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Abstract

While 2G biofuel production can utilize non-edible, lignocellulosic feedstocks such as
agricultural residues to produce liquid fuel, harvesting crop residues is unsustainable
without careful management of the soil underneath. By harvesting a fraction of the crop
residues left in the field after harvest, soil health can diminish and critically, the soil
organic carbon (SOC) stored in agricultural fields can decrease. Currently, in the most
popular 2G process models published, the issue of soil degradation remains unresolved
with residue harvest strategies receiving considerable attention in the literature and other
SOC management strategies receiving far less. Specifically, the strategy of returning the
high lignin fermentation byproduct (HLFB) from ethanol production to soil has been
sparsely modelled and only tested experimentally once. Our study endeavors to expand
on this literature by evaluating the SOC storage potential of various HLFBs and
anaerobic digestates and comparing them to their unprocessed corn stover feedstocks
using soil incubation experiments, isotope analysis, and simple modelling techniques. For
both a 267-day and a 135-day incubation experiment, we measured the amount of carbon
lost through microbial respiration and the amount of carbon remaining at the end. We
found that in all but one case, for the same initial amounts of substrate inputs, the
incubated digestate and HLFBs respired away less carbon and persisted longer in the soil
than the incubated corn stover. Then, by applying multi-pool exponential decay models to
our data, we found that the incubated corn stover respired away to completion
substantially quicker than the biologically processed materials in our projected timespan
of 100 years. We then approximated the steady-state SOC levels for a scenario in which

the same bioprocessed materials were annually re-added to an incubation with our



preliminary results indicating that the biologically processed materials formed .95-4.8
more SOC than their unprocessed counterparts. Emboldened by our experimental results
and tenuously strengthened by our preliminary modelling results, we believe that our
work supports the feasibility of returning HLFB to soil to restore SOC and opens the door

to the increased circularity and viability of biofuels in a future low carbon economy.
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Introduction

This thesis endeavors to provide the beginnings of an answer to the question, “How might
soil organic carbon be maintained while 2™ generation biofuels are produced?” While we
do not claim to be able to answer this question definitively in this document, we hope to
provide a preliminary investigation rooted in experimental laboratory data into this topic
that at this point lacks considerable experimentation attention. Because this thesis was
originally written to serve as the basis for a manuscript to be submitted to Nature
Sustainability, the structure of this thesis still largely conforms to Nature Publishing Group
guidelines and its readership is presumed to include a cross section of those familiar with
biofuel production and/or the soil sciences with some overlap in between. The Background
section is intended to inform this particular readership of basic concepts central to
understanding the topic from each discipline’s point of view i.e. the need for bioenergy,

processes in biofuel production, mechanisms driving SOC formation, etc.

To begin this effort, we will define common terms and ideas to be referenced throughout
this paper starting with soil organic matter (SOM) and soil organic carbon (SOC). SOM is
defined as the fraction of soil that consists of plant or animal tissue in various stages of
decomposition such as decomposing agricultural crop residues, while SOC refers to purely
the amount of carbon stored within the SOM!2. Globally, SOM contains more than three
times the carbon stock as contained in either the atmosphere or all terrestrial vegetation®.
Soil quality, however, is defined by the Soil Society of America as the “capacity of a
specific kind of soil to function, within natural or managed ecosystem boundaries, to

sustain plant and animal productivity, maintain or enhance water and air quality, and



support human health and habitation*.” Soil quality metrics include nutrient content, stable
soil structure (water stable aggregates, water infiltration, gas exchange), cation exchange
capacity, and water availability, etc>. While soil quality is not explicitly related to a specific
SOC threshold, higher levels of SOC are often associated with increased soil quality

metrics*%7.

Thus, this thesis is interested in increased SOC as a desirable metric by which to evaluate
the success of various agricultural management strategies pertinent to biofuel production.
We define these management strategies as follows. First, in Case 1 (No-Harvest), no
material is harvested from a field, and 100% of the crop residue left after crop harvest is
left on the field. Farmers can chop and till the crop residue into the soil in order to
promote decomposition prior to the next season’s planting®. A review of farmer
educational materials suggest that this scenario is similar to what many corn farmers in
the US practice®!'!. Because corn stover, the non-edible parts of corn, is not a dependably
profitable commodity in the US, farmers prioritize adding soil organic matter, controlling
erosion, building soil nutrients, and controlling soil temperature — functions of crop
residue cover — over the minimal profits they could make selling corn stover®. In Case 2
(Harvest), 50% of crop residue left on a field is harvested for biofuel production with no
biofuel byproduct (henceforth referred to as high lignin fermentation byproduct or
HLFB) returned to the soil. In this case, HLFB is assumed to be either used as a coal
substitute in an offsite power plant or burned onsite for process heat as described in
popular 2G biofuel process models!?. A 50% harvest rate is aligned with the median

harvest percentage as suggested by a literature comparison detailed in Appendix A. In



Case 3 (Harvest with HLFB Return), 50% of crop residue left on a field is harvested and
accompanied by the return of the HLFB to the field as a soil amendment. We anticipate
that this case will lead to the second most if not most amount of SOC formed (relative to
the other cases) as the HLFB is composed of only lignified material altered during
fermentation and microbial necromass, and will decompose slower and possibly with
higher retention of SOC as compared to their fresh counterparts. Case 3 is of particular
interest to our study and will be evaluated in proxy form relative to a proxy of Case 1, the
No-Harvest scenario in which SOC should be (as aligned with the conventional wisdom

of increased SOM leading to increased SOC) at a maximum.

Our specific question answered more fully in this study is, “How much carbon is retained
in the soil from the input of biologically processed materials like biofuel byproducts
compared to unprocessed materials like biofuel feedstocks?” To answer this question, we
conducted soil incubations to experimentally compare how these different residues
decompose in soil. While this experiment does not resemble an actual field scenario per
the inherent limitations of a bottle incubation, relative comparisons can be made amongst
the residues. Furthermore, to attempt to analyze a closer to field scenario, we extrapolated
our incubation results using simple models based off our incubation data. These
extrapolations, both for a one-time input of material and an annual input scenario,
allowed us to compare more generally how the accumulation and loss of SOC compares

amongst residues in a more realistic space and timeframe.

Regarding its value to the intersection of biofuel production and soil sciences literature,



this thesis offers the following: the most comprehensive material characterization
information to date of three experimental HLFBs, the second set of experimental data ever
collected on the carbon retention properties of HLFBs, and the first set of carbon
partitioning data on HLFBs decomposed in soil with delineation of the effect of soil
priming. We intend for the data provided in this thesis to serve as the robust, experimental
accompaniment to an impending literature review published on the topic of HLFB return
and for the conclusions this thesis draws to be informative to the ever-evolving design of

integrated biorefineries (Appendix O).

Background

In one of the four mitigation pathways the IPCC has identified to possibly keep global
climate change to an eventual 1.5°C increase, the IPCC has defined a “Negative
Emissions” scenario in which half of the future global energy supply consists of biomass
derived energy'®. The scenario is reliant on the mass deployment of traditional and new-
age biomass derived energy generation sources accompanied by carbon dioxide removal
technologies that result in net negative global GH emissions. While this scenario does not
strictly consider liquid lignocellulosic biofuels, researchers across the fields of renewable
energy generation have directed increasing attention on second generation (2G) biofuel
technology as a potentially impactful negative emission technology'+-'¢. Unlike first
generation (1G) biofuels, which are derived from edible food crops, 2G biofuels are
derived from non-food sources such as dedicated energy crops or agricultural crop

residues, generally consisting of lignocellulosic material’.



However, while there still is considerable interest by private and public organizations
alike in developing 2G biofuels, no commercial 2G biofuel plants remain in operation in
the US today due to a variety of factors including but not limited to unmet inflated
expectations from venture capitalists and the U.S. Department of Energy alike in the
early 2010s, nagging unsolved supply chain issues, and regulatory uncertainty such as
with the instability of the Renewable Fuel Standard'®. However, even with the gradual
maturation of the technology since the closure of the first cellulosic-ethanol plants, critics
of 2G biofuels have maintained that the supply chain could be inherently unsustainable as
the removal of agricultural crop residues, one requirement of a possible supply chain (at
least for ethanol derived from crop residues and not dedicated energy crops), can cause
significant damage to soil quality and reduce the amount of carbon stored in the soil'*-2!.
This argument is especially damaging to the proliferation of the crop residue derived
form of 2G biofuel production as healthy soil has been well established as the foundation
of human livelihood and the carbon stored inside the soil as the foundation of a habitable

climate?2,

The soil organic carbon (SOC) contained in soil organic matter (SOM) is the largest
terrestrial pool of carbon on Earth, storing three times as much carbon as the atmosphere
directly helping to regulate the world’s climate?. The mechanisms driving SOM
persistence and SOC sequestration by extension are still not fully understood; however, it
is now generally accepted that molecular structure alone does not control SOM stability,
but also a variety of biogeochemical factors and environmental conditions including, but

not limited to, climate, moisture, depth, rhizosphere inputs, and microbial



communities*?*. Due to humankind’s historical agricultural land use, soils have lost a
cumulative ~133 Pg carbon on par with estimates of carbon lost from deforestation,
equivalent to ~17% of what our atmosphere currently holds?. Agricultural management
practices that keep SOC underground are thus increasingly important and sought after in
an era of globally declining soil quality and SOC stocks?®. The United Nations’ “4 per
1000 Initiative set an international goal to grow SOC stocks 0.4% annually primarily in
highly managed agricultural soils?’. If this goal is fulfilled, agricultural soils could store
2-3 Gt carbon annually offsetting 20-35% of global anthropogenic carbon dioxide
emissions?®. Practices that retain and increase SOC stocks have been long debated in the
agriculture literature including rotation of annual crops with perennials, increasing carbon
input through the addition of organic matter, and no-till farming (in certain soil types and

climactic conditions)*-32,

The practice of adding inputs of organic matter to a field is particularly relevant to the
specific form of 2G biofuel production that necessitates crop residue harvest. The same
requirement does not necessarily apply to 2G biofuel production from dedicated energy
crops. Since the turn of the century, there have been many studies published in the soil
sciences literature to support the reduced harvest of crop residues on soil as a method to
maintain soil fertility and SOC stocks in agricultural fields**-. While the exact amount
of crop residue left on agricultural fields to maintain healthy soil and stable SOC stock is
still a matter of debate, generally the literature has settled on a suggested crop residue
harvest rate range of approximately 50% to minimize soil erosion'**’#!. However, in

regards to SOC, it has been suggested that an even higher percentage of residue needs to



remain on the field to offset SOC losses*?. Generally, harvesting crop residues decreases
SOC over time and requires the addition of externally produced fertilizers to maintain
soil quality!'?4344. However, there is a convenient opportunity for circularity of SOC stock

with the practice of returning the byproducts of 2G biofuel production to the soil?0#,

This byproduct, termed high lignin fermented byproduct (HLFB), is the end result of 2G
bioprocessing and is often assumed in process models to be either combusted to offset
energy demands of production or converted into a high-value product through currently
immature technologies 124647, However, modelling work completed in 2015 showed that
by amending soil with HLFB, SOC is not only greater relative to a harvest only (no
HLFB return) scenario, but also greater than a non-harvest scenario®. In other terms,
when strictly considering crop residue carbon flows, returning HLFB to the field can
result in net positive carbon storage whereas simply harvesting crop residues may result
in carbon losses. Additionally, accompanying modelling work completed in 2013 shows
that on a life cycle basis, returning HLFB to the soil results in greater avoided GHGs than
if no residue were removed due to the emissions displaced by replacing fossil fuels and
the soil carbon stored through the application of HLFB#. While these modelling results
show promise for HLFB transforming into increased SOC, there is a dearth of

experimental work actually testing this hypothesis.

The transformation of HLFB into persistent SOC is one of two potential fates for HLFB-
derived carbon in soils. The first fate of HLFB-derived carbon is not in the soil itself, but

in the atmosphere in the form of respired carbon dioxide during microbial decomposition.



Additionally, as soil microbes consume the accessible carbon containing sugars in HLFB
for energy, their activity can lead to the phenomenon known as soil priming whereupon
inputs of new carbon stimulates the decomposition of old soil carbon**->°. The priming
effect can be either positive or negative i.e. cause an increase or decrease in old SOC
respired, respectively, with no conclusive general mechanisms attributed to its cause*-!.
In a variety of ecosystems, the priming effect has been observed to be a relatively short-
term phenomenon that is controlled by several factors including but not limited to
microbial community composition, SOM chemical structure, and nutrient availability>'.
The second fate of HLFB-derived carbon is to remain in the soil in the form of SOC or
SOM. This remaining carbon is what the previously referenced models consider as stored
SOC. This remaining carbon can become adsorbed to soil minerals where it is relatively
protected from further decomposition through abiotic leaching or the death of microbial
biomass®***. Or, the HLFB-derived carbon can remain relatively untransformed, perhaps
due to its molecular structure. Lignin, an organic polymer found in plant tissue that is in
high concentrations in HLFB, has been historically correlated with higher amounts of
SOC sequestration in a variety of field and laboratory experiments**>+>’. While there has
certainly been skepticism of the role of lignin in leading or lagging SOC sequestration,
recent studies suggest that despite the complexity of lignin fates in soil, increased

amounts of lignin in soil can assist in SOC accumulation+38-.

Considering the two fates of HLFB in soil, experimental work on both the laboratory and
field scale is needed. To our knowledge, there has only been a single published study

where an HLFB was actually added to soils and its impacts on soil carbon storage and



soil health were studied®. In the experiment, HLFB was applied at the same rate to soil as
its unprocessed feedstock, corn stover. Over 112 days, the HLFB released half of the
carbon the corn stover released and showed small but statistically significant positive
effects on soil quality such as decreased bulk density, increased water retention, and a
greater percentage of water-stable aggregates. Additionally, the study included a fertility
experiment in which crops were grown in HLFB amended and non-amended soils. Plant
growth heights were found to be similar between the two soils suggesting that the HLFB
amendments did not negatively harm soil fertility. While this is the only study to
experimentally test HLFB as a soil amendment, there is an abundance of literature testing
anaerobic digestates as soil amendments, an adjacent bioprocessed material also
coproduced from a bioenergy production process. When equal masses of digested and
undigested agricultural residues were added to soils, several laboratory soil incubation
studies observed that digested residues released carbon more slowly than undigested
residues, and that added digestate led to the formation of stored SOC¢-4. Exemplified by
the results of a 2021 study analyzing the efficacy of biosolid byproducts from anaerobic
digestion as a soil amendment, soil quality improves and carbon sequestration increases

when bioprocessed material is added to soil relative to unprocessed residue®.

Our study assesses the impact of organic matter addition on SOC with and without 2G
biofuel specific biological processing. To expand on the sparse experimental data of
HLFB return on soil, we incubated three more HLFBs with more documentation than
currently presently in the literature. In total, we performed two soil incubations with the

three HLFBs from different sources, two anaerobically digested residues, and two



unprocessed corn stover samples. We determined their decomposition rates, effect on
native SOC, and potential for long term carbon sequestration. Additionally, we also
tested the effect of soil type and substrate dosage to validate our experimental
assumptions. Finally, we performed isotope analysis to partition between soil-derived
SOC and residue-derived SOC which allowed us to approximate the amount of soil
priming caused by HLFB addition. We expected that the HLFBs would release less
carbon than their unprocessed counterparts, which would lead to more carbon retained
even with the mass lost from bioconversion accounted for. Providing experimental data
in support of this hypothesis will be a valuable addition to the biofuel literature and
inform a larger conclusion in support of the agricultural management strategy of

returning HLFB to soil as a means to restore SOC lost during biofuel production.

Methods

Material Characterization

Pre-Incubation

We analyzed the materials used in our incubation for percent carbon, percent nitrogen,
13C, and 15N using an Infrared Mass Spectrometer with an elemental analyzer attached
(EA Isolink™ CNSOH IRMS System). Pre analysis, all material was dried and ground to
fine powder on a rolling table or ball mill (Spex SamplePrep 8000M-115 Mill). For
percent lignin and structural sugars, we sent our residue samples to the National
Renewable Laboratory analytical team where they performed their Laboratory Analytical

Procedure for the Determination of Structural Carbohydrates and Lignin in Biomass®.
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Post-Incubation

After the incubations concluded, we dried and ground a portion of our treatments for
analysis of percent carbon, percent nitrogen, and '*C following the same pre-incubation
protocol. Additionally, we performed chloroform fumigations and potassium extractions
on the non-dried portions of treatments to quantify microbial biomass carbon and
nitrogen using an organic carbon analyzer (GE Sievers 900 Series Laboratory TOC
Analyzer) and Lachat auto-analyzer. Results from these tests are not discussed further in

this thesis but are included in Appendix B.

Soil Incubations

In our study, we tested the effect of two distinct soil types with contrasting amounts of
organic matter. For both incubations, we added substrates to Palouse soil, a fine-silty,
mixed, superactive, mesic Pachic Ultic Haploxerolls that had previously grown wheat in
Pullman, Washington (USDA-ARS Palouse Conservation Farm). This soil had received
inputs exclusively from C3 plant material and had not received to our knowledge any
input of animal manure. For Incubation one only, we also added substrates to Vershire
soil, a coarse-loamy, mixed, active, frigid Humic Dystrudepts that had previously been
used for grazing in Vershire, Vermont. To our best knowledge, the soil had been multi-
use and certainly received inputs of animal manure. More information on the soils used in

this study can be found in Appendix M.

Two soil incubations experiments were conducted that spanned 267 and 135 days (any

ranges given throughout the Methods section reflect slight differences in the two
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incubations’ experimental conditions). Incubation experiments entail the careful
maintenance of standardized conditions and monitoring of a variety of experimental units
and controls throughout the study’s span. Each experimental unit, referred to as
“treatment” going forward, consisted of a portion of wet soil and a portion of substrate.
The treatments were kept in plastic sample cups and placed inside pint sized mason jars
sealed with an airtight lid and stopcock valve. Gas measurements for determining CO,
concentrations were taken using 60 mL syringes that drew from the stopcock valves. The
experimental conditions across both incubations varied slightly as seen in Table 1. Per a
preliminary incubation conducted in preparation of this study, we found particle size
(within a .50-8.5 mm range) to have a non-significant effect on decomposition rates

(Appendix C) 7.
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Condition Incubation 1 Incubation 2

Temperature 22 °C 25°C

Light Off Off

Moisture 90% FC (Palouse: FC =23.9%; 90% FC (Palouse: FC =23.9%)
Vershire: 35.5%)

Dryness of Amendments |Dried in oven Dried in oven

Water Refill Refilled water weekly Refilled water once a week (last

measurement of the week), eventually
once every two weeks

Amendment to Soil 1.5g residue to 37.5g soil 1.5g residue to 37.5g soil and 0.75g
Ratio residue to 37.5 g soil
Replicate Number 4 replicates per treatment except for | 3 replicates per treatment

AD1 treatments with 3 replicates

Timeframe 135 days 267 days

Stopcock Valves Closed in between measurements Open in between measurements

Table 1: Incubation conditions and differences. FC stands for field capacity, the amount
of water a soil can hold without draining.

Substrates were dried, milled, and incubated with soil in individual jars in a mass ratio of
2:50, substrate to dry soil. By varying experimental parameters, we tested the effect of
treatment, soil type, and substrate dosage on carbon respired by the treatment, fraction of
carbon retained by the substrate, and fraction of carbon retained by the soil within the

span of the incubation.

Preincubation

To build up a steady microbial population after rewetting dried soils (Palouse) or
adjusting the water content of field moist soils (Vershire), we pre-incubated our
incubation jars for 10 days for the Palouse soil and 3 days for the Vershire soil before

adding the substrate of interest. The soil was moistened to the appropriate water content
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before preincubation and water was added to account for loss after preincubation.
Afterwards, each treatment’s residue portion was mixed into the individual soil sample

thoroughly by hand with a scoopula until the treatment appeared homogenously mixed.

Incubation Conditions

Incubations were conducted in a Thermo Scientific™ Precision™ Low Temperature
BOD Refrigerated Incubator maintained at 22 and 25 °C for Incubations one and two,
respectively. Soil moisture was maintained at 20% gravitational water content for Palouse
soil samples and 32% for Vershire. This water content represents 90% of each soil’s field
capacity. We added deionized water to each jar weekly by weight to stay within 10% of

the original water content.

Measurements and Calculations

We measured CO, concentrations in the jar headspace regularly, transitioning from a
twice-a-day to a weekly to a biweekly schedule as the incubations progressed and
microbial activity slowed. We sampled 30 mL of air from the headspace of each jar and
ran that air through an infrared gas analyzer (IRGA; PP Systems EGM-5, Amesbury,
Massachusetts). From our concentration measurements of time 0 and time 1 and using the
ideal gas law to convert ppm CO,to grams C, we calculated the flux of carbon respired
(mg/day) for each sampling interval. Then, we performed a trapezoidal Riemann sum
integration to estimate the cumulative amount of carbon respired by day (mg) in between
sampling times. Graphs showing both carbon flux and cumulative carbon respired for

each incubation can be found in Appendix D. The data for making these graphs can be
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found in Appendix Q. Additionally, the raw data consisting of IRGA measurements can

also be found in the Hicks Pries Lab Github.

Additionally, we conducted isotopic analyses on our treatments pre and post incubation
using an Infrared Mass Spectrometer with an elemental analyzer attached (EA Isolink™
CNSOH IRMS System). We analyzed the materials for percent carbon, percent nitrogen,
13C, and 15N. This allowed us to partition between residue-derived carbon and soil-
derived carbon losses in our residue containing treatments. Using our 13C measurements
and the following equations, we can find, frac,s;qye, Or the fraction of total carbon
derived from the residue. Correspondingly, fracs,;; can be solved for which represents
the fraction of total carbon derived from the soil. The data and calculations for this
analysis can be found in the Hicks Pries Lab Github and in Appendix P.

