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Abstract

Heart rate and heart rate variability (HRV) are important metrics in the study of

numerous physical and psychiatric conditions. Previously, measurement of heart rate

was relegated to clinical settings, and was neither convenient nor captured a patient’s

typical resting state. In effect, this made gathering heart rate data costly and intro-

duced noise. The current prevalence of mobile phone technology and Internet access

has increased the viability of remote health monitoring, thus presenting an oppor-

tunity to substantially improve the speed, convenience, and reliability of heart rate

readings. Recent attention has focused on different methods for remote, non-contact

heart rate measurement. Of these methods, video presents perhaps the best option

for optimizing cost and convenience. This thesis introduces a lightweight architec-

ture for estimating heart rate and HRV using a smartphone camera. The system

presented here runs locally on a smartphone, requiring only a phone camera and 15s

or more of continuous video of a subject’s face. No Internet connection or network-

ing is necessary. Building the system to run locally in this manner means that this

software confers benefits such as greater user privacy, offline availability, reliability,

cost effectiveness, and speed. However, it also introduces added constraints on com-

putational complexity. With these tradeoffs in mind, the system presented here is

implemented within an Android mobile app. The performance of our approach fell

short of that of existing state-of-the-art methods in terms of mean absolute error

(MAE) of heart rate estimation, achieving MAE during validation that was over 17x
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greater than other existing approaches. There are a number of factors which may

contribute to this performance discrepancy, including limitations in the diversity of

the data used with respect to gender, age, skin tone, and heart rate intensity. Further,

remote photoplethysmographic (rPPG) signal generated by this architecture contains

a large number of noise artifacts which are difficult to consistently remove through

signal processing. This noise is the primary reason for the underperformance of this

architecture, and could potentially be explained by model and feature engineering

decisions which were made to address the risk of overfitting on the limited dataset

used in this work.
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Chapter 1

Introduction

Section 1.1

Motivation

This project unifies my interests in computer science and the application of technology

to healthcare. Increasing public awareness of the importance of mental health has led

to heightened interest in the field from both the technology industry and academia.

The ability to conveniently, cheaply, and accurately measure physiological parameters

such as heart rate and heart rate variability (HRV) could offer important new signal

in monitoring both the physical and mental health of users. The contribution of this

work is to design a system for remote, non-contact heart rate measurement which

can be housed entirely within a smartphone. I hope this work will serve to further

democratize access to methods for remote heart rate measurement and offer a more

private, available architecture that can be built on in future iterations. Further, I

hope this work serves to help the Mood Triggers team with their development targets

going forward.
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1.2 Context Introduction

Section 1.2

Context

The healthcare industry is a magnet for technological innovation. Multifaceted yet

inefficient, the pace of tech adoption in healthcare once lagged behind rate of expan-

sion of the tech industry as a whole. (2). However, recent years have witnessed a

burgeoning health tech sector emerge and begin to transform the nature of healthcare

(3). From AI to blockchain, creative solutions for applying existing cutting-edge tech-

nologies to healthcare are emerging rapidly (4), (5). The sheer ubiquity of technology

across the United States and worldwide is already changing the face of traditional

healthcare, and this trend will likely accelerate going forward (3). Smartphones, al-

ready omnipresent throughout the developed world and growing in their degree of

adoption in developing nations, give those with Internet access the ability to con-

nect with healthcare providers anywhere (3). Furthermore, adoption of smartphones

and wearable technology for health and fitness monitoring is rapidly evolving and

becoming more accessible (3). Many regions worldwide do not have reliable Internet

access due to cost or lack of infrastructure. Low Earth Orbit (LEO) satellite internet

providers such as Starlink, OneWeb, and Kuiper bypass the need to install complex

and expensive infrastructure (6). Not only will this revolutionize rural Internet access

in the United States, but it will increase the rate at which developing nations are able

to close the technological gap.

Telemedicine, often referenced interchangeably with telehealth, is a broad term en-

compassing all forms of remote access to healthcare services via the Internet. Though

it is most commonly envisioned as the application of video conferencing technology to

connect providers and patients in different geographic regions, telemedicine can also

include remote health monitoring, education, and access to health records. Advance-

2



1.2 Context Introduction

ments in smartphone and Internet access in the United States and across the world

are likely to cause a revolution in healthcare access, though they may not necessarily

fulfill the often-promised corresponding decrease in cost (7). However, the potential

for telehealth to increase access to healthcare is indisputable, and its effects will be

most pronounced amongst communities previously underserved by traditional health-

care. Further, the application of telemedicine in healthcare is not limited to physical

health. There is a large and growing body of work concerning the application of

telemedicine to mental health care (8). These applications include direct psychiatric

care, automated interventions, remote behavior monitoring through questionnaires,

and the automatic collection of physiological data such as heart rate and HRV (9).

1.2.1. Beneficiaries of telehealth

Increased access to healthcare via telemedicine has the potential to drastically improve

health access for many groups in the United States, many of which have been previ-

ously underserved by traditional healthcare. Traditionally underserved communities

that stand to benefit from increased telehealth adoption include Native Americans,

rural populations, lower income Americans, minorities, and immigrants. In particular,

Native American tribal nations are some of the most disadvantaged communities by

traditional healthcare due to their often remote locations, lack of resources, minority

status, and at times language barriers (10). Though hardly a solution to the problem

of inadequate healthcare on reservations and amongst other underserved groups, the

lower costs and increased ease of access associated with telemedicine may begin to

help close this coverage gap seen in the United States.

1.2.2. Telepsychiatry

A subset of the larger field of telemedicine, telepsychiatry is one of the earliest forms

of remote healthcare delivery, dating back to the 1950s (11). Consistent with the
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1.2 Context Introduction

field of telemedicine more generally, the most obvious application of telepsychiatry

is the delivery of psychiatric services to remote communities which traditionally lack

access (11). Likewise, there is an expectation that increased access to psychiatric

care and a reduced demand for office space will decrease psychiatric costs (11). It

is also true that it is possible to get closer to the full range of available psychiatric

services remotely than is the case with traditional medicine, and thus the potential

of telepsychiatry could be even greater than that of the rest of the field of telehealth.

An additional advantage of telepsychiatry is that its flexibility opens opportuni-

ties to providers to offer a larger range of care options to patients (11). For this

reason, what was originally conceived as a solution for providing psychiatric services

to underserved rural populations has seen an increase in adoption in urban areas

(11). More recently, there has been a rapid increase in the diversity of telepsychiatric

services offered. In addition to offering clinical patient care, providers have begun

offering assessment and diagnostic services, psychosocial interventions, follow-up and

home-based care, development of clinical care plans, care management, crisis interven-

tion, neuropsychological testing, legal aid, forensic evaluations, and liaison services

for other fields of medicine (11). This expansion of the scope of telepsychiatry to

serve both urban and rural areas has aided in expanding the population of patients

receiving psychiatric care to children, the elderly, and special populations such as

military personnel and prisoners (11).

Though the potential benefits of telepsychiatry and telehealth more generally are

numerous, increased reliance on technology introduces new risks to patient privacy.

Hale and Kvedar note that the extent to which telehealth communication is covered

by the Health Insurance Portability and Accounting Act (HIPAA) is unclear (12).

This calls into question the legal protections granted to patients who participate

in remote care. Further, protection of patient data from malicious actors may not

4



1.2 Context Introduction

be guaranteed, particularly if a telehealth system is not implemented sufficiently

carefully (12). The confluence of these factors often leads to a potential lack of

trust in telehealth systems on the part of patients and a corresponding hesitance to

participate in telemedicine. Though this of course slows down adoption of potentially

helpful care, there is evidence to suggest that many patients are willing to accept

this level of risk if the benefits of the care are sufficiently clear to them (12). With

this in mind, it becomes important for developers of telehealth systems more broadly

to build safe systems which can be used by providers to make the strongest possible

safety guarantees to patients.

The potential benefits of telepsychiatry and telemedicine more generally were em-

phasized during the COVID-19 pandemic. In the case of such extreme circumstances,

delivery of in-person psychiatric care decreased in order to lower COVID-19 exposure.

Telepsychiatry was already available prior to the COVID-19 outbreak, and thus was

well-positioned to make a positive impact during the pandemic (13). Telepsychiatry

enabled providers to offer psychiatric care without risk of increasing spread of the

disease. As a result, telepsychiatry adoption increased during the pandemic as pa-

tients sought to receive necessary care in the safest possible manner (14). However,

it is important to note that telepsychiatry is still not as prevalent as it could be, even

in the wake of the pandemic and efforts on the part of bodies such as the Centers for

Medicare and Medicaid Services (CMS) to relieve some of the regulatory burden on

telepsychiaty providers (14).

The widespread presence of technology also introduces options in the physical and

mental health monitoring space. With increasing adoption of smartphones, wear-

able technology, and other devices in daily life, researchers in the private sector and

academia are presented with the opportunity to study patient variables such as move-

ment, sleep duration, heart rate, electrocardiogram, and skin temperature (15). These

5



1.2 Context Introduction

factors can all be relevant to the study and development of psychiatric disorders. For

example, accelerometer and microphone data can be used to analyze social activity.

Heart rate and skin conductance are useful for inferring stress and anxiety disorders

(15). Taken together, it is easy to envision complex and intelligent future systems

which are able to monitor the mental health of willing participants with a high level

of sophistication.

Additional approaches to remote monitoring have included AI chatbots (16). Such

projects not only have the potential to provide patients with important at-will be-

havioral intervention and therapy, but also may serve as additional data sources for

learning (16). Similar research is currently underway at Dartmouth within the AI

and Mental Health: Innovation in Technology Guided Healthcare (AIM High) Lab

with the Therabot project (17).

The popularity of smartphones and the Internet has also driven academic attention

towards the delivery of surveys such as ecological momentary assessments (EMAs) via

smartphones (18). EMAs involve the repeated sampling of subject behaviors, experi-

ences, and feelings in real time, with the goal of minimizing bias and noise in samples

(19). The application of properly designed EMAs to a sample population has the

potential to yield important insights into mental health at an aggregate level, in ad-

dition to having the potential for serving as the basis for drawing individual insights.

For example, EMAs were successfully applied in a longitudinal study of a population

of college students during the COVID-19 pandemic and were combined with smart-

phone sensor data to provide insights into the relationship between data collected via

smartphone sensors and the reported mental health experiences of students (18).

Supplementing surveys such as EMAs and passive sensing data collected from

smartphones such as movement with physiological data has shown potential for of-

fering enhanced signal for inferring stress, anxiety, and other disorders. Studies have
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1.2 Context Introduction

even attempted to link measures such as heart rate and HRV to conditions such as

eating disorders (20). For example, it has been suggested that anxious and depressive

disorders are associated with low HRV and future cardiovascular disease (21). Thus,

the ability to pair passive sensing smartphone data and EMA data with heart rate or

HRV readings may be relevant to modeling objectives and inferring conclusions from

such data. However, there are questions about the feasibility of pairing traditional

methods for collecting heart rate data with remote EMA surveys (22). Ground truth

heart rate data are most commonly collected in a clinical setting. However, this is not

realistic for large-scale EMA and passive sensing studies. Further, clinical settings are

not normal daily environments for most subjects, and thus introduce bias. Support-

ing this, EMA studies that have been completed using wireless electrocardiography

(ECG) patches for remote heart rate sensing report mixed results due to the added

burden placed on subjects to wear the the sensors (22).

1.2.3. Remote heart rate monitoring

Use cases for remote, non-invasive methods for measuring heart rate and HRV are

not limited solely to their application in remote physical and mental health moni-

toring. Both metrics have well established uses cases in sports and physical fitness.

Measurement of heart rate and HRV has also been used to assess fatigue in individu-

als, which has implications for intervention in activities such as driving or operating

heavy machinery (23).

