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Abstract Over the last years, there has been growing interest in synthe-
sizing reactive systems from quantitative specifications, with the goal of
constructing correct and high-quality systems. Considering quantitative
requirements in systems consisting of multiple components is challenging
not only because of scalability limitations but also due to the intricate in-
terplay between the different possibilities of satisfying a specification and
the required cooperation between components. Compositional synthesis
holds the promise of addressing these challenges.

We study the compositional synthesis of reactive systems consisting of
multiple components, from requirements specified in a fragment of the
logic LTL[F], which extends LTL with quality operators. We consider
specifications that are combinations of local and shared quantitative re-
quirements. We present a sound decomposition rule that allows for syn-
thesizing one component at a time. The decomposition requires assume-
guarantee contracts between the components, and we provide a method
for iteratively refining the assumptions and guarantees. We evaluate our
approach with a prototype implementation, demonstrating its advan-
tages over monolithic synthesis and ability to generate decompositions.

1 Introduction

Reactive synthesis can be used to automatically construct correct-by-design re-
active systems from high-level specifications. The correctness requirements are
typically specified using temporal logics such as Linear Temporal Logic (LTL).
However, logics like LTL have limited ability to capture preferences on the qual-
ity of the synthesized system, such as resource requirements, efficiency, or pri-
oritization of tasks. Over the last decades, the study of quantitative specifica-
tion formalisms and the development of synthesis techniques for constructing
high-quality implementations has attracted significant attention. Specification
formalisms include weighted automata [8] and temporal logics equipped with
propositional quality operators and discounting operators [2,1].

In the development of synthesis algorithms for quantitative specifications, the
focus has been predominantly on single-component synthesis. Extensions have
considered quantitative specifications in assume-guarantee form, for instance ex-
pressed in the GR(1)[F ] fragment [4], as well as relaxations of the synthesis prob-
lem, such as good-enough synthesis [3], where the system is required to produce
an output satisfying the specification with a certain value only if the environ-
ment provides an input sequence for which such an output exists. While such
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extensions focus on the explicit or implicit assumptions made about the environ-
ment, they do not study the interaction between cooperating components within
the synthesized system in the presence of quantitative specifications. It has been
widely recognized that compositional approaches are necessary in order to make
reactive synthesis applicable to complex systems of multiple components.

In this paper we propose a compositional method for good-enough synthe-
sis [3] for specifications expressed in a fragment of the logic LTL[F ] [2]. LTL[F ]
extends LTL with quality operators, and instead of true or false, the satisfac-
tion values of formulas are real values in [0, 1]. A higher value of satisfaction of
a formula by an execution trace corresponds to a higher quality. Good-enough
synthesis, introduced in [3], is a relaxation of the classical synthesis problem. For
specifications in LTL[F ] this means that for each input sequence the synthesized
system is required to ensure the highest value possible for this input sequence.

We study the problem of decomposing the good-enough synthesis task over
multiple components. To this end, we consider LTL[F ] specifications that are a
combination of local specifications for the individual components and a shared
specification. The local specification ϕclocal for a component c captures require-
ments that are local to c, while the shared specification Ψshared captures require-
ments pertaining to multiple components. We furthermore make some natural
assumptions about the specifications, which we make use of in order to provide
a sound decomposition of the synthesis problem. We assume for each local spec-
ification that it does not refer to the output variables of other components, and
that the shared specification is a safety property. These assumptions are mean-
ingful in a setting where components have their own individual objectives, but
must in addition jointly guarantee that some safety requirement is fulfilled.

The task we study is to synthesize in a compositional manner a system of
cooperating components that ensures for each input sequence the highest pos-
sible value for the combined specification. Our goal is to decompose this task
into synthesis tasks for the individual components, which for each component
c consider only ϕclocal and Ψshared , and in addition, assumptions on the other
components and additional guarantees that c provides to the other components
when necessary. We illustrate the problem on an example.

Example. Suppose that our goal is to synthesize a system consisting of two com-
ponents, where i is a Boolean variable input from the external environment, o1
is a Boolean output of component 1, and o2 is a Boolean output of component 2.
We assume that each component has full information, that is, observes all envi-
ronment inputs and outputs of other components. We consider implementations
in the form of Moore machines, i.e., the output of each component at a given
step can only depend on past inputs and outputs of other components.

The system must satisfy the specification Φ = ϕ1
local ∧ϕ2

local ∧ Ψshared , where
ϕ1
local = ( o1) ⊕ 1

2
( (i ∧ ¬o1)) is the specification of component 1, and

ϕ2
local = o2 is the local specification of component 2, and

Ψshared = (o1 → ¬o2) is the shared specification.

Here, the local specification ϕ2
local , which requires that o2 is true infinitely

often, and the shared specification Ψshared , which requires that every time when
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o1 is true then o2 must be false in the next step, are both qualitative LTL
specifications. Hence, each has two possible values, 0 and 1.

The local specification ϕ1
local of component 1 uses the weighted sum operator

⊕ 1
2

with weight 1
2 for each of the subformulas. Hence, an execution of the sys-

tem where o1 is true infinitely often will result in value of at least 1
2 for ϕ1

local . If
additionally i∧ ¬o1 is true infinitely often on that execution then the value of
ϕ1
local will be 1. If both are false, the value of ϕ1 is 0. Since Φ is the conjunction

of the three specifications, its value is the minimum of their values.
The task is then to synthesize a system S that satisfies the following: for any

value v and infinite sequence σI of values of i provided by the environment, if
there is a sequence of outputs σO , such that the value of Φ on σI ‖ σO is v, then,
for the output S(σI ) of S on σI , the value of Φ on σI ‖ S(σI ) must be at least v.

Consider the monolithic system that has three (global) states s1, s2, s3, and
such that in s1 the output is (o1 := true, o2 := true), and in the other two states
it is (o1 := false, o2 := false). From s1 the system always transitions to s2 and
from s3 it always transitions to s1. From s2 it goes to s1 if i is false and to s3
if i is true. Thus, if i is infinitely often true, then this system implementation
ensures value 1, since it also guarantees that each of o1 and o2 is true infinitely
often and Ψshared holds. If i is not true infinitely often, then the maximal value
of Φ that is possible is 1

2 , which is also what the implementation ensures.
Such a system can be synthesized by applying to Φ the algorithm presented

in [3] for good-enough synthesis for LTL[F ] specifications.
Our goal is to decompose the synthesis problem, such that we consider the

local specifications of the two components in isolation. That is, to synthesize an
implementation for component 1 considering ϕ1

local and Ψshared , and similarly for
component 2. Each component cannot on its own enforce the maximal possible
values for both the shared and its local specification. Thus, it needs to make
assumptions on the behavior of the other component. Here, component 1 needs
to make an assumption, A1, on the behavior of component 2, which in this case is
Ψshared itself. Component 2 also needs to make an assumption, A2, that requires
that o1 is false infinitely often, to be able to satisfy both ϕ2

local and Ψshared .
Component 1 can guarantee the assumption A2, while ensuring the maximal
possible value for ϕ1

local and Ψshared (under assumption A1). The components
obtained by projection from the system above satisfy these requirements.

An assume-guarantee contract between the components, like the one above,
allows for the decomposition of the synthesis task for Φ into local synthesis tasks
for the individual components. We study the problem of establishing such a
decomposition and automatically deriving assume guarantee contracts.