13 Cmix,post—inc —13 Csoil,pre—inc

fracresidue =
136residue,pre—inc - 13650il,pre—inc

1= frac + frac

residue soil

From this partitioning work, priming can be calculated. Soil priming is defined in this
study as the difference between soil-derived carbon loss from a substrate containing
treatment and soil-derived carbon loss from a comparable soil control pre and post
incubation. Notably, there can be both positive and negative soil priming with positive
priming meaning carbon loss of soil is stimulated by the addition of organic matter input
while negative priming meaning that the addition of residue reduced the decomposition

of soil carbon.
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Statistics

We performed various statistical analyses on our study data including 2-way and 1-way
ANOVAs, Tukey Honest Significant Differences (HSD) tests, and paired T-tests. To
investigate significant differences amongst treatments in various metrics including carbon
respired and partitioned carbon losses, we used the baseR functions aov, Anova (Type
1), and TukeyHSD®. To investigate differences amongst our incubation conditions
including open and closed valves, soil controls, and a shared treatment between
Incubation one and two, we used the baseR function ¢.rest. We looked at the outputted p
values to identify significant differences with p < .05 considered significant and ran a
Tukey HSD posthoc test to determine significant differences between pairs of treatments.
Appendix L and the Hicks Pries Lab Github contains the code we used for our statistical

analyses.

Modelling

One-Time Input Modelling

We fit a variety of multi-pool models to our experimentally derived cumulative carbon
respired data for our various treatments. The one-time input we reference here refers to
the initial amount of carbon in our incubations consisting of soil and a portion of
substrate. We utilized the SoilR package which contained built in functions and models to
both fit and extrapolate our data®. We tested models with two-pool structures with the
pools representing conceptual fractions of carbon that decompose at distinct rates (fast
and slow). Two-pool models included both a series structure where a portion of the fast

pool is transferred to the slow pool and a parallel structure where the pools decomposed
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independently. The models partition carbon into the pools, agnostic to the ratio of
substrate to soil carbon in our incubations. Based on the R? values (how well the model
fit our data) for the various models, we chose to apply the two-pool parallel model to the
soil controls and the two-pool series model to the substrate-containing treatments. The
estimated best-fit parameters and R? values can be found in Appendix E. We used those
parameters to project the amount of residue carbon remaining in the soil up to 100-year

timespans.

Generally, in the SoilR package, two-pool models take the form:

Z—le(t) +AxC(t) =A*C(t)
where C(t) is a 2x1 vector of carbon stores in two pools at a given time t and I(t) is a
time-dependent column vector describing the amount of input to each pool. For our
analysis, we assumed I(t) = O as there were no extra inputs beyond the initial input of soil
and substrate carbon present in our incubations. This simplifies the solution to the

previous equation to:

C(t) = C, * eAt=to)

Gamma, y, which is included in our parameter tables in Appendix E represents the
partitioning of C, into two pools with C;,:4; being experimentally determined by our

IRMS analysis detailed in Appendix P.

)4
CO = Ctotal * [1 _ V]

A 1s a 2x2 square matrix containing decomposition rates for each pool and transfer

coefficients between each pool. For the two-pool parallel model, A has the form:
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For the two-pool series model, A has the form:

S laz —ke

We fit the models to our data using the modFit function in SoilR which performs a
Nelder-Mead optimization to find best-fit parameters. Then, we reran the models to
extrapolate our data into longer time series using the getAccumulatedRelease function on
the TwopParallelModel and TwopSeriesModel statements we wrote. To reiterate, we
chose to apply the two-pool parallel model to the soil controls and the two-pool series
model to the substrate-containing treatments. The code used to accomplish the modelling
described here can be found in Appendix F and in the Soil Incubation repository in the

Hicks-Pries Lab GitHub.

Annual Input Steady State Modelling

We additively combined our one-time input modelling results to project long-term steady
state values of carbon retained in our treatments in which the initial amount of substrate
carbon present in the treatment is added to the soil every year for 100 years. This effort
imitates a simple bioenergy cropping scenario in which organic matter is added to soil
every year after crop residue harvest. We estimated the average steady state amount of
residue-derived carbon present and quantitatively compared these results amongst our
treatments. Our primary assumptions are that soil priming has little to no effect on 100-
year scale projections, that the original soil-derived carbon will degrade to a point

approaching zero despite new additions of organic material, and that the residue dosage
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does not affect the values of the modeled parameters. For computing efficiency, we
modelled the treatments using a timespan of 100 years with one fifth year time step.
Since the model fitted parameters reflect experimental scenarios and are unable to
differentiate between soil- or substrate-derived carbon, we isolated the substrate by
subtracting the modeled soil control projections from the modeled substrate-containing
treatment projections. From that result, we calculated the amount of carbon retained at
any time step by subtracting the cumulative carbon respired from the cumulative carbon
added. The calculations used to produce the work described here is shown in Appendix G

and can be found in the Incubation Modelling repository in the Hicks Pries Lab Github.

Results

Preparation of High Lignin Fermentation Byproduct

We sourced five biologically processed residues prepared at lab, pilot, and industrial
scale operations for our soil incubation experiments. We used corn stover derived
materials because corn stover is considered the most abundant crop residue for 2G
biofuel production in the US™. Corn stover from the leading U.S. biofuel producing
company, POET, was subject to either anaerobic digestion or a dilute-acid steam
explosion (DASE) pretreatment, saccharification, and fermentation aligned with
lignocellulosic liquid biofuel production protocols unique to each preparer. Hereafter, we
refer to residues prepared via anaerobic digestion as digestate, and residues prepared via

DASE as HLFB. Details on the preparation of each residue can be found in Table 2.
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Substrate | Preparer Feedstock Pretreatment Hydrolysis Fermentation &hz:?csi
Lynd Lab, | Prepared with CS1 - Residence time of 480 hours
ADI Dartmouth | milled to a cut-off N/A - Final carbohydrate content of -
College size of 0.5 mm 0.23 g carbohydrate/g dry solid
- Residence time of 240 hours
with once-a-day renewals of 10%
. edia
Lynd Lab, | Prepared with CS2 m I
AD2 | Dartmouth | milled to a cut-off N/A s oohydrate solubilization of | _
College | size of 0.5 mm - Solids mass lass of 61 + 6.0%
- Final carbohydrate content of
0.36 g carbohydrate/g dry solid
‘Wyman Prepared with CS1 - I{? pltegn??d Wlth. Oki% - Simultaneous saccharification carried out over 10 days
HLFB1 | Lab,UC | milledtoacut-off | % ir¢3aciCoverng - Inoculated with Cellic® CTec2 at 15 mg enzyme/g glucan 26%
L . " - Steam exploded for 20 . .
Riverside size of 1/8 . - Fermented with Saccharomyces cerevisiae D5SA at 37 deg C
minutes at 160 deg C
Integrated . .
Biorefinery | Prepared with CS2 - Iglp{egnz}l;:d w1t.h. l;l% I(x:le(ﬁu {@até::cll.wgh 119.6 o/L Fermented with Saccharomyces
HLFB2 | Research milled to a cut-off sufuric acid overnight i”Clec3 at 119.6 g cerevisiae DSA at room 15%
. . " - Steam exploded for 10 | of glucose; 1.4 g/L of
Facility, size of 1/8 . temperature for 25.5 hours
NREL minutes at 170 deg C xylose
Prepared with
Project Project Liberty Corn | Details to preparation as described in Project Liberty: Launch of an Integrated Bio-
HLFB3 | Liberty, Stover; particle size | Refinery with Eco-Sustainable and Renewable Technologies. Conversion of Corn Stover 47%
POET ranging from 2.75” | Biomass to Bio-Ethanol, Final Report. *
t0 6”

*Project Liberty preparation details are documented in Martin et al. 2021.7!

Table 2. Biologically processed residues in this study with relevant preparation details.

Mass yield refers to the ratio of dried HLFB produced from dried feedstock. Any

information not included in the table is due to a lack of documentation. CSI and CS2

refer to the two different corn stover feedstocks used to produce HLFBI and HLFB2,

which were incubated alongside the HLFB treatments.

The three HLFBs (HLFB1, HLFB2, HLFB3) were intentionally sourced from a variety of

operational scales to reflect how diverse residues result from similar DASE protocols in

the evolving lignocellulosic biofuel industry. We were interested specifically in residues

produced via DASE pretreatment as NREL has consistently included dilute acid

pretreatment in its reports on the state-of-the-art process design and economics of

integrated biorefinery pathways!>7273. We included anaerobic digestates in our study as

there is sufficient literature supporting anaerobic digestate’s promise as a carbon storing

20




soil amendment®'63657475 To understand the material characteristics of the biofuel
byproducts and to address the 2G biofuel space’s dearth of information on HLFBs, we
determined the composition of these residues following the methods described in
Methods (Table 3). Despite the HLFBs undergoing technically similar bioconversion
processes, the resulting materials varied considerably in our metrics of interest: C:N,

lignin:N and average total sugar concentrations.

All of the bioprocessed materials save for HLB3 were produced from dried corn stover
(CS1, CS2) that we incubated in conjunction with the biologically processed residues.
Corn stover includes all the non-edible aerial parts of the maize plant including cobs,
husks, leaves, and stalks left after crop harvesting. Thus, there can be considerable
variability in feedstock carbohydrate levels, which affect the maximum theoretical
biofuels yield, optimum pretreatment, saccharification conditions, and ultimately, the
composition of the residues’. Importantly, the majority of the fermentable sugars in corn
stover are shielded by enzyme resistant carbohydrate-lignin linkages, which are targeted
for breakdown by various modern pretreatment processes’’. Amongst our samples, corn
stover contained two to three times more structural sugars and two to three times less
lignin by mass fraction compared to its processed counterparts. Thus, lignin is left

primarily inert through biochemical conversion as referenced by the term, HLFB.
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Carbon and Nitrogen! Lignin® Structural Sugars® Solubilization®
. A Lignin: . Average General
Incubation | Substrate Substrate Feedstock %C %N CN %Lignin N %Glucan | %Xylan %Galactan % Arabinan Total % Solubilization
Sugar
CS1 Corn Stover CS1 44 (37) | 0.49 (.03) 89 18 (.05) 37 39 (.02) 26 (41) 15(24) 3.5(.10) 71 (.57) 0%
1 ADI1 Anaerobic Digestate CS1 36 (.35) 1.6 (02) 22 40 (25) 24 13 (21) 8(.08) 13 (01) 2.2 (03) 24 (.33) -

HLFB1 HLFB CS1 44(1.1) 3(03) 15 56 (.33) 19 48(03) | 05(03) 0 (.00) 1.8 (04) 7.1(01) 74%

CS2 Corn Stover CS2 46 (.14) | 0.77 (.04 60 16 (.08) 21 39 (.16) 28 (24) 1.8(29) 39 (01) 73 (:39) 0%

2 AD2 Anaerobic Digestate CS2 44 (43) | 34(03) 13 32 (04 9.6 19 (.08) 12 (.14) 1.4 (.09) 2.1 (00) 35(.13) 65%

HLFB2* HLFB CS2 50 (.04) 13 (02) 39 56 43 26 3.1 0.00 0.00 29 84%

HLFB3 HLFB CS** 45 (03) 2 (01 22 45 (48) 22 23(.02) | 39 (0D 0 (.00) 0.54 (.00) 27 (03) 52%

* Analysis of Lignin and Structural Sugars for HLFB2 only contained 1 replicate and therefore standard error for those tests is not included for HLFB2.

**Corn stover used to produce HLFB3 was not incubated in this study as the HLFB was leftover from Project Liberty and the original feedstock was unavailable.
!Carbon and nitrogen content of the samples were measured at Dartmouth College in the Hicks Pries Lab using an EA Isolink™ CNSOH IRMS System.

2Lignin content and structural sugar content were analyzed at NREL following their Laboratory Analytical Procedure for the Determination of Structural
Carbohydrates and Lignin in Biomass®.

3General solubilization was calculated from the respective mass yields and %C information presented. General solubilization is defined here as
%C substrate

%Solubilization = 1 — mass yield * %C Feedstock
0

Table 3: Material characteristics of the various residues. General solubilization is an analog for biological degradation with greater
solubilization equaling greater amount of biological degradation. Standard error is represented in parentheticals next to mean values

with three to four replicates analyzed for Carbon and Nitrogen tests and two replicates for Lignin and Structural Sugars analysis.
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Despite being prepared in the same bioreactors, AD1 and AD2 differed significantly in
their material characteristics due to AD1’s double amount of residence time and
corresponding biological degradation. Despite this difference, the amount of lignin in the
material is comparable. Relatedly, dilute acid steam explosion is sometimes used a
pretreatment for anaerobic digestion as the physical attack on plant cell walls makes the

fermentable sugars bound in lignin more easily accessible’.

Comparison of Carbon Retention of HLFBs Using Soil Incubation Data and Isotope
Analysis

The HLFBs, digestate, and corresponding corn stover feedstock were incubated with soil
as part of either a 267-day (Incubation one) or 135-day (Incubation two) experiment. The
incubation results showed the expected exponential decay of C production over time of

the treatments (Appendix D).
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Initial Amounts of C 135 days 267 days
Soil Residue Treatment (Soil + Residue) Residue Treatment (Soil + Residue) Residue
0 % C 0 0 0
Incubation Substrate mgC mg C R:;ﬁi?e d I.ncug;tion ugu(i ‘})lfels II:;:? Rgslﬂi:')efd R:;;g)ife d I.nculf;tion Respi/:'e'(xji_ Out Respi/roe.(tjl_ Out
Control Initial Control of Initial of Initial
1 Soil Control 514+1.7 - 42+ .43 100% 8% 66+1.2 100% 13% -
(Palouse Soil, CS1 513+£2.1 633+7.2 320+ 19 774% 28% 458 + 14 691% 40% 59%,
%"21;:;‘)1 ADI 51523 | S44+14 | 10033 | 240% 9% 144£19 | 218% 14% 14%
HLFB1 515+.58 | 673+9.8 | 106+ .45 | 256% 9% NA 139£12 | 210% 12% 18%
, Soil Control 1113+6.5 - 42+.53 100% 4% 68 +.13 100% 6% -
(Vershire Soil, CS1 1117+4.8 | 635+£7.6 | 267+5.1 638% 15% 395+ 11 577% 23% 44%
%21;:;‘)1 ADI 112478 | 539+3.6 | 14322 | 341% 9% 199£1.7 | 292% 12% 11%
HLFB1 1110+£53 | 673+9.1 | 104+.44 |  250% 6% 136+ 1.4 199% 8% 14%
Soil Control 541+.73 - 38+1.5 100% 7% -
. AD2 535+.64 | 668+.65 195+£5.0 508% 16% 45%
(Pajouse Soil, HLFBI 535467 | 66418 | 14229 | 389 12% 25%
Dosage) HLFB2 534+.76 746 + .74 209 + .87 542% 16% 38%
HLFB3 534+ 80 | 675+.36 94+12 244% 8% 33% N/A
2 CS2 535+ .43 | 346+.38 | 201+84 523% 23% 60%
(Palouse Soil, AD2 536 + .41 334+.04 117+2.5 305% 14% 45%
llgi‘i‘;;;‘ HLFB2 53410 | 373+.20 | 137+26 | 3559 15% 33%
HLFB3 535+ .39 337+.39 62+2.2 161% 7% 15%

Table 4: Carbon respired across various treatments and incubation-condition groups.
Isotope analysis was performed at the end of each incubation to differentiate between
losses in soil derived carbon and residue derived carbon as shown in the Residue, % C
Respired Out of Initial columns. Since Incubation one lasted for a total of 267 days,
carbon partitioning data was unavailable for the 135-day case though amount of
cumulative carbon until this point was calculatable and displayed. Results are to be
compared with respect to the other treatments within their own incubation-condition
group and not across different incubation-condition groups. Reduced dosage treatments
are treatments incubated with half the residue dosage of other (i.e., in a ratio of .75 g

residue to 37.5 g soil versus the standard dosage of 1.5 g residue to 37.5 g soil).

Across the four incubation-condition groups (i.e., a group of treatments defined by the
same soil type, incubation, and dosage), corn stover treatments consistently released the
most carbon (5-7 times more than the soil control) relative to all other treatments within

the group (Table 4). This was true regardless of differences in timeframe, dosage, or soil
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type across the four groups. From graphs of the carbon respired by treatments over time,
the corn stover treatments had the highest initial slope and most delayed approach to an
asymptote if an asymptote was approached at all (Appendix D). Our separate two-way
ANOVAs of Incubation one and Incubation two showed that different substrates had a
significant effect on the amount of carbon respired (two-way ANOVA, Incubation one
substrate effect, df = 4, p << 0.05; Incubation two substrate effect, df = 2, p <<0.05). Soil
type did not have a significant effect in Incubation one on the amount of carbon respired
(two-way ANOVA, soil effect, df = 1, p =0.78). Dosage, on the other hand, had a
significant effect on amount of carbon respired in Incubation two (two-way ANOVA,
dosage effect, df = 1, p << 0.05), but the effect was not directly proportional. On average,
a two-fold increase in dosage translated to a 160 + 8% increase in amount of carbon

respired across AD2, HLFB2, and HLFB3 (Appendix H).
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Figure 1: The amount of soil and residue derived carbon contained in treatments pre and

post incubation. We used isotope analysis to partition the amounts of carbon between
residue and soil pre and post incubation for the various treatments. The stacked bars
represent the amount of carbon in treatments partitioned by source of carbon (i.e., soil
derived carbon versus residue derived carbon). In each box, the left bar represents the
total carbon in treatment pre incubation, and the right bar represents the total carbon in
treatment post incubation. The top boxed figure shows Incubation one data, while the

bottom boxed figure shows Incubation two data.
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Isotope analysis of the treatments pre and post incubations revealed how soil-derived and
residue-derived carbon transformed throughout the incubations (Figure 1). Generally,
losses in total treatment carbon from our incubation treatments were primarily losses of
residue-derived carbon with the amount of residue carbon lost being sometimes as great
as 291 times larger than soil-derived carbon losses for a given treatment (Appendix I and
J). For every comparable incubation-condition group, corn stover lost the most residue-
derived carbon. Our statistical analyses of the carbon remaining showed that the effect of
substrate type on differences in remaining residue-derived carbon were always significant
(two-way ANOVA, Incubation one substrate effect, df = 2, p << 0.05; Incubation two
substrate effect, df = 3, p << 0.05) but not always for differences in soil-derived carbon

(Appendix K and L).

For Palouse soils in Incubation one, substrate effect was significant on soil-derived
carbon losses between CS1 and both AD1 and HLFB1 respectively (two-way ANOVA,
treatment effect, df =2, p << .05 with CS1 =67 mg C, AD1 =25 mg C, and HLFB1 =34
mg C). For Vershire soils in Incubation one, substrate effect was not significant save for
the comparison between CS1 and AD1 (two-way ANOVA, df =2, p = .66 with CS1 =60
mg C, AD1 =42 mg C, and HLFB1 = 169 mg C). For Incubation two standard dosage
treatments, substrate effect was not significant on the group’s soil-derived carbon losses
(two-way ANOVA, treatment effect, df = 3, p =0.06). For Incubation two reduced

dosage treatments, substrate effect on soil-derived losses were significant (two-way
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ANOVA, treatment effect, df = 3, p << 0.05 with CS2 =mg C, AD2 =mg C, HLFB2 =

mg C, HLFB3 = mg C).
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Figure 2: Soil priming across the incubations. Soil priming is the difference between the
loss of soil-derived carbon from a substrate containing treatment and the loss of soil-
derived carbon from a comparable soil control. Both positive and negative soil priming

can occur. Boxed figures show results for different Incubations and conditions.

Drawing from the soil-derived carbon loss data, we found the effect of soil priming for
our treatments to be much smaller than total soil-derived carbon losses relative to
residue-derived carbon losses (Figure 2). Soil priming is defined in this study as the

difference between soil-derived carbon loss from a substrate containing treatment and
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soil-derived carbon loss from a comparable soil control pre and post incubation. Notably,
there can be both positive and negative soil priming with positive priming meaning
carbon loss of soil is stimulated by the addition of organic matter input while negative
priming meaning that the addition of residue reduced the decomposition of soil carbon.
Incubation one treatments only exhibited positive priming while Incubation two
treatments only exhibited negative priming perhaps due to the very different timespans
the incubations occurred in. Due to both measurement sensitivity errors using the IRMS
when measuring the Vershire soil controls and the inherent error introduced by using the
Vershire soil, a soil that was not rigorously controlled for foreign 13C sources, priming
for the Vershire treatments could not be quantified. Incubation two treatments which only
contained Palouse soils varied in magnitudes of priming across the dosages except for
AD?2 treatments, which caused similar amounts of priming (-56 mg C for Reduced and -
64 mg C for Standard). Because of this study’s definition of priming as the difference
between the soil-derived carbon loss of a residue containing treatment and a soil control,
the statistical differences within incubation-condition groups i.e. Incubation one Palouse
treatments or Incubation two standard dosage treatments, are the same as compared to the

statistical differences of the other soil-derived carbon losses (Appendix L).