Recent years have seen a proliferation of different strategies for remote measure-

ment of heart rate. Some proposed methods include capacitively coupled ECG,

Doppler radar, optical vibrocardiography (VCG), thermal imaging, heart rate from

speech, and camera imaging (24). However, many of these methods, such as those

applying Doppler radars or optical VCG, may be impractical for large-scale adoption

due to their reliance on more expensive and less widely available technology. For
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1.2 Context Introduction

instance, the laser technology required for optical VCG is expensive (24). Methods

applying doppler radar, of course, require the use of doppler radar, technology that

may not always be accessible (24).

Approaches to remote, non-contact heart rate measurement leveraging cameras

are some of the most promising. Camera based methods require only video of sub-

jects within a few meters of the camera and with clear views of the subjects’ skin.

Cardiovascular pulse waves traveling through a human body stretch vessel walls (24).

This happens periodically, and affects volumetric changes in the amount of blood or

air contained within the body. These internal changes affect absorbance of light in

human tissues and can be measured via PPG (24). As a result, these changes in hu-

man tissue light absorbance influence the red, blue, and green (RGB) color channels

detected by a camera focused on human tissue (24). This color data, when collected

from video, can detect cyclical color changes that are the result of cardiographic ac-

tivity. Due to the fact that human faces are easily detectable and contain relatively

large regions of unobstructed skin, camera based methods for heart rate measure-

ment typically focus on collecting signal from faces. Further, camera requirements

for color based methods are not stringent, and most smartphone cameras are capable

of providing sufficiently high-resolution video at acceptable frame rates. Thus, this

presents an opportunity for the measurement of human heart rate as easily as taking

a short video of a subject’s face.

At first glance, the development of a system for heart rate measurement using

smartphones given the widespread availability of consumer wearable heart rate mon-

itoring devices may seem redundant. However, it is important to note that there

are multiple factors which make smartphone-based heart rate measurement more vi-

able than wearable heart rate estimation. One such factor is cost and convenience.

Many people already possess smartphones and thus can obtain heart rate measure-
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1.2 Context Introduction

ments simply by downloading software. This eliminates the need to purchase wearable

devices, which are often expensive. Further, the problem of wearable device adop-

tion and retention has garnered significant attention (25). Specifically, this means

that even amongst the population of purchasers of wearable heart rate monitoring

devices, many patients ultimately abandon the device for reasons including conve-

nience, appearance, and comfort (25). Thus, this means smartphone-based heart rate

management has a far larger population of potential users as it reducers barriers to

entry relating to cost and convenience and does not require users to remember to don

devices they may find uncomfortable or unflattering. Smartphones are far more ubiq-

uitous than wearable devices, and the population of smartphone-owners is also the

population of potential users of smartphone-based heart rate measurement systems.

1.2.4. Mood Triggers: Coupling psychiatric monitoring and heart rate

Under the direction of Professor Nicholas Jacobson, Dartmouth’s AIM HIGH Lab is

currently developing Mood Triggers, an Android app designed to help users identify

sources of anxiety and depression and couple user inputs with physiological and be-

havioral data such as number of steps and sleep duration. Due to the connection

between heart rate, HRV and conditions such as anxiety and depressive disorders,

the ability to integrate remote, non-contact heart rate measurement with the app is

highly desirable. Further, passive mobile phone sensing, or the collection of patient

information without the need for user intervention, offers additional benefits as it

allows for data sensing without dependence on active user participation. Given the

potential of camera-based heart rate measurement architectures which can be imple-

mented to work passively on smartphones, we opted to build such a system so that

it may be deployed on mobile apps such as Mood Triggers.

9



1.3 Related work Introduction

Section 1.3

Related work

Heart rate measurement using smartphone cameras has received a lot of attention in

recent years. This method of using cameras for estimating heart rate is commonly

referred to as remote photoplethysmography (rPPG), as opposed to photoplethys-

mography (PPG), a common clinical method for computing heart rate. Timeseries

mimicking PPG signal, from which heart rate can be derived, can be produced from

videos of subject faces using either deep learning or transformations of the red, green,

or blue (RGB) color channels obtained from video. This artificial, remote PPG signal

will henceforth be referred to as rPPG signal. Of the RGB channels, many papers

find that the green color channel is most useful for yielding rPPG signal (26) (27).

However, numerous other studies disagree with this notion and find success using

combinations of the three channels (28) (29) (30).

Given the diverse array of potential applications of remote heart rate measure-

ment, there is a wide range of approaches to producing rPPG signal from video. For

instance, a lot of recent work has turned its attention to the use of deep learning

for the estimation of heart rate signals. Hasan et al, who released the MPSC-rPPG

dataset used in this work, introduce a multi-task learning architecture for producing

rPPG signal (1). Concerned more with the generation of realistic rPPG signal than

directly computing heart rate, Hasan et al were able to produce smooth rPPG signal.

However, their model requires fine-tuning on data from a given subject before it can

reliably produce realistic signal for that subject. As their work uses the same dataset

as this thesis, Hasan et al’s approach was replicated for comparison to our framework

(1).

Several studies applying advanced signal processing techniques to the production
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of rPPG signal exist. Given the lesser reliance of papers in this category on complex

machine learning models, many offer useful procedures for generating rPPG signal.

Seminal to the field of remote heart rate measurement from video, authors Ming-

Zher Poh, Daniel McDuff, and Rosalind Picard published two studies in 2010 (31)

(28). First, they introduced the use of blind source separation to measure heart rate

signal from video and were the first to achieve remote and non-contact heart rate

measurement (31). This was a watershed paper which introduced new possibilities

for the field of remote heart rate measurement. In that work, they also show that

the calculation of the heart rate for multiple individuals in a given video is possible

(31). In their followup paper, they extend the work introduced in (31) by altering

the signal processing pipeline so that it is capable of computing metrics such as

HRV and respiratory rate (28). In (28), Poh et al delineate a signal processing

procedure for generating rPPG signal, which includes bandpass filtering for removing

low and high frequency noise and computation of interbeat intervals (IBIs), which

are defined as the time in between adjacent heart beats (28). Further, Poh et al

apply a filter to remove noise attributable to motion at this step, incorporating the

noncausal of variable threshold (NC-VT) algorithm (28). The NC-VT algorithm was

originally proposed for processing signal before computing HRV, and was a relevant

choice for Poh et al (32). In 2016, Wang et al attempted to aggregate knowledge

gained from the numerous algorithms introduced for heart rate estimation with signal

processing and unify them into a coherent mathematical framework (30). The result

was “Algorithmic principles of remote PPG,” which introduces methods for addressing

skin reflectance, dimensionality reduction of color channels obtained from skin, and

a unified algorithm named “plane-orthogonal-to-skin” (POS) (30). Of the signal

processing approaches aggregated by Wang et al, the chrominance-based algorithm

proposed by De Haan and Jeanne is particularly notable in its reach and its reported
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performance (29). Incorporating all three color channels and an algorithm which

weights color channels based on analytical findings regarding their relationship to

ambient light, De Haan and Jeanne bring forth an important class of signal processing-

based heart rate estimation frameworks (29).

Many papers specifically concern the use of smartphone cameras for the estima-

tion of heart rate, given that modern phone cameras typically possess the necessary

frame rates and resolutions for the generation of rPPG signal. In 2021, Qiao et al

introduced a system for measuring heart rate based on denoising filtering and inde-

pendent component analysis (ICA) (33). In 2019, Yu et al introduced a successful

end-to-end deep learning approach for producing rPPG signal from face video and

the subsequent calculation of heart rate (34). Also in 2019, Yu et al contributed an

architecture directly addressing the problem of recreating BVP signal as closely as

possible using deep spatio-temporal networks (35). This paper specifically targeted

improvements in estimating HRV, as many previous works had focused entirely on

outputting average heart rates. Producing only heart rate is insufficient for calculat-

ing HRV as HRV must be calculated directly from the interbeat intervals between

individual heart rates. Further, Qiu et all introduced EVM-CNN, an architecture for

remote heart rate calculation marrying Eulerian video magnification and a convolu-

tional neural network (CNN) to output heart rate signal (36).

Another consideration gaining attention from researchers is the effect of motion,

inconsistent or low lighting, and other noise on rPPG heart rate measurement. Specif-

ically addressing these conditions is often referred to as measuring heart rate “under

realistic conditions.” In 2014, Li et al note that the performance of heart rate mea-

surement systems from face videos decreases significantly in the presence of subject

motion or variation in the degree of illumination (27). To mitigate these problems,

they propose an architecture which builds upon typical face tracking methods and
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applies normalized least mean square adaptive filtering to produce signal from which

heart rate can be computed (27). Likewise, Lam and Kuno propose an algorithm

with considerations made for motion and inconsistent illumination that selects suit-

able skin regions for rPPG signal generation (37). Tulyakov et al also cite the chal-

lenges brought forth by attempting heart rate measurement under realistic conditions.

They introduce a framework for applying state-of-the-art matrix completion theory

to identify the most optimal patches of skin for measuring heart rate simultaneously

with the heart rate computation itself (38). However, it is important to note that

many of these approaches may not be compatible with heart rate estimation locally

on smartphones due to the size of the networks applied. Ultimately, the more lim-

ited processing power and RAM of smartphones must be considered if all heart rate

computation is to be performed locally.

Some examples of the use of heart rate measurement systems on smartphones

exist, but none explicitly perform all computation locally. Kwon et al introduce a

system for heart rate extraction using smartphone cameras, but the system is not

packaged into fully compatible smartphone software (26). Further, Maestre-Rendon

et al develop an iOS app applying advanced signal processing techniques for heart rate

calculation, but do not specify if they were successful in performing all the required

steps locally on iOS smartphones (39).

Despite the reported success of the approaches noted above, most are difficult

to replicate. In some cases, this is due to strict controls over the availability of

data due to the sensitive nature of videos of human faces. In others, such as the

system proposed by Poh et al, entire procedures are ill-defined or not defined at all

(28). Some fail to address the effect skin tone may have on the performance of the

proposed algorithms. For example, the heart rate measurement framework introduced

by Maki et al utilizes the TokyoTech rPPG dataset (40). However, though the age
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and gender breakdown of subjects is reported, variation of skin tone is not. Ernst et

al propose an algorithm for mixing color channels to mitigate these differences (41).

Further, Lee et al propose a deep learning architecture which uses self-supervised

active learning to address potential performance discrepancies due to skin tone (42).

However, it is also important to note that not all studies report finding significant

performance differences in heart rate estimation between different skin tones. For

example, Shirbani et al studied the effect of ambient lighting on skin tone and heart

rate estimation and found that their approach only yielded significant performance

discrepancies for different skin tones in low lighting (43). De Haan and Jeanne test

their framework on a dataset containing subjects with a wide range of skin tones

and found it was robust to variation in skin tone (29). Likewise, the POS algorithm

introduced by Wang et al was also accurate on a range of skin tones (30). Thus,

though some works in this field fail to address the impact skin tone may have on

heart rate measurement performance, many state-of-the-art frameworks have also

proven to be robust to skin tone differences.

Section 1.4

Data

This study utilized the MPSC-RPPG dataset (1). The dataset is comprised of 7

subjects (6 men, 1 woman) of varying age, skin tone, background, face movement,

and presence of glasses (1). Skin tone of participants varied from lighter to darker skin

tones, though the data were skewed towards those with darker skin tones. Videos were

5 minutes long and synced with ground truth blood volume pulse (BVP) data, from

each subject’s dominant wrist (1). BVP signal is PPG signal with high frequency

noise filtered out. Given the noise filtering applied in this work, the rPPG signal

produced by our model is directly comparable to BVP. Videos were captured at 30
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frames per second under artificial ambient lighting conditions which varied slightly

across each video (1). Wrist PPG data was sampled at 64 Hz. Further, the dataset

included notes on how to align ground truth BVP with video. However, these notes

were difficult to ingest automatically and thus were programmed directly into the

model training and testing process. The data also include direct heart rate and inter-

heart beat interval (IBI) ground truth, but insufficient clarity was provided to align

these data with the video. Thus, ground truth BVP was used for all testing and

validation.