Contributions We provide a decomposition rule that identifies conditions on
the LTL[F ] specifications of the above form, which guarantee that an assume-
guarantee decomposition is sound. In particular, we define the notion of good-
enough tuples of assumptions, and describe a method for automatically deriving
assume-guarantee contracts for quantitative specifications. We have implemented
the proposed approach in a prototype and demonstrate on a set of examples that
the compositional synthesis technique outperforms the monolithic one.
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Related Work Compositional approaches for synthesis from qualitative specifi-
cations have been studied extensively. In assume-guarantee synthesis [11,9,21,18]
the synthesis problem is decomposed using an assume-guarantee contract to cap-
ture the interface and dependencies between components. Other techniques are
based on a decomposition of the given specification into independent specifica-
tions by analysis of the dependencies between components [17], or by semantic
analysis of the language descried by the specification [16]. None of these ap-
proaches consider good-enough synthesis for quantitative specifications.

The notion of good-enough synthesis [3], where the system must only ensure
the satisfaction value made possible by the environment, is closely related to the
notions of dominant strategies [13], that is, strategies that perform as good as the
best alternative, as well as admissible strategies [10], which are strategies that
are not dominated by another strategy. Dominant strategies have been used for
compositional synthesis [13,17], by making use of the fact that implementations
must be dominant strategies and reducing the synthesis problem to a sequence
of synthesis tasks treating the processes in the system one at a time. These com-
positional techniques are only studied in the qualitative setting and when the
components have a common objective, while in our case we consider quantita-
tive specifications and components have both shared and local specifications. In
rational synthesis [20], the environment of the system being synthesized consists
of rational agents with their own objectives. In contrast, we consider cooperating
components as part of the system and aim to synthesize them compositionally.

The automatic generation of assumptions for qualitative specifications has
been studied extensively. [12] presents a game-based method for deriving envi-
ronment assumptions that turn an unrealizable specification into a realizable one.
[5,6] propose techniques for correcting unrealizable specifications in the form of
implications between assumptions and guarantees. In [21] the authors present an
iterative procedure, called negotiation, for deriving assumption-guarantee pairs.
Their assumption-generation method, similarly to ours, is based on [12]. Our it-
erative strengthening of assumptions follows the idea of their negotiation process.
Neither of these works considers quantitative specifications.

A number of techniques have been developed for compositional synthesis
for conjunctions of multiple specifications. In [15] this is done for solving games
compositionally in the context of bounded synthesis, and [7] presents a technique
for compositional synthesis for conjunctions of Safety LTL specifications. The
method we use to treat the conjunctions of multiple combinations of values in
our good-enough synthesis procedure is similar to these techniques, but in the
context of the construction of the safety games in bounded synthesis.

2 Preliminaries

2.1 Languages and Automata Over Infinite Words

Let Σ be a finite alphabet. The set of finite (infinite) words over Σ is denoted by
Σ∗ ( respectively Σω). For a word σ = σ0, σ1, . . . ∈ Σω, we denote with σ[i] = σi
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the letter at position i, and with σ[i,∞) = σi, σi+1, . . . the suffix of σ starting at
position i. For a finite word σ′ ∈ Σ∗ and a word σ′′ ∈ Σ∗ ∪Σω, we denote with
σ′ · σ′′ the concatenation of the prefix σ′ and the suffix σ′′. A language L ⊆ Σω

is a safety language if and only if for every σ ∈ Σω \L there exists a finite prefix
σ′ of σ such that for every σ′′ ∈ Σω it holds that σ′ · σ′′ 6∈ L.

For a set X, we denote with 2X the powerset of X. For a word σ over alphabet
2X and a subset Y ⊆ X we denote with proj(σ, Y ) the projection of σ onto the
alphabet 2Y . Given disjoint sets X1, . . . , Xm and for each i ∈ {1, . . . ,m} a word
σi over the alphabet 2Xi , we define the parallel composition ‖mi=1 σi of the words
σ1, . . . , σm such that (‖mi=1 σi)[j] =

⋃m
i=1 σi[j] for all j.

We will use several types of automata over infinite words, whose definitions
we recall in this subsection, together with some operations and properties.

A generalized nondeterministic Büchi automaton (GNBA) over an alphabet
Σ is a tuple A = (Σ,Q, δ,Q0, α), where Q is a finite set of states, Q0 ⊆ Q is a
set of initial states, δ : Q × Σ → 2Q is the transition function, and α ⊆ 2Q a
set of sets of accepting states. A run of A = (Σ,Q, δ,Q0, α) on an infinite word
σ ∈ Σω is an infinite sequence ρ ∈ Qω of states such that q0 ∈ Q0, and for every
i ∈ N it holds that ρ[i+ 1] ∈ δ(ρ[i], σ[i+ 1]). A run ρ of a GNBA is accepting if
and only if for every F ∈ α it holds that for every i ∈ N there exists j ≥ i such
that ρ[j] ∈ F , i.e., ρ visits each set in α infinitely often. An infinite word σ is
accepted by a GNBA A if there exists an accepting run of A on σ.

A nondeterministic Büchi automaton (NBA) is a GNBA A = (Σ,Q, δ,Q0, α)
with |α| = 1. When A is an NBA we will also write A = (Σ,Q, δ,Q0, F ) where
F ⊆ Q is the single set of accepting states. A safety automaton is a Büchi
automaton in which all states are accepting. Hence, for safety automata every
infinite run is accepting, and words that are not accepted have no infinite run.
An automaton is deterministic if |Q0| = 1 and |δ(q, a)| ≤ 1 for all q ∈ Q, a ∈ Σ.

A universal co-Büchi automaton (UCB) is a tupleA = (Σ,Q, δ,Q0, F ), where
Σ,Q, δ and Q0 are as in NBA, but now F ⊆ Q is a set of rejecting states. A run
ρ of a UCB is accepting if and only if there exists i ∈ N such that for every j ≥ i
it holds that ρ[j] 6∈ F , i.e., ρ visits the set F only finitely many times. A UCB
A accepts an infinite word σ if all infinite runs of A on σ are accepting.

For A over alphabet Σ, we define L(A) := {σ ∈ Σω | σ is accepted by A}.
For NBA A = (Σ,Q, δ,Q0, F ) it holds for the UCB U := (Σ,Q, δ,Q0, F ) that

L(U) = Σω \ L(A). Thus, a UCB for a language L ⊆ Σω can be obtained from
an NBA for the complement language. For GNBA Ai = (Σ,Qi, δi, Qi0, α

i) for
i ∈ {1, 2}, the product automaton is defined as A1×A2 := (Σ,Q1×Q2, δ×, Q

1
0×

Q2
0, α

1 ∪ α2) where (q′1, q
′
2) ∈ δ×((q1, q2), a) if and only if q′i ∈ δi(qi, a) for all

i ∈ {1, 2}. It holds that L(A1 × A2) = L(A1) ∩ L(A1). The union is defined as
A1 ∪A2 := (Σ,Q1 ∪Q2, δ∪, Q

1
0 ∪Q2

0, {F1 ∪Q2 | F1 ∈ α1}∪{F2 ∪Q1 | F2 ∈ α2}),
where q′ ∈ δ∪(q, a) if and only if q′ ∈ δi(q, a) for some i ∈ {1, 2}. It holds that
L(A1 ∪ A2) = L(A1) ∪ L(A2).

