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Abstract   

While 2G biofuel production can utilize non-edible, lignocellulosic feedstocks such as 

agricultural residues to produce liquid fuel, harvesting crop residues is unsustainable 

without careful management of the soil underneath. By harvesting a fraction of the crop 

residues left in the field after harvest, soil health can diminish and critically, the soil 

organic carbon (SOC) stored in agricultural fields can decrease. Currently, in the most 

popular 2G process models published, the issue of soil degradation remains unresolved 

with residue harvest strategies receiving considerable attention in the literature and other 

SOC management strategies receiving far less. Specifically, the strategy of returning the 

high lignin fermentation byproduct (HLFB) from ethanol production to soil has been 

sparsely modelled and only tested experimentally once. Our study endeavors to expand 

on this literature by evaluating the SOC storage potential of various HLFBs and 

anaerobic digestates and comparing them to their unprocessed corn stover feedstocks 

using soil incubation experiments, isotope analysis, and simple modelling techniques. For 

both a 267-day and a 135-day incubation experiment, we measured the amount of carbon 

lost through microbial respiration and the amount of carbon remaining at the end. We 

found that in all but one case, for the same initial amounts of substrate inputs, the 

incubated digestate and HLFBs respired away less carbon and persisted longer in the soil 

than the incubated corn stover. Then, by applying multi-pool exponential decay models to 

our data, we found that the incubated corn stover respired away to completion 

substantially quicker than the biologically processed materials in our projected timespan 

of 100 years. We then approximated the steady-state SOC levels for a scenario in which 

the same bioprocessed materials were annually re-added to an incubation with our 
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preliminary results indicating that the biologically processed materials formed .95-4.8 

more SOC than their unprocessed counterparts. Emboldened by our experimental results 

and tenuously strengthened by our preliminary modelling results, we believe that our 

work supports the feasibility of returning HLFB to soil to restore SOC and opens the door 

to the increased circularity and viability of biofuels in a future low carbon economy.  
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Introduction  

This thesis endeavors to provide the beginnings of an answer to the question, “How might 

soil organic carbon be maintained while 2nd generation biofuels are produced?” While we 

do not claim to be able to answer this question definitively in this document, we hope to 

provide a preliminary investigation rooted in experimental laboratory data into this topic 

that at this point lacks considerable experimentation attention. Because this thesis was 

originally written to serve as the basis for a manuscript to be submitted to Nature 

Sustainability, the structure of this thesis still largely conforms to Nature Publishing Group 

guidelines and its readership is presumed to include a cross section of those familiar with 

biofuel production and/or the soil sciences with some overlap in between. The Background 

section is intended to inform this particular readership of basic concepts central to 

understanding the topic from each discipline’s point of view i.e. the need for bioenergy, 

processes in biofuel production, mechanisms driving SOC formation, etc.  

 

To begin this effort, we will define common terms and ideas to be referenced throughout 

this paper starting with soil organic matter (SOM) and soil organic carbon (SOC). SOM is 

defined as the fraction of soil that consists of plant or animal tissue in various stages of 

decomposition such as decomposing agricultural crop residues, while SOC refers to purely 

the amount of carbon stored within the SOM1,2. Globally, SOM contains more than three 

times the carbon stock as contained in either the atmosphere or all terrestrial vegetation3. 

Soil quality, however, is defined by the Soil Society of America as the “capacity of a 

specific kind of soil to function, within natural or managed ecosystem boundaries, to 

sustain plant and animal productivity, maintain or enhance water and air quality, and 
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support human health and habitation4.” Soil quality metrics include nutrient content, stable 

soil structure (water stable aggregates, water infiltration, gas exchange), cation exchange 

capacity, and water availability, etc5. While soil quality is not explicitly related to a specific 

SOC threshold, higher levels of SOC are often associated with increased soil quality 

metrics4,6,7. 

 

Thus, this thesis is interested in increased SOC as a desirable metric by which to evaluate 

the success of various agricultural management strategies pertinent to biofuel production. 

We define these management strategies as follows. First, in Case 1 (No-Harvest), no 

material is harvested from a field, and 100% of the crop residue left after crop harvest is 

left on the field. Farmers can chop and till the crop residue into the soil in order to 

promote decomposition prior to the next season’s planting8. A review of farmer 

educational materials suggest that this scenario is similar to what many corn farmers in 

the US practice9–11. Because corn stover, the non-edible parts of corn, is not a dependably 

profitable commodity in the US, farmers prioritize adding soil organic matter, controlling 

erosion, building soil nutrients, and controlling soil temperature — functions of crop 

residue cover — over the minimal profits they could make selling corn stover9. In Case 2 

(Harvest), 50% of crop residue left on a field is harvested for biofuel production with no 

biofuel byproduct (henceforth referred to as high lignin fermentation byproduct or 

HLFB) returned to the soil. In this case, HLFB is assumed to be either used as a coal 

substitute in an offsite power plant or burned onsite for process heat as described in 

popular 2G biofuel process models12. A 50% harvest rate is aligned with the median 

harvest percentage as suggested by a literature comparison detailed in Appendix A. In 



 3 

Case 3 (Harvest with HLFB Return), 50% of crop residue left on a field is harvested and 

accompanied by the return of the HLFB to the field as a soil amendment. We anticipate 

that this case will lead to the second most if not most amount of SOC formed (relative to 

the other cases) as the HLFB is composed of only lignified material altered during 

fermentation and microbial necromass, and will decompose slower and possibly with 

higher retention of SOC as compared to their fresh counterparts. Case 3 is of particular 

interest to our study and will be evaluated in proxy form relative to a proxy of Case 1, the 

No-Harvest scenario in which SOC should be (as aligned with the conventional wisdom 

of increased SOM leading to increased SOC) at a maximum.  

 

Our specific question answered more fully in this study is, “How much carbon is retained 

in the soil from the input of biologically processed materials like biofuel byproducts 

compared to unprocessed materials like biofuel feedstocks?” To answer this question, we 

conducted soil incubations to experimentally compare how these different residues 

decompose in soil. While this experiment does not resemble an actual field scenario per 

the inherent limitations of a bottle incubation, relative comparisons can be made amongst 

the residues. Furthermore, to attempt to analyze a closer to field scenario, we extrapolated 

our incubation results using simple models based off our incubation data. These 

extrapolations, both for a one-time input of material and an annual input scenario, 

allowed us to compare more generally how the accumulation and loss of SOC compares 

amongst residues in a more realistic space and timeframe.  

 

Regarding its value to the intersection of biofuel production and soil sciences literature, 
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this thesis offers the following: the most comprehensive material characterization 

information to date of three experimental HLFBs, the second set of experimental data ever 

collected on the carbon retention properties of HLFBs, and the first set of carbon 

partitioning data on HLFBs decomposed in soil with delineation of the effect of soil 

priming. We intend for the data provided in this thesis to serve as the robust, experimental 

accompaniment to an impending literature review published on the topic of HLFB return 

and for the conclusions this thesis draws to be informative to the ever-evolving design of 

integrated biorefineries (Appendix O). 

 

Background 

In one of the four mitigation pathways the IPCC has identified to possibly keep global 

climate change to an eventual 1.5℃ increase, the IPCC has defined a “Negative 

Emissions” scenario in which half of the future global energy supply consists of biomass 

derived energy13. The scenario is reliant on the mass deployment of traditional and new-

age biomass derived energy generation sources accompanied by carbon dioxide removal 

technologies that result in net negative global GH emissions. While this scenario does not 

strictly consider liquid lignocellulosic biofuels, researchers across the fields of renewable 

energy generation have directed increasing attention on second generation (2G) biofuel 

technology as a potentially impactful negative emission technology14–16. Unlike first 

generation (1G) biofuels, which are derived from edible food crops, 2G biofuels are 

derived from non-food sources such as dedicated energy crops or agricultural crop 

residues, generally consisting of lignocellulosic material17.  
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However, while there still is considerable interest by private and public organizations 

alike in developing 2G biofuels, no commercial 2G biofuel plants remain in operation in 

the US today due to a variety of factors including but not limited to unmet inflated 

expectations from venture capitalists and the U.S. Department of Energy alike in the 

early 2010s, nagging unsolved supply chain issues, and regulatory uncertainty such as 

with the instability of the Renewable Fuel Standard18. However, even with the gradual 

maturation of the technology since the closure of the first cellulosic-ethanol plants, critics 

of 2G biofuels have maintained that the supply chain could be inherently unsustainable as 

the removal of agricultural crop residues, one requirement of a possible supply chain (at 

least for ethanol derived from crop residues and not dedicated energy crops), can cause 

significant damage to soil quality and reduce the amount of carbon stored in the soil19–21. 

This argument is especially damaging to the proliferation of the crop residue derived 

form of 2G biofuel production as healthy soil has been well established as the foundation 

of human livelihood and the carbon stored inside the soil as the foundation of a habitable 

climate22,23. 

 

The soil organic carbon (SOC) contained in soil organic matter (SOM) is the largest 

terrestrial pool of carbon on Earth, storing three times as much carbon as the atmosphere 

directly helping to regulate the world’s climate3. The mechanisms driving SOM 

persistence and SOC sequestration by extension are still not fully understood; however, it 

is now generally accepted that molecular structure alone does not control SOM stability, 

but also a variety of biogeochemical factors and environmental conditions including, but 

not limited to, climate, moisture, depth, rhizosphere inputs, and microbial 
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communities3,24. Due to humankind’s historical agricultural land use, soils have lost a 

cumulative ~133 Pg carbon on par with estimates of carbon lost from deforestation, 

equivalent to ~17% of what our atmosphere currently holds25. Agricultural management 

practices that keep SOC underground are thus increasingly important and sought after in 

an era of globally declining soil quality and SOC stocks26. The United Nations’ “4 per 

1000” Initiative set an international goal to grow SOC stocks 0.4% annually primarily in 

highly managed agricultural soils27. If this goal is fulfilled, agricultural soils could store 

2-3 Gt carbon annually offsetting 20-35% of global anthropogenic carbon dioxide 

emissions28. Practices that retain and increase SOC stocks have been long debated in the 

agriculture literature including rotation of annual crops with perennials, increasing carbon 

input through the addition of organic matter, and no-till farming (in certain soil types and 

climactic conditions)29–32.  

 

The practice of adding inputs of organic matter to a field is particularly relevant to the 

specific form of 2G biofuel production that necessitates crop residue harvest. The same 

requirement does not necessarily apply to 2G biofuel production from dedicated energy 

crops. Since the turn of the century, there have been many studies published in the soil 

sciences literature to support the reduced harvest of crop residues on soil as a method to 

maintain soil fertility and SOC stocks in agricultural fields33–36. While the exact amount 

of crop residue left on agricultural fields to maintain healthy soil and stable SOC stock is 

still a matter of debate, generally the literature has settled on a suggested crop residue 

harvest rate range of approximately 50% to minimize soil erosion19,37–41. However, in 

regards to SOC, it has been suggested that an even higher percentage of residue needs to 
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remain on the field to offset SOC losses42. Generally, harvesting crop residues decreases 

SOC over time and requires the addition of externally produced fertilizers to maintain 

soil quality12,43,44. However, there is a convenient opportunity for circularity of SOC stock 

with the practice of returning the byproducts of 2G biofuel production to the soil20,43–45.  

 

This byproduct, termed high lignin fermented byproduct (HLFB), is the end result of 2G 

bioprocessing and is often assumed in process models to be either combusted to offset 

energy demands of production or converted into a high-value product through currently 

immature technologies 12,46,47. However, modelling work completed in 2015 showed that 

by amending soil with HLFB, SOC is not only greater relative to a harvest only (no 

HLFB return) scenario, but also greater than a non-harvest scenario43. In other terms, 

when strictly considering crop residue carbon flows, returning HLFB to the field can 

result in net positive carbon storage whereas simply harvesting crop residues may result 

in carbon losses. Additionally, accompanying modelling work completed in 2013 shows 

that on a life cycle basis, returning HLFB to the soil results in greater avoided GHGs than 

if no residue were removed due to the emissions displaced by replacing fossil fuels and 

the soil carbon stored through the application of HLFB44. While these modelling results 

show promise for HLFB transforming into increased SOC, there is a dearth of 

experimental work actually testing this hypothesis.  

 

The transformation of HLFB into persistent SOC is one of two potential fates for HLFB-

derived carbon in soils. The first fate of HLFB-derived carbon is not in the soil itself, but 

in the atmosphere in the form of respired carbon dioxide during microbial decomposition. 
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Additionally, as soil microbes consume the accessible carbon containing sugars in HLFB 

for energy, their activity can lead to the phenomenon known as soil priming whereupon 

inputs of new carbon stimulates the decomposition of old soil carbon48–50. The priming 

effect can be either positive or negative i.e. cause an increase or decrease in old SOC 

respired, respectively, with no conclusive general mechanisms attributed to its cause48,51. 

In a variety of ecosystems, the priming effect has been observed to be a relatively short-

term phenomenon that is controlled by several factors including but not limited to 

microbial community composition, SOM chemical structure, and nutrient availability51. 

The second fate of HLFB-derived carbon is to remain in the soil in the form of SOC or 

SOM. This remaining carbon is what the previously referenced models consider as stored 

SOC. This remaining carbon can become adsorbed to soil minerals where it is relatively 

protected from further decomposition through abiotic leaching or the death of microbial 

biomass52,53. Or, the HLFB-derived carbon can remain relatively untransformed, perhaps 

due to its molecular structure. Lignin, an organic polymer found in plant tissue that is in 

high concentrations in HLFB, has been historically correlated with higher amounts of 

SOC sequestration in a variety of field and laboratory experiments50,54–57. While there has 

certainly been skepticism of the role of lignin in leading or lagging SOC sequestration, 

recent studies suggest that despite the complexity of lignin fates in soil, increased 

amounts of lignin in soil can assist in SOC accumulation54,58,59. 

 

Considering the two fates of HLFB in soil, experimental work on both the laboratory and 

field scale is needed. To our knowledge, there has only been a single published study 

where an HLFB was actually added to soils and its impacts on soil carbon storage and 
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soil health were studied60. In the experiment, HLFB was applied at the same rate to soil as 

its unprocessed feedstock, corn stover. Over 112 days, the HLFB released half of the 

carbon the corn stover released and showed small but statistically significant positive 

effects on soil quality such as decreased bulk density, increased water retention, and a 

greater percentage of water-stable aggregates. Additionally, the study included a fertility 

experiment in which crops were grown in HLFB amended and non-amended soils. Plant 

growth heights were found to be similar between the two soils suggesting that the HLFB 

amendments did not negatively harm soil fertility. While this is the only study to 

experimentally test HLFB as a soil amendment, there is an abundance of literature testing 

anaerobic digestates as soil amendments, an adjacent bioprocessed material also 

coproduced from a bioenergy production process. When equal masses of digested and 

undigested agricultural residues were added to soils, several laboratory soil incubation 

studies observed that digested residues released carbon more slowly than undigested 

residues, and that added digestate led to the formation of stored SOC61–64. Exemplified by 

the results of a 2021 study analyzing the efficacy of biosolid byproducts from anaerobic 

digestion as a soil amendment, soil quality improves and carbon sequestration increases 

when bioprocessed material is added to soil relative to unprocessed residue65.  

 

Our study assesses the impact of organic matter addition on SOC with and without 2G 

biofuel specific biological processing. To expand on the sparse experimental data of 

HLFB return on soil, we incubated three more HLFBs with more documentation than 

currently presently in the literature. In total, we performed two soil incubations with the 

three HLFBs from different sources, two anaerobically digested residues, and two 



 10 

unprocessed corn stover samples. We determined their decomposition rates, effect on 

native SOC, and potential for long term carbon sequestration. Additionally, we also 

tested the effect of soil type and substrate dosage to validate our experimental 

assumptions. Finally, we performed isotope analysis to partition between soil-derived 

SOC and residue-derived SOC which allowed us to approximate the amount of soil 

priming caused by HLFB addition. We expected that the HLFBs would release less 

carbon than their unprocessed counterparts, which would lead to more carbon retained 

even with the mass lost from bioconversion accounted for. Providing experimental data 

in support of this hypothesis will be a valuable addition to the biofuel literature and 

inform a larger conclusion in support of the agricultural management strategy of 

returning HLFB to soil as a means to restore SOC lost during biofuel production.  

 

Methods 

Material Characterization 

Pre-Incubation 

We analyzed the materials used in our incubation for percent carbon, percent nitrogen, 

13C, and 15N using an Infrared Mass Spectrometer with an elemental analyzer attached 

(EA Isolink™ CNSOH IRMS System). Pre analysis, all material was dried and ground to 

fine powder on a rolling table or ball mill (Spex SamplePrep 8000M-115 Mill). For 

percent lignin and structural sugars, we sent our residue samples to the National 

Renewable Laboratory analytical team where they performed their Laboratory Analytical 

Procedure for the Determination of Structural Carbohydrates and Lignin in Biomass66. 
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Post-Incubation 

After the incubations concluded, we dried and ground a portion of our treatments for 

analysis of percent carbon, percent nitrogen, and 13C following the same pre-incubation 

protocol. Additionally, we performed chloroform fumigations and potassium extractions 

on the non-dried portions of treatments to quantify microbial biomass carbon and 

nitrogen using an organic carbon analyzer (GE Sievers 900 Series Laboratory TOC 

Analyzer) and Lachat auto-analyzer. Results from these tests are not discussed further in 

this thesis but are included in Appendix B. 

 

Soil Incubations 

In our study, we tested the effect of two distinct soil types with contrasting amounts of 

organic matter. For both incubations, we added substrates to Palouse soil, a fine-silty, 

mixed, superactive, mesic Pachic Ultic Haploxerolls that had previously grown wheat in 

Pullman, Washington (USDA-ARS Palouse Conservation Farm). This soil had received 

inputs exclusively from C3 plant material and had not received to our knowledge any 

input of animal manure. For Incubation one only, we also added substrates to Vershire 

soil, a coarse-loamy, mixed, active, frigid Humic Dystrudepts that had previously been 

used for grazing in Vershire, Vermont. To our best knowledge, the soil had been multi-

use and certainly received inputs of animal manure. More information on the soils used in 

this study can be found in Appendix M.  

 

Two soil incubations experiments were conducted that spanned 267 and 135 days (any 

ranges given throughout the Methods section reflect slight differences in the two 
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incubations’ experimental conditions). Incubation experiments entail the careful 

maintenance of standardized conditions and monitoring of a variety of experimental units 

and controls throughout the study’s span. Each experimental unit, referred to as 

“treatment” going forward, consisted of a portion of wet soil and a portion of substrate. 

The treatments were kept in plastic sample cups and placed inside pint sized mason jars 

sealed with an airtight lid and stopcock valve. Gas measurements for determining CO2 

concentrations were taken using 60 mL syringes that drew from the stopcock valves. The 

experimental conditions across both incubations varied slightly as seen in Table 1. Per a 

preliminary incubation conducted in preparation of this study, we found particle size 

(within a .50-8.5 mm range) to have a non-significant effect on decomposition rates 

(Appendix C) 67. 
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Condition Incubation 1 Incubation 2 

Temperature 22 °C 25 °C 

Light Off Off 

Moisture 90% FC (Palouse:  FC = 23.9%; 
Vershire: 35.5%) 

90% FC (Palouse:  FC = 23.9%) 

Dryness of Amendments Dried in oven Dried in oven 

Water Refill Refilled water weekly Refilled water once a week (last 
measurement of the week), eventually 
once every two weeks 

Amendment to Soil 
Ratio 

1.5g residue to 37.5g soil 1.5g residue to 37.5g soil and 0.75g 
residue to 37.5 g soil 

Replicate Number 4 replicates per treatment except for 
AD1 treatments with 3 replicates 

3 replicates per treatment 

Timeframe 135 days 267 days 

Stopcock Valves Closed in between measurements Open in between measurements 

Table 1: Incubation conditions and differences. FC stands for field capacity, the amount 

of water a soil can hold without draining.  

Substrates were dried, milled, and incubated with soil in individual jars in a mass ratio of 

2:50, substrate to dry soil. By varying experimental parameters, we tested the effect of 

treatment, soil type, and substrate dosage on carbon respired by the treatment, fraction of 

carbon retained by the substrate, and fraction of carbon retained by the soil within the 

span of the incubation.  

 

Preincubation 

To build up a steady microbial population after rewetting dried soils (Palouse) or 

adjusting the water content of field moist soils (Vershire), we pre-incubated our 

incubation jars for 10 days for the Palouse soil and 3 days for the Vershire soil before 

adding the substrate of interest. The soil was moistened to the appropriate water content 
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before preincubation and water was added to account for loss after preincubation. 

Afterwards, each treatment’s residue portion was mixed into the individual soil sample 

thoroughly by hand with a scoopula until the treatment appeared homogenously mixed.  

 

Incubation Conditions 

Incubations were conducted in a Thermo Scientific™ Precision™ Low Temperature 

BOD Refrigerated Incubator maintained at 22 and 25 °C for Incubations one and two, 

respectively. Soil moisture was maintained at 20% gravitational water content for Palouse 

soil samples and 32% for Vershire. This water content represents 90% of each soil’s field 

capacity. We added deionized water to each jar weekly by weight to stay within 10% of 

the original water content.  

 

Measurements and Calculations 

We measured CO2 concentrations in the jar headspace regularly, transitioning from a 

twice-a-day to a weekly to a biweekly schedule as the incubations progressed and 

microbial activity slowed. We sampled 30 mL of air from the headspace of each jar and 

ran that air through an infrared gas analyzer (IRGA; PP Systems EGM-5, Amesbury, 

Massachusetts). From our concentration measurements of time 0 and time 1 and using the 

ideal gas law to convert ppm CO2 to grams C, we calculated the flux of carbon respired 

(mg/day) for each sampling interval. Then, we performed a trapezoidal Riemann sum 

integration to estimate the cumulative amount of carbon respired by day (mg) in between 

sampling times. Graphs showing both carbon flux and cumulative carbon respired for 

each incubation can be found in Appendix D. The data for making these graphs can be 
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found in Appendix Q. Additionally, the raw data consisting of IRGA measurements can 

also be found in the Hicks Pries Lab Github.  

  

Additionally, we conducted isotopic analyses on our treatments pre and post incubation 

using an Infrared Mass Spectrometer with an elemental analyzer attached (EA Isolink™ 

CNSOH IRMS System). We analyzed the materials for percent carbon, percent nitrogen, 

13C, and 15N. This allowed us to partition between residue-derived carbon and soil-

derived carbon losses in our residue containing treatments. Using our 13C measurements 

and the following equations, we can find, 𝑓𝑟𝑎𝑐!"#$%&", or the fraction of total carbon 

derived from the residue. Correspondingly, 𝑓𝑟𝑎𝑐#'$( can be solved for which represents 

the fraction of total carbon derived from the soil. The data and calculations for this 

analysis can be found in the Hicks Pries Lab Github and in Appendix P.  

𝑓𝑟𝑎𝑐!"#$%&" 	=
13𝐶)$*,,'#-.$/0 − 13𝐶#'$(,,!".$/0
13𝐶!"#$%&",,!".$/0 − 13𝐶#'$(,,!".$/0

 

1 = 	𝑓𝑟𝑎𝑐𝑟𝑒𝑠𝑖𝑑𝑢𝑒 + 𝑓𝑟𝑎𝑐𝑠𝑜𝑖𝑙 

From this partitioning work, priming can be calculated. Soil priming is defined in this 

study as the difference between soil-derived carbon loss from a substrate containing 

treatment and soil-derived carbon loss from a comparable soil control pre and post 

incubation. Notably, there can be both positive and negative soil priming with positive 

priming meaning carbon loss of soil is stimulated by the addition of organic matter input 

while negative priming meaning that the addition of residue reduced the decomposition 

of soil carbon. 
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Statistics 

We performed various statistical analyses on our study data including 2-way and 1-way 

ANOVAs, Tukey Honest Significant Differences (HSD) tests, and paired T-tests. To 

investigate significant differences amongst treatments in various metrics including carbon 

respired and partitioned carbon losses, we used the baseR functions aov, Anova (Type 

III), and TukeyHSD68. To investigate differences amongst our incubation conditions 

including open and closed valves, soil controls, and a shared treatment between 

Incubation one and two, we used the baseR function t.test. We looked at the outputted p 

values to identify significant differences with p < .05 considered significant and ran a 

Tukey HSD posthoc test to determine significant differences between pairs of treatments. 