The limited size of this dataset is noted and efforts were made to find options with

more subjects. The sensitive nature of facial video and accompanying BVP data make

them difficult to obtain. The data used for this work were the best available at the

time.

1.4.1. Data augmentation

In an effort to augment this dataset, 3 different transformations were applied to

subject video at the frame level: Gaussian noise, dimmed brightness, and increased

brightness. This yielded a larger dataset containing 4 instances of each subject video:

the original video, and a version for each of the transformations enumerated above.

For the Gaussian noise transformation, noise was added to each frame with mean 0

and standard deviation 30. For the image dimming and brightening transformations,

the brightness was reduced and increased by an intensity of 60. Further discussion

of the effect of the augmented data on the framework presented here can be found in

the Results and Discussion chapters.
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1.5 Content and organization Introduction

Section 1.5

Content and organization

This thesis introduces a novel heart rate estimation framework which emphasizes ef-

ficient use of computational resources for end-to-end heart rate measurement locally

on smartphones. The enumeration of this system will proceed as follows. It will intro-

duce the overall system architecture and technologies used. Then, it will explore the

simple Android application used for testing the local heart rate estimation procedure,

outline the facial recognition and tracking methods applied, and detail the employed

signal processing techniques. Finally, it will conclude with a reporting of results and

subsequent discussion of model performance, the effect of the data augmentation ap-

proach on model performance, and the performance of the baseline implementation

taken from (1).
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Chapter 2

Architecture

Section 2.1

Overview

The framework introduced in this thesis follows a similar structure to existing archi-

tectures which apply signal processing techniques to measure heart rate rather than

more complex deep learning methods. The procedure begins with capturing face

video within a mobile application implemented for Android smartphones. Following

video capture, the file is saved locally and analyzed by the face detection and tracking

system. The face tracking system uses the YoloV5 facial recognition model to isolate

a region of interest (ROI) within the subject’s face and aggregates color channel data

for each frame (44). To enhance the speed of this face detection and color channel

data collection, a framewise object tracker was used to update the position of the

ROI bounding box in successive frames without having to apply the YoloV5 model to

each frame (45). For the purpose of this work, the forehead was chosen as the target

ROI for all subjects due to its size and ease of detection. This produces a matrix of

size F x 3, where F refers to the number of frames captured in the video, and 3 refers

to the 3 color channels collected. To optimize for user privacy to the greatest extent
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2.1 Overview Architecture

possible, the video is deleted at this time, leaving only the raw RGB data. The signal

processing step consists of preprocessing the raw RGB channels, feature engineering,

regression via a lightweight gradient boosting model to output rPPG signal, and final

postprocessing. Heart rate and HRV can then be computed from both the rPPG

signal generated by our pipeline and the ground truth BVP signal provided by the

dataset to validate the model.

The signal processing steps applied before and after the data are fed to the gradient

boosting regressor closely follow the steps outlined by Poh et al in (28). Any deviations

from that framework are noted in this chapter. The primary contribution of this thesis

is the lightweight pipeline for heart rate estimation presented here. The architecture

has been named HRMobile, and encompasses the entire system from video capture

to the calculation of user heart rate.

Figure 1: Diagram of the HRMobile architecture.
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2.2 Mobile application Architecture

Section 2.2

Mobile application

This work was completed as part of the Mood Triggers project within Professor

Nicholas Jacobson’s AIM HIGH Lab. A prototype mobile app was developed to test

this framework before incorporating it into the primary Mood Triggers application.

The test app was developed for use on Android smartphones using Flutter, an open-

source mobile application framework developed by Google. It was important to use

this technology stack as it enabled the implementation of a custom Flutter plugin for

running Python code within an Android app. Given the machine learning components

inherent to HRMobile, the ability to run Python code was essential. Thus, it was

possible to implement our framework in such a manner where all computation was

performed locally within the Android app.

Section 2.3

Facial recognition and tracking

The proposed heart rate calculation architecture applies existing computer vision

models for facial recognition within smartphone video. As has been emphasized thus

far, efficient use of computational resources was important to this project. Given

that facial recognition was one of the greatest potential sources of complexity for our

proposed framework, particular attention was paid to selecting a lightweight model for

facial recognition. The YoloV5 facial recognition model was selected for this project

due to its performance and optimization for use in mobile phones (44). TensorFlow, a

Python machine learning framework developed by Google, was used to deliver YoloV5

within our mobile app (46). In practice, the model was applied at the frame level to

return bounding boxes for each detected face within a frame. This framewise facial
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detection procedure allowed for flexibility with regards to the number of frames to

which facial detection was applied. To accelerate the RGB channel data collection

process, the facial recognition model was not applied at each frame. Instead, facial

recognition was applied to frames at a regular interval to return bounding boxes for

the foreahead ROI, and ROI bounding boxes for intermediate frames were returned

via the object tracking algorithm proposed by Danelljan et al, which can return ROI

boxes faster than YoloV5 when given an initial bounding box (47). The DLib Python

machine learning library’s implementation of Danelljan et al’s work was used for

this step (45). Given the intent for the HRMobile framework to deliver heart rate

measurement capability within a smartphone, the decision to use the object tracking

algorithm was prudent to reduce the time complexity of the process.

The process for raw RGB extraction from facial video proceeds as follows. The

OpenCV Python computer vision library is employed for general image processing

tasks (48). After the video is saved locally, the face detection process begins. The

procedure iterates through frames until a face is identified. For all frames, the algo-

rithm assumes a single user’s face will be present in the video. To ensure the system

is not susceptible to infinitely searching for faces in video when there are none to

be detected, an iteration limit is set, whereby if no face is found within the limit of

frames, the procedure exits and reports failure to detect faces. Once a face is detected

and a bounding box for the face is returned, forehead detection is applied to return

a bounding box specifically for a clear region of the user’s forehead. Python’s face

recognition package, a wrapper for DLib, was used to identify facial landmarks such

as the forehead (45). This forehead bounding box is then used as the target ROI for

RGB channel data extraction.

The use of the DLib object tracker accelerated the speed of RGB data extraction

and introduces flexibility with regards to how often the YoloV5 facial recognition

20
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model is run (44) (45). This allows for an optional “face renewal” parameter, P to

be set, meaning YoloV5 can be run every P frames as the procedure iterates through

the video. A lower value for P means the raw RGB channel collection process will

have greater time complexity, but may also have less potential for noise introduced

by error from the object tracker. Each time the facial recognition model is run for

a given frame, the DLib tracker for tracking the ROI bounding box is re-initialized

to keep it up-to-date. For each frame to which the facial recognition model is not

applied, the position of the facial bounding box is inferred using the object tracker

(45).

Algorithm 1 details the high-level procedure for obtaining raw RGB channel data

using iterative facial recognition and object tracking through the duration of a given

video. For each frame, it either uses the YoloV5 facial recognition model or the DLib

object tracker to obtain a bounding box for the forehead ROI for the current frame

and collect the raw RGB channel data from the frame in question. To collect raw

RGB channel data from a given frame, the image is first cropped according to the

rectangular coordinates defined in the corresponding bounding box. After cropping

the image, each individual color channel is separated and spatially averaged to obtain

a single framewise value per channel. This method for generating RGB channels

via spatially averaged ROI was first introduced by Poh et al in (28). Following the

procedure outlined in Algorithm 1, the video can be safely deleted to help enhance

privacy.
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Algorithm 1 GetRGBChannelData. Given captured video of face, detect forehead
boundaries, initialize ROI tracker, and collect raw RGB channels for each frame
through spatial averaging.

Input: captured face video, “face renewal” parameter P
Returns: Raw RGB channel data

i← 0
channels← []

for frame ∈ video do

if i mod P = 0 then
bbox← findForeheadBbox(frame)
tracker ← initializeNewTracker(frame, bbox)

else
bbox← getBboxFromTracker(tracker, frame)

end if

croppedFrame← cropFrameUsingBbox(frame, bbox)
r, g, b← spatiallyAverageEachChannelIndividually(croppedFrame)
channels.append((r, g, b))

end for
return channels

Section 2.4

Signal processing

The HRMobile signal processing procedure for translating raw RGB channel data to

heart rate saw many iterations. Given the preference in this project for solutions

which rely primarily on signal processing to limit computational complexity, this

work is greatly influenced by the framework introduced by Poh et al (28). As a

result, the proposed data preprocessing and feature engineering steps are guided by

those employed by Poh et al (28). Unfortunately, several key procedures identified

in their work are ill-defined, and thus make their exact pipeline difficult to replicate.

However, several steps enumerated in (28) proved useful. Lack of reproducibility is

common across many proposed heart rate measurement architectures in the field, and
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thus our approach blends ideas shared by these works to produce an outline which is

more transparent and easier to implement.

The RGB values generated in the previous step consist of 3 features, one for each

color channel, where each sample corresponds to a video frame. Each color channel

value represents the spatial average of the channel in question for the forehead of the

user (28). Several preprocessing tasks were applied to the raw color channels before

a feature engineering step.

2.4.1. RGB data preprocessing

The data preprocessing steps presented here are inspired by those of Poh et al, but

diverge at certain key junctions (28). Our three RGB color channel features are

defined as follows: r(t), g(t), and b(t), where t refers to the frame number (28). First,

each feature is detrended using a 3rd degree polynomial (28). Then, each feature is

normalized using the following formula, which is also enumerated in (28):

v′(t) =
v(t)− µv(t)

σv(t)

(1)

where v(t) corresponds to any of r(t), g(t), or b(t) (28).

Further preprocessing steps were considered. One important observation about

the RGB channel data is that they are quite noisy. To address this, two denoising

techniques were tested. The first was a bandpass filter which wrapped the Scipy

Python library’s butter filter (49). The bandpass filter is another preprocessing step

employed by Poh et al (28). However, Bousefsaf et al report success using wavelet

filtering to clean rPPG signal before measuring heart rate (50). Wavelet transforms

are a class of signal processing algorithms that can be useful for denoising (51).

One feature of Wavelet transforms is that they can be applied iteratively to reduce

a certain amount of noise from a given signal at a time. Algorithm 2 presents a
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denoising method utilizing the PyWavelets module to experiment with applying the

different wavelet methods at different depths (51). The algorithm iteratively applies a

wavelet filter to the given signal array. Following this process, the algorithm linearly

interpolates the signal before returning so that the returned signal contains the same

number of samples as the original.

Given the focus of this project on efficient use of computational resources, the

application of both the bandpass and wavelets filters during the data preprocessing

step was deemed redundant. Following experimental training runs applying each

method individually, applying a wavelet filter using the Daubechies 2 wavelet with

1 iteration was selected to serve as the denoising step within the data preprocessing

pipeline.

Algorithm 2 WaveletFilter. Filter given signal using ‘DB2’ wavelet with depth
number of iterations.

Input: signal array to be denoised: signal, number of iterations to apply wavelet:
depth
Returns: filtered signal as array

sig ← signal.copy()
origLength← sig.length

for d ∈ 1 . . . depth do
sig ← applyWavelet(sig, “db2”, d) ▷ PyWavelet wavelet transform function

end for
sig ← linearInterpolation(sig, origLength) ▷ linearly interpolate sig back to
original length
return sig

2.4.2. Feature engineering

Base features. The gradient boosting model does not have an inherent conception

of time or periodicity. This was intentional as I was concerned about overfitting an

explicitly temporal model such as a recurrent neural network to specific temporal

patterns exhibited in the small subject set which would not generalize well to the
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population at large. However, it was deemed important for the gradient boosting

model to be able to have some concept of the previous state of the color signals.