For a GNBA A = (2AP , Q, δ,Q0, α) and AP ′ ⊆ AP , we define the exis-

tential projection of A with respect to AP ′ to be the GNBA proj∃(A,AP ′)
def
=

(2AP , Q, δ′, Q0, α) with δ′(q, a) =
⋃
b∈2AP′ δ(q, proj(a, 2AP\AP ′

)∪b). By definition,
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the projection automaton has the language L(proj∃(A,AP ′)) = {σ ∈ (2AP )ω |
∃σ′ ∈ (2AP ′

)ω. proj(σ, 2AP\AP ′
) ‖ σ′ ∈ L(A)}.

2.2 The Temporal Logic LTL[F ]

In this section, we recall the temporal logic LTL[F ] introduced in [2]. Let AP
be a set of Boolean atomic propositions, and F ⊆ {f : [0, 1]k → [0, 1] | k ∈ N} a
set of functions. The LTL[F ] formulas are generated by the grammar ϕ ::= p |
true | false | f(ϕ1, . . . , ϕk) | ϕ | ϕ1 U ϕ2, where p ∈ AP , and f ∈ F .

We consider sets F that include functions that allow us to express the usual

Boolean operators, i.e., {f¬, f∧, f∨} ⊆ F , where f¬(x)
def
= 1 − x, f∧(x, y)

def
=

min{x, y} and f∨(x, y)
def
= max{x, y}. For ease of notation, we use the operators

¬,∧,∨ instead of the corresponding functions. As noted in [2], LTL coincides with

LTL[F ] when F = {¬,∧,∨}. One useful function is weighted average x⊕λ y
def
=

λ · x + (1 − λ) · y, where λ ∈ {0, 1}. We define the temporal operators finally

ϕ
def
= trueU ϕ and globally ϕ

def
= ¬( ¬ϕ).

For an LTL[F ] formula ϕ, we denote with Vars(ϕ) the set of atomic propo-
sitions occurring in ϕ, and with |ϕ| the description size of ϕ.

The semantics of LTL[F ] is defined with respect to words in (2AP )ω, and
maps an LTL[F ] formula ϕ and a word σ ∈ (2AP )ω, to a value Jϕ, σK ∈ [0, 1]. For
f ∈ F , we define Jf(ϕ1, . . . , ϕk), σK := f(Jϕ1, σK, . . . , Jϕk, σK). The semantics of
until is Jϕ1 U ϕ2, σK := maxi≥0{min{Jϕ2, σ[i,∞)K,min0≤j<iJϕ1, σ[j,∞)K}}. We
refer the reader to [2] for the full formal definition of the semantics of LTL[F ].

We denote with Vals(ϕ)
def
= {Jϕ, σK | σ ∈ (2AP )ω} the set of possible values of

an LTL[F ] formula ϕ. In [2] it was established that for every LTL[F ] formula
ϕ it holds that |Vals(ϕ)| ≤ 2|ϕ|. That is, each formula’s set of possible values is
finite, and its cardinality is at most exponential in the size of ϕ.

Theorem 1 ([2]). Let ϕ be an LTL[F ] formula over AP and V ⊆ [0, 1] be a
set of values. There exists an GNBA Aϕ,V such that for every σ ∈ (2AP )ω it
holds that Jϕ, σK ∈ V if and only if σ ∈ L(Aϕ,V ). Furthermore, Aϕ,V has at

most 2(|ϕ|
2) states and at most |ϕ| sets of accepting states.

One relevant property of the construction in the proof of Theorem 1 for our
automata-based compositional synthesis procedure is that the set of values V
only plays a role in the construction of the set of initial states. In particular, one
can construct the automaton Aϕ,Vals(ϕ) = (2AP , Q, δ,Q, α) where every state is
initial. From Aϕ,Vals(ϕ) we can obtain the respective automaton Aϕ,V for every
V by instantiating the corresponding set of initial states based on V . Intuitively,
these are the states in Q where the formula ϕ has some value v ∈ V .

3 Good-Enough Assume-Guarantee Decomposition

We begin this section by formally introducing the problem we study in the
paper, namely, the synthesis of multi-component reactive systems from LTL[F ]
specifications. We first describe the system model we consider.
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3.1 Multi-Component Reactive Systems

We consider reactive systems with a finite set I of input atomic propositions and
a finite set O of output atomic propositions that are disjoint, i.e., I ∩O = ∅. We
call the words in (2AP )ω (execution) traces.

A reactive component is a Moore machine M = (IM ,OM , S, s
init , ρ,Out),

where IM and OM are M ’s sets of input and output propositions respectively,
S is a finite set of states, sinit ∈ S is the initial state, ρ : S × 2IM → S is the
transition function, and Out : S → 2OM is the output labeling function. Given
an input trace σIM ∈ (2IM )ω, M produces the output trace M(σIM ) ∈ (2OM )ω

such that M(σIM )[i] = Out(si), where the infinite sequence s0, s1, . . . of states
is such that s0 = sinit , and si+1 = ρ(si, σIM [i]) for every i ∈ N.

A multi-component reactive system is a tuple S = (I ,O ,M), where I and
O are the sets of input and output propositions respectively,M = 〈M1, . . .Mn〉
is a tuple of reactive components Mc = (Ic,Oc, Sc, s

init
c , ρc,Outc) such that

(1) for every c, c′ ∈ {1, . . . , n} with c 6= c′ it holds that Oc ∩ Oc′ = ∅, (2)⊎n
c=1 Oc = O , and (3) Ic = I ∪ (O \ Oc). Conditions (1) and (2) stipulate

that the sets of output propositions of the individual components partition O .
Condition (3) stipulates that each component can read all input propositions
I and all output propositions of the other components. We denote with Oc =⋃
c′∈{1,...,n}\{c}Oc′ the set of outputs of components different from c. Given an

input trace σI ∈ (2I )ω, a multi-component reactive system generates an output
trace σO ∈ (2O)ω, which we denote by (‖nc=1 Mc)(σI ), such that proj(σO ,Oc) =
Mc(σI ‖ proj(σO ,Oc)) for all c. That is, (‖nc=1 Mc)(σI ) is the composition of all
the output traces of the components in S.

3.2 Good-Enough Realizability and Synthesis from LTL[F ]

We study the problem of synthesizing multi-component reactive systems from
LTL[F ] specifications, precisely formulated below.

Problem 1: Given an LTL[F ] formula Φ over atomic propositions AP = I ] O ,
and a partitioning O1, . . . ,On of the set of output propositions, decide whether
there exists a multi-component reactive system S such that S = (I ,O ,M) where
Oc is the set of output propositions of component c ∈ {1, . . . , n}, such that for
every σI ∈ (2I )ω and every v ∈ Vals(Φ) the following condition (1) holds.

If there exists σO ∈ (2O)ω with JΦ, σI ‖ σOK = v,

then JΦ, σI ‖ (‖nc=1 Mc)(σI )K ≥ v.
(1)

Since our definition of multi-component reactive systems allows for compo-
nents to observe all inputs and outputs of other components, the above problem
can be solved by considering the monolithic synthesis problem for the composed
system. This problem is known to be 2EXPTIME-complete [3]. When a mono-
lithic system is synthesized, it can be easily decomposed using projection. How-
ever, this creates a dependency between the implementations of the individual
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components. Furthermore, for specifications that combine both local require-
ments on the components and shared system properties, a synthesis approach
that treats such specifications compositionally is desirable.