Appendix L and the Hicks Pries Lab Github contains the code we used for our statistical 

analyses. 

 

Modelling 

One-Time Input Modelling 

We fit a variety of multi-pool models to our experimentally derived cumulative carbon 

respired data for our various treatments. The one-time input we reference here refers to 

the initial amount of carbon in our incubations consisting of soil and a portion of 

substrate. We utilized the SoilR package which contained built in functions and models to 

both fit and extrapolate our data69. We tested models with two-pool structures with the 

pools representing conceptual fractions of carbon that decompose at distinct rates (fast 

and slow). Two-pool models included both a series structure where a portion of the fast 

pool is transferred to the slow pool and a parallel structure where the pools decomposed 
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independently.  The models partition carbon into the pools, agnostic to the ratio of 

substrate to soil carbon in our incubations. Based on the R2 values (how well the model 

fit our data) for the various models, we chose to apply the two-pool parallel model to the 

soil controls and the two-pool series model to the substrate-containing treatments. The 

estimated best-fit parameters and R2 values can be found in Appendix E. We used those 

parameters to project the amount of residue carbon remaining in the soil up to 100-year 

timespans.  

 

Generally, in the SoilR package, two-pool models take the form:  

𝑑𝐶
𝑑𝑡 = 𝐼(𝑡) + 𝐴 ∗ 𝐶(𝑡) = 𝐴 ∗ 𝐶(𝑡) 

 
where C(t) is a 2x1 vector of carbon stores in two pools at a given time t and I(t) is a 

time-dependent column vector describing the amount of input to each pool. For our 

analysis, we assumed I(t) = 0 as there were no extra inputs beyond the initial input of soil 

and substrate carbon present in our incubations. This simplifies the solution to the 

previous equation to:  

𝐶(𝑡) = 𝐶9 ∗ 𝑒:(-.-!) 
 

Gamma, 𝛾, which is included in our parameter tables in Appendix E represents the 

partitioning of 𝐶9 into two pools with 𝐶-'-=( being experimentally determined by our 

IRMS analysis detailed in Appendix P. 

𝐶9 = 𝐶-'-=( ∗ 5
𝛾

1 − 𝛾6 

A is a 2x2 square matrix containing decomposition rates for each pool and transfer 

coefficients between each pool. For the two-pool parallel model, A has the form: 
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𝐴 = 5−𝑘> 0
0 −𝑘?

6 

For the two-pool series model, A has the form: 

𝐴 = 5
−𝑘> 0
𝛼?,> −𝑘?

6 

We fit the models to our data using the modFit function in SoilR which performs a 

Nelder-Mead optimization to find best-fit parameters. Then, we reran the models to 

extrapolate our data into longer time series using the getAccumulatedRelease function on 

the TwopParallelModel and TwopSeriesModel statements we wrote. To reiterate, we 

chose to apply the two-pool parallel model to the soil controls and the two-pool series 

model to the substrate-containing treatments. The code used to accomplish the modelling 

described here can be found in Appendix F and in the Soil Incubation repository in the 

Hicks-Pries Lab GitHub. 	

 

Annual Input Steady State Modelling 

We additively combined our one-time input modelling results to project long-term steady 

state values of carbon retained in our treatments in which the initial amount of substrate 

carbon present in the treatment is added to the soil every year for 100 years. This effort 

imitates a simple bioenergy cropping scenario in which organic matter is added to soil 

every year after crop residue harvest. We estimated the average steady state amount of 

residue-derived carbon present and quantitatively compared these results amongst our 

treatments. Our primary assumptions are that soil priming has little to no effect on 100-

year scale projections, that the original soil-derived carbon will degrade to a point 

approaching zero despite new additions of organic material, and that the residue dosage 
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does not affect the values of the modeled parameters. For computing efficiency, we 

modelled the treatments using a timespan of 100 years with one fifth year time step. 

Since the model fitted parameters reflect experimental scenarios and are unable to 

differentiate between soil- or substrate-derived carbon, we isolated the substrate by 

subtracting the modeled soil control projections from the modeled substrate-containing 

treatment projections. From that result, we calculated the amount of carbon retained at 

any time step by subtracting the cumulative carbon respired from the cumulative carbon 

added. The calculations used to produce the work described here is shown in Appendix G 

and can be found in the Incubation Modelling repository in the Hicks Pries Lab Github.  

 

Results 

Preparation of High Lignin Fermentation Byproduct 

We sourced five biologically processed residues prepared at lab, pilot, and industrial 

scale operations for our soil incubation experiments. We used corn stover derived 

materials because corn stover is considered the most abundant crop residue for 2G 

biofuel production in the US70. Corn stover from the leading U.S. biofuel producing 

company, POET, was subject to either anaerobic digestion or a dilute-acid steam 

explosion (DASE) pretreatment, saccharification, and fermentation aligned with 

lignocellulosic liquid biofuel production protocols unique to each preparer. Hereafter, we 

refer to residues prepared via anaerobic digestion as digestate, and residues prepared via 

DASE as HLFB. Details on the preparation of each residue can be found in Table 2.  
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*Project Liberty preparation details are documented in Martin et al. 2021.71 
 
Table 2. Biologically processed residues in this study with relevant preparation details. 

Mass yield refers to the ratio of dried HLFB produced from dried feedstock. Any 

information not included in the table is due to a lack of documentation.  CS1 and CS2 

refer to the two different corn stover feedstocks used to produce HLFB1 and HLFB2, 

which were incubated alongside the HLFB treatments.  

 

The three HLFBs (HLFB1, HLFB2, HLFB3) were intentionally sourced from a variety of 

operational scales to reflect how diverse residues result from similar DASE protocols in 

the evolving lignocellulosic biofuel industry. We were interested specifically in residues 

produced via DASE pretreatment as NREL has consistently included dilute acid 

pretreatment in its reports on the state-of-the-art process design and economics of 

integrated biorefinery pathways12,72,73. We included anaerobic digestates in our study as 

there is sufficient literature supporting anaerobic digestate’s promise as a carbon storing 
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soil amendment5163,65,74,75.  To understand the material characteristics of the biofuel 

byproducts and to address the 2G biofuel space’s dearth of information on HLFBs, we 

determined the composition of these residues following the methods described in 

Methods (Table 3). Despite the HLFBs undergoing technically similar bioconversion 

processes, the resulting materials varied considerably in our metrics of interest: C:N, 

lignin:N and average total sugar concentrations. 

 

All of the bioprocessed materials save for HLB3 were produced from dried corn stover 

(CS1, CS2) that we incubated in conjunction with the biologically processed residues. 

Corn stover includes all the non-edible aerial parts of the maize plant including cobs, 

husks, leaves, and stalks left after crop harvesting. Thus, there can be considerable 

variability in feedstock carbohydrate levels, which affect the maximum theoretical 

biofuels yield, optimum pretreatment, saccharification conditions, and ultimately, the 

composition of the residues76. Importantly, the majority of the fermentable sugars in corn 

stover are shielded by enzyme resistant carbohydrate-lignin linkages, which are targeted 

for breakdown by various modern pretreatment processes77. Amongst our samples, corn 

stover contained two to three times more structural sugars and two to three times less 

lignin by mass fraction compared to its processed counterparts. Thus, lignin is left 

primarily inert through biochemical conversion as referenced by the term, HLFB.  
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*Analysis of Lignin and Structural Sugars for HLFB2 only contained 1 replicate and therefore standard error for those tests is not included for HLFB2. 
**Corn stover used to produce HLFB3 was not incubated in this study as the HLFB was leftover from Project Liberty and the original feedstock was unavailable. 
1Carbon and nitrogen content of the samples were measured at Dartmouth College in the Hicks Pries Lab using an EA Isolink™ CNSOH IRMS System.  
2Lignin content and structural sugar content were analyzed at NREL following their Laboratory Analytical Procedure for the Determination of Structural 
Carbohydrates and Lignin in Biomass66. 
3General solubilization was calculated from the respective mass yields and %C information presented. General solubilization is defined here as  
%𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 	1 − 	𝑚𝑎𝑠𝑠	𝑦𝑖𝑒𝑙𝑑 ∗ 	%#	%&'%()*(+

%#	,++-%(./0
 

 
Table 3: Material characteristics of the various residues. General solubilization is an analog for biological degradation with greater 

solubilization equaling greater amount of biological degradation. Standard error is represented in parentheticals next to mean values 

with three to four replicates analyzed for Carbon and Nitrogen tests and two replicates for Lignin and Structural Sugars analysis.  
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Despite being prepared in the same bioreactors, AD1 and AD2 differed significantly in 

their material characteristics due to AD1’s double amount of residence time and 

corresponding biological degradation. Despite this difference, the amount of lignin in the 

material is comparable. Relatedly, dilute acid steam explosion is sometimes used a 

pretreatment for anaerobic digestion as the physical attack on plant cell walls makes the 

fermentable sugars bound in lignin more easily accessible78.  

 

Comparison of Carbon Retention of HLFBs Using Soil Incubation Data and Isotope 

Analysis 

The HLFBs, digestate, and corresponding corn stover feedstock were incubated with soil 

as part of either a 267-day (Incubation one) or 135-day (Incubation two) experiment. The 

incubation results showed the expected exponential decay of C production over time of 

the treatments (Appendix D).  
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Table 4: Carbon respired across various treatments and incubation-condition groups. 

Isotope analysis was performed at the end of each incubation to differentiate between 

losses in soil derived carbon and residue derived carbon as shown in the Residue, % C 

Respired Out of Initial columns. Since Incubation one lasted for a total of 267 days, 

carbon partitioning data was unavailable for the 135-day case though amount of 

cumulative carbon until this point was calculatable and displayed.  Results are to be 

compared with respect to the other treatments within their own incubation-condition 

group and not across different incubation-condition groups. Reduced dosage treatments 

are treatments incubated with half the residue dosage of other (i.e., in a ratio of .75 g 

residue to 37.5 g soil versus the standard dosage of 1.5 g residue to 37.5 g soil). 

 

Across the four incubation-condition groups (i.e., a group of treatments defined by the 

same soil type, incubation, and dosage), corn stover treatments consistently released the 

most carbon (5-7 times more than the soil control) relative to all other treatments within 

the group (Table 4). This was true regardless of differences in timeframe, dosage, or soil 
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type across the four groups. From graphs of the carbon respired by treatments over time, 

the corn stover treatments had the highest initial slope and most delayed approach to an 

asymptote if an asymptote was approached at all (Appendix D). Our separate two-way 

ANOVAs of Incubation one and Incubation two showed that different substrates had a 

significant effect on the amount of carbon respired (two-way ANOVA, Incubation one 

substrate effect, df = 4, p << 0.05; Incubation two substrate effect, df = 2, p <<0.05). Soil 

type did not have a significant effect in Incubation one on the amount of carbon respired 

(two-way ANOVA, soil effect, df = 1, p = 0.78). Dosage, on the other hand, had a 

significant effect on amount of carbon respired in Incubation two (two-way ANOVA, 

dosage effect, df = 1, p << 0.05), but the effect was not directly proportional. On average, 

a two-fold increase in dosage translated to a 160 ± 8% increase in amount of carbon 

respired across AD2, HLFB2, and HLFB3 (Appendix H).  
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Figure 1: The amount of soil and residue derived carbon contained in treatments pre and 

post incubation. We used isotope analysis to partition the amounts of carbon between 

residue and soil pre and post incubation for the various treatments. The stacked bars 

represent the amount of carbon in treatments partitioned by source of carbon (i.e., soil 

derived carbon versus residue derived carbon). In each box, the left bar represents the 

total carbon in treatment pre incubation, and the right bar represents the total carbon in 

treatment post incubation. The top boxed figure shows Incubation one data, while the 

bottom boxed figure shows Incubation two data.  
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Isotope analysis of the treatments pre and post incubations revealed how soil-derived and 

residue-derived carbon transformed throughout the incubations (Figure 1). Generally, 

losses in total treatment carbon from our incubation treatments were primarily losses of 

residue-derived carbon with the amount of residue carbon lost being sometimes as great 

as 291 times larger than soil-derived carbon losses for a given treatment (Appendix I and 

J). For every comparable incubation-condition group, corn stover lost the most residue-

derived carbon. Our statistical analyses of the carbon remaining showed that the effect of 

substrate type on differences in remaining residue-derived carbon were always significant 

(two-way ANOVA, Incubation one substrate effect, df = 2, p << 0.05; Incubation two 

substrate effect, df = 3, p << 0.05) but not always for differences in soil-derived carbon 

(Appendix K and L).  

 

For Palouse soils in Incubation one, substrate effect was significant on soil-derived 

carbon losses between CS1 and both AD1 and HLFB1 respectively (two-way ANOVA, 

treatment effect, df = 2, p << .05 with CS1 = 67 mg C, AD1 = 25 mg C, and HLFB1 = 34 

mg C). For Vershire soils in Incubation one, substrate effect was not significant save for 

the comparison between CS1 and AD1 (two-way ANOVA, df = 2, p = .66 with CS1 = 60 

mg C, AD1 = 42 mg C, and HLFB1 = 169 mg C). For Incubation two standard dosage 

treatments, substrate effect was not significant on the group’s soil-derived carbon losses 

(two-way ANOVA, treatment effect, df = 3, p = 0.06). For Incubation two reduced 

dosage treatments, substrate effect on soil-derived losses were significant (two-way 
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ANOVA, treatment effect, df = 3, p << 0.05 with CS2 = mg C, AD2 = mg C, HLFB2 = 

mg C, HLFB3 = mg C).  

 

 
 
Figure 2: Soil priming across the incubations. Soil priming is the difference between the 

loss of soil-derived carbon from a substrate containing treatment and the loss of soil-

derived carbon from a comparable soil control. Both positive and negative soil priming 

can occur. Boxed figures show results for different Incubations and conditions.  

 

Drawing from the soil-derived carbon loss data, we found the effect of soil priming for 

our treatments to be much smaller than total soil-derived carbon losses relative to 

residue-derived carbon losses (Figure 2). Soil priming is defined in this study as the 

difference between soil-derived carbon loss from a substrate containing treatment and 
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soil-derived carbon loss from a comparable soil control pre and post incubation. Notably, 

there can be both positive and negative soil priming with positive priming meaning 

carbon loss of soil is stimulated by the addition of organic matter input while negative 

priming meaning that the addition of residue reduced the decomposition of soil carbon. 

Incubation one treatments only exhibited positive priming while Incubation two 

treatments only exhibited negative priming perhaps due to the very different timespans 

the incubations occurred in. Due to both measurement sensitivity errors using the IRMS 

when measuring the Vershire soil controls and the inherent error introduced by using the 

Vershire soil, a soil that was not rigorously controlled for foreign 13C sources, priming 

for the Vershire treatments could not be quantified. Incubation two treatments which only 

contained Palouse soils varied in magnitudes of priming across the dosages except for 

AD2 treatments, which caused similar amounts of priming (-56 mg C for Reduced and -

64 mg C for Standard). Because of this study’s definition of priming as the difference 

between the soil-derived carbon loss of a residue containing treatment and a soil control, 

the statistical differences within incubation-condition groups i.e. Incubation one Palouse 

treatments or Incubation two standard dosage treatments, are the same as compared to the 

statistical differences of the other soil-derived carbon losses (Appendix L).   

 

Modelling One-Time Inputs and Steady State SOC Scenarios of Byproduct Return 

To extrapolate beyond the timescales of our incubation, we fit multi-pool models to the 

carbon respired data from our incubations. Essentially, we extended the lengths of our 

incubations indefinitely and compared both the time elapsed for the treatments to respire 

fully away and the magnitude of their respective carbon loss. Because we applied the 
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two-pool series structure to each residue containing treatment, we could compare carbon 

fates by treatment within incubation-condition groups. Additionally, we compared carbon 

fates by treatment after accounting for bioconversion losses (i.e., carbon fates of reduced 

mass inputs of anaerobic digestate and HLFBs as compared to corn stover). We found 

that in every incubation-condition group containing corn stover, the corn stover treatment 

respired away the quickest (Figure 3).  

 

 



 31 

 
 
Figure 3: One-time input modelling of various treatments in different incubation-condition 

groups. The graphs represent projections of our incubation data, essentially showing how 

carbon is respired indefinitely. P and V refer to the differing soil types of Palouse and 

Vershire respectively. S and R refer to the differing dosages of residue to soil, termed 

standard and reduced respectively. Asterisk labelled graphs represent results from 

adjusted mass inputs reflecting bioconversion mass yields of 50% for anaerobic digestion 

and 35% for HLFBs. The y-axis represents the amount of carbon respired as a function of 

time. The same model structure was applied to each treatment thus allowing for careful 

comparison within incubation-condition groups. The graphs reflect projections with 

timesteps of .20 years and manual corrections for any model overshooting as shown by the 

sharp transition to plateaus among the Incubation two graphs.  
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For both Incubations one and two, corn stover treatments showed an immediate release in 

carbon much faster than the comparable bioprocessed residue containing treatments. For 

Palouse soils in Incubation one with and without bioconversion accounted for, the corn 

stover treatment released 90% of its total carbon by year 5 as opposed to AD1, which 

reached this state at 14.2 years and HLFB1 at 16 years (Figure 3, 1P and 1P*). For 

Vershire soils in Incubation one with and without bioconversion, the trends were similar 

with CS1 reaching 90% release by 9.6 years, AD1 by 16 years, and HLFB1 by 27.2 years 

(Figure 3, 1V and 1V*. For Incubation 2 with reduced dosages, CS2 was the quickest to 

achieve 90% release by far at .80 years, HLFB2 at 4.4 years, AD2 at 8.4 years, and 

HLFB3 at 13.6 years (Figure 3, 2R and 2R*). Finally, for Incubation two with standard 

dosages where there was no CS treatment to compare to, comparisons amongst the three 

HLFBs showed HLFB2 achieving 90% release by year 4, AD2 by year 7, HLFB1 by year 

7.4, and HLFB3 by year 14.4 (Figure 3, 2S and 2S*). Once conversion yields (100% for 

corn stover, 50% for anaerobic digestate, and 35% for HLFB) were considered in our 

projections, we found that the magnitude of carbon respired by the corn stover treatments 

relative to the other treatments was especially pronounced (see Figure 3 plots 1P*, 1V*, 

and 2R*). Since the two-pool series model predicts that the total initial carbon is 

eventually completely respired, the greater magnitude corn stover carbon loss is not 

unexpected. However, due to its exceptionally high rates of carbon release, this modeling 

shows that corn stover does not retain carbon in the same way as its biologically 

processed counterparts. 
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Figure 4: Steady state levels of carbon in treatment from annual inputs. Organic inputs, 

equal to the Figure 3 * plots (i.e., bioconversion yield adjusted mass inputs) were 

modelled to be annually readded to the treatments. These annual input graphs represent 

a simple, bioenergy cropping scenario in which continuous carbon accumulation and 

respiration reach differing steady state levels that can be compared amongst substrates. 

Additionally, instead of carbon released, the y-axis shows the amount of carbon retained 

by the treatments with higher curves indicating more carbon retained within the 

treatment. To reduce the noisiness of the graph, geom_smooth from the ggplot2 package 

was used to plot these values79. Like the Figure 3 naming scheme, Incubation one graphs 

differ by soil type with 1P* = Palouse and 1V* = Vershire soil types respectively. 
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Incubation two graphs differ by dosage with 2S* = Standard dosage while 2R* = 

Reduced dosage.  

 

Using our one-time input modelling data, we calculated the steady state carbon levels in 

our treatments in 100-year time scales imitating a bioenergy cropping scenario in which 

organic matter is added to the soil on a yearly basis. From our steady state modelling 

results, we found that all the biologically processed residues tested except HLFB2 formed 

more steady state carbon than corn stover in every comparable incubation-condition 

group. Because the one-time input models of corn stover projected especially fast 

releases of carbon, despite higher amounts of initial carbon, at steady state, corn stover 

did not accumulate as much carbon as other materials. While bioprocessed materials 

added less initial carbon to the soil relative to corn stover, when conversion yields were 

accounted for, their slower decay allowed for higher soil carbon accumulation. 

 

Group Treatment 

Steady 
State 

Carbon 
(mg) 

SSres / SSCS 

INC1, 
Palouse, 
Standard 

CS1 513 1.0 
AD1 642 1.3 

HLFB1 732 1.4 
INC1, 

Vershire, 
Standard 

CS1 651 1.0 
AD1 747 1.1 

HLFB1 3151 4.8 

INC2, 
Palouse, 
Reduced  

CS2 65 1.0 
AD2 93 1.4 

HLFB2 62 .95 
HLFB3 195 3.0 

 
Table 5: Ratios of steady state carbon formation of biologically processed residues to 

corn stover while considering reduced mass inputs of residues. Steady state carbon 

values were extracted from Figure 2 at time approaching 100 years.  
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By comparing the ratios of steady state carbon formed from processed residue input to 

unprocessed input material, we found that the processed residues formed more steady 

state carbon than corn stover in every comparison except HLFB2 (Table 5). For the other 

materials, we found that this ratio ranged from 1.1 to 1.3 for AD1, 1.4 to 4.8 for HLFB1, 

and were 1.4 for AD2 and 3.0 for HLFB3 respectively (Table 5). HLFB2 was estimated 

to form approximately 95% of the steady state carbon formed by corn stover due to both 

its rate of decomposition being the closest to corn stover (4.4 years for HFLB2 vs 0.80 

years for CS2, Figure 4) combined with its relatively smaller carbon input after 

bioconversion. Pre-bioconversion adjustment, HLFB2 contained slightly more carbon 

than corn stover, (373 mg carbon for HLFB2 vs. 343 mg carbon for CS2, Table 2). 

However, by adjusting for the requisite 35% conversion yield, this effect was negated.  

 

Discussion 

Our incubation results join Johnson et al. (2007) as the second empirical soil experiments 

ever conducted with HLFBs60. While we both performed controlled, laboratory-scale, 

multi-day soil incubation experiments with HLFB, the scope and focus of our study 

differed. Conducting our study over 15 years after Johnson et al. allowed us access to 

higher quality HLFBs (i.e., HLFBs that had more rigorous documentation on their 

preparation and more reflective of the current state of the art of lignocellulosic biofuel 

production). Consequently, we tested three HLFBs as opposed to one enabling us to 

derive some generalized relationships between material characteristics of HLFB and 

carbon retention metrics (Figure 5). Since our focus was to specifically compare SOC 
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formation potential between HLFB and unprocessed feedstock, our efforts went towards 

quantifying and partitioning the carbon retained in our treatments whereas Johnson et al. 

focused on quantifying and qualifying the various soil quality metrics that changed in 

their treatments. Though we did not explicitly measure their metrics of interests, which 

included changes in bulk density, water retention characteristics, humic acid 

concentration, and water-stable aggregates percentage; we offer that the higher SOC 

formation potential we identified (relative to corn stover) for the HLFB’s is strongly and 

positively associated with these soil quality metrics4,6,80. While we cannot make a direct 

comparison to Johnson et al.’s carbon released results considering we tested different 

incubation conditions and application rates, as a rudimentary comparison, we can look at 

the ratio of carbon respired by the corn stover to carbon respired by the HLFB for both 

their data and ours. For Johnson et al.’s 112 day incubation where they incubated both 

HLFB and corn stover at the same application rate of 1.0 kg material per m2 soil, the ratio 

of carbon respired by corn stover to HLFB was 1.43-1.54. For the most apt comparison, 

we can look to the most similar HLFB we tested, HLFB2 (C:N = 39 and lignin:N = 43), 

which was most similar to the Johnson et al. HLFB (C:N = 30 and lignin:N = 30) and was 

also produced at NREL. Taking our HLFB2 incubation results at day 112 resulted in a 

ratio of carbon respired by corn stover to HLFB equaled 1.46, within the range of 

Johnson et al. (Appendix N). Overall, our results strengthen Johnson et al.’s conclusions. 