Thus, the velocity, acceleration, and memory features defined below represent an

effort to encapsulate the temporal nature of the data in the features, rather than the

model architecture itself.

Following the data preprocessing tasks, a feature engineering step was included

to expand the information fed to the gradient boosting regression model. First, raw

RGB signals are upsampled from the video frame rate of 30 to the ground truth sam-

ple rate of 64 to better align the training data and targets. This step simplifies the

model testing process given the necessity of accurately aligning ground truth signal

with signal generated from video. The following features were generated directly from

the raw RGB channels: velocity, acceleration, and memory features for each chan-

nel. Velocity features approximate the first derivative of each channel by taking the

difference between adjacent samples in each channel. Thus, there are three velocity

features. Acceleration features approximate the second derivative of each channel by

twice differencing adjacent samples. Thus, there are also three acceleration features.

Memory features are parametric. Memory features are lagged versions of each

of the color channels. Thus, there were N memory features for each color channel,

and each represented a lag amount L. This meant that the first memory feature

for color channel c would lag L samples behind the current value of c, the second

memory feature for c would lag 2L samples behind the current value of c, etc. The

values of N and L had to be experimentally derived. This process is enumerated

further in the Hyperparameter Optimization section. Following experimentation, it

was determined that there would be 8 such memory features for each color channel

c, named {c} mem feat0 ... {c} mem feat8 respectively, and that each successive

memory feature would carry a lag L of 12.
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The raw color channels, velocity features, acceleration features, and memory fea-

tures comprise the “base features.” In total, there are 33 base features. With the

exception of the color channels, the creation of each of these features shortens the

raw signal. Thus, some samples had to be discarded from the raw data to main-

tain uniform length for all features. In practice, this involved discarding the first

2 samples of the raw RGB channels and the first sample of the velocity features to

align the lengths of the raw RGB, velocity, and acceleration features. Then, the first

M remaining samples were removed from each of these features so that their length

matched the length of the memory features. M = N × L, or the number of mem-

ory features multiplied by the lag amount for each memory feature. In total, this

means that the first 8× 12 + 2 = 98 samples are discarded in the feature engineering

step. However, note that the initial upsampling step in data preprocessing linearly

increased the raw data sampling rate from the expected camera frame rate of 30 to

the ground truth sampling rate of 64, and thus these discarded samples account for

only ∼ 1.53 seconds of video.

Chrominance feature. De Haan and Jeanne introduce a chrominance-based heart

rate measurement architecture which applies analytical formulas derived from the

interaction of ambient light with raw RGB channels to produce rPPG signal (29).

The chrominance algorithm proceeds as follows. Detrended and normalized RGB

channels are passed to the method and are each further normalized to produce 3

signals: rn, gn, and bn (29). They are then combined into two signals, xs and ys (29).

Then, each of rn, gn, bn, xs, and ys are bandpass filtered with frame rate 64, minimum

bandpass frequency 0.7, and maximum bandpass frequency 4.0 (28). This produces

the vectors rf , gf , bf , xf , yf . Finally, the constant α is computed and used to combine

the normalized and bandpass filtered color channels into the final rPPG output (29).

Direct application of the chrominance algorithm’s output to computing heart rate
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was attempted, but the rPPG signal produced was too noisy to consistently and

accurately measure heart rate. However, experiments with the chrominance rPPG

signal as a feature indicated that it added useful information to the dataset and

improved HRMobile’s performance. Thus, the chrominance rPPG signal was added

to the feature set for the HRMobile gradient boosting regressor.

ICA feature. ICA is a signal processing technique used in statistics and machine

learning to separate signal into its constituent components. ICA is able to remove

motion artifacts from raw RGB channels by separating color changes representing in-

formative signal from noise (28). Following the normalization step in their heart rate

estimation pipeline, Poh et al suggest decomposing normalized RGB channels using

independent component analysis (ICA) (28). Poh et al apply ICA as an intermediate

step in generating rPPG signal. They pair ICA with a selection step in which they

choose the ICA component with the highest power spectrum peak for further pro-

cessing (28). When applied in isolation, we found that the processing steps outlined

by Poh et al, including the use of ICA, were insufficient for producing appropriately

denoised signal for estimating heart rate. However, we found that the ICA compo-

nent with the highest power spectrum peak did provide signal useful to the gradient

boosting regression model. Thus, the ICA process outlined in (28) was adapted for

the feature engineering step and included as a 34th feature for our model.

Section 2.5

Gradient boosting regression model

The model utilized for this architecture is a gradient boosting regressor which learns

from tabular data and does not support a built-in conception of time or periodicity.

This was a conscious decision given the limitations introduced by the size of the
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dataset. We were wary of implementing an explicitly temporal or spatio-temporal

model as we thought such an architecture may suffer performance degradation as a

result of learning cyclical artifacts specific to the subjects in the dataset that may

not be generalizable to the larger population. Thus, though some deep learning

approaches are well-established for modeling problems such as ours, they were not

considered for this project. However, the inclusion of some temporal information in

the form of the velocity, acceleration, and memory features was deemed appropriate.

This was also consistent with our intention to limit the complexity of HRMobile,

as deep learning models tend to demand more computational resources than more

traditional machine learning techniques.

It is important to also note that it was necessary to simplify the learning task at

hand and focus on heart rate. Thus, the model was optimized for heart rate esti-

mation, and was not directly concerned with accuracy in calculating HRV. However,

the model’s performance in estimating HRV is still included in the Results section

for discussion. Furthermore, the model presented below is highly parametric and

the values of these hyperparameters were determined through automated hyperpa-

rameter optimization and experimentation. All hyperparameters whose values are

mentioned below to have been determined experimentally are elaborated on in the

Hyperparameter Optimization section.

2.5.1. Model selection

Given the specifications of our modeling objective, two machine learning architectures

which are compatible with our tabular dataset were investigated: gradient boosting

and random forest regression. However, it is important to note that the chosen model

was required to strike a difficult balance in that it was necessary to limit its ability to

learn temporal artifacts specific to subjects in the small dataset but also optimize for

the best possible ability to produce generalized rPPG signal. To achieve this, a custom
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objective function was implemented for the model. This was necessary due to the fact

that common loss functions such as mean squared error (MSE) are only indirectly

relevant to the model’s ability to accurately measure heart rate. This is because the

calculation of heart rate from model output relies on a peak detection procedure and

we were primarily concerned with the model’s ability to produce signal with as similar

a number of detected peaks as the ground truth as possible. Further, heart rate is

computed from batches of signal corresponding to S seconds of video. Thus, this

required a loss function which considered these batches of samples corresponding to

S seconds of video, rather than sample-wise error. MSE concerns only the sample-wise

differences between model output and ground truth, and thus does not necessarily

penalize the model for producing signal with excessive noise that may confuse the

peak detection algorithm.

The metric of primary concern was the model’s error in estimating heart rate,

and therefore a loss function which reflected this was required. Many out-of-the-box

APIs offering gradient boosting and random forest regression do not support custom

loss functions. However, the LightGBM and XGBoost Python libraries are popular

options which implement both gradient boosting and random forest regression and

offer the necessary features (52) (53). Crucially, these models have relatively low

computational complexity and thus were good options for this project.

LightGBM was initially selected as the framework of choice. However, Light-

GBM’s random forest implementation does not support custom objective functions.

Following initial testing, a LightGBM gradient boosting regressor equipped with a

custom objective function outperformed an equivalent LightGBM random forest re-

gressor which used MSE loss, and thus gradient boosting regression became the ma-

chine learning model of choice. Further, it was discovered that XGBoost is more com-

patible with our Android mobile app than LightGBM. Given that XGBoost largely
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offers the same set of features in use by this project as LightGBM, XGBoost gradient

boosting regression with a custom loss function was selected for use over LightGBM.

Going forward, only the XGBoost model implemented will be discussed.

2.5.2. Heart rate computation

The procedure for computing heart rate error was taken directly from Poh et al’s work

and proceeds as follows (28). The algorithm accepts two vectors: the ground truth

signal and corresponding model predictions. For each, it applies a peak detection

method to obtain signal peaks in both the ground truth and predicted signals. The

procedure relies on the assumption that detected peaks in the signal correspond to

heart beats. A minimum peak prominence threshold was experimentally derived in

the Hyperparameter Optimization section to attempt to eliminate spurious peaks

representing noise rather than heart beats. The procedure then computes interbeat

intervals (IBIs) using the peaks detected in the ground truth and predicted signals,

which represent the estimated time in between two heart beats, in seconds. Thus, if

the IBI between two adjacent signal peaks is 0.5, this means that 0.5 seconds elapsed

between those two heart beats. Finally, a heart rate estimate is computed by dividing

60 by the mean interbeat interval.
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Algorithm 3 HeartRateError. Given a pair of vectors representing ground truth
and model predictions respectively, return absolute model error.

Input: ground truth array: y true; prediction array: y pred; Integer sample rate:
fr
Returns: Float absolute HR error

true peaks← find peaks(y true) ▷ outputs index locations of ground truth peaks
pred peaks← find peaks(y pred)

true ibis← diff(true peaks)
fr

▷ interbeat intervals for true signal, taken by

differencing the true peaks array and dividing by fr

pred ibis← diff(pred peaks)
fr

true hr ← 60
average(true ibis)

▷ true heart rate based on ground truth

pred hr ← 60
average(pred ibis)

return abs(true hr − pred hr)

2.5.3. Learning objective

The custom objective for our modeling problem needed to satisfy three conditions

to maintain compatibility with both XGBoost and the learning task: 1) it needed

to be differentiable, 2) it needed to return the gradient vector, the first-order partial

derivatives of the function with respect to the model’s predictions, and the hessian,

the diagonal of the square matrix of second-order partial derivatives of the function

with respect to the model’s predictions in the case of XGBoost, and 3) it needed to

quantify the difference in predicted heart rate between generated time series from a

sequence of samples and the corresponding ground truth. However, this presents two

dilemmas. First, our method for measuring heart rate from a given rPPG signal is

non-differentiable. Second, a custom loss function would be required to calculate the

loss on batches of sequential samples and produce a batch-wise loss, rather than a

sample-wise loss. This would require a complex training process. MSE could satisfy

these requirements, but does not directly proxy the calculation of heart rate and thus

was sub-optimal.

The differentiable loss function for comparing predicted and ground truth sig-
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nals would ultimately need to be a proxy for heart rate calculation, given the non-

differentiable nature of the heart rate estimation method. Though finding such a

suitable proxy was nontrivial, Cuturi et al’s Soft-DTW Algorithm was selected to

fulfill this requirement (54). Soft-DTW is a differentiable version of the dynamic

time warping algorithm for comparing timeseries. Given that Soft-DTW quantifies

the similarity of two timeseries, it was a suitable choice for proxying our heart rate

calculating function (54). Once Soft-DTW was identified, there remained the require-

ment for the custom loss function to return both the gradients and hessians of the

function with respect to the prediction vector. However, the computational complex-

ity of automatically differentiating the second-order derivatives of Soft-DTW proved

to be too great, and were thus were omitted. This required an alternative approach

to returning the diagonal of the hessian matrix. Returning a vector of ones in place

of the hessian was a an option, but was suboptimal in that valuable information for

the model training process would be lost. Instead, the solution was to ensemble the

Soft-DTW function with the lower complexity MSE loss function. This procedure of

combining two loss functions is a viable option in the case that one seeks to optimize

for multiple objectives with a single model. Though the hessians returned from the

MSE function are likely less useful than those of Soft-DTW, this was a suitable alter-

native since the hessian for Soft-DTW was unavailable. Thus, the hessian returned

from the Soft-DTW function was set to a vector of ones and the returned gradients

and hessians from both Soft-DTW and MSE were combined with a weighted sum for

the final output of the loss function. The respective weights of the Soft-DTW and

MSE components of the custom loss function were implemented as hyperparameters

and determined experimentally.

