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Abstract: Biological pest control is an environmentally friendly alternative to synthetic pesticides,
using organisms such as viruses, bacteria, fungi, and parasitoids. However, efficacy is variable and
combining different biocontrol agents could improve success rates. We conducted a systematic review
of studies combining a parasitoid with an entomopathogenic microorganism, the first of its kind. We
searched in Web of Science and extracted data from 49 publications matching the pre-defined inclusion
criteria. Combinations of 36 hymenopteran parasitoids with 17 entomopathogenic microorganisms
used to control 31 target pests were found. Trichogramma pretiosum and Encarsia formosa were the
most frequently studied parasitoids, while Beauveria bassiana, Metarhizium anisopliae, Lecanicillium
muscarium, Bacillus thuringiensis var. kurstaki, the Spodoptera exigua multiple nucleopolyhedrovirus,
and the Spodoptera frugiperda multiple nucleopolyhedrovirus were the main microbial agents
assessed. Out of 49 parasitoid–microorganism combinations assessed in the laboratory experiments,
thirty-eight were reported as compatible and six as incompatible. Timing and dosage of biopesticides
played a crucial role, with later application and appropriate dosage minimizing adverse effects
on parasitoid development. More research is needed to assess compatibility and efficacy under
real-world conditions. Our review provides valuable insights for researchers and practitioners to
optimize the combined use of micro- and macroorganisms for effective pest control.

Keywords: pest management; microbial pesticide; parasitoid wasp; compatibility; synergism;
antagonism

1. Introduction

Biological pest control is an alternative to synthetic pesticides with fewer adverse
environmental effects [1]. Among the most used organisms in biological control are mi-
croorganisms such as entomopathogenic bacteria, fungi, and viruses. Bacillus thuringiensis
sp. (Bt) are the most widely used bacteria to control pests in agriculture, forestry, and public
health [2]. They release toxins that cause cell lysis and death after binding with specific re-
ceptors in the insect midgut [3]. Entomopathogenic bacteria have a wide host range, mainly
lepidopteran, dipteran, and coleopteran, but were reported to have minimal to no negative
effects on beneficial organisms [3]. Beauveria bassiana (Balsamo) Vuillemin, Metarhizium
sp., Paecilomyces farinosus (Holm ex S.F. Gray) Brown & Smith, and Lecanicillium muscarium
Zare & Gams (previously known as Verticillium lecanii (Zimmermann) Viegas) are the most
used fungi for insect biocontrol. They attack pests by damaging their integument or gut
epithelium, using nutrients in their hemocoel, or releasing toxins [2,3]. They are ubiquitous
in the environment, have a broad range of arthropod hosts, and often cause epizootics
in insect populations. Compatibility with arthropod predators and parasitoids should be
tested to ensure compatibility and maximize efficacy [3]. Approximately a dozen viral
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bioinsecticides are commercially available, and currently only nucleopolyhedroviruses and
granuloviruses specifically target lepidopteran pests. Viruses enter the host cells, repli-
cating in the nuclei or cytoplasm before causing cell lysis and sometimes enzootics [2,3].
Another key group for all types of biocontrol are parasitoids. Most of them belong to the
orders of the Hymenoptera and Diptera, fewer to the orders of the Coleoptera, Lepidoptera
and, Neuroptera [4]. Their larvae develop on or in the body of other arthropods and
usually kill them by their feeding. Some parasitoids parasitize eggs, while others parasitize
larvae, pupae, or even adults. Trichogramma sp. are the commercially most used parasitoids,
which develop in the eggs of Lepidoptera [5,6]. Encarsia formosa is commonly used against
whiteflies and Aphidius colemani against aphids [7].