Applying HLFB as a land amendment to soil may increase SOC and enhance positive soil 

qualities relative to a base case of leaving corn stover on the field.  

 

This potential is explored in depth in a soon to be published manuscript by authors 
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affiliated with this study81. This manuscript, to be published in 2023 as a literature review 

about HLFB return, defines a new and specific metric for steady state SOC formation 

potential (Appendix O). Specifically of interest is the quantity 𝑌0𝜀 where 𝑌0 represents 

the conversion yield of a bioprocessed residue (i.e., 0.35 for HLFB) and 𝜀 represents the 

relative efficiency of steady-state SOC formation per standardized unit of input from soil-

applied organic matter for the No-Harvest and Harvest with HLFB Return cases. 

Applying the results of this thesis to this framework, we find that our SSres / SSCS parameter 

(Table 5) effectively equals 𝑌0𝜀. Since we calculated SSres / SSCS from annual-input 

modelling scenarios that factor in bioconversion yields, the case of No-Harvest is 

represented by SSCS and Harvest with HLFB Return is represented by SSres. Taken 

together, Table 5 offers multiple values for 𝑌0𝜀 given varying soil types and conditions. 

We hope that further research can be conducted in this intersection of new theory and 

experimental data.  

 

Priming, while observed in our experiments, is not satisfyingly and conclusively 

quantified in this study. Between Incubation one and two, priming in our incubations 

does not appear to follow any consistent trends beyond being positive for Incubation one 

treatments and negative for Incubation two treatments. However, even this difference is 

not conclusive as AD1, CS2, and HLFB2 are within one standard deviation of being 

either positive or negative. Additionally, a key difference between the two treatments is 

the length of the incubations with Incubation two being almost twice as long as 

Incubation one (267 days versus 135 days). This temporal difference could explain the 

apparent difference in priming effect between the incubations49. We offer both a process-



 38 

based and mechanistic explanation. Process wise, since we calculated priming by 

subtracting out the carbon respired from the soil control at the end of each incubation, 

Incubation one may have exhibited positive priming only because of the averaging effect 

inherent in a longer incubation. The longer the incubation, the less weight the initial 

short-term acceleration or retardation in microbial activity caused by priming has on the 

overall amount of carbon respired as the residue containing treatments released much 

larger magnitudes of carbon in comparison to the soil controls. The opposite effect could 

then be applied to Incubation two. Since Incubation two was half as short as Incubation 

one, the effect of soil priming could have been more pronounced and apparent especially 

from our simple calculation. Mechanistically, Incubation’s two negative priming can also 

be explained by microbes experiencing preferential substrate utilization in which 

microbes switch from consuming poorly degradable SOM to more easily decomposable 

organic matter input, slowing their decomposition of the original SOM51. Over time, as 

the new input is consumed, the larger population of microbes may switch back to the 

original SOM or start mining the original organic matter for nutrients. Overall, while we 

have approximated the priming effect for our treatments, we are unable to conclusively 

comment on how exactly priming may work with other HLFBs. 

 

Relative to low lignin organic matter inputs, high lignin inputs have been shown to be 

associated with less soil-derived carbon loss and more residue-derived loss50. This is 

supported by our results in both Incubations one and two where positive priming is 

greatest and negative priming is smallest for the low lignin corn stover, respectively. In 

both cases, corn stover exhibits more soil-derived carbon loss than the comparable 
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bioprocessed materials. Higher amounts of positive priming / lower amounts of lower 

negative priming for corn stover support the hypothesis that bioprocessed materials retain 

more carbon than their unprocessed counterparts overall. In future research, we would 

hope to more certainly ascertain the effect of priming with more rigorous isotopic 

analysis throughout the incubation and not just at the beginning and end. 

 

 
Figure 5: Correlations of residue C:N, percentage lignin, and percentage solubilization 

versus percentage of total carbon respired in each treatment from our incubations. 

Decreased C:N, increased lignin content, and increased solubilization are analogous to 

increased amounts of bioprocessing. 

 

As an outcome of the biofuel production process, bioprocessed materials are essentially 

pre-decomposed relative to their input in the soil. Thus, upon addition to soil, 

bioprocessed materials tend to decompose at a slower rate than fresh residues or 

unprocessed material and may possibly retain more carbon by mass percentage. This is 

true especially in the beginning stages of decomposition as shown by our one-time input 

projections whereupon corn stover released its carbon the quickest in every comparable 

incubation-condition group. Decreased C:N, increased lignin percentage, and increased 

solubilization rates are analogous to increased amounts of bioprocessing or effectively, 
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pre-decomposition. Plotting these metrics relative to percent carbon retained, we found 

that our hypothesis that increased amounts of pre-decomposition may correlate with 

increased amounts of carbon retained (Figure 5). However, we acknowledge that our 

correlations, especially for the solubilization graph, may be dominated by the cluster of 

corn stover data and thus, is not a definitive correlative relationship. We include these 

preliminary correlations not for their conclusive, inherent value, but because we believe 

this data may inform future research diretions on SOC formation of HLFBs as future 

HLFBs will vary in these plotted metrics and may be contextualized by the generalized 

relationships presented here.  

 

Conclusions and Future Work 

Supported by multiple lines of evidence – incubation data, short-and-long term 

modelling, and partitioning data – at a minimum, our results indicate that returning the 

same amount by mass of biologically processed material to soil leads to increased 

amounts of carbon retained in soil as compared to unprocessed material. Taken further, 

we estimate that returning even a reduced amount of mass reflective of bioconversion 

yields would still lead at least similar amounts of carbon retained in soil as compared to 

full amounts of unprocessed material. We find that in all but one incubation-condition 

group, the digestate and HLFBs respire less carbon, store more carbon, and persist longer 

in the soil. 
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Soil 
Incubation 

Isotope 
Analysis 

One-Time Input 
Modelling 

Steady 
State 

Modelling 

Incubation 
Condition Substrate 

%C 
Retained 
(end of 

incubation) 

%C 
Retained of 
Residue C 

(end of 
incubation)  

Slowest to 
Respire 
Away 

Completely 

Slowest to 
Respire 
Away 

Completely 
(with 

conversion) 

Highest 
Steady 

State SOC 

1  
(Palouse Soil, 

Standard 
Dosage) 

CS1 3 3 3 3 3 

AD1 2 1 2 1 2 

HLFB1 1 2 1 2 1 

1  
(Vershire Soil, 

Standard 
Dosage) 

CS1 3 3 3 3 3 

AD1 2 1 2 2 2 

HLFB1 1 2 1 1 1 

2 
(Palouse Soil, 

Reduced 
Dosage) 

CS2 4 4 4 4 3 

AD2 2 3 2 2 2 

HLFB2 3 2 3 3 4 

HLFB3 1 1 1 1 1 

Table 6: Summary table of the carbon retention properties found from our study’s tests of 

various substrate containing treatments relative to incubation-condition groups. 1 

indicates that the treatment retained the most carbon relevant to the corresponding test 

while 4 indicates the least carbon relative. The least retentive material is bolded in each 

comparison. 

 

From our modelling efforts, we see that the rankings of the unprocessed material relative 

to the processed material remain relatively unchanging despite any magnitude 

differences. From our partitioning work, we conclude that residue-derived carbon is both 

more easily accessible to soil microbes in the form of fermentable sugars and in relative 

abundance compared to soil derived carbon. We estimate that priming as an effect on 

general SOC levels is relatively minimal. Overall, we attribute these differences in SOC 
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levels both experimentally determined and modelled be due to the unprocessed nature of 

corn stover versus the biologically processed residues and not as an outcome influenced 

by our various incubation conditions. Thus, through our experimental and theoretical 

study of HLFB’s decomposition in soil, we find that returning HLFB to soil increases 

SOC relative to a non-harvest case as represented by our various projections of 

unprocessed material decomposition. Placed in the broader context of 2G biofuel 

production, we assert that HLFB return will enable higher rates of residue harvest and 

increased production of 2G biofuels using crop residues, which may resolve the land use 

and food vs fuel ambiguity surrounding the sustainability of 2G biofuels.  

 

In terms of future work emerging from this thesis, we are primarily interested in 

modelling field-scale SOC scenarios in which biologically processed organic matter is 

continuously added to an agricultural field. Specifically, we are interested in a more 

conclusive estimation of steady-state SOC in a mature bioenergy cropping scenario. This 

work is currently in its beginning stages as initiated by Professor Jo Smith at the 

University of Aberdeen. She endeavors to apply the RothC model of soil carbon 

dynamics to the isotopic analysis results we discussed in this thesis. Additionally, we are 

interested in longer and more rigorously controlled soil incubations with even more 

diverse HLFBs. Specifically, it would be of great interest to test the state-of-the-art 

HLFBs NREL is producing currently aligned with their most recent process models 

utilizing alkali-pretreatment. In these future incubations, careful documentation of the 

various HLFB production processes would be of the utmost importance focusing 

specifically on the metrics of percent general solubilization, percent carbohydrate 
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solubilization, general mass yield, and mass yield on a carbon basis. It would also be 

important to include an appropriate corn stover treatment in each subsequent incubation 

that would occur for rigorous comparison. Ultimately, in terms of the most important 

future work still needed on this topic, we are most interested in seeing field-scale 

experiments observing steady-state SOC where HLFB is returned to agricultural soils that 

grow the HLFB feedstock over the multi-decade long scale. Though the state-of-the-art 

of 2G biofuel production may make gathering the amount of HLFB needed to conduct 

this investigation near impossible, we believe this investigation would be worth the 

considerable effort and cost. Conclusive results from this sort of field-scale studies of 

HLFB return are what could turn a current compelling theory into a real agricultural 

practice.  
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Appendices  

Appendix A – Crop Residue Removal Literature 

Literature from 1986-2019 on the topic of residue removal was reviewed. Specifically, 

literature with enumerated values for crop residue harvest was included.   

 
Source How much crop residue is safe to 

harvest from a SOC and soil quality 
perspective? 

Soil Context Complexities 

Lindstrom, 
1986  

.5*USLE, USLE, 2*USLE with the 
USLE amount being the results of 
the Universal Soil Loss 
Equation applied 

4 year field study with corn 
stover on no-till and tilled fields 
of loam and silty loam in the 
northwestern Corn Belt 

USLE results are site specific. No 
universal percentage given, however 
a soil loss tolerance level T is given 
as 11.2 tons/ha/year.  

Blanco-
Canqui & Lal, 
2009  

25% might be available for 
removal. 

4 year field study with corn 
stover no-till silt loams and clay 
loam in 3 different fields in 
Ohio. 

Stover removal has the most adverse 
impacts on sloping and erosion prone 
soil. 

Blum et al., 
2010  

0<x<50% depending on crop type, 
soil properties, and climate. 

RothC-26.3 model for 40 years, 
in different soil types across 
Europe.  

For corn, <50% showed increasing 
SOC stocks but for barley, decreasing 
for all, but for more root biomass, 
incr. SOC always. 

Karlen et al., 
2014  

Some level of corn stover harvest 
may actually be good for 
productivity.  

Meta analysis of 239 site years 
of field research. 

No-till grain yields were significantly 
lower 
than with conventional tillage when 
stover was not 
removed, but equivalent when it was 
harvested. Presumably 
stover harvest helped mitigate many 
traditional 
residue management problems such 
as N immobilization 
and reduced soil temperatures.  

Jin et al., 
2015  

55% assuming N fertilizer 
additions. SOC gains limited 
compared to no-harvest.  

12 years, no-till continuous corn 
system in silt loam in W Corn 
Belt. 

Crop yields and SOC remained equal, 
but soil stability and erosion 
protection decrease. 

Kenney et al., 
2013  

<50% assuming 15 cm of stalk left 
in field on all plots. 

3 years, no-till continual corn 
system in silt loam in Kansas. 

>50% incr. Risk of erosion and soil 
water coupled w/ marginal short term 
increase grain yield. 

Xu et al., 
2019  

30-40% could minimize adverse 
impacts of stover removal on SOC. 

Meta analysis of 409 global data 
points. 

Stover removal generally reduced 
SOC stock by 8% in 0-30 cm profile; 
depth matters and few deep data 
points. 

Gollany et al., 
2020  

0% only one to incr. SOC, tested 
50/100% in till/no-till but all 
depleted. 

10 year field study, then 30 years 
w/ CQESTR, no-till continual 
corn in silt loam in W MN. 

No till and tillage tested, no till only 
way for SOC to incr. Work only done 
0-30 cm of soil. 
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Appendix B – Microbial Biomass Carbon Results 

Microbial biomass carbon and nitrogen results from Incubation two. Incubation two poster created by Audrey Adamchak for a senior 

capstone project in 2023. 

Second Generation Biofuel Residues
Audrey Adamchak, Michelle Wang, Caitlin Hicks Pries

Introduction

Methods

Results

Conclusions

I would like to thank Amelia Fitch, Sarah Goldsmith, Lali Vergara, Ella Laurent, Eva Legge, Geni Goebel, Fernando Montaño, and Xiahong Feng for your guidance, to my family and friends 
for supporting me, and  Dartmouth for funding this research

o Treatments include corn stover, 
anaerobically digested corn stover, and 3 
kinds of high lignin fermentation byproduct 
(HLFB). The HLFBs are the residues of 
biologically processed corn stover.
• Each substrate is measured for lignin, 

carbon percentage, and nitrogen 
percentage.

o Residues are added to soil and incubated 
for 135 days

• The carbon respiration is measured over 
time

o Microbial biomass
• Half of each sample fumigated with 

chloroform and half is not. Each sample is 
then mixed with K2SO4 and the solids are 
filtered out. This solution is measured for 
carbon and nitrogen.

o We are about to pass 1.5 degrees of warming 
• Biofuels are a potential negative emission technique

o Second generation (2G) biofuels are an important part of this, as 
they are made out of the non edible parts of the plant, such as 
corn stover.

o But what about the soil organic carbon?
• The soil is a major carbon sink, and as we remove crops we 

release carbon
• We need soil organic carbon in the field to support the 

microbial and plant communities

Figure 1: Microbial Biomass Carbon
The amount of carbon within the microbial biomass was calculated by subtracting the 
nonfumigated samples from  the fumigated samples. This is a metric of comparison to 
microbial biomass. CS2 and AD2 are significantly greater from the rest of the treatments. 

Figure 2: Total Organic Carbon
This is the amount of carbon in the soil that was not taken up by the microbes and is available 
in the soil in the form of nitrate and ammonium. The control is statistically different from CS2 
and AD2, but these treatments are not significantly different from the HLFB series. 

Figure 3: MBC vs % Carbon Respired
There is a positive linear relationship, where more carbon is respired as 
microbial biomass increases

Figure 4: MBC vs C:N
There is a positive linear relationship, as microbial biomass increases,so
does the C:N ration

Figure 5: MBC vs Lignin:N
There is no correlation between MBC and Lignin:N ratio. There is no 
significant difference between treatments for microbial biomass and lignin:N

An ANOVA test and a Tukey test were performed on the boxplots to determine significant differences, which is indicated by letters. Groups that do not share letters are statistically different.

A regression analysis was performed on the line of best fit for the residue characteristic scatter plot to determine its significance

o There is not a greater microbial biomass in the biologically processed residues
• One of the processed residues shows a significantly similar amount as the unprocessed corn stover

o The less processed the biofuel, the greater the microbial biomassAcknowledgments:

Will biologically processed residues retain more soil organic 
carbon than unprocessed crop residues?
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Microbial biomass carbon and nitrogen results from Incubation one.  
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Appendix C – Pre-study Particle Size Incubation Results  

Results from a soil incubation with differently sized corn stover particles (0.5 mm 

diameter size and 8.5 mm diameter size) is shown. Under similar incubation conditions to 

this study’s Incubations one and two, carbon flux and cumulative amount of carbon 

respired were statistically insignificant between the different particle size treatments.  
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Appendix D – Carbon Flux and Carbon Respired Results 

Carbon flux graphs below show exponential decay of C production over time of 

incubations. 267-day data correspond with Incubation one and 135-day data correspond 

with Incubation two shown in the final set of graphs on the bottom of the page.  
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Cumulative carbon respired graphs below show the cumulative production of C released 

as CO2 respired during the time of incubations. 267-day data correspond with Incubation 

one and 135-day data correspond with Incubation two shown in the last set of graphs on 

the bottom of the page. 
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Appendix E – Best Fit Parameters for Models 

 
Best fit model parameters for various models from the SoilR Package when applied to 

our incubation data are shown. Gamma, across these tables, represents the initial 

partitioning between the two pools of carbon. As an example, for the Palouse Soil control 

2 Pool Parallel scenario, gamma indicates that pool 1 contains.205 of the initial total 

amount of carbon in the system. 

 
  PALOUSE Treatments Model Parameters 
  1 Pool 2 Pool Parallel 2 Pool Series 
  k k1 k2 gamma k1 k2 alpha21 gamma 
Soil 
Control 0.00060213 0.00385251 

3.6207E-
09 0.2050224 0.02996006 0.00049075 0.96291063 0.83243589 

CS1 0.00186762 0.00626492 
9.7936E-

10 0.41454358 0.01736454 0.00115017 0.14272221 0.13605892 

AD1  0.00098838 0.0096735 
1.6263E-

08 0.19355018 0.02023506 0.00042587 0.88550346 0.96145974 

HLFB1 0.00061527 0.02124474 
1.6444E-

08 0.09970191 0.10104426 0.00029263 0.8931433 0.46704678 
 

  VERSHIRE Treatments Model Parameters 

  1 Pool 2 Pool Parallel 2 Pool Series 

  k k1 k2 gamma k1 k2 alpha21 gamma 
Soil 
Control 0.00026917 0.00385151 1.9114E-10 0.09474933 0.00801508 0.00012956 0.94842326 0.89749085 

CS1 0.00113867 0.01384815 0.00057854 0.10019409 0.01598043 0.00063769 0.85398893 0.77818785 

AD1  0.00060948 0.00967052 9.4902E-09 0.12416559 0.0411658 0.00037797 0.94357717 0.74899571 

HLFB1 0.0004004 0.02123931 1.8425E-08 0.06643432 0.0994277 0.00018848 0.92233811 0.43064804 
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 1 Pool 2 Pool Parallel 2 Pool Series 

 k k1 k2 gamma k1 k2 alpha21 gamma 

AD2_S 0.00189853 0.05511563 
6.4441E-

09 0.15092216 0.09407008 0.00050484 0.29149503 0.15376928 

HLFB3_S 0.00075505 0.03121938 
9.0043E-

09 0.07085624 0.09723211 0.00035762 0.92835663 0.4862196 

HLFB2_S 0.00167767 0.03259927 
9.5211E-

09 0.14763444 0.14805689 0.00088919 0.88689962 0.57334913 

AD2_R 0.00152579 0.05737624 
1.1037E-

08 0.12295175 0.10553739 0.00043866 0.88749601 0.78917944 

HLFB3_R 0.00062784 0.02082809 
1.0694E-

08 0.06901371 0.12593147 0.00038178 0.94835083 0.45548201 

HLFB2_R 0.00148818 0.02257428 
9.6185E-

09 0.1471805 0.14959621 0.00094104 0.91237519 0.53117372 

CS2_R 0.00211539 0.00589357 
2.9187E-

08 0.42621541 2.98690222 0.0019992 0.9205925 0.08886055 

SOIL 0.00062089 0.00844859 
3.6825E-

09 0.1049325 0.04030751 0.0004729 0.95950953 0.47706739 

HLFB1_S 0.00138923 0.08706575 
1.0785E-

08 0.10778758 0.16432275 0.00036241 0.88995359 0.74335243 
 
 

 INCUBATION 2 R2 VALUES 

 1P 2PS 2PP 3PP 

HLFB1_S 0.72099169 0.99382974 0.9390355 0.99685328 

AD2_S 0.78902026 0.99786028 0.97985758 0.97159659 

HLFB3_S 0.92355909 0.99763126 0.97311478 0.99721176 

HLFB2_S 0.93239192 0.99730001 0.9570505 0.95105699 

AD_R 0.80520861 0.99745984 0.97185829 0.96289499 

HLFB3_R 0.96648872 0.99607811 0.96974784 0.994541 

HLFB2_R 0.96780066 0.99515265 0.97626642 0.97909025 

CS2_R 0.9959621 0.9953147 0.9980653 0.99777375 

SOIL 0.98402199 0.99639293 0.99950116 0.99904491 
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Appendix F – Example R Code for One-time Input Modelling 

R code used to produce the one-time input modelling results for Incubation two. A 

similar variation of code was used to produce the modelling results for Incubation one. 

Further data and complete set of code used in this thesis can be found in the Hicks Pries 

Lab GitHub. 