For the remaining sections, we consider the problem of synthesizing n com-
ponents, which we label with indices c ∈ {1, . . . , n}, and fix a corresponding
partitioning O1, . . . ,On of the set of output propositions.

3.3 Good-Enough Decomposition

As stated in Section 1, we consider specifications Φ expressed as a combina-
tion of local specifications for the individual components, as well as a shared
requirement. Formally, we assume that Φ = comb(ϕ1

local , . . . , ϕ
n
local , Ψshared),

where the function comb : [0, 1]n+1 → [0, 1] is non-decreasing in each subset
of its arguments, that is, for every v1, . . . , vn+1 and v′1, . . . , v

′
n+1, if we have

comb(v′1, . . . , v
′
n+1) < comb(v1, . . . , vn+1), then, v′i < vi for some i.

We refer to Ψshared as the shared specification and to each ϕclocal as the local
specification of component c. Below is an example of such a specification.

Example 1. Let I = {i},O1 = {o1},O2 = {o2} and consider the specification
Φ = (ϕ1

local ⊕ 1
3

(ϕ2
local ⊕ 1

2
Ψshared)), where the function comb is a weighted sum

in which each part is weighted 1
3 and the individual specifications are

ϕ1
local = o1 ⊕ 1

2
o1, ϕ2

local = o2 ⊕ 1
2

o2,

Ψshared = (i→ ( ¬o1 ⊕ 1
2
¬o2)).

If for some σ ∈ (2AP )ω we have Jϕ1
local , σK = 1, Jϕ2

local , σK = 1
2 and JΨshared , σK =

0, then we have the value JΦ, σK = 1
2 for the overall specification.

As mentioned in Section 1, we furthermore assume that the specification Φ
satisfies two additional conditions, under which we establish the soundness of
our compositional synthesis approach. The first condition restricts the shared
specifications, while the second condition restricts the local specifications.

Condition 1. The shared specifications Ψshared is a safety LTL[F ] specification.

Definition 1 (Safety LTL[F ] specifications). We say that an LTL[F ] for-
mula is a safety specification if and only if for every word σ ∈ (2AP )ω and every
value v ∈ Vals(ϕ), if Jϕ, σK < v, then there exists a prefix σ′ of σ, such that for
every possible infinite continuation σ′′ ∈ (2AP )ω of σ′ we have Jϕ, σ′ · σ′′K < v.

If we consider the LTL fragment of LTL[F ], then the above notion coincides with
the notion of LTL-definable safety languages. To see this, note that for an LTL
formula ϕ we have Vals(ϕ) = {0, 1}. Thus, Jϕ, σK < 1 corresponds to ϕ being
violated by σ, and the condition corresponds to the existence of a bad prefix.
In Example 1 above, the shared specification is a safety specification.

Condition 2. For each component c, the local specification ϕclocal refers only to
output propositions in Oc and input propositions in I, i.e., Vars(ϕclocal)∩O ⊆ Oc.

Note that Ψshared can refer to all the input and output signals.



Compositional High-Quality Synthesis 9

Under the above assumptions, we consider the synthesis problem for LTL[F ]
specifications of the above form in a compositional manner. We call a specifica-
tion that satisfies all of the conditions compositional.

Our compositional synthesis approach is based on assume-guarantee con-
tracts, which formalize the interface properties between the components.

Definition 2 (Assume-guarantee contract). An assume-guarantee con-
tract is a tuple 〈(Ac, Gc)〉nc=1 where Ac ⊆ (2AP )ω is called the assumption of
component c, and Gc ⊆ (2AP )ω is called the guarantee of component c, where
each Ac and Gc are safety languages,

⋂
c′∈{1,...,n}\{c}Gc′ ⊆ Ac, and

– Let σ ∈ (2AP )∗ be a finite word such that there exists an infinite word σ′ ∈
(2AP )ω such that σ · σ′ ∈ Ac. Then, for every oc ∈ 2Oc , there exists σ′′ ∈
(2AP )ω such that σ · σ′′ ∈ Ac and proj(σ′′[0],Oc) = oc.

– Let σ ∈ (2AP )∗ be a finite word such that there exists an infinite word σ′ ∈
(2AP )ω such that σ · σ′ ∈ Gc. Then, for every oc ∈ 2Oc , there exists σ′′ ∈
(2AP )ω such that σ · σ′′ ∈ Gc and proj(σ′′[0],Oc) = oc.

The first condition ensures that component c cannot on its own violate its as-
sumption Ac by selecting a bad output oc. The second condition states that
the remaining components cannot violate the guarantee which c must provide,
by selecting some bad output oc. We will employ assume-guarantee contracts
to decompose the synthesis problem for Φ into local synthesis problems for the
individual components. To guarantee soundness, we impose a condition on the
assumptions, which we call good-enough assumptions. Intuitively, good-enough
assumptions do not “eliminate” possible values of Ψshared .

We are now ready to state our compositional synthesis problem.

Definition 3 (Good-enough assumptions). Let 〈A1, . . . An〉 be assumptions
for the components in {1, . . . , n}. We say that 〈A1, . . . An〉 is a good-enough tuple
of assumptions if and only if for all σI ∈ (2I )ω, for all v ∈ Vals(Ψshared):

if there exists σO ∈ (2O)ω with JΨshared , σI ‖ σOK = v,

then there exists σ′O ∈ (2O)ω with JΨshared , σI ‖ σ′OK ≥ v

and (σI ‖ σ′O) ∈
⋂

c∈{1,...,n}

Ac.
(2)

Problem 2: Given a compositional LTL[F ] specification Φ over atomic proposi-
tions AP = I ]O with partitioning O1, . . . ,On of the set of output propositions,
decide whether there exists a multi-component reactive system S = (I ,O ,M)
where Oc is the set of output propositions of component c ∈ {1, . . . , n}, such
that for each component c ∈ {1, . . . , n} the conditions below are satisfied

∀σI ∈ (2I )ω,∀σOc ∈ (2Oc)ω,∀u ∈ Vals(ϕclocal),∀w ∈ Vals(Ψshared) :
if there exists σOc

∈ (2Oc)ω, with Jϕclocal , σI ‖ σOc
‖ σOc

K = u,
and JΨshared , σI ‖ σOc

‖ σOc
K = w

and if (σI ‖Mc(σI ‖ σOc
) ‖ σOc

) ∈ Ac,
then Jϕclocal , σI ‖Mc(σI ‖ σOc

) ‖ σOc
K ≥ u and

JΨshared , σI ‖Mc(σI ‖ σOc) ‖ σOcK ≥ w

(3)
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∀σI ∈ (2I )ω,∀σOc
∈ (2Oc)ω : (σI ‖Mc(σI ‖ σOc

) ‖ σOc
) ∈ Ac ∪Gc, (4)

where 〈(A1, G1), . . . , (An, Gn)〉 is an assume-guarantee contract for components
{1, . . . , n} such that 〈A1, . . . An〉 is a good-enough tuple of assumptions.