The success of biological control relies on multiple biotic and abiotic factors. For
example, entomopathogenic microorganisms are susceptible to climatic conditions such as
temperature, humidity, and UV radiation [8]. Likewise, parasitoid longevity and efficacy
rely on factors such as host density, nectar and pollen sources, habitat composition, and
climatic conditions [9]. With some of these factors being difficult to manage, biological
control can be of variable efficacy and reliability. Combining different biocontrol agents
could minimize that problem (Figure 1). Roy and Pell [10] conducted a narrative review on
interactions between entomopathogenic fungi (EF) and other natural enemies. They found
that predators and parasitoids may foster the development of epizootics by vectoring
EF and causing increased movement of infected hosts. Several key factors that influ-
ence potential antagonistic effects when combining parasitoids with EF were mentioned:
(i) fungal dosage, (ii) relative timing of parasitism and fungal infection, and (iii) fungal
identity. More recently, Quesada-Moraga et al. [11] reviewed the compatibility between
EF and parasitoids with mixed results. Some studies concluded that parasitoids serve as
vectors of EF, even showing synergistic interactions. Other studies found that previous
inoculation with EF can impact the fitness of parasitoids, shortening their lifetime yet
increasing oviposition rates. Most studies concluded that the combination is beneficial
when, as underlined by Roy and Pell [10], release times are adjusted appropriately, with
the timing and order of agent administration being crucial. Cossentine [12] reviewed the
interactions between baculoviruses and parasitoids. In laboratory experiments, parasitoids
could reduce the pathogenicity of baculoviruses in hosts. Yet, in field trials, parasitoids did
not reduce the overall mortality caused by an applied baculovirus. Indeed, parasitoids can
spread or accelerate the spread of the virus within hosts, increasing efficacy under field
conditions. Baculoviral infections can lower parasitoid population densities, but many
parasitoids can avoid or reduce their use of virus-infected hosts, and a strategically timed
baculoviral biopesticide should have a low impact on host–parasitoid populations. The
impact of Bt-bioinsecticides on parasitoids has been reviewed recently [13] with the conclu-
sion that combining parasitoids with Bt-bioinsecticides could significantly increase crop
yield and improve pest control. However, the impact of Bt on beneficial arthropods is still
being studied due to the high number of Cry toxins untested against them. It is particularly
important to consider indirect impacts of these products on parasitoid physiology and
behaviour [13].

Given the increasing interest in biological pest control in the past decade and the
growing importance of entomopathogen agents [14,15], a new and systematic review of the
literature combining all different entomopathogens is timely. We aimed to synthesize the
state-of-the-art when combining a parasitoid with an entomopathogenic microorganism.
Combining parasitoids and microorganisms may be positive, negative, or with no effect
on pest control compared to their use alone. We hypothesized that the effects could be
positive and that more efficient pest control could be achieved through combining agents.
We, therefore, assessed: (1) Which are the most studied combinations of parasitoids and
microorganisms? (2) Which combinations of microorganisms and parasitoids are com-
patible? (3) How do microorganisms influence the life table parameters of parasitoids?
(4) Which key factors influence the compatibility of microorganisms and parasitoids?
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(5) Can more efficient pest control be achieved by combining a parasitoid with a microor-
ganism instead of using them individually?
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2. Materials and Methods
2.1. Search Criteria

We used the following search string in Web of Science Core Collection on 2 March
2023: ((fung* OR vir* OR entomopathog* OR “vir*-based insecticid*” OR “fung*-based
insecticid*” OR “biological insecticid*” OR “microbial insecticid*” OR “natural insecticid*”)
AND (biocontrol OR biological control)) AND (*parasit* AND (biocontrol OR biological
control)) AND (combin* OR interaction OR substitut* OR synergist* OR antagonist*) AND
(“integrated pest control” OR “biological pest control” OR “pest biocontrol” OR “pest
populations” OR pest OR “pest management” OR IPM). We did not use any date limitation
but confined our search to journal articles in English.

2.2. Data Inclusion and Exclusion Criteria

We assessed articles by analysing abstracts following the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA, [16]) (Figure S1). We obtained
547 initial hits, of which 121 were excluded as they were review articles. Based on other pre-
defined exclusion criteria, 377 further articles were excluded. Inclusion of a publication was
based on three criteria: (1) the study was an experiment concerning the biological control
of a pest; (2) the experiment combined at least a parasitoid and an entomopathogenic
fungus, bacterium, or virus; and (3) the study design included at least a no-treatment
control. Studies combining entomopathogenic nematodes with parasitoids were excluded.
Laboratory, semi-field, field, and greenhouse experiments were considered, but modelling
and simulations were excluded.

2.3. Data Extraction

We used Citavi software (version 6.11.0.0) to import the included studies. We extracted
data on (1) pest, (2) control agents, (3) crop, (4) location, (5) study design, (6) evolution of
pest and biocontrol agent populations, (7) crop damage, (8) crop yield, and (9) compatibility
of biocontrol agents from the 49 selected articles [17–65]. Each combination of biocon-
trol agents was considered an experiment, leading to 100 distinct experiments, as some
publications studied multiple combinations simultaneously. Different strains of the same
microorganism combined with one parasitoid were also counted as distinct experiments.
Data from experiments assessing multiple dosages, timing of application, and types of
exposition of the parasitoid to the microbial biocontrol agent were extracted as several
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observations. Each different treatment was considered as a single observation leading to
the extraction of 484 individual observations.