 
# Incubation 2 Modelling Code by Michelle Wang, edited by Caitlin Hicks Pries for M.S. Thesis 
April 2023 
 
library(tidyverse) 
library(SoilR) 
library(FME) 
 
# Read in data 
Cinits <- c(1199.218125, 1198.987771, 1202.890795, 1208.769544, 1280.327308, 869.183259, 
871.99067, 907.076619, 880.866037, 540.873971, 535.095807) # these numbers reflect if I 
average C per treatment, Information from INC3 -> CombinedIRMS -> Treatment_Calculations 
treatment_names <- c('DASE_C', 'DASE_O', 'AD_S', 'POET_S', 'NREL_S', 'AD_N', 'POET_N', 
'NREL_N', 'CS_N', 'GWC16', 'GWC20') 
inputs_frame = 0 
 
CO2flux_0 <- read.csv("INC2data_mod.csv", header=TRUE)  
 
i=1 # treatment 
n=2 # saving number 
 
# DASE O/C combined, so run this code and don't run it in a loop just run the #1 treatment 
i = 1 #  
Cinits[1] <- (1199.218125+1198.987771)/2 # just averaged DASE together 
CO2flux_0 <- read.csv("DASEcomb_INC2data_mod.csv", header=TRUE) # in Excel, I averaged 
DASE_C and DASE_O together and then just deleted Num = 2, calling the average Num = 1 so 2 
is missing now 
 
#Sample key as follows: 
# C/O means closed/open valve 
#'DASE_C' = 1 standard dosage 
#'DASE_O' = 2 standard dosage 
#'AD_S' = 3 standard dosage 
#'POET_S' = 4 standard dosage 
#'NREL_S' = 5 standard dosage 
#'AD_N' = 6 new ie. halved dosage 
#'POET_N' = 7 new dosage 
#'NREL_N' = 8 new dosage  
#'CS_N' = 9 new dosage 
#'GWC16' = 10 PALOUSE SOIL CONTROL 1 
#'GWC20' = 11 PALOUSE SOIL CONTROL 2 
 
# init saving stuffs 
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# AICc 
num_treatments = 11 
AICc_1p_tot <- numeric(length=num_treatments) 
AICc_2ps_tot <- numeric(length=num_treatments) 
AICc_2pp_tot <- numeric(length=num_treatments) 
AICc_3pp_tot <- numeric(length=num_treatments) 
#AICc_3pp_fixed_tot <- numeric(length=num_treatments) 
 
# R 
R_1p_tot <-  numeric(length=num_treatments) 
R_2ps_tot <-  numeric(length=num_treatments) 
R_2pp_tot <-  numeric(length=num_treatments) 
R_3pp_tot <-  numeric(length=num_treatments) 
#R_3pp_fixed_tot <-  numeric(length=num_treatments) 
 
# parameters 
onep_par <- list(length = num_treatments) 
twops_par <- list(length = num_treatments) 
twopp_par <- list(length = num_treatments) 
threepp_par <- list(length = num_treatments) 
#threepp_fixed_par <- list(length = num_treatments) 
 
# short term projections w/in incubation, to graph 
days=seq(0,135) #Incubation days 
short_totalfitCumm <- as.data.frame(matrix(nrow = length(days), ncol = num_treatments*3+1)) 
short_totalfitCumm[, 1] <- days 
colnames(short_totalfitCumm)[1] <- 'days' 
 
# longterm projections 
proj_days = seq(1,to= 36500, by = 365/5) 
totalfitCumm <- as.data.frame(matrix(nrow = length(proj_days), ncol = num_treatments*3+1)) 
totalfitCumm[, 1] <- proj_days  
colnames(totalfitCumm)[1] <- 'days' 
 
# Inputs every end of year, 99 inputs in dataframe, this only works for inputs w/ time steps of 
365/5 days 
# inputs_vals <- 1000*c(0.664092011,  # from CombinedIRMS -> Treatment Calculations in 
INC2fka3 
#                   0.664224585, 
#                   0.668063965, 
#                   0.674809499, 
#                   0.746066085, 
#                   0.333617312, 
#                   0.337195283, 
#                   0.372710457, 
#                   0.345811145,  
#                   0, 
#                   0)  # these numbers reflect if I average the residues in each treatment, Information 
from INC2 -> IRMS -> "IRMS_summary" -> IRMS_Pre   
#  
#  
# inputs_mainframe <- data.frame(proj_days, matrix(0, length(proj_days), 
length(treatment_names))) 
# colnames(inputs_mainframe) <- c('days', 'DASE_C', 'DASE_O', 'AD_S', 'POET_S', 'NREL_S', 
'AD_N', 'POET_N', 'NREL_N', 'CS_N', 'GWC16', 'GWC20') 
# a = 2 # column counter 
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# b = 1 # inputs_vals counter 
# while (a < 2+length(treatment_names)) { 
#   inputs_mainframe[seq(from = 6, to = length(proj_days), by = 5), a] <-  inputs_vals[b]  
#   a = a + 1 
#   b = b + 1 
# } 
# write.csv(inputs_mainframe, file = 'inputframe.csv')  
 
while (i < num_treatments+1) {  
   
# begin looping 
CO2flux <- CO2flux_0 %>% 
  filter(Num == i) %>%    # loop through treatment 
  select(time, cummCO2)  
 
plot(x=CO2flux$time, y=CO2flux$cummCO2) 
 
Ctotal= Cinits[i] 
 
# graphing 
theme_C <- theme_light() + 
  theme(panel.grid.minor = element_blank(), 
        #text = element_text(size = 30), #for facetwrapped plots 
        strip.background = element_rect(color="black", fill="#93C5FF", size=1.5, linetype="solid"), 
        legend.position = "none", 
        plot.title = element_text(hjust = 0.5)) 
 
# One pool model 
eCO2func = function(pars) { 
  mod=OnepModel( 
    t=days, 
    k = pars[1], # GUESSES K1 
    C0 = Ctotal, 
    In = inputs_frame, 
    pass=TRUE 
  ) 
  AccR=getAccumulatedRelease(mod) 
  return(data.frame(time=days,cummCO2=rowSums(AccR))) 
} 
 
#cost function 
eCO2cost=function(pars){ 
  modelOutput=eCO2func(pars) 
  return(modCost(model=modelOutput, obs=CO2flux[,1:2])) 
} 
 
inipars=c(k=.0001)  # for Palouse soil control should ~= .0006 
 
# fit model to data 
eCO2fit=modFit(f=eCO2cost,p=inipars,method="Nelder-Mead", 
               upper=c(Inf),lower=c(0)) 
 
onep_par[[i]] <- eCO2fit$par  
 
# rerun model w/ best parameter set for short term 
fitmod=OnepModel(t=days, k=eCO2fit$par, 
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                 In = inputs_frame, 
                 C0=Ctotal) 
 
fitCumm=getAccumulatedRelease(fitmod) 
 
short_totalfitCumm[, n] <- rowSums(fitCumm) 
colnames(short_totalfitCumm)[n] <- '1P' 
 
 
# plot short-term incubation v. model  
fitCumm1 <- rowSums(fitCumm) 
fitframe <- data.frame(days, fitCumm1) 
 
plot1 <- ggplot() + 
  geom_point(data = CO2flux, aes(x = time, y = cummCO2), shape = 1) + # INC data 
  geom_line(data = fitframe, aes(x = days, y = fitCumm1)) +  # model data 
  xlim(0, 135) + 
  #ylim(0, 100) + 
  labs(x = 'Time [days]', y = 'Cumulative CO2 Released [mg]', title = '1 Pool Model') + 
  theme_C 
plot1 
 
# save AICc and npars 
npars=length(eCO2fit$par) 
AIC_1p=(2*npars)-2*log(eCO2fit$ms) 
AICc_1p=AIC_1p+(((2*npars^2)+2*npars)/(length(CO2flux[,1])-npars-1)) 
 
#pseudo r-squared 
fitmod=OnepModel(t=CO2flux$time, k=eCO2fit$par, 
                 In = inputs_frame, 
                 C0=Ctotal) 
 
CO2flux$fitCumm1p<-rowSums(getAccumulatedRelease(fitmod)) 
 
plot(CO2flux$cummCO2, CO2flux$fitCumm1p)+abline(coef = c(0,1)) 
test<-summary(lm(cummCO2~fitCumm1p, data=CO2flux)) 
R_1p<-test$r.squared 
 
# RERUN FOR LONG TERM 
fitmod=OnepModel(t=proj_days, k=eCO2fit$par, 
                 In = inputs_frame, 
                 C0=Ctotal) 
 
fitCumm=getAccumulatedRelease(fitmod) 
 
totalfitCumm[, n] <- rowSums(fitCumm) 
colnames(totalfitCumm)[n] <- '1P' 
 
# LONG TERM 
fitCumm2 <- rowSums(fitCumm) 
fitframe2 <- data.frame(proj_days, fitCumm2) 
 
plot1 <- ggplot() + 
  geom_point(data = CO2flux, aes(x = time, y = cummCO2), shape = 1) + # INC data 
  geom_line(data = fitframe2, aes(x = proj_days, y = fitCumm2)) +  # model data 
  xlim(0, 36500) + 
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  #ylim(0, 100) + 
  labs(x = 'Time [days]', y = 'Cumulative CO2 Released [mg]', title = '1 Pool Model') + 
  theme_C 
plot1 
 
n <- n + 1 
 
#two pool series 
eCO2func=function(pars){ 
  mod=TwopSeriesModel( 
    t=days, 
    ks=pars[1:2], 
    a21=pars[3]*pars[1], 
    C0=Ctotal*c(pars[4],1-pars[4]), 
    In=0, 
    pass=TRUE 
  ) 
  AccR=getAccumulatedRelease(mod) 
  return(data.frame(time=days,cummCO2=rowSums(AccR))) 
} 
 
#cost function 
eCO2cost=function(pars){ 
  modelOutput=eCO2func(pars) 
  return(modCost(model=modelOutput, obs=CO2flux[,1:2])) 
} 
 
inipars=c(k1=0.5,k2=0.05,alpha21=0.5,gamma=0.5) 
 
eCO2fit=modFit(f=eCO2cost,p=inipars,method="Nelder-Mead", 
               upper=c(Inf,Inf,1,1),lower=c(0,0,0,0)) 
options(scipen = 999) 
twops_par[[i]] <- eCO2fit$par 
 
#Run the model again with best parameter set 
fitmod=TwopSeriesModel(t=days, ks=eCO2fit$par[1:2], 
                       a21=eCO2fit$par[3]*eCO2fit$par[1], 
                       C0=Ctotal*c(eCO2fit$par[4],1-eCO2fit$par[4]), 
                       In=0) 
fitCumm=getAccumulatedRelease(fitmod) 
 
short_totalfitCumm[, n] <- rowSums(fitCumm) 
colnames(short_totalfitCumm)[n] <- '2PS' 
 
#Plot the results 
fitCumm1 <- rowSums(fitCumm) 
fitframe <- data.frame(days, fitCumm1) 
 
plot1 <- ggplot() + 
  geom_point(data = CO2flux, aes(x = time, y = cummCO2), shape = 1) + # INC data 
  geom_line(data = fitframe, aes(x = days, y = fitCumm1)) +  # model data 
  xlim(0, 135) + 
  #ylim(0, 100) + 
  labs(x = 'Time [days]', y = 'Cumulative CO2 Released [mg]', title = '2 Pool Series Model') + 
  theme_C 
plot1 
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npars=length(eCO2fit$par) 
AIC_2ps=(2*npars)-2*log(eCO2fit$ms) 
AICc_2ps=AIC_2ps+(((2*npars^2)+2*npars)/(length(CO2flux[,1])-npars-1)) 
 
#pseudo r-squared 
fitmod=TwopSeriesModel(t=CO2flux$time, ks=eCO2fit$par[1:2], 
                       a21=eCO2fit$par[3]*eCO2fit$par[1], 
                       C0=Ctotal*c(eCO2fit$par[4],1-eCO2fit$par[4]), 
                       In=0) 
 
CO2flux$fitCumm2ps=rowSums(getAccumulatedRelease(fitmod)) 
 
plot(CO2flux$cummCO2, CO2flux$fitCumm2ps)+abline(coef = c(0,1)) 
test<-summary(lm(cummCO2~fitCumm2ps, data=CO2flux)) 
R_2ps<-test$r.squared 
 
# RERUN FOR LONG TERM 
fitmod=TwopSeriesModel(t=proj_days, ks=eCO2fit$par[1:2], 
                       a21=eCO2fit$par[3]*eCO2fit$par[1], 
                       C0=Ctotal*c(eCO2fit$par[4],1-eCO2fit$par[4]), 
                       In=0) 
fitCumm=getAccumulatedRelease(fitmod) 
 
totalfitCumm[, n] <- rowSums(fitCumm) 
colnames(totalfitCumm)[n] <- '2PS' 
 
# LONG TERM 
fitCumm2 <- rowSums(fitCumm) 
fitframe2 <- data.frame(proj_days, fitCumm2) 
 
plot1 <- ggplot() + 
  geom_point(data = CO2flux, aes(x = time, y = cummCO2), shape = 1) + # INC data 
  geom_line(data = fitframe2, aes(x = proj_days, y = fitCumm2)) +  # model data 
  xlim(0, 36500) + 
  #ylim(0, 100) + 
  labs(x = 'Time [days]', y = 'Cumulative CO2 Released [mg]', title = '2 Pool Series Model') + 
  theme_C 
plot1 
 
n <- n + 1 
 
#two pool parallel model 
eCO2func=function(pars){ 
  mod=TwopParallelModel( 
    t=days, 
    ks=pars[1:2], 
    gam=pars[3], 
    C0=Ctotal*c(pars[3],1-pars[3]),  
    In=0, 
    pass=TRUE 
  ) 
  AccR=getAccumulatedRelease(mod) 
  return(data.frame(time=days,cummCO2=rowSums(AccR))) 
} 
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eCO2cost=function(pars){ 
  modelOutput=eCO2func(pars) 
  return(modCost(model=modelOutput, obs=CO2flux[,1:2])) 
} 
 
inipars=c(k1=0.05,k2=0.000000005,gamma=0.08) #for deeper depths, need different starting 
values 
 
eCO2fit=modFit(f=eCO2cost,p=inipars,method="Nelder-Mead", 
               upper=c(Inf,Inf,1),lower=c(0,0,0)) 
 
twopp_par[[i]] <- eCO2fit$par 
 
#Run the model again with best parameter set 
fitmod=TwopParallelModel(t=days, ks=eCO2fit$par[1:2],  
                         gam=eCO2fit$par[3], 
                         C0=Ctotal*c(eCO2fit$par[3],1-eCO2fit$par[3]),  
                         In=0) 
fitCumm=getAccumulatedRelease(fitmod) 
 
short_totalfitCumm[, n] <- rowSums(fitCumm) 
colnames(short_totalfitCumm)[n] <- '2PP' 
 
#Plot the results 
fitCumm1 <- rowSums(fitCumm) 
fitframe <- data.frame(days, fitCumm1) 
 
plot1 <- ggplot() + 
  geom_point(data = CO2flux, aes(x = time, y = cummCO2), shape = 1) + # INC data 
  geom_line(data = fitframe, aes(x = days, y = fitCumm1)) +  # model data 
  xlim(0, 135) + 
  #ylim(0, 100) + 
  labs(x = 'Time [days]', y = 'Cumulative CO2 Released [mg]', title = '2 Pool Parallel Model') + 
  theme_C 
plot1 
 
npars=length(eCO2fit$par) 
AIC_2pp=(2*npars)-2*log(eCO2fit$ms) 
AICc_2pp=AIC_2pp+(((2*npars^2)+2*npars)/(length(CO2flux[,1])-npars-1)) 
 
#pseudo r-squared 
fitmod=TwopParallelModel(t=CO2flux$time, ks=eCO2fit$par[1:2],  
                         gam=eCO2fit$par[3], 
                         C0=Ctotal*c(eCO2fit$par[3],1-eCO2fit$par[3]),  
                         In=0) 
 
CO2flux$fitCumm2pp=rowSums(getAccumulatedRelease(fitmod)) 
 
plot(CO2flux$cummCO2, CO2flux$fitCumm2pp)+abline(coef = c(0,1)) 
test<-summary(lm(cummCO2~fitCumm2pp, data=CO2flux)) 
R_2pp<-test$r.squared 
 
# LONG TERM: RERUN MODEL TO PREDICT LONG TERM 
fitmod=TwopParallelModel(t=proj_days, ks=eCO2fit$par[1:2],  
                         gam=eCO2fit$par[3], 
                         C0=Ctotal*c(eCO2fit$par[3],1-eCO2fit$par[3]),  



 59 

                         In=0) 
fitCumm=getAccumulatedRelease(fitmod) 
 
totalfitCumm[, n] <- rowSums(fitCumm) 
colnames(totalfitCumm)[n] <- '2PP' 
 
# LONG TERM: PLOT 
fitCumm2 <- rowSums(fitCumm) 
fitframe2 <- data.frame(proj_days, fitCumm2) 
 
plot1 <- ggplot() + 
  geom_point(data = CO2flux, aes(x = time, y = cummCO2), shape = 1) + # INC data 
  geom_line(data = fitframe2, aes(x = proj_days, y = fitCumm2)) +  # model data 
  xlim(0, 36500) + 
  #ylim(0, 100) + 
  labs(x = 'Time [days]', y = 'Cumulative CO2 Released [mg]', title = '2 Pool Parallel Model') + 
  theme_C 
plot1 
 
n <- n + 1 
 
#three pool parallel 
eCO2func=function(pars){ 
  mod=ThreepParallelModel( 
    t=days, 
    ks=pars[1:3], 
    gam1=pars[4], 
    gam2=pars[5], 
    C0=Ctotal*c(pars[4],pars[5],1-pars[4]-pars[5]),  
    In=0, 
    pass=TRUE 
  ) 
  AccR=getAccumulatedRelease(mod) 
  return(data.frame(time=days,cummCO2=rowSums(AccR))) 
} 
 
eCO2cost=function(pars){ 
  modelOutput=eCO2func(pars) 
  return(modCost(model=modelOutput, obs=CO2flux[,1:2])) 
} 
 
inipars=c(k1=0.005,k2=0.00005,k3=0.000000005,gam1=0.01, gam2=0.1) #for deeper depths, 
need different starting values 
 
eCO2fit=modFit(f=eCO2cost,p=inipars,method="Nelder-Mead", 
               upper=c(Inf,Inf,Inf,1,1),lower=c(0,0,0,0,0)) 
 
threepp_par[[i]] <- eCO2fit$par 
 
#Run the model again with best parameter set 
fitmod=ThreepParallelModel(t=days, ks=eCO2fit$par[1:3],  
                           gam1=eCO2fit$par[4], 
                           gam2=eCO2fit$par[5], 
                           C0=Ctotal*c(eCO2fit$par[4],eCO2fit$par[5],1-eCO2fit$par[4]-eCO2fit$par[5]),  
                           In=0) 
fitCumm=getAccumulatedRelease(fitmod) 
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short_totalfitCumm[, n] <- rowSums(fitCumm) 
colnames(short_totalfitCumm)[n] <- '3PP' 
 
#Plot the results 
plot(CO2flux[,1:2],type="p",xlab="Days", 
     ylab="Cummulative respiration (mg C g-1 soil)") 
lines(rowSums(fitCumm)) 
 
fitCumm1 <- rowSums(fitCumm) 
fitframe <- data.frame(days, fitCumm1) 
 
plot1 <- ggplot() + 
  geom_point(data = CO2flux, aes(x = time, y = cummCO2), shape = 1) + # INC data 
  geom_line(data = fitframe, aes(x = days, y = fitCumm1)) +  # model data 
  xlim(0, 135) + 
  #ylim(0, 40) + 
  labs(x = 'Time [days]', y = 'Cumulative CO2 Released [mg]', title = '3 Pool Model') + 
  theme_C 
plot1 
 
npars=length(eCO2fit$par) 
AIC_3pp=(2*npars)-2*log(eCO2fit$ms) 
AICc_3pp=AIC_3pp+(((2*npars^2)+2*npars)/(length(CO2flux[,1])-npars-1)) 
 
#pseudo r-squared 
fitmod=ThreepParallelModel(t=CO2flux$time, ks=eCO2fit$par[1:3],  
                           gam1=eCO2fit$par[4], 
                           gam2=eCO2fit$par[5], 
                           C0=Ctotal*c(eCO2fit$par[4],eCO2fit$par[5],1-eCO2fit$par[4]-eCO2fit$par[5]),  
                           In=0) 
 
CO2flux$fitCumm3pp=rowSums(getAccumulatedRelease(fitmod)) 
 
plot(CO2flux$cummCO2, CO2flux$fitCumm3pp)+abline(coef = c(0,1)) 
test<-summary(lm(cummCO2~fitCumm3pp, data=CO2flux)) 
R_3pp<-test$r.squared 
 
# LONG TERM: Run the model again with best parameter set 
fitmod=ThreepParallelModel(t=proj_days, ks=eCO2fit$par[1:3],  
                           gam1=eCO2fit$par[4], 
                           gam2=eCO2fit$par[5], 
                           C0=Ctotal*c(eCO2fit$par[4],eCO2fit$par[5],1-eCO2fit$par[4]-eCO2fit$par[5]),  
                           In=0) 
fitCumm=getAccumulatedRelease(fitmod) 
 
totalfitCumm[, n] <- rowSums(fitCumm) 
colnames(totalfitCumm)[n] <- '3PP' 
 
# LONG TERM: PLOT 
fitCumm2 <- rowSums(fitCumm) 
fitframe2 <- data.frame(proj_days, fitCumm2) 
 
plot1 <- ggplot() + 
  geom_point(data = CO2flux, aes(x = time, y = cummCO2), shape = 1) + # INC data 
  geom_line(data = fitframe2, aes(x = proj_days, y = fitCumm2)) +  # model data 
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  xlim(0, 36500) + 
  #ylim(0, 100) + 
  labs(x = 'Time [days]', y = 'Cumulative CO2 Released [mg]', title = '3 Pool Model') + 
  theme_C 
plot1 
 
n <- n + 1 
 
# Save outputs INSIDE of loop 
AICc_1p_tot[i] <- AICc_1p 
AICc_2ps_tot[i] <- AICc_2ps 
AICc_2pp_tot[i] <- AICc_2pp 
AICc_3pp_tot[i] <- AICc_3pp 
#AICc_3pp_fixed_tot[i] <- AICc_3pp_fixed 
 
R_1p_tot[i] <- R_1p 
R_2ps_tot[i] <- R_2ps 
R_2pp_tot[i] <- R_2pp 
R_3pp_tot[i] <- R_3pp 
#R_3pp_fixed_tot[i] <- R_3pp_fixed 
 
i = i+1 
print(i) 
print(n) 
 
} 
 
 
# Save outputs OUTSIDE of loop 
AICc_tot <- data.frame(abs(AICc_1p_tot), abs(AICc_2ps_tot), abs(AICc_2pp_tot), 
abs(AICc_3pp_tot)) 
rownames(AICc_tot) <- treatment_names 
colnames(AICc_tot) <- c('1P', '2PS', '2PP', '3PP') 
 
R_tot <- data.frame(abs(R_1p_tot), abs(R_2ps_tot), abs(R_2pp_tot), abs(R_3pp_tot)) 
rownames(R_tot) <- treatment_names 
colnames(R_tot) <- c('1P', '2PS', '2PP', '3PP') 
 
write.csv(AICc_tot, file = 'DASEavg_INC2_365by5_AICc_tot.csv')  
write.csv(R_tot, file = 'DASEavg_INC2_365by5_R_tot.csv') 
 
# Export Parameters 
write.csv(onep_par, file = 'DASEavg_365by5_onep_par.csv')  
write.csv(twops_par, file = 'DASEavg_365by5_twops_par.csv')  
write.csv(twopp_par, file = 'DASEavg_365by5_twopp_par.csv')  
write.csv(threepp_par, file = 'DASEavg_365by5_threepp_par.csv')  
 
# Export the cummCO2 
write.csv(totalfitCumm, file = 'DASEavg_365by5_INC2_multmodels_projectedcummCO2.csv')  
write.csv(short_totalfitCumm, file = 
'DASEavg_short_365by5_INC2_multmodels_projectedcummCO2.csv')   
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Appendix G – Example Excel Calculations for Annual-Input Modelling 

Example of calculations used to produce the annual-input modelling results for 

Incubation two. Similar calculations were used to produce the modelling results for 

Incubation one. These calculations account for the respective conversion yields of the 

various residue inputs by adjusting the one-time input results in “SYST” by either 35% 

for HLFBs and 50% for ADs and by adjusting the input, “INPUT,” by the proper yield as 

well. The actual data and calculations used in this thesis for annual-input modelling can 

be found in the Hicks Pries Lab GitHub. 

 

The next image is a horizontal continuation of the same spreadsheet shown above. 
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Appendix H – Dosage Incubation Results  

Dosage effect is shown on the mean carbon respired for three Incubation two treatments: 

AD2, HLFB2, and HLFB3. Standard dosage refers to a mass ratio of 1.5 g dry residue to 

37.5 g dry soil while the reduced dosage refers to a mass ratio of .75 g dry residue to 37.5 

g dry soil.  

 

 
  



 65 

Appendix I – Residue Derived Carbon Losses 

Loss in residue derived carbon pre and post incubation timespans is shown here. Top 

figures represent Incubation one, while bottom graphs represent Incubation two. There is 

no data for the CS2 * Standard Dosage and DASE1 * Reduced Dosage condition.  
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Appendix J – Soil Derived Carbon Losses  

Soil derived carbon loss pre and post incubation timespans from isotope analysis. Top 

figures represent Incubation one, while bottom graphs represent Incubation two.  
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Appendix K – Statistics on Residue Derived Losses 

Type III ANOVA test and Tukey comparison on residue derived losses differences for 

Incubation two separated by Palouse and Vershire soil types and Incubation two 

separated by standard and reduced dosage.  
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Appendix L – Statistics on Soil Derived Differences 

Type III ANOVA test and Tukey comparison on soil derived losses differences for 

Incubation one separated by Palouse and Vershire soil types and Incubation two 

separated by standard and reduced dosage.  
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Appendix M – Soil Characteristics 

The material characteristics of the soils used in incubations are shown below. Results are 

derived from the IRMS, IRGA, and microbial biomass protocols referenced in Appendix 

B. 

Soil Source Method of 
Preparation %C %N C:N 

Ratio 13C 

Microbial 
Biomass 

Carbon (mg 
C/g dry soil) 

Microbial 
Biomass 

Nitrogen (mg 
N/g dry soil) 

Palouse 
Soil 

Pullman, 
WA 

(Armen) 

Soil collected 
in Pullman, 

WA 1.39-1.43 .10-0.11 14-13 -26.2 0.086 9.21E-05 

Vershire 
Soil 

Vershire, 
VT (HP 

Lab) 

Soil collected 
in Vershire, 

VT 3.30 0.27 12 -25.0 0.256 0 
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Appendix N – Johnson et al. 2007 Comparison 

The actual datasheet and calculations spreadsheet used for this comparison can be found 

in the Hicks Pries Lab GitHub.  An example of the calculation is shown here. 
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Appendix O – Excerpt from Lynd et al. 2023 Manuscript 

The following text is excerpted from a soon to be published manuscript entitled Liquid 

Biofuels from Crop Residues with Return of High-Lignin Fermentation Byproduct to the 

Soil81. 

