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Abstract

In this thesis, we introduce a Moving Eulerian-Lagrangian Particle (MELP) method,

a mesh-free method to simulate incompressible thin-film fluid systems: soap bubbles,

bubble clusters, and foams. The realistic simulation of such systems depends upon the

successful treatment of three aspects: (1) the soap film’s deformation due to the ten-

dency to minimize the surface energy, giving rise to the bouncy characteristics of soap

bubbles, (2) the tangential fluid flow on the thin film, causing the thickness to vary

spatially, which in conjunction with thin-film interference creates evolving and highly

sophisticated iridescent color patterns, (3) the topological changes due to collision,

separation, and fragmentation, which may create partition surfaces and non-manifold

junctions that spontaneously settle into honeycomb structures due to force balance.

The interleaving complexities from all three fronts render the task of accurately and

affordably simulating thin-film fluid an open problem for the Computational Physics

and Computer Graphics community.

The proposed MELP method tackles these multifaceted challenges by employing

a novel, bi-layer particle structure: a sparse set of Eulerian particles for dynamic

interface tracking and PDE solving, and a fine set of Lagrangian particles for material

and momentum transport. Such a design provides crucially advantageous numerical

traits compared to existing frameworks. Compared to mesh-based methods, MELP’s

particle-based nature makes it topologically agnostic, which allows it to conveniently

simulate topological changes such as bubble-cluster formation and thin-film rupture.
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Furthermore, these Lagrangian structures carry out fluid advection naturally, conserve

mass by design, and track “sub-grid” flow details. Compared to existing particle

methods, our bi-layer design improves drastically on the computational performance

in terms of both stability and efficiency.

The advantage of this design will manifest in a wide range of experiments, includ-

ing dynamic foam formation, Rayleigh-Taylor instability, Newton Black Films, and

bubble bursting, showing an increased level of flow detail, increased number of re-

gions in bubble clusters, and increased flexibility to recreate multi-junction formation

on-the-fly. Furthermore, we validate its physical correctness against a variety of ana-

lytical baselines, by successfully recovering the equilibrium dihedral and tetrahedral

angles, the exponential thickness profile of drainage under gravity, the curvature of

partition surfaces, and the minimum surface area of double-bubbles.
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Chapter 1

Introduction

1.1 Fluid Thin Films

Soap films, vapor bubbles, bubbles clusters, and liquid foams are seemingly mundane

objects that we encounter every day while we are washing hands, rinsing dishes,

boiling water, cooking food, and pouring out coffee or beer. Ubiquitous as they

are, these fluid thin-film systems generate tremendous intrigue to scientists as they

exhibit remarkably complex geometry and dynamics due to the coupled interaction

between the interfacial flow, surface deformation, and topological evolution. Even the

simplest cases of such systems, such as single bubbles or disks with manifold topology,

can carry great complexity and value, as the strong mismatch between the length

scale and thickness scale leads to high Reynolds numbers, making them the ideal test

bed for observing and understanding eddies and turbulence. Such complex flow in

conjunction with thin-film interference [Smits and Meyer, 1992, Belcour and Barla,

2017, Glassner, 2000, Iwasaki et al., 2004, Jaszkowski and Rzeszut, 2003], creates the

fascinating, rapidly-developing, iridescent color patterns, that imbue the aesthetic

and artistic significance. To recreate these phenomena, we would need to solve the

Euler equations for inviscid fluid on deforming fluid domains, which is a challenging
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1.2 Previous Works

problem on its own due to the necessity of efficient, dynamic data structures and

robust PDE-solving techniques.

The situation would get even more challenging and interesting when we consider

thin films with topological changes and non-manifold geometries, which occur abun-

dantly for such systems. An example of such topological changes would be separating

soap-film catenoids, where a single piece of soap tube is stretched to collapse into two

soap disks; and an example of such non-manifold configurations is a triple-bubble,

where an edge is formed at the junction of three bubbles along which not a single nor-

mal direction can be defined. In order to simulate foam systems with such topological

complications, we need to extend the PDE-solving machinery developed for manifold

thin films to work with singular points and edges. Then, we must also model the

specific dynamic evolution of these non-manifold structures due to surface tension.

Finally, we must also design the algorithm and discretization scheme to be ready for

topological changes at all times. The interleaving complexities among all these levels

render the full-scale simulation of incompressible fluid on thin films and foams a very

challenging problem.

1.2 Previous Works

As discussed above, the successful simulation of thin films and foams amounts to the

handling of three aspects — the 1) turbulent flow, 2) deforming geometry, and 3)

evolving, non-manifold topology. To date, various works in computer graphics and

computational physics have tackled the challenge of devising effective geometric data

structures and PDE solvers to capture the vivid flow details on dynamic membranes.

For instance, researchers have derived reduced governing equations [Chomaz, 2001,

Couder et al., 1989] for thin film flows, constructed numerical algorithms to generate

highly detailed surface flow on fixed spherical domains [Hill and Henderson, 2016,

2



1.3 Motivation

Yang et al., 2019, Huang et al., 2020], utilized dynamic meshes to enable thin-film

deformation [Saye and Sethian, 2016, Da et al., 2015, Ishida et al., 2020, 2017], utilized

level-sets to compute surface tension effects [Zheng et al., 2009], simulated bubble

deformation and bursting purely with particles [Wang et al., 2020, 2021], and used

a hybridization of meshes and points to compute interfacial phenomena [Chen et al.,

2021, Hyde et al., 2020].

In the simulation of foams — multiple bubbles connected via non-manifold junc-

tions, the main challenge transitions to modeling the dynamics of the junctions. Ex-

tensive research efforts have been devoted to the theoretical understanding [Cohen-

Addad et al., 2013] and numerical validation [Saye and Sethian, 2013] of the dynamics

and equilibrium states of these junctions. In geometric processing, researchers explore

non-manifold differential operators that can accommodate PDE solving on foam struc-

tures [Sharp and Crane, 2020]. Saye and Sethian [2013] construct a comprehensive

framework that takes into account the thickness evolution on a microscopic scale. In

computer graphics, researchers have also developed continuum-based approaches to

model the macroscopic behavior of foam materials [Ram et al., 2015, Yue et al., 2015].

1.3 Motivation

Despite the inspiring progress, developing an integrated algorithm that can jointly 1)

capture the surface flow details at a high (pixel-level) resolution and 2) accommodate

the complex geometric and topological evolution, remains a recalcitrant technical gap

that hinders thin-film/foam simulation from advancing to the next level of visual

authenticity. In particular, mesh-based methods are dynamic and efficient, but are

inconvenient for handling topological changes. Particle-based methods are topologi-

cally flexible, but not as well-suited for accurate, large-scale PDE solving. Volumetric,

grid-based methods can resolve fluid equations fully, stably, and accurately, but are

3



1.4 Thesis Structure

highly costly and lack the ability to capture the intricate, sub-grid color patterns that

are essential to the visual appeal. Hence, our motivation is to unify the topological

flexibility of particles, the space efficiency of surface meshes, and the stability of grids

in a comprehensive numerical simulation system.

1.4 Thesis Structure

The rest of the thesis will be structured as follows: in Chapter 2, we will present and

discuss our continuous model of thin fluid films. In Chapter 3, we will present the

discretized MELP method, addressing its high-level intention, low-level implementa-

tion, and the different ways that it uniquely caters to the continuous physics. The

MELP method on its own is capable of resolving single-lamellae scenarios but cannot

accommodate multi-bubble settings. In Chapter 4, we will introduce Multi-MELP,

which is a natural extension of MELP to enable non-manifold simulation. In Chapter

5, we will showcase a variety of simulated results and validation experiments which

will be analyzed qualitatively and quantitatively. In particular, in-depth comparison

tests will be performed against previous benchmarks. In Chapter 6, we will conclude

by addressing its current limitations and future research directions.