2.4. Data Synthesis and Analysis

Most studies reported the effect of entomopathogenic microorganisms on the life table
parameters of parasitoids. In these studies, parasitoids were the dependent variable. The
impact of a treatment with entomopathogenic microorganisms was usually compared with
a “no-treatment control” (parasitoids only). Data were synthesized by “vote counting” of
the numbers of positive, neutral, and negative effects caused by the entomopathogen on
each studied parameter of the parasitoid’s fitness. We used “positive” when the microor-
ganism treatment significantly improved the development of the parasitoid in comparison
to the no-treatment control. “Negative” was used when the microorganism treatment
significantly hindered the development of the parasitoid compared to the no-treatment
control. “No effect” was used when no significant difference was found between the treat-
ment and the parasitoid-only control. In a simplified way, combinations with positive or
no effect were defined as compatible. However, in the reviewed papers, compatibility was
assessed by an overall analysis of all the studied parameters. Being unable to synthesize all
interconnected parameters for all reviewed papers, we reported compatibility based on the
authors’ conclusions. For example, if they mentioned that two biocontrol agents could be
combined at a defined timing and dosage despite observed antagonistic effects under other
conditions, we reported those as compatible.

When the effect on pest control was reported, “positive” was used to categorize
when the pest reduction achieved by the combined biocontrol agents was higher than the
reduction achieved by the strongest agent applied individually. Positive effect can be either
“synergistic” when the pest reduction achieved by the combined biocontrol agents is higher
than the addition of that achieved by each agent applied individually, “additive” when the
pest reduction achieved by the combination is equal to the addition of that achieved by each
agent used alone, or “less than additive” when the pest reduction achieved by the combined
biocontrol agents is significantly higher than that achieved by each agent used alone, yet
lower than additive. “No effect” was used when no significant difference was observed
between the pest reduction achieved by the combined agents and that achieved by the
strongest agent applied individually. “Negative” was used when the combined biocontrol
agents achieved a lower pest reduction than the strongest agent used individually.

Among the publications selected for this review, reports on laboratory combination
experiments were predominant. From those publications, we extracted life-history data
on sixteen parameters for parasitoids, four parameters for pests, and five parameters for
entomopathogenic microorganisms. For further analysis, we focused on the parasitism
rate, emergence rate, mortality, sex ratio, and longevity of parasitoids, as these were the
most documented parameters.

The packages ggplot2 [66], tidyverse [67], and webr [68] in RStudio (version 4.1.2),
as well as Microsoft Excel (version 2208), were used to obtain descriptive statistics and to
visualize data.

3. Results and Discussion
3.1. Scope of the Publications

Forty-nine studies detailing one hundred combination experiments were conducted
from 2000 to 2022. Eighty-four were laboratory experiments and thus formed the focus of
our results. In addition, nine were field experiments, five were semi-field experiments, and
two were greenhouse experiments. All combination experiments included a no-treatment
control as it was an inclusion criterion. Four experiments included additional controls
with either the parasitoid (3) or microorganism (1) alone, and fourteen included both types
of controls. Six experiments included a synthetic insecticide control in addition to the
no-treatment control.
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The reviewed studies dealt with 31 target pests. Approximately half of these were
Lepidoptera, of which 52% were Noctuidae. The remaining were Hemiptera, Diptera,
and Coleoptera (Figure 2). The studied biocontrol agents included 36 parasitoids and
17 entomopathogenic microorganisms. All parasitoids were Hymenoptera, and the most
represented families were Braconidae (44%) and Trichogrammatidae (18%) (Figure 3). Most
combination experiments were conducted with fungi (80%), followed by bacteria (11%)
and viruses (9%) (Figure 4).
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3.2. Assessed Combinations of Biocontrol Agents in Laboratory Experiments