 

Analysis and Assessment. We compare alternative strategies for managing a given quantity 

of above-ground crop residues via two management strategies:  

No Harvest (NH), in which above-ground crop residues are left in the field; 

Harvest, Process, and Return (HPR), in which above-ground crop residues are 

harvested, processed biologically, and solid byproduct (digestate or HLFB) produced at 

fractional carbon yield Yc is returned to the field. 

We assume an unchanging yearly schedule of organic matter input over a sufficient time 

for SOC to arrive at steady-state. The ratio of steady-state SOC for the NH and HPR 

strategies for management of above-ground crop residues, RAG, is equal to Yc multiplied by 

𝜀,	the relative efficiency of steady-state SOC formation from soil-applied organic matter 

for the NH and HPR strategies.  That is, 

 

𝑅:@ = >ABC11,345
ABC11,63

?
:@

 = D$"(%.=,,($"%	C,			FGH
D$"(%.=,,($"%	C,			IF

∙
J 78911
:;<=>?@AA=;<>	9K345
J 78911
:;<=>?@AA=;<>	9K63

=	𝑌0𝜀  [1] 

 

It follows that � must be = 1/ Yc for steady-state SOCss,HPR to be equal to SOCss,NH, that is in 

order for 𝑅:@ 	to = 1.  For example, if half the mass of agricultural residue C remains after 
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digestion, Yc = 0.5 and � must = 2 for 𝑅:@to = 1.  If � > 1/ Yc, then 𝑅:@> 1; if � < 1/ Yc, 

then 𝑅:@  < 1.   

 

As presented above, literature reports involving manure, crop residues, animal feed 

components and mixtures of these indicate that long-term SOC levels are similar for field-

applied digestates produced by anaerobic digestion and for crop residues left in the field. 

That is, 𝑅:@  ≈ 1.  For the Thomsen et al. study, for which Yc = 0.2, 𝑅:@  = 1 implies that � 

= 5.  For the Smith et al. study, for which Yc is between 0.2 and 0.31 (average 0.255) and 

the average steady-state value of 𝑅:@  is 1.23, the implied value of � is 4 to 6.2 (average 

4.83). For the Béguin-Tanneau study, YD = 0.36, 𝑅:@  is  > 1 over the timeframe evaluated, 

and the implied value of � is > 2.8.   

 

Analysis of steady-state SOC levels for the HPR and NH strategies can be expanded to 

consider the contribution of below-ground biomass and a variable fraction of above-ground 

biomass harvested. For the illustrative case of above-ground and below-ground crop 

biomass contributing equally to SOC,  

 𝑅L = >ABC11,345
ABC11,63

?
L
= 1 − 0.5𝑓 + 	0.5𝑓	𝑌0 	𝜀 = 1 + 0.5f(𝑌0𝜀 − 1)  

 [2] 

The 1- 0.5𝑓 term in Equation [2] represents the steady-state SOC that would remain if a 

fraction of above-ground biomass equal to f were harvested without any organic matter 

returned, normalized to the NH scenario. For f = 1 all above-ground crop residue is 

removed, and  1 − 0.5𝑓 = 0.5 representing the below-ground contribution to steady-state 
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SOC.  The 0.5𝑌0𝜀 term represents the steady-state SOC formed as a result of returning 

digestate or HLFB to the field. 

 

Anticipating the SOC impact of returning HLFB to the soil is limited at present to inference 

based on results from anaerobic digestion and (incomplete) understanding of organic 

matter transformation in soils. Factors contributing to this include that soil application of 

HLFB from liquid cellulosic biofuel production has received vastly less study than soil 

application of  digestates, and that processes for liquid biofuel production are still under 

development. As developed above, compared to unprocessed crop residues anaerobic 

digestate has a lower fraction of carbohydrate, higher fractions of lignin and microbial 

biomass, and substantially greater  potential to form long-term SOC per mass applied to 

the field – that is, ��is substantially greater than 1��Compared to anaerobic digestate 

processing the same feedstock, HLFB is expected with a high degree of confidence to have 

a yet lower fraction of carbohydrate, higher fractions of lignin, and may well have higher 

fractions of microbial biomass although this is less certain. Based on these characteristics, 

it is reasonable to hypothesize that the value of � for HLFB is likely to be greater than that 

of anaerobic digestate from the same feedstock. Testing this hypothesis is of great interest 

but requires currently unavailable data from soil incubations and ultimately field studies.  

 

Figure 2 presents RT as a function of f based on Equation [2].  The RT = 1 line applies to 

any combination of 𝜀 and Y such that 𝜀 = 1/𝑌 as repeatedly observed for anaerobic 

digestion and consistent with the general hypothesis of Thomsen et al. (2013). The 𝜀 = 4.8, 

Y = 0.26 line corresponds to results of Smith et al. (2014). The dashed lines are for Y = 
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0.35, typical of HLFB production accompanying liquid cellulosic biofuels, and a range of 

speculative values for 𝜀 from 2 to 4. For liquid cellulosic biofuel production with Y = 0.35, 

the break-even value of 𝜀 is 2.86 with �  > 2.86 resulting in RT > 1, that is higher steady-

state SOC for HPR than for NR, and �  < 2.86 resulting in RT < 1. In general, the sensitivity 

of SOC to crop residue removal is substantially less with digestate or HLFB return than 

without removal.  

 

 

Figure 2. Steady-state SOC levels with and without HLFB return as a function of the 

fraction of above-ground biomass harvested. Results are calculated using Equation [2]. 



 77 

RT is the steady-state SOC with harvest, processing, and return (HPR):Steady-state SOC 

with no harvest (NH). 

𝜀 is the relative efficiency of steady-state SOC formation from soil-applied organic matter 

for the HPR and NH strategies.  Y is the carbon yield of solid processing byproduct 

(digestate or HLFB). See text for added details.  

 

As reviewed above, a substantial literature indicates that SOC can be maintained at 

constant levels when about half of above-ground corn stover is harvested with no return of 

HLFB, although in some cases this assumes changes in management practices. The 

analysis and assumptions embodied in Equation [2] do not negate this possibility. Both 

empirical (Xu et al., 2019) and modeling (Nguyen et al., 2022) studies document net 

accrual of SOC for continuous corn or corn-soybean, implying that some fraction of stover 

could be removed without decreasing SOC at many sites. Corn stover removal with no 

HLFB or digestate return is, however, expected to have lower steady-state SOC levels than 

both NH and HPR management.   
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Appendix P – Example IRMS Data and Calculations 

Examples of IRMS analyses data and calculations for Incubation two shown below. The 

full datasheets and calculations used for this analysis can be found in the Hicks Pries Lab 

GitHub.   
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Appendix Q – Example IRGA Data and R Code 

Example of IRGA measurements shown below. The complete datasheets and code used 

for all our IRGA data can be found in the Hicks Pries Lab GitHub.   
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Example of R code used to process the IRGA data for Incubation two.  

## SOIL INCUBATION CALCULATIONS, JAN 2023 
## Author: Michelle S. Wang, michelle.s.wang.th@dartmouth.edu 
 
# Load packages + functions 
library(tidyverse) 
# library(SoilR) 
library(FME) 
library(ggpubr) 
 
# Read in data 
data <- read.csv("IRGA_Measurements.csv", stringsAsFactors = FALSE, header = TRUE) # scan 
in document formatted like example 
last_day <- max(data$Day, na.rm = TRUE) # [days] final day of measurement for this datasheet 
 
############################################################################ 
# GENERAL CALCULATIONS 
####################################################### 
# Constants 
R <- 82.05746   # [mL*atm/(K*mol)] 
 
# Room Parameters 
Pr <- .98 # [atm] 
Tr <- 22 + 273  # [K] 
 
# Jar/Soil Parameters 
Vjar_P <- 473.176 - 46  # [mL] pint jar - filled sample cup, from Google Sheet 'Incubation 
Initializations <- Bulk Density'  
 
# n [mol] air inside jar 
n_P <- (Pr*Vjar_P) / (R*Tr)     # [mol] Palouse 
 
# Moles/Mass of C inside jar 
molmass_C <- 12.011*10^3  # [mg/mol] molar mass of C 
data_C <- data %>% 
  mutate(moles_C_P = C_ppm*n_P/(10^6)) %>%  # [mol] moles of C in air in jar 
  mutate(mass_C_P = moles_C_P*molmass_C)    # [mg] mg of C in air in jar 
 
# Removed air inside syringe 
Vrem <- 30      # [mL] CO2 rich air removed from jar 
Trem <- 25 + 273  # [K] temp of air removed since in incubator 
nrem <- (Pr*Vrem) / (R*Trem)  # [mol] moles of air removed from jar 
 
# CLEAN DATA ####################################################### 
# Flux 
num_labs <- c('DASE_C', 'DASE_O', 'AD_S', 'POET_S', 'NREL_S', 'AD_N', "POET_N", 
'NREL_N', 'CS_N', 'GWC16', 'GWC20') 
names(num_labs) <- c('1', '2', '3', '4','5', '6', '7', '8', '9', 'S1', 'S2') 
 
data_all <- data_C %>% 
  filter(!Sample %in% c('CO2 FREE', '2008', '2%')) %>% # filters out controls  
  separate(Sample, c("Num", "Lett"), sep=cumsum(c(1,1)), remove = FALSE) %>%  # separates 
out Palouse/Vershire soil and treatments 
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  mutate(Date.Time = as.POSIXct(Date.Time, format = '%m/%d/%y %H:%M')) %>% # converts 
Date.Time from characters to date-time format 
  mutate(Date = as.Date(Date)) %>% 
  group_by(Sample, Flush) %>%  # group by flush  
  arrange(Date.Time) %>%  # arrange in ascending order 
  mutate(time_diff = as.numeric(Date.Time - lag(Date.Time, default = first(Date.Time)), units = 
'hours')) %>% # [hours] find time difference in flush groups  
  mutate(mass_diff = as.numeric(mass_C_P - lag(mass_C_P, default = first(mass_C_P)))) %>% 
# [mg] find mass_C difference in flush groups for Palouse and Vershire 
  mutate(rem_moles_C = C_ppm*nrem/(10^6)) %>%  # [mol] moles of C in removed air 
  mutate(rem_mass_C = rem_moles_C*molmass_C)  %>% # [mg] mg of C in removed air 
  mutate(adj_mass_diff = as.numeric(ifelse(time_diff != '0', as.numeric(mass_diff + 
lag(rem_mass_C, default = first(rem_mass_C))), '0'))) %>% # [mg] find adjusted mass by 
including removal mass_C difference in flush groups 
  filter(!time_diff == '0') %>% # delete used values 
  mutate(flux = adj_mass_diff/time_diff) #%>% # this depends on prev. line being right 
  #filter_if(~is.numeric(.), all_vars(!is.infinite(.))) # keeps the "last" day of a flux measurement ie. 
gets rid of the "first" day of each session, that's what we graph 
 
 
# Respired 
data_resp <- data_all %>%  
  group_by(Sample) %>% 
  ungroup(Flush) %>%  # ungroup Flush but keep groups by Sample 
  #select(Flush, Sample, Date.Time, flux) %>%  # clean it up 
  arrange(Date.Time) %>% # rearrange in ascending order 
  mutate(time_hours = (Date.Time - lag(Date.Time, k = 1))) %>%     # time difference btwn flux 
measurements in days 
  #mutate(time_hours = (Date.Time - lag(Date.Time, k = 1))*24) %>% # time difference btwn flux 
measurements in hours 
  mutate(C_resp = .5*(time_hours)*(flux+lag(flux))) %>% # [mg] trapezoidal area calculation to get 
C respired 
  drop_na(C_resp) %>% # drops rows w/ NAs which arise from the first trapezoid area 
measurement 
  mutate(C_resp_cum = cumsum(as.numeric(C_resp))) %>% # [mg] cumulatively add together 
trapezoids 
  #mutate(invC_resp_cum = total - C_resp_cum)this doesn't work, but it could be used to 
generate the inv figure lee thinks abt 
  mutate(time = as.numeric(Date.Time - first(Date.Time), units = 'days')) # calculate time 
difference from first in group in [days] 
 
#write.csv(data_resp, file="respdata1.csv", row.names = FALSE) 
 
stats_resp <- data_resp %>% # output averages plotted in RESP graphs 
  group_by(Sample, Num) %>%  
  summarise(max_C_resp_cum = max(C_resp_cum)) %>% 
  #group_by(Num) %>%   # comment this in/out if you want it broken up to replicates or not 
  summarise(mean_C_resp_cum = mean(max_C_resp_cum)) #%>% # [mg]  
  #mutate(Name = num_labs)    # comment this in/out if you want it broken up to replicates or not 
 
stats_resp2 <- data_resp %>% # output averages plotted in RESP graphs 
  group_by(Sample, Num) %>%  
  summarise(max_C_resp_cum = max(C_resp_cum)) %>% 
  group_by(Num) %>%   # comment this in/out if you want it broken up to replicates or not 
  summarise(mean_C_resp_cum = mean(max_C_resp_cum), stdev = sd(max_C_resp_cum)) # 
[mg C]  
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  #mutate(Num = num_labs)    # comment this in/out if you want it broken up to replicates or not 
 
print(paste("The incubation period currently spans", last_day, "days!")) 
#write.csv(stats_resp2, file = 'INC2summary_cumCresp.csv', row.names = FALSE) # CHECK 
THAT THIS IS CORRECT NAME 
 
# Check for ~112 days to compare with Johnson 
stats_resp112 <- data_resp %>% # output averages plotted in RESP graphs 
  filter(time < 113) %>% 
  group_by(Sample, Num) %>%  
  summarise(max_C_resp_cum = max(C_resp_cum)) %>% 
  group_by(Num) %>%   # comment this in/out if you want it broken up to replicates or not 
  summarise(mean_C_resp_cum = mean(max_C_resp_cum)) #%>% # [mg]  
#mutate(Name = num_labs)    # comment this in/out if you want it broken up to replicates or not 
 
write.csv(stats_resp112, file = 'INC2summary112_cumCresp.csv', row.names = FALSE) # 
CHECK THAT THIS IS CORRECT NAME 
 
#################################################################### 
# STATISTICS ####################################################### 
 
# 2 WAY ANOVA for INC1, test if treatment and soil type have an effect on mean C resp/fraction 
of C retained by soil/fraction of C retained by residue by end of incubation 
 
# recode Num to factors 
thirteenC_data <- read.csv("INC2_2wayanova_13C.csv", stringsAsFactors = FALSE, header = 
TRUE) # scan in document formatted like example 
soil_C_data <- read.csv('summary_SOILcumCresp.csv', stringsAsFactors = FALSE, header = 
TRUE) 
stats_resp <- rbind(stats_resp, soil_C_data) 
 
twowayanova_data <- merge(stats_resp, thirteenC_data, by = 'Sample') # if this excludes the soil 
data, check to make sure the 'Sample' column for both sheets is labelled correctly 
 
twowayanova_data$Num <- factor(twowayanova_data$Num, 
                               levels = names(num_labs), 
                               labels = num_labs) 
 
## Open vs. Closed, paired t-test 
oc_data <- twowayanova_data %>% 
  filter(Num == 'DASE_O' | Num == 'DASE_C') 
 
t.test(mean_C_resp_cum ~ Valve, data = oc_data, paired = TRUE) 
t.test(fr ~ Valve, data = oc_data, paired = TRUE) 
# We see that for both 13C and inc data, p>.05 or that there is an insignificant difference between 
Open v. Closed. 
 
## Dosage, 2-way ANOVA 
dose_data <- twowayanova_data %>% 
  filter(Sub == 'AD' | Sub == 'NREL' | Sub == 'POET') %>% # balanced design since same 
number of observations per treatment 
  mutate(Sub = factor(Sub, levels = c('AD', 'NREL', 'POET'), labels = c("AD2","HLFB2", 
"HLFB3"))) %>% 
  mutate(Dose = factor(Dose, levels = c('S', 'N'), labels = c('Standard', 'Reduced')))  
 
dose_summary <- dose_data %>% 
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  group_by(Num, Sub, Dose) %>% 
  summarize(act_mean_C_resp_cum = mean(mean_C_resp_cum))  
 
dose_plot1 <- ggboxplot(dose_data, x = 'Sub', y = 'mean_C_resp_cum', color = 'Dose', # boxplot 
shows various treatments and how they compare to each other + soil type 
          xlab = 'Treatment', 
          ylab = 'Mean C Respired [mg]')   
dose_plot1 
ggsave("dose_plot1.png", plot = dose_plot1, width = 15, height = 15, units = "cm") 
 
   
dose_plot2 <- ggline(dose_data, x = "Sub", y = "mean_C_resp_cum", color = "Dose", 
       add = c("mean_se", "dotplot"), 
       palette = c("#00AFBB", "#E7B800"), 
       xlab = 'Treatment', 
       ylab = 'Mean C Respired [mg]') 
dose_plot2 
ggsave("dose_plot2.png", plot = dose_plot2, width = 15, height = 15, units = "cm") 
 
 
ggline(dose_data, x = "Sub", y = "fr", color = "Dose", 
       add = c("mean_se", "dotplot"), 
       palette = c("#00AFBB", "#E7B800")) 
 
res.aov_dose <- aov(mean_C_resp_cum ~ Dose * Sub, data = dose_data) # test interaction btwn 
Num and Typ 
summary(res.aov_dose) 
 
res.aov_dose2 <- aov(fr ~ Dose * Sub, data = dose_data) # test interaction btwn Num and Typ 
summary(res.aov_dose2) 
 
# Tukey-Kramer maybe 
TukeyHSD(res.aov_dose)  # unclear if this is taking into account unbalanced design, I think it's 
using Tukey Kramer 
 
## INC1 V INC2, t-test 
INC2_DASE_C_data <- twowayanova_data %>% 
  #filter(Sub == 'DASE' & Valve == 'C') %>% 
  filter(Sub == 'DASE' & Valve == 'C') %>% 
  select(Num, mean_C_resp_cum, fr) %>% 
  mutate(Inc = '2') 
 
INC1_anovadata <- read.csv("INC1_twowayanova_data.csv", stringsAsFactors = FALSE, header 
= TRUE) # scan in document formatted like example 
INC1_DASE_data <- INC1_anovadata %>% 
  filter(Typ == 'P' & Num == 'DASE HLFB') %>% 
  select(Num, mean_C_resp_cum, fr) %>% 
  mutate(Inc = '1') 
 
DASE_data <- rbind(INC2_DASE_C_data, INC1_DASE_data) 
 
t.test(mean_C_resp_cum ~ Inc, data = DASE_data, paired = FALSE) 
t.test(fr ~ Inc, data = DASE_data, paired = FALSE) 
 
# Check SOIL controls 
INC2_soil_data <- twowayanova_data %>% 
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  filter(Sub == 'SOIL') %>% 
  select(Num, mean_C_resp_cum) %>% 
  mutate(Inc = '2') 
 
INC1_soil_data <- INC1_anovadata %>% 
  filter(Typ == 'P' & Num == 'Soil Control') %>% 
  select(Num, mean_C_resp_cum) %>% 
  mutate(Inc = '1') 
 
SOIL_data <- rbind(INC1_soil_data, INC2_soil_data) 
 
t.test(mean_C_resp_cum ~ Inc, data = SOIL_data, paired = FALSE) 
 
############################################################################ 
# PLOTTING ####################################################### 
 
# Theme and Labels 
theme_C <- theme_light() +  
  theme(panel.grid.minor = element_blank(),  
  text = element_text(size = 30), #for facetwrapped plots 
  strip.background = element_rect(color="black", fill="#93C5FF", size=1.5, linetype="solid"), 
  legend.position = "none", 
  plot.title = element_text(hjust = 0.5) 
  )  
 
# CHANGE THESE DATES FOR YOUR GRAPHING PLEASURE!  
end_date = '2023-03-09 14:00' # !!!! CHANGE THIS TO EXTEND GRAPH !!! 
  #'2022-12-13 9:15' <- this is for 42 days 
# start_date = #"2022-11-07 7:30" # <- this is for ignoring the initial 6 day bump 
start_date = "2022-11-01 19:10" # ACTUAL FIRST MEASUREMENT 
lims <- as.POSIXct(strptime(c(start_date, end_date), format = "%Y-%m-%d %H:%M"))   
 
# FLUX: Mean and SE Each 
p1P<- ggplot(data_all, aes(x=Date.Time, y=flux)) + 
  geom_point(aes(size = .8)) + 
  scale_x_datetime(limits = lims) + 
  stat_summary(fun.data = "mean_se", colour = "red", size = .8) + 
  facet_wrap(~Num, labeller = labeller(Num = num_labs)) +  
  #facet_wrap(~Num, scales = 'free', labeller = labeller(Num = num_labs)) + # free scale bc 1 is 
so small  
  theme_C + 
  #scale_y_continuous(limits=c(0,.35)) +  # sets all plots start at 0 go to .3 
  labs(x = '', y = 'Carbon Flux [mg/hr]', title = 'Carbon Flux Evolution in Various Treatments')  
p1P 
 
#ggsave("flux_mean&se.png", plot = p1P, width = 60, height = 20, units = "cm")  # change this 
accordingly 
 
# RESPIRED: Mean and SE Each 
p2P <- ggplot(data_resp, aes(x=Date.Time, y=C_resp_cum)) + 
  geom_point(aes(size = .8)) + 
  scale_x_datetime(limits = lims) + 
  stat_summary(fun.data = "mean_se", colour = "red", size = .8) + 
  facet_wrap(~Num, labeller = labeller(Num = num_labs)) + # NON FREE SCALE 
  ##facet_wrap(~Num, scales = 'free', labeller = labeller(Num = num_labs)) + # free scale bc 1 is 
so small  
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  ##geom_vline(xintercept = as.POSIXct(as.Date(c('2021-03-22', '2021-04-22'))), linetype = 
'dashed', color = 'blue', size = 2) +  # when water was added, comment this out for no lines  
  theme_C + 
  #scale_y_continuous(limits=c(0,500)) +  # sets all plots start at 0 go to unique maxes for each  
  labs(x = '', y = 'Cumulative Carbon Respired [mg]', title = 'Cumulative Carbon Respired in 
Various Treatments')  
p2P 
 
#ggsave("resp_mean&se.png", plot = p2P, width = 60, height = 20, units = "cm") 
 
 
# GRAPHS OF RESPIRED ONLY OF THE NEW RATIOS  
edit_data_resp <- data_resp %>% 
  filter(Num == '6' | Num == '7'| Num == '8'| Num == '9')  
 
edit_p2P <- ggplot(edit_data_resp, aes(x=Date.Time, y=C_resp_cum)) + 
  geom_point(aes(size = .8)) + 
  scale_x_datetime(limits = lims) + 
  stat_summary(fun.data = "mean_se", colour = "red", size = .8) + 
  facet_wrap(~Num, labeller = labeller(Num = num_labs)) + 
  theme_C + 
  labs(x = '', y = 'Cumulative Carbon Respired [mg]', title = 'Cumulative Carbon Respired in 50% 
Residue Dosage Treatments')  
edit_p2P 
ggsave("newratio_resp_mean&se.png", plot = edit_p2P, width = 60, height = 20, units = "cm") 
 
# GRAPHS OF RESPIRED ONLY OF OLD RATIOS 
edit_data_resp <- data_resp %>% 
  filter(Num == '3' | Num == '4'| Num == '5') 
 
edit_p2P <- ggplot(edit_data_resp, aes(x=Date.Time, y=C_resp_cum)) + 
  geom_point(aes(size = .8)) + 
  scale_x_datetime(limits = lims) + 
  stat_summary(fun.data = "mean_se", colour = "red", size = .8) + 
  facet_wrap(~Num, labeller = labeller(Num = num_labs)) + 
  theme_C + 
  labs(x = '', y = 'Cumulative Carbon Respired [mg]', title = 'Cumulative Carbon Respired in 
Normal Residue Dosage Treatments')  
edit_p2P 
ggsave("oldratio_resp_mean&se.png", plot = edit_p2P, width = 60, height = 20, units = "cm") 
 