Intuitively, in Problem 2 we consider only ϕclocal and Ψshared for each compo-
nent c, without the remaining context of Φ, that is, the function comb and the
local specifications of the other components. To ensure soundness of the decom-
position, we consider all possible pairs (u,w) of values of ϕclocal an Ψshared and
require that for each pair for values that is possible, the component’s strategy
ensures at least these values. In that way, an implementation for a component
c that satisfies condition (3) does not restrict the possible values of Ψshared un-
necessarily. We will see below that this results in the decomposition rule being
sound but incomplete. But first, we show a simple example that demonstrates
why we imposed the two conditions on the individual specifications in Φ.

Example 2. Let I = {i},O1 = {o1},O2 = {o2} and Φ = true ∧ true ∧ Ψshared ,
where Ψshared = (( i) ↔ ( o1)) ∧ (( i) ↔ ( o2)). Here the shared speci-
fication Ψshared is not a safety property. While for any σI ∈ (2I )ω there exist
sequences of outputs that satisfy Φ, there is no system that satisfies Φ for every
σI , as it would have to make a correct guess about the future inputs.

Consider an implementation of component c ∈ {1, 2} that waits until the
other component outputs true, and then does so itself, and otherwise outputs
false. Such a pair of implementations satisfies condition (3), as it only requires
that Φ is satisfied if the environment and the other component made it possible.
However, the composition of these two implementations never sets any of o1 and
o2 to true, and thus does not satisfy the conditions in Problem 1.

If we allow local specifications to refer to outputs of other components we can
transform the above example into one with local specifications.

The next example shows a specification where the local synthesis problems
in Problem 2 are realizable without any extra assumptions.

Example 3. Let I = {i},O1 = {o1},O2 = {o2} and Φ = ϕ1
local ∧ ϕ2

local ∧ Ψshared ,
where ϕclocal = oc ⊕ 1

2
oc for each c and Ψshared = (¬i→ (¬o1 ∧ ¬o2)).

A system in which each component c sets oc to true whenever i was true in
the step before satisfies condition (1) for each input sequence and value v of Φ.

Taking A1 = G1 = A2 = G2 = (2AP )ω we have that the same system satisfies
conditions (3) and (4) for each component. This is because condition (3) only
requires component c to ensure value 1 for Ψshared shared when i is false and oc
is false, and hence no explicit assumption is needed. This is in general not the
case, and in many cases, cooperation and assumptions are necessary.

The next theorem establishes the soundness of the decomposition.

Theorem 2 (Soundness of GE A/G decomposition). Let Φ be a com-
positional LTL[F ] specification with a partitioning {O1, . . . ,On} of the output
propositions. Let 〈(A1, G1), . . . , (An, Gn)〉 be an assume-guarantee contract for
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components {1, . . . , n} such that 〈A1, . . . An〉 is a good-enough tuple of assump-
tions. Then, every multi-component reactive system S = (I ,O ,M) that is a
solution to Problem 2 is also a solution to Problem 1.

The converse to the statement of Theorem 2 is not true, as the following ex-
ample demonstrates. That is, the decomposition rule is sound, but not complete.

Example 4 (Incompleteness of the Decomposition).
Let I = {i},O1 = {o1},O2 = {o2} and Φ = ϕ1

local ∧ ϕ2
local ∧ Ψshared , where

ϕ1
local = ((i→ o1)⊕ 1

2
o1), ϕ2

local = ((i→ o2)⊕ 2
3

o2)

Ψshared = (i⊕ 1
2
¬(o1 ∧ o2))

For the input trace σI = {i}ω there exists σO such that JΦ, σI ‖ σOK = 1
2 ,

and this is the best value achievable by the system for this input sequence. The
system that outputs o1 = o2 = true if i held in the previous step, and alternates
between o1 and o2 otherwise, achieves this value and satisfies the conditions of
Problem 1. However, there exists no implementation that satisfies the conditions
of the decomposition in Problem 2. To see this, note that for each c we have that
for σI = {i}ω and σOc

= {oc}ω there exists σOc
such that Jϕclocal , σI ‖ σOc

‖
σOc

K = 1 and there exists σOc
such that JΨshared , σI ‖ σOc

‖ σOc
K = 1, but

there is no implementation for c that ensures both values, and hence there is no
implementation that satisfies (3).

4 Compositional Good-Enough Synthesis

We propose an approach to solving Problem 2 using bounded synthesis, which we
describe in this section. In a first step, our synthesis procedure constructs several
automata from the given specifications and assume-guarantee contract (if given).
In order to facilitate the generation of assumptions, we present a compositional
synthesis method based on bounded synthesis [19], where for a given bound on
the size of the implementations, a safety game is constructed from the automata
constructed in the first step. If the current set of assumptions is insufficient,
that is, the local synthesis problems for some component c has no solution, we
present a method for strengthening the assumption Ac of component c.

4.1 Automata Constructions

We begin by detailing the different automata constructed by our procedure.

Automata for the specifications. Consider ϕclocal and Ψshared . Using the con-
struction from Theorem 1, we construct the automata

– Bc = Aϕc
local ,Vals(ϕc

local )
= (2AP , Qc, δc, Qc, αc), the GNBA for ϕclocal and

– Bs = AΨshared ,Vals(Ψshared ) = (2AP , Qs, δs, Qs, αs), the GNBA for Ψshared .

Both Bc and Bs are constructed for the respective full set of formula values.
We then construct the GNBA B′cs = proj∃(Bc × Bs,Oc) and B′′cs = Bc ∪ Bs,

which accept the existential projection of the product on Oc and the union.
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Assumptions as automata. We consider assume-guarantee contracts repre-
sented as automata. The assumptions Ac and the complement languages 2AP\Gc
of the guarantees of all components are represented respectively as the NBA

– Ac = (2AP , Qc,a, δc,a, Qc,a0 , αc,a) is the assumption of component c.
– Gc = (2AP , Qc,g, δc,g, Qc,g0 , αc,g) is the complement of the guarantee of c.

Combining specifications and contract. From the automata Bc,Bs,Ac and
Gc, we construct the GNBA B = (2AP , Q̂, δ̂, Q̂0, α̂) := (B′cs×Ac×B′′cs)∪(Ac×Gc).

We will use the GNBA B to characterize the language of the traces that
violate at least one of conditions (3) and (4).

In the construction, we ensure that the states of B are of one of the forms
(1) (qc∃, q

s
∃, q

ca, qcs), where qc∃ ∈ Qc, qs∃ ∈ Qs, qca ∈ Qc,a, qcs ∈ (Qc ∪Qs), or (2)

qcg ∈ Qc,a ×Qc,g. The set of initial states in B is Q̂0 = Qc ×Qs ×Qc,a0 × (Qc ∪
Qs) ∪ (Qc,a0 ×Q

c,g
0 ). With that, the states of the first form assign values to the

formulas ϕclocal and Ψshared in the respective sub-states.
Let u ∈ Vals(ϕclocal) and w ∈ Vals(Ψshared). The above property of B allows

us to devise from B an automaton B(u,w) as follows. First, for ∼ ∈ {<,≥,=}, let

Qc∼u := {q ∈ Qc | q(ϕclocal) ∼ u} and Qs∼w := {q ∈ Qs | q(Ψshared) ∼ w}.

We define the set of initial states in B for the pair of values (u,w) as the set

Q̂
(u,w)
0 :=

(
Qc≥u ×Qs≥w ×Q

c,a
0 × (Qc<u ∪Qs<w)

)
∪ (Qc,a0 ×Q

c,g
0 ).