32



2.5 Gradient boosting regression model Architecture

Algorithm 4 CustomLoss. Return the gradient and hessian for the custom loss
function.

Input: Ground truth array: y true; predictions array: y pred; MSE loss weight:
mse weight; DTW loss weight: dtw weight; hyperparameter split size (integer):
split size
Returns: Arrays tuple: (gradient, hessian)

mse grad,mse hess← mse loss function(y true, y pred)
dtw grad← initialize array of zeros of length y pred.length
dtw hess← initialize array of zeros of length y pred.length

for i in 1 . . . split size do
true curr ← y true[i ∗ split size : (i+ 1) ∗ split size]
pred curr ← y pred[i ∗ split size : (i+ 1) ∗ split size]
curr dtw grad, curr dtw hess← dtw loss function(true curr, true pred) ▷

(54)
dtw grad[i ∗ split size : (i+ 1) ∗ split size]← curr dtw grad
dtw hess[i ∗ split size : (i+ 1) ∗ split size]← curr dtw hess

end for

combined grad← mse weight ∗mse grad+ dtw weight ∗ dtw grad
combined hess← mse weight ∗mse hess+ dtw weight ∗ dtw hess
return (combined grad, combined hess)

2.5.4. Model training

The custom loss function enumerated above necessitated the implementation of a

batched training algorithm for the gradient boosting regression model. To achieve

this, sequences of consecutive samples of length N for a given subject were aggregated.

The specific length of these sequences were implemented as a hyperparameter and

determined experimentally. These sequences of consecutive samples were then treated

as collective units and the training-testing split was performed across these collections

of samples, rather than between individual samples. Once the split was complete, the

sample sequences were reconnected into training and testing sets, while preserving

their order.

Following this initial batching step, there is an additional, nested batching step

controlled by a batches hyperparameter, the value of which is determined experimen-
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tally. This batches parameter could be set to a value greater than or equal to 1,

and effectively repeats the batching step enumerated above, but only on the training

set. This creates batches separate training sets. Going forward, these batches as con-

trolled by the batches parameter and will be denoted as sub-batches. The reason for

this framework is to allow for further tuning of the model for performance specifically

on the non-differentiable heart rate estimation algorithm.

For each sub-batch, the model is trained using the custom loss function. Following

this training step, the model’s performance is evaluated via the non-differentiable

heart rate error function. Then, the ground truth for the given sub-batch is replaced

with the residuals formed from differencing the model’s heart rate predictions and

the ground truth for the current sub-batch. The current version of the model is

now re-trained on these residuals without re-initializing its parameters. Finally, with

each successive sub-batch, the model is trained on the new sub-batch starting with

the parameters from the previous iteration. This procedure allowed us to tailor the

model for performance in computing heart rate to the greatest extent possible in

the absence of a differentiable method for computing heart rate. By fine-tuning the

model on the predicted heart rate signal’s residuals after each batched training step,

we were able to penalize the model for poor performance in producing signal for

accurate heart rate measurement during the training process, despite the fact that

the heart rate function’s non-differentiable nature precluded us from using it directly

as a loss function.
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Algorithm 5 GradientBoostingRegressorTrainingAlgorithm

Input: data as matrix: data, parameters as defined in Hyperparameter Optimiza-
tion section
Returns: none

splits← package(data) ▷ Package dataset into array of sequential sequences of
samples, each of length split size
training splits, test splits← trainTestSplit(splits, test size) ▷ Randomly select
splits to make up training and testing sets
train sets← [] ▷ for holding sub-batches of the training set

for i in 0 . . . batches do ▷ batches hyperparameter
batch size← integer( training splits.length

baches
)

curr train set← selectBatch(training splits, barch size) ▷
Select batch size splits from the set of training splits, combine them into a single
training set, preserving the order of the splits, and remove the selected splits from
training splits

train sets.append(curr train set)
end for

model← initialize XGBoost regressor with hyperparams

for (train data, train labels) in train sets do
model.train(train data, train labels)
y pred← model.predict(train data)
y true← train label
num batch splits← integer(y pred.length

split size
)

residuals← initialize array of ones of length y pred.length

for i in 1 . . . num batch splits do ▷ Collect heart rate residuals for model
finetuning

pred curr ← y pred[i ∗ split size : (i+ 1) ∗ split size]
label curr ← y true[i ∗ split size : (i+ 1) ∗ split size]
residuals[i ∗ split size : (i+ 1) ∗ split size]← label curr − pred curr

end for
model.train(train data, residuals) ▷ Fine-tune the model on heart rate error

end for

2.5.5. Hyperparameter optimization

Many aspects of the model architecture presented here, such as the custom loss func-

tion and training process, are highly parametric. Further, the underlying XGBoost

model is very customizable. It therefore would would have been difficult to test a

suitable number of hyperparameter combinations manually. Thus, Bayesian hyper-
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parameter optimization was applied to find performant combinations of parameters.

The specific parameters tested include the following: number of estimators, the num-

ber of boosting iterations, split size, the number of consecutive samples selected in the

first batching step of the training algorithm, learning rate, early stopping rounds, MSE

weight, the weight attributed to MSE loss in the custom loss function, DTW weight,

the weight attributed to Soft-DTW loss in the custom loss function, batches, the

number of sub-batches applied during the training process, predicted peaks promi-

nence, the minimum prominence for peaks detected in the non-differentiable heart

rate function, true peaks prominence, maximum depth, the maximum tree depth in

the model, maximum bin, the maximum number of bins inside which features will be

bucketed, number of samples per subject, number of memory features, the number of

memory features created during the feature engineering process, and memory feature

lag amount, the number of samples skipped in the creation of each successive mem-

ory feature. The specific values yielded by the Bayesian optimizer are enumerated in

Table 1.

Of particular note is the split size parameter. This is due to the fact that it

also affects the patient experience in using a smartphone app equipped with this

architecture. The split size determines the number of samples the system requires

in order to optimally determine heart rate. The parameter value of 960 indicates

that the optimal amount of video required of the user is 15 seconds. This is due

to the fact that samples collected from video are upsampled to a frame rate of 64,

the sample rate of the ground truth BVP signal, and thus there are 64 × 15 = 960

samples required for heart rate estimation. Note that the user may submit video

longer than 15 seconds, but the system is designed to simply use 960 samples, if that

many samples are available.
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Table 1: Hyperparameters for gradient boosting regressor.

Hyperparameter Value

Number of estimators 188
Split size 960
Learning rate 0.001
Early stopping rounds 16
MSE weight 0.2
DTW weight 0.8
Batches 5
Predicted peaks prominence 0.28
True peaks prominence 0.32
Max depth 6
Max bin 235
Number of samples per subject 3000
Number of memory features 8
Memory feature lag amount 12

2.5.6. Model evaluation

Model evaluation is performed via the non-differential heart rate estimation func-

tion. Though the model is not being trained to optimize this function directly, its

performance on the heart rate estimation function is the primary objective of this

work. Thus, for each boosting round of the gradient boosting model, the model’s

performance was measured by the heart rate estimation function. Early stopping was

utilized to end end training early if heart rate estimation performance on the test

set began to degrade. The specific early stopping value was optimized during the

hyperparameter optimization step.

Subject-wise cross validation was employed to test the generalizability of the model

to the greatest extent possible, given the limitations introduced by the number of

subjects included in the dataset. In this cross-validation step, the model was trained

on a dataset excluding a single subject at a time, and validated on a test set including

only the subject excluded from the training data. This method provided the greatest

possible insight into the model’s performance on subjects not included in its training
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dataset.
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Chapter 3

Results

The HRMobile framework was successfully developed and implemented within an

Android mobile app. The mobile app is capable of capturing video, detecting a user’s

face, and displaying heart rate and HRV measurements. Further, this architecture

can be implemented passively for automated and frequent heart rate measurement

without the requirement for user intervention.

Given the limitations introduced by the number of subjects included in the dataset,

it was important to take steps to ensure the greatest possible generalizability of the

model. Thus, hyperparameters such as the maximum tree depth and number of

samples per subject were limited in an attempt to address the risk of overfitting.

Moreover, we were sensitive to the possibility for the model to overfit on specific

spatial or temporal factors inherent to one or more members of the subject population

that may not be generalizable to the human population as a whole. Model validation

was therefore performed with particular attention paid to the model’s performance

on subjects not seen in training.

Hasan et al, the authors of the dataset used in this work, analyze their model’s

performance in terms of their ability to accurately detect heart rate peaks in their

model-generated rPPG signal (1). Thus, they report their error in terms of true
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Figure 2: Forehead detection within
the Android app described as part of
the HRMobile architecture. First, the
face is detected, and then facial land-
marks are used to isolate the forehead.
The forehead is denoted by the rectan-
gle centered on the subject’s forehead.

Figure 3: Heart rate display screen
shown following the application of the
HRMobile architecture to user face
video.
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positive, false positive, and false negative rates for peak detection. For our purposes,

we felt that reporting error in terms of computed heart rate was more intuitive.

Thus, we report mean absolute heart rate error and mean absolute HRV error. In

accordance with (1), we also report the mean absolute difference in detected peaks in

model-generated signal and ground truth signal.

Though HRV was not considered as part of the model training and validation

processes, the model’s performance with respect to HRV is noted in the results. HRV

was calculated using the root mean square of successive differences (RMSSD) formula.

Section 3.1

Validation with augmented data

We augmented our dataset to include 3 frame-wise transformations of each subject

video, in addition to the original version of each subject video. The three transforma-

tions were: adding Gaussian noise to each frame with mean 0 and standard deviation

30, dimming each frame by 60 units, and brightening each frame by 60 units. This

yielded 4 groups of data in our augmented dataset. Augmenting the dataset in this

manner allowed two experiments to occur. First, we could test whether adding these

transformed versions of the data to the training set improved the accuracy of the

model. Second, we could use these data transformations to simulate video taken in

noisy or sub-optimal lighting conditions, and test model performance in these situa-

tions. Thus, 3 rounds of model cross-validation were performed: (1) cross-validation

using just the original data for training, (2) cross-validation using the original data

and Gaussian noise augmented data for training, and (3) cross-validation using the

original data, Gaussian noise augmented data, dimmed data, and brightened data

for training. In all three cases, testing was performed on all 4 groups of data during

cross-validation, and results are reported for each.
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Given that there were 7 subjects included in the dataset, subject-wise cross valida-

tion was applied by iteratively by training the model on 6 subjects and testing on the

seventh. For each subject, we have 4 groups of data: the original video, video with

Gaussian noise added to each frame, dimmed video, and brightened video. Thus, for

the cross-validation step in which subject S is held out, the original data for subject

S is excluded from training, as is each set of augmented data for subject S. For all

other subjects, the inclusion or exclusion of each grouping of augmented data was

determined by whether it was cross-validation run (1), (2), or (3). For all cross-

validation runs, all metrics were validated iteratively on 15-second batches of video

for each test subject. This means that, for a given training run, model performance

on a given subject is reported as an average for each error metric across all 15-second

batches for that subject.

The validation results for the HRMobile framework indicate that there is room

for improvement in its heart rate prediction accuracy prediction accuracy. The best

heart rate validation error achieved by HRMobile was 16.64 bpm. Tables 2, 3, and 4

contain cross-validation results for each of the 3 cross-validation rounds respectively.