Modelling One-Time Inputs and Steady State SOC Scenarios of Byproduct Return
To extrapolate beyond the timescales of our incubation, we fit multi-pool models to the
carbon respired data from our incubations. Essentially, we extended the lengths of our
incubations indefinitely and compared both the time elapsed for the treatments to respire

fully away and the magnitude of their respective carbon loss. Because we applied the
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two-pool series structure to each residue containing treatment, we could compare carbon
fates by treatment within incubation-condition groups. Additionally, we compared carbon
fates by treatment after accounting for bioconversion losses (i.e., carbon fates of reduced
mass inputs of anaerobic digestate and HLFBs as compared to corn stover). We found

that in every incubation-condition group containing corn stover, the corn stover treatment

respired away the quickest (Figure 3).
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Figure 3: One-time input modelling of various treatments in different incubation-condition

groups. The graphs represent projections of our incubation data, essentially showing how

carbon is respired indefinitely. P and V refer to the differing soil types of Palouse and
Vershire respectively. S and R refer to the differing dosages of residue to soil, termed
standard and reduced respectively. Asterisk labelled graphs represent results from
adjusted mass inputs reflecting bioconversion mass yields of 50% for anaerobic digestion
and 35% for HLFBs. The y-axis represents the amount of carbon respired as a function of
time. The same model structure was applied to each treatment thus allowing for careful
comparison within incubation-condition groups. The graphs reflect projections with

timesteps of .20 years and manual corrections for any model overshooting as shown by the

sharp transition to plateaus among the Incubation two graphs.
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For both Incubations one and two, corn stover treatments showed an immediate release in
carbon much faster than the comparable bioprocessed residue containing treatments. For
Palouse soils in Incubation one with and without bioconversion accounted for, the corn
stover treatment released 90% of its total carbon by year 5 as opposed to AD1, which
reached this state at 14.2 years and HLFB1 at 16 years (Figure 3, 1P and 1P*). For
Vershire soils in Incubation one with and without bioconversion, the trends were similar
with CS1 reaching 90% release by 9.6 years, AD1 by 16 years, and HLFB1 by 27.2 years
(Figure 3, 1V and 1V*. For Incubation 2 with reduced dosages, CS2 was the quickest to
achieve 90% release by far at .80 years, HLFB2 at 4 .4 years, AD2 at 8.4 years, and
HLFB3 at 13.6 years (Figure 3, 2R and 2R*). Finally, for Incubation two with standard
dosages where there was no CS treatment to compare to, comparisons amongst the three
HLFBs showed HLFB2 achieving 90% release by year 4, AD2 by year 7, HLFB1 by year
7.4,and HLFB3 by year 14.4 (Figure 3, 2S and 25*). Once conversion yields (100% for
corn stover, 50% for anaerobic digestate, and 35% for HLFB) were considered in our
projections, we found that the magnitude of carbon respired by the corn stover treatments
relative to the other treatments was especially pronounced (see Figure 3 plots 1P*, 1V*,
and 2R*). Since the two-pool series model predicts that the total initial carbon is
eventually completely respired, the greater magnitude corn stover carbon loss is not
unexpected. However, due to its exceptionally high rates of carbon release, this modeling
shows that corn stover does not retain carbon in the same way as its biologically

processed counterparts.
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Figure 4: Steady state levels of carbon in treatment from annual inputs. Organic inputs,
equal to the Figure 3 * plots (i.e., bioconversion yield adjusted mass inputs) were
modelled to be annually readded to the treatments. These annual input graphs represent
a simple, bioenergy cropping scenario in which continuous carbon accumulation and
respiration reach differing steady state levels that can be compared amongst substrates.
Additionally, instead of carbon released, the y-axis shows the amount of carbon retained
by the treatments with higher curves indicating more carbon retained within the
treatment. To reduce the noisiness of the graph, geom_smooth from the ggplot2 package
was used to plot these values™. Like the Figure 3 naming scheme, Incubation one graphs

differ by soil type with 1 P* = Palouse and 1V* = Vershire soil types respectively.
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Incubation two graphs differ by dosage with 25* = Standard dosage while 2R* =

Reduced dosage.

Using our one-time input modelling data, we calculated the steady state carbon levels in
our treatments in 100-year time scales imitating a bioenergy cropping scenario in which
organic matter is added to the soil on a yearly basis. From our steady state modelling
results, we found that all the biologically processed residues tested except HLFB2 formed
more steady state carbon than corn stover in every comparable incubation-condition
group. Because the one-time input models of corn stover projected especially fast
releases of carbon, despite higher amounts of initial carbon, at steady state, corn stover
did not accumulate as much carbon as other materials. While bioprocessed materials
added less initial carbon to the soil relative to corn stover, when conversion yields were

accounted for, their slower decay allowed for higher soil carbon accumulation.

Steady
Group Treatment State SSres / SScs
Carbon '
(mg)

INC1, CS1 513 1.0
Palouse, AD1 642 13
Standard HLFB1 732 14

INC1, CS1 651 1.0
Vershire, AD1 747 1.1
Standard HLFB1 3151 4.8

CS2 65 1.0

Plgiié AD2 93 14
Reduce (i HLFB2 62 95
HLFB3 195 3.0

Table 5: Ratios of steady state carbon formation of biologically processed residues to
corn stover while considering reduced mass inputs of residues. Steady state carbon

values were extracted from Figure 2 at time approaching 100 years.
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By comparing the ratios of steady state carbon formed from processed residue input to
unprocessed input material, we found that the processed residues formed more steady
state carbon than corn stover in every comparison except HLFB2 (Table 5). For the other
materials, we found that this ratio ranged from 1.1 to 1.3 for AD1, 1.4 to 4.8 for HLFB1,
and were 1.4 for AD2 and 3.0 for HLFB3 respectively (Table 5). HLFB2 was estimated
to form approximately 95% of the steady state carbon formed by corn stover due to both
its rate of decomposition being the closest to corn stover (4.4 years for HFLB2 vs 0.80
years for CS2, Figure 4) combined with its relatively smaller carbon input after
bioconversion. Pre-bioconversion adjustment, HLFB2 contained slightly more carbon
than corn stover, (373 mg carbon for HLFB2 vs. 343 mg carbon for CS2, Table 2).

However, by adjusting for the requisite 35% conversion yield, this effect was negated.

Discussion

Our incubation results join Johnson et al. (2007) as the second empirical soil experiments
ever conducted with HLFBs®. While we both performed controlled, laboratory-scale,
multi-day soil incubation experiments with HLFB, the scope and focus of our study
differed. Conducting our study over 15 years after Johnson et al. allowed us access to
higher quality HLFBs (i.e., HLFBs that had more rigorous documentation on their
preparation and more reflective of the current state of the art of lignocellulosic biofuel
production). Consequently, we tested three HLFBs as opposed to one enabling us to
derive some generalized relationships between material characteristics of HLFB and

carbon retention metrics (Figure 5). Since our focus was to specifically compare SOC
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formation potential between HLFB and unprocessed feedstock, our efforts went towards
quantifying and partitioning the carbon retained in our treatments whereas Johnson et al.
focused on quantifying and qualifying the various soil quality metrics that changed in
their treatments. Though we did not explicitly measure their metrics of interests, which
included changes in bulk density, water retention characteristics, humic acid
concentration, and water-stable aggregates percentage; we offer that the higher SOC
formation potential we identified (relative to corn stover) for the HLFB’s is strongly and
positively associated with these soil quality metrics**%. While we cannot make a direct
comparison to Johnson et al.’s carbon released results considering we tested different
incubation conditions and application rates, as a rudimentary comparison, we can look at
the ratio of carbon respired by the corn stover to carbon respired by the HLFB for both
their data and ours. For Johnson et al.’s 112 day incubation where they incubated both
HLFB and corn stover at the same application rate of 1.0 kg material per m? soil, the ratio
of carbon respired by corn stover to HLFB was 1.43-1.54. For the most apt comparison,
we can look to the most similar HLFB we tested, HLFB2 (C:N = 39 and lignin:N = 43),
which was most similar to the Johnson et al. HLFB (C:N = 30 and lignin:N = 30) and was
also produced at NREL. Taking our HLFB2 incubation results at day 112 resulted in a
ratio of carbon respired by corn stover to HLFB equaled 1.46, within the range of
Johnson et al. (Appendix N). Overall, our results strengthen Johnson et al.’s conclusions.
Applying HLFB as a land amendment to soil may increase SOC and enhance positive soil

qualities relative to a base case of leaving corn stover on the field.

This potential is explored in depth in a soon to be published manuscript by authors

36



affiliated with this study®'. This manuscript, to be published in 2023 as a literature review
about HLFB return, defines a new and specific metric for steady state SOC formation
potential (Appendix O). Specifically of interest is the quantity Y e where Y represents
the conversion yield of a bioprocessed residue (i.e., 0.35 for HLFB) and ¢ represents the
relative efficiency of steady-state SOC formation per standardized unit of input from soil-
applied organic matter for the No-Harvest and Harvest with HLFB Return cases.
Applying the results of this thesis to this framework, we find that our SS.../ SScs parameter
(Table 5) effectively equals Y¢¢. Since we calculated SS.. / SScs from annual-input
modelling scenarios that factor in bioconversion yields, the case of No-Harvest is
represented by SScs and Harvest with HLFB Return is represented by SS.... Taken
together, Table 5 offers multiple values for Y “e given varying soil types and conditions.
We hope that further research can be conducted in this intersection of new theory and

experimental data.

Priming, while observed in our experiments, is not satisfyingly and conclusively
quantified in this study. Between Incubation one and two, priming in our incubations
does not appear to follow any consistent trends beyond being positive for Incubation one
treatments and negative for Incubation two treatments. However, even this difference is
not conclusive as AD1, CS2, and HLFB2 are within one standard deviation of being
either positive or negative. Additionally, a key difference between the two treatments is
the length of the incubations with Incubation two being almost twice as long as
Incubation one (267 days versus 135 days). This temporal difference could explain the

apparent difference in priming effect between the incubations*. We offer both a process-
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based and mechanistic explanation. Process wise, since we calculated priming by
subtracting out the carbon respired from the soil control at the end of each incubation,
Incubation one may have exhibited positive priming only because of the averaging effect
inherent in a longer incubation. The longer the incubation, the less weight the initial
short-term acceleration or retardation in microbial activity caused by priming has on the
overall amount of carbon respired as the residue containing treatments released much
larger magnitudes of carbon in comparison to the soil controls. The opposite effect could
then be applied to Incubation two. Since Incubation two was half as short as Incubation
one, the effect of soil priming could have been more pronounced and apparent especially
from our simple calculation. Mechanistically, Incubation’s two negative priming can also
be explained by microbes experiencing preferential substrate utilization in which
microbes switch from consuming poorly degradable SOM to more easily decomposable
organic matter input, slowing their decomposition of the original SOM>!. Over time, as
the new input is consumed, the larger population of microbes may switch back to the
original SOM or start mining the original organic matter for nutrients. Overall, while we
have approximated the priming effect for our treatments, we are unable to conclusively

comment on how exactly priming may work with other HLFBs.

Relative to low lignin organic matter inputs, high lignin inputs have been shown to be
associated with less soil-derived carbon loss and more residue-derived loss*. This is
supported by our results in both Incubations one and two where positive priming is
greatest and negative priming is smallest for the low lignin corn stover, respectively. In

both cases, corn stover exhibits more soil-derived carbon loss than the comparable
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bioprocessed materials. Higher amounts of positive priming / lower amounts of lower
negative priming for corn stover support the hypothesis that bioprocessed materials retain
more carbon than their unprocessed counterparts overall. In future research, we would
hope to more certainly ascertain the effect of priming with more rigorous isotopic

analysis throughout the incubation and not just at the beginning and end.
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Figure 5: Correlations of residue C:N, percentage lignin, and percentage solubilization
versus percentage of total carbon respired in each treatment from our incubations.
Decreased C:N, increased lignin content, and increased solubilization are analogous to

increased amounts of bioprocessing.

As an outcome of the biofuel production process, bioprocessed materials are essentially
pre-decomposed relative to their input in the soil. Thus, upon addition to soil,
bioprocessed materials tend to decompose at a slower rate than fresh residues or
unprocessed material and may possibly retain more carbon by mass percentage. This is
true especially in the beginning stages of decomposition as shown by our one-time input
projections whereupon corn stover released its carbon the quickest in every comparable
incubation-condition group. Decreased C:N, increased lignin percentage, and increased

solubilization rates are analogous to increased amounts of bioprocessing or effectively,
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pre-decomposition. Plotting these metrics relative to percent carbon retained, we found
that our hypothesis that increased amounts of pre-decomposition may correlate with
increased amounts of carbon retained (Figure 5). However, we acknowledge that our
correlations, especially for the solubilization graph, may be dominated by the cluster of
corn stover data and thus, is not a definitive correlative relationship. We include these
preliminary correlations not for their conclusive, inherent value, but because we believe
this data may inform future research diretions on SOC formation of HLFBs as future
HLFBs will vary in these plotted metrics and may be contextualized by the generalized

relationships presented here.

Conclusions and Future Work

Supported by multiple lines of evidence — incubation data, short-and-long term
modelling, and partitioning data — at a minimum, our results indicate that returning the
same amount by mass of biologically processed material to soil leads to increased
amounts of carbon retained in soil as compared to unprocessed material. Taken further,
we estimate that returning even a reduced amount of mass reflective of bioconversion
yields would still lead at least similar amounts of carbon retained in soil as compared to
full amounts of unprocessed material. We find that in all but one incubation-condition
group, the digestate and HLFBs respire less carbon, store more carbon, and persist longer

in the soil.
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Soil Isotope One-Time Input S;f:fy
Incubation Analysis Modelling ¢
Modelling
04C Slowest to
%C Retaizle dof Slowest to Respire Hichest
Incubation Retained . Respire Away ghes
o Substrate Residue C Steady
Condition (end of (end of Away Completely State SOC
incubation) | . ) Completely (with ¢
incubation) .
conversion)
1 CS1 3 3 3 3 3
(Palouse Soil,
Standard AD1 2 ! 2 ! 2
Dosage) HLFB1 1 2 1 2 1
1 CS1 3 3 3 3 3
(Vershire Soil,
Standard ADI 2 ! 2 2 2
Dosage) HLFB1 1 2 1 1 1
5 CcSs2 4 4 4 4 3
(Palouse Soil, AD2 2 3 2 2 2
Red
el e | 3|2 |3 3|
HLFB3 1 1 1 1 1

Table 6: Summary table of the carbon retention properties found from our study’s tests of
various substrate containing treatments relative to incubation-condition groups. 1
indicates that the treatment retained the most carbon relevant to the corresponding test
while 4 indicates the least carbon relative. The least retentive material is bolded in each

comparison.

From our modelling efforts, we see that the rankings of the unprocessed material relative
to the processed material remain relatively unchanging despite any magnitude
differences. From our partitioning work, we conclude that residue-derived carbon is both
more easily accessible to soil microbes in the form of fermentable sugars and in relative
abundance compared to soil derived carbon. We estimate that priming as an effect on

general SOC levels is relatively minimal. Overall, we attribute these differences in SOC
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levels both experimentally determined and modelled be due to the unprocessed nature of
corn stover versus the biologically processed residues and not as an outcome influenced
by our various incubation conditions. Thus, through our experimental and theoretical
study of HLFB’s decomposition in soil, we find that returning HLFB to soil increases
SOC relative to a non-harvest case as represented by our various projections of
unprocessed material decomposition. Placed in the broader context of 2G biofuel
production, we assert that HLFB return will enable higher rates of residue harvest and
increased production of 2G biofuels using crop residues, which may resolve the land use

and food vs fuel ambiguity surrounding the sustainability of 2G biofuels.

In terms of future work emerging from this thesis, we are primarily interested in
modelling field-scale SOC scenarios in which biologically processed organic matter is
continuously added to an agricultural field. Specifically, we are interested in a more
conclusive estimation of steady-state SOC in a mature bioenergy cropping scenario. This
work is currently in its beginning stages as initiated by Professor Jo Smith at the
University of Aberdeen. She endeavors to apply the RothC model of soil carbon
dynamics to the isotopic analysis results we discussed in this thesis. Additionally, we are
interested in longer and more rigorously controlled soil incubations with even more
diverse HLFBs. Specifically, it would be of great interest to test the state-of-the-art
HLFBs NREL is producing currently aligned with their most recent process models
utilizing alkali-pretreatment. In these future incubations, careful documentation of the
various HLFB production processes would be of the utmost importance focusing

specifically on the metrics of percent general solubilization, percent carbohydrate
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solubilization, general mass yield, and mass yield on a carbon basis. It would also be
important to include an appropriate corn stover treatment in each subsequent incubation
that would occur for rigorous comparison. Ultimately, in terms of the most important
future work still needed on this topic, we are most interested in seeing field-scale
experiments observing steady-state SOC where HLFB is returned to agricultural soils that
grow the HLFB feedstock over the multi-decade long scale. Though the state-of-the-art
of 2G biofuel production may make gathering the amount of HLFB needed to conduct
this investigation near impossible, we believe this investigation would be worth the
considerable effort and cost. Conclusive results from this sort of field-scale studies of
HLFB return are what could turn a current compelling theory into a real agricultural

practice.
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Appendices

Appendix A — Crop Residue Removal Literature

Literature from 1986-2019 on the topic of residue removal was reviewed. Specifically,

literature with enumerated values for crop residue harvest was included.

Canqui & Lal
2009

removal.

stover no-till silt loams and clay
loam in 3 different fields in
Ohio.

Source How much crop residue is safe to Soil Context Complexities
harvest from a SOC and soil quality
perspective?
Lindstrom S*USLE, USLE, 2*USLE with the | 4 year field study with corn USLE results are site specific. No
1986 USLE amount being the results of stover on no-till and tilled fields universal percentage given, however
the Universal Soil Loss of loam and silty loam in the a soil loss tolerance level T is given
Equation applied northwestern Corn Belt as 11.2 tons/ha/year.
Blanco- 25% might be available for 4 year field study with corn Stover removal has the most adverse

impacts on sloping and erosion prone
soil.

Blum et al.
2010

0<x<50% depending on crop type,
soil properties, and climate.

RothC-26.3 model for 40 years,
in different soil types across
Europe.

For corn, <50% showed increasing
SOC stocks but for barley, decreasing
for all, but for more root biomass,
incr. SOC always.

Karlen et al.
2014

Some level of corn stover harvest
may actually be good for
productivity.

Meta analysis of 239 site years
of field research.

No-till grain yields were significantly
lower

than with conventional tillage when
stover was not

removed, but equivalent when it was
harvested. Presumably

stover harvest helped mitigate many
traditional

residue management problems such
as N immobilization

and reduced soil temperatures.

Jin et al.
2015

55% assuming N fertilizer
additions. SOC gains limited
compared to no-harvest.

12 years, no-till continuous corn
system in silt loam in W Corn
Belt.

Crop yields and SOC remained equal,
but soil stability and erosion
protection decrease.

Kenney et al.
2013

<50% assuming 15 cm of stalk left
in field on all plots.

3 years, no-till continual corn
system in silt loam in Kansas.

>50% incr. Risk of erosion and soil
water coupled w/ marginal short term
increase grain yield.

Xuetal.
2019

30-40% could minimize adverse
impacts of stover removal on SOC.

Meta analysis of 409 global data
points.

Stover removal generally reduced
SOC stock by 8% in 0-30 cm profile;
depth matters and few deep data
points.

Gollany et al.
2020

0% only one to incr. SOC, tested
50/100% in till/no-till but all
depleted.

10 year field study, then 30 years
w/ CQESTR, no-till continual
corn in silt loam in W MN.

No till and tillage tested, no till only
way for SOC to incr. Work only done
0-30 cm of soil.

44




Appendix B — Microbial Biomass Carbon Results

Microbial biomass carbon and nitrogen results from Incubation two. Incubation two poster created by Audrey Adamchak for a senior

capstone project in 2023.
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Microbial biomass carbon and nitrogen results from Incubation one.
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Appendix C — Pre-study Particle Size Incubation Results

Results from a soil incubation with differently sized corn stover particles (0.5 mm
diameter size and 8.5 mm diameter size) is shown. Under similar incubation conditions to
this study’s Incubations one and two, carbon flux and cumulative amount of carbon

respired were statistically insignificant between the different particle size treatments.
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Appendix D — Carbon Flux and Carbon Respired Results
Carbon flux graphs below show exponential decay of C production over time of
incubations. 267-day data correspond with Incubation one and 135-day data correspond

with Incubation two shown in the final set of graphs on the bottom of the page.
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Cumulative carbon respired graphs below show the cumulative production of C released
as CO, respired during the time of incubations. 267-day data correspond with Incubation
one and 135-day data correspond with Incubation two shown in the last set of graphs on

the bottom of the page.
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Appendix E — Best Fit Parameters for Models

Best fit model parameters for various models from the SoilR Package when applied to
our incubation data are shown. Gamma, across these tables, represents the initial
partitioning between the two pools of carbon. As an example, for the Palouse Soil control
2 Pool Parallel scenario, gamma indicates that pool 1 contains.205 of the initial total

amount of carbon in the system.

PALOUSE Treatments Model Parameters
1 Pool 2 Pool Parallel 2 Pool Series
k k1 k2 gamma k1 k2 alpha21 gamma
Soil 3.6207E-
Control | 0.00060213 | 0.00385251 09 0.2050224 | 0.02996006 0.00049075 0.96291063  0.83243589
9.7936E-
CS1 0.00186762 | 0.00626492 10 0.41454358 | 0.01736454 0.00115017 0.14272221 0.13605892
1.6263E-
AD1 0.00098838 0.0096735 08 0.19355018 | 0.02023506 0.00042587 0.88550346 0.96145974
1.6444E-
HLFB1 | 0.00061527 | 0.02124474 08 0.09970191 | 0.10104426  0.00029263 0.8931433 0.46704678

VERSHIRE Treatments Model Parameters

1 Pool 2 Pool Parallel 2 Pool Series

k k1 k2 gamma k1 k2 alpha21 gamma

Soil
Control | 0.00026917 | 0.00385151 1.9114E-10 0.09474933 | 0.00801508 0.00012956  0.94842326  0.89749085

CS1 0.00113867 | 0.01384815 0.00057854 0.10019409 | 0.01598043 0.00063769 0.85398893  0.77818785

AD1 0.00060948 | 0.00967052  9.4902E-09 0.12416559 0.0411658 0.00037797  0.94357717  0.74899571

HLFB1 0.0004004 | 0.02123931  1.8425E-08  0.06643432 0.0994277  0.00018848  0.92233811  0.43064804
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1 Pool 2 Pool Parallel 2 Pool Series
k k1 k2 gamma k1 k2 alpha21 gamma

6.4441E-

AD2_S 0.00189853 | 0.05511563 09 0.15092216 | 0.09407008 0.00050484 0.29149503 0.15376928
9.0043E-

HLFB3_S | 0.00075505 | 0.03121938 09 0.07085624 | 0.09723211 0.00035762 0.92835663 0.4862196
9.5211E-

HLFB2_S | 0.00167767 | 0.03259927 09 0.14763444 | 0.14805689 0.00088919  0.88689962  0.57334913
1.1037E-

AD2_R 0.00152579 | 0.05737624 08 0.12295175 | 0.10553739 0.00043866 0.88749601 0.78917944
1.0694E-

HLFB3_R | 0.00062784 | 0.02082809 08 0.06901371 | 0.12593147 0.00038178 0.94835083 0.45548201
9.6185E-

HLFB2_R | 0.00148818 | 0.02257428 09 0.1471805 | 0.14959621 0.00094104 091237519 0.53117372
2.9187E-

CS2_R 0.00211539 | 0.00589357 08 042621541 | 2.98690222 0.0019992 0.9205925  0.08886055
3.6825E-

SOIL 0.00062089 | 0.00844859 09 0.1049325 | 0.04030751 0.0004729  0.95950953  0.47706739
1.0785E-

HLFBI_S | 0.00138923 | 0.08706575 08 0.10778758 | 0.16432275 0.00036241 0.88995359 0.74335243
INCUBATION 2 R2 VALUES

1P 2PS 2PP 3PP

HLFBI1_S 0.72099169 0.99382974 0.9390355 0.99685328

AD2_S 0.78902026 0.99786028 0.97985758 0.97159659

HLFB3_S 0.92355909 0.99763126 0.97311478 0.99721176

HLFB2_S 0.93239192 0.99730001 0.9570505 0.95105699

AD_R 0.80520861 0.99745984 0.97185829 0.96289499

HLFB3_R 0.96648872 0.99607811 0.96974784 0.994541

HLFB2_R 0.96780066 0.99515265 0.97626642 0.97909025

CS2_R 0.9959621 0.9953147 0.9980653 0.99777375

SOIL 0.98402199 0.99639293 0.99950116 0.99904491
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Appendix F — Example R Code for One-time Input Modelling

R code used to produce the one-time input modelling results for Incubation two. A
similar variation of code was used to produce the modelling results for Incubation one.
Further data and complete set of code used in this thesis can be found in the Hicks Pries

Lab GitHub.