With that, we define the automaton B(u,w) := (2AP , Q̂, δ̂, Q̂
(u,w)
0 , α̂).

Intuitively, the language of the automaton B(u,w) consists of the traces that
violate at least one of conditions (3) and (4) for the value pair (u,w).

Proposition 1. For the GNBA B(u,w) constructed above it holds that for σ ∈
(2AP )ω we have σ ∈ L(B(u,w)) iff σ 6∈ (Ac ∪Gc) or all of the following hold:

– there exists σOc
∈ (2O)ω such that Jϕclocal , proj(σ, I ∪ Oc) ‖ σOc

K ≥ u and
JΨshared , proj(σ, I ∪Oc) ‖ σOcK ≥ w, and σ ∈ Ac,

– Jϕclocal , σK < u or JΨshared , σK < w.

Transformation to UCB. From the GNBA B constructed above, we obtain
an NBA, which we then interpret as a UCB for the complement language.

For ϕclocal , Ψshared , Ac and Gc, we denote with UCBc(Bc,Bs,Ac,Gc) the uni-
versal co-Büci automaton obtained in this way from the GNBA Bc and Bs.

Given U := UCBc(Bc,Bs,Ac,Gc), u ∈ Vals(ϕclocal) and w ∈ Vals(Ψshared), we
denote with Instantiatec(U , u, w) the UCB obtained from the GNBA B(u,w).

Proposition 1 provides us with a basis for a solution to Problem 2 when
we are given an assume-guarantee contract. For a given component c, using
the product of the automata Instantiatec(Uc, u, w), for all u ∈ Vals(ϕclocal) and
w ∈ Vals(Ψshared), we can apply any suitable reactive synthesis method.

However, in order to facilitate the generation of assumptions, we propose
a procedure based on bounded synthesis. In the next two subsections we first
describe our compositional synthesis procedure with given assumptions, and then
present the iterative generation of contracts.
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function CompSynt (〈ϕc
local〉nc=1, Ψshared ,Bs, 〈Bc〉nc=1, 〈Ac,Gc〉nc=1, binit , bmax )

1 if ¬GoodEnough(〈Ac〉nc=1,Bs) then return ⊥
2 b := binit
3 while true do
4 done := true
5 for c = 1, . . . , n do

6 Uc := UCBc(Bc,Bs,Ac,Gc)
7 Mc := LocalSynt(Uc, I ,Oc,Oc,Vals(ϕc

local),Vals(Ψshared), b)
8 if Mc = ⊥ then done := false; break

9 if done then return 〈Mc〉nc=1

10 if b < bmax then b := increment(b) else return unknown

Algorithm 1: Compositional bounded synthesis for a combined specification
Φ = comb(ϕ1

local , . . . , ϕ
n
local , Ψshared), with a given assume-guarantee contract

consisting of assumptions 〈Ac〉nc=1 and negated guarantees 〈Gc〉nc=1. The au-
tomata Bs = AΨshared ,Vals(Ψshared ) and Bc := Aϕc

local ,Vals(ϕc
local )

are given as input.

function LocalSynt (Uc, I ,Oc,Oc, U,W, b)
1 let D be a deterministic safety automaton for the language (2AP )ω

2 for (u,w) ∈ U ×W do
3 U(u,w) := Instantiatec(Uc, u, w); D := Safety(U(u,w), b,D)
4 (Win, strategy) := SolveSafetyGame(D, I ]Oc,Oc)
5 if Win := ⊥ then return ⊥
6 D := PruneLosing(D,Win, I ]Oc,Oc)

7 return ToMoore(strategy , I ,Oc,Oc)

Algorithm 2: Bounded synthesis for a single component c, with specification
given by the UCB Uc and sets of values U and W defining the initial states.
I is the set of inputs, Oc is the set of outputs c, Oc are the outputs of the
remaining components. b is the bound for the bounded synthesis algorithm.

4.2 Synthesis with a Given Assume-Guarantee Contract

For a given component c, our method, based on bounded synthesis, processes the
automata for the different value pairs incrementally in the construction of the
safety game for a given bound. The compositional synthesis procedure Comp-
Synt described below is detailed in Algorithm 1, and the incremental bounded
synthesis method LocalSynt for a single component in Algorithm 2.

The procedure CompSynt first verifies that the assumptions meet the good-
enough condition by calling the function GoodEnough (described later). If this
is the case, CompSynt iterates over the components, constructing the UCB
Uc := UCBc(Bc,Bs,Ac,Gc) and invoking LocalSynt (described later), which
performs incremental bounded synthesis for a component c. If an implementation
is found by LocalSynt for all c, then CompSynt returns a multi-component
reactive system. Otherwise, the bound is increased if the maximum (given as
parameter) is not reached. If the latter is the case, CompSynt returns unknown.
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Checking for good-enough assumptions. The function GoodEnough verifies
that a tuple of assumptions represented as automata 〈Ac〉nc=1 is good-enough.
It uses the GNBA Bs representing the shared specification Ψshared . For every
v ∈ Vals(Ψshared) the procedure constructs the GNBA

– D=v
s obtained from proj∃(Bs,O) by setting the set of initial states to Qs=v,

– D≥vs obtained from proj∃(Bs∩
⋂
c∈{1,...,n}Ac,O) with init. states Qs≥v×Q

c,a
0 .

Then, we verify that 〈Ac〉nc=1 is good-enough by checking if the language inclusion
L(D=v

s ) ⊆ L(D≥vs ), which directly corresponds to condition (2), holds.

Incremental bounded synthesis. The procedure LocalSynt iterates over
the pairs of values in the set U×W , where U := Vals(ϕclocal), W := Vals(Ψshared).
For each (u,w), it constructs the UCB Instantiatec(Uc, u, w) instantiated from
Uc for this value pair. It then constructs and solves incrementally a safety game.

Function Safety constructs a deterministic safety automaton from the UCB
U(u,w) for bound b ∈ N. Different from the single automaton case, in Local-
Synt we are constructing a deterministic safety automaton for the product of
all Instantiatec(Uc, u, w) for (u,w) ∈ U ×W . We perform the construction in-
crementally. LocalSynt maintains a deterministic safety automaton D which
is the product constructed thus far. D is passed as an argument to Safety and
used in an on-the-fly construction to prune losing choices from the deterministic
safety automaton constructed from the current U(u,w).

Function SolveSafetyGame applied to D performs the standard construction
of transforming a deterministic automaton into a two-player game by splitting
the input propositions I ] Oc (note that here the output of other components
is treated as input) and the output propositions Oc. The safety game is solved
and SolveSafetyGame returns a pair (Win, strategy), where Win is either ⊥, in
the case when the initial state of D is not winning for the output player, or
otherwise Win is the set of states winning for the output player, and strategy is
the most permissive winning strategy for the output player. Function PruneLosing
takes as input the automaton D and the winning region Win 6= ⊥ computed by
SolveSafetyGame and prunes from D the choices of the output player that do not
lead to states in Win. Since the implementation must satisfy (3) for all (u,w),
all the calls to SolveSafetyGame must be successful to return an implementation.