For each cross-validation round, the model was tested on the original data in addition

to the transformed data. Cross-validating the model on the transformed data in

addition to original data allowed us to test the model’s ability to perform when noise

or imperfect lighting was introduced to the data. Each successive cross-validation

round included more of the transformed data in training to test whether the addition

of the transformed data to the training set improved model performance.

Tables 5, 6, and 7 convey the range in HRMobile’s performance within a given

subject. This is possible because cross-validation results per subject are averages

of the model’s performance across batches corresponding to 15s of video for a given

subject. Sometimes, the variation in the model’s performance across these batches
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for a given subject is relatively small, but sometimes it may be quite large. The data

presented in tables 5, 6, and 7 are drawn from the same cross-validation run as tables

2, 3, and 4, but simply represent a more granular look at HRMobile’s performance at

the subject level.

Error metric Transformation applied Result

MAE heart rate None 16.64 bpm
MAE HRV None 511 ms
MAE peak difference None 4.11 peaks

MAE heart rate Gaussian noise 19.82 bpm
MAE HRV Gaussian noise 589 ms
MAE peak difference Gaussian noise 5.39 peaks

MAE heart rate Dimmed lighting 23.96 bpm
MAE HRV Dimmed lighting 1106 ms
MAE peak difference Dimmed lighting 7.10 peaks

MAE heart rate Brightened lighting 27.51 bpm
MAE HRV Brightened lighting 1445 ms
MAE peak difference Brightened lighting 7.37 peaks

Table 2: Gradient boosting regression model cross-validation error when trained on
the original dataset with augmented data used only for testing. Test results reported
for both original data and all data augmentations.

Section 3.2

Baseline model

The deep learning architecture presented in (1) by Hasan et al was implemented

as a benchmark model to compare to HRMobile. Hasan et al introduce both this

architecture and the MPSC-rPPG dataset used in this study in (1). Hasan et al’s

architecture comes in two versions, both of which are implemented here. The first

combines a convolutional neural network (CNN) with a fully connected multi-task

learning (MTL) head for rPPG signal generation, and is trained and validated on

data from a single subject. Thus, it is effectively a personalized rPPG generation
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Error metric Transformation applied Result

MAE heart rate None 19.26 bpm
MAE HRV None 608 ms
MAE peak difference None 5.12 peaks

MAE heart rate Gaussian noise 23.50 bpm
MAE HRV Gaussian noise 916 ms
MAE peak difference Gaussian noise 6.35 peaks

MAE heart rate Dimmed lighting 28.01 bpm
MAE HRV Dimmed lighting 1223 ms
MAE peak difference Dimmed lighting 9.41 peaks

MAE heart rate Brightened lighting 29.32 bpm
MAE HRV Brightened lighting 1167 ms
MAE peak difference Brightened lighting 8.35 peaks

Table 3: Gradient boosting regression model cross-validation error when trained on
the original dataset and Gaussian noise augmentation, but not for dimmed and bright-
ened augmentations. Test results reported for both original data and all data aug-
mentations.

Error metric Transformation applied Result

MAE heart rate None 17.54 bpm
MAE HRV None 603 ms
MAE peak difference None 4.76 peaks

MAE heart rate Gaussian noise 23.06 bpm
MAE HRV Gaussian noise 733 ms
MAE peak difference Gaussian noise 4.93 peaks

MAE heart rate Dimmed lighting 23.74 bpm
MAE HRV Dimmed lighting 1002 ms
MAE peak difference Dimmed lighting 6.90 peaks

MAE heart rate Brightened lighting 27.33 bpm
MAE HRV Brightened lighting 1085 ms
MAE peak difference Brightened lighting 6.78 peaks

Table 4: Gradient boosting regression model cross-validation error when trained on
the original dataset, Gaussian noise augmentation, dimmed augmentation, and bright-
ened augmentation. Test results reported for both original data and all data augmen-
tations.

44



3.2 Baseline model Results

Transformation applied Subject Mean HR MAE Mean HRV MAE Mean Peak MAE

None

1 11.27 ± 16.11 0.47 ± 0.3 3.63 ± 4.39
2 10.75 ± 7.27 0.5 ± 0.29 3.32 ± 3.01
3 17.4 ± 13.2 0.47 ± 0.41 4.0 ± 3.09
4 23.25 ± 7.04 0.32 ± 0.42 6.33 ± 2.49
5 31.9 ± 15.02 0.61 ± 0.51 7.87 ± 3.46
6 10.14 ± 8.22 0.41 ± 0.18 3.05 ± 2.1
7 16.1 ± 10.19 0.77 ± 0.78 4.18 ± 2.79

Gaussian noise

1 19.47 ± 19.27 0.94 ± 0.71 5.41 ± 4.2
2 13.94 ± 11.0 1.08 ± 1.24 4.23 ± 2.83
3 17.08 ± 13.1 0.55 ± 0.5 3.42 ± 1.87
4 19.87 ± 10.01 0.75 ± 0.49 6.0 ± 2.94
5 33.32 ± 15.8 0.76 ± 0.7 9.0 ± 3.84
6 11.19 ± 8.15 0.51 ± 0.21 3.18 ± 2.21
7 19.21 ± 15.37 1.14 ± 1.67 4.05 ± 2.64

Dimmed lighting

1 26.17 ± 26.57 1.37 ± 1.23 6.37 ± 3.71
2 18.5 ± 13.1 1.03 ± 0.96 5.59 ± 2.87
3 20.13 ± 15.18 1.0 ± 0.97 5.16 ± 3.83
4 13.46 ± 8.95 1.23 ± 1.21 3.33 ± 2.49
5 58.35 ± 24.58 1.51 ± 1.33 19.0 ± 5.51
6 16.83 ± 11.68 0.33 ± 0.28 4.86 ± 3.86
7 16.22 ± 14.13 1.56 ± 1.5 4.36 ± 2.37

Brightened lighting

1 30.82 ± 19.38 1.55 ± 1.24 8.7 ± 4.41
2 24.97 ± 15.03 1.84 ± 2.11 6.41 ± 3.93
3 25.86 ± 23.15 1.09 ± 1.11 7.47 ± 3.5
4 18.25 ± 4.91 0.92 ± 1.18 6.33 ± 0.94
5 61.03 ± 15.7 1.45 ± 1.04 18.74 ± 3.69
6 12.16 ± 10.58 0.53 ± 0.3 3.0 ± 2.71
7 21.37 ± 16.07 0.66 ± 0.89 5.14 ± 2.93

Table 5: Mean and standard deviation (STD) validation error at the subject level
when model is trained on original data and no augmentated data. Validation results
shown for testing on original data and all augmentation sets. Mean and STD are taken
across all batches of video for each subject, representing the range of HRMobile’s
accuracy within a single subject across batches.
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Transformation applied Subject Mean HR MAE Mean HRV MAE Mean Peak MAE

None

1 12.19 ± 10.62 0.85 ± 0.82 3.07 ± 2.84
2 7.45 ± 4.96 0.58 ± 0.29 1.91 ± 1.83
3 15.71 ± 10.64 0.45 ± 0.4 4.0 ± 3.21
4 23.65 ± 10.85 0.44 ± 0.16 6.67 ± 4.5
5 40.39 ± 13.47 0.73 ± 0.43 10.52 ± 3.47
6 16.38 ± 8.86 0.63 ± 0.32 4.59 ± 2.99
7 19.05 ± 10.42 0.57 ± 0.47 5.09 ± 2.54

Gaussian noise

1 18.76 ± 15.44 1.11 ± 1.15 5.56 ± 2.97
2 13.08 ± 10.28 0.74 ± 0.66 3.14 ± 2.26
3 16.82 ± 17.41 1.18 ± 0.77 4.05 ± 3.5
4 23.97 ± 12.91 0.13 ± 0.16 5.67 ± 2.36
5 50.36 ± 10.79 0.99 ± 0.49 12.96 ± 2.79
6 25.59 ± 20.68 1.45 ± 1.79 9.64 ± 5.35
7 15.91 ± 9.47 0.82 ± 0.79 3.45 ± 2.29

Dimmed lighting

1 21.26 ± 19.44 0.72 ± 0.59 5.22 ± 4.01
2 24.42 ± 15.98 1.79 ± 1.36 8.36 ± 3.27
3 25.99 ± 18.27 1.65 ± 1.94 8.68 ± 3.57
4 8.41 ± 8.94 1.18 ± 0.38 6.33 ± 1.89
5 53.3 ± 26.6 1.24 ± 1.14 20.74 ± 4.24
6 29.6 ± 16.91 1.48 ± 1.29 8.05 ± 4.41
7 33.07 ± 23.17 0.51 ± 0.46 8.5 ± 5.85

Brightened lighting

1 22.79 ± 20.94 1.08 ± 1.06 5.74 ± 5.2
2 25.11 ± 16.9 1.69 ± 1.59 7.5 ± 3.71
3 29.14 ± 24.72 0.92 ± 1.24 7.68 ± 4.43
4 15.73 ± 3.82 0.38 ± 0.19 5.33 ± 2.87
5 69.4 ± 21.89 1.55 ± 1.33 20.09 ± 5.0
6 25.2 ± 20.0 1.11 ± 1.5 6.77 ± 4.86
7 17.84 ± 16.01 1.43 ± 2.16 5.32 ± 3.42

Table 6: Mean and STD validation error at the subject level when model is trained
on original data and Gaussian noise augmentation. Validation results shown for
testing on original data and all augmentation sets. Mean and STD are taken across
all batches of video for each subject, representing the range of HRMobile’s accuracy
within a single subject across batches.
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Transformation applied Subject Mean HR MAE Mean HRV MAE Mean Peak MAE

None

1 13.04 ± 14.69 0.6 ± 0.32 4.19 ± 3.34
2 10.3 ± 9.11 0.71 ± 0.44 2.68 ± 2.1
3 15.75 ± 10.04 0.47 ± 0.33 4.0 ± 3.91
4 20.32 ± 9.52 0.66 ± 0.21 6.0 ± 2.45
5 31.9 ± 14.35 0.62 ± 0.78 8.22 ± 3.94
6 16.58 ± 10.46 0.72 ± 0.35 4.55 ± 2.59
7 14.89 ± 10.58 0.44 ± 0.27 3.68 ± 2.82

Gaussian noise

1 20.03 ± 18.22 0.99 ± 0.85 5.48 ± 4.09
2 14.12 ± 11.89 0.91 ± 0.87 3.86 ± 3.22
3 21.42 ± 14.29 0.64 ± 0.58 4.95 ± 2.91
4 37.59 ± 8.24 0.7 ± 0.45 3.0 ± 0.82
5 34.21 ± 17.14 0.56 ± 0.31 8.78 ± 4.87
6 19.54 ± 16.54 0.73 ± 0.62 5.18 ± 3.97
7 14.49 ± 9.73 0.59 ± 0.37 3.27 ± 3.28

Dimmed lighting

1 22.58 ± 20.84 0.99 ± 0.79 6.0 ± 4.86
2 23.12 ± 14.66 1.29 ± 1.25 6.55 ± 3.56
3 20.75 ± 15.75 1.08 ± 0.8 5.47 ± 3.38
4 7.88 ± 2.85 0.53 ± 0.15 4.67 ± 3.3
5 53.59 ± 23.76 1.47 ± 1.53 16.96 ± 5.95
6 13.65 ± 11.81 0.56 ± 0.32 3.95 ± 3.66
7 24.59 ± 29.82 1.09 ± 0.77 4.68 ± 2.7

Brightened lighting

1 22.22 ± 16.05 1.0 ± 0.73 5.26 ± 3.95
2 25.6 ± 17.16 1.21 ± 1.69 7.36 ± 4.08
3 25.07 ± 19.56 0.83 ± 0.86 6.32 ± 4.32
4 17.79 ± 6.82 0.7 ± 0.6 3.33 ± 2.05
5 60.25 ± 27.04 1.86 ± 1.49 16.0 ± 6.54
6 16.27 ± 11.64 0.76 ± 0.67 4.41 ± 3.74
7 24.12 ± 16.17 1.23 ± 1.59 4.77 ± 3.23

Table 7: Mean and STD validation error at the subject level when model is trained
on original data, Gaussian noise data augmentation, dimmed data augmentation, and
brightened data augmentation. Validation results shown for testing on original data
and all augmentation sets. Mean and STD are taken across all batches of video for
each subject, representing the range of HRMobile’s accuracy within a single subject
across batches.