# Incubation 2 Modelling Code by Michelle Wang, edited by Caitlin Hicks Pries for M.S. Thesis
April 2023

library(tidyverse)
library(SoilR)
library(FME)

# Read in data

Cinits <- ¢(1199.218125, 1198.987771, 1202.890795, 1208.769544, 1280.327308, 869.183259,
871.99067, 907.076619, 880.866037, 540.873971, 535.095807) # these numbers reflect if |
average C per treatment, Information from INC3 -> CombinedIRMS -> Treatment_Calculations
treatment_names <- c('DASE_C', 'DASE_O', 'AD_S', 'POET_S', 'NREL_S', 'AD_N', 'POET_N,
'NREL_N', 'CS_N', 'GWC16', 'GWC20")

inputs_frame =0

CO2flux_0 <- read.csv("INC2data_mod.csv", header=TRUE)

i=1 # treatment
n=2 # saving number

# DASE O/C combined, so run this code and don't run it in a loop just run the #1 treatment

i=1#

Cinits[1] <- (1199.218125+1198.987771)/2 # just averaged DASE together

CO2flux_0 <- read.csv("DASEcomb_INC2data_mod.csv", header=TRUE) # in Excel, | averaged
DASE_C and DASE_O together and then just deleted Num = 2, calling the average Num = 1 so 2
is missing now

#Sample key as follows:

# C/O means closed/open valve

#DASE_C' = 1 standard dosage

#DASE_QO' = 2 standard dosage

#AD_S' = 3 standard dosage

#POET_S' = 4 standard dosage

#NREL_S' = 5 standard dosage

#AD_N'= 6 new ie. halved dosage
#POET_N'=7 new dosage

#NREL_N' = 8 new dosage

#CS_N'= 9 new dosage

#GWC16' = 10 PALOUSE SOIL CONTROL 1
#GWC20' = 11 PALOUSE SOIL CONTROL 2

# init saving stuffs
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# AlCc

num_treatments = 11

AlCc_1p_tot <- numeric(length=num_treatments)
AlCc_2ps_tot <- numeric(length=num_treatments)
AICc_2pp_tot <- numeric(length=num_treatments)
AICc_3pp_tot <- numeric(length=num_treatments)
#AICc_3pp_fixed_tot <- numeric(length=num_treatments)

#R

R_1p_tot <- numeric(length=num_treatments)
R_2ps_tot <- numeric(length=num_treatments)
R_2pp_tot <- numeric(length=num_treatments)
R_3pp_tot <- numeric(length=num_treatments)
#R_3pp_fixed_tot <- numeric(length=num_treatments)

# parameters

onep_par <- list(length = num_treatments)
twops_par <- list(length = num_treatments)
twopp_par <- list(length = num_treatments)
threepp_par <- list(length = num_treatments)
#threepp_fixed_par <- list(length = num_treatments)

# short term projections w/in incubation, to graph

days=seq(0,135) #Incubation days

short_totalfitCumm <- as.data.frame(matrix(nrow = length(days), ncol = num_treatments*3+1))
short_totalfitCumm][, 1] <- days

colnames(short_totalfitCumm)[1] <- 'days’

# longterm projections

proj_days = seq(1,to= 36500, by = 365/5)

totalfitCumm <- as.data.frame(matrix(nrow = length(proj_days), ncol = num_treatments*3+1))
totalfitCumm[, 1] <- proj_days

colnames(totalfitCumm)[1] <- 'days’

# Inputs every end of year, 99 inputs in dataframe, this only works for inputs w/ time steps of
365/5 days
# inputs_vals <- 1000%c(0.664092011, # from CombinedIRMS -> Treatment Calculations in
INC2fka3

0.664224585,

0.668063965,

0.674809499,

0.746066085,

0.333617312,

0.337195283,

0.372710457,

0.345811145,

0,

0) # these numbers reflect if | average the residues in each treatment, Information
om INC2 -> IRMS -> "IRMS_summary" -> IRMS_Pre

HFHIPHFHIFHFHFEHHHR

# inputs_mainframe <- data.frame(proj_days, matrix(0, length(proj_days),
length(treatment_names)))

# colnames(inputs_mainframe) <- c('days', 'DASE_C', 'DASE_O', 'AD_S', 'POET_S', 'NREL_S,
'AD_N', 'POET_N', 'NREL_N','CS_N', 'GWC16', 'GWC20")

# a = 2 # column counter
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#b =1 # inputs_vals counter

# while (a < 2+length(treatment_names)) {

# inputs_mainframe[seq(from = 6, to = length(proj_days), by = 5), a] <- inputs_vals[b]
# a=a+1

# b=b+1

#}

# write.csv(inputs_mainframe, file = 'inputframe.csv')

while (i < num_treatments+1) {

# begin looping

CO2flux <- CO2flux_0 %>%
filter(Num ==1i) %>% # loop through treatment
select(time, cummCQO2)

plot(x=CO2flux$time, y=CO2flux$cummCQO2)
Ctotal= Cinits[i]

# graphing
theme_C <- theme_light() +
theme(panel.grid.minor = element_blank(),
#text = element_text(size = 30), #for facetwrapped plots
strip.background = element_rect(color="black", fill="#93C5FF", size=1.5, linetype="solid"),
legend.position = "none",
plot.title = element_text(hjust = 0.5))

# One pool model
eCO2func = function(pars) {
mod=0OnepModel(
t=days,
k = pars[1], # GUESSES K1
CO = Ctotal,
In = inputs_frame,
pass=TRUE
)
AccR=getAccumulatedRelease(mod)
return(data.frame(time=days,cummCO2=rowSums(AccR)))

}

#cost function

eCO2cost=function(pars){
modelOutput=eCO2func(pars)
return(modCost(model=modelOutput, obs=CO2flux[,1:2]))

}

inipars=c(k=.0001) # for Palouse soil control should ~=.0006

# fit model to data

eCO2fit=modFit(f=eCO2cost,p=inipars,method="Nelder-Mead",
upper=c(Inf),lower=c(0))

onep_par[[i]] <- eCO2fit$par

# rerun model w/ best parameter set for short term
fitmod=OnepModel(t=days, k=eCO2fit$par,
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In = inputs_frame,
C0=Ctotal)

fitCumm=getAccumulatedRelease(fitmod)

short_totalfitCumm[, n] <- rowSums(fitCumm)
colnames(short_totalfitCumm)[n] <- 1P’

# plot short-term incubation v. model
fitCumm1 <- rowSums(fitCumm)
fitframe <- data.frame(days, fitCumm1)

plot1 <- ggplot() +
geom_point(data = CO2flux, aes(x = time, y = cummCO2), shape = 1) + # INC data
geom_line(data = fitframe, aes(x = days, y = fitCumm1)) + # model data
xlim(0, 135) +
#ylim(0, 100) +
labs(x = 'Time [days]', y = 'Cumulative CO2 Released [mg]', title = '1 Pool Model') +
theme C

plot1

# save AICc and npars

npars=length(eCO2fit$par)

AIC_1p=(2*npars)-2*log(eCO2fit$ms)
AlCc_1p=AIC_1p+(((2*npars*2)+2*npars)/(length(CO2flux[, 1])-npars-1))

#pseudo r-squared
fitmod=OnepModel(t=CO2flux$time, k=eCO2fit$par,
In = inputs_frame,
C0=Ctotal)

CO2flux$fitCumm 1 p<-rowSums(getAccumulatedRelease(fitmod))

plot(CO2flux$cummCO2, CO2flux$fitCumm1p)+abline(coef = c(0,1))
test<-summary(Im(cummCO2~fitCumm1p, data=CO2flux))
R_1p<-test$r.squared

# RERUN FOR LONG TERM
fitmod=OnepModel(t=proj_days, k=eCO2fit$par,
In = inputs_frame,
CO0=Ctotal)

fitCumm=getAccumulatedRelease(fitmod)

totalfitCumml[, n] <- rowSums(fitCumm)
colnames(totalfitCumm)[n] <- "1P"'

# LONG TERM
fitCumm2 <- rowSums(fitCumm)
fitframe2 <- data.frame(proj_days, fitCummz2)

plot1 <- ggplot() +
geom_point(data = CO2flux, aes(x = time, y = cummCO2), shape = 1) + # INC data
geom_line(data = fitframe2, aes(x = proj_days, y = fitCumm2)) + # model data
xlim(0, 36500) +
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#ylim(0, 100) +
labs(x = 'Time [days]', y = 'Cumulative CO2 Released [mg]', title = '1 Pool Model') +
theme C

plot1

n<-n+1

#two pool series
eCO2func=function(pars){
mod=TwopSeriesModel(
t=days,
ks=pars[1:2],
a21=pars[3]*pars[1],
CO=Ctotal*c(pars[4],1-pars[4]),
In=0,
pass=TRUE
)
AccR=getAccumulatedRelease(mod)
return(data.frame(time=days,cummCO2=rowSums(AccR)))

}

#cost function

eCO2cost=function(pars){
modelOutput=eCO2func(pars)
return(modCost(model=modelOutput, obs=CO2flux[,1:2]))

}
inipars=c(k1=0.5,k2=0.05,alpha21=0.5,gamma=0.5)

eCO2fit=modFit(f=eCO2cost,p=inipars,method="Nelder-Mead",
upper=c(Inf,Inf,1,1),lower=c(0,0,0,0))

options(scipen = 999)

twops_par][i]] <- eCO2fit$par

#Run the model again with best parameter set

fitmod=TwopSeriesModel(t=days, ks=eCO2fit$par[1:2],
a21=eCO2fit$par[3]*eCO2fit$par[1],
C0=Ctotal*c(eCO2fit$par[4],1-eCO2fit$par[4]),
In=0)

fitCumm=getAccumulatedRelease(fitmod)

short_totalfitCumm[, n] <- rowSums(fitCumm)
colnames(short_totalfitCumm)[n] <- '2PS'

#Plot the results
fitCumm1 <- rowSums(fitCumm)
fitframe <- data.frame(days, fitCumm1)

plot1 <- ggplot() +
geom_point(data = CO2flux, aes(x = time, y = cummCO2), shape = 1) + # INC data
geom_line(data = fitframe, aes(x = days, y = fitCumm1)) + # model data
xlim(0, 135) +
#ylim(0, 100) +
labs(x = 'Time [days]', y = 'Cumulative CO2 Released [mg]', title = '2 Pool Series Model') +
theme C

plot1
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npars=length(eCO2fit$par)
AIC_2ps=(2*npars)-2*log(eCO2fit$ms)
AICc_2ps=AIC_2ps+(((2*npars*2)+2*npars)/(length(CO2flux[,1])-npars-1))

#pseudo r-squared

fitmod=TwopSeriesModel(t=CO2flux$time, ks=eCO2fit$par[1:2],
a21=eCO2fit$par[3]*eCO2fit$par[1],
C0=Ctotal*c(eCO2fit$par[4],1-eCO2fit$par[4]),
In=0)

CO2flux$fitCumm2ps=rowSums(getAccumulatedRelease(fitmod))

plot(CO2flux$cummCO2, CO2flux$fitCumm2ps)+abline(coef = ¢(0,1))
test<-summary(Im(cummCO2~fitCumm2ps, data=CO2flux))
R_2ps<-test$r.squared

# RERUN FOR LONG TERM

fitmod=TwopSeriesModel(t=proj_days, ks=eCO2fit$par[1:2],
a21=eCO2fit$par[3]*eCO2fit$par[1],
C0=Ctotal*c(eCO2fit$par[4],1-eCO2fit$par[4]),
In=0)

fitCumm=getAccumulatedRelease(fitmod)

totalfitCumml[, n] <- rowSums(fitCumm)
colnames(totalfitCumm)[n] <- '2PS'

# LONG TERM
fitCumm2 <- rowSums(fitCumm)
fitframe2 <- data.frame(proj_days, fitCumm?2)

plot1 <- ggplot() +
geom_point(data = CO2flux, aes(x = time, y = cummCO2), shape = 1) + # INC data
geom_line(data = fitframe2, aes(x = proj_days, y = fitCumm2)) + # model data
xlim(0, 36500) +
#ylim(0, 100) +
labs(x = 'Time [days]', y = 'Cumulative CO2 Released [mg]', title = '2 Pool Series Model') +
theme C

plot1

n<-n+1

#two pool parallel model
eCO2func=function(pars){
mod=TwopParallelModel(
t=days,
ks=pars[1:2],
gam=pars[3],
CO=Ctotal*c(pars[3],1-pars[3]),
In=0,
pass=TRUE
)
AccR=getAccumulatedRelease(mod)
return(data.frame(time=days,cummCO2=rowSums(AccR)))

}
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eCO2cost=function(pars){
modelOutput=eCO2func(pars)
return(modCost(model=modelOutput, obs=CO2flux[,1:2]))

inipars=c(k1=0.05,k2=0.000000005,gamma=0.08) #for deeper depths, need different starting
values

eCO2fit=modFit(f=eCO2cost,p=inipars,method="Nelder-Mead",
upper=c(Inf,Inf,1),lower=c(0,0,0))

twopp_parf[i]] <- eCO2fit$par

#Run the model again with best parameter set

fitmod=TwopParallelModel(t=days, ks=eCO2fit$par[1:2],
gam=eCO2fit$par[3],
C0=Ctotal*c(eCO2fit$par[3],1-eCO2fit$par[3]),
In=0)

fitCumm=getAccumulatedRelease(fitmod)

short_totalfitCumm[, n] <- rowSums(fitCumm)
colnames(short_totalfitCumm)[n] <- '2PP"

#Plot the results
fitCumm1 <- rowSums(fitCumm)
fitframe <- data.frame(days, fitCumm1)

plot1 <- ggplot() +
geom_point(data = CO2flux, aes(x = time, y = cummCO2), shape = 1) + # INC data
geom_line(data = fitframe, aes(x = days, y = fitCumm1)) + # model data
xlim(0, 135) +
#ylim(0, 100) +
labs(x = 'Time [days]', y = 'Cumulative CO2 Released [mg]', title = '2 Pool Parallel Model') +
theme C

plot1

npars=length(eCO2fit$par)
AIC_2pp=(2*npars)-2*log(eCO2fit$ms)
AlCc_2pp=AIC_2pp+(((2*npars*2)+2*npars)/(length(CO2flux[,1])-npars-1))

#pseudo r-squared

fitmod=TwopParallelIModel(t=CO2flux$time, ks=eCO2fit$par[1:2],
gam=eCO2fit$par[3],
C0=Ctotal*c(eCO2fit$par[3],1-eCO2fit$par[3]),
In=0)

CO2flux$fitCumm2pp=rowSums(getAccumulatedRelease(fitmod))

plot(CO2flux$cummCO2, CO2flux$fitCumm2pp)+abline(coef = ¢(0,1))
test<-summary(Im(cummCO2~fitCumm2pp, data=CO2flux))
R_2pp<-test$r.squared

# LONG TERM: RERUN MODEL TO PREDICT LONG TERM

fitmod=TwopParallelModel(t=proj_days, ks=eCO2fit$par[1:2],
gam=eCO2fit$par[3],
C0=Ctotal*c(eCO2fit$par[3],1-eCO2fit$par[3]),
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In=0)
fitCumm=getAccumulatedRelease(fitmod)

totalfitCumml[, n] <- rowSums(fitCumm)
colnames(totalfitCumm)[n] <- '2PP"

# LONG TERM: PLOT
fitCumm2 <- rowSums(fitCumm)
fitframe2 <- data.frame(proj_days, fitCumm?2)

plot1 <- ggplot() +
geom_point(data = CO2flux, aes(x = time, y = cummCO2), shape = 1) + # INC data
geom_line(data = fitframe2, aes(x = proj_days, y = fitCumm2)) + # model data
xlim(0, 36500) +
#ylim(0, 100) +
labs(x = 'Time [days]', y = 'Cumulative CO2 Released [mg]', title = '2 Pool Parallel Model') +
theme C

plot1

n<-n+1

#three pool parallel
eCO2func=function(pars){
mod=ThreepParallelModel(
t=days,
ks=pars[1:3],
gam1=pars[4],
gam2=pars[5],
CO=Ctotal*c(pars[4],pars[5],1-pars[4]-pars[5]),
In=0,
pass=TRUE
)
AccR=getAccumulatedRelease(mod)
return(data.frame(time=days,cummCO2=rowSums(AccR)))

}

eCO2cost=function(pars){
modelOutput=eCO2func(pars)
return(modCost(model=modelOutput, obs=CO2flux[,1:2]))

inipars=c(k1=0.005,k2=0.00005,k3=0.000000005,gam1=0.01, gam2=0.1) #for deeper depths,
need different starting values

eCO2fit=modFit(f=eCO2cost,p=inipars,method="Nelder-Mead",
upper=c(Inf,Inf,Inf,1,1),lower=c(0,0,0,0,0))

threepp_par][i]] <- eCO2fit$par

#Run the model again with best parameter set

fitmod=ThreepParallelModel(t=days, ks=eCO2fit$par[1:3],
gam1=eCO2fit$par[4],
gam2=eCO2fit$par[5],
CO0=Ctotal*c(eCO2fit$par[4],eCO2fit$par[5],1-eCO2fit$par[4]-eCO2fit$par[5]),
In=0)

fitCumm=getAccumulatedRelease(fitmod)
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short_totalfitCumm[, n] <- rowSums(fitCumm)
colnames(short_totalfitCumm)[n] <- '3PP"

#Plot the results

plot(CO2flux[,1:2],type="p",xlab="Days",
ylab="Cummulative respiration (mg C g-1 soil)")

lines(rowSums(fitCumm))

fitCumm1 <- rowSums(fitCumm)
fitframe <- data.frame(days, fitCumm1)

plot1 <- ggplot() +
geom_point(data = CO2flux, aes(x = time, y = cummCO2), shape = 1) + # INC data
geom_line(data = fitframe, aes(x = days, y = fitCumm1)) + # model data
xlim(0, 135) +
#ylim(0, 40) +
labs(x = 'Time [days]', y = 'Cumulative CO2 Released [mg]', title = '3 Pool Model') +
theme C

plot1

npars=length(eCO2fit$par)
AIC_3pp=(2*npars)-2*log(eCO2fit$ms)
AICc_3pp=AIC_3pp+(((2*npars*2)+2*npars)/(length(CO2flux[,1])-npars-1))

#pseudo r-squared

fitmod=ThreepParallelModel(t=CO2flux$time, ks=eCO2fit$par[1:3],
gam1=eCO2fit$par[4],
gam2=eCO2fit$par[5],
CO0=Ctotal*c(eCO2fit$par[4],eCO2fit$par[5],1-eCO2fit$par[4]-eCO2fit$par[5]),
In=0)

CO2flux$fitCumm3pp=rowSums(getAccumulatedRelease(fitmod))

plot(CO2flux$cummCO2, CO2flux$fitCumm3pp)+abline(coef = ¢(0,1))
test<-summary(Im(cummCO2~fitCumm3pp, data=CO2flux))
R_3pp<-test$r.squared

# LONG TERM: Run the model again with best parameter set
fitmod=ThreepParallelModel(t=proj_days, ks=eCO2fit$par[1:3],
gam1=eCO2fit$par[4],
gam2=eCO2fit$par[5],
CO0=Ctotal*c(eCO2fit$par[4],eCO2fitpar[5],1-eCO2fit$par[4]-eCO2fit$par[5]),
In=0)
fitCumm=getAccumulatedRelease(fitmod)

totalfitCumml[, n] <- rowSums(fitCumm)
colnames(totalfitCumm)[n] <- '3PP"

# LONG TERM: PLOT
fitCumm2 <- rowSums(fitCumm)
fitframe2 <- data.frame(proj_days, fitCummz2)

plot1 <- ggplot() +
geom_point(data = CO2flux, aes(x = time, y = cummCO2), shape = 1) + # INC data
geom_line(data = fitframe2, aes(x = proj_days, y = fitCumm2)) + # model data
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xlim(0, 36500) +
#ylim(0, 100) +
labs(x = 'Time [days]', y = 'Cumulative CO2 Released [mg]', title = '3 Pool Model') +
theme C
plot1

n<-n+1

# Save outputs INSIDE of loop
AICc_1p_tot[i] <- AICc_1p
AICc_2ps_tot[i] <- AICc_2ps
AICc_2pp_tot[i] <- AICc_2pp
AICc_3pp_tot[i] <- AICc_3pp
#AICc_3pp_fixed_tot[i] <- AICc_3pp_fixed

R_1p_tot[i] <-R_1p

R_2ps_tot[i] <- R_2ps

R_2pp_tot[i] <- R_2pp

R_3pp_tot[i] <- R_3pp
#R_3pp_fixed_tot[i] <- R_3pp_fixed

i =i+1
print(i)
print(n)

}

# Save outputs OUTSIDE of loop

AICc_tot <- data.frame(abs(AICc_1p_tot), abs(AlCc_2ps_tot), abs(AICc_2pp_tot),
abs(AICc_3pp_tot))

rownames(AlCc_tot) <- treatment_names

colnames(AICc_tot) <- c("1P', '2PS', '2PP', '3PP")

R_tot <- data.frame(abs(R_1p_tot), abs(R_2ps_tot), abs(R_2pp_tot), abs(R_3pp_tot))
rownames(R_tot) <- treatment_names
colnames(R_tot) <- ¢("1P', '2PS', '2PP", '3PP")

write.csv(AICc_tot, file = 'DASEavg_INC2_365by5 AICc_tot.csv')
write.csv(R _tot, file ='DASEavg_INC2_365by5 R _tot.csv')

# Export Parameters

write.csv(onep_par, file = 'DASEavg_365by5_onep_par.csv')
write.csv(twops_par, file = 'DASEavg_365by5_twops_par.csv')
write.csv(twopp_par, file = 'DASEavg_365by5 twopp_par.csv')
write.csv(threepp_par, file = 'DASEavg_365by5_threepp_par.csv')

# Export the cummCO2

write.csv(totalfitCumm, file = 'DASEavg_365by5 INC2_multmodels_projectedcummCO2.csv')
write.csv(short_totalfitCumm, file =

'DASEavg_short_365by5 INC2_multmodels_projectedcummCQO2.csv')
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Appendix G — Example Excel Calculations for Annual-Input Modelling

Example of calculations used to produce the annual-input modelling results for
Incubation two. Similar calculations were used to produce the modelling results for
Incubation one. These calculations account for the respective conversion yields of the
various residue inputs by adjusting the one-time input results in “SYST” by either 35%
for HLFBs and 50% for ADs and by adjusting the input, “INPUT,” by the proper yield as
well. The actual data and calculations used in this thesis for annual-input modelling can

be found in the Hicks Pries Lab GitHub.