4



Chapter 2

Thin-Film Continuous Model

2.1 Geometry

Lamellae As depicted on the left of Figure 2.1, a thin film lamella is a layer of

fluid trapped between two air-liquid interfaces. We refer to one of the interfaces as

the base surface SB, which is assumed to be a connected, orientable Riemannian 2-

manifold in R3. A base surface may be open with boundary (e.g. a disk) or closed

(e.g. a bubble). The orientability allows a continuous field n : SB → S2 of outward

pointing, unit normal vectors to be defined. For a disk, the outward direction is

defined arbitrarily, while for a bubble, the outward direction points away from the

enclosed volume.

At each point p ∈ SB, given the normal vector, a tangent plane is uniquely

determined, for which we construct an orthonormal basis with {e1(p), e2(p)}. We

then define a field of local frames R : SB → SO3 as R(p) = {e1(p), e2(p),n(p)} with

coordinates (u, v, z). Additionally, we define a field of mean curvatures H : SB → R,

a field of metric tensors g : SB → R2×2, and a field of thickness η : SB → R.

Our definition of the geometry of a lamella L is then the 5-tuple: (SB,R, H, g, η).

The other interface ST can be defined as the image f(SB) of the function f : SB → R3

5



2.1 Geometry

Figure 2.1: An illustration of our one-sided geometric model. Left: a thin film lamella
with thickness and local frames. Right: a triple-junction represented by three lamellae
without directly modeling the singularity at E.

with f(p) = p + η(p)n(p). The geometric quantities, such as the mean curvature, is

specified on SB, but not on ST . In these cases, we assume the quantity at f(p) ∈ ST

equals that at p ∈ SB. This is reasonable since the film’s thickness scale (10−7m) is

minuscule compared to its length scale (10−2m).

Junctions As depicted on the right of Figure 2.1, a junction is formed at E where

multiple pieces of lamellae come into contact. These junctions are typically consid-

ered non-manifold when thin films are viewed as infinitesimally-thin mathematical

surfaces. But from a volumetric standpoint, the junction E is indeed a bulk of liquid

confined by its three-manifold interfaces. In this light, we model this triple-bubble

with three lamellae: LA, LB and LC , with (SB)A, (SB)B and (SB)C the three-manifold

interfaces that together delineate E. The entire liquid volume is the union of the vol-

ume represented by LA, LB, and LC .

It should be noted that near the contact areas, (ST )A, (ST )B, and (ST )C are no

longer air-liquid interfaces, but rather pseudo-interfaces between different regions.
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2.2 Dynamics

We do not enforce that these pseudo-interfaces coincide exactly, assuming that im-

perfections at this level are negligible to the overall dynamics.

2.2 Dynamics

Euler equations We derive our thin film dynamic model based on the Euler equa-

tions for inviscid, incompressible flow with surface tension:


ρ
Du

Dt
= −∇p+ fσ + fext,

∇ · u = 0,

(2.1)

where ρ denotes the density, p the pressure, fσ the surface tension force per unit

volume, and fext the external forces, e.g. gravity.

Surface tension The surface tension force fσ in Equation 2.1 is computed as

fσ = (σHn+∇sσ) · δI , (2.2)

with σ denoting the surface tension coefficient, H and n the mean curvature and

normal vector on the interfaces, ∇s the surface gradient operator, and δI the Dirac

delta function that is non-zero only on the interfaces. The first term: σHn reflects

the normal stress prescribed by the Young-Laplace Law [Finn, 1999], and the second

term: ∇sσ reflects the tangential stress corresponding to the Marangoni effect. The

surface tension σ relates to the surfactant concentration Γ as σ = σ0−R̄TΓ, where σ0

is the surface tension for pure water, R̄ the ideal gas constant, and T the temperature

[Xu et al., 2006].
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2.2 Dynamics

Lamellae Following Ishida et al. [2020], we separate Equation 2.1 into its normal

and tangential components as:


ρ
Du⊥

Dt
= −∂p

∂z
n+ δIσHn+ f⊥

ext,

ρ
Du⊤

Dt
= δI∇sσ + f⊤

ext.

(2.3)

Here we use the superscript ⊥ for normal components and ⊤ for tangential com-

ponents. The normal equation is obtained via projection, and the tangential equation

is obtained via asymptotic simplification under the lubrication assumption [Chomaz,

2001, Huang et al., 2020]. We further assume that the fluid pressure gradient along z

is negligible, as is done in Chomaz [2001], Ishida et al. [2020], so that ∂p
∂z

only reflects

the air-liquid pressure jumps. Hence we have

∂p

∂z
= δB · (p̃− pin) + δT · (pout − p̃), (2.4)

with δB and δT being Dirac delta functions that represent SB and ST respectively,

and satisfying δB + δT = δI ; pin and pout being inside and outside air pressures with

the orientation decided by the normal vector; and p̃ the characteristic fluid pressure,

which is assumed constant here since the air-liquid pressure difference is much greater.

Adding in the conservation equations of the surfactant concentration Γ and membrane

thickness η, we rewrite Equation 2.3 to obtain the full dynamic model:



Du⊥

Dt
= −1

ρ

∂p

∂z
n+

δI(σ0 − R̄TΓ)H
ρ

n+
1

ρ
f⊥
ext,

Du⊤

Dt
= −2R̄T

ρη
∇sΓ +

1

ρ
f⊤
ext,

DΓ

Dt
= −Γ∇s · u,

Dη

Dt
= −η∇s · u.

(2.5)
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2.2 Dynamics

Junctions As described in Section 2.1 above, a junction is partitioned by a set of

lamellae into several regions, akin to the “symmetry units” in Koehler et al. [2004]. We

assume the pseudo-interfaces among these regions impose slip boundary conditions,

where the tangential flows are unconstrained while the normal velocities are matched.

Material can transport between regions. In particular, near a junction a ∇s operator

shall be replaced by∇ in Equation 2.5. Due to our method’s codimensional nature, we

opt not to evaluate volumetric derivatives explicitly, but rather simulate its behaviors

using particles.

9



Chapter 3

The Moving Eulerian-Lagrangian

Particle (MELP) Method

3.1 Overview

To simulate our continuous thin film model presented above, we design the Moving

Eulerian-Lagrangian Particle (MELP) method: a novel, mesh-free method that can

stably and efficiently simulate 1) complex, turbulent flow at a high level of detail,

2) aggressive shape deformation under surface tension, and 3) accurate evolution

of non-manifold topologies according to Plateau’s laws. As our core contribution,

we discretize fluid thin films using two collaborating particle sets: a sparse set of

Eulerian particles for dynamic interface tracking and PDE solving, and a fine set

of Lagrangian particles for material and momentum transport. This separation of

tasks between deformation tracking and flow tracking enables enhanced performance

on both fronts. The Eulerian particles can maintain a stable, uniform discretization

despite the turbulent surfacial flow, as they can advect only with normal velocities,

and freely redistribute in the tangent plane; the Lagrangian particles become more

computationally affordable as they are responsible for advection only, and can thus
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3.2 MELP

Figure 3.1: Left: the local density of L determines the thickness. Right: L advect
with the full velocity, E advect with the normal velocity.

be deployed at larger amounts to track out more sophisticated and accurate flow

patterns. Our MELP method can also be seen as an extension of the Particle-in-Cell

(PIC) method: first, we extend its simulation domain from a 2D Euclidian plane

to deforming 2-manifolds, and we formulate a set of surface differential operators

to enable this extension; secondly, we replace the grid with our meshless Eulerian

particles, so that the entire system is highly flexible with topological changes. To

do so, we devise a set of particle-to-particle gathering and interpolation schemes to

mimic the particle-grid interactions in traditional PIC methods.

3.2 MELP

As shown in Figure 3.1, the MELP framework consists of a set of sparse Eulerian

particles E and a set of fine Lagrangian particles L. The Lagrangian particles carry

physical quantities such as mass and volume, and perform material and momentum

transport by shifting their positions. The Eulerian particles track the deformed thin

film while maintaining uniform discretization, thereby offering a stable computational

stencil on the moving surface. The two particle sets will collaborate both in repre-
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3.2 MELP

senting the thin film geometry and in solving the dynamic equations.