# GRAPHS OF DASE O/C 
OCdata_resp <- data_resp %>% 
  filter(Num == '1' | Num == '2') 
 
OC_p <- ggplot(OCdata_resp, aes(x=Date.Time, y=C_resp_cum)) + 
  geom_point(aes(size = .8)) + 
  scale_x_datetime(limits = lims) + 
  stat_summary(fun.data = "mean_se", colour = "red", size = .8) + 
  facet_wrap(~Num, labeller = labeller(Num = num_labs)) + 
  theme_C + 
  labs(x = '', y = 'Cumulative Carbon Respired [mg]', title = 'Cumulative Carbon Respired in DASE 
O/C Treatments')  
OC_p 
ggsave("DASEOC_resp_mean&se.png", plot = OC_p, width = 60, height = 20, units = "cm") 
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# OC_p2 <- ggplot(OCdata_resp, aes(x=Date.Time, y=C_resp_cum)) + 
#   geom_point(aes(size = .8, col = Num)) + 
#   scale_x_datetime(limits = lims) + 
#   stat_summary(fun.data = "mean_se", colour = "red", size = .8) + 
#   #facet_wrap(~Num, labeller = labeller(Num = num_labs)) + 
#   theme_C + 
#   labs(x = '', y = 'Cumulative Carbon Respired [mg]', title = 'Cumulative Carbon Respired in 
DASE O/C Treatments') + 
#   legend 
# OC_p2 
# ggsave("sameDASEOC_resp_mean&se.png", plot = OC_p2, width = 60, height = 20, units = 
"cm") 
 
#lumped figure w/ geom smooth of C respired 
theme_lump <- theme_light() +  
  theme(panel.grid.minor = element_blank(),  
        text = element_text(size = 30), #for facetwrapped plots 
        strip.background = element_rect(color="black", fill="#93C5FF", size=1.5, linetype="solid"), 
        legend.position = "bottom", 
        plot.title = element_text(hjust = 0.5) 
  )  
 
data_resp_old <- data_resp %>% 
  filter(Num == '2' |Num == '3' | Num == '4'| Num == '5') 
 
lumped1 <- ggplot(data_resp_old, aes(x=Date.Time, y=C_resp_cum)) + 
  geom_smooth(aes(color = Num), se = TRUE) + 
  scale_x_datetime(limits = lims) + 
  theme_lump + 
  scale_color_manual("Treatments", labels = c("DASE1", "AD2", "DASE2", "DASE3"), values = 
c("2", "3", "4", "5")) + 
  scale_y_continuous(limits=c(0,250)) +  # sets all plots start at 0 go to unique maxes for each  
  labs(x = '', y = 'Cumulative Carbon Respired [mg]', title = 'Cumulative Carbon Respired in 
INCUBATION 2 of HLFB Amended Palouse Soil')  
lumped1 
 
ggsave("Plumped_scale_mean&se.png", plot = lumped_P, width = 60, height = 20, units = "cm") 
 
#C retained throughout Incubation 2 
datainitC <- read.csv("justinitC.csv", stringsAsFactors = FALSE, header = TRUE) # scan in 
document formatted like example 
data3 <- left_join(data_resp, datainitC, by = 'Sample')  
data3 <- data3 %>% 
  mutate(invC_resp_cum = init_C*1000 - C_resp_cum)  %>% 
  filter(Num == '2' |Num == '3' | Num == '4'| Num == '5') %>% 
  mutate(invC_resp_cum_ADJ = case_when(Num == '3' ~ .5*invC_resp_cum, 
                                       Num == '2' | Num == '4' ~ .35*invC_resp_cum, 
                                       Num == '5' ~ .35*invC_resp_cum)) %>% 
  mutate(ID = case_when(Num == '2' ~ 'DASE1_2',  
                        Num == '3' ~ 'AD2', 
                        Num == '4' ~ 'DASE2', 
                        Num == '5' ~ 'DASE3')) 
 
lumped_2 <- ggplot(data3, aes(x=Date.Time, y=invC_resp_cum)) + 
  geom_smooth(aes(color = Num), se = TRUE) + 
  scale_x_datetime(limits = lims) + 
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  theme_lump + 
  scale_color_manual("Treatments", labels = c("DASE1", "AD2", "DASE2", "DASE3"), values = 
c("2", "3", "4", "5")) + 
  #scale_y_continuous(limits=c(0,250)) +  # sets all plots start at 0 go to unique maxes for each  
  labs(x = '', y = 'Cumulative Carbon Retained [mg]', title = 'Carbon Retained in Treatments 
Throughout INCUBATION 2 of HLFB Amended Palouse Soil')  
lumped_2 
 
ggsave("Cret4res.png", plot = lumped_2, width = 60, height = 20, units = "cm") 
  
 
lumped_3 <- ggplot(data3, aes(x=Date.Time, y=invC_resp_cum_ADJ)) + 
  geom_smooth(aes(color = Num), se = TRUE) + 
  scale_x_datetime(limits = lims) + 
  theme_lump + 
  scale_color_manual("Treatments", labels = c("DASE1", "AD2", "DASE2", "DASE3"), values = 
c("2", "3", "4", "5")) + 
  #scale_y_continuous(limits=c(0,250)) +  # sets all plots start at 0 go to unique maxes for each  
  labs(x = '', y = 'Cumulative Carbon Retained [mg]', title = 'Carbon Retained in Treatments 
Throughout INCUBATION 2 of HLFB Amended Palouse Soil')  
lumped_3 
 
ggsave("Cret4resADJ.png", plot = lumped_3, width = 60, height = 20, units = "cm") 
 
# combine 
inc2data <- read.csv("INC2_invC_resp.csv", stringsAsFactors = FALSE, header = TRUE) # scan 
in document formatted like example 
 
retdata1 <- data3 %>% 
  select(Sample, ID, time, invC_resp_cum, invC_resp_cum_ADJ)  
 
retdata2 <- inc2data %>% 
  filter(time < 135) %>% 
  select(Sample, ID, time, invC_resp_cum, invC_resp_cum_ADJ)  
 
retdata_comb <- rbind(data_frame(retdata1), data_frame(retdata2)) 
 
lumped_4 <- ggplot(retdata_comb, aes(x=time, y=invC_resp_cum)) + 
  geom_smooth(aes(color = ID), se = TRUE) + 
  #scale_x_datetime(limits = lims) + 
  theme_lump + 
  #scale_color_manual("Treatments", labels = c("DASE1", "AD2", "DASE2", "DASE3"), values = 
c("2", "3", "4", "5")) + 
  #scale_y_continuous(limits=c(0,250)) +  # sets all plots start at 0 go to unique maxes for each  
  labs(x = 'Time [days]', y = 'Cumulative Carbon Retained [mg]', title = 'Carbon Retained in 135 
Day Incubations of HLFB Amended Palouse Soil')  
lumped_4 
 
ggsave("totalCret4res.png", plot = lumped_4, width = 60, height = 20, units = "cm") 
 
lumped_5 <- ggplot(retdata_comb, aes(x=time, y=invC_resp_cum_ADJ)) + 
  geom_smooth(aes(color = ID), se = TRUE) + 
  #scale_x_datetime(limits = lims) + 
  theme_lump + 
  #scale_color_manual("Treatments", labels = c("DASE1", "AD2", "DASE2", "DASE3"), values = 
c("2", "3", "4", "5")) + 
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  #scale_y_continuous(limits=c(0,250)) +  # sets all plots start at 0 go to unique maxes for each  
  labs(x = 'Time [days]', y = 'Cumulative Carbon Retained [mg]', title = 'Carbon Retained in 135 
Day Incubations of HLFB Amended Palouse Soil')  
lumped_5 
 
ggsave("ADJtotalCret4res.png", plot = lumped_5, width = 60, height = 20, units = "cm") 
 
#Show Initial C 
pV_init <- ggplot(data_resp, aes(x=Date.Time, y=C_resp_cum)) + 
  geom_smooth(aes(size = .8)) + 
  scale_x_datetime(limits = lims) + 
  #stat_summary(fun.data = "mean_se", colour = "red", size = .8) + 
  facet_wrap(~Num, labeller = labeller(Num = num_labs)) + # NON FREE SCALE 
  #geom_vline(xintercept = as.POSIXct(as.Date(c('2021-03-22', '2021-04-22'))), linetype = 
'dashed', color = 'blue', size = 2) + 
  #facet_wrap(~Num, scales = 'free', labeller = labeller(Num = num_labs)) + # free scale bc 1 is 
so small  
  ##geom_vline(xintercept = as.POSIXct(as.Date(c('2021-03-22', '2021-04-22'))), linetype = 
'dashed', color = 'blue', size = 2) +  # when water was added, comment this out for no lines  
  theme_C + 
  scale_y_continuous(limits=c(0,NA)) +  # sets all plots start at 0 go to unique maxes for each  
  labs(x = '', y = 'Cumulative Carbon Respired [mg]', title = 'Cumulative Carbon in 267 Day 
Incubation of HLFB Amended Vershire Soil')  
pV_init 
 
# Calculate C retained as percentage of residue C and total treatment C  
datainitC <- read.csv("justinitC.csv", stringsAsFactors = FALSE, header = TRUE) # scan in 
document formatted like example 
data3 <- left_join(data_resp, datainitC, by = 'Sample')  
data3 <- merge(data3, soil_resp, by = c('Typ', 'Flush'))  # matches soil resp. to each 
measurement at a time point  
data3 <- data3 %>% 
  mutate(init_totC = init_C*1000) %>%         # [mg C] initial C (soil+res) in each treatment on 
average 
  mutate(init_resC = init_resC*1000) %>%      # [mg C] initial C (res) in each treatment on average 
  mutate(Ctot_ret = 100*(init_totC - C_resp_cum)/init_totC) %>% # [% total C] C retained from 
total treatment 
  mutate(Cres_ret = 100*(init_resC-(C_resp_cum-mean_soil_cum))/init_resC) %>% # [% residue 
C] C retained from residue in each treatment 
  group_by(Num, Typ, Date.Time) %>% 
  summarize(meanCtot_ret = mean(Ctot_ret), meanCres_ret = mean(Cres_ret)) %>% # [% total 
C] average of prev. calculations per treatment on specific days 
  ungroup() %>% # necessary to add row after 
  add_row(Typ = 'P', Num = c('1', '2', '3', '4', '5'), Date.Time = as.POSIXct('2021-11-01 15:00:00'), 
meanCres_ret = 100, meanCtot_ret = 100) %>% # add initial anchor point of 100% for all 
treatments (when incubation began) 
  add_row(Typ = 'V', Num = c('1', '2', '3', '4', '5'), Date.Time = as.POSIXct('2021-11-01 15:00:00'), 
meanCres_ret = 100, meanCtot_ret = 100)  
 
data3P <- data3 %>% 
  filter(Typ == 'P') %>% 
  mutate(Ctot_Label = round(ifelse(Date.Time == max(Date.Time), meanCtot_ret, NA), 0)) %>%  
# add labels to last point of each line 
  mutate(Cres_Label = round(ifelse(Date.Time == max(Date.Time), meanCres_ret, NA), 0)) 
 
data3V <- data3 %>% 
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  filter(Typ == 'V') %>% 
  mutate(Ctot_Label = round(ifelse(Date.Time == max(Date.Time), meanCtot_ret, NA), 0)) %>%  
# add labels to last point of each line 
  mutate(Cres_Label = round(ifelse(Date.Time == max(Date.Time), meanCres_ret, NA), 0)) 
 
# Graph C retained graphs  
# C retained of only residue graphs 
Cret_P <- ggplot(data3P, aes(x=Date.Time, y=meanCres_ret)) + 
  geom_line(aes(color = Num), size = .5) + 
  geom_point(size = .25, color = 'black') +  
  scale_x_datetime(date_breaks = '1 month', labels = date_format("%b")) + 
  ylim(35, 100) + 
  theme_lump + 
  scale_color_manual("Treatments", labels = c("Soil Control", "CS", "AD", "C-CBP", "DASE"), 
values = c("1", "2", "3", "4", "5")) + 
  #scale_y_continuous(limits=c(0,500)) +  # sets all plots start at 0 go to 500 
  labs(x = '', y = 'Carbon Retained in Residue \n [% of Initial Residue C]', title = 'Palouse Soil 
Incubations') +   # Carbon Retained in Residue in \n 267 Day Incubation of Biofuel Residues in 
Palouse Soil 
  geom_label_repel(aes(label = Cres_Label), min.segment.length = 0, size = 2, force = 2.1, 
direction = 'y', hjust = 'left', label.padding = unit(0.1, "lines"), na.rm = TRUE)  # labels last point 
with final percentage of each line  
Cret_P 
 
# C retained of total treatment graphs 
Cret_P2 <- ggplot(data3P, aes(x=Date.Time, y=meanCtot_ret)) + 
  geom_line(aes(color = Num), size = .5) + 
  geom_point(size = .25, color = 'black') +  
  scale_x_datetime(date_breaks = '1 month', labels = date_format("%b")) + 
  ylim(60, 100) + 
  #scale_x_datetime(limits = lims) + 
  theme_lump + 
  scale_color_manual("Treatments", labels = c("Soil Control", "CS", "AD", "C-CBP", "DASE"), 
values = c("1", "2", "3", "4", "5")) + 
  #scale_y_continuous(limits=c(0,500)) +  # sets all plots start at 0 go to 500 
  labs(x = '', y = 'Carbon Retained in Treatment \n [% of Initial Treatment C]', title = 'Palouse Soil 
Incubations') + # 'Carbon Retained in Treatment in \n 267 Day Incubation of Biofuel Residues in 
Palouse Soil'  
  geom_label_repel(aes(label = Ctot_Label), min.segment.length = 0 , size = 2, force = .6, 
direction = 'y', hjust = 'left', label.padding = unit(0.1, "lines"), na.rm = TRUE)  # labels last point 
with final percentage of each line  
Cret_P2 
 
# C retained of only residue graphs 
Cret_V <- ggplot(data3V, aes(x=Date.Time, y=meanCres_ret)) + 
  geom_line(aes(color = Num), size = .5) + 
  geom_point(size = .25, color = 'black') +  
  scale_x_datetime(date_breaks = '1 month', labels = date_format("%b")) + 
  ylim(35, 100) + 
  #scale_x_datetime(limits = lims) + 
  theme_lump + 
  #geom_label_repel(aes(), nudge_x = 1, na.rm = TRUE) +  # CHANGE THIS SO THE LABEL 
WORKS, PAGE IS SAVED IN GOOGLE 
  scale_color_manual("Treatments", labels = c("Soil Control", "CS", "AD", "C-CBP", "DASE"), 
values = c("1", "2", "3", "4", "5")) + 
  #scale_y_continuous(limits=c(0,500)) +  # sets all plots start at 0 go to 500 
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  labs(x = '', y = 'Carbon Retained in Residue \n [% of Initial Residue C]', title = 'Vershire Soil 
Incubations') +   # Carbon Retained in Residue in \n 267 Day Incubation of Biofuel Residues in 
Vershire Soil 
  geom_label_repel(aes(label = Cres_Label), min.segment.length = 0, size = 2, force = .5, 
direction = 'y', hjust = 'left', label.padding = unit(0.1, "lines"), na.rm = TRUE)  # labels last point 
with final percentage of each line  
Cret_V 
 
# C retained of total treatment graphs 
Cret_V2 <- ggplot(data3V, aes(x=Date.Time, y=meanCtot_ret)) + 
  geom_line(aes(color = Num), size = .5) + 
  geom_point(size = .25, color = 'black') +   
  scale_x_datetime(date_breaks = '1 month', labels = date_format("%b")) + 
  ylim(60, 100) + 
  #scale_x_datetime(limits = lims) + 
  theme_lump + 
  scale_color_manual("Treatments", labels = c("Soil Control", "CS", "AD", "C-CBP", "DASE"), 
values = c("1", "2", "3", "4", "5")) + 
  #scale_y_continuous(limits=c(0,500)) +  # sets all plots start at 0 go to 500 
  labs(x = '', y = 'Carbon Retained in Treatment \n [% of Initial Treatment C]', title = 'Vershire Soil 
Incubations') + # 'Carbon Retained in Treatment in \n 267 Day Incubation of Biofuel Residues in 
Vershire Soil' 
  geom_label_repel(aes(label = Ctot_Label), min.segment.length = 0, size = 2, force = .6, 
direction = 'y', hjust = 'left', label.padding = unit(0.1, "lines"), na.rm = TRUE)  # labels last point 
with final percentage of each line  
Cret_V2 
 
ggsave("CretP_scale_mean&se.png", plot = Cret_P, width = 60, height = 20, units = "cm") 
ggsave("CretV_scale_mean&se.png", plot = Cret_V, width = 60, height = 20, units = "cm") 
 
############################################################################ 
# SOIL MODELLING ####################################################### 
# Based off of https://www.bgc-jena.mpg.de/TEE/optimization/2015/12/09/Fractions-Incubations/ 
# Context from https://escholarship.org/uc/item/9h72f7hk 
 
# Clean data for modelling 
data_mod <- data_resp %>% 
  ungroup(Sample) %>%   # now, not grouped as anything 
  select(c('time','Num', 'C_resp_cum'))  %>% # select these columns for ease 
  group_by(Num, time) %>%  #   
  summarize(cummCO2 = mean(C_resp_cum)) # sd gives an error for some reason: Stderr = 
sd(C_resp_cum))   # [mg] amount of carbon respired cumulatively, not in terms of mg C/g soil 
  #summarize(cummCO2 = mean(C_resp_cum)/50, Stderr = sd(C_resp_cum/50)) %>%  # /50 so 
it's in [g C/g soil] since we start w/ ~50g soil, summarizing by all incubations def. loses precision 
since it's not a rate, it's an absolute amount?, but also it's based off of rate anyways 
write.csv(data_mod, file = 'INC2data_mod.csv') 
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Appendix R – Example Overall Graphing Data and R Code 

Key explaining the sheets in the overall datasheet used to generate the graphs referenced 

in this thesis is shown below. The complete datasheet and R code for the graphs 

presented in this thesis can be found in the Hicks Pries Lab GitHub. 

 

The first two sheets “Onetimeresp_INC2”,  “Resp_away_all2PS,” and 

“Onetimeresp_INC1” were used to generate the one-time input graphs shown in Figure 3. 

The “Longterm_data” sheet was used to generate the annual-input modelling graphs 

shown in Figure 4. The “Final_13C_data” and “13C_err_data” sheet was used to generate 

the 13C partitioning graphs in Figure 1 and priming / partitioned graphs shown in Figure 

2 and Appendices I and J .  

 

 

Example of the R code used to generate the graphs in this thesis is shown below. 

## GRAPHS FOR WANG THESIS 2023 
## Author: Michelle S. Wang, michelle.s.wang.th@dartmouth.edu 
 
# Load packages + functions 
library(tidyverse) 
library(ggsci)  
library(ggrepel) 
library(scales) 
 
library(FME) 
library(ggpubr) 
library(car) 
 
# Nature color palette: https://nanx.me/ggsci/reference/pal_npg.html; 
show_col(pal_npg("nrc")(10)) 
 
# Theme 
theme_C <- theme_light() +  
  theme(panel.grid.minor = element_blank(),  
        text = element_text(size = 20), #for facetwrapped plots 
        strip.background = element_rect(color="black", fill="#93C5FF", size=1.5, linetype="solid"), 
        #legend.position = "none", 
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        plot.title = element_text(hjust = 0.5), 
  )  
 
# Theme 
theme_bar <-  theme_bw() + 
  theme( 
    plot.title = element_text(hjust = 0.5),  # center title 
    panel.background = element_blank(), 
    panel.grid.major = element_blank(), 
    panel.grid.minor = element_blank(), 
    axis.ticks = element_blank(), 
    axis.text.x = element_blank(), 
    axis.title.x = element_blank(), 
    panel.spacing = unit(.9, 'lines'), 
    text = element_text(size = 20) 
  ) 
 
INC1_colors <- c('SOIL' = '#7E6148FF', 'CS1' = '#91D1C2FF', 'AD1' = '#8491B4FF', 'HLFB1' = 
'#F39B7FFF') 
INC2_colors <- c('SOIL' = '#7E6148FF', 'CS2' = '#00A087FF', 'AD2' = '#3C5488FF', 'HLFB1' = 
'#F39B7FFF', 'HLFB2' = '#E64B35FF', 'HLFB3' = '#DC0000FF') 
INCtot_colors <- c('SOIL' = '#7E6148FF', 'CS1' = '#91D1C2FF', 'AD1' = '#8491B4FF', 'CS2' = 
'#00A087FF', 'AD2' = '#3C5488FF', 'HLFB1' = '#F39B7FFF', 'HLFB2' = '#E64B35FF', 'HLFB3' = 
'#DC0000FF') 
#############################################################################
################### 
# ONE TIME INPUT GRAPHS 
 
# Initials 
ADconv = .5 
DASEconv = .35 
 
# Read in data 
onetime_data0 <- read.csv("onetime_data.csv", stringsAsFactors = FALSE, header = TRUE) # 
scan in document formatted like example 
 
onetime_data0 <- onetime_data0 %>% 
  #select(-'X', -'X.1') %>% # get rid of weird extra column 
  select(-'GWC20', -'CCBP_P', -'CCBP_V', -'DASE_C', -'DASE_O') 
 
# total treatments: c('DASE_C', 'DASE_O', 'DASE_AVG', 'AD_S', 'POET_S',
 'NREL_S', 'AD_N', 'POET_N', 'NREL_N', 'CS_N', 'GWC16',
 'GWC20', 'PALOUSE', 'CS_1P', 'AD_1P', 'CCBP_P',
 'DASE_1P', 'VERSHIRE', 'CS_1V', 'AD_1V', 'CCBP_V',
 'DASE_1V') 
 
CinitsINC2 <- c((1199.218125+1198.987771)/2, 1202.890795, 1208.769544, 1280.327308, 
869.183259, 871.99067, 907.076619, 880.866037, 540.873971) # these numbers reflect if I 
average C per treatment, Information from INC3 -> CombinedIRMS -> Treatment_Calculations 
# CinitsINC2 key = 'DASE_AVG', 'AD_S', 'POET_S', 'NREL_S', 'AD_N',
 'POET_N', 'NREL_N', 'CS_N', 'GWC16' 
 
CinitsP <- c(514.4336596, 1145.656643, 1059.347782, 1188.126723) # these numbers reflect if I 
average C per treatment, Information from INC2 -> IRMS -> "IRMS_summary" -> IRMS_Pre 
CinitsV <- c(1113.366093, 1752.370126, 1651.682688, 1783.200554) 
CinitsINC1 <- c(CinitsP, CinitsV) 
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# CinitsINC1 key =  'PALOUSE', 'CS_1P', 'AD_1P', 'DASE_1P', 'VERSHIRE',
 'CS_1V', 'AD_1V', 'DASE_1V' 
 
onetime_data <- onetime_data0 %>% 
  pivot_longer( 
    cols = c('DASE_AVG', 'AD_S', 'POET_S', 'NREL_S', 'AD_N', 'POET_N',
 'NREL_N', 'CS_N', 'GWC16', 'PALOUSE', 'CS_1P', 'AD_1P',
 'DASE_1P', 'VERSHIRE', 'CS_1V', 'AD_1V', 'DASE_1V'), 
    names_to = 'treatment', 
    values_to = 'cummCO2resp' 
  ) 
 