The conducted laboratory experiments reported entomopathogenic microorganisms’
effects on parasitoid’s life table parameters. In total, 49 combinations were tested in 84 labo-
ratory experiments. While many experiments were conducted with fungi, few analysed the
compatibility of viral and bacterial biocontrol agents with parasitoids
(Table 1). B. bassiana was part of all the most frequent combinations with Trichogramma
pretiosum [24,52], Tamarixia triozae [63,64], E. formosa [40,51], and Trichogramma atopovir-
ilia [24]. Metarhizium anisopliae (Metschnikoff) used with Cotesia flavipes [55,58] was the next
most assessed combination. All other combinations appeared in one to three laboratory
experiments each. Trichogramma pretiosum [24,47,52] and E. formosa [29,38,40,51] were the
most researched parasitoids, followed by A. colemani [23,30,32,35,46], C. flavipes [55,58],
and Diaeretiella rapae [18,43]. In terms of microorganisms, B. bassiana [17,18,24,26,32,33,35,
40,42,43,48,51,52,54,55,57–61,63–65] was the most studied fungus, followed by M. aniso-
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pliae [30,34,36,37,48–51,53,55,57,58] and L. muscarium [18,23,38,41,46]. Bacillus thuringiensis
var. kurstaki (Btk) [19,21,22,47,56] was the most frequently assessed bacterium. Among
viruses, the Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) [25,39,62] and
the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) [27,28] were the most
frequently tested in combination with parasitoids.
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3.3. Reported Compatibility of Biocontrol Agents Assessed in Laboratory Experiments

Thirty-eight out of forty-nine combinations of biocontrol agents were reported as com-
patible [18–20,22,24–26,29,32,34–37,39,41,43–45,47,49,50,52–60,62–65] (Table 1). Six combi-
nations were reported as incompatible [17,27,28,42,51], often due to a lower emergence rate
caused either by bad timing, direct infection, or too high dosage. No answer about compat-
ibility was given for the five remaining ones [30,38,54,56]. Divergent results reported from
the combination of L. muscarium with A. colemani. Aqueel and Leather [23] found that these
biocontrol agents interacted negatively. In contrast, Mohammed and Hatcher [46] reported
them as compatible as long as the fungus was applied more than five days after parasitoid
release.
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Figure 4. Type and species of entomopathogenic microorganisms used in combination with a para-
sitoid (n = 100 combination experiments from 49 studies). Bb = Beauveria bassiana; Ma = Metarhizium
anisopliae; Lm = Lecanicillium muscarium; Mb = Metarhizium brunneum; Ll = Lecanicillium longisporum;
Pn = Pandora neoaphidis; As = Acremonium sclerotigenum; Mr = Metarhizium robertsii; Pv = Paecilomyces
variotii; Ssp. = Simplicillium sp.; Btk = Bacillus thuringiensis var. kurstaki; Bta = Bacillus thuringiensis var.
aizawai; Bti = Bt var. israelensis; Bl = Brevibacillus laterosporus; SeMNPV = Spodoptera exigua multiple
nucleopolyhedrovirus; SfMNPV = Spodoptera frugiperda multiple nucleopolyhedrovirus; HearNPV
= Helicoverpa armigera nuclopolyhedrovirus.

The influences of combined biocontrol agents on pest mortality were analysed in ten
laboratory experiments extracted from nine studies [25,28,38,44,45,50,57,62,65]. Out of 41
observations made in these experiments, 14 reported a positive effect, with significantly
higher pest mortality when biocontrol agents were combined compared to the strongest
agent used alone. In 11 of these, the interaction was less than additive [25,28,57,65]. In two
further observations, it was additive [50], and in one, it was synergistic [50]. Twenty-six
further observations reported that the combination had no effect on pest mortality [25,38,
44,45,62], and one single study reported a negative effect [25].
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Table 1. Compatibility of 49 combinations of biocontrol agents extracted from laboratory experiments in the reviewed studies; green = combination reported as
compatible; red = combination reported as incompatible; no fill = no report of compatibility; t = at least one paper mentioning application timing as important; d = at
least one paper mentioning dosage as important; FI. = Figitidae; ICHN. = Ichneumonidae; PTEROM. = Pteromalidae; TRICHOGRAMM. = Trichogrammatidae; NPV
= nucleopolyhedrovirus; MNPV = multiple nucleopolyhedrovirus (n = 84 experiments from 43 studies [17–20,22–30,32,34–39,41–47,49–60,62–65]).