SEGMENT DAY INPUT CUM_INPUT  'SOIL SysT 1 2 3 4 5 6 7 8
1 1 118018349  118.0183491 [ 0 0
2 74 0  118.0183491 26.1808567 89.3790044 22.1193517 NOTES:
3 147 0  118.0183491 40.2616577 106.439732 23.162326 1. First input will be Full
4 220 0  118.0183491 47.8742635 130.140005 28.7930095 :g:\;rsim—me,resi due,_
5 293 0  118.0183491 51.9793949 151.282785 34.7561867 input
6 366 118.018349  236.0366981 54.1958695 172355369 41.3558248 0 2. Then following inputs
7 439 0  236.0366981 553919334 192.711962 48.0620101 22.1193517 are
8 512 0  236.0366981 56.0375829 212.545888 54.7779067) 23.162326 conversion_rate*residue_
9 585 0  236.0366981 56.3860824 231.824327 614033857, 28.7930095 Isin\::enSVST—
10 658 0  236.0366981 56.5742379 250.575894 67.9005797 34.7561867 conversion, rate*relevant
1 731 118.018349  354.0550472 56.6758861 268.811274 74.2473859| 41.3558248 0 model results
12 804 0  354.0550472 56.7308166 286.545654 80.4351932| 48.0620101 22.1193517 -
13 877 0  354.0550472 56.7605228 303.792546 86.4612082| 54.7779067 23.162326
14 950 0  354.0550472 56.7766086 320.565418 92.3260834| 61.4033857 28.7930095
15 1023 0  354.0550472 56.7853171 336.877276 98.0321857| 67.9005797 34.7561867
16 1096 118.018349  472.0733962 56.7900873 352.740804 103.582751| 74.2473859 41.3558248 0
17 1169 0  472.0733962 567927216 368.168323 108.981461) 80.4351932 48.0620101 22.1193517
18 1242 0  472.0733962 56.7942033 383.171818 114.232165 86.4612082 54.7779067 23.162326
19 1315 0  472.0733962 56.7950614 397.762961 118.018349 92.3260834 61.4033857 28.7930095
20 1388 0  472.0733962 567955842 411.953065 118.018349 98.0321857 67.9005797 34.7561867
21 1461 118.018349  590.0917453 567959263 425.753153 118.018349| 103.582751 74.2473859 413558248 [}
2 1534 0  590.0917453 56.7961708 439.173945 118.018349 108.981461 80.4351932 48.0620101 22.1193517
23 1607 0  590.0917453 56.7963627 452.225868 118.018349| 114.232165 86.4612082 54.7779067 23.162326
24 1680 0  590.0917453 56.7965261 464.919059 118.018349 118.018349 92.3260834 61.4033857 28.7930095
25 1753 0  590.0917453 56.7966742 477.263378 118.018349| 118.018349 98.0321857 67.9005797 34.7561867
26 1826 118.018349  708.1100943 567968141 489.268414 118.018349 118.018349 103.582751 74.2473859 413558248 o
27 1899 0  708.1100943 56.7969495 500.943493 118.018349 118.018349 108.981461 80.4351932 48.0620101 22.1193517
28 1972 0  708.1100943 56.7970826 512.297682 118.018349 118.018349 114.232165 86.4612082 54.7779067 23.162326
29 2045 0  708.1100943 567972142 523.339803 118.018349| 118.018349 118.018349 92.3260834 61.4033857 28.7930095
30 2118 0  708.1100943 567973452 534.078431 118.018349| 118.018349 118.018349 98.0321857 67.9005797 34.7561867
31 2191 118.018349  826.1284434 56.7974757 544.521908 118.018349 118.018349 118.018349 103.582751 74.2473859 413558248 0
32 2264 0  826.1284434 567976061 554.678348 118.018349| 118.018349 118.018349 108.981461 80.4351932 48.0620101 22.1193517
33 2337 0  826.1284434 567977364 564.555638 118.018349| 118.018349 118.018349 114.232165 86.4612082 54.7779067 23.162326
34 2410 0  826.1284434 567978666 574.161451 118.018349| 118.018349 118.018349 118.018349 92.3260834 61.4033857 28.7930095
35 2483 0  826.1284434 567979968 583.503249 118.018349| 118.018349 118.018349 118.018349 98.0321857 67.9005797 34.7561867
36 2556 118.018349  944.1467924 56798127 592.588288 118.018349| 118.018349 118.018349 118.018349 103.582751 74.2473859 41.3558248 0
37 2629 0 9441467924 567982571 601.423625 118.018349| 118.018349 118.018349 118.018349 108.981461 80.4351932 48.0620101 22.1193517
38 2702 0 9441467924 567983873 610.016124 118.018349| 118.018349 118.018349 118.018349 114.232165 86.4612082 54.7779067 23.162326
39 2775 0 944.1467924 56.7985174 618.372458 118.018349 118.018349 118.018349 118.018349 118.018349 92.3260834 61.4033857 28.7930095
40 2848 0 9441467924 567986475 626.499119 118.018349| 118.018349 118.018349 118.018349 118.018349 98.0321857 67.9005797 34.7561867
i 2021 118.018349  1062.165141 56.7987777 634.402419 118.018349| 118.018349 118.018349 118.018349 118.018349 103.582751 74.2473859 41.3558248
a2 2994 0 1062165141 56.7989078 642.088497 118.018349 118.018349 118.018349 118.018349 118.018349 108.981461 80.4351932 48.0620101
43 3067 0 1062165141 56.799038 649.563324 118.018349 118.018349 118.018349 118.018349 118.018349 114.232165 86.4612082 54.7779067
a4 3140 0 1062165141 56.7991681 656.832706 118.018349| 118.018349 118.018349 118.018349 118.018349 118.018349 92.3260834 61.4033857
45 3213 0 1062165141 56.7992983 663.902289 118.018349 118.018349 118.018349 118.018349 118.018349 118.018349 98.0321857 67.9005797

The next image is a horizontal continuation of the same spreadsheet shown above.
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100 SUM FRAC C_Ret_res NET_C
o 0 118.018349
22.1193517 0.18742299 0.81257701 95.8989973
23.162326 0.19626038 0.80373962 94.8560231
28.7930095 0.24397062 0.75602938 89.2253396
34.7561867 0.29449816 0.70550184 83.2621624
413558248  0.1752093  0.8247907 194.680873
70.1813618 0.29733242 0.70266758 165.855336 Day v. Fraction of Added C Respired Day v. Cumm. C Respired
77.9402327 0.33020388 0.66979612 158.096465 12 14000
90.1963952 0.38212869 0.61787131 145.840303
102.656766 0.43491867 0.56508133 133.379932
115.603211 0.32651197 0.67348803 238.451836
150.616555 0.42540434 0.57459566 203.438492
164.401441 0.46433865 0.53566135 189.653606 0.6
182.522479 0.51552006 0.48447994 171.532569
200.688952  0.5668298  0.4331702 153.366095
219.185962 0.46430484 0.53569516 252.887435 0.2
259.598016 0.54991028 0.45008972 212.475381
278.633606 0.59023366 0.40976634  193.43979 o
300540828 0.63664004 0.36335996 171.532569 5000 10000 15000 20000 25000 30000 35000 40000 0 5000 10000 15000 20000 25000 30000 35000 40000
318.707301 0.67512235 0.32487765 153.366095
337.204311 0.57144387 0.42855613 252.887435
377.616365 0.63992823 0.36007177 212.475381

-

1 12000

10000

8000

6000

4000

O-g.,...

2000

ce
°

396.651955 0.67218692 0.32781308  193.43979 Day v. Fraction of Added C Retained Day vs. Net Cin Soil
418559177 0.70931204 0.29068796 171532569 le 00
436.72565 0.74009788 0.25990212 153.366095 s 50
455.22266 0.64286989 0.35713011 252.887435 oz & °
495.634714 0.69994019 0.30005981 212.475381 o7 e 200 &
514.670304 0.72682244 0.27317756  193.43979 06 "
536.577526 0.75776003 0.24223997 171.532569 05 e
554.743999 0.7834149 0.2165851 153.366095 os | & w0 §
03

573.241009 0.69388848 0.30611152 252.887435
613.653063 0.74280588 0.25719412 212.475381 oz 50
632.688653 0.7658478  0.2341522  193.43979 oL

654.595875 0.79236574 0.20763426 171.532569
672.762348 0.81435563 0.18564437 153.366095
691.259358 0.73215242 0.26784758 252.887435
731.671412 0.77495514 0.22504486 212.475381
750.707002 0.79511683 0.20488317  193.43979
772.614224 0.81832002 0.18167998 171.532569
790.780697 0.83756118 0.16243882 153.366095
809.277707 0.76191326 0.23808674 252.887435
849.689761 0.79996013 0.20003987 212.475381
868.725351 0.81788162 0.18211838  193.43979
890.632573 0.83850669 0.16149331 171.532569
908.799046 0.85560993 0.14439007 153.366095

o 5000 10000 15000 20000 25000 30000 35000 40000 0 5000 10000 15000 20000 25000 30000 35000 40000
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Appendix H — Dosage Incubation Results
Dosage effect is shown on the mean carbon respired for three Incubation two treatments:
AD2,HLFB2, and HLFB3. Standard dosage refers to a mass ratio of 1.5 g dry residue to

37.5 g dry soil while the reduced dosage refers to a mass ratio of .75 g dry residue to 37.5

g dry soil.
Dose Standard £ Reduced Dose - Standard Reduced
200 200
=) =)
£ £
E 150 g 150
a o
2 — 2
© ©
) o
S — s
Q Q
= =
100 100
—_—
AD2 HLFB2 HLFB3 AD2 HLFB2 HLFB3

Treatment Treatment
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Appendix I — Residue Derived Carbon Losses
Loss in residue derived carbon pre and post incubation timespans is shown here. Top
figures represent Incubation one, while bottom graphs represent Incubation two. There is

no data for the CS2 * Standard Dosage and DASEI * Reduced Dosage condition.
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Appendix J — Soil Derived Carbon Losses

Soil derived carbon loss pre and post incubation timespans from isotope analysis. Top

figures represent Incubation one, while bottom graphs represent Incubation two.
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Appendix K — Statistics on Residue Derived Losses
Type II ANOVA test and Tukey comparison on residue derived losses differences for
Incubation two separated by Palouse and Vershire soil types and Incubation two

separated by standard and reduced dosage.

Anova Table (Type III tests)

Response: diff

Sum Sq Df F value Pr(>F)
(Intercept) 10867 1 13.96 0.007298 **
treatment 169691 2 109.00 5.312e-06 ***
Residuals 5449 7

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ¢’ 1

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = diff ~ treatment, data = res_stats_data %>% filter(inc == "1"
& soil_type == "P™))

$treatment

diff lwr upr p adj
CS_1P-AD_1P 297.03722 .87780 368.1966 0.0000139
DASE_1P-AD_1P 50.75816 .40126 121.9176 0.1592121
DASE_1P-CS_1P -246.27906 .38048 -188.1776 0.0000125

Anova Table (Type III tests)

Response: diff

Sum Sq Df F value Pr(F)
(Intercept) 11131 1 7.162 0.0367224 *
treatment 95127 2 30.004 0.0007115 ***
Residuals 9325 6

Signif. codes: @ ‘***’ 0.001 ‘**’ 90.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = diff ~ treatment, data = res_stats_data %>% filter(inc == "1"
& soil_type == "V™))

$treatment

diff Twr upr p adj
CS_1V-AD_1V 218.46148 126.07651 310.84645 0.0008511
DASE_1V-AD_1V  32.32754 -78.09362 142.74870 @.6609537
DASE_1V-CS_1V -186.13394 -290.88865 -81.37923 0.0038190
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Anova Table (Type III tests)

Response: diff

Sum Sq Df F value Pr(>F)
(Intercept) 266441 1 385.6831 4.701e-08 ***
treatment 12170 3 5.8722 0.02026 *
Residuals 5527 8

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = diff ~ treatment, data = res_stats_data %>% filter(inc == "2"
& dose == "S"))

$treatment

diff lwr upr p adj
DASE_AVG-AD_S -66.041727 -134.76582 .682366 0.0596310
NREL_S-AD_S -18.037017 -86.76111 .687076 0.8341222
POET_S-AD_S -76.002342 -144.72644 .278249 0.0311290
NREL_S-DASE_AVG 48.004710 -20.71938 .728803 0.1929436
POET_S-DASE_AVG -9.960615 -78.68471 .763478 0.9648639
POET_S-NREL_S -57.965325 -126.68942 .758768 0.1014367

Anova Table (Type III tests)

Response: diff

Sum Sq Df F value Pr(>F)
(Intercept) 68550 1 247.597 2.658e-07 ***
treatment 37232 3 44.826 2.390e-05 ***
Residuals 2215 8

Signif. codes: @ “***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = diff ~ treatment, data = res_stats_data %>% filter(inc == "2"
& dose == "N"))

$treatment

diff lwr upr p adj
55.69003 12.18341 99.19665 0.0145888

CS_N-AD_N
NREL_N-AD_N -28.55127 -72.05789  14.95535 0.2312213
POET_N-AD_N -98.90187 -142.40849 -55.39525 0.0003916
NREL_N-CS_N -84.24130 -127.74792 -40.73468 0.0011699
POET_N-CS_N  -154.59190 -198.09852 -111.08528 0.0000150
POET_N-NREL_N -70.35060 -113.85722 -26.84398 0.0037289
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Appendix L - Statistics on Soil Derived Differences
Type III ANOVA test and Tukey comparison on soil derived losses differences for
Incubation one separated by Palouse and Vershire soil types and Incubation two

separated by standard and reduced dosage.

Anova Table (Type III tests)

Response: diff

Sum Sq Df F value Pr(>F)
(Intercept) 1264.7 1 17.399 0.0041830 **
treatment 3291.6 2 22.641 0.0008782 ***
Residuals 508.8 7

Signif. codes: @ “***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 * ’ 1

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = diff ~ treatment, data = priming_stats_data %>% filter(inc ==
"1" & soil_type == "P"))

$treatment

diff lwr upr p adj
CS_1P-AD_1P 42.376925 20.63178 64.12207 0.0017627
DASE_1P-AD_1P  8.916821 -12.82832 30.66196 0.4859091
DASE_1P-CS_1P -33.460104 -51.21494 -15.70527 ©.0021419

Anova Table (Type III tests)

Response: diff

Sum Sq Df F value Pr(>F)
(Intercept) 5204.3 1 7.4986 0.033810 *
treatment 21862.9 2 15.7506 0.004096 **
Residuals 4164.2 ©

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ¢ ’ 1

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = diff ~ treatment, data = priming_stats_data %>% filter(inc ==
"1" & soil_type == "V"))

$treatment

diff lwr upr p adj
CS_1V-AD_1V 17.98285 -43.75376 79.71946 0.6635385
DASE_1V-AD_1V 127.31592 53.52656 201.10529 0.0044273
DASE_1V-CS_1V 109.33308 39.33034 179.33581 0.0072267
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Anova Table (Type III tests)

Response: diff

Sum Sq Df F value Pr(>F)
(Intercept) 21.79 1 0.3158 0.5896
treatment 803.75 3 3.8820 0.0555 .
Residuals 552.13 8

Signif. codes: @ ‘***’ @.001 ‘**’ 9.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = diff ~ treatment, data = priming_stats_data %>% filter(inc ==
"2" & dose == "S"))

$treatment

diff lwr upr p adj
DASE_AVG-AD_S  17.287565 -4.4343144 39.00944 0.1256071
NREL_S-AD_S 21.974662 0.2527826 43.69654 0.0474473
POET_S-AD_S 13.214072 -8.5078077 34.93595 0.2822660
NREL_S-DASE_AVG 4.687097 -17.0347824 26.40898 0.8977137
POET_S-DASE_AVG -4.073493 -25.7953727 17.64839 0.9290588
POET_S-NREL_S -8.760590 -30.4824697 12.96129 0.5924416

Anova Table (Type III tests)

Response: diff

Sum Sg Df F value Pr(>F)
(Intercept) 283.0 1 3.1286 0.1148977
treatment 4962.3 3 18.2839 0.0006121 ***
Residuals 723.7 8

Signif. codes: @ ‘***’ 0.001 ‘**’ 9.01 ‘*’ 0.05 ‘.” 0.1 ¢ ’ 1

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = diff ~ treatment, data = priming_stats_data %>% filter(inc ==
"2" & dose == "N"))

$treatment
diff lwr upr p adj
47.01350 22.1439220 .883081 0.0013713
50.85812 25.9885423 .727701 0.0008107
24.44041 -0.4291664 .309992 0.0540461
3.84462 -21.0249590 . 714200 ©.9579792
-22.57309 -47.4426677 .296491 0.0758930
-51.2872880 .548129 0.0378101
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Appendix M - Soil Characteristics

The material characteristics of the soils used in incubations are shown below. Results are

derived from the IRMS, IRGA, and microbial biomass protocols referenced in Appendix

B.
Microbial Microbial
. Method of C:N Biomass Biomass
Soil Source Preparation %C %N Ratio 13C Carbon (mg | Nitrogen (mg
C/g dry soil) | N/g dry soil)
Pullman, | Soil collected
Palouse WA in Pullman,
Soil (Armen) WA 1.39-1.43].10-0.11| 14-13 -26.2 0.086 9.21E-05
Vershire, | Soil collected
Vershire| VT (HP | in Vershire,
Soil Lab) VT 3.30 0.27 12 -25.0 0.256 0




Appendix N — Johnson et al. 2007 Comparison

The actual datasheet and calculations spreadsheet used for this comparison can be found

in the Hicks Pries Lab GitHub. An example of the calculation is shown here.

source inc
WANG
WANG
WANG
WANG
WANG
WANG
WANG
WANG
WANG
WANG
WANG
WANG
WANG
WANG
WANG
WANG
WANG
JOHNSON  na na
JOHNSON  na na
JOHNSON  na na
JOHNSON  na na

num

N NNNNNNNNRRRRR R R B

From Table 3 from Wang Thesis

From Johnson et al. 2007

dose mean_C_resp_cum name alt_name soil days CS/HLFB
1s 38.1305038 Soil Control PALOUSE P 114 /
2S 289.5531372 CS1 Cs1 P 114 1
3S 93.48874147 AD1 AD1 P 114 3.09719794
5S 101.7259511 DASE1 HLFB1 P 114 2.84640384
1s 37.3911763 Soil Control VERSHIRE V 114 /
2s 237.8359599 CS1 Cs1 Vv 114 1
3S 131.7281239 AD1 AD1 \ 114 1.80550632
5S 98.3180798 DASE1 HLFB1 Vv 114 2.41904602
1s 141.7990982 DASE_C HLFB1 P 112/
2S 137.2059965 DASE_O HLFB1 P 112/
3s 189.3087905 AD_S AD2 P 112/
45s 85.85232936 POET_S HLFB3 P 112/
5§ 192.7263193 NREL_S HLFB2 P 112/
6 R 112.5645784 AD_N AD2 P 112 1.61651332
7R 55.35522364 POET_N HLFB3 P 112 3.28717198
8 R 125.8958677 NREL_N HLFB2 P 112 1.44533846
9R 181.9621402 CS_N Cs2 P 112 1
1 1.51 HLFB HLFB SVEA 112 1.54304636
1 233 CS cs SVEA 112 1
1 1.11 HLFB HLFB LANGHEI 112 1.43243243
1 1.59 CS cs LANGHEI 112 1
Carbon and Nitrogen' Lignin® Structural Sugars®
Incubation | Substrate Substrate Feedsiock | %C N | ON | aLignin | U8 | gGlucan | #Xyln | SGalacun | ShAmbinan ?;EL % —
Csl Corn Stover CSI__| 44(37) | 049(03) | 89 | 18(05) 37 9(02) | 26(41) | 15(28) 35(10) | T1(sT) 0%
1 ADI_| Anserobic Digestate | €SI | 36(35) | 16(02) | 22 | 40(25) 2% 132y | 808 | 13001 22(03) | 24(33) -
HLFBI HLFB csl__| 440 | 303 15 | 56(33 19 | 48003 | 0503 | 000) 18004 | 71001 74%
cs2 Co Stover cs2 46(14) | 07T7(04) | 60 16 (08) 21 39016 | 28(24) 18(29) 39(0n T73(39 0%
2 AD2 | Anacrobic Digestate | €S2 | 44(43) | 34(03) | 13 | 32004 96 1908 | 12014 | 1409 210000 | 35013 65%
HLFB2* HLFB 2| so(od) | 13¢02) | 3 6 4 2% a1 000 000 29 84%
HLFB3 HLFB cser lasomn | 200n | 22 | as¢as) 2 23(02) |39¢0n | 0000 054(00) | 2703 2%

Wy
byproduct from a similar process, starch fermentation,

WL VI PIVARIIS 13 Wi

is dry-

distiller’s grain, which frequently is used as cattle feed. Our null
hypothesis was that HLFB would not have a direct impact on

Table 1. Initial characteristics of two soils (Svea and Langhei)
used in the soil incubation study before adding amendment.

