨
¬BM3

(l3). The blocking clause restricts the search space to those mutated programs
that either do not apply mutation M1 to l1, or do mutate l2, or do not apply M3 to l3.

2.7 Experimental Results

We have implemented the FL-AllRepair algorithm on top of the AllRepair open source
tool. This tool previously implemented an earlier version of the algorithm, presented
in [49], which avoids the use of fault localization and instead blocks only the one incor-
rect mutated program found during that iteration.

0

600

1,200

1,800

2,400

3,000 AR

FLAR

Fig. 5: Time to find a repair using FL-AllRepair
and AllRepair (in seconds). Each point along the
x axis represents a repair for a single input and
the y axis value represents the time to find that
repair.

This early version of the algorithm
was recently compared against 4 other
repair tools in [43] and was found to
be very efficient. The tools participat-
ing in the experiment were: ANGELIX
[38], GENPROG [31], FORENSIC [7]
and MAPLE [43]. All tools were run
on the TCAS benchmark [18], but with
different specifications: ANGELIX and
GENPROG use a test suite while the rest
of the tools use a formal specification.
The results showed a significant advan-
tage to the ALLREPAIR tool in terms of
efficiency: ALLREPAIR was found to be
faster by an order of magnitude than all
of the compared tools, taking only 16.9 seconds to find a repair on average, where the
other tools take 1540.7, 325.4, 360.1, and 155.3 seconds, respectively. On the other
hand, ALLREPAIR’s repair ability is limited, due to the use of the mutation scheme: it
is only able to repair 18 versions (out of 41), while ANGELIX, GENPROG, FORENSIC
and MAPLE repair 32, 11, 23, and 26, respectively.

In [50] we have conducted an experiment to check the impact of adding fault-
localization-based blocking on efficiency (repair ability is not affected, since must-
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fault-localization guarantees that we will not lose any of the potential good repairs).
We ran FL-AllRepair on the TCAS benchmark as well as a small subset of the Code-
flaws benchmark [52]. The Codeflaws benchmark is a collection of programs taken
from buggy user submissions to the programming contest site Codeforces8. We com-
pared the time to find a repair in FL-AllRepair and All-Repair, using various unwinding
bounds and mutation sets. Overall, the experiment consisted of 186 inputs, where an
input is a combination of buggy program, mutation set, and unwinding bound.

Our conclusion was that FL-AllRepair is able to acheive significant speed-ups, es-
pecially for cases of interest where AllRepair struggles to find a repair in the first place.
To demonstrate, figure 5 shows the time it took to find a repair using both algorithms,
for all the repairs where AllRepair took more than 5 min. Observe that FL-AllRepair
saves time for all but one of these repairs, and the savings go up to dozens of minutes.

For a more detailed description of our experiments, see [50,48]

3 Verification and Repair of Communicating systems (AGR)
We now describe our second approach to automatic repair, based on compositional
verification.

3.1 Communicating Programs

We first present our programs, which are modeled as communicating systems.
The alphabet α of a communicating system uses a set of variablesX (whose ordered

vector is x̄), ranging over a (possibly infinite) data domain D. The alphabet α consists
of a set C of constraints, which are quantifier-free first-order formulas over X ∪D, rep-
resenting the conditions in if and while statements. It also includes a set of assignment
statements E , consisting of statements of the type x := e, where e is an expression over
X ∪ D. Finally, α includes a set G of communication actions, over a set G of commu-
nication channels. The action g?x is a read action of a value to the variable x through
channel g, and g!x is a write action of the value of x on g. We use g ∗ x to indicate
some action, either read or write, through g. The pairs (g?x1, g!x2) and (g!x1, g?x2)
then represent a synchronization of two programs on read-write actions over g.

Definition 1. A communicating program (or, a program) is M = 〈Q,X,α, δ, q0, F 〉,
where:
1. Q is a finite set of states and q0 ∈ Q is the initial state.
2. X is a finite set of variables over D.
3. α = G ∪ E ∪ C is the action alphabet of M .
4. δ ⊆ Q× α×Q is the transition relation.
5. F ⊆ Q is the set of accepting states.