Combinations of Parasitoids and
Entomopathogenic Microorganisms
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Bacillus thuringiensis var.
israelensis 1 1

Bacillus thuringiensis var. kurstaki 1 d 1 2 d 2 6

B
ac

te
ri

a

Brevibacillus laterosporus 1 1
Acremonium sclerotigenum 1 1
Beauveria bassiana 1 td 5 t 1 2 3 2 t 1 2 t 5 td 1 1 d 2 4 td 1 td 6 td 37
Lecanicillium longisporum 3 td 3
Lecanicillium muscarium 1t 1 td 1 t 2 1 6
Metarhizium anisopliae 1 t 1 4 1 1 t 2 t 1 t 1 d 1 t 13
Metarhizium brunneum 1 1 d 2 4
Metarhizium robertsii 1 1
Paecilomyces variotii 1 1

Fu
ng

i

Simplicillium sp. 1 1
Helicoverpa armigera NPV 1 td 1
Spodoptera exigua MNPV 1 td 1 td 1 td 3V

ir
us

es

Spodoptera frugiperda MNPV 2 t 1 d 3
Total 1 10 1 1 7 2 7 2 6 1 4 1 1 1 1 3 5 1 2 1 2 3 1 2 4 1 2 1 10 84
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Out of 266 observations, 83 (31%) reported a negative effect of entomopathogenic
microorganisms on parasitism rate [17,24,37–39,42–46,51,52,55,60,65] (Table 2). This pa-
rameter was positively influenced in four observations (2%) [20,24,52,54]. The other
studies observed no significant differences between the treatment and control [19,20,22–
24,28,32,35,36,39,43–47,52–55,58,60,63,65]. The parasitism rate was often related to the
ability of the parasitoid to discriminate against infected hosts. Females appeared to avoid
ovipositing on treated hosts mainly when they had a choice between treated and healthy
hosts. Under no-choice conditions, females only laid fewer eggs on treated hosts than on
healthy ones in one out of seventy observations (~1%) [19,20,38,57,63]. In contrast, when
females had a choice, they avoided treated hosts for oviposition in 15 out of 35 observations
(43%) [19,20,32,37,39,44–47,54,65]. It is important to stress that sixty-three out of the seventy
observations made under no-choice conditions were extracted from a single study reporting
three experiments [63]. Therefore, further research needs to be done to confirm the above
statements. Discrimination of infected hosts would be beneficial under field conditions.
Indeed, parasitoids could complement the effects of entomopathogenic microorganisms on
the pest while avoiding the negative effects of the latter on themselves.

A reduced emergence rate of parasitoids combined with a microbial biocontrol agent
was reported in 144 of 257 observations (56%) [17–20,23–30,34,36–39,42–46,49–60,62–65].
Entomopathogenic microorganisms had no significant influence on this parameter in
all other observations [19,20,22,24,28,29,32,35,39,41,43,46,47,52,53,55–57,60,65]. Parasitoids
combined with microbial agents had higher mortality in seventy-one out of one hundred
ninety-four observations (37%) [18,24,26–29,39,49,54–57,59,65] and lower mortality in four
further observations (2%) [55]. No significant effect was reported in the remaining ones [18,
24,26,28,39,41,47,49,53–57,63,65]. The contact with entomopathogenic microorganisms
reduced the female offspring sex ratio of parasitoids in 17 out of 92 observations (18%) [23,
24,46,52]. No significant change of this parameter was observed in all other cases [17,24,
28,32,35,41,43,46,52,53,55,57,65]. Female parasitoids combined with microbial biocontrol
agents had shorter longevity in 67 out of 130 observations (52%) [17,19,20,24,42,43,52,55–
57,64]. A single observation (1%) reported higher longevity of female Trichogramma chilonis
when fed with a mixture of honey and Btk in comparison with females fed pure honey [22].
No significant difference in female longevity was reported in all other observations [19,20,
22,24,29,34,35,42,46,50,52,53,55,56]. When combined with microbial biocontrol agents, male
parasitoids had shorter longevity in 55 out of 125 observations (44%) [17,19,24,42,52,55,64]
(Table 2). This parameter remained unchanged in all other observations [17,19,20,24,29,34,
35,41,42,50,52,53,55,56].