Parameter Svea Langhei
Total C, g kg~' 27.4 3.5
Inorganic C, g kg~' 7.0 227
Organic C, gkg™' 20.4 8.9
Humic acid, g kg™' 17.1 1.72
Total N, gkg™! 1.8 0.8
NH{-N, mg kg™! 5.5 7.2
NO;-N, mg kg~! 12.4 3.7
pH in water 7.9 8.0
pH in CaCl, 7.3 7.4

72

Table 2. Characteristics of corn stover (CS) and high-lignin
fermentation byproduct (HLFB).

Parameter Cst HLFB%
C,gkg™! 470 590
N, gkg™! 7.0 20
Lignin, g kg~' 190 590
Cellulose, g kg~! 360 110
Hemicellulose, gkg=" 230 50
ON 67 30
Lignin/N 270 30

+ Average com stover values reported by U.S. Department of Energy
Biomass Program (2002).

4 Composition analysis provided by Dan Schell at NREL, Golden CO;
this analysis reported 12.4% protein concentration. We esti-
mated N percentage by assuming protein is 16% N




Appendix O — Excerpt from Lynd et al. 2023 Manuscript
The following text is excerpted from a soon to be published manuscript entitled Liquid

Biofuels from Crop Residues with Return of High-Lignin Fermentation Byproduct to the

Soil®.

Analysis and Assessment. We compare alternative strategies for managing a given quantity
of above-ground crop residues via two management strategies:
No Harvest (NH), in which above-ground crop residues are left in the field;
Harvest, Process, and Return (HPR), in which above-ground crop residues are
harvested, processed biologically, and solid byproduct (digestate or HLFB) produced at
fractional carbon yield Y¢ is returned to the field.
We assume an unchanging yearly schedule of organic matter input over a sufficient time
for SOC to arrive at steady-state. The ratio of steady-state SOC for the NH and HPR
strategies for management of above-ground crop residues, R,¢, is equal to Y multiplied by
g, the relative efficiency of steady-state SOC formation from soil-applied organic matter

for the NH and HPR strategies. That is,

( SOCss )
R, = <socss_HpR) _ Field—applied C, HPR \Field—applied C)ypp
46 =\ ] =
AG

; ; SocC
SocC Field—applied C, NH __ovess
ssNH pp (Field—applied C)NH

= Y [1]

It follows that Clmust be = 1/ ¥ for steady-state SOCj; ypr to be equal to SOCq nu, that is in

order for Ry to = 1. For example, if half the mass of agricultural residue C remains after

73



digestion, ¥ = 0.5 and Omust = 2 for Rysto = 1. If O> 1/ ¥¢, then Rys> 1; if O< 1/ ¢,

then RAG < 1.

As presented above, literature reports involving manure, crop residues, animal feed
components and mixtures of these indicate that long-term SOC levels are similar for field-
applied digestates produced by anaerobic digestion and for crop residues left in the field.
That is, R4 = 1. For the Thomsen et al. study, for which Y*=0.2, R,; = 1 implies that (I
= 5. For the Smith et al. study, for which ¥* is between 0.2 and 0.31 (average 0.255) and
the average steady-state value of Ry, is 1.23, the implied value of Ois 4 to 6.2 (average
4.83). For the Béguin-Tanneau study, Y, = 0.36, Ry; is > 1 over the timeframe evaluated,

and the implied value of Ois > 2.8.

Analysis of steady-state SOC levels for the HPR and NH strategies can be expanded to
consider the contribution of below-ground biomass and a variable fraction of above-ground
biomass harvested. For the illustrative case of above-ground and below-ground crop

biomass contributing equally to SOC,

Ry = <M) =1-05f+ 05fY e=1+05/Y—1)
T

SOCss,NH
(2]
The 1- 0.5f term in Equation [2] represents the steady-state SOC that would remain if a
fraction of above-ground biomass equal to f were harvested without any organic matter
returned, normalized to the NH scenario. For f = 1 all above-ground crop residue is

removed, and 1 — 0.5f = 0.5 representing the below-ground contribution to steady-state
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SOC. The 0.5Y¢¢ term represents the steady-state SOC formed as a result of returning

digestate or HLFB to the field.

Anticipating the SOC impact of returning HLFB to the soil is limited at present to inference
based on results from anaerobic digestion and (incomplete) understanding of organic
matter transformation in soils. Factors contributing to this include that soil application of
HLFB from liquid cellulosic biofuel production has received vastly less study than soil
application of digestates, and that processes for liquid biofuel production are still under
development. As developed above, compared to unprocessed crop residues anaerobic
digestate has a lower fraction of carbohydrate, higher fractions of lignin and microbial
biomass, and substantially greater potential to form long-term SOC per mass applied to
the field — that is, OOis substantially greater than 100Compared to anaerobic digestate
processing the same feedstock, HLFB is expected with a high degree of confidence to have
a yet lower fraction of carbohydrate, higher fractions of lignin, and may well have higher
fractions of microbial biomass although this is less certain. Based on these characteristics,
it is reasonable to hypothesize that the value of [0 for HLFB is likely to be greater than that
of anaerobic digestate from the same feedstock. Testing this hypothesis is of great interest

but requires currently unavailable data from soil incubations and ultimately field studies.

Figure 2 presents Ry as a function of f based on Equation [2]. The R; =1 line applies to
any combination of & and Y such that € = 1/Y as repeatedly observed for anaerobic
digestion and consistent with the general hypothesis of Thomsen et al. (2013). The € = 4.8,

Y = 0.26 line corresponds to results of Smith et al. (2014). The dashed lines are for ¥ =
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0.35, typical of HLFB production accompanying liquid cellulosic biofuels, and a range of
speculative values for € from 2 to 4. For liquid cellulosic biofuel production with ¥ =0.35,
the break-even value of ¢ is 2.86 with [0 > 2.86 resulting in Ry > 1, that is higher steady-
state SOC for HPR than for NR, and [0 < 2.86 resulting in Ry < 1. In general, the sensitivity
of SOC to crop residue removal is substantially less with digestate or HLFB return than

without removal.

1.25
£€=4,Y=0.35
€=4.8,Y=0.26
€=3,Y=0.35
1.0 e=1/Y¢
€=2,Y=0.35

0.75

)

SOCss HPR
SOCss NH

Crop residue removal

~— 0.50 . .
> without digestate
[+ 3 or HLFB return
0.25
0
0 0.2 04 0.6. 0.8 1.0

Fraction above-ground biomass harvested, f

Figure 2. Steady-state SOC levels with and without HLFB return as a function of the

fraction of above-ground biomass harvested. Results are calculated using Equation [2].
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Ry is the steady-state SOC with harvest, processing, and return (HPR):Steady-state SOC
with no harvest (NH).

¢ 1s the relative efficiency of steady-state SOC formation from soil-applied organic matter
for the HPR and NH strategies. Y is the carbon yield of solid processing byproduct

(digestate or HLFB). See text for added details.

As reviewed above, a substantial literature indicates that SOC can be maintained at
constant levels when about half of above-ground corn stover is harvested with no return of
HLFB, although in some cases this assumes changes in management practices. The
analysis and assumptions embodied in Equation [2] do not negate this possibility. Both
empirical (Xu et al., 2019) and modeling (Nguyen et al., 2022) studies document net
accrual of SOC for continuous corn or corn-soybean, implying that some fraction of stover
could be removed without decreasing SOC at many sites. Corn stover removal with no
HLFB or digestate return is, however, expected to have lower steady-state SOC levels than

both NH and HPR management.
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Appendix P — Example IRMS Data and Calculations

Examples of IRMS analyses data and calculations for Incubation two shown below. The

full datasheets and calculations used for this analysis can be found in the Hicks Pries Lab

GitHub.

Mix

Key Number Treatment %C %N stdev%C stdev%N N15 stdevC13

DASE_C 11A 2.299017653 0.207974776 0.03306348 0.0024819 5.35924124 0.00503665 0.00299761
DASE_C 118 2.399980583 0.215053697 0.03437756 0.00126285 5.33639512 0.08557694 0.25180558
DASE_C 11C 2.15783673 0.203778878  0.0043375 0.00025347 5.24181376 0.03539658 0.03675151
DASE_O 2 2A 2.500261473 0.220902922 0.03544522 9.1592E-05 5.48299718 0.01130332 0.07294365
DASE_O 228 2.647312493 0.222440317 0.02536731 0.00135052 5.37444538 0.08602592 0.24769264
DASE_O 2 2C 2.687255744 0.227882862 0.00841711 0.00120674 5.47249094 0.09373921 0.04814539
AD_S 33A 2.445805643 0.239714466 0.03579969 0.00302063 3.19084914 0.26166146 0.01749832
AD_S 338 2.365718482 0.229885494  0.0428971 0.00540454 3.3209888 0.55768246 0.07876182
AD_S 3 3C 2.229352688 0.225425275 0.02941685 0.00133646 3.42189325 0.00181215 0.14105478
POET_S 4 4A 2.480917528 0.180973209 0.00685963 0.00048597 4.42006246 0.01826644 0.18409468
POET_S 4 4B 2.583931584 0.18271052 0.135595 0.00688397 4.22899645 0.29017798 0.0199523
POET_S 4 4C 2.442980054 0.177698918 0.05807173 0.00269153 4.43598979 0.07209287 0.09431804
NREL_S 5 5A 2.59799279 0.156196641 0.20714199 0.00701729 4.21935048 0.23006135 0.05391934
NREL_S 5 5B 2.550848287 0.152618979 0.03743044 0.00195226 4.47697595 0.0176881 0.04021947
NREL_S 5 5C 2.45317829 0.151608632 0.00656843 0.00029128 4.50286618 0.06898625 0.00849328
AD_N 6 6A 1.897653716 0.17892705 0.01595081 0.00179746 4.01352119 0.04431561 0.11182448
AD_N 6 6B 1.850997779 0.178036215 0.04811876 0.00157987 4.09005367 0.07283933 0.00883778
AD_N 6 6C 1.849172756 0.173803626 0.03434775 0.0018006 4.1618988 0.2024891 0.1660944
POET_N 77A 2.100750266 0.152271496 0.00835555 0.00027198 4.57027875 0.00826872 0.17325221
POET_N 778 1.969516726 0.147011741 0.08918416 0.0021774 4.77871346 0.08331447 0.02593649
POET_N 7 7C 2.125346834 0.152759344 0.00492148 0.00065407 4.33711626 0.02922571 0.12217104
NREL_N 8 8A 1.91209131 0.132206649 0.03574491 0.00044011 5.17205501 0.00045852 0.11032096
NREL_N 8 8B 1.881749203 0.128934732 0.03578339 0.00420388 5.26381244 0.04687628 0.04579674
NREL_N 8 8C 1.943412031 0.131234096 0.08724349 0.00157535 5.26024901 0.00568063 0.13133909
Cs_O 9 9A 1.658766737 0.124881799 0.0359243 0.00176815 5.69353683 0.05390635 0.22473042
Cs_O 9 9B 1.678399963 0.124141127 0.02183518 0.0017875 5.90858835 0.09910607 0.0750497
CS_O 9 9C 1.583063637 0.123104015 0.02279974 0.00117381 5.66697947 0.03457441 0.02961759
ONESIX S1S1A 1.290940657 0.115907689 0.01377814 0.00010681 6.3591591 0.01731189 0.43302555
ONESIX S1 S1B 1.273391382 0.115548511 0.04285978 0.00154044 5.83968009 0.00335648 0.16186382
ONESIX S1 51C 1.277005712 0.114489426 0.00848641 0.0001491 5.02545003 0.01494555 1.47864123
TWENTY S2 S2A 1.327542475 0.11618582 0.00730606 0.00013595 6.23717176 0.03750419 0.00792923
TWENTY S2 S2B 1.289364363 0.114794541 0.00622441 0.00031852 6.0246184 0.07763742 0.26415415
TWENTY S2 S2C 1.322481547 0.114504501 0.00447995 0.00021978 5.93317704 0.0693433 0.04057145
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Preincubation

79

C13soil_prei |C13res_prei |g Initial dry |g Initial dry |%Cin g g totalg

nc nc soil residue residue %C in soil |InitialC_res |InitialC_soil |Initial C fr
-26.200707 -15.128041 37.6980203 1.5016 44.1912923 1.42599605 0.66357645 0.53757228| 1.20114873 0.55245152
-26.200707 -15.128041 37.4232944 1.5039 44.1912923 1.42599605 0.66459285 0.5336547| 1.19824755 0.55463735
-26.200707 -15.128041 37.4581233 1.5028 44.1912923 1.42599605 0.66410674 0.53415136| 1.1982581 0.55422679
-26.200707 -15.128041 37.4465668 1.5003 44.1912923 1.42599605 0.66300196 0.53398656| 1.19698852 0.55389166
-26.200707 -15.128041 37.5265059 1.5078 44.1912923 1.42599605 0.66631631 0.53512649| 1.2014428 0.55459678
-26.200707 -15.128041 37.5300127 1.5011 44.1912923 1.42599605 0.66335549 0.5351765| 1.19853199 0.55347333
-26.200707 -11.012205 37.5056245 1.5035 44.4289934 1.42599605 0.66798992 0.53482873| 1.20281864 0.55535381
-26.200707 -11.012205 37.5503362 1.5023 44.4289934 1.42599605 0.66745677 0.53546631| 1.20292308 0.55486238
-26.200707 -11.012205 37.4605143 1.5052 44.4289934 1.42599605 0.66874521 0.53418546| 1.20293066 0.55592997
-26.200707 -13.236923 37.431105 1.5031 44.8855593 1.42599605 0.67467484 0.53376608| 1.20844092 0.55830188
-26.200707 -13.236923 37.3965152 1.5028 44.8855593 1.42599605 0.67454019 0.53327283| 1.20781302 0.55848064
-26.200707 -13.236923 37.5065012 1.5043 44.8855593 1.42599605 0.67521347 0.53484123| 1.2100547 0.55800244
-26.200707 -13.808751 37.4923146 1.5044 49.6285562 1.42599605 0.746612 0.53463893| 1.28125093 0.58272114
-26.200707 -13.808751 37.4044055 1.5039 49.6285562 1.42599605 0.74636386 0.53338535| 1.2797492 0.58321103
-26.200707 -13.808751 37.5007628 1.5016 49.6285562 1.42599605 0.7452224 0.5347594| 1.2799818 0.58221328
-26.200707 -11.012205 37.5245134 0.751 44.4289934 1.42599605 0.33366174 0.53509808| 0.86875982 0.38406673
-26.200707 -11.012205 37.5710582 0.7508 44.4289934 1.42599605 0.33357288 0.53576181| 0.86933469 0.38371054
-26.200707 -11.012205 37.5763981 0.7509 44.4289934 1.42599605 0.33361731 0.53583795| 0.86945527 0.38370843
-26.200707 -13.236923  37.527542 0.751 44.8855593 1.42599605 0.33709055 0.53514127| 0.87223182 0.38646899
-26.200707 -13.236923 37.5089719 0.7522 44.8855593 1.42599605 0.33762918 0.53487646| 0.87250564 0.38696504
-26.200707 -13.236923  37.473346 0.7505 44.8855593 1.42599605 0.33686612 0.53436843| 0.87123456 0.38665377
-26.200707 -13.808751 37.5524084 0.751 49.6285562 1.42599605 0.37271046 0.53549586| 0.90820632 0.41038082
-26.200707 -13.808751 37.4582827 0.7514 49.6285562 1.42599605 0.37290897 0.53415363| 0.9070626 0.41111713
-26.200707 -13.808751 37.4088687 0.7506 49.6285562 1.42599605 0.37251194 0.53344899| 0.90596093 0.41117881
-26.200707 -12.045457 37.5018786 0.7501 46.0447133 1.42599605 0.34538139 0.53477531| 0.8801567 0.39240898
-26.200707 -12.045457 37.5065809 0.7514 46.0447133 1.42599605 0.34597998 0.53484236| 0.88082234 0.39279201
-26.200707 -12.045457 37.5559949 0.7516 46.0447133 1.42599605 0.34607207  0.535547| 0.88161907 0.39254149
-26.200707 NA 37.931376 0 0 1.42599605 0 0.54089992| 0.54089992 0
-26.200707 NA 37.877616 0 0 1.42599605 0 0.54013331| 0.54013331 0
-26.200707 NA 37.979676 0 0 1.42599605 0 0.54158868| 0.54158868 0
-26.200707 NA 37.5374248 0 0 1.42599605 0 0.5352822| 0.5352822 0
-26.200707 NA 37.5301721 0 0 1.42599605 0 0.53517877| 0.53517877 0
-26.200707 NA 37.5054651 0 0 1.42599605 0 0.53482645| 0.53482645 0




Postincubation

80

corrected

g C from g Cfrom g C from soil |% C from % C from %C from soil

C13mix fr fs g_drymix |residue g C from soil |total g C residue lost |lost residue lost |soil lost lost
-21.53552 0.42132461 0.57867539 38.9195556 0.37698755 0.5177799 0.89476745 0.28658889 0.01979238 43.19% 3.68% 3.68%
-21.271381 0.4451797 0.5548203 38.6568529 0.41301857 0.5147384 0.92775696 0.25157428 0.0189163 37.85% 3.54% 3.54%
-22.105171 0.3698781 0.6301219 38.6940747 0.30883155 0.5261234 0.83495496 0.35527519 0.00802796 53.50% 1.50% 1.50%
-20.938325 0.47525883 0.52474117 38.5562215 0.45815253 0.50585382 0.96400635 0.20484943 0.02813274 30.90% 5.27% 5.27%
-20.650513 0.50125188 0.49874812 38.6637561 0.51305658 0.51049386 1.02355044 0.15325972 0.02463263 23.00% 4.60% 4.60%
-20.620244 0.50398549 0.49601451 38.6206859 0.52305459 0.51478201 1.0378366 0.1403009 0.02039449 21.15% 3.81% 3.81%
-19.589817 0.43525621 0.56474379 38.3575895 0.40833652 0.52981557 0.93815209 0.2596534 0.00501316 38.87% 0.94% 0.94%
-20.005191 0.4079083 0.5920917 38.5864066 0.37235736 0.54048839 0.91284575 0.29509941 -0.0050221 44.21% -0.94% 0.00%
-20.386097 0.38282977 0.61717023 38.601415 0.32944863 0.53111306 0.86056168 0.33929658 0.0030724 50.74% 0.58% 0.58%
-20.159907 0.46597509 0.53402491 38.8359607 0.44896148 0.51452668 0.96348816 0.22571336 0.0192394 33.46% 3.60% 3.60%
-20.232221 0.46039697 0.53960303 38.905204 0.46282964 0.54245421 1.00528385 0.21171054 -0.0091814 31.39% -1.72% 0.00%
-20.125285 0.4686458 0.5313542 39.0075994 0.44659502 0.50635286 0.95294787 0.22861845 0.02848837 33.86% 5.33% 5.33%
-20.191392 0.48493679 0.51506321 38.5433769 0.48559347 0.51576069 1.00135415 0.26101853 0.01887824 34.96% 3.53% 3.53%
-20.250483 0.48016825 0.51983175 38.3471981 0.46969043 0.50848842 0.97817885 0.27667343 0.02489693 37.07% 4.67% 4.67%
-20.407216 0.46752035 0.53247965 38.6234074 0.44297602 0.50452502 0.94750104 0.30224638 0.03023438 40.56% 5.65% 5.65%
-22.363827 0.25261741 0.74738259 37.9626636 0.18198556 0.53841434 0.7203999 0.15167618 -0.0033163 45.46% -0.62% 0.00%
-22.199719 0.26342219 0.73657781 38.0187185 0.18537695 0.51834869 0.70372564 0.14819594 0.01741312 44.43% 3.25% 3.25%
-22.31786 0.25564385 0.74435615 38.0772415 0.18000241 0.52411157 0.70411398 0.1536149 0.01172639 46.05% 2.19% 2.19%
-21.438464 0.3673498 0.6326502 38.0407223 0.29356413 0.50557645 0.79914057 0.04352642 0.02956482 12.91% 5.52% 5.52%
-21.746994 0.3435504 0.6564496 38.1338119 0.25802415 0.49302766 0.7510518 0.07960503 0.0418488 23.58% 7.82% 7.82%
-21.326999 0.37594801 0.62405199 37.9485106 0.30321615 0.50332132 0.80653747 0.03364997 0.03104712 9.99% 5.81% 5.81%
-22.104009 0.3305934 0.6694066 38.0000248 0.24020757 0.4863876 0.72659517 0.13250289 0.04910826 35.55% 9.17% 9.17%
-22.064127 0.33381172 0.66618828 37.8240715 0.23759188 0.47416229 0.71175416 0.13531709 0.05999135 36.29% 11.23% 11.23%
-21.595992 0.37158909 0.62841091 37.734326 0.2724987 0.46083473 0.73333343 0.10001324 0.07261426 26.85% 13.61% 13.61%
-23.053829 0.22231178 0.77768822 37.6926144 0.13899656 0.48623599 0.62523255 0.20638484 0.04853932 59.76% 9.08% 9.08%
-22.831277 0.23803398 0.76196602 37.6148892 0.15027758 0.4810507 0.63132829 0.19570239 0.05379166 56.56% 10.06% 10.06%
-23.166539  0.2143493  0.7856507 37.6043092 0.12760217 0.46769797 0.59530015 0.21846989 0.06784903 63.13% 12.67% 12.67%
-25.59506 0 1 37.1523959 0 0.47961538 0.47961538 0 0.06128454 0 11.33% 11.33%
-25.714771 0 1 37.2471475 0 0.47430197 0.47430197 0 0.06583134 0 12.19% 12.19%
-25.69073 0 1 37.2112319 0 0.47518956 0.47518956 0 0.06639912 0 12.26% 12.26%
-25.695118 0 1 37.1650263 0 0.49338151 0.49338151 0 0.04190069 0 7.83% 7.83%
-25.646527 0 1 37.1762705 0 0.47933758 0.47933758 0 0.05584119 0 10.43% 10.43%
-25.594024 0 1 37.1476094 0 0.49127028 0.49127028 0 0.04355617 0 8.14% 8.14%




Appendix Q — Example IRGA Data and R Code
Example of IRGA measurements shown below. The complete datasheets and code used

for all our IRGA data can be found in the Hicks Pries Lab GitHub.