The words that are read along a communicating program are a symbolic represen-
tation of the program behaviors. We refer to such a word as a trace. Each such trace
induces executions of the program, which are formed by concrete assignments to the
program variables in a way that conforms to the actions along the word. We think of
the program automaton as the generator of the behaviors of the program – a word in the
language of the automaton is a program run, which induces a set of executions.

8 http://codeforces.com/
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More formally, a run r in a program automaton M is a finite sequence of states
and actions starting with the initial state and following δ. The induced trace t of r is
the sequence of the actions in r. If r reaches an accepting state, then t is an accepted
trace of M . An execution p of t is a sequence of valuations of X that respects the
semantics of the alphabet. That is, the valuation of a variable x can only change by
a read action through a communication channel, e.g. g?x, or through an assignment
x := e. In addition, the valuations must satisfy the constraints along t. That is, if β(x̄)
is a valuation in p at location i, and ti is a constraint at i, then β(x̄) |= ti. We say that t
is feasible if there exists an execution of t.

Example 2. The trace (x := 2·y, g?x, y := y+1, g!y) is feasible, as it has an execution
(x = 1, y = 3), (x = 6, y = 3), (x = 20, y = 3), (x = 20, y = 4), (x = 20, y = 4).
The trace (g?x, x := x2 , x < 0) is not feasible since no valuation can satisfy the
constraint x < 0 if x := x2 is executed beforehand.

The symbolic language of M , denoted T (M), is the set of all accepted traces in-
duced by runs ofM . The concrete language ofM is the set of all executions of accepted
traces in T (M).

Parallel Composition We now describe the parallel composition of two communicat-
ing programs, and the way in which they communicate.

In parallel composition, the two components synchronize on their communication
interface only when one component writes data through a channel, and the other reads
it through the same channel. The two components cannot synchronize if both are trying
to read or both are trying to write. We distinguish between communication of the two
components with each other (on their common channels), and their communication
with their environment. In the former case, the components must “wait” for each other
in order to progress together. In the latter case, the communication actions of the two
components interleave asynchronously.

LetM1 andM2 be two programs, whereMi = 〈Qi, Xi, αi, δi, q0
i, Fi〉 for i = 1, 2.

Let G1, G2 be the sets of communication channels occurring in actions of M1,M2,
respectively. We assume that X1 ∩X2 = ∅. The interface alphabet αI of M1 and M2

consists of all communication actions on channels that are common to both components.
That is, αI = { g?x, g!x : g ∈ G1 ∩G2, x ∈ X1 ∪X2}.
Formally, the parallel composition of M1 and M2, denoted M1||M2, is the program
M = 〈Q,X,α, δ, q0, F 〉, defined as follows.
1. Q = (Q1 × Q2) ∪ (Q′1 × Q′2), where Q′1 and Q′2 are new copies of Q1 and Q2,

respectively. The initial state is q0 = (q10 , q
2
0); X = X1 ∪X2; F = F1 × F2.

2. α = { (g?x1, g!x2), (g!x1, g?x2) : g ∗ x1 ∈ (α1 ∩αI) and g ∗ x2 ∈ (α2 ∩αI)}∪
((α1 ∪α2) \αI). That is, the alphabet includes pairs of read-write communication
actions on channels that are common to M1 and M2. It also includes individual
actions of M1 and M2, which are not communications on common channels.

3. δ is defined as follows.
(a) For (g ∗ x1, g ∗ x2) ∈ α9:

i. δ((q1, q2), (g ∗ x1, g ∗ x2)) = (q′1, q
′
2).

9 According to item 2, one of the actions must be a read and the other must be a write action.
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ii. δ((q′1, q
′
2), x1 = x2) = (δ1(q1, g ∗ x1), δ2(q2, g ∗ x2)).