Timing of application and dosage of biopesticides were important factors influencing
the compatibility of entomopathogenic microorganisms with parasitoids. In total, the
importance of the timing of application was emphasized in 44 out of the 84 laboratory
experiments (52%) [17,20,21,24,25,27–29,34,36,38,39,41,43,45,46,50–52,57,60,62–65] (Table 1).
The importance of dosage was highlighted in 25 out of these 84 experiments (30%) [19,20,22,
24,25,29,39,41,49,54,60,62,64,65]. For example, B. bassiana was reported as compatible with
parasitoids in 34 out of 37 experiments [17,18,24,26,32,34,35,42,43,51,52,54,55,58–60,63–65],
but the importance of 1) an adapted application timing and 2) dosage was mentioned in 25
(68%) [17,24,34,43,51,52,60,63–65] and 13 (35%) [24,54,60,64,65] of these, respectively. The
optimal dosage differed according to the target pest and the combination of biocontrol
agents used. It must be sufficient to kill the pest without negatively affecting the parasitoid.
The interval length between parasitoid release and infection also differed and needed to be
defined for each pair of biocontrol agents.
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Table 2. Effect of entomopathogenic microorganisms on the life cycle of parasitoid wasps; N = significantly negative effect; NE = no significant effect; P = significantly
positive effect (n = 468 observations extracted from 84 experiments from 43 studies [17–20,22–30,32,34–39,41–47,49–60,62–65]).

Effect of Entomopathogenic
Microorganisms on Different Parameters

of Parasitoid Wasps.

Parasitism Rate Emergence Rate Parasitoid Mortality Female Sex Ratio Female Longevity Male Longevity

N NE P N NE P N NE P N NE P N NE P N NE P

Bacillus thuringiensis var. aizawai 2 2 2
Bacillus thuringiensis var. israelensis 2 1 1 1 2
Bacillus thuringiensis var. kurstaki 10 2 5 3 2 2 1 2 1

B
ac

te
ri

a

Brevibacillus laterosporus 2 1 1 1 2

Fu
ng

i

Acremonium sclerotigenum 1 1
Beauveria bassiana 53 124 2 77 50 13 97 1 5 48 50 30 45 29

Lecanicillium longisporum 9 9 36 9 9
Lecanicillium muscarium 11 7 15 13 6 12 10 1 5
Metarhizium anisopliae 8 11 13 14 5 5 3 10 11 14 8 16
Metarhizium brunneum 6 14 1 1 1 1 1 1
Metarhizium robertsii 1 2 1 2 2 2
Paecilomyces variotii 1 1
Pandora neoaphidis
Simplicillium sp. 1 1

Helicoverpa armigera NPV 3 1 1 2 1 2 3
Spodoptera exigua MNPV 4 2 11 9 2 3

V
ir

us
es

Spodoptera frugiperda MNPV 4 10 1 10 1 4
Total 82 178 4 143 110 0 70 120 4 17 75 0 66 63 1 55 70 0
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In most reviewed publications, applying the entomopathogenic microorganism after
parasitism was recommended to reduce its negative effects on parasitoid development.
Waiting for 24 h after the emergence of T. pretiosum before applying B. bassiana reduced the
negative effects of the entomopathogenic fungus on the parasitoid [52]. Beauveria bassiana
and T. trizoae were assessed as compatible if applied at different times [63]. Infection rate of
this parasitoid by the fungus was significantly higher in early instars than in more advanced
developmental stages [64]. Therefore, the parasitoid should be released before applying
the fungus [17,64]. The same conclusion was obtained for B. bassiana and M. anisopliae used
in combination with T. trizoae [34]. When combined with Aphelinus abdominalis, B. bassiana
should be applied only when most parasitoids already transformed into pupae and are less
susceptible to the fungus [60].

Similarly, the first application of Lecanicillium longisporum (Petch) Zare & Gams should
be conducted one day after E. formosa enters the pupal stage to reduce competition between
the biocontrol agents [29]. Detrimental effects of B. bassiana and M. anisopliae on the
development of E. formosa could be reduced by waiting at least four days after parasitoid
release to spray the microbial agents [51]. Post-parasitism application of Metarhizium
brunneum Petch also appeared to be best suited for Hyposoter didymator as it limited negative
effects on the parasitoid due to direct contact with the fungus [45]. A spatial separation of
the microbial treatment and the parasitoid release is also possible to avoid these kinds of
effects [53]. Fewer A. colemani with a lower rate of females emerged from aphids treated
with L. muscarium within five days of parasitization. In contrast, fungal application six or
seven days after aphids had been parasitized did not significantly affect the development,
emergence rate, or sex ratio of the parasitoid [46]. Four different time intervals between
parasitism by Campoletis sonorensis and application of the SfMNPV were tested. Decreasing
parasitoid mortality was observed with increasing time interval. The virus did not affect the
survival of C. sonorensis when applied six days after parasitization [28]. In an experiment
combining Euplectrus plathypenae and the SeMNPV, the parasitoid was only able to complete
its development when the viral infection occurred at least two days after parasitization [46].