# ONE TIME INPUT INC1  
onetime_data_INC1 <- onetime_data %>% 
  filter(treatment == 'PALOUSE' | treatment == 'CS_1P' | treatment == 'AD_1P' | treatment ==
 'DASE_1P' | treatment == 'VERSHIRE' | treatment == 'CS_1V' | treatment ==
 'AD_1V' | treatment == 'DASE_1V') %>% 
  mutate(soil = ifelse(treatment == c('PALOUSE', 'CS_1P', 'AD_1P', 'DASE_1P'), 'P', 
'V')) %>% 
  mutate(type = case_when(treatment == 'PALOUSE' | treatment == 'VERSHIRE' ~ 'SOIL',  
                     treatment == 'CS_1P' | treatment == 'CS_1V' ~ 'CS1', 
                     treatment == 'AD_1P' | treatment == 'AD_1V' ~ 'AD1', 
                     treatment == 'DASE_1P' | treatment == 'DASE_1V' ~ 'HLFB1')) %>% 
  mutate(cummCO2respCONV = case_when(type == 'SOIL' ~ cummCO2resp, 
                                     type == 'CS1' ~ cummCO2resp,  
                                     type == 'AD1' ~ ADconv*cummCO2resp, 
                                     type == 'HLFB1' ~ DASEconv*cummCO2resp)) %>% 
  mutate(soil = factor(soil, labels = c('Palouse', 'Vershire'))) %>% 
  mutate(init_totalC = case_when(treatment == 'PALOUSE' ~ CinitsINC1[1], 
                                 treatment == 'CS_1P' ~ CinitsINC1[2] ,  
                                 treatment == 'AD_1P' ~ CinitsINC1[3],  
                                 treatment == 'DASE_1P' ~ CinitsINC1[4],  
                                 treatment == 'VERSHIRE' ~ CinitsINC1[5],  
                                 treatment == 'CS_1V' ~ CinitsINC1[6],  
                                 treatment == 'AD_1V' ~ CinitsINC1[7],  
                                 treatment == 'DASE_1V' ~ CinitsINC1[8])) %>% 
  mutate(Cret = init_totalC - cummCO2resp) %>% 
  mutate(init_totalCCONV = case_when(type == 'SOIL' ~ init_totalC, 
                                     type == 'CS1' ~ init_totalC,  
                                     type == 'AD1' ~ ADconv*init_totalC, 
                                     type == 'HLFB1' ~ DASEconv*init_totalC)) %>% 
  mutate(CretCONV = init_totalCCONV - cummCO2respCONV) 
 
data_ends <- onetime_data_INC1 %>% 
  group_by(treatment) %>% 
  top_n(1, YEAR) 
 
#to isolate each soil type use this code in ggplot data = 
#onetime_data_INC1 %>% 
 # filter(soil == 'Palouse') 
 
onetime_INC1_plot <- ggplot(data = onetime_data_INC1, aes(x = YEAR, y = cummCO2resp, 
group = treatment)) + 
  geom_line(aes(col = type, linetype = factor(soil)), size = 2) +  
  scale_linetype_manual(values = c('Palouse' = 'solid', 'Vershire' = 'dotdash')) + 
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  scale_color_manual(values = INC1_colors) + #c('SOIL' = '#7E6148FF', 'CS2' = '#91D1C2FF', 
'AD2' = '#8491B4FF', 'DASE1' = '#F39B7FFF', 'DASE2' = '#E64B35FF', 'DASE3' = '#DC0000FF')) 
+ 
  theme_C + 
  #xlim(0, 25) + 
  labs(x = 'Years', y = 'Total C Respired [mg]',  
       #title = '100 Year Projections of C Respired in Incubation 1 Treatments',  
       col = 'Treatment', linetype = 'Soil Type')  
onetime_INC1_plot 
ggsave("onetimeINC1_plot.png", plot = onetime_INC1_plot, width = 30, height = 20, units = "cm")  
# change this accordingly 
 
# residue conversion yield accounted for 
onetimeCONV_INC1_plot <- ggplot(data = onetime_data_INC1 , aes(x = YEAR, y = 
cummCO2respCONV, group = treatment)) + 
  geom_line(aes(col = type, linetype = soil), size = 2) +  
  scale_color_manual(values = INC1_colors) + 
  theme_C + 
 # xlim(0, 25) + 
  labs(x = 'Years', y = 'Total C Respired [mg]',  
       # title = '100 Year Projections of C Respired \n in Incubation 1 Treatments with Conversion 
Rates',  
       col = 'Treatment', linetype = 'Soil Type')  
onetimeCONV_INC1_plot 
ggsave("VERonetimeCONV_INC1_plot.png", plot = onetimeCONV_INC1_plot, width = 30, height 
= 20, units = "cm")  # change this accordingly 
 
# INC1 Retained version of above plots 
onetimeRET_INC1_plot <- ggplot(data = onetime_data_INC1, aes(x = YEAR, y = Cret, group = 
treatment)) + 
  geom_line(aes(col = type, linetype = factor(soil)), size = 2) +  
  scale_color_manual(values = INC1_colors) + 
  theme_C + 
  xlim(0, 50) + 
  labs(x = 'Years', y = 'Total C Retained [mg]', title = '100 Year Projections of C Retained in 
Incubation 1 Treatments', col = 'Treatment', linetype = 'Soil Type')  
onetimeRET_INC1_plot 
ggsave("onetimeRET50_INC1_plot.png", plot = onetimeRET_INC1_plot, width = 30, height = 20, 
units = "cm")  # change this accordingly 
 
# residue conversion yield accounted for 
onetimeRET_CONV_INC1_plot <- ggplot(data = onetime_data_INC1, aes(x = YEAR, y = 
CretCONV, group = treatment)) + 
  geom_line(aes(col = type, linetype = soil), size = 2) +  
  scale_color_manual(values = INC1_colors) + 
  theme_C + 
  xlim(0, 50) + 
  labs(x = 'Years', y = 'Total C Retained [mg]', title = '100 Year Projections of C Retained \n in 
Incubation 1 Treatments with Conversion Rates', col = 'Treatment', linetype = 'Soil Type')  
onetimeRET_CONV_INC1_plot 
ggsave("onetimeRET50_CONV_INC1_plot.png", plot = onetimeRET_CONV_INC1_plot, width = 
30, height = 20, units = "cm")  # change this accordingly 
 
# ONE TIME INPUT INC2 
# Nature color palette 
#E64B35FF # orange red 
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#F39B7FFF # salmon red 
#DC0000FF # deep red 
 
onetime_data_INC2 <- onetime_data %>% 
  filter(treatment == 'DASE_AVG' | treatment == 'AD_S' | treatment == 'POET_S' | treatment ==
 'NREL_S' | treatment == 'AD_N' | treatment == 'POET_N' | treatment ==
 'NREL_N' | treatment == 'CS_N' | treatment == 'GWC16') %>% 
  mutate(dose = case_when(treatment == 'GWC16' ~ 'SOIL',  
                          treatment == 'CS_N' | treatment == 'AD_N'   
                          | treatment == 'POET_N' | treatment == 'NREL_N' ~ 'N', 
                          treatment == 'DASE_AVG' | treatment == 'AD_S'  
                          | treatment == 'POET_S' | treatment == 'NREL_S' ~ 'S')) %>% 
  mutate(type = case_when(treatment == 'GWC16' ~ 'SOIL',  
                          treatment == 'CS_N' ~ 'CS', 
                          treatment == 'AD_N' | treatment == 'AD_S' ~ 'AD', 
                          treatment == 'DASE_AVG' | treatment == 'POET_N' | treatment == 'NREL_N' | 
treatment == 'POET_S' | treatment == 'NREL_S' ~ 'DASE')) %>% 
  mutate(type2 = case_when(treatment == 'GWC16' ~ 'SOIL',  
                          treatment == 'CS_N' ~ 'CS2', 
                          treatment == 'AD_N' | treatment == 'AD_S' ~ 'AD2', 
                          treatment == 'DASE_AVG' ~ 'HLFB1', 
                          treatment == 'POET_N' | treatment == 'POET_S' ~ 'HLFB3', 
                          treatment == 'NREL_N' | treatment == 'NREL_S' ~ 'HLFB2')) %>% 
  mutate(cummCO2respCONV = case_when(type == 'SOIL' ~ cummCO2resp, 
                                     type == 'CS' ~ cummCO2resp,  
                                     type == 'AD' ~ ADconv*cummCO2resp, 
                                     type == 'DASE' ~ DASEconv*cummCO2resp)) %>% 
  mutate(dose = factor(dose, labels = c('Reduced', 'Standard', 'Soil'))) %>%  
  mutate(init_totalC = case_when(treatment == 'DASE_AVG' ~ CinitsINC2[1], 
                                 treatment == 'AD_S' ~ CinitsINC2[2] ,  
                                 treatment == 'POET_S' ~ CinitsINC2[3],  
                                 treatment == 'NREL_S' ~ CinitsINC2[4],  
                                 treatment == 'AD_N' ~ CinitsINC2[5],  
                                 treatment == 'POET_N' ~ CinitsINC2[6],  
                                 treatment == 'NREL_N' ~ CinitsINC2[7],  
                                 treatment == 'CS_N' ~ CinitsINC2[8], 
                                 treatment == 'GWC16' ~ CinitsINC2[9])) %>% 
  mutate(Cret = init_totalC - cummCO2resp) %>% 
  mutate(init_totalCCONV = case_when(type == 'SOIL' ~ init_totalC, 
                                     type == 'CS' ~ init_totalC,  
                                     type == 'AD' ~ ADconv*init_totalC, 
                                     type == 'DASE' ~ DASEconv*init_totalC)) %>% 
  mutate(CretCONV = init_totalCCONV - cummCO2respCONV) 
 
# code so only dosage group 
# onetime_data_INC2 %>% 
#   filter(soil == 'Vershire') 
 
onetime_INC2_plot <- ggplot(data = onetime_data_INC2, aes(x = YEAR, y = cummCO2resp, 
group = treatment)) + 
  geom_line(aes(linetype = factor(dose), colour = type2), size = 2) +  
  scale_linetype_manual(values = c('Standard' = 'solid', 'Reduced' = 'twodash', 'Soil' = 'dotted')) + 
  scale_color_manual(values = INC2_colors) + 
  theme_C + 
  xlim(0, 25) + 
  labs(x = 'Years', y = 'Total C Respired [mg]',  
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       #title = '25 Year Projections of C Respired in Incubation 2 Treatments',  
       linetype = 'Dosage', color = 'Treatment')  
onetime_INC2_plot 
ggsave("onetimeINC2_plot.png", plot = onetime_INC2_plot, width = 30, height = 20, units = "cm")  
# change this accordingly 
 
# residue conversion yield accounted for 
onetimeCONV_INC2_plot <- ggplot(data = onetime_data_INC2 , aes(x = YEAR, y = 
cummCO2respCONV, group = treatment)) + 
  geom_line(aes(linetype = dose, colour = type2), size = 2) +  
  scale_linetype_manual(values = c('Standard' = 'solid', 'Reduced' = 'twodash', 'Soil' = 'dotted')) + 
  scale_color_manual(values = INC2_colors) + 
  theme_C + 
  xlim(0, 25.2) + 
  labs(x = 'Years', y = 'Total C Respired [mg]',  
       # title = '25 Year Projections of C Respired \n in Incubation 2 Treatments with Conversion 
Rates',  
       linetype = 'Dosage', col = 'Treatment')  
onetimeCONV_INC2_plot 
ggsave("onetimeCONV_INC2_plot.png", plot = onetimeCONV_INC2_plot, width = 30, height = 
20, units = "cm")  # change this accordingly 
 
# INC2 RETAINED VERSION OF ABOVE PLOTS 
onetimeRET_INC2_plot <- ggplot(data = onetime_data_INC2, aes(x = YEAR, y = Cret, group = 
treatment)) + 
  geom_line(aes(linetype = factor(dose), colour = type2), size = 2) +  
  scale_color_manual(values = INC2_colors) + 
  theme_C + 
  xlim(0, 25) + 
  labs(x = 'Years', y = 'Total C Retained [mg]', title = '25 Year Projections of C Retained in 
Incubation 2 Treatments', linetype = 'Dosage', color = 'Treatment')  
onetimeRET_INC2_plot 
ggsave("onetimeRET_INC2_plot.png", plot = onetimeRET_INC2_plot, width = 30, height = 20, 
units = "cm")  # change this accordingly 
 
# residue conversion yield accounted for 
onetimeRET_CONV_INC2_plot <- ggplot(data = onetime_data_INC2, aes(x = YEAR, y = 
CretCONV, group = treatment)) + 
  geom_line(aes(linetype = dose, colour = type2), size = 2) +  
  scale_color_manual(values = INC2_colors) + 
  theme_C + 
  xlim(0, 25.2) + 
  labs(x = 'Years', y = 'Total C Respired [mg]', title = '25 Year Projections of C Respired \n in 
Incubation 2 Treatments with Conversion Rates', linetype = 'Dosage', col = 'Treatment')  
onetimeRET_CONV_INC2_plot 
ggsave("onetimeRET_CONV_INC2_plot.png", plot = onetimeRET_CONV_INC2_plot, width = 30, 
height = 20, units = "cm")  # change this accordingly 
 
 
#############################################################################
####################### 
# LONGTERM MODELLING GRAPHS 
longterm_data0 <- read.csv("Longterm_data.csv", stringsAsFactors = FALSE, header = TRUE) # 
scan in document formatted like example 
 
longterm_data0 <- longterm_data0 %>% 
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  select(-'CCBP_P', -'CCBP_V', -'GWC16', -'PALOUSE', -'VERSHIRE') 
 
# c('DASE_C', 'DASE_O', 'DASE_AVG', 'AD_S', 'POET_S', 'NREL_S', 'AD_N',
 'POET_N', 'NREL_N', 'CS_N', 'GWC16', 'GWC20', 'PALOUSE',
 'CS_1P', 'AD_1P', 'CCBP_P', 'DASE_1P', 'VERSHIRE',
 'CS_1V', 'AD_1V', 'CCBP_V', 'DASE_1V') 
 
longterm_data <- longterm_data0 %>% 
  pivot_longer( 
    cols = c('DASE_AVG', 'AD_S', 'POET_S', 'NREL_S', 'AD_N', 'POET_N',
 'NREL_N', 'CS_N', 'CS_1P', 'AD_1P', 'DASE_1P', 'CS_1V',
 'AD_1V', 'DASE_1V'), 
    names_to = 'treatment', 
    values_to = 'cummCO2resp' 
  ) 
 
# longterm INC1 
longterm_data_INC1 <- longterm_data %>% 
  filter(treatment == 'CS_1P' | treatment == 'AD_1P' | treatment == 'DASE_1P' | treatment 
== 'CS_1V' | treatment == 'AD_1V' | treatment == 'DASE_1V') %>% 
  mutate(soil = ifelse(treatment == c('CS_1P', 'AD_1P', 'DASE_1P'), 'P', 'V')) %>% 
  mutate(type = case_when(treatment == 'CS_1P' | treatment == 'CS_1V' ~ 'CS1', 
                          treatment == 'AD_1P' | treatment == 'AD_1V' ~ 'AD1', 
                          treatment == 'DASE_1P' | treatment == 'DASE_1V' ~ 'HLFB1')) %>% 
  mutate(cummCO2respCONV = case_when(type == 'CS1' ~ cummCO2resp,  
                                     type == 'AD1' ~ ADconv*cummCO2resp, 
                                     type == 'HLFB1' ~ DASEconv*cummCO2resp)) %>% 
  mutate(soil = factor(soil, labels = c('Palouse', 'Vershire'))) 
 
data_ends <- onetime_data_INC1 %>% 
  group_by(treatment) %>% 
  top_n(1, YEAR) 
 
longterm_INC1_plot <- ggplot(data = longterm_data_INC1,  
                            # %>% filter(soil == 'Vershire')   , 
                             aes(x = YEAR, y = cummCO2resp, group = treatment)) + 
  geom_smooth(aes(col = type, linetype = soil), size = 2, alpha = 0) +  
  scale_linetype_manual(values = c('Palouse' = 'solid', 'Vershire' = 'dotdash')) + 
  scale_color_manual(values = INC1_colors) + 
  theme_C + 
  coord_trans( y="log2") +  # otherwise DASE1 overwhelms plot  
  #xlim(0, 25) + 
  labs(x = 'Years', y = 'Total C Retained in Treatments \n log2([mg C])',  
       #title = '100 Year Steady State Projections \n of C Retained in Incubation 1 Treatments',  
       linetype = 'Soil Type', color = 'Treatment')  
longterm_INC1_plot 
ggsave("VERlongtermINC1_plot.png", plot = longterm_INC1_plot, width = 30, height = 20, units = 
"cm")  # change this accordingly 
 
# check INC1 data  
ggp <- ggplot(longterm_data_INC1, aes(x = YEAR, y = cummCO2resp, group = treatment)) +   
  stat_smooth(aes(col = treatment))  
ggp 
ggp_data <- ggplot_build(ggp) 
head(ggp_data$data[[1]]) 
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write.csv(ggp_data$data[[1]], 'inc1ggp_data.csv') # spits out data in color order, so graph it to see 
what number corresponds w/ what 
# palouse, standard -> 1: AD1, 3: CS1, 5: HLFB1 
# vershire, standard -> 2: AD1, 4: CS1, 6: HLFB1 
 
# longterm INC2 
longterm_data_INC2 <- longterm_data %>% 
  filter(treatment == 'DASE_AVG' | treatment == 'AD_S' | treatment == 'POET_S' | treatment ==
 'NREL_S' | treatment == 'AD_N' | treatment == 'POET_N' | treatment ==
 'NREL_N' | treatment == 'CS_N' | treatment == 'GWC16') %>% 
  mutate(dose = case_when(treatment == 'CS_N' | treatment == 'AD_N'   
                          | treatment == 'POET_N' | treatment == 'NREL_N' ~ 'N', 
                          treatment == 'DASE_AVG' | treatment == 'AD_S'  
                          | treatment == 'POET_S' | treatment == 'NREL_S' ~ 'S')) %>% 
  mutate(type = case_when(treatment == 'CS_N' ~ 'CS', 
                          treatment == 'AD_N' | treatment == 'AD_S' ~ 'AD', 
                          treatment == 'DASE_AVG' | treatment == 'POET_N' | treatment == 'NREL_N' | 
treatment == 'POET_S' | treatment == 'NREL_S' ~ 'DASE')) %>% 
  mutate(type2 = case_when(treatment == 'CS_N' ~ 'CS2', 
                           treatment == 'AD_N' | treatment == 'AD_S' ~ 'AD2', 
                           treatment == 'DASE_AVG' ~ 'HLFB1', 
                           treatment == 'POET_N' | treatment == 'POET_S' ~ 'HLFB3', 
                           treatment == 'NREL_N' | treatment == 'NREL_S' ~ 'HLFB2')) %>% 
  mutate(cummCO2respCONV = case_when(type == 'CS' ~ cummCO2resp,  
                                     type == 'AD' ~ ADconv*cummCO2resp, 
                                     type == 'DASE' ~ DASEconv*cummCO2resp)) %>% 
  mutate(dose = factor(dose, labels = c('Reduced', 'Standard'))) 
 
longterm_INC2_plot <- ggplot(data = longterm_data_INC2 
                             %>% filter(dose == 'Reduced'),  
                             aes(x = YEAR, y = cummCO2resp, group = treatment)) + 
  scale_linetype_manual(values = c('Standard' = 'solid', 'Reduced' = 'twodash')) + 
  geom_smooth(aes(linetype = dose, colour = type2), size = 2, alpha = 0) +  
  scale_color_manual(values = INC2_colors) + 
  theme_C + 
  #coord_trans( y="log2") +  # otherwise DASE3 overwhelms plot  
  labs(x = 'Years', y = 'Total C Retained in Treatments [mg C]',  
       #title = '100 Year Steady State Projections \n of C Retained in Incubation 2 Treatments',   
       linetype = 'Dosage', color = 'Treatment')  
longterm_INC2_plot 
ggsave("REDlongtermINC2_plot.png", plot = longterm_INC2_plot, width = 30, height = 20, units = 
"cm")  # change this accordingly 
 
# output geom_smooth data to check SS values 
ggp <- ggplot(longterm_data_INC2, aes(x = YEAR, y = cummCO2resp, group = treatment)) +   
  stat_smooth(aes(col = treatment))  
ggp 
ggp_data <- ggplot_build(ggp) 
head(ggp_data$data[[1]]) 
 
write.csv(ggp_data$data[[1]], 'inc2ggp_data.csv') # spits out data in color order, so graph it to see 
what number corresponds w/ what 
# reduced -> groups 1: AD2, 3: CS2, 5: HLFB2, 7: HLFB3 
 
#############################################################################
####################### 
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# 13C PARTITIONING 
 
# Read in data 
thirteenC_data0 <- read.csv("thirteenC_data.csv", stringsAsFactors = FALSE, header = TRUE) # 
scan in document formatted like example 
 
thirteenC_data <- thirteenC_data0 %>% 
  filter(treatment != 'CCBP_1P' & treatment != 'CCBP_1V' & treatment != 'TWENTY' ) %>% #& 
treatment != 'ONESIX' & treatment != 'PALOUSE' & treatment != 'VERSHIRE' 
  #select(-'X', -'X.1', -'X.2', -'X.3', -'X.4') %>% 
  filter(sample != 'V5C' & sample != 'V5A' & sample != 'P3B' & sample != 'V1A') %>% 
  group_by(treatment, time, source) %>% 
  summarize_all(list(mean, sd)) %>% 
  select(-'num_fn1', -'sample_fn1', -'rep_fn1', -'num_fn2', -'sample_fn2', -'rep_fn2', -'inc_fn2') 
#%>%  
  #mutate(source = factor(source, levels = c('soil', 'res'))) 
 
thirteenC_err_data0 <- read.csv("thirteenC_err_data.csv", stringsAsFactors = FALSE, header = 
TRUE) # scan in document formatted like example 
 
thirteenC_err_data <- thirteenC_err_data0 %>% 
  filter(treatment != 'CCBP_1P', treatment != 'CCBP_1V', treatment != 'ONESIX', treatment != 
'TWENTY', treatment != 'PALOUSE', treatment != 'VERSHIRE') %>% 
  filter(sample != 'V5C' & sample != 'V5A' & sample != 'P3B' & sample != 'V1A') %>% 
  group_by(treatment, time) %>% 
  summarize_all(list(mean, sd)) %>% 
  select(-'num_fn1', -'sample_fn1', -'rep_fn1', -'num_fn2', -'sample_fn2', -'rep_fn2', -'inc_fn2')  
 
# priming data  
priming_data <- thirteenC_data %>% 
  mutate(amt_fn1 = 1000*amt_fn1) %>% 
  mutate(amt_fn2 = 1000*amt_fn2) %>% 
  group_by(treatment, source) %>% 
  arrange(time) %>% 
  mutate(diff = amt_fn1 - lag(amt_fn1, default = first(amt_fn1))) %>% 
  mutate(diff = -1*diff) %>% 
  mutate(stdev = sqrt(amt_fn2^2 + (lag(amt_fn2, default = first(amt_fn2)))^2)) %>% # standard 
deviation 
  filter(diff != 0) %>% 
  mutate(diff = ifelse(diff < 0, 0, diff))  # if priming says somehow soil gained carbon from 
incubation, correct to 0  
 
 
 
#write.csv(priming_data, file="priming_data.csv", row.names = FALSE) 
 
# PRIMING STATISTICS 
loss_data <- thirteenC_data0 %>% 
  filter(treatment != 'CCBP_1P' & treatment != 'CCBP_1V' & treatment != 'ONESIX' & treatment != 
'TWENTY' & treatment != 'PALOUSE' & treatment != 'VERSHIRE') %>% 
  #select(-'X', -'X.1', -'X.2', -'X.3', -'X.4') %>% 
  filter(sample != 'V5C' & sample != 'V5A' & sample != 'P3B' & sample != 'V1A') %>% 
  mutate(amt = 1000*amt) %>% 
  group_by(sample, source) %>% 
  arrange(time) %>% 
  mutate(diff = amt - lag(amt, default = first(amt))) %>% 
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  mutate(diff = -1*diff) %>% 
  filter(diff != 0) %>% 
  mutate(diff = ifelse(diff < 0, 0, diff)) #if priming says somehow soil gained carbon, correct to 0   
 