That is, when a communication is performed synchronously in both compo-
nents, the data is transformed through the channel from the writing component
to the reading component. As a result, the values of x1 and x2 equalize. This
is enforced in M by adding a transition labeled by the constraint x1 = x2 that
immediately follows the synchronous communication.

(b) For a ∈ α1 \ αI we define δ((q1, q2), a) = (δ1(q1, a), q2). Similarly, for a ∈
α2 \ αI we define δ((q1, q2), a) = (q1, δ2(q2, a)). That is, on actions that are
not in the interface alphabet, the two components interleave.

Figure 6 demonstrates the parallel composition of components M1 and M2. The
program M = M1||M2 reads a password from the environment through channel pass .
The two components synchronize on channel verify . This synchronization is repre-
sented by the constraint x = y, which describes the result of the synchronization. As-
signments to x are interleaved with reading the value of y from the environment.

3.2 Regular Properties and their Satisfaction

We now describe the syntax and semantics of the properties that we consider. These
can be represented as finite automata, hence the name regular properties. However, the
alphabet of these automata includes communication actions and first-order constraints
over program variables. Thus, such automata are suitable for specifying the desired (and
undesired) behaviors of communicating programs over time.

We require our properties to be deterministic and complete. Since we consider sym-
bolic representation of systems, we require also semantic determinism and complete-
ness. That is, if 〈q, c1, q′〉 and 〈q, c2, q′′〉 are in δ for constraints c1, c2 ∈ C such that
c1 6= c2 and q′ 6= q′′, then c1 ∧ c2 ≡ false; and let Cq be the set of all constraints on
transitions leaving q. Then (

∨
c∈Cq

c) ≡ true .
A property is a deterministic and complete program with no assignment actions,

whose language defines the set of allowed behaviors over the alphabet αP .
A trace is accepted by a property P if it reaches a state in F , the set of accepting

states of P . Otherwise, it reaches a state in Q \ F , and is rejected by P .
Next, we define the satisfaction relation � between a program and a property. Intu-

itively, a program M satisfies a property P (denoted M � P ) if all executions induced

p0M1 p1

q0M2 q1

verify?x

x := x · 2

pass?y

verify !y

(q0,p0)

(q0, p1)

(q1, p0)

(q1, p1)

(q′1, p
′
1)

pass?y

pass?y

x :=x · 2 x :=x · 2

(verify?x,
verify !y)

x = y

Fig. 6: Components M1 and M2 and their parallel composition M1||M2.
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by accepted traces of M reach an accepting state in P . Thus, the accepted behaviors of
M are also accepted by P .

Conjunctive Composition In order to capture the satisfaction relation between M and
P , we define a conjunctive composition between M and P , denoted M × P . Unlike
parallel composition, in conjunctive composition the two components synchronize on
their common communication actions when both read or both write through the same
communication channel. In addition, if M is the result of a parallel compositions, then
they might synchronize on alphabet of the type (g ∗ x, g ∗ y). They interleave on con-
straints and on actions of αM that are not in αP . The set of accepting states ofM×P is
F = FM×(QP \FP ). As a result, accepted traces inM×P are those that are accepted
inM and rejected in P . Such traces are called error traces and their corresponding exe-
cutions are called error executions. Intuitively, an error execution is an execution along
M which violates the properties modeled by P . Such an execution either fails to syn-
chronize on the communication actions, or reaches a point in the computation in which
its assignments violate some constraint described by P . Since a feasible error trace in
M × P is an evidence to M 6� P , we define M � P iff M × P contains no feasible
accepted traces.

3.3 The Assume-Guarantee Rule for Communicating Systems

Let M1 and M2 be two programs, and let P be a property. The classical Assume-
Guarantee (AG) proof rule [46] assures that if we find an assumption A (in our case, a
communicating program) such thatM1||A � P andM2 � A both hold, thenM1||M2 �
P holds as well.

Previous works (e.g. [13]) rely on L∗ for constructing an assumption A, based on
the weakest assumption Aw, defined below.