Sample Date Time Date Time C_ppm Flush Notes Day
CO2 FREE 11/1/22 7:10 PM 11/1/22 19:10 60 0 0
2008 11/1/22 7:10 PM 11/1/22 19:10 2008 0
2% 11/1/22 7:10 PM 11/1/22 19:10 16078 0
1A 11/1/22 7:10 PM 11/1/22 19:10 756 0
1B 11/1/22 7:10 PM 11/1/22 19:10 759 0
1C 11/1/22 7:10 PM 11/1/22 19:10 726 0
2A 11/1/22 7:10 PM 11/1/22 19:10 712 0
2B 11/1/22 7:10 PM 11/1/22 19:10 733 0
2C 11/1/22 7:10 PM 11/1/22 19:10 694 0
3A 11/1/22 7:10 PM 11/1/22 19:10 720 0
3B 11/1/22 7:10 PM 11/1/22 19:10 645 0
3C 11/1/22 7:10 PM 11/1/22 19:10 690 0
4A 11/1/22 7:10 PM 11/1/22 19:10 682 0
4B 11/1/22 7:10 PM 11/1/22 19:10 698 0
4C 11/1/22 7:10 PM 11/1/22 19:10 667 0
S5A 11/1/22 7:10 PM 11/1/22 19:10 698 0
5B 11/1/22 7:10 PM 11/1/22 19:10 697 0
5C 11/1/22 7:10 PM 11/1/22 19:10 706 0
6A 11/1/22 7:10 PM 11/1/22 19:10 633 0
6B 11/1/22 7:10 PM 11/1/22 19:10 652 0
6C 11/1/22 7:10 PM 11/1/22 19:10 651 0
7A 11/1/22 7:10 PM 11/1/22 19:10 663 0
7B 11/1/22 7:10 PM 11/1/22 19:10 979 0
7C 11/1/22 7:10 PM 11/1/22 19:10 1027 0
8A 11/1/22 7:10 PM 11/1/22 19:10 1086 0
8B 11/1/22 7:10 PM 11/1/22 19:10 1042 0
8C 11/1/22 7:10 PM 11/1/22 19:10 1014 0
9A 11/1/22 7:10 PM 11/1/22 19:10 829 0
9B 11/1/22 7:10 PM 11/1/22 19:10 775 0
9C 11/1/22 7:10 PM 11/1/22 19:10 762 0
CO2 FREE 11/1/22 7:10 PM 11/1/22 19:10 29 0
2008 11/1/22 7:10 PM 11/1/22 19:10 1881 0
2% 11/1/22 7:10 PM 11/1/22 19:10 15991 0
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Example of R code used to process the IRGA data for Incubation two.

## SOIL INCUBATION CALCULATIONS, JAN 2023
## Author: Michelle S. Wang, michelle.s.wang.th@dartmouth.edu

# Load packages + functions
library(tidyverse)

# library(SoilR)

library(FME)

library(ggpubr)

# Read in data

data <- read.csv("IRGA_Measurements.csv", stringsAsFactors = FALSE, header = TRUE) # scan
in document formatted like example

last_day <- max(data$Day, na.rm = TRUE) # [days] final day of measurement for this datasheet

B R R R R R R
# GENERAL CALCULATIONS

TR HHHH R R R

# Constants

R <-82.05746 # [mL*atm/(K*mol)]

# Room Parameters
Pr <- .98 # [atm]
Tr<-22+ 273 #[K]

# Jar/Soil Parameters
Vjar_P <-473.176 - 46 # [mL] pint jar - filled sample cup, from Google Sheet 'Incubation
Initializations <- Bulk Density"'

# n [mol] air inside jar
n_P <- (Pr*Vjar_P)/(R*Tr) # [mol] Palouse

# Moles/Mass of C inside jar

molmass_C <- 12.011*10*3 # [mg/mol] molar mass of C

data_C <- data %>%
mutate(moles_C_P = C_ppm*n_P/(10%6)) %>% # [mol] moles of C in air in jar
mutate(mass_C_P = moles_C_P*molmass_C) # [mg] mg of C in air in jar

# Removed air inside syringe

Vrem <-30  #[mL] CO2 rich air removed from jar

Trem <- 25 + 273 # [K] temp of air removed since in incubator
nrem <- (Pr*Vrem) / (R*Trem) # [mol] moles of air removed from jar

# CLEAN DATA #HHEHHHHHHHHH R HHH R R R
# Flux

num_labs <- ¢('DASE_C', 'DASE_O', 'AD_S', 'POET_S', 'NREL_S', 'AD_N', "POET_N",
'NREL_N', 'CS_N', 'GWC16', 'GWC20")

names(num_labs) <- ¢('1', '2','3', '4','5', '6', '7", '8', '9', 'S1', 'S2")

data_all <- data_C %>%

filter(!Sample %in% c('CO2 FREE', '2008', '2%")) %>% # filters out controls

separate(Sample, c("Num", "Lett"), sep=cumsum(c(1,1)), remove = FALSE) %>% # separates
out Palouse/Vershire soil and treatments
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mutate(Date.Time = as.POSIXct(Date.Time, format = '%m/%d/%y %H:%M')) %>% # converts
Date.Time from characters to date-time format

mutate(Date = as.Date(Date)) %>%

group_by(Sample, Flush) %>% # group by flush

arrange(Date.Time) %>% # arrange in ascending order

mutate(time_diff = as.numeric(Date.Time - lag(Date.Time, default = first(Date.Time)), units =
'hours')) %>% # [hours] find time difference in flush groups

mutate(mass_diff = as.numeric(mass_C_P - lag(mass_C_P, default = first(mass_C_P)))) %>%
# [mg] find mass_C difference in flush groups for Palouse and Vershire

mutate(rem_moles_C = C_ppm*nrem/(1076)) %>% # [mol] moles of C in removed air

mutate(rem_mass_C = rem_moles_C*molmass_C) %>% # [mg] mg of C in removed air

mutate(adj_mass_diff = as.numeric(ifelse(time_diff !='0', as.numeric(mass_diff +
lag(rem_mass_C, default = first(rem_mass_C))), '0"))) %>% # [mg] find adjusted mass by
including removal mass_C difference in flush groups

filter(Itime_diff =='0") %>% # delete used values

mutate(flux = adj_mass_diff/time_diff) #%>% # this depends on prev. line being right

#filter_if(~is.numeric(.), all_vars(lis.infinite(.))) # keeps the "last" day of a flux measurement ie.
gets rid of the "first" day of each session, that's what we graph

# Respired
data_resp <- data_all %>%

group_by(Sample) %>%

ungroup(Flush) %>% # ungroup Flush but keep groups by Sample

#select(Flush, Sample, Date.Time, flux) %>% # clean it up

arrange(Date.Time) %>% # rearrange in ascending order

mutate(time_hours = (Date.Time - lag(Date.Time, k = 1))) %>%  # time difference btwn flux
measurements in days

#mutate(time_hours = (Date.Time - lag(Date.Time, k = 1))*24) %>% # time difference btwn flux
measurements in hours

mutate(C_resp = .5*(time_hours)*(flux+lag(flux))) %>% # [mg] trapezoidal area calculation to get
C respired

drop_na(C_resp) %>% # drops rows w/ NAs which arise from the first trapezoid area
measurement

mutate(C_resp_cum = cumsum(as.numeric(C_resp))) %>% # [mg] cumulatively add together
trapezoids

#mutate(invC_resp_cum = total - C_resp_cum)this doesn't work, but it could be used to
generate the inv figure lee thinks abt

mutate(time = as.numeric(Date.Time - first(Date.Time), units = 'days')) # calculate time
difference from first in group in [days]

#write.csv(data_resp, file="respdata1.csv", row.names = FALSE)

stats_resp <- data_resp %>% # output averages plotted in RESP graphs
group_by(Sample, Num) %>%
summarise(max_C_resp_cum = max(C_resp_cum)) %>%
#group_by(Num) %>% # comment this in/out if you want it broken up to replicates or not
summarise(mean_C_resp_cum = mean(max_C_resp_cum)) #%>% # [mg]
#mutate(Name = num_labs) # comment this in/out if you want it broken up to replicates or not

stats_resp2 <- data_resp %>% # output averages plotted in RESP graphs
group_by(Sample, Num) %>%
summarise(max_C_resp_cum = max(C_resp_cum)) %>%
group_by(Num) %>% # comment this in/out if you want it broken up to replicates or not
summarise(mean_C_resp_cum = mean(max_C_resp_cum), stdev = sd(max_C_resp_cum)) #
[mg C]
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#mutate(Num = num_labs) # comment this in/out if you want it broken up to replicates or not

print(paste("The incubation period currently spans”, last_day, "days!"))
#write.csv(stats_resp2, file = 'INC2summary_cumCresp.csv', row.names = FALSE) # CHECK
THAT THIS IS CORRECT NAME

# Check for ~112 days to compare with Johnson
stats_resp112 <- data_resp %>% # output averages plotted in RESP graphs
filter(time < 113) %>%
group_by(Sample, Num) %>%
summarise(max_C_resp_cum = max(C_resp_cum)) %>%
group_by(Num) %>% # comment this in/out if you want it broken up to replicates or not
summarise(mean_C_resp_cum = mean(max_C_resp_cum)) #%>% # [mg]
#mutate(Name = num_labs) # comment this in/out if you want it broken up to replicates or not

write.csv(stats_resp112, file = 'INC2summary112_cumCresp.csv', row.names = FALSE) #
CHECK THAT THIS IS CORRECT NAME

HEH R R R R R R
# STATISTICS #HHHHHHHHR R

# 2 WAY ANOVA for INC1, test if treatment and soil type have an effect on mean C resp/fraction
of C retained by soil/fraction of C retained by residue by end of incubation

# recode Num to factors

thirteenC_data <- read.csv("INC2_2wayanova_13C.csv", stringsAsFactors = FALSE, header =
TRUE) # scan in document formatted like example

soil_C_data <- read.csv('summary_SOILcumCresp.csV', stringsAsFactors = FALSE, header =
TRUE)

stats_resp <- rbind(stats_resp, soil_C_data)

twowayanova_data <- merge(stats_resp, thirteenC_data, by = 'Sample’) # if this excludes the soil
data, check to make sure the 'Sample' column for both sheets is labelled correctly

twowayanova_data$Num <- factor(twowayanova_data$Num,
levels = names(num_labs),
labels = num_labs)

## Open vs. Closed, paired t-test
oc_data <- twowayanova_data %>%
filter(Num =="'DASE_QO' | Num == 'DASE_C")

t.test(mean_C_resp_cum ~ Valve, data = oc_data, paired = TRUE)

t.test(fr ~ Valve, data = oc_data, paired = TRUE)

# We see that for both 13C and inc data, p>.05 or that there is an insignificant difference between
Open v. Closed.

## Dosage, 2-way ANOVA
dose_data <- twowayanova_data %>%

filter(Sub =='AD' | Sub == 'NREL' | Sub =="'POET") %>% # balanced design since same
number of observations per treatment

mutate(Sub = factor(Sub, levels = c('AD', 'NREL', 'POET"), labels = ¢("AD2","HLFB2",
"HLFB3"))) %>%

mutate(Dose = factor(Dose, levels = ¢('S', 'N'), labels = c('Standard’, 'Reduced')))

dose_summary <- dose_data %>%
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group_by(Num, Sub, Dose) %>%
summarize(act_mean_C_resp_cum = mean(mean_C_resp_cum))

dose_plot1 <- ggboxplot(dose_data, x = 'Sub’, y = 'mean_C_resp_cum', color = 'Dose’, # boxplot
shows various treatments and how they compare to each other + soil type
xlab = "Treatment’,
ylab = 'Mean C Respired [mg]')
dose_plot1
ggsave("dose_plot1.png", plot = dose_plot1, width = 15, height = 15, units = "cm")

dose_plot2 <- ggline(dose_data, x = "Sub", y = "mean_C_resp_cum", color = "Dose",
add = ¢("mean_se", "dotplot"),
palette = c("#00AFBB", "#E7B800"),
xlab = '"Treatment’,
ylab = 'Mean C Respired [mg]')
dose_plot2
ggsave("dose_plot2.png", plot = dose_plot2, width = 15, height = 15, units = "cm")

ggline(dose_data, x = "Sub", y = "fr", color = "Dose",
add = c("mean_se", "dotplot"),
palette = c("#00AFBB", "#E7B800"))

res.aov_dose <- aov(mean_C_resp_cum ~ Dose * Sub, data = dose_data) # test interaction btwn
Num and Typ
summary(res.aov_dose)

res.aov_dose?2 <- aov(fr ~ Dose * Sub, data = dose_data) # test interaction btwn Num and Typ
summary(res.aov_dose2)

# Tukey-Kramer maybe
TukeyHSD(res.aov_dose) # unclear if this is taking into account unbalanced design, | think it's
using Tukey Kramer

## INC1 V INC2, t-test

INC2_DASE_C_data <- twowayanova_data %>%
#filter(Sub == 'DASE' & Valve =='C') %>%
filter(Sub == 'DASE' & Valve =="'C') %>%
select(Num, mean_C_resp_cum, fr) %>%
mutate(Inc = '2")

INC1_anovadata <- read.csv("INC1_twowayanova_data.csv", stringsAsFactors = FALSE, header
= TRUE) # scan in document formatted like example
INC1_DASE_data <- INC1_anovadata %>%

filter(Typ == 'P' & Num == 'DASE HLFB') %>%

select(Num, mean_C_resp_cum, fr) %>%

mutate(Inc ='1")

DASE_data <- rbind(INC2_DASE_C_data, INC1_DASE_data)

t.test(mean_C_resp_cum ~ Inc, data = DASE_data, paired = FALSE)
t.test(fr ~ Inc, data = DASE_data, paired = FALSE)

# Check SOIL controls
INC2_soil_data <- twowayanova_data %>%

85



filter(Sub =='SOIL") %>%
select(Num, mean_C_resp_cum) %>%
mutate(Inc = '2')

INC1_soil_data <- INC1_anovadata %>%
filter(Typ == 'P' & Num == 'Soil Control') %>%
select(Num, mean_C_resp_cum) %>%
mutate(Inc ='1")

SOIL_data <- rbind(INC1_soil_data, INC2_soil_data)
t.test(mean_C_resp_cum ~ Inc, data = SOIL_data, paired = FALSE)

HEH R R R R R R R R R
# PLOTTING AR

# Theme and Labels
theme_C <- theme_light() +
theme(panel.grid.minor = element_blank(),
text = element_text(size = 30), #for facetwrapped plots
strip.background = element_rect(color="black", fill="#93C5FF", size=1.5, linetype="solid"),
legend.position = "none",
plot.title = element_text(hjust = 0.5)

)

# CHANGE THESE DATES FOR YOUR GRAPHING PLEASURE!

end_date ='2023-03-09 14:00' # "'l CHANGE THIS TO EXTEND GRAPH !!!
#'2022-12-13 9:15' <- this is for 42 days

# start_date = #"2022-11-07 7:30" # <- this is for ignoring the initial 6 day bump

start_date = "2022-11-01 19:10" # ACTUAL FIRST MEASUREMENT

lims <- as.POSIXct(strptime(c(start_date, end_date), format = "%Y-%m-%d %H:%M"))

# FLUX: Mean and SE Each
p1P<- ggplot(data_all, aes(x=Date.Time, y=flux)) +

geom_point(aes(size = .8)) +

scale_x_datetime(limits = lims) +

stat_summary(fun.data = "mean_se", colour = "red", size = .8) +

facet_wrap(~Num, labeller = labeller(Num = num_labs)) +

#facet_wrap(~Num, scales = 'free’, labeller = labeller(Num = num_labs)) + # free scale bc 1 is
so small

theme_C +

#scale_y_continuous(limits=c(0,.35)) + # sets all plots start at 0 go to .3

labs(x =", y = 'Carbon Flux [mg/hr]', title = 'Carbon Flux Evolution in Various Treatments')
p1P

#ggsave("flux_mean&se.png", plot = p1P, width = 60, height = 20, units = "cm") # change this
accordingly

# RESPIRED: Mean and SE Each
p2P <- ggplot(data_resp, aes(x=Date.Time, y=C_resp_cum)) +
geom_point(aes(size = .8)) +
scale_x_datetime(limits = lims) +
stat_summary(fun.data = "mean_se", colour = "red", size = .8) +
facet_wrap(~Num, labeller = labeller(Num = num_labs)) + # NON FREE SCALE
##facet_wrap(~Num, scales = 'free’, labeller = labeller(Num = num_labs)) + # free scale bc 1 is
so small
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##geom_vline(xintercept = as.POSIXct(as.Date(c('2021-03-22', '2021-04-22"))), linetype =
'dashed’, color = 'blue’, size = 2) + # when water was added, comment this out for no lines
theme_C +
#scale_y_continuous(limits=c(0,500)) + # sets all plots start at 0 go to unique maxes for each
labs(x =", y = 'Cumulative Carbon Respired [mg], title = 'Cumulative Carbon Respired in
Various Treatments')
p2P

#ggsave("resp_mean&se.png", plot = p2P, width = 60, height = 20, units = "cm")

# GRAPHS OF RESPIRED ONLY OF THE NEW RATIOS
edit_data_resp <- data_resp %>%
filter(Num =="6"' | Num =="7'| Num =="8'| Num =="'9")

edit_p2P <- ggplot(edit_data_resp, aes(x=Date.Time, y=C_resp_cum)) +
geom_point(aes(size = .8)) +
scale_x_datetime(limits = lims) +
stat_summary(fun.data = "mean_se", colour = "red", size = .8) +
facet_wrap(~Num, labeller = labeller(Num = num_labs)) +
theme_C +
labs(x =", y = 'Cumulative Carbon Respired [mg], title = 'Cumulative Carbon Respired in 50%
Residue Dosage Treatments')
edit_p2P
ggsave("newratio_resp_mean&se.png", plot = edit_p2P, width = 60, height = 20, units = "cm")

# GRAPHS OF RESPIRED ONLY OF OLD RATIOS
edit_data_resp <- data_resp %>%
filter(Num =="'3"' | Num =='4'| Num =="5')

edit_p2P <- ggplot(edit_data_resp, aes(x=Date.Time, y=C_resp_cum)) +
geom_point(aes(size = .8)) +
scale_x_datetime(limits = lims) +
stat_summary(fun.data = "mean_se", colour = "red", size = .8) +
facet_wrap(~Num, labeller = labeller(Num = num_labs)) +
theme_C +
labs(x =", y = 'Cumulative Carbon Respired [mg], title = 'Cumulative Carbon Respired in
Normal Residue Dosage Treatments')
edit_p2P
ggsave("oldratio_resp_mean&se.png", plot = edit_p2P, width = 60, height = 20, units = "cm")

# GRAPHS OF DASE O/C
OCdata_resp <- data_resp %>%
filter(Num =="1" | Num =="2")

OC_p <- ggplot(OCdata_resp, aes(x=Date.Time, y=C_resp_cum)) +
geom_point(aes(size = .8)) +
scale_x_datetime(limits = lims) +
stat_summary(fun.data = "mean_se", colour = "red", size = .8) +
facet_wrap(~Num, labeller = labeller(Num = num_labs)) +
theme_C +
labs(x =", y = 'Cumulative Carbon Respired [mg], title = 'Cumulative Carbon Respired in DASE
O/C Treatments')
OC p
ggsave("DASEOC _resp_mean&se.png", plot = OC_p, width = 60, height = 20, units = "cm")
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# OC_p2 <- ggplot(OCdata_resp, aes(x=Date.Time, y=C_resp_cum)) +

# geom_point(aes(size = .8, col = Num)) +

# scale_x_datetime(limits = lims) +

# stat_summary(fun.data = "mean_se", colour = "red", size = .8) +

# #facet_wrap(~Num, labeller = labeller(Num = num_labs)) +

# theme C+

# labs(x =", y = 'Cumulative Carbon Respired [mg]', title = 'Cumulative Carbon Respired in
DASE O/C Treatments') +

# legend

#0C_p2

# ggsave("sameDASEOC_resp_mean&se.png", plot = OC_p2, width = 60, height = 20, units =
llcmll)

#lumped figure w/ geom smooth of C respired
theme_lump <- theme_light() +
theme(panel.grid.minor = element_blank(),
text = element_text(size = 30), #for facetwrapped plots
strip.background = element_rect(color="black", fill="#93C5FF", size=1.5, linetype="solid"),
legend.position = "bottom",
plot.title = element_text(hjust = 0.5)

)

data_resp_old <- data_resp %>%
filter(Num == '"2' [Num =='3" | Num == '4'| Num =="'5")

lumped1 <- ggplot(data_resp_old, aes(x=Date.Time, y=C_resp_cum)) +
geom_smooth(aes(color = Num), se = TRUE) +
scale_x_datetime(limits = lims) +
theme_lump +
scale_color_manual("Treatments", labels = ¢c("DASE1", "AD2", "DASEZ2", "DASE3"), values =
c("2", "3", "4", "5")) +
scale_y_continuous(limits=c(0,250)) + # sets all plots start at 0 go to unique maxes for each
labs(x =", y = 'Cumulative Carbon Respired [mg]', title = 'Cumulative Carbon Respired in
INCUBATION 2 of HLFB Amended Palouse Soil')
lumped1

ggsave("Plumped_scale_mean&se.png", plot = lumped_P, width = 60, height = 20, units = "cm")