47



3.2 Baseline model Results

Figure 4: HRMobile generated rPPG signal versus ground truth BVP signal for three
selected subjects for 15 second periods of video.
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model for a given subject. This version of Hasan et al’s work will be referenced as the

Personalized Baseline henceforth. Of course, training and validating a personalized

model for a single subject is not generalizable for application to any other subject.

However, the Personalized Baselines for each subject generated very accurate rPPG

signal, and thus are used to demonstrate an upper limit for possible accuracy of any

model seeking to generate rPPG signal.

A second version of Hasan et al’s work was implemented for direct comparison with

the subject-wise cross-validation approach taken to test the accuracy of HRMobile.

This approach will be referenced as the Generalized Baseline going forward. First,

it is important to note that the Generalized Baseline discussed here is not a direct

application of Hasan et al’s work as they do not present any architecture which is

capable of generating rPPG signal for a subject not included at any point in their

training or fine-tuning steps. This is because they primarily concern themselves with

building architectures capable of high degrees of accuracy, albeit with dependence

on fine-tuning their model with ground truth with a subject before prediction is

performed on that subject. Figure 5 depicts Hasan et al’s architecture, showing

their CNN with MTL heads for subjects 1 through N (1). Their most generalized

version of this model still requires training on all subjects for which rPPG signal

will be generated. This is because their more generalized architecture consists of

the “shared” CNN model, paired with MTL head networks corresponding to each

subject in its training set. This combined CNN-MTL model is trained by iteratively

selecting batches from one subject at a time, and computing gradients for the “shared”

CNN model and the MTL head corresponding to the current subject. The weights

other subject MTL heads are frozen for this step. Predictions come from the MTL

heads. Thus, to generate rPPG signal for subject S, video from subject S is fed

to the “shared” network, the shared network output is passed to the MTL head
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HS corresponding to subject S, and model output is received from HS. For our

adaptation of this approach as our Generalized Baseline, we remove the MTL heads

from this framework. Thus, we keep the training process and shared CNN intact, but

predictions now come directly from the shared CNN. This allowed us to apply the

same subject-wise cross-validation approach used to test HRMobile to Hasan et al’s

architecture, using our Generalized Baseline.

The Personalized and Generalized baselines adapted the Hasan et al architectures

enumerated above (1). Each architecture was implemented with TensorFlow (46).

Optimization was performed using a stochastic gradient descent optimizer with a

learning rate of 0.005 for both models. Likewise, the combined MSE and sign loss

function described by Hasan et al was utilized for both models (1). Convergence rates

for both the Personalized and Generalized Baselines were found to differ from those

described by the authors. Specifically, the Personalized Baseline models were trained

with 12,000 iterations, and the Generalized Baseline models were trained with 1,000

iterations.

Figure 5: Architecture introduced by Hasan et al. Depicted are the shared CNN
model connected with MTL heads for subjects 1 through N in the training data (1).

Example rPPG output from the Personalized Baseline models is shown in figures

6 and 7. Personalized Baseline output was found to produce the most accurate signal

amongst the set of models implemented for this work, achieveing an average heart

rate error of 5.21 bpm. This was expected, as the Personalized Baselines train Hasan
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et al’s framework on a single subject for prediction on that subject. It is the least

generalized of the models implemented for this work, but the most accurate. To

make these results directly comparable to those of HRMobile, the same error metrics

reported for HRMobile’s cross-validation (heart rate MAE, HRV MAE, and detected

peaks MAE) are applied to both the Personalized Baseline and Generalized Baseline

models. Tables 8 and 9 show the performance of these baseline models. Since the

Personalized Baseline for each subject should only be applied to the subject it is

trained on, cross-validation for the Personalized Baseline is not possible. Thus, we

report the average for each error metric across the Personalized Baselines for each

subject, as well as the individual performance of each Personalized Baseline.

Example rPPG output from the Generalized Baseline models is shown in figures 8

and 9. Generalized Baseline model performance varied significantly, achieving a mean

heart rate error of 7.51 bpm at best and mean heart rate error of 62.32 bpm at worst.

This skewed the average heart rate error for the Generalized Baseline approach to

be worse than that of HRMobile’s, achieveing an error of 26.31 bpm. Though this

range in results is surprising, it could be explained by the composition of each cross-

validation round and how representative it was of the tested subject for each round.

Given the size of the dataset, it is possible that this could have an outsized impact

on the cross-validation results. Corroborating this hypothesis is the fact that subject

5, for whom the generalized model performed the worse, had a notably higher ground

truth heart rate than the rest of the subject population.

The RAM consumption and runtime were also measured for the Personalized and

Generalized Baseline models for comparison to HRMobile’s resource consumption.

Both baseline models had comparable runtimes to HRMobile, but consumed far more

RAM. Specifically, both the Personalized and Generalized Baselines typically con-

sumed between 500 and 650 MB RAM.
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Figure 6: Personalized Baseline rPPG generated for subject 1.

Figure 7: Personalized Baseline rPPG generated for subject 2.
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Figure 8: Generalized Baseline rPPG generated for subject 1.

Figure 9: Generalized Baseline rPPG generated for subject 2.
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Subject Error metric Result

Average
MAE heart rate 5.21 bpm

MAE HRV 210 ms
MAE peak difference 1.42 peaks

1
MAE heart rate 4.20 bpm

MAE HRV 239 ms
MAE peak difference 1.11 peaks

2
MAE heart rate 5.65 bpm

MAE HRV 267 ms
MAE peak difference 1.74 peaks

3
MAE heart rate 7.99 bpm

MAE HRV 294 ms
MAE peak difference 2.06 peaks

4
MAE heart rate 4.29 bpm

MAE HRV 264 ms
MAE peak difference 1.26 peaks

5
MAE heart rate 5.24 bpm

MAE HRV 88 ms
MAE peak difference 1.53 peaks

6
MAE heart rate 0.60 bpm

MAE HRV 39 ms
MAE peak difference 0.21 peaks

7
MAE heart rate 8.50 bpm

MAE HRV 278 ms
MAE peak difference 2.05 peaks

Table 8: Validation metrics across Personalized Baseline models. First row contains
averages across all Personalized Baselines; all other rows show results for Personal-
ized Baseline corresponding to each subject. These are the most accurate but least
generalizable baselines.
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Subject Error metric Result

Average
MAE heart rate 26.31 bpm

MAE HRV 280 ms
MAE peak difference 6.59 peaks

1
MAE heart rate 26.08 bpm

MAE HRV 25 ms
MAE peak difference 6.32 peaks

2
MAE heart rate 16.75 bpm

MAE HRV 349 ms
MAE peak difference 4.53 peaks

3
MAE heart rate 17.45 bpm

MAE HRV 393 ms
MAE peak difference 4.35 peaks

4
MAE heart rate 20.12 bpm

MAE HRV 397 ms
MAE peak difference 5.21 peaks

5
MAE heart rate 62.32 bpm

MAE HRV 312 ms
MAE peak difference 15.63 peaks

6
MAE heart rate 33.94 bpm

MAE HRV 319 ms
MAE peak difference 8.53 peaks

7
MAE heart rate 7.51 bpm

MAE HRV 165 ms
MAE peak difference 1.58 peaks

Table 9: Validation metrics across Generalized Baseline models. First row represents
average metric results; all other rows show results for each subject. Individual subject
results were obtained from subject-wise cross-validation.
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Section 3.3

Model complexity

The gradient boosting regression model performed well in maintaining limited de-

mand for computational resources. Specifically, the deployed model runs in less than

0.5 seconds and uses less than 1 MB RAM, meaning that this work succeeded in

developing an architecture for heart rate estimation entirely within the confines of

a smartphone while limiting its resource demand. Though the performance of the

model leaves room for improvement, this proof-of-concept demonstrates that it is

possible to develop such an architecture.

As a trial run for HRMobile deployed in the Android test app, I recorded video

of my own face within the application before and after exercise. Though it is not

possible to obtain clinical ground truth data for these tests, the application did report

biologically plausible values for my heart rate and reported a realistic increase in heart

rate following exercise.
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Chapter 4

Discussion

Section 4.1

Comparison with seminal works in the field

The performance of the architecture presented in this paper is not consistent with

results reported elsewhere. Given that the gradient boosting regressor was optimized

for performance in computing heart rate rather than HRV, the model’s heart rate

performance will be the focus of this discussion. Two papers by Poh et al and De

Haan and Jeanne respectively were selected to compare HRMobile’s performance to

that of seminal works in the field (28) (29). Poh et al (28) report their method’s heart

rate performance as MAE and achieve a result of 0.95. De Haan and Jeanne (29)

report their method’s heart rate performance in root mean squared error (RMSE) and

achieve a value of 0.4. These performance metrics correspond to heart rate estimation

on subjects in a laboratory setting, similar to that of the subjects in the MPSC-rPPG

dataset used in this study (1). Thus, the cross-validation tests run on the original

subject data, as opposed to those run on the augmented data, are the ones which

should be compared to the results from the reference papers. The heart rate MAE

achieved by HRMobile was 16.64, which is significantly higher than the error reported
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by the seminal papers mentioned.

The most significant contributors to this model underperformance are most likely

the limitations introduced by the lack of size and diversity of the dataset and the

presence of noise artifacts in model-produced rPPG signal which were confused for

heart rate peaks in the heart rate estimation algorithm. These false peaks often

led to an overestimation of heart rate. Further, the size and shape of these false

peaks was not consistent enough to remove them through postprocessing the model’s

output. Lastly, the gradient boosting regression architecture selected for this work

may simply not have been powerful enough to capture the necessary dynamics in the

data to produce accurate rPPG signal.

Though a requirement for this project was that it limit its demand of computa-

tional resources, methods which rely only on signal processing and do not employ

machine learning would likely also satisfy this demand. Many existing works in this

field, however, leave room for improvement with regards to reproducibility. Though

this work does not achieve state-of-the-art performance, we hope that the materi-

als and methods enumerated throughout this project are properly explained so that

future work may build upon them.

Section 4.2

Conclusions from data augmentation

experiments

The data augmentation experiments involved the extension of the 7-subject MPSC-

rPPG dataset by adding Gaussian noise, dimming brightness, or increasing brightness

at the frame level for all subjects (1). These 3 data augmentation techniques added 3

“sets” to our dataset. This allowed us to test two hypotheses: (1) that expanding the

training dataset using these data augmentation techniques would improve the model’s
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performance, and (2) that model performance would degrade when tested on subject

video with decreased video quality introduced from Gaussian noise, increased lighting,

or decreased lighting. Tables 2, 3, and 4 display the results of these tests. In Table

2, the model was trained on only the original MPSC-rPPG data, but tested on the

original data and all sets of augmented data (1). Table 3 shows the results when the

model was trained on both the original dataset and the Gaussian noise augmented

data, but tested on the original data and all sets of augmented data. Finally, Table 4

demonstrates the results when the model is trained on the original data and all data

augmentations, and then tested on all sets of the data.