Definition 2 (Weakest Assumption). Let P be a property and M be a system. The
weakest assumption Aw with respect to M and P has the language

L(Aw) = {w : M ||w � P}.

That is, L(Aw) is the set of all words that together with M satisfy P .

A crucial point of a learning-based AG method is that Aw is regular [24], and so
can be learned by L∗. However, this is not always the case in our setting, as the next
example shows.

Example 3. Over the alphabet {x := 0, y := 0, x := x + 1, y := y + 1} we
can construct a system for which the weakest assumption requires an equal number of
actions of the form x := x+ 1 and y := y + 1, which is not a regular property.

To cope with this difficulty, we change the focus of learning. Instead of learning the
(possibly) non-regular language of Aw, we learn T (M2), the set of accepted traces of
M2. This language is guaranteed to be regular, as it is represented by the automatonM2.
As a result, our AG rule is sound and complete, as stated in the theorem below.

Theorem 1. Our AG rule for communicating programs is sound and complete.
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3.4 The Assume-Guarantee-Repair (AGR) Framework

In this section we discuss our Assume-Guarantee-Repair (AGR) framework for com-
municating programs. The framework consists of a learning-based Assume-Guarantee
algorithm, called AGL∗ , and a REPAIR procedure, which are tightly joined.

Recall that the goal of L∗ in our case is to learn T (M2). The nature ofAGL∗ is such
that the assumptions it learns before it reaches M2 may contain traces of M2 and more,
but still be represented by a smaller automaton. Therefore, similarly to [13],AGL∗ often
terminates with an assumption A that is much smaller than M2. Indeed, our tool often
produces very small assumptions (see Fig. 8).

When M1||M2 2 P , the AGL∗ algorithm returns an error trace t as a witness to the
violation. In this case, we initiate the REPAIR procedure, which eliminates t from M2,
resulting in M ′2.

We then return to AGL∗ with a new goal, M ′2, to search for a new assumption A′

that allows to verify M1||M ′2 � P . As we have mentioned, AGL∗ is incremental: when
learning an assumption A′ for M ′2 we can use the membership answers we obtained for
M2, since these have not changed. The difference between the languages of M2 and
M ′2 lies in words (traces) whose membership has not yet been queried on M2. Learning
M ′2 can then start from the point where learning M2 has left off, resulting in a more
efficient algorithm.

As opposed to the case whereM1||M2 � P , we cannot guarantee the termination of
the repair process in case that M1||M2 2 P . This is because we are only guaranteed
to remove one (bad) trace and add one (infeasible) trace in every iteration (although
in practice, every iteration may remove a larger set of traces). Thus, we may never
converge to a repaired system. Nevertheless, in case of violation, our algorithm always
finds an error trace, thus a progress towards a “less erroneous” program is guaranteed.

It should be noted that the AGL∗ part of our AGR algorithm deviates from the AG-
rule of [13] in two important ways. First, since our learning goal is M2 rather than Aw,
our membership queries are different in type and order. Second, in order to identify
real error traces and send them to REPAIR as early as possible, we add queries to the
membership phase that reveal such traces. We then send them to REPAIR without ever
passing through equivalence queries, which improves the overall efficiency. Indeed, our
experiments include several cases in which all repairs were invoked from the member-
ship phase. In these cases, AGR ran an equivalence query only when it has already
successfully repaired M2, and terminated.

The Assume-Guarantee-Repair (AGR) Algorithm We now present an overview of
our AGR algorithm. For a detailed description, see [21,22]. Fig. 7 describes the flow of
the algorithm.