Geometry We have defined a lamella as a 5-tuple (SB,R, H, g, η). As shown on the

left of Figure 3.1, SB is uniformly discretized by the E particles, each of which controls

some area a. Given the point set, we approximate the local frame R, mean curvature

H, and metric tensor g following Wang et al. [2020]. The remaining variable η will

be determined by the distribution of L particles. As displayed on the left of Figure

3.1, due to the incompressibility constraint, the denser the L particles are, the larger

η becomes — an idea leveraged by previous works [Wang et al., 2021, Solenthaler,

2011]. Each E particle then controls a fluid column with volume V = a · η.

Dynamics In solving the dynamic equations, the E and L particles collaborate in

a similar fashion as the grids and particles in hybrid Eulerian-Lagrangian methods.

The advection term is handled in the Lagrangian manner by shifting the positions

of L particles. The projection term is solved on the sparser, uniformly-distributed

E particles using Implicit Incompressible SPH (IISPH) [Ihmsen et al., 2013]. The

material and momentum transfer between E and L is achieved using Affine Particle-

In-Cell (APIC) [Jiang et al., 2015].

Interface Tracking It is shown that the advection of an interface is unaffected by

the tangential velocity [Gibou et al., 2018]. As seen on the right of Figure 3.1, since the

E particles are purely geometric, we can let them advect with the normal component

of the material velocity without affecting the dynamics. We further incorporate the

arbitrary Lagrangian-Eulerian idea, in which an artificial tangential velocity is granted

on E to avoid deformation-induced clustering [Sahu et al., 2020]. We compute this

artificial velocity following the particle shifting approach in the SPH literature [Lind

et al., 2012].
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3.2 MELP

Symbol Meaning

W 3D kernel function
W 2D kernel function
xA position of particle A

W (A,B) W (xA − xB)
⊥A(w) project w to the normal direction of A
⊤A(w) project w to the tangent plane of A
W (A,B) W (⊤A(xA − xB))

r kernel support radius
N E(A) all E particles within radius r from xA

N L(A) all L particles within radius r from xA

Proj(A) project xA onto SB

Table 3.1: A list of symbols and expressions for the MELP algorithm.

1 2 2 3 4

5566 5

Figure 3.2: The computation workflow of a single simulation step in our proposed
MELP framework.

3.2.1 Algorithm

The basic MELP procedure is illustrated in Figure 3.2 with labels corresponding to

the following stages:

(1) L2E Transfer: Transfer mass m, surfactant c, volume V , and momentum p

from L to E (Algorithm 1).
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3.2 MELP

Algorithm 1 L2E transfer

1: for each particle L ∈ L do
2: Compute αL =

∑
E∈NE(L)W (E,L).

3: for each particle E ∈ E do
4: for q ∈ {m, c, V,p} do
5: Compute qE according to Equation 3.1

6: Compute p̂E according to Equation 3.2
7: uE ← pE+p̂E

mE
, u⊥

E ←⊥E (uE), u
⊤
E ← ⊤E(uE)

Algorithm 2 Geometry computation

1: for each particle L ∈ L do
2: Evolve ηL according to Equation 3.3

3: for each particle E ∈ E do
4: Compute aE according to Equation 3.4
5: Compute ηE = VE

aE
6: Compute HE and gE according to Equation 3.5

(2) Geometry Computation: Compute thickness η for E and L particles; update

control area a, mean curvature H and metric tensor g for E particles (Algorithm 2).

(3) Dynamics Computation: Solve Equation 2.5 on E in the normal and tangen-

tial directions; update velocity u (Algorithm 3).

(4) E2L Transfer: Each L particle interpolates u from nearby E particles (Algo-

rithm 4).

(5) E Advance: Each E particle advects with the normal velocity, deforming the

surface SB. On the updated SB, shift E particles tangentially to maintain uniform

distribution (Algorithm 6).

(6) L Advance: Each L particle advects with the full velocity. Afterwards, project

their positions onto SB (Algorithm 7).

The following subsections will go through each of the six stages in detail. We
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3.2 MELP

Algorithm 3 Dynamics computation with E
1: Compute enclosed volume V̂ with Equation 3.6
2: Compute enclosed pressure pin with the ideal gas law
3: Solve Γ implicitly with Equation 3.9
4: for each particle E ∈ E do

5: Compute
Du⊥

E

Dt
with Equation 3.7

6: Compute
Du⊤

E

Dt
with Equation 3.25

7: Update u⊥ and u⊤ using symplectic Euler with ∆t

Algorithm 4 E2L transfer

1: for each particle L ∈ L do
2: Compute uL according to Equation 3.26
3: Compute BL according to Equation 3.27
4: Compute DL according to Equation 3.28

define relevant symbols and expressions in Table 3.1.

3.2.2 L2E Transfer

For a generic quantity q, we conduct conservative transfer from L to E as:

qE =
∑

L∈NL(E)

Ŵ (E,L) · qL, (3.1)

where Ŵ has the partition of unity quality
∑

E∈NE(L) Ŵ (E,L) = 1. Given an SPH

kernel W , we define Ŵ (E,L) = W (E,L)/αL, where αL =
∑

E∈NE(L)W (E,L). Then,

we transfer mass m, surfactant c, volume V , and momentum p according to Equation

3.1. Furthermore, we construct an affine momentum p̂ for APIC:

p̂E =
∑

L∈NL(E)

Ŵ (E,L) · [BL(DL)
−1⊤L(xE − xL)], (3.2)

where B and D are the affine state and inertia-like tensor carried by the L particles.

We reconstruct velocity uE with uE = pE+p̂E

mE
, and split it into its normal and tangen-
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3.2 MELP

Algorithm 5 E redistribution

1: Initialize uE to 0
2: while |δmax−δmin|

|E| ≥ φ do
3: Solve C implicitly using Equation 3.30
4: for each particle E ∈ E do

5:
DuE

E

Dt
← −β∇sC

6: uE
E ← uE

E +∆t
DuE

E

Dt

7: xE ← xE +∆tuE
E

8: Update local frames and metric tensors
9: Update δ according to Equation 3.4

10: for each particle E ∈ E do
11: uE

E ← uE
E + uE

E

Algorithm 6 E Advance

1: for each particle E ∈ E do
2: Update uE

E with Equation 3.29
3: Update xE using symplectic Euler with ∆t

4: Update local frames and metric tensors
5: Redistribute E with Algorithm 5

tial components as u⊥
E =⊥E (uE), u

⊤
E = ⊤E(uE), which are to be evolved separately

in Section 3.2.4.

3.2.3 Geometry Computation

For each L ∈ L, we evolve thickness ηL according to Equation 2.5 after temporal

discretization:

ηL(t) = ηL(t−1) −∆tηL(t−1)∇s · u. (3.3)

For each E ∈ E , we compute number density δE and area aE as:

δE =
∑

E′∈NE(E)

W (E,E ′), aE =
1

δE
. (3.4)
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3.2 MELP

Algorithm 7 L Advance

1: for each particle L ∈ L do
2: Update xL with uL using symplectic Euler with ∆t
3: xL ← Proj(L)

Then, since the particle volume VE is already transferred to E during the L2E step,

the thickness ηE can be computed by ηE = VE/aE.

For each E ∈ E , a neighboring particle E ′ ∈ N E(E) has coordinates in E’s local

frame: (u, v, z) = ((xE′ −xE) · e1, (xE′ −xE) · e2, (xE′ −xE) ·n). With ∇E being the

2D differential operator on the tangent plane of E, we compute the mean curvature

HE and metric tensor gE using neighboring E particles as:


HE = −1

2
∇E · (

∇z√
1 +∇z2

) ≈ −1

2
∇E

2z,

gE =

1 + (
∂z
∂u

)2
, ∂z
∂u

∂z
∂v

∂z
∂u

∂z
∂v
, 1 +

(
∂z
∂v

)2
 . (3.5)

3.2.4 Dynamics Computation

Normal Dynamics

Similar to Ishida et al. [2020], we assume that the normal velocity u⊥ is constant

in an E particle E’s control column, i.e. u⊥
E = 1

VE

∫
E
u⊥dV . Therefore

Du⊥
E

Dt
≈

1
VE

∫
E

Du⊥

Dt
dV . We then need to integrate the right-hand side of the normal compo-

nent in Equation 2.5. For the term ∂p
∂z
, whose expression is given by Equation 2.4,

integrating over the control column of E yields aE · (pout − pin). We assign pout to be

the atmospheric pressure patm. If the lamella is open (disk), then we assign pin = patm.