4.3 Synthesis with Iterative Assumption Generation

Assume-guarantee contracts can be difficult to design, especially for the synthe-
sis of good-enough implementations of quantitative specifications. We present
a method for iterative generation of good-enough assumptions, inspired by the
notion of negotiation introduced in [21]. The idea is to consider the components
in turn, and, if the local synthesis problem is not realizable for a component,
to generate assumptions on the behavior on the other components. The gen-
erated assumption is added to the guarantees of the other components, which
can generate assumptions on their own. This process continues until finding an
assume-guarantee contract that makes all local synthesis problems realizable.
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function CompSyntAGen (〈ϕc
local〉nc=1, Ψshared ,Bs, 〈Bc〉nc=1, binit , bmax )

1 let A0
c be a safety automaton for (2AP )ω for every c ∈ {1, . . . , n}

2 b := binit
3 while b ≤ bmax do
4 done := true
5 for c = 1, . . . , n do

6 Gc := Augment(
⋃

c∈{1,...,n}\{c}A
0
c ,Oc); Uc := UCBc(Bc,Bs,Ac,Gc)

7 Mc := LocalSynt(Uc, I ,Oc,Oc,Vals(ϕc
local),Vals(Ψshared), b)

8 if Mc = ⊥ then
9 done := false

10 (A0
c ,Ac) := GenAssumption(Uc, b, I ,Oc,Oc, 〈A0

c〉nc=1, 〈Ac〉nc=1)
11 if (A0

c ,Ac) = (⊥,⊥) then restart := true; break

12 if done then return 〈Mc〉nc=1

13 if restart then b := increment(b)

14 return unknown

Algorithm 3: Compositional synthesis for a combined specification Φ =
comb(ϕ1

local , . . . , ϕ
n
local , Ψshared) with iterative assumption generation.The au-

tomata Bs = AΨshared ,Vals(Ψshared ) and Bc := Aϕc
local ,Vals(ϕc

local )
are given as input.

Our compositional synthesis method with assumption generation is shown
in Algorithm 3. Similarly to Algorithm 1, the method is based on incremen-
tal bounded synthesis. Here the guarantees are obtained from the assumptions,
which initially permit any trace in (2AP )ω. When the current assumption is not
sufficient for the local synthesis problem for some component c to be realizable,
the procedure GenAssumption, shown in Algorithm 4 is invoked. We maintain
two automata for the assumption for each component: Ac is the actual assump-
tion, and the automatonA0

c is used to represent the combination of the languages
constructed from the assumption generation procedure before the transformation
to Ac. We explain this when we present the assumption generation.

Assumption generation. To find an assumption for a locally unrealizable
(with the given bound) specification Uc for component c, GenAssumption con-
siders the synthesis problem where all the components collaborate on realizing
Uc. In the resulting safety game all the output propositions Oc]Oc are under the
control of the output player. If the initial state is winning for the output player,
then the winning region Win represents the most general cooperative strategy.
Function ExtractAssumption uses Win to generate a new assumption Anew , rep-
resented as a safety automaton. Anew must satisfy the following conditions:
(i) The local specification for component c constructed with the updated tuple
of assumptions must be realizable by component c alone.
(ii) The combined assumption of component c and the newly generated guaran-
tees of the other components must satisfy the conditions of Definition 2.
(iii) The updated tuple of assumptions 〈A1, . . . ,Ac ∩ Anew, . . . ,An〉 must be
good-enough with respect to the shared specification Ψshared .

Additionally, we give preference to assumptions that do not unnecessarily
restrict the other components, although we do not give guarantees on minimality.
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function GenAssumption(Uc, b, I ,Oc,Oc, 〈A0
c〉nc=1, 〈Ac〉nc=1)

1 let D be a deterministic safety automaton for the language (2AP )ω

2 for (u,w) ∈ U ×W do
3 U(u,w) := Instantiatec(Uc, u, w); D := Safety(U(u,w), b,D)
4 (Win, strategy) := SolveSafetyGame(D, I ,Oc ]Oc)
5 if Win := ⊥ then return ⊥
6 D := PruneLosing(D,Win, I ,Oc ]Oc)

7 Invalid := ∅
8 while true do
9 A0

new := ExtractAssumption(D,Win, I ,Oc,Oc, Invalid)
10 if GoodEnough(〈A1, . . . ,Augment(A0

c ∩ A0
new,Oc), . . . ,An〉,Bs) then

11 return (A0
c ∩ A0

new,Augment(A0
c ∩ A0

new,Oc))

12 Invalid := Invalid ∪ {A0
new}

Algorithm 4: Generation of a good enough assumption for component c from
the winning region in the cooperative synthesis game for the specification Uc.

The function ExtractAssumption constructs an intermediate safety automaton
A0

new which is obtained from D and Win. It receives as additional input the
set Invalid , which consists of the previously extracted assumptions that violate
condition (iii) above. The extraction process checks against Invalid to avoid
repeating the failed assumptions. We now give the construction of A0

new .

Let D = (2AP , Q, δ,Q0, Q) be the deterministic safety automaton. Note that
since the output player wins the safety game defined by D, we have Q0 ⊆Win.

First we define a function fc : (Q ∩Win) × 2I → 2Oc such that for each
q ∈ Q ∩Win, i ∈ 2I and all õ ∈ 2Oc it holds that: {oc ∈ 2Oc | ∃q′ ∈ Win. q′ ∈
δ(q, i ∪ fc(q, i)) ∪ oc)}| ≥ |{oc ∈ 2Oc | ∃q′ ∈Win. q′ ∈ δ(q, i ∪ õ ∪ oc)}|.

That is, fc maps each q ∈ Q ∩Win and i ∈ 2I to the output of component
c that allows for the maximal number of possible choices for the remaining
components from q ∈ Q ∩Win and i ∈ 2I landing in Win. This choice ensures
local minimality of the restrictions on the other components.

Then, we define the function fc : (Q∩Win)×2I → 22
Oc

such that fc(q, i) :=
{oc ∈ 2Oc | ∃q′ ∈ Win. q′ ∈ δ(q, i ∪ fc(q, i)) ∪ oc)}. Intuitively, fc maps q ∈
Q∩Win and i ∈ 2I to the outputs of the components other than c that together
with fc(q, i) lead to a state q′ ∈Win. Thus, the outputs of the other components
are chosen such that they allow component c to realize Uc following fc.

The automaton A0
new is then constructed based on the function fc. We let

A0
new := (2AP , Q ∩Win, δ0, Q0, Q ∩Win), where for every q ∈ Q ∩Win, i ∈ 2I ,

oc ∈ 2Oc , oc ∈ 2Oc and q′ ∈ Q ∩Win we have q′ ∈ δ0(q, i ∪ oc ∪ oc) if and only
if oc ∈ fc(q, i). Thus, the transition function δ0 includes all transitions to states
in Q ∩Win, where the output agrees with the function fc.

The automatonA0
new satisfies condition (i). It does not necessarily satisfy (ii),

since the outputs on the labels on the transitions in δ0 are defined based on the
function fc that depends on fc. Thus, it is possible that outputs of component
c disagreeing with fc could result in words rejected by A0

new , that is they will
be violating the new assumption. To this end, we augment A0

new by adding the
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q0 q1

¬o1

o1

o1 ∧ ¬o2

¬o1 ∧ ¬o2

(a) Automaton A1 representing the as-
sumption made by component 1 (guar-
antee provided by component 2).

q0

q1

q2

¬o1
o1

¬o1

o1

¬o1

(b) Automaton A2 representing the as-
sumption made by component 2 (guar-
antee provided by component 1)

Figure 1: Assume-guarantee contract computed for Example 5

missing transitions, to ensure that such words are included in the language of the
assumption automaton. We denote with Augment(A0

c∩A0
new,Oc) the augmented

version of the new assumption, and with Augment(
⋃
c∈{1,...,n}\{c}A

0

c ,Oc) the
augmented updated guarantee.