AGR comprises two main parts, namely AGL∗ and REPAIR. The input to AGR are
the componentsM1 andM2, and the property P . WhileM1 and P stay unchanged dur-
ing AGR, M2 is repeatedly updated as long as it needs repair. In every iteration of AGR
an updated M i

2 is calculated. Initially, M0
2 = M2. An iteration starts with the member-

ship phase, and ends either when AGL∗ successfully terminates, or when REPAIR is
called. When constructing M i

2 (based, as noted, on the construction of M i−1
2 ), the new

iteration is given new trace(s) that have been added or removed from M i−1
2 .
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Fig. 7: The flow of AGR

AGL∗ consists of two phases: membership, and equivalence. The membership phase
is a loop in which the learner constructs the next assumption Ai

j according to answers
it gets from the teacher on a sequence of membership queries on various traces. These
queries are answered in accordance with traces we allow in Ai

j . These are the traces
in M i

2 that in parallel with M1 satisfy P . If a trace t in M i
2 in parallel with M1 does

not satisfy P , then t is a bad behavior of M i
2. Therefore, if such t is found during the

membership phase, REPAIR is invoked.
Once the learner reaches a stable assumption Ai

j , it passes it to the equivalence
phase. Ai

j is a suitable assumption if both M1||Ai
j � P and T (M i

2) ⊆ T (Ai
j) hold.

AGR then terminates and returnsM i
2 as a successful repair ofM2. In caseM1||Ai

j 2 P ,
a counterexample t is returned, that is composed of bad traces in M1, A

i
j , and P . If the

bad trace t2, the restriction of t to the alphabet of Ai
j , is also in M i

2, then t2 is a bad
behavior of M i

2, and REPAIR is invoked. Otherwise, AGR returns to the membership
phase with t2 as a trace that should not be in Ai

j , and continues to learn Ai
j .

Next we describe in more detail how repair is applied. We distinguish between se-
mantic and syntactic repairs, which are solved differently.

Semantic Repair by Abduction In case the error trace t contains constraints, we se-
mantically repair M i

2 by inferring a new constraint that makes t infeasible. The new
constraint is then added to the alphabet ofM i

2 and may eliminate additional error traces.
The process of inferring new constraints from known facts about the program is

called abduction [17]. Given a trace t, let ϕt be the first-order formula (a conjunction
of constraints), which constitutes the SSA representation of t [3]. In order to make t
infeasible, we look for a formula ψ such that ψ ∧ ϕt → false .10

10 Usually, in abduction, we look for ψ such that ψ ∧ ϕt is not a contradiction. However, since
ϕt is a violation of the specification, we want to infer a formula that makes ϕt unsatisfiable.
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Note that t ∈ T (M1||M i
2)×P , and so it includes variables both from X1, the vari-

ables ofM1, and fromX2, the variables ofM i
2. Since we wish to repairM i

2, the learned
ψ is only over X2. The formula ψ ∧ ϕt → false is equivalent to ψ → (ϕt → false).
Then, ψ = ∀x ∈ X1 : (ϕt → false) = ∀x ∈ X1(¬ϕt), is such a desired constraint:
ψ makes t infeasible and is only over X2. We now use quantifier elimination [54] to
produce a quantifier-free formula over X2. Computing ψ is similar to the abduction
suggested in [17], but the focus here is on finding a formula over X2 rather than over
any minimal set of variables as in [17]; further, [17] looks for ψ such that ϕt∧ψ is not a
contradiction, while we specifically look for ψ that blocks ϕt. We use Z3 [15] to apply
quantifier elimination and to generate the new constraint. After generating ψ(X2), we
add it to the alphabet of M i

2. We also produce a new trace t′2 = t2 · ψ(X2), which is
returned as the output of the abduction. AGR now returns to AGL∗ in order to learn an
assumption for the repaired component M i+1

2 , which now includes t′2 but not t2.

Syntactic Removal of Error Traces In case that the error trace t does not contain
constrains, we can remove t from M2 by constructing a system whose language is
T (M2) \ {t}. We call this the exact method for repair. However, removing a single
trace at a time may lead to slow convergence, and exponentially blows-up the repaired
systems. Moreover, in some cases there are infinitely many such traces, in which case
AGR may never terminate.