If the lamella is closed (bubble), we compute the enclosed pressure using the ideal

gas law as: pin = n0R̄T/V̂ with n0 being the enclosed molar mass and V̂ the enclosed
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3.2 MELP

volume, which we compute as:

V̂ =
∑
E∈E

ζ · 1
3
aE(O − E), ζ =


1, (O − E) · nE ≥ 0,

−1, otherwise,
(3.6)

where O is an arbitrarily selected point in R3 [Zhang et al., 2001]. Similarly, we

integrate δI(σ0 − R̄TΓ)H and f⊥
ext over the control column as 2aE(σ0− R̄TΓ)HE and

VEf
⊥
ext respectively. Hence we obtain the expression for

Du⊥
E

Dt
as:

Du⊥
E

Dt
=
pin − pout
ρηE

nE +
2(σ0 − R̄TΓ)HE

ρηE
nE +

f⊥
ext

ρ
. (3.7)

Tangential Dynamics

Following the temporal discretization scheme proposed by Huang et al. [2020], the

thin film evolution along the tangential directions can be approximated as



u⊤ − u⊤∗

∆t
= −2R̄T

ρη∗
∇sΓ +

1

ρ
f⊤
ext,

Γ− Γ∗

∆t
= −Γ∗∇ · u⊤,

η − η∗

∆t
= −η∗∇ · u⊤,

(3.8)

where u⊤∗
, Γ∗ and η∗ are the respective quantities after advection, which we collect

in the L2E step.

Reorganizing Equation 3.8 yields an implicit equation of Γ:

(− 1

∆tΓ∗ )Γ + (∆t
R̄T

ρ
∇ 1

η∗
) · ∇sΓ + (∆t

R̄T

ρ

1

η∗
)∇2

sΓ

= ∇ · u⊤∗ − 1

∆t
+∆t(∇1

ρ
· f⊤

ext +
1

ρ
∇ · f⊤

ext).

(3.9)

We solve this equation using the Implicit Incompressible SPH method with a
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3.2 MELP

relaxed Jacobi scheme with relaxation parameter ω = 0.2. We will present the detailed

derivation below.

IISPH with Jacobi Iterations To solve Equation 3.9 using Jacobi iterations, we

need to compute its right-hand side (RHS) and the diagonal terms of the left-hand

side (LHS), which express how the ith term of the LHS is related to Γi. We consider

each of the three terms on the LHS independently and sum up the diagonal terms for

each. For the first term, the diagonal terms are simply:

(aii)1 = −
1

∆tΓ∗
i

. (3.10)

For the second term on the LHS, we write out its SPH formulation:

(∆t
R̄T

ρ
(∇ 1

η∗
)i) · ∇Γi (3.11)

= (∆t
R̄T

ρ
(∇ 1

η∗
)i) · (

∑
j∈N (i)

aj(Γj − Γi)∇Wij). (3.12)

The diagonal coefficients would be:

(aii)2 =
∑

j∈N (i)

−aj∇Wij · (∆t
R̄T

ρ
(∇ 1

η∗
)i). (3.13)
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For the third term on the LHS, which involves the Laplacian operator ∇2, we write

out the SPH formulation of ∇2 = ∇ · ∇:

∇2Γ =
∑

j∈N (i)

aj(∇Γj −∇Γi) · ∇Wij (3.14)

=
∑

j∈N (i)

aj(
∑

k∈N (j)

ak(Γk − Γj)∇Wjk (3.15)

−
∑

j∈N (i)

aj(Γj − Γi)∇Wij) · ∇Wij. (3.16)

By the symmetry of neighbor searching (if i is a neighbor of j, j is a neighbor of i),

one of the k will be i, so setting k ← i we express the diagonal coefficients of the

third term as:

(∇2Γ)ii =
∑

j∈N (i)

aj(ai∇Wji (3.17)

−
∑

j∈N (i)

−aj∇Wij) · ∇Wij (3.18)

=
∑

j∈N (i)

aj(−ai∇Wij (3.19)

−
∑

j∈N (i)

−aj∇Wij) · ∇Wij (3.20)

= −
∑

j∈N (i)

aj(−ai∇Wij (3.21)

−
∑

j∈N (i)

−aj∇Wij) · ∇Wij (3.22)

(aii)3 = (∆t
R̄T

ρ

1

η∗
) · (∇2Γ)ii. (3.23)

Finally,

aii = (aii)1 + (aii)2 + (aii)3. (3.24)

Once the diagonal terms have been derived, the rest of the iterative process is analo-
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3.2 MELP

gous to the original algorithm [Ihmsen et al., 2013]. In this derivation, we use i and

j to represent the ith and jth E particle in a MELP system.

Once Γ is solved, we evaluate for each E ∈ E the tangential acceleration in Equa-

tion 2.5 as:

Du⊤
E

Dt
= −2R̄T

ρηE
∇sΓ +

1

ρ
f⊤
ext. (3.25)

Then, u⊥
E and u⊤

E are updated using a symplectic Euler step with ∆t.

3.2.5 E2L Transfer

For each L ∈ L, it collects three quantities from nearby E particles: the velocity uL,

affine state BL, and inertia-like tensor DL as:

uL =
∑

E∈NE(L)

Ŵ (E,L) · uE, (3.26)

BL =
∑

E∈NE(L)

Ŵ (E,L) · ⊤L(uE)⊗⊤L(xE − xL), (3.27)

DL =
∑

E∈NE(L)

Ŵ (E,L) · ⊤L(xE − xL)⊗⊤L(xE − xL). (3.28)

3.2.6 E Advance

Similar to the mesh velocity in Sahu et al. [2020], we define an E velocity: uE ,

carried by individual E particles, to govern their movements. In the normal direction,

uE needs to coincide with the material velocity u⊥
E, while tangentially, uE can use

arbitrary velocities to maintain uniform distribution. We ensure this by setting:

uE
E(t) = u⊥

E(t) +⊤E(u
E
E(t− 1)), (3.29)
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which takes the tangential component of the previous uE
E and add to it the current

normal velocity. Using uE
E we advance the positions of the E particles using a sym-

plectic Euler step with ∆t, updating the tracked interface. We also update the local

frames RE and metric tensors gE. Then, we redistribute the E particles to maintain

uniform distribution. In particular, similar to particle shifting based on Fick’s law of

diffusion, we compute a shifting velocity uE
E to prompt particles to flow from high

concentration regions to low concentration ones. Using number density δ to gauge

the concentration, the problem translates to solving for a constant particle density

on the surface with pseudo-pressure C:

−∆t2(−δ∗∇2
sC) = δ̄ − (δ∗ +∆t(−δ∗∇ · uE)), (3.30)

where δ∗ and δ̄ stand for the current and average number density of E particles;

and ∆t stands for the temporal step size for redistribution. Equation 3.30 is solved

using IISPH as with Equation 3.9. The full redistribution procedure is documented

in Algorithm 5, where β is the redistribution strength, and φ the threshold deciding

whether the distribution is satisfactory. We set β to be the reciprocal of the largest

value of ∇sδ, and set φ to be 3. The while loop in Algorithm 5 has a maximum

number of iterations of 10. In practice, most advance steps require only one step of

redistribution.