In contrast, few recommendations to apply the entomopathogenic microorganism
prior to the parasitoid release were found in the reviewed publications. Bacillus thuringiensis
var. kurstaki and the Helicoverpa armigera nucleopolyhedrovirus (HearNPV) were recom-
mended to be applied two days before releasing H. hebetor to control Helicoverpa armigera
on chickpeas [20]. Similarly, it was recommended to apply B. bassiana before releasing
Trichogramma dendrolimi so that pest eggs unaffected by the fungal treatment become para-
sitized [65].

Here, we show for the first time that most studied combinations of biocontrol agents
are compatible under controlled conditions. In the best cases, parasitoids are outside
the field of action of entomopathogenic microorganisms and remain unaffected when
combined with the latter. If not, the timing of application of the biocontrol agents and the
biopesticide dose must be carefully determined. Mathematical models such as the one
created by Gonthier et al. [69] for the combined use of Necremnus tutae and Phthorimaea
operculella granulovirus against Tuta absoluta can be helpful tools for this purpose. If
the dose required to control a specific pest is higher than that tolerated by the parasitoid,
the compatibility of the two biocontrol agents is compromised. In terms of pest control,
combined biocontrol agents had a positive influence in most cases compared with each
agent used alone. However, in their narrative review, Roy and Pell [10] highlighted the
importance of conducting field experiments in addition to laboratory bioassays to assess
the physiological and ecological susceptibility of natural enemies in a realistic environment.
In the field, unpredictable climatic conditions could modify the dynamics of the biocontrol
agents observed in the laboratory. Furthermore, less precise application of biopesticides
and broader spatial dispersion of pests and parasitoids could significantly influence the
compatibility and efficacy of the combinations of biocontrol agents. The presence of other
insect species could also influence the level of pest control achieved by parasitoids and
entomopathogenic microorganisms that have a wide host range.
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3.4. Parasitoid Life History and Susceptibility to Entomopathogens

Parasitoid life history (e.g., generation time, population structure) can influence their
susceptibility to entomopathogens [70,71]. As many entomopathogens target the larval
stage of the pest, egg parasitoids are less likely to be in contact or compete with ento-
mopathogens, making them de facto more compatible. The development strategies of
larval parasitoids can strongly influence their susceptibility to entomopathogens. Endopar-
asitoids, which lay their eggs inside the host insect’s body, may be less exposed than
ectoparasitoids, which lay their eggs on the surface of the host, sometimes in open envi-
ronments where the microorganisms can directly reach the parasitoid larvae [72]. On the
other hand, endoparasitoids typically have a longer development time than ectoparasitoids,
which can also influence their susceptibility to entomopathogens. As entomopathogens
have a slower mode of action, taking longer to kill the host insect, parasitoids with shorter
life cycles may emerge from the host before the entomopathogen has a chance to kill it,
reducing their exposure to the pathogen [72].

In fact, endoparasitoids are generally considered to be more susceptible to ento-
mopathogens than ectoparasitoids [73], as the pathogen has more time to act on the im-
mature parasitoid during its extended development period inside the host insect [74].
Additionally, endoparasitoids are more likely to be exposed to entomopathogens that are
ingested by the host insect, as the pathogen can spread throughout the host’s body and
affect the parasitoid’s physiological function [75].

3.5. Investigated Combinations and Reported Compatibility of Biocontrol Agents in Field,
Semi-Field and Greenhouse Experiments

Nine field, five semi-field, and two greenhouse experiments reported the effects of
fifteen combinations of parasitoids and entomopathogenic microorganisms on pest control.
Thirteen experiments included fungi, one included a bacterium, and the two remaining
ones were conducted with viruses [21,31,33,39,40,46,48,61]. As in the laboratory exper-
iments, B. bassiana was the most studied microorganism. It was tested in combination
with E. formosa [65], Chelonus bifoveolatus, Coccygidium luteum and Cotesia sp. [48], Anisopter-
malus calandrae and Lariophagus distinguendus [33], and Macroglenes penetrans [61] in one
experiment, each. In their greenhouse experiment, Labbé et al. [40] found that B. bassiana
used in addition to E. formosa resulted in a higher pest reduction than the parasitoid alone
without harming the development of the latter. In contrast, the fungus was reported as
incompatible with A. calandrae and L. distinguendus [33]. Indeed, in semi-field experiments,
B. bassiana affected both parasitoids negatively, resulting in lower pest control of the fungus–
parasitoid combinations compared with the parasitoid released alone. No answer about
the compatibility of this fungus with the other parasitoids mentioned above was given.