                                  
priming_stats_data <- loss_data %>% 
  filter(source == 'soil') 
 
res_stats_data <- loss_data %>% 
  filter(source == 'res') 
 
# SOIL LOSS, INC 1, SOIL TYPE = PALOUSE 
res.aov_priming <- aov(diff ~ treatment, data = priming_stats_data %>% filter(inc == '1' & 
soil_type == 'P')) # test interaction btwn Num and Typ 
Anova(res.aov_priming, type = 'III') # use because of unbalanced design 
TukeyHSD(res.aov_priming)  
 
# SOIL LOSS, INC 1, SOIL TYPE = VERSHIRE 
res.aov_priming <- aov(diff ~ treatment, data = priming_stats_data %>% filter(inc == '1' & 
soil_type == 'V')) # test interaction btwn Num and Typ 
Anova(res.aov_priming, type = 'III')  
TukeyHSD(res.aov_priming)   
 
# SOIL LOSS, INC 2, NEW/REDUCED 
res.aov_priming <- aov(diff ~ treatment, data = priming_stats_data %>% filter(inc == '2' & dose 
== 'N')) # test interaction btwn Num and Typ 
Anova(res.aov_priming, type = 'III')  
TukeyHSD(res.aov_priming)   
 
# SOIL LOSS, INC 2, STANDARD 
res.aov_priming <- aov(diff ~ treatment, data = priming_stats_data %>% filter(inc == '2' & dose 
== 'S')) # test interaction btwn Num and Typ 
Anova(res.aov_priming, type = 'III')  
TukeyHSD(res.aov_priming)   
 
#############################################################################
################################## 
 
# RES LOSS, INC 1, SOIL TYPE = PALOUSE 
res.aov_priming <- aov(diff ~ treatment, data = res_stats_data %>% filter(inc == '1' & soil_type == 
'P')) # test interaction btwn Num and Typ 
Anova(res.aov_priming, type = 'III')  
TukeyHSD(res.aov_priming)  
 
# RES LOSS, INC 1, SOIL TYPE = VERSHIRE 
res.aov_priming <- aov(diff ~ treatment, data = res_stats_data %>% filter(inc == '1' & soil_type == 
'V')) # test interaction btwn Num and Typ 
Anova(res.aov_priming, type = 'III')  
TukeyHSD(res.aov_priming)   
 
# RES LOSS, INC 2, NEW/REDUCED 
res.aov_priming <- aov(diff ~ treatment, data = res_stats_data %>% filter(inc == '2' & dose == 
'N')) # test interaction btwn Num and Typ 
Anova(res.aov_priming, type = 'III')  
TukeyHSD(res.aov_priming)   
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# RES LOSS, INC 2, STANDARD 
res.aov_priming <- aov(diff ~ treatment, data = res_stats_data %>% filter(inc == '2' & dose == 
'S')) # test interaction btwn Num and Typ 
Anova(res.aov_priming, type = 'III')  
TukeyHSD(res.aov_priming)  
 
 
# 13C INC1 
thirteenC_data_INC1 <- thirteenC_data %>% 
  filter(inc_fn1 == '1') %>% 
  #filter(treatment == 'CS_1P' | treatment == 'AD_1P' | treatment == 'DASE_1P' | treatment 
== 'CS_1V' | treatment == 'AD_1V' | treatment == 'DASE_1V') %>% 
  mutate(soil = ifelse(treatment == 'CS_1P' | treatment == 'AD_1P' | treatment ==
 'DASE_1P', 'P', 'V')) %>% 
  mutate(type = case_when(treatment == 'CS_1P' | treatment == 'CS_1V' ~ 'CS1', 
                          treatment == 'AD_1P' | treatment == 'AD_1V' ~ 'AD1', 
                          treatment == 'DASE_1P' | treatment == 'DASE_1V' ~ 'HLFB1')) %>% 
  mutate(amt_fn1 = 1000*amt_fn1) %>% 
  mutate(amt_fn2 = 1000*amt_fn2)  %>% 
  mutate(err_max = amt_fn1+amt_fn2) %>% 
  mutate(err_min = amt_fn1-amt_fn2) %>% 
  mutate(soil = factor(soil, levels = c('P', 'V'), labels = c('Palouse', 'Vershire')))  
 
thirteenC_err_data_INC1 <- thirteenC_err_data %>% 
  filter(inc_fn1 == '1') %>% 
  #filter(treatment == 'CS_1P' | treatment == 'AD_1P' | treatment == 'DASE_1P' | treatment 
== 'CS_1V' | treatment == 'AD_1V' | treatment == 'DASE_1V') %>% 
  mutate(soil = ifelse(treatment == 'CS_1P' | treatment == 'AD_1P' | treatment ==
 'DASE_1P', 'P', 'V')) %>% 
  mutate(type = case_when(treatment == 'CS_1P' | treatment == 'CS_1V' ~ 'CS1', 
                          treatment == 'AD_1P' | treatment == 'AD_1V' ~ 'AD1', 
                          treatment == 'DASE_1P' | treatment == 'DASE_1V' ~ 'HLFB1')) %>% 
  mutate(resC_fn1 = 1000*resC_fn1) %>% 
  mutate(soilC_fn1 = 1000*soilC_fn1) %>% 
  mutate(resC_fn2 = 1000*resC_fn2) %>% 
  mutate(soilC_fn2 = 1000*soilC_fn2)  
 
thirteenC_data_INC1 <- merge(x = thirteenC_data_INC1, y = thirteenC_err_data_INC1, by = 
c('treatment', 'time'))  
thirteenC_data_INC1 <- thirteenC_data_INC1 %>% 
  mutate(v_adj = ifelse(source == 'soil', 0, soilC_fn1))  #this needs to be amt_fn1 of the other 
source, 0))  
 
thirteenC_INC1_plot <- ggplot(thirteenC_data_INC1, aes(fill=factor(source, levels = c('soil', 'res')), 
y=amt_fn1, x=time)) +  
  geom_bar(position = position_stack(reverse = TRUE), stat="identity") + 
  scale_y_continuous(expand = c(0,0), 
                     limits = c(0,2000)) + 
  geom_errorbar(aes(ymin=err_min+v_adj, ymax=err_max+v_adj), col = 'black', width=.2, position 
= 'identity') + # in aes(col = factor(source, levels = c('soil', 'res'))) to check if err bars are on right 
bars 
                #position=position_dodge(.9))  + 
  facet_grid(soil.x ~ type.x) +  
  #scale_fill_discrete(limits = c("res", "source"), labels = c("Residue", "Soil")) + 
  scale_fill_npg( labels = c("Soil", "Residue")) + 
  labs(y = 'C in Treatments [mg C]',  
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      # title = 'C Partitioning of Initial and Remaining C in Treatments Pre and Post Incubation 1', 
       fill = 'Source') + 
  theme_bar  
  #geom_text(aes(label = amt_fn2)) 
thirteenC_INC1_plot 
ggsave("thirteenC_INC1_plot.png", plot = thirteenC_INC1_plot, width = 30, height = 15, units = 
"cm")  # change this accordingly 
   
# priming INC1 
priming_INC1 <- priming_data %>% 
  filter(inc_fn1 == '1') %>% 
  mutate(soil = ifelse(treatment == 'CS_1P' | treatment == 'AD_1P' | treatment ==
 'DASE_1P' | treatment == 'PALOUSE', 'P', 'V')) %>% 
  mutate(type = case_when(treatment == 'CS_1P' | treatment == 'CS_1V' ~ 'CS1', 
                          treatment == 'AD_1P' | treatment == 'AD_1V' ~ 'AD1', 
                          treatment == 'DASE_1P' | treatment == 'DASE_1V' ~ 'HLFB1')) %>% 
  filter(source == 'soil') %>% 
  mutate(soil = factor(soil, levels = c('P', 'V'), labels = c('Palouse', 'Vershire'))) %>% 
  rename(old_diff = diff) %>% 
  mutate(control = ifelse(soil == 'Palouse',  21, 0)) %>% # values here from diff column of 
priming data of PALOUSE and VERSHIRE 
  mutate(diff = old_diff-control) %>% 
  filter(treatment != 'PALOUSE', treatment != 'VERSHIRE') 
 
priming_INC1_plot <- ggplot(priming_INC1, aes(x = type, y = diff, fill = type)) + # change "diff" to 
"old_diff" if you want to just see soil derived losses 
  geom_bar(stat = 'identity') + 
  geom_errorbar(aes(ymin=diff-stdev, ymax=diff+stdev), col = 'black', width=.2, position = 
'identity') + 
  theme_bar + 
  labs(y = 'Soil Priming [mg]', fill = 'Substrate') + 
  #labs(y = 'Soil Derived Carbon Loss [mg]', fill = 'Substrate') + 
  #theme(axis.text.x = element_text()) + 
  facet_grid(soil ~ type, scales = "free_x") + 
  scale_fill_manual(values = INC1_colors)  
priming_INC1_plot  
ggsave("adj_priming_INC1_plot.png", plot = priming_INC1_plot , width = 30, height = 15, units = 
"cm")  # change this accordingly 
 
# RESIDUE LOSS 
priming_INC1 <- priming_data %>% 
  filter(inc_fn1 == '1') %>% 
  mutate(soil = ifelse(treatment == 'CS_1P' | treatment == 'AD_1P' | treatment ==
 'DASE_1P', 'P', 'V')) %>% 
  mutate(type = case_when(treatment == 'CS_1P' | treatment == 'CS_1V' ~ 'CS1', 
                          treatment == 'AD_1P' | treatment == 'AD_1V' ~ 'AD1', 
                          treatment == 'DASE_1P' | treatment == 'DASE_1V' ~ 'HLFB1')) %>% 
  filter(source == 'res') %>% 
  mutate(soil = factor(soil, levels = c('P', 'V'), labels = c('Palouse', 'Vershire')))  
 
priming_INC1_plot <- ggplot(priming_INC1, aes(x = type, y = diff, fill = type)) + 
  geom_bar(stat = 'identity') + 
  geom_errorbar(aes(ymin=diff-stdev, ymax=diff+stdev), col = 'black', width=.2, position = 
'identity') + 
  theme_bar + 
  labs(y = 'Residue Derived Carbon Loss [mg]', fill = 'Substrate') + 
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  #theme(axis.text.x = element_text()) + 
  facet_grid(soil ~ type, scales = "free_x") + 
  scale_fill_manual(values = INC1_colors)  
priming_INC1_plot  
ggsave("resloss_INC1_plot.png", plot = priming_INC1_plot , width = 30, height = 15, units = "cm")  
# change this accordingly 
 
 
# 13C INC2 
thirteenC_data_INC2 <- thirteenC_data %>% 
  filter(inc_fn1 == '2') %>% 
  mutate(dose = case_when(treatment == 'CS_N' | treatment == 'AD_N'   
                          | treatment == 'POET_N' | treatment == 'NREL_N' ~ 'N', 
                          treatment == 'DASE_AVG' | treatment == 'AD_S'  
                          | treatment == 'POET_S' | treatment == 'NREL_S' ~ 'S')) %>% 
  mutate(type = case_when(treatment == 'CS_N' ~ 'CS', 
                          treatment == 'AD_N' | treatment == 'AD_S' ~ 'AD', 
                          treatment == 'DASE_AVG' | treatment == 'POET_N' | treatment == 'NREL_N' | 
treatment == 'POET_S' | treatment == 'NREL_S' ~ 'DASE')) %>% 
  mutate(type2 = case_when(treatment == 'CS_N' ~ 'CS2', 
                           treatment == 'AD_N' | treatment == 'AD_S' ~ 'AD2', 
                           treatment == 'DASE_AVG' ~ 'HLFB1', 
                           treatment == 'POET_N' | treatment == 'POET_S' ~ 'HLFB3', 
                           treatment == 'NREL_N' | treatment == 'NREL_S' ~ 'HLFB2')) %>% 
  mutate(dose = factor(dose, levels = c('S', 'N'), labels = c('Standard', 'Reduced'))) %>% 
  mutate(amt_fn1 = 1000*amt_fn1) %>% 
  mutate(amt_fn2 = 1000*amt_fn2)  %>% 
  mutate(err_max = amt_fn1+amt_fn2) %>% 
  mutate(err_min = amt_fn1-amt_fn2)  
 
thirteenC_err_data_INC2 <- thirteenC_err_data %>% 
  filter(inc_fn1 == '2') %>% 
  mutate(dose = case_when(treatment == 'CS_N' | treatment == 'AD_N'   
                          | treatment == 'POET_N' | treatment == 'NREL_N' ~ 'N', 
                          treatment == 'DASE_AVG' | treatment == 'AD_S'  
                          | treatment == 'POET_S' | treatment == 'NREL_S' ~ 'S')) %>% 
  mutate(type = case_when(treatment == 'CS_N' ~ 'CS', 
                          treatment == 'AD_N' | treatment == 'AD_S' ~ 'AD', 
                          treatment == 'DASE_AVG' | treatment == 'POET_N' | treatment == 'NREL_N' | 
treatment == 'POET_S' | treatment == 'NREL_S' ~ 'DASE')) %>% 
  mutate(type2 = case_when(treatment == 'CS_N' ~ 'CS2', 
                           treatment == 'AD_N' | treatment == 'AD_S' ~ 'AD2', 
                           treatment == 'DASE_AVG' ~ 'HLFB1', 
                           treatment == 'POET_N' | treatment == 'POET_S' ~ 'HLFB3', 
                           treatment == 'NREL_N' | treatment == 'NREL_S' ~ 'HLFB2')) %>% 
  mutate(dose = factor(dose, levels = c('S', 'N'))) %>% 
  mutate(resC_fn1 = 1000*resC_fn1) %>% 
  mutate(soilC_fn1 = 1000*soilC_fn1) %>% 
  mutate(resC_fn2 = 1000*resC_fn2) %>% 
  mutate(soilC_fn2 = 1000*soilC_fn2)  
 
thirteenC_data_INC2 <- merge(x = thirteenC_data_INC2, y = thirteenC_err_data_INC2, by = 
c('treatment', 'time'))  
thirteenC_data_INC2 <- thirteenC_data_INC2 %>% 
  mutate(v_adj = ifelse(source == 'soil', 0, soilC_fn1))  #this needs to be amt_fn1 of the other 
source, 0))  
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thirteenC_INC2_plot <- ggplot(thirteenC_data_INC2, aes(fill=factor(source, levels = c('soil', 'res')), 
y=amt_fn1, x=time)) +  
  geom_bar(position = position_stack(reverse = TRUE), stat="identity") + 
  scale_y_continuous(expand = c(0,0), 
                     limits = c(0,1500)) + 
  facet_grid(dose.x ~ type2.x) +  
  geom_errorbar(aes(ymin=err_min+v_adj, ymax=err_max+v_adj),col = 'black', width=.2, position 
= 'identity') + # in aes(col = factor(source, levels = c('soil', 'res'))) to check if err bars are on right 
bars 
  #scale_fill_discrete(limits = c("res", "source"), labels = c("Residue", "Soil")) + 
  scale_fill_npg(labels = c("Soil", "Residue")) + 
  labs(y = 'C in Treatments [mg C]',  
       #title = 'C Partitioning of Initial and Remaining C in Treatments Pre and Post Incubation 2', 
       fill = 'Source') + 
  theme_bar 
thirteenC_INC2_plot 
ggsave("thirteenC_INC2_plot.png", plot = thirteenC_INC2_plot, width = 30, height = 15, units = 
"cm")  # change this accordingly 
 
# priming INC2 
priming_INC2 <- priming_data %>% 
  filter(inc_fn1 == '2') %>% 
  mutate(dose = case_when(treatment == 'CS_N' | treatment == 'AD_N'   
                          | treatment == 'POET_N' | treatment == 'NREL_N' ~ 'N', 
                          treatment == 'DASE_AVG' | treatment == 'AD_S'  
                          | treatment == 'POET_S' | treatment == 'NREL_S' ~ 'S')) %>% 
  mutate(type = case_when(treatment == 'CS_N' ~ 'CS', 
                          treatment == 'AD_N' | treatment == 'AD_S' ~ 'AD', 
                          treatment == 'DASE_AVG' | treatment == 'POET_N' | treatment == 'NREL_N' | 
treatment == 'POET_S' | treatment == 'NREL_S' ~ 'DASE')) %>% 
  mutate(type2 = case_when(treatment == 'CS_N' ~ 'CS2', 
                           treatment == 'AD_N' | treatment == 'AD_S' ~ 'AD2', 
                           treatment == 'DASE_AVG' ~ 'HLFB1', 
                           treatment == 'POET_N' | treatment == 'POET_S' ~ 'HLFB3', 
                           treatment == 'NREL_N' | treatment == 'NREL_S' ~ 'HLFB2')) %>% 
  mutate(dose = factor(dose, levels = c('S', 'N'), labels = c('Standard', 'Reduced'))) %>% 
  filter(source == 'soil') %>% 
  rename(old_diff = diff) %>% 
  mutate(control = 65) %>% 
  mutate(diff = old_diff-control) %>% 
  filter(treatment != 'ONESIX') 
 
priming_INC2_plot <- ggplot(priming_INC2, aes(x = type2, y = diff, fill = type2)) + # change "diff" 
to "old_diff" if you are interested in just soil derived losses 
  geom_bar(stat = 'identity') + 
  geom_errorbar(aes(ymin=diff-stdev, ymax=diff+stdev), col = 'black', width=.2, position = 
'identity') + 
  theme_bar + 
  labs(y = 'Soil Priming [mg]', fill = 'Substrate') + 
  #labs(y = 'Soil Derived Carbon Loss [mg]', fill = 'Substrate') + 
  #theme(axis.text.x = element_text()) + 
  facet_grid(dose ~ type2, scales = "free_x") + 
  scale_fill_manual(values = INC2_colors)  
priming_INC2_plot  
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ggsave("adj_priming_INC2_plot.png", plot = priming_INC2_plot , width = 30, height = 15, units = 
"cm")  # change this accordingly 
 
# old priming plot w/ new color, no control correction 
priming_INC2_plot <- ggplot(priming_INC2, aes(x = type2, y = old_diff, fill = type2)) + 
  geom_bar(stat = 'identity') + 
  geom_errorbar(aes(ymin=old_diff-stdev, ymax=old_diff+stdev), col = 'black', width=.2, position = 
'identity') + 
  theme_bar + 
  labs(y = 'Soil Derived Carbon Loss [mg]', fill = 'Substrate') + 
  #theme(axis.text.x = element_text()) + 
  facet_grid(dose ~ type2, scales = "free_x") + 
  scale_fill_manual(values = INC2_colors)  
priming_INC2_plot  
ggsave("priming_INC2_plot.png", plot = priming_INC2_plot , width = 30, height = 15, units = 
"cm")  # change this accordingly 
 
 
# res loss 
priming_INC2 <- priming_data %>% 
  filter(inc_fn1 == '2') %>% 
  mutate(dose = case_when(treatment == 'CS_N' | treatment == 'AD_N'   
                          | treatment == 'POET_N' | treatment == 'NREL_N' ~ 'N', 
                          treatment == 'DASE_AVG' | treatment == 'AD_S'  
                          | treatment == 'POET_S' | treatment == 'NREL_S' ~ 'S')) %>% 
  mutate(type = case_when(treatment == 'CS_N' ~ 'CS', 
                          treatment == 'AD_N' | treatment == 'AD_S' ~ 'AD', 
                          treatment == 'DASE_AVG' | treatment == 'POET_N' | treatment == 'NREL_N' | 
treatment == 'POET_S' | treatment == 'NREL_S' ~ 'DASE')) %>% 
  mutate(type2 = case_when(treatment == 'CS_N' ~ 'CS2', 
                           treatment == 'AD_N' | treatment == 'AD_S' ~ 'AD2', 
                           treatment == 'DASE_AVG' ~ 'HLFB1', 
                           treatment == 'POET_N' | treatment == 'POET_S' ~ 'HLFB3', 
                           treatment == 'NREL_N' | treatment == 'NREL_S' ~ 'HLFB2')) %>% 
  mutate(dose = factor(dose, levels = c('S', 'N'), labels = c('Standard', 'Reduced'))) %>% 
  filter(source == 'res') 
 
priming_INC2_plot <- ggplot(priming_INC2, aes(x = type2, y = diff, fill = type2)) + 
  geom_bar(stat = 'identity') + 
  geom_errorbar(aes(ymin=diff-stdev, ymax=diff+stdev), col = 'black', width=.2, position = 
'identity') + 
  theme_bar + 
  labs(y = 'Residue Derived Carbon Loss [mg]', fill = 'Substrate') + 
  #theme(axis.text.x = element_text()) + 
  facet_grid(dose ~ type2, scales = "free_x") + 
  scale_fill_manual(values = INC2_colors)  
priming_INC2_plot  
ggsave("ressloss_INC2_plot.png", plot = priming_INC2_plot , width = 30, height = 15, units = 
"cm")  # change this accordingly 
 
#############################################################################
####################### 
# CORRELATIONS 
 
correlations_data0 <- read.csv("correlations_data.csv", stringsAsFactors = FALSE, header = 
TRUE) # scan in document formatted like example 
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correlations_data <- correlations_data0 %>% 
  mutate(perSol = 100*perSol) %>% 
  mutate(Cret_tot = 100*Cret_tot) 
 
theme_point <- theme_bw() + theme( 
  text = element_text(size = 20) 
) 
 
# C:N plot / analysis 
C2N_plot <- ggplot(correlations_data, aes(x = C2N, y = Cret_tot)) + 
  geom_point(aes(col = id), size = 2) + 
  stat_smooth(method = "lm", 
              formula = y ~ x, 
              geom = "smooth", alpha = .25) + 
  theme_point + 
  labs(x = 'C:N of Substrate',  
       y = '% of Carbon Retained in \n Treatment Containing Substrate [%]', 
       col = 'Substrate') + 
  ylim(65, 100) + 
  scale_color_manual(values = INCtot_colors)  
C2N_plot 
ggsave("C2N_plot.png", plot = C2N_plot , width = 20, height = 15, units = "cm")  # change this 
accordingly 
 
mod_C2N <- lm(Cret_tot ~ C2N, data = correlations_data) 
anova(mod_C2N) 
summary(mod_C2N) 
 
# %lignin plot / analysis 
lig_plot <- ggplot(correlations_data, aes(x = perLig, y = Cret_tot)) + 
  geom_point(aes(col = id), size = 2) + 
  stat_smooth(method = "lm", 
              formula = y ~ x, 
              geom = "smooth", alpha = .25) + 
  theme_point + 
  labs(x = '% Lignin of Substrate',  
       y = '% of Carbon Retained in \n Treatment Containing Substrate [%]', 
       col = 'Substrate') + 
  ylim(65, 100) + 
  scale_color_manual(values = INCtot_colors)  
lig_plot 
ggsave("lig_plot.png", plot = lig_plot , width = 20, height = 15, units = "cm")  # change this 
accordingly 
 
mod_lig <- lm(Cret_tot ~ perLig, data = correlations_data) 
anova(mod_lig) 
summary(mod_lig) 
 
# %solubilization / analysis 
sol_plot <- ggplot(correlations_data, aes(x = perSol, y = Cret_tot)) + 
  geom_point(aes(col = id), size = 2) + 
  stat_smooth(method = "lm", 
              formula = y ~ x, 
              geom = "smooth", alpha = .25) + 
  theme_point + 
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  labs(x = '% Solubilization of Substrate',  
       y = '% of Carbon Retained in \n Treatment Containing Substrate [%]', 
       col = 'Substrate') + 
  ylim(65, 100) + 
  scale_color_manual(values = INCtot_colors)  
sol_plot 
ggsave("sol_plot.png", plot = sol_plot , width = 20, height = 15, units = "cm")  # change this 
accordingly 
 
mod_sol <- lm(Cret_tot ~ perSol, data = correlations_data) 
anova(mod_sol) 
summary(mod_sol) 
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