For faster convergence, we have implemented two additional heuristics, namely ap-
proximate and aggressive. These heuristics may remove more than a single trace at a
time, while keeping the size of the systems small. While “good” traces may be removed
as well, the correctness of the repair is maintained, since no bad traces are added. More-
over, an error trace is likely to be in an erroneous part of the system, and in these cases
our heuristics manage removing a set of error traces in a single step.

All three methods modify the structure of the underlying automaton. In the approx-
imate method we add an intermediate state on the way to an accepting state, to which
the error trace, and potentially more erroneous behaviours, are diverted. The aggressive
method simply makes the state that M2 reaches upon reading t, non-accepting. In case
that every accepting state is reached by some error trace, this might result in an empty
language, creating a trivial repair. However, our experiments show that in most cases,
this method quickly leads to a non-trivial repair.

For further details of syntactic and semantic repair, see [21,22].

3.5 Experimental Results

We implemented our AGR framework in Java, integrating L∗ implementation from the
LTSA tool [35]. We used Z3 [15] as the teacher for the satisfaction queries in AGL∗ ,
and for abduction in REPAIR. Fig. 8 demonstrates the effectiveness of our approach
on several examples (the x-axis indicates their indices). The examples are based on
simple examples from [24] adapted to our setting. Note that the assumption sizes are
mostly shown to be much smaller than the original components. The syntactic repair
method presented in Fig. 8 is the approximate repair, however the same holds also for
the other repair methods. Additional results are available in [21], and the full examples
are available on [1].
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3.6 Correctness and Termination
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Fig. 8: Repair vs. assumption size (log. scale).

We assume a sound and complete teacher
who can answer the membership and
equivalence queries in AGL∗ . We use
Z3 [15] in order to answer satisfiability
queries issued in the learning process.
Our examples were over the theory of
linear arithmetic, for which Z3 is indeed
sound and complete.

As noted, AGR may not terminate,
and there are cases in which REPAIR is
called infinitely many times. However, in
case that no repair is needed, or if a re-
paired system is eventually obtained, then AGR is guaranteed to terminate correctly.

To see why, consider a repaired system M i
2 for which M1||M i

2 � P . Since the goal
of AGL∗ is to syntactically learn M i

2, which is regular, this stage will terminate at the
latest when AGL∗ learns exactly M i

2 (it may terminate sooner if a smaller appropriate
assumption is found). Notice that, in particular, if M1||M2 � P , then AGR terminates
with a correct answer in the first iteration of the verify-repair loop.

REPAIR is only invoked when a (real) error trace t is found in M i
2, in which case

a new system M i+1
2 , that does not include t, is produced by REPAIR. If M1||M i

2 2 P ,
then an error trace is guaranteed to be found by AGL∗ either in the membership or
equivalence phase. Therefore, also in case thatM i

2 violatesP , the iteration is guaranteed
to terminate. In particular, since every iteration of AGR finds and removes an error
trace t, and no new erroneous traces are introduced in the updated system, then in case
that M2 has finitely many error traces, AGR is guaranteed to terminate with a repaired
system, which is correct with respect to P .

4 Conclusions and Discussion
We presented two approaches for automated program repair, using formal methods tech-
niques. Both approaches aim to verify infinite state C-like programs and handle both the
syntax and the semantics of the program. Both approaches are incremental in the sense
of reusing information from previous iterations in order to verify the current program.

Despite the common grounds, each approach handles the verification and repair
differently. The mutation-based approach handles sequential imperative programs with
assertions in the code. It relies on a reduction to the problem of finding unsatisfiable sets
of constraints and uses SAT and SMT solvers to realize a generate-and-validate loop.
Efficiency is achieved through incremental solving and efficient pruning.

The AGR approach is based on automata learning and offers a verify-repair algo-
rithm that takes the advantages of the automata representation in order to apply au-
tomata learning. It modifies the components both syntactically by eliminating error
traces, and semantically by adding constraints using abduction.

We have implemented both algorithms and our experimental results demonstrate the
effectiveness of our approaches for program repair.
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