3.2.7 L Advance

As described in Algorithm 7, L particles advect with uL using a symplectic Euler step

with ∆t. They will be projected onto SB defined by E with a Moving Least-Squares

(MLS)-based approach.
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3.2.8 Implementation Details

SPH Following Wang et al. [2021], we adopt SPH-based, surface differential oper-

ators as: 

(∇sq)E =
∑

E′∈NE(E)

aE′ (qE′ − qE)∇sW (E,E ′),

(∇s ·w)E =
∑

E′∈NE(E)

aE′⊤E(wE′ −wE) · ∇sW (E,E ′),

(∇2
sq)E =

∑
E′∈NE(E)

aE′ (qE′ − qE)
2|∇sW (E,E ′)|
|xE − xE′ |

.

(3.31)

where ∇sW is the surface gradient of the 2D kernel function W , which can be ap-

proximated as ∇sW = g∇W [Wang et al., 2020]. In practice, we approximate g with

I2×2 with no apparent degradation in performance. For both W and W , we use the

Quintic spline kernel with radius r = 4 · ∆x, where ∆x reflects the E particle sepa-

ration. We handle particle insufficiency near solid boundaries with several layers of

boundary particles with the same fineness as E . We also make use of the XSPH artifi-

cial viscosity [Schechter and Bridson, 2012] with viscosity parameter 0.99 to stabilize

uE .

Local Frame Computation At time t, a particle E ∈ E computes RE as follows:

1. Perform PCA on N E(E) and set the normalized eigenvector with the smallest

eigenvalue as n′.

2. Set n′ = −n′ if 0 > n′ · n(t− 1).

3. Construct an intermediate frame R′ = (e1
′, e2

′,n′) where e1
′ is an arbitrary

vector perpendicular to n′ and e2
′ = n′ × e1

′.

4. In the tangent plane, use 2D SPH to compute ∇Ez = ( ∂z
∂u
, ∂z

∂v
)T and let e1 =

R′(1, 0, ∂z
∂u
)T , e2 = R′(0, 1, ∂z

∂v
)T , n = e1 × e2. Finally, RE = (e1, e2,n).
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A particle L ∈ L computes RL as follows:

1. Compute the average of {nE|E ∈ N E(L)} weighted by W (L,E), set the nor-

malized result to n.

2. Construct a frameRL = (e1, e2,n) where e1 is an arbitrary vector perpendicular

to n and e2 = n× e1.

For particle A ∈ L ∪ E , we compute ⊥A (w) = (w · nA)nA and ⊤A(w) = w− ⊥A

(w).

Projection Computation We compute Proj(A) as follows:

1. Given local frame RA, on the tangent plane, run MLS with data samples {xB =

(uB, vB, zB)|B ∈ N E(A)}.

2. Fit z as a function of (u, v).

3. Let ẑ denote the function evaluated at (0, 0)T , set xA ← xA − ẑnA.

Newton Black Films This phenomenon enter the dynamic system through fext.

The Newton Black Films (often referred to as black spots) are extremely thin regions

on a soap film, where destructive light interference makes them appear black. We

prefix a number of seeders in space that mark nearby L particles as B particles, whose

color will be set to black. The B particles receive an additional surface tension force

from the B-L interface as if B is a second fluid phase. This force is computed using

a VOF approach, where E particles estimate the fraction of nearby B particles, and

then compute surface tension following Akinci et al. [2013].
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Rim Surface Tension The rim surface tension also enter the dynamic system

through fext. The experienced force along the rim’s normal direction nrim is given

by fσ,rim = 2σ + (2σ(π − 1)Rrim)/rc [Bush and Hasha, 2004] where Rrim reflects the

thickness of the rim and rc reflects the size of the thin film. We assume rc ≫ Rrim,

hence fσ is dominated by the first term, so fσ,rim ≈ 2σ. We estimate the rim’s normal

direction following Akinci et al. [2013] as (nrim)E = r
∑

E′∈NE(E) aE′∇sW (E,E ′).
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Chapter 4

Multi-MELP

4.1 Overview

The basic MELP method can handle the simulation of manifold thin films (e.g., single

bubbles and disks), and in order to simulate complex foam dynamics with evolving

topology, we further designmulti-MELP, a meshless, multi-region tracking mechanism

that enables the physically-based interaction among multiple MELP systems. The

key innovation here is the soft-handling of the non-manifold junctions. For instance, a

triple-junction is not modeled with a singular edge, but with three manifold interfaces

tracked by three MELP systems. The coupled dynamics of the junction is computed

by a surface tension sharing mechanism. Multi-MELP is conveniently extended from

MELP, inherits MELP’s capacities in resolving high-quality interfacial flow, develops

bubble clusters and foams entirely on-the-fly, and recovers Plateau’s laws accurately.

We define a foam F = {Li}ni=0 as a set of n lamella regions. As shown in Figure

4.1, multi-MELP simulates F with n MELP objects each corresponding to one region

and running them as subroutines. A multi-MELP simulation step breaks down into

the following stages:
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4.1 Overview

Figure 4.1: The schematics of a multi-MELP simulation step; L1 through L5 are 5
MELP objects corresponding to the 5 regions.

(1) Multi-Region Tracking: In each region, each E particle identifies other re-

gions it may be coupled with via neighbor searching.

(2) Contact Handling: In each region, each E particle computes non-penetration

forces if it is inside another region; and damping forces if it is moving in opposite

directions from another region.

(3) MELP Advance: Simulate each region independently using MELP, pause after

the dynamics computation is complete.
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4.2 Motivating Example

Figure 4.2: The formation of a double-bubble. The top row shows the particle per-
spective; the bottom row depicts the control volumes with force analysis.

(4) Surface Tension Sharing: In each region, each E particle checks each region it

couples with; modifies the velocity according to the other region. Resume the paused

MELP simulations in (3).

(5) Material Transfer: In each region, each L particle probabilistically decides

another region to which it is transported, based on the surfactant concentration Γ

and velocity u.

4.2 Motivating Example

Figure 4.2 illustrates a motivating example, where two bubbles collide to form a

double-bubble — the simplest form of foam. When two separate lamellae coalesce

into a shared surface, topological adaptation occurs as singular points are formed at

the top and bottom, trisecting the thin film into three manifold pieces. With our

one-sided geometric representation, we turn the topological change into a dynamic

one. Topologically, it remains unchanged that there are two manifold inner surfaces.

28



4.3 Multi-Region Tracking

Dynamically, the inner surfaces of the partition are now constrained by the matching-

velocity boundary condition described in Section 2.2. In Figure 4.2, consider bA ∈ LA

(blue) and rB ∈ LB (red) previously unattached. After coalescence, they become

gA and gB (green) which are no longer allowed to move relative to each other. We

model their dynamic equivalence via symmetrization. We depict the particles’ control

volumes at the bottom of Figure 4.2. For both gA and gB, we compute their net force

as if they each represent the volume gA+gB. This guarantees that gA and gB will move

in accordance if they have the same initial velocity. Note that the region gA+gB does

not need to be determined explicitly. As shown in the free-body diagram, computing

the net force of gA + gB boils down to computing fst, and fair on both LA and LB,

where fair and fst are air pressure and surface tension induced forces corresponding to

the first and the second terms of Equation 3.7. These forces can also be continuously

evaluated using SPH interpolation, so no explicit particle pairing is needed. This

procedure is what we refer to as surface tension sharing.

4.3 Multi-Region Tracking

For an E particle P ∈ LK ∈ F , we compile a list of regions with which it is coupled.

For each LS ̸= LK , we let N = N LS(P ), which is the set of E particles in LS found

within the neighborhood of P . If |N | = 0 then LK is clearly not coupled with LS.