With that, the updated assumption automaton for component c is obtained
by constructing Augment(A0

c ∩ A0
new,Oc). What remains is to ensure condition

(iii). The procedure GenAssumption keeps generating candidate assumptions
until an updated assumption for c satisfies all the three conditions, or no more
new assumptions can be generated from the given winning region Win. In such
case it returns (⊥,⊥), upon which CompSyntAGen restarts with larger bound.

Theorem 3 (Soundness). Let Φ be a compositional LTL[F ] specification. If
CompSyntAGen returns a multi-component reactive system S = (I ,O ,M),
then S is a solution to Problem 1.

We illustrate the process of iterative assumption generation on an example.

Example 5. Let I = {i},O1 = {o1},O2 = {o2} and consider the specification
Φ = ϕ1

local ∧ ϕ2
local ∧ Ψshared , where the individual specifications are

ϕ1
local = ( o1)⊕ 1

2
(i ∧ ¬o1), ϕ2

local = o2,

Ψshared = (o1 → ¬o2).

The first call to procedure LocalSynt for component 1 in CompSyntAGen
determines that there exists no implementation for component 1 that is a solu-
tion to the local synthesis problem with bound 2. The local synthesis problem
with specifications ϕ1

local and Ψshared is not good-enough realizable by compo-
nent 1 on its own, because the satisfaction of Ψshared depends on the future
values of variable o2, which is not under the control of component 1. In partic-
ular, since ϕ1

local requires setting o1 to true infinitely often in order to achieve a
good enough satisfaction value, component 1 is unable to avoid the requirement
that Ψshared puts on o2. Thus, procedure GenAssumption is invoked to gener-
ate an assumption on the behavior of component 2. GenAssumption solves a
safety game in which o2 is controllable output. In this game, the system player
has a winning strategy, from which the assumption A1 made by component 1,
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depicted in Fig. 1a, is extracted. This assumption is added to the guarantee G2
of component 2, after which procedure LocalSynt is applied to component 2.

Again, there exists no implementation for component 2 that is a solution to
the local good-enough synthesis problem with bound 2. The reason is that the
local specification ϕ2

local cannot be satisfied in conjunction with the guarantee
G2 in case o1 is always set to true. Following that, GenAssumption is invoked
to generate an assumption on the behavior of component 1. GenAssumption
solves the cooperative safety game constructed for bound 2, and generates the
assumption that component 1 does not set o1 to true twice in a row (as the
bound is 2). The generated safety automaton A2 is given in Fig. 1b. With the
assume-guarantee contract in Fig. 1, the subsequent calls to LocalSynt for
both components succeed, producing a multi-component reactive system.

5 Experimental Evaluation

We implemented our compositional synthesis procedure in a prototype. The tool
takes the compositional LTL[F ] specification as input. If realizable, it produces
a set of implementations, one for each component, that satisfy the conditions of
Problem 2. Should the specification require cooperation between the components,
the tool iteratively generates additional assumptions in the form of automata.
Our tool uses Spot [14] (v2.10.6) for the automata operations and for solving
the safety games in bounded synthesis.

We compare the compositional approach and the monolithic approach us-
ing our prototype, demonstrating the benefits of compositional synthesis for the
same underlying implementation. We extract the UCB before starting the con-
struction of the safety game to apply sdf 1 for reference, which takes this UCB as
input and performs bounded synthesis. To our knowledge, there are currently no
other tools available that would apply to our setting or could easily be extended.

We performed experiments on several examples on a laptop with an Intel
Core i7 processor at 2.8 GHz and 16 GB of memory. Table 1 shows the results.

The first three examples are realizable without explicit assumptions. The
others need additional assumptions, which can be given or derived. Example
intro ex is the one described in Section 1.

The results show that the compositional synthesis scales better than the
monolithic approach on the considered benchmarks. In particular, most specifi-
cations can only be handled when treated in the decomposition. This is expected,
as the decomposed specifications are smaller, and in the monolithic case the au-
tomata become prohibitively large. It should be noted that even in the cases
when assumptions are necessary and require multiple iterations to be generated,
the compositional approach is still faster than the monolithic one. For example
color change, it takes half the time to complete and the size of the UCB in the
monolithic case is around the combined size for both components separately.

When increasing the number of components, the monolithic specification nec-
essarily increases in size, whereas, depending on the specification, it can remain

1 https://github.com/5nizza/sdf-hoa

https://github.com/5nizza/sdf-hoa
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Table 1: Experimental results, time in seconds, timeout of 30 minutes. Size
is the size of initial automata for (ϕ1

l , ϕ
2
l , . . . , Ψs), and largest final UCB. We

differentiate between compositional with iterative assumptions (iter.), predefined
assumptions (pred.), or no assumptions (none). In some cases (n/a.), there were
no automata to execute sdf on.

Example n Autom. size Monolithic Compositional Using sdf
init UCB none iter. pred. mono. comp.

max use 2 13,7,7 108 335 25.73 - - TO 51.26
use if req2 2 17,17,17 671 TO 79.10 - - TO TO
use if req3 3 17,17,17,29 2612 TO 1074.81 - - TO TO
intro ex 2 9,5,7 1115 290.37 - 57.73 17.6 TO 11.4
color change 2 6,6,13 689 196.45 - 108.19 23.15 TO 34.8
two foll one 2 33,8,7 672 TO - 442.74 215.12 TO TO
perm to r3 3 7,7,8,13 3363 TO - 286.42 194.84 n/a TO
perm to r4 4 7,7,7,11,25 5558 TO - TO TO n/a TO

small for the individual components. Still, constructing the safety game from the
UCB is the most time-consuming step, and is performed for each component once
per iteration. As the local synthesis problems become more complex, the timeout
may be reached before iterating through all components, such as in perm to r4.

Also apparent from these results is that our prototype implementation does
not scale well yet. Growing use if req2 to three components in use if req3

increases the runtime significantly. For perm to r3 and perm to r4, it runs into
the timeout going from three to four. It should be noted that for these bench-
marks sdf reaches the timeout as well, when executed with the resulting UCB.

As expected, with assumptions given a priori, the performance of the com-
positional approach improves as each component is considered only once. The
challenge here lies in manually finding suitable assumptions.

Lastly, when using sdf, we can only compare to the execution of our prototype
without assumption generation. Applicable cases are when assumptions are not
needed or are given, and the monolithic case. For larger automata, sdf was in
most cases unable to finish within the timeout. This is expected as the extracted
UCB encodes the behavior for all pairs of values.

6 Conclusion

We investigated the compositional synthesis problem for good-enough synthesis
from specifications in a fragment of LTL[F ], considering fully-informed compo-
nents with shared and local specifications. We identified sufficient conditions on
the specifications that guarantee the soundness of the proposed decomposition
rule. One of the directions for future work is the development of a more sophis-
ticated analysis of the combination of local and shared specifications, to allow
taking weights and other factors into account in the local synthesis problem.
Another direction is the consideration of partial information. In order for the
technique to be viable, we plan to improve the scalability of our prototype.
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