In the field experiments conducted by Ngangambe and Mwatawala [48], M. anisopliae
was tested in combination with C. bifoveolatus, C. luteum, and Cotesia sp., also in one experi-
ment each. In this study, biopesticides based on B. bassiana and M. anisopliae were reported
as less harmful to natural parasitoids than synthetic insecticides based on flubendamide.
Fuentes-Contreras and Niemeyer [31] assessed Pandora neoaphidis and Aphidius rhopalosiphi
as compatible in two semi-field experiments. Combining these biocontrol agents resulted in
more efficient pest control than each agent used alone. It significantly reduced the growth
rate of the pest population. In a greenhouse experiment, the SeMNPV and Microplitis
pallidipes were found to be compatible [39]. The parasitoid vectored the virus, and their
combined use resulted in a significantly higher pest control. Thus, it was recommended to
expose the parasitoid to the virus before releasing it.

H. hebetor was tested in combination with Btk and the HearNPV in one field experiment
each [21]. These combinations were reported as compatible. Both parasitoid–microbe
combinations significantly reduced pest density and crop damage in comparison with each
biocontrol agent alone. Crop yield was significantly increased, but so were the control costs.
Yield gain was insufficient to cover the additional treatment costs, meaning that combining
the biocontrol agents negatively affected the crop’s profitability. The remaining investigated
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combinations were L. muscarium with A. colemani in a semi-field experiment [46] and
the SeMNPV with M. pallidipes in a greenhouse experiment [39]. Both were reported as
compatible and significantly reduced pest density when deployed together.

Here, we show that combining entomopathogenic microorganisms with parasitoids
in the field appears beneficial for pest control; however, profitability may be reduced due
to increased control costs. However, the interaction of biocontrol agents on key aspects,
namely crop damage, crop yield, and treatment costs, were assessed in only two out of the
hundred reviewed experiments. These agronomic and financial parameters must be con-
sidered in future research assessing the compatibility of parasitoids and entomopathogenic
microorganisms.

4. Conclusions

Environmental pollution, loss of biodiversity, pest resistances, and risks to human
health are among the controversial effects of synthetic pesticides. Alternative methods
for pest control are sought after. Combining biocontrol agents can improve pest control
and reduce harmful effects on the environment. In this systematic review, we show for
the first time that many combinations of parasitoids and entomopathogenic microorgan-
isms are compatible and can be deployed together. Eighty percent of the biocontrol agent
combinations included in the reviewed papers were deemed compatible. Combinations,
including parasitoids and fungi, were well represented in the literature. In contrast, few
experiments were found combining bacteria with parasitoids, despite the large number
of Bt-biopesticides. Further research on combining bacterial or viral biopesticides with
parasitoids is required. The most studied microorganisms of each category, i.e., B. bassiana
and M. anisopliae for fungi, Btk for bacteria, as well as the SeMNPV and the SfMNPV for
viruses, were found compatible with many different parasitoids. However, most of the
studies were conducted in the laboratory, and new experiments under field conditions are
necessary to include agronomic and financial parameters in the final compatibility assess-
ment. Moreover, most of the reviewed studies focused on the impacts of entomopathogenic
microorganisms on parasitoids. Few examined the effects of parasitoids on the develop-
ment and dissemination of microbial biocontrol agents. Further research is required to
analyse how both types of biocontrol agents influence each other in the field. Such an
assessment should be conducted on more than one generation of parasitoids to highlight
possible long-term effects. Appropriate timing of application and dosage must be defined
individually for each combination of biocontrol agents against each specific pest, as these
are key success factors. Combining biocontrol agents has the potential for pest control,
yet interactions between parasitoids and entomopathogenic microorganisms should be
further researched. To develop innovative methods, interdisciplinary work should be
fostered. Finally, pest biocontrol methods must be viable. Therefore, the availability and
the production costs of biocontrol agents should be assessed and further improved.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens12070957/s1, Figure S1: PRISMA flow diagram of
studies looking at combinations of biocontrol agents.
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