Otherwise, we compute the sum of area ã =
∑

E∈N aE. This expression gauges the

amount of area of LS that the neighborhood of P encircles. we then compute the

same sum of area â =
∑

E∈NLK (P ) aE in LK . If ã ≪ â, then P is relatively far away

from LS; if ã ≈ â, then a is in between LK and LS. We then compute a coupling

score γP,S = min(1, ã
â
), and store the tuple (S, γP,S) for P .
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4.4 Collision Handling

4.4 Collision Handling

Handling the collision of multiple bubbles entails the treatment of 1) non-penetration,

and 2) damping. Consider an E particle P ∈ LK . For each tuple (S, γP,S) it has stored,

we penalize if P is inside LS, which can be detected if ProjLS
(P ) − P is outward-

pointing to LS. In that case, a non-penetration force is computed as θ1 · (ProjLS
(P )−

P ) where θ1 is the penalty strength. For damping, we first compute an average E

velocity of all nearby regions weighted by γ, as:

uE
avg =

uE
P +

∑
(S,γP,S)

γP,Su
E
ProjLS

(P )

1 +
∑

(S,γP,S)
γP,S

. (4.1)

Here, uE
ProjLS

(P ) is the SPH interpolation of the E velocity on region LS at position

ProjLS
(P ). Then we damp uE

P with uE
P = (1− θ2)uE

P + θ2u
E
avg where θ2 ∈ (0, 1) is the

damping strength.

4.5 Surface Tension Sharing

Given an E particle P ∈ LK , if P is not coupled with any other region, then fnet =

2fst,LK
+ fair,LK

as in the lamella setting. Otherwise, we consider each tuple (S, γP,S)

of P and compute the shared forces as:

fst,LS
=
σProjLS

(P ) ·HProjLS
(P )

ρ(ηProjLS
(P ) + ηP )

· nProjLS
(P ), (4.2)

fair,LS
=

pin,LS

ρ(ηProjLS
(P ) + ηP )

· nProjLS
(P ). (4.3)

We compute the projection ProjLS
(P ) and interpolate σ, η, H, n on LS at ProjLS

(P ).

The term pin,LS
is the enclosed air pressure for LS computed via the ideal gas law.

There is one caveat — in the lamella case, we account for the external interface (the
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4.5 Surface Tension Sharing

Figure 4.3: Left: illustration of the force fst, atm that must be accounted for. Right:
material transport is done by transporting L particles directly.

one with the atmosphere) by doubling the surface tension force fst. However, when

a particle represents a multi-junction, we have only considered interfaces delineated

by another lamella particle set. This is illustrated on the left of Figure 4.3. The

control volume of P is shadowed in pink. We can compute fst,LK
, fair,LK

, fst,LS
and

fair,LS
as described. However, the surface tension force from the external interface,

which is fst, atm in orange, is not computed. To compute fst, atm, we first compute the

pseudo-normal vector natm with:

natm =
nP +

∑
(S,γP,S)

γP,SnProjLS
(P )

1 +
∑

(S,γP,S)
γP,S

, (4.4)

which is a weighted average of the normal vectors of nearby regions. If |natm| ≪ 1,

then the particle P is deemed an internal point, and fst, atm = 0. Otherwise, on the

local frame with normal vector natm

|natm| , we compute Hatm according to Equation 3.5.

Then, we compute fst, atm = σP ·Hatm

ρ(ηProjLS
(P )+ηP )

· natm. Finally, we have:

fnet = fst,LK
+ fair,LK

+
∑

(S,γP,S)

(fst,LS
+ fair,LS

) + fst, atm. (4.5)
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4.6 Material Transfer

4.6 Material Transfer

As observed in Section 2.2, near a multi-junction, the surfacial ∇s no longer applies

and should be replaced by the volumetric ∇ in Equation 2.5. To simulate its behavior

we 1) allow material to be advected to and from regions, and 2) prompt material to

flow from regions with high Γ to the ones with low Γ. As depicted on the right of

Figure 4.3, we devise a probabilistic scheme to directly migrate L particles from one

region to another region, conserving the transported quantities. For each L particle

Q ∈ LK , let P denote its nearest E neighbor. For each tuple (S, γP,S) that P stores,

we compute two probability scores C1,LS
and C2,LS

for Q as follows:

C1,LS
= ψ1 · (1−min(1,

|(xQ +∆tuQ)− xProjLS
(Q)|

|xQ − xProjLS
(Q)|

)), (4.6)

C2,LS
= ψ2 · (1−min(1,

ΓProjLS
(P )

ΓP

)), (4.7)

where ψ1 and ψ2 are the transport strength parameters. In computing C1,LS
, xQ +

∆tuQ is the position of Q at the next timestep, xProjLS
(Q) is the nearest point to Q

on LS. If uQ is driving Q towards LS, then this score would be high and vice versa.

In computing C2,LS
, we compute the ratio of Γ between LS and LK , If LS has a

significantly lower surfactant concentration than LK , a high probability score would

ensue. We let LG denote the region with the largest sum of the two probabilities, let

CG denote that sum, and move L particle Q from LK to LG at probability min(1, CG).
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Chapter 5

Experiments and Results

5.1 Numerical Validation

Plateau Border Plateau’s laws prescribe that soap films always meet in groups

of threes, along edges that create three dihedral angles of arccos(−1
2
) = 120◦ each.

These edges are commonly referred to as the Plateau borders. These Plateau borders

then meet in groups of fours, creating angles of arccos(−1
3
) ≈ 109.47◦ each. With the

surface tension sharing mechanism, our method accurately recovers both rules. As

shown in Figure 5.1, we verify our approach on a double-bubble, a triple-bubble, and a

quadruple-bubble. In each setup, the bubbles are initially separated, and the borders

are developed dynamically upon contact. As reported in Table 5.1, the measured

dihedral angles deviate from the analytical value with ≤ 2% error, while the edge

angles deviate with ≤ 5% error, which testifies to the efficacy of our framework.

Curvature of Partition Surface When two bubbles with different radii — the

larger being R1 and the smaller being R2 — form a double-bubble, the smaller bubble

will protrude into the larger one, creating a spherical partition surface with radius

RP = R1R2

R1−R2
and curvature κP = 1

RP
.This is due to the three-way balance of Young-
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5.1 Numerical Validation

Plateau Border Testing
Set-up Double-Bubble Triple-Bubble
Pairs 1—2 1—3 2—3 1—2 1—3 2—3
Angle 118.62 122.30 119.06 120.84 118.96 120.20
Error 1.167% 1.917% 0.833% 0.7% 0.867% 0.167%
Set-up Quadruple-Bubble
Pairs 1—2 1—3 1—4 2—3 2—4 3—4
Angle 106.26 107.82 114.74 113.52 110.74 103.99
Error 2.93% 1.51% 4.81% 3.70% 1.16% 5.00%

Table 5.1: Numerical results to validate multi-MELP’s adherence to Plateau’s laws.
The pairs are labeled corresponding to Figure 5.1.

Curvature κP of the Partition Surface
R1 (m) R2 (m) RP † (m) κP † ( 1

m
) κP ( 1

m
) Error

0.05 0.02 0.033 30 28.98 3.41%
0.05 0.025 0.05 20 20.17 0.84%
0.05 0.03 0.075 13.33 13.12 1.57%
0.05 0.035 0.117 8.57 8.34 2.64%
0.05 0.04 0.2 5 4.85 2.99%
0.05 0.045 0.45 2.22 2.28 2.64%

Table 5.2: The partition surface curvature: analytical values vs. our experimental
values. The † symbol represents the ground truth.

Laplace pressures and air pressures, which is handled naturally by our algorithm. We

validate with 6 testing setups, where one bubble has a fixed radius R1 = 0.05m, and

the other one has a varying radius R2 among {0.4R1, 0.5R1, 0.6R1, 0.7R1, 0.8R1,

0.9R1}. As showcased in Figure 5.2, the smaller R2 is, the more curved the partition

surface becomes. The numerical results are documented in Table 5.2 and plotted on

the top-left of Figure 5.3, as they conform well to the analytical values with ≤ 3.5%

error.

Surface Area Minimization The standard double-bubble, shown in Figure 5.4,

is a minimal surface with the steady-state surface area â given by: â = 27π( V̂
9π
)
2
3 with

V̂ being the enclosed volume of each region. We verify our method’s ability to recover

this with two bubbles of radius 0.05m, initially separated, that are dynamically fused
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5.1 Numerical Validation

Figure 5.1: Left: in a double and a triple-bubble, three pieces of lamellae meet at
≈ 120◦ angles along the border. Right: in a quadruple bubble, 6 partition surfaces
(highlighted) form 4 borders (red arrows) meeting at ≈ 109◦ angles.

into a double-bubble via contact. The initial surface area would be ā = 0.0628m2

and the expected final surface area would be â = 0.0594m2. As reflected in Figure

5.3, before the merge occurs at t ≈ 3s, the total area oscillates around ā, which then

stabilizes to â with periodic oscillation.