The results from tables 2, 3, and 4 indicate that hypothesis (1), that augmenting

the training dataset would improve model performance, largely did not hold. Across

the cross-validation runs, the model trained only on the original dataset achieved the

best performance in computing heart rate on the original data, scoring heart rate

MAE of 16.64. For cross-validation runs in which augmented data were added to the

training set, the model’s heart rate performance on non-augmented data was worse,

earning heart rate MAE of 19.26 when trained with just the Gaussian noise added to

the training set, and earning heart rate MAE of 17.54 when all all data augmentations

were added to the training set.

One notable result is that adding Gaussian noise to the training set actually

worsened performance when the model was tested on the videos with Gaussian noise

added. When the model was trained on only the original data, it achieved a heart

rate MAE error of 19.82 on the Gaussian noise augmented data. When the Gaussian

noise augmented data were added to the training data, the same metric jumped to

23.50. However, it should be noted that adding the dimmed and brightened videos to

the training data slightly improved the model’s performance in those adverse lighting

conditions. Specifically, the model, when trained only on the original data, scored
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heart rate MAEs of 23.96 and 27.51 bpm on the dimmed and brightened videos

respectively. When the dimmed and brightened videos were added to the training

data, those errors dropped slightly to 23.74 and 27.33 bpm. The reason for the lack

of a performance boost from the data augmentations could be that they did not

broaden the set of subjects seen by the model in training. Instead, they effectively

added noisier versions of the existing videos to the training set. While this may have

served to improve performance as it exposed the model to frames with less perfect

video quality and lighting conditions, adding this noise may also have simply served

to confuse the original signal detected by the model.

The second hypothesis tested by working with the augmented dataset was that

HRMobile’s performance would drop when presented with video characterized by less

optimal quality and lighting than the laboratory conditions seen in the original data

(1). This was expected, given that the model setup and data available were tailored for

performance in controlled conditions, devoid of noise introduced by subject movement,

lighting changes, or inferior video quality. This hypothesis was shown to be correct

by the tests run on the model with augmented data. In all cross-validation runs

across all combinations of original data and augmented data included for training,

the model performed worse on the augmented data than on original MPSC-rPPG data

(1). For the reasons enumerated above, this was the expected outcome. Fine-tuning

this architecture for improved performance in adverse and noisy conditions, such as

those simulated by the augmented data, could be an avenue for future improvements

to the HRMobile framework.

The best validation error achieved by HRMobile on the original dataset of 16.64

implies that there is still much room for improvement in developing a framework

for heart rate measurement which can be deployed in a smartphone app. However,

we hope that this work unwraps a blueprint for the development of such a model.
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Signal processing methods are lightweight and could be good candidates for such a

framework. Though they are more complex, the baseline method implemented in this

work indicates that deep learning approaches show promise for producing accurate

rPPG signal, particularly if they are personalized to a subject. With this in mind,

a future model could replace either the feature engineering step or gradient boosting

regression step laid out as part of this first iteration of HRMobile.

Section 4.3

Comparison to baseline models

The implementation of Hasan et al’s work in the form of the Personalized and Gener-

alized Baseline models demonstrates both the promise of deep learning approaches for

heart rate measurement and the challenges associated with the task (1). The Person-

alized Baseline models demonstrated relatively high degrees of accuracy, averaging

a heart rate error of just 5.21 bpm. Figures 6 and 7 show the visual similarity of

Personalized Baseline rPPG output to ground truth BVP signal. However, the cross-

validation results of the Generalized Baselines show that it is difficult to achieve

consistent and accurate rPPG generation across a population of subjects. For some

subjects, the Generalized Baseline performed quite well, achieving a minimum heart

rate error of 7.51 bpm. However, it was extremeley inaccurate for some subjects,

earning a maximum heart rate error of 62.32 bpm. This wide range of results for the

Generalized Baseline meant that its MAE cross-validation heart rate error was 26.31

bpm, worse than the cross-validation error achieved by HRMobile. I believe that

the strong performance of the Generalized Baseline on some subjects indicates that

deep learning approaches for heart rate measurement are an interesting avenue for fur-

ther research and development. It is likely that the wild swings in model performance

amongst subjects is due to the composition of the training set when a subject is tested
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on during cross-validation. More specifically, if a subject’s ground truth is unrepre-

sentative of the subjects contained in the training set for that cross-validation round,

the Generalized Model’s performance could suffer. These results also indicate that

HRMobile’s performance on the MPSC-rPPG dataset is actually an improvement on

the average Generalized Baseline performance. Finally, the significantly lower RAM

consumed by HRMobile than the Personalized and Generalized Baselines represents

a further success of this work.

Section 4.4

Limitations

The most significant limitation present in this work is the size and demographic

makeup of the dataset. With only 7 subjects, it would be impossible for the dataset

to cover a sufficiently extensive range of ages, genders, and skin tones. The subject

population for our dataset skewed towards younger males with darker skin tones and

was ∼86% male. These demographic challenges, when coupled with the range of

possible heart rates, make for an insufficient dataset for a truly generalizable model.

Further, this data limitation also informed the model selection for this project, as

there was concern regarding overfitting to the particular BVP patterns of the sub-

jects in the dataset. It is possible that machine learning architectures specifically

designed for spatiotemporal objectives such as heart rate estimation may be superior

to the model employed for this project if given sufficiently large and diverse datasets.

Another limitation of this work is the fact that the gradient boosting model is merely

indirectly tasked with optimizing for heart rate estimation performance due to the

non-differentiable nature of the heart rate estimation function. If a differentiable ob-

jective, which could directly or more accurately estimate heart rate, were discovered,

this should yield significant improvements in model performance. A further limita-
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tion of the project is its potentially disproportionate focus on the GBDT regressor’s

performance in calculating heart rate, while focusing less on HRV until the final re-

porting of results. It is possible that a custom objective function tailored towards

HRV or early stopping criteria taking HRV into account could enhance the model’s

performance. Regardless, it is likely true that this focus on heart rate at the expense

of HRV led to lower overall performance on the HRV prediction task. It must also

be noted that the model introduced in this work is trained exclusively on motionless

subjects at rest with sufficient lighting. It does not control for factors such as motion,

improper lighting, or factors that change the appearance of a subject’s skin, such as

makeup, perspiration, or discoloration due to physical activity or medical factors.

Section 4.5

Future directions

There are a number of options for future research which may yield improvements on

the baseline architecture presented in this work. The most obvious of which would

be the discovery or creation of a larger, more diverse dataset. Another possibility

is relaxing the requirement for all computation to be on the smartphone while si-

multaneously retaining user privacy. This could be achieved by producing the raw

RGB channels from the video of the user’s face locally on-device and deleting the

video after the raw channels are generated. This could allow for transmission of the

raw channels to a server for ingestion into a more complex model while preserving the

anonymity and privacy of the user. However, such an approach would be accompanied

by drawbacks including greater costs and lower reliability.

An interesting avenue for future research could be personalization of the HRMobile

architecture. Hasan et al report promising results from their multi-task learning

architecture when the model is fine-tuned on data from a given subject (1). This
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fine-tuned approach outperformed the same model when applied to a subject that

was not seen in training (1). This suggests that fine-tuning a model on data from

a given subject could yield greater accuracy in generating rPPG signal. However,

such a framework would need a method for acquiring subject ground truth to inform

this fine-tuning step. This would likely require reliance on incumbent methods for

measuring heart rate such as clinical settings or wearable devices. In either case, a

calibration step in which smartphone video of a subject’s face were synced with a

clinical or wearable heart rate sensor would be possible. For added robustness, the

calibration step could also allow the subject to introduce factors such as dimmed

lighting, motion, facial hair, or glasses with corresponding labels.

Further model personalization could be achieved through adding demographic in-

formation such as race, ethnicity, gender, age, or skin tone information to the model.

This was not possible in this study as this information was not included in the dataset

(1). Therefore, this approach was not built into Hasan et al’s model personalization

step (1). However, it is possible that demographic data could influence the model’s

performance. As such, future research into the incorporation of demographic in-

formation in a model for rPPG signal generation could have the potential to yield

performance improvements.

The promising performance of the Personalized and Generalized Baseline models

adapted from (1) also indicate potential for the personalization and fine-tuning con-

cepts. If the multi-task learning head networks were re-introduced to the Generalized

Baseline model implemented for comparison to HRMobile, it may not require a sig-

nificant amount of additional ground truth from a subject for fine-tuning the model

on that subject. If this were possible, accurate and generalized rPPG signal could

be produced. The only problem with this is obtaining ground truth for a subject

not in the original training dataset is nontrivial. However, it may be possible using
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techniques such as that suggested in Jacobson and Bhattacharya (55). Jacobson and

Bhattacharya discuss a remote heart rate measurement system which calculates heart

rate and HRV by having the user press a finger over the rear-view camera of their

phone for 30 seconds (55). If sufficient rPPG signal ground truth could be collected

using Jacobson and Bhattacharya’s method, Hasan et al’s work could potentially be

deployed and fine-tuned remotely, thereby achieveing the generation of generalized

and accurate rPPG signal.

The results from the data augmentation experiments highlight additional oppor-

tunity for model improvement in the context of poor video quality or sub-optimal

lighting. By demonstrating performance degradation of HRMobile when Gaussian

noise, dimmed lighting, or brightened lighting are added to the data, we have shown

that there is room for improving the model when it is presented with video of sub-

optimal quality. Improvements to the model’s performance in the face of sub-optimal

video quality would add substantial robustness to the HRMobile framework if de-

ployed in a mobile app for public use.

There may be further improvement to be discovered in HRV estimation. The

model presented in this work is specifically optimized for performance on producing

rPPG signal for estimating heart rate. This rPPG signal is also used to estimate

HRV, but HRV is not the primary learning objective of the model. Prioritizing HRV

in the model development process could yield better performance with respect to

HRV. Likewise, the custom loss function implemented for the gradient boosting model

is merely an approximation of our non-differential heart rate estimation function.

A custom loss function which better approximates HRV could ultimately improve

performance in estimating HRV. It is possible that either a differentiable function

for calculating heart rate or HRV could be discovered, or that there exist better,

differentiable proxies of the non-differentiable heart rate and HRV functions employed
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in this work. Such discoveries could yield improvements in model performance as they

would allow for direct optimization of the model for estimating heart rate and HRV.

Finally, greater adoption of existing methods which report superior performance

to the architecture presented in this work could yield performance improvements.

Though replication of many state-of-the-art signal processing methods for heart rate

estimation is difficult, it is possible that better implementations of these proposals

exist and could improve the performance of the machine learning based approach

presented here.
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Conclusion

The development of a lightweight architecture for heart rate estimation from video

taken on smartphone cameras was the central objective of this thesis. As an added

contribution, I sought to maintain the greatest user privacy controls possible through

requiring our pipeline to consume limited computational resources. This project was

completed in collaboration with the Mood Triggers team within Professor Nicholas

Jacobson’s AIM HIGH Lab to enhance their data collection and UX with physiological

parameters such as heart rate and HRV. An Android app was developed using the

Flutter framework for testing this pipeline. Within this Flutter framework, a Python

plugin was implemented to enable the incorporation of Python code within the app.

This permitted the execution of facial recognition, signal processing, and machine

learning code within the test app. Ultimately, the system presented here consisted

of the YoloV5 facial recognition model for discovering facial ROIs for RGB channel

extraction, feature engineering, and the use of a gradient boosting regression model

implemented with XGBoost. Through testing, I discovered that our architecture

is not as accurate as other state-of-the-art methods. However, I hope that readers

find the architecture presented here more transparent and easier to replicate than

peer works in the field. There are a number of interesting avenues to explore for
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improving on the baseline performance presented here, and I hope that some of them

may enhance the ability of the Mood Triggers team to incorporate heart rate and

HRV into their psychiatric research going forward.
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