Drainage under Gravity When a piece of thin film is placed vertically, gravita-

tion creates a tendency for the fluid to flow downwards. Near the bottom where fluid

amasses, more surfactant will occupy the fluid-air interface, creating a Marangoni

acceleration to counteract the gravitational acceleration, eventually reaching an equi-

librium. The steady-state thickness profile is derived by [Couder et al., 1989] as

η(z) = η0e
− ρgη0z

2(σ0−σ) where η0 is the film thickness when laid flat. Setting η0 = 400nm,

we verify our method’s correspondence to the analytical solution on the top-right of

Figure 5.3. Additionally, the exponential thickness variation creates Newton’s inter-

ference fringes with gradually thinning color stripes towards the bottom, which is
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5.2 Comparison with Single-Layer Particle Method

Figure 5.2: Double-bubbles with different size ratios. The smaller the red bubble is,
the more it protrudes into the larger (blue) one.

depicted on the left of Figure 5.6.

5.2 Comparison with Single-Layer Particle Method

As with the previously proposed single-layer particle method [Wang et al., 2021],

MELP is also connectivity-free and hence shares the convenience in handling codi-

mension transitions and simulating complex scenes like thin film bursting. However,

the separation of tasks with our bi-layer design ensures that the simulation domain

is uniformly discretized regardless of the flow dynamics, offering enhanced numerical

stability which in turn allows for the adoption of real-world parameters infeasible for

the single-layer model.

We demonstrate this with a simple set-up depicted on the right of Figure 5.6:

a circular thin film is initialized with spatially-varying thickness η (top-left circle),

which tends to be evened out via the Marangoni effect. The simulation is carried out

for 5 seconds, and the variance of η is plotted on the left of Figure 5.5. Using real-
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5.2 Comparison with Single-Layer Particle Method

world surface tension parameters, the MELP simulation quickly converges, with its

variance approaching the anticipated value of 0. The end result is a spatially-uniform

thickness field indicated by the uniform, green color (top-right circle). Using the

method of Wang et al. [2021], the variance blows up even with CFL number = 0.033,

as the dynamics is too numerically demanding for its explicit SPH solver. This is

reflected on the bottom-left circle in which the color/thickness field is highly noisy.

To obtain stability, we need to reduce the surface tension parameter to 0.1× the real-

world value (bottom-right circle). However, this numerical compromise alters the

dynamic characteristics, turning nimble and rapid flows into slowly oscillating com-

pression waves, significantly degrading the visual realism. As depicted in Figure 5.7,

both algorithms simulate the same configuration with the same external force. Using

real-world parameters, the MELP method responds to the external force acutely, de-

veloping multiple vortices that together create an intricate, swirling color palette; the

single-layer method, in comparison, offers motion that is visibly more damped, creates

coarser flow details, and displays slow, sweeping longitudinal waves uncharacteristic

of thin film fluids.

Another reason for MELP’s improved visual performance over the method of Wang

et al. [2021] is the dramatically increased number of particles being simulated, at a

comparable or lower computational cost. As elaborated in Table 5.3, for Figure 5.7,

MELP advects ∼ 700000 L particles driven by ∼ 7000 E particles, providing a sig-

nificant resolution boost over the ∼ 40000 particles in the single-layer model. This

can be attributed to the decoupling between the advection resolution and the dy-

namics resolution. Indeed, a single MELP iteration is still almost 8 times as costly,

but with the large step size that it supports, it eventually yields a speed-up of over

40%, as illustrated on the right of Figure 5.5. Consequently, using comparable com-

putational resources, our proposed method outputs simulation sequences with over
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5.3 Examples

5000000 particles against those with at most 170000 particles in Wang et al. [2021].

5.3 Examples

The detailed specifications of all the examples simulated by our proposed system,

including the computational resources used, are provided in Table 5.4. Photorealistic

rendering is carried out in Houdini with meshes reconstructed from the simulated

particles. The color is computed from thin film interference using ColorPy [Kness,

2008] with CIE Standard Illuminant D65. For physical fidelity we limit the CFL

number to be strictly less than 1, which does not reflect the numerical capacity of

our model. For dynamic scenes involving multiple bubbles, we are limited to CFL

number = 0.33 due to the explicit handling of the multi-region interaction.

Giant Bubble As depicted in Figure 5.8, a deformed bubble is initialized by ap-

plying displacement mapping to a sphere of radius 0.1m, using 2-octave Perlin noise

with frequency = 5 and scale = 0.06. The thickness field is also initialized with Perlin

noise, manifesting in the initial, smooth color gradient. The flow is driven by a heat

source below the bubble that creates an upward motion. Consequently, the bubble

displays a golden tint at the bottom (η ≈ 350nm) and a green tint at the top (η ≈

500nm). An external force later punctures the bubble from the right, causing the

thin film to retract under the rim surface tension. The bursting, which takes place in

a smaller timescale than the deformation or flow, is simulated at a 15× slow motion,

which is handled automatically by our program.

Deforming Rectangle with Black Spots As depicted in Figure 5.9, we initialize

a rectangular thin film with length = 0.16m and height = 0.09m. A constant thickness

gradient is initially imposed, with thickness η ≈ 500nm at the top and η ≈ 250nm at
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5.3 Examples

the bottom, which is the slightly perturbed using Perlin noise. Such a configuration

creates the Rayleigh-Taylor instability that causes the turbulent flow. An out-of-

plane sweeping force is applied to prompt the deformation. Black spots are seeded

periodically at the bottom.

Deforming Half Bubble As depicted in Figure 5.10, a half-bubble of radius 0.05m

is initialized, with the initial thickness variation generated in the same way as the

giant bubble. The flow is driven by a heat source located below the half bubble. The

gentle deformation is propelled by a horizontal sweeping wind. Black spots are seeded

at the bottom boundary periodically, similar to the rectangle example.

Bubbles of Different Sizes As shown in Figure 5.11, a bubble of radius 0.025m,

another one of radius 0.05m, and a half bubble of radius 0.1m are simulated, in order

to verify our system’s ability to handle large size differences. The two bubbles are

put into contact first, forming a double-bubble, with the smaller one protruding into

the larger one. Afterwards, an external acceleration drives the double-bubble into

the half bubble. The downwards momentum causes the double-bubble to slide down

the half bubble. As it slides down, it also tilts counter-clockwise, which decreases the

angle it forms with the half bubble. The sliding motion is counteracted by the surface

tension’s tendency to restore 120◦ angles, and the system gradually settles into an

equilibrium.

Dynamic Reorganization of 4 Bubbles It is known that the three-way Plateau

border is the only stable equilibrium for multiple thin films to convene. However,

unstable equilibriums exist — for instance, when four bubbles meet at a cross shape

to create an edge that joins four surfaces with dihedral angles of 90◦ each. Such

an unstable equilibrium should morph into a stable Plateau border given a small
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5.3 Examples

perturbation. With this experiment, we test our system’s ability to recreate this

phenomenon. As depicted in Figure 5.12, we initialize four bubbles in a rectangular

formation, with initial velocities driving them to the center. Upon contact, they

naturally form 4 partition surfaces, meeting along the central edge at 90◦ angles.

However, the surface tension is slightly varied among the four bubbles, causing a

small asymmetry in the force balance. Under this perturbation, a new partition

surface is gradually pulled out from the initial edge, developing into two Plateau

borders with ≈ 120◦ angles. Once this new configuration stabilizes, we delete one of

the partition surfaces to have the right two bubbles merge into a single one, which is

later punctured from the top-right. The momentum caused by the thin film retraction

is coupled to the dynamics computation of the remaining double-bubble.

Rayleigh-Taylor Instability on a Double-Bubble As depicted in Figure 5.13,

two bubbles of radius 0.5m are initially separated and aligned vertically. The top one

has thickness η ≈ 500nm and the bottom one has η ≈ 250nm, as they are tinted purple

and blue reflecting their respective thickness values. With initial velocities towards

the center, two bubbles collide and develop into a double-bubble with a shared surface

in between. At the same time, material transfer between both bubbles begins. As

fluid is transferred from top to bottom under gravity, Rayleigh-Taylor instability is

created, and the thinner fluid in the lower region is propelled to the upper one in

exchange. Eventually, the bottom region becomes thick and the top region becomes

thin, causing the tints to reverse, where the lower region appears purple and the upper

one appears blue.

Foam Mountain This example puts to test our system’s caliber in stably handling

bubble clusters or foams at a much larger scale. As depicted in Figure 5.14, three

hundred bubbles, whose radii are randomly selected between 0.008m to 0.012m, are
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5.3 Examples

MELP vs. Wang et al. [2021]: Computational Cost
Name Real Param. CFL # # Particles t/itr. itr./frame t./frame

Wang et al. [2021] Equilibrium ✓ 0.033 4200 0.07 55.9 3.91
Wang et al. [2021] Equilibrium ✗ 0.1 4200 0.07 3.8 0.27

MELP Equilibrium ✓ 0.99 16800 L + 1050 E 0.33 1.06 0.35
Wang et al. [2021] Flow ✗ 0.1 40000 0.47 24.91 11.71

MELP Flow ✓ 0.99 693900 L + 6900 E 3.1 2.25 6.98

Table 5.3: Performance comparison between the single-layer method in Wang et al.
[2021] and MELP.

poured down from five “faucets” of bubbles located above. Bubbles that land within

the container gradually build up a honeycomb structure — a foam mountain. Bubbles

that collide with the container are automatically deleted. Once the bubbles have

stopped pouring, and the cluster stabilized, we sporadically delete bubbles at random.

The remaining bubbles reorganize by contracting inwards to fill the gaps.

Cyclones on 13 Bubbles As shown in Figure 5.15, 13 bubbles with radii from

0.0435m to 0.06m, and thickness from 400nm to 600nm are initialized. Their centroids

are initialized by FCC packing with uniform random offsets. Under initial velocities

towards the center, these bubbles come into contact and spontaneously settle into

stable Plateau borders. A heat source is deployed at the bottom, causing fluid to

flow from the bottom to the top, which manifests in the stratification of color, with

the thinnest region at the bottom being dark gold (≈ 180nm) and the thickest region

at the top being purple (≈ 550nm). This heat-driven convection gradually develops

into “cyclones” on the bubble surfaces. The bottom row of Figure 5.15 documents

the reorganization process — one partition surface between two bubbles is deleted,

creating a bubble that is larger than all the others. The bubbles around it reorganize

and merge to achieve a new equilibrium.
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MELP: Catalog of Examples
Name CFL number Number of E Number of L Ratio Time/Iter (s) Using Depicted In

Giant Bubble 0.99 163842 2621442 1:16 30.2 A Figure 5.8
Deforming Rectangle 0.99 159367 2557467 1:16 24.6 B Figure 5.9

Half Bubble 0.99 81921 5242884 1:64 63.3 B Figure 5.10
Two Bubbles 0.99 20480 0 - 0.72 A Figure 5.4
Different Size 0.33 33280 0 - 1.32 A Figure 5.11
Four Bubbles 0.99 40960 0 - 1.45 A Figure 5.12
R-T Instability 0.99 81924 4772266 1:58 55.7 A Figure 5.13
Foam Mountain 0.33 192311 0 - 9.1 A Figure 5.14

13 Bubbles 0.99 133146 2129946 1:16 13.3 A Figure 5.15

Table 5.4: The catalog of experiments with the MELP method. [A] represents a
computer with AMD Ryzen(TM) ThreadRipper 3990X, and [B] represents a computer
with Intel(R) Core(TM) i9-9980XE.
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5.3 Examples

Figure 5.3: Top-left: curvatures of the partition surface for double-bubbles of different
size ratios compared to analytical values. Top-right: thickness profile under gravity
compared to analytical values. Bottom: the evolving surface area of two bubbles as
they merge into a double-bubble.
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Figure 5.4: Formation and evolution of a double-bubble. Top: photorealistic render-
ing, bottom: particle view.

Figure 5.5: Comparison with Wang et al. [2021]. Left: test of convergence to equilib-
rium thickness. Right: comparison of computational cost.
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Figure 5.6: Left: Newton’s interference fringes under gravity. Right: comparison
with Wang et al. [2021]: top-left: initial set-up; top-right: converged result of MELP;
bottom-left: diverged result of Wang et al. [2021], bottom-right: converged result of
Wang et al. [2021] with reduced parameters.

Figure 5.7: Comparison of the simulated flow quality of our proposed MELP method
(top) and Wang et al. [2021] (bottom).
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Figure 5.8: The flow, deformation, and bursting of a giant bubble, similar to the
experiment done in Wang et al. [2021] Figure 5.

Figure 5.9: Different frames of a deforming rectangular film with black spots.
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Figure 5.10: Different frames of a deforming half bubble with black spots.

Figure 5.11: Interaction among bubbles of different sizes, showcasing our system’s
ability to restore the equilibrium states.

Figure 5.12: Four bubbles merge, reorganize from an unstable equilibrium to a stable
one, and eventually disintegrate.
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Figure 5.13: The dynamic formation of a double-bubble with intricate flow patterns,
simulated by our proposed method. With the appropriate treatment of surface tension
near the junction, two bubbles spontaneously settle into meeting angles of ≈ 120◦,
recovering what is known as the Plateau border.

Figure 5.14: 300 bubbles falling into a container, forming a foam mountain.
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Figure 5.15: 13 bubbles merging together, with a heat source at the bottom creating
“cyclones” on the surfaces of the bubbles.
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Chapter 6

Conclusion

In this thesis, we introduce a novel, mesh-free framework to tackle the multifaceted

computational challenges in simulating incompressible flow on dynamically deform-

ing thin films and topologically adapting foams. Using two collaborative particle sets,

we devise a concise and coherent numerical framework to expressively discretize thin

film volumes, robustly track moving interfaces, efficiently solve the dynamic PDEs

and conveniently perform topological evolutions. Our method marries traditional

particle simulation techniques like SPH with ideas from the level-set theory, arbitrary

Lagrangian-Eulerian simulation, and Particle-In-Cell methods, to create a stable, effi-

cient, and versatile simulation system yielding state-of-the-art realism. Furthermore,

we propose an innovative perspective for modeling non-manifold junctions, featuring

one-sided representations of the inner surfaces, which is simple to implement and

predictable to run, creating results both visually plausible and numerically accurate.

The main limitations of our approach are as follows: 1) the coupling of multiple

regions near the junctions is carried out via explicit force computations, which limits

the step size and can cause instability in aggressive scenarios, 2) the modeling of the

flow dynamics on the partition surfaces and multi-junctions can be improved with

more accurate physics e.g. incorporating the influence of the junction curvature,
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Conclusion

3) the coupling between the ideal gas equation and the thin film fluid equations is

not momentum-conserving, which can cause drifting artifacts, and 4) the current

framework does not support the physical interaction between thin films and solids.

Our proposed method opens up new possibilities in tackling dynamic problems

on topologically evolving, non-manifold geometries. Example applications include

spider webs, cosmic webs, porous materials, metamaterial structures, etc. One im-

mediate future challenge is to apply the MELP framework to simulate codimension-

two-dominant physical systems featuring filament structures and their junctions. The

coupling between codimension-one and codimension-two structures (e.g. the interac-

tion between rims and thin films), is another important problem that can be addressed

in our future work. We also plan to incorporate implicit representations such as level-

sets into MELP, so as to create flexible moving-surface solvers for handling large-scale,

topologically-complicated phenomena.
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