#C retained throughout Incubation 2
datainitC <- read.csv("justinitC.csv", stringsAsFactors = FALSE, header = TRUE) # scan in
document formatted like example
data3 <- left_join(data_resp, datainitC, by = 'Sample')
data3 <- data3 %>%
mutate(invC_resp_cum = init_C*1000 - C_resp_cum) %>%
filter(Num =="2" [Num =="3' | Num =="4'| Num =="5") %>%
mutate(invC_resp_cum_ADJ = case_when(Num == '3"' ~ .5*invC_resp_cum,
Num =="2' | Num =="'4' ~ .35*invC_resp_cum,
Num =="'5' ~ .35%invC_resp_cum)) %>%
mutate(ID = case_when(Num =='2' ~'DASE1_2',
Num =='3'~"'AD2',
Num =='4' ~'DASE2',
Num =="'5'~'DASEZ3'))

lumped_2 <- ggplot(data3, aes(x=Date.Time, y=invC_resp_cum)) +

geom_smooth(aes(color = Num), se = TRUE) +
scale_x_datetime(limits = lims) +
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theme_lump +

scale_color_manual("Treatments", labels = c("DASE1", "AD2", "DASEZ2", "DASE3"), values =
c("2", "3", "4", "5")) +

#scale_y_continuous(limits=c(0,250)) + # sets all plots start at 0 go to unique maxes for each

labs(x =", y = 'Cumulative Carbon Retained [mg], title = 'Carbon Retained in Treatments
Throughout INCUBATION 2 of HLFB Amended Palouse Soil')
lumped_2

ggsave("Cretdres.png", plot = lumped_2, width = 60, height = 20, units = "cm")

lumped_3 <- ggplot(data3, aes(x=Date.Time, y=invC_resp_cum_ADJ)) +
geom_smooth(aes(color = Num), se = TRUE) +
scale_x_datetime(limits = lims) +
theme_lump +
scale_color_manual("Treatments", labels = c("DASE1", "AD2", "DASE2", "DASE3"), values =
c("2", "3", "4", "5")) +
#scale_y_continuous(limits=c(0,250)) + # sets all plots start at 0 go to unique maxes for each
labs(x =", y = 'Cumulative Carbon Retained [mg], title = 'Carbon Retained in Treatments
Throughout INCUBATION 2 of HLFB Amended Palouse Soil')
lumped_3

ggsave("CretdresADJ.png", plot = lumped_3, width = 60, height = 20, units = "cm")

# combine
inc2data <- read.csv("INC2_invC_resp.csv", stringsAsFactors = FALSE, header = TRUE) # scan
in document formatted like example

retdatal <- data3 %>%
select(Sample, ID, time, invC_resp_cum, invC_resp_cum_ADJ)

retdata2 <- inc2data %>%
filter(time < 135) %>%
select(Sample, ID, time, invC_resp_cum, invC_resp_cum_ADJ)

retdata_comb <- rbind(data_frame(retdata1), data_frame(retdata2))

lumped_4 <- ggplot(retdata_comb, aes(x=time, y=invC_resp_cum)) +

geom_smooth(aes(color = ID), se = TRUE) +

#scale_x_datetime(limits = lims) +

theme_lump +

#scale_color_manual("Treatments", labels = c("DASE1", "AD2", "DASE2", "DASE3"), values =
c("2", "3", "4", "5")) +

#scale_y_continuous(limits=c(0,250)) + # sets all plots start at 0 go to unique maxes for each

labs(x = 'Time [days]', y = 'Cumulative Carbon Retained [mg], title = 'Carbon Retained in 135
Day Incubations of HLFB Amended Palouse Soil')
lumped 4

ggsave("totalCretdres.png", plot = lumped_4, width = 60, height = 20, units = "cm")

lumped_5 <- ggplot(retdata_comb, aes(x=time, y=invC_resp_cum_ADJ)) +
geom_smooth(aes(color = ID), se = TRUE) +
#scale_x_datetime(limits = lims) +
theme_lump +
#scale_color_manual("Treatments", labels = c("DASE1", "AD2", "DASE2", "DASE3"), values =
c("2","3", "4", "5")) +
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#scale_y_continuous(limits=c(0,250)) + # sets all plots start at 0 go to unique maxes for each
labs(x = 'Time [days]', y = 'Cumulative Carbon Retained [mg], title = 'Carbon Retained in 135
Day Incubations of HLFB Amended Palouse Soil')
lumped 5

ggsave("ADJtotalCretdres.png”, plot = lumped_5, width = 60, height = 20, units = "cm")

#Show Initial C
pV_init <- ggplot(data_resp, aes(x=Date.Time, y=C_resp_cum)) +
geom_smooth(aes(size = .8)) +
scale_x_datetime(limits = lims) +
#stat_summary(fun.data = "mean_se", colour = "red", size = .8) +
facet_wrap(~Num, labeller = labeller(Num = num_labs)) + # NON FREE SCALE
#geom_vline(xintercept = as.POSIXct(as.Date(c('2021-03-22", '2021-04-22"))), linetype =
'dashed’, color = 'blue’, size = 2) +
#facet_wrap(~Num, scales = 'free’, labeller = labeller(Num = num_labs)) + # free scale bc 1 is
so small
##geom_vline(xintercept = as.POSIXct(as.Date(c('2021-03-22', '2021-04-22"))), linetype =
'dashed’, color = 'blue’, size = 2) + # when water was added, comment this out for no lines
theme_C +
scale_y_continuous(limits=c(0,NA)) + # sets all plots start at 0 go to unique maxes for each
labs(x =", y = 'Cumulative Carbon Respired [mg], title = 'Cumulative Carbon in 267 Day
Incubation of HLFB Amended Vershire Soil')
pV_init

# Calculate C retained as percentage of residue C and total treatment C
datainitC <- read.csv("justinitC.csv", stringsAsFactors = FALSE, header = TRUE) # scan in
document formatted like example
data3 <- left_join(data_resp, datainitC, by = 'Sample')
data3 <- merge(data3, soil_resp, by = c('Typ', 'Flush')) # matches soil resp. to each
measurement at a time point
data3 <- data3 %>%

mutate(init_totC = init_C*1000) %>% # [mg C] initial C (soil+res) in each treatment on
average

mutate(init_resC = init_resC*1000) %>%  # [mg C] initial C (res) in each treatment on average

mutate(Ctot_ret = 100*(init_totC - C_resp_cum)/init_totC) %>% # [% total C] C retained from
total treatment

mutate(Cres_ret = 100*(init_resC-(C_resp_cum-mean_soil_cum))/init_resC) %>% # [% residue
C] C retained from residue in each treatment

group_by(Num, Typ, Date.Time) %>%

summarize(meanCtot_ret = mean(Ctot_ret), meanCres_ret = mean(Cres_ret)) %>% # [% total
C] average of prev. calculations per treatment on specific days

ungroup() %>% # necessary to add row after

add_row(Typ ='P', Num =¢('1", '2', '3', '4', '5"), Date.Time = as.POSIXct('2021-11-01 15:00:00"),
meanCres_ret = 100, meanCtot_ret = 100) %>% # add initial anchor point of 100% for all
treatments (when incubation began)

add_row(Typ ='V', Num =¢('1", '2', '3', '4', '5"), Date.Time = as.POSIXct('2021-11-01 15:00:00"),
meanCres_ret = 100, meanCtot_ret = 100)

data3P <- data3 %>%

filter(Typ =="'P') %>%

mutate(Ctot_Label = round(ifelse(Date.Time == max(Date.Time), meanCtot_ret, NA), 0)) %>%
# add labels to last point of each line

mutate(Cres_Label = round(ifelse(Date.Time == max(Date.Time), meanCres_ret, NA), 0))

data3V <- data3 %>%

90



filter(Typ =="'V') %>%

mutate(Ctot_Label = round(ifelse(Date.Time == max(Date.Time), meanCtot_ret, NA), 0)) %>%
# add labels to last point of each line

mutate(Cres_Label = round(ifelse(Date.Time == max(Date.Time), meanCres_ret, NA), 0))

# Graph C retained graphs
# C retained of only residue graphs
Cret_P <- ggplot(data3P, aes(x=Date.Time, y=meanCres_ret)) +

geom_line(aes(color = Num), size = .5) +

geom_point(size = .25, color = 'black’) +

scale_x_datetime(date_breaks = '1 month', labels = date_format("%b")) +

ylim(35, 100) +

theme_lump +

scale_color_manual("Treatments", labels = c¢("Soil Control", "CS", "AD", "C-CBP", "DASE"),
values = ¢("1", "2", "3", "4", "5")) +

#scale_y_continuous(limits=c(0,500)) + # sets all plots start at 0 go to 500

labs(x =", y = 'Carbon Retained in Residue \n [% of Initial Residue C], title = 'Palouse Soil
Incubations') + # Carbon Retained in Residue in \n 267 Day Incubation of Biofuel Residues in
Palouse Soil

geom_label_repel(aes(label = Cres_Label), min.segment.length = 0, size = 2, force = 2.1,
direction ="'y', hjust = 'left', label.padding = unit(0.1, "lines"), na.rm = TRUE) # labels last point
with final percentage of each line
Cret P

# C retained of total treatment graphs
Cret_P2 <- ggplot(data3P, aes(x=Date.Time, y=meanCtot_ret)) +

geom_line(aes(color = Num), size = .5) +

geom_point(size = .25, color = 'black’) +

scale_x_datetime(date_breaks = '1 month', labels = date_format("%b")) +

ylim(60, 100) +

#scale_x_datetime(limits = lims) +

theme_lump +

scale_color_manual("Treatments", labels = ¢("Soil Control", "CS", "AD", "C-CBP", "DASE"),
values = ¢("1", "2", "3", "4", "5")) +

#scale_y_continuous(limits=c(0,500)) + # sets all plots start at 0 go to 500

labs(x =", y = 'Carbon Retained in Treatment \n [% of Initial Treatment CJ', title = 'Palouse Soil
Incubations') + # 'Carbon Retained in Treatment in \n 267 Day Incubation of Biofuel Residues in
Palouse Sail'

geom_label_repel(aes(label = Ctot_Label), min.segment.length = 0, size = 2, force = .6,
direction ='y', hjust = 'left', label.padding = unit(0.1, "lines"), na.rm = TRUE) # labels last point
with final percentage of each line
Cret_P2

# C retained of only residue graphs
Cret_V <- ggplot(data3V, aes(x=Date.Time, y=meanCres_ret)) +

geom_line(aes(color = Num), size = .5) +

geom_point(size = .25, color = 'black’) +

scale_x_datetime(date_breaks = '1 month', labels = date_format("%b")) +

ylim(35, 100) +

#scale_x_datetime(limits = lims) +

theme_lump +

#geom_label_repel(aes(), nudge_x = 1, na.rm = TRUE) + # CHANGE THIS SO THE LABEL
WORKS, PAGE IS SAVED IN GOOGLE

scale_color_manual("Treatments", labels = c¢("Soil Control", "CS", "AD", "C-CBP", "DASE"),
values = ¢("1", "2", "3", "4", "5")) +

#scale_y_continuous(limits=c(0,500)) + # sets all plots start at 0 go to 500
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labs(x =", y = 'Carbon Retained in Residue \n [% of Initial Residue CJ, title = "Vershire Soll
Incubations’) + # Carbon Retained in Residue in \n 267 Day Incubation of Biofuel Residues in
Vershire Soil

geom_label_repel(aes(label = Cres_Label), min.segment.length = 0, size = 2, force = .5,
direction ="y', hjust = 'left', label.padding = unit(0.1, "lines"), na.rm = TRUE) # labels last point
with final percentage of each line
Cret V

# C retained of total treatment graphs
Cret_V2 <- ggplot(data3V, aes(x=Date.Time, y=meanCtot_ret)) +

geom_line(aes(color = Num), size = .5) +

geom_point(size = .25, color = 'black’) +

scale_x_datetime(date_breaks = '1 month', labels = date_format("%b")) +

ylim(60, 100) +

#scale_x_datetime(limits = lims) +

theme_lump +

scale_color_manual("Treatments", labels = ¢("Soil Control", "CS", "AD", "C-CBP", "DASE"),
values = ¢("1", "2", "3", "4", "5")) +

#scale_y_continuous(limits=c(0,500)) + # sets all plots start at 0 go to 500

labs(x =", y = 'Carbon Retained in Treatment \n [% of Initial Treatment CJ', title = 'Vershire Soil
Incubations') + # 'Carbon Retained in Treatment in \n 267 Day Incubation of Biofuel Residues in
Vershire Soil'

geom_label_repel(aes(label = Ctot_Label), min.segment.length = 0, size = 2, force = .6,
direction ='y', hjust = 'left', label.padding = unit(0.1, "lines"), na.rm = TRUE) # labels last point
with final percentage of each line
Cret_V2

ggsave("CretP_scale_mean&se.png", plot = Cret_P, width = 60, height = 20, units = "cm")
ggsave("CretV_scale_mean&se.png", plot = Cret_V, width = 60, height = 20, units = "cm")

R R R R R R R
# SOIL MODELLING #HHHHHHEHEHHHH R R R

# Based off of https://www.bgc-jena.mpg.de/TEE/optimization/2015/12/09/Fractions-Incubations/
# Context from https://escholarship.org/uc/item/9h72f7hk

# Clean data for modelling
data_mod <- data_resp %>%

ungroup(Sample) %>% # now, not grouped as anything

select(c('time','Num’, 'C_resp_cum")) %>% # select these columns for ease

group_by(Num, time) %>% #

summarize(cummCO2 = mean(C_resp_cum)) # sd gives an error for some reason: Stderr =
sd(C_resp_cum)) # [mg] amount of carbon respired cumulatively, not in terms of mg C/g soll

#summarize(cummCO2 = mean(C_resp_cum)/50, Stderr = sd(C_resp_cum/50)) %>% # /50 so
it's in [g C/g soil] since we start w/ ~50g soil, summarizing by all incubations def. loses precision
since it's not a rate, it's an absolute amount?, but also it's based off of rate anyways
write.csv(data_maod, file = 'INC2data_mod.csv')
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Appendix R — Example Overall Graphing Data and R Code
Key explaining the sheets in the overall datasheet used to generate the graphs referenced
in this thesis is shown below. The complete datasheet and R code for the graphs

presented in this thesis can be found in the Hicks Pries Lab GitHub.

The first two sheets “Onetimeresp_INC2”, “Resp_away_all2PS,” and
“Onetimeresp_INC1” were used to generate the one-time input graphs shown in Figure 3.
The “Longterm_data” sheet was used to generate the annual-input modelling graphs
shown in Figure 4. The “Final_13C_data” and “13C_err_data” sheet was used to generate
the 13C partitioning graphs in Figure 1 and priming / partitioned graphs shown in Figure

2 and Appendices I and J .

Example of the R code used to generate the graphs in this thesis is shown below.

## GRAPHS FOR WANG THESIS 2023
## Author: Michelle S. Wang, michelle.s.wang.th@dartmouth.edu

# Load packages + functions
library(tidyverse)
library(ggsci)

library(ggrepel)
library(scales)

library(FME)

library(ggpubr)
library(car)

# Nature color palette: https://nanx.me/ggsci/reference/pal_npg.html;
show_col(pal_npg("nrc")(10))

# Theme
theme_C <- theme_light() +
theme(panel.grid.minor = element_blank(),
text = element_text(size = 20), #for facetwrapped plots
strip.background = element_rect(color="black", fill="#93C5FF", size=1.5, linetype="solid"),
#legend.position = "none",
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plot.title = element_text(hjust = 0.5),
)

# Theme
theme_bar <- theme_bw() +
theme(

plot.title = element_text(hjust = 0.5), # center title
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.ticks = element_blank(),
axis.text.x = element_blank(),
axis.title.x = element_blank(),
panel.spacing = unit(.9, 'lines"),
text = element_text(size = 20)

)

INC1_colors <- ¢('SOIL' = '#7E6148FF', 'CS1' = '#91D1C2FF', 'AD1' = '#8491B4FF', '"HLFB1' =
'#F39B7FFF')

INC2_colors <- ¢('SOIL' = '#7E6148FF', 'CS2' = '#O0A087FF', 'AD2' = '#3C5488FF', 'HLFB1' =
'#F39B7FFF', 'HLFB2' = '#E64B35FF', 'HLFB3' = '#¥DCO000FF")

INCtot_colors <- c('SOIL' = '#7E6148FF', 'CS1' = '#91D1C2FF', 'AD1' = '#8491B4FF', 'CS2' =
'#OOAO087FF', 'AD2' = '#3C5488FF', 'HLFB1' = '#F39B7FFF', 'HLFB2' = '#E64B35FF', 'HLFB3' =
'‘#DCOO000FF")

HEH R R R R R B R
HEHBHHHHHRHHHRHE

# ONE TIME INPUT GRAPHS

# Initials
ADconv = .5
DASEconv = .35

# Read in data
onetime_data0 <- read.csv("onetime_data.csv", stringsAsFactors = FALSE, header = TRUE) #
scan in document formatted like example

onetime_data0 <- onetime_data0 %>%
#select(-'X', -'X.1") %>% # get rid of weird extra column
select(-GWC20', -'CCBP_P', -'"CCBP_V', 'DASE_C', -'DASE_O")

# total treatments: c('DASE_C', 'DASE_O', 'DASE_AVG', 'AD_S','POET_S',
'NREL_S', 'AD_N', 'POET_N/, 'NREL_N/, 'CS_N', 'GWC16',
'GWC20/, 'PALOUSE', 'CS_1P, 'AD_1P", 'CCBP_P',
'DASE_1P', 'VERSHIRE', 'CS_1V/, 'AD_1V/, 'CCBP_V',
'DASE_1V")

CinitsINC2 <- ¢((1199.218125+1198.987771)/2, 1202.890795, 1208.769544, 1280.327308,

869.183259, 871.99067, 907.076619, 880.866037, 540.873971) # these numbers reflect if |

average C per treatment, Information from INC3 -> CombinedIRMS -> Treatment_Calculations

# CinitsINC2 key = 'DASE_AVG/, 'AD_S', 'POET_S', 'NREL_S', 'AD_N',
'POET_N, 'NREL_N/, 'CS_N', 'GwcC16'

CinitsP <- ¢(514.4336596, 1145.656643, 1059.347782, 1188.126723) # these numbers reflect if |
average C per treatment, Information from INC2 -> IRMS -> "IRMS_summary" -> IRMS_Pre
CinitsV <- ¢(1113.366093, 1752.370126, 1651.682688, 1783.200554)

CinitsINC1 <- ¢(CinitsP, CinitsV)
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# CinitsINC1 key = 'PALOUSE','CS_1P', '‘AD_1P", 'DASE_1P', 'VERSHIRE',
'CS_1V', '‘AD_1V', 'DASE_1V'

onetime_data <- onetime_data0 %>%
pivot_longer(

cols = ¢c('DASE_AVG/, 'AD_S', 'POET_S/, 'NREL_S', 'AD_N', 'POET_N',
'NREL_N/, 'CS_N', 'GWC16', 'PALOUSE', 'CS_1P', '‘AD_1P",
'DASE_1P', 'VERSHIRE', 'CS_1V', '‘AD_1V', 'DASE_1V'),

names_to = 'treatment’,
values_to = 'cummCO2resp'

)

# ONE TIME INPUT INC1
onetime_data_INC1 <- onetime_data %>%

filter(treatment == 'PALOUSE' | treatment == 'CS_1P' | treatment =="'AD_1P"' | treatment ==
'DASE_1P' | treatment == 'VERSHIRE' | treatment == 'CS_1V'| treatment ==
'AD_1V' | treatment == 'DASE_1V') %>%
mutate(soil = ifelse(treatment == c('PALOUSE','CS_1P', 'AD_1P", 'DASE_1P"), 'P',
V") %>%

mutate(type = case_when(treatment == 'PALOUSE' | treatment == 'VERSHIRE' ~ 'SOIL',
treatment =='CS_1P' | treatment =='CS_1V' ~'CS1’,
treatment =="'AD_1P' | treatment =='AD_1V' ~ 'AD1’,
treatment == 'DASE_1P' | treatment == 'DASE_1V' ~ 'HLFB1")) %>%
mutate(cummCO2respCONV = case_when(type == 'SOIL' ~ cummCQO2resp,
type =="'CS1' ~ cummCOQO2resp,
type =="'AD1' ~ ADconv*cummCQO2resp,
type == 'HLFB1' ~ DASEconv*cummCO2resp)) %>%
mutate(soil = factor(soil, labels = c('Palouse’, 'Vershire'))) %>%
mutate(init_totalC = case_when(treatment == 'PALOUSE' ~ CinitsINC1[1],
treatment =="'CS_1P' ~ CinitsINC1[2] ,
treatment =="'AD_1P' ~ CinitsINC1[3],
treatment == 'DASE_1P' ~ CinitsINC1[4],
treatment == 'VERSHIRE' ~ CinitsINC1[5],
treatment =="'CS_1V' ~ CinitsINC1[6],
treatment =="'AD_1V' ~ CinitsINC1[7],
treatment == 'DASE_1V' ~ CinitsINC1[8])) %>%
mutate(Cret = init_totalC - cummCQO2resp) %>%
mutate(init_total CCONV = case_when(type == 'SOIL' ~ init_totalC,
type =='CS1' ~ init_totalC,
type =="'AD1' ~ ADconv*init_totalC,
type == "HLFB1' ~ DASEconv*init_totalC)) %>%
mutate(CretCONV = init_total CCONV - cummCO2respCONV)

data_ends <- onetime_data_INC1 %>%
group_by(treatment) %>%
top_n(1, YEAR)

#to isolate each soil type use this code in ggplot data =
#onetime_data_INC1 %>%
# filter(soil == 'Palouse")

onetime_INC1_plot <- ggplot(data = onetime_data_INC1, aes(x = YEAR, y = cummCO2resp,
group = treatment)) +

geom_line(aes(col = type, linetype = factor(sail)), size = 2) +

scale_linetype_manual(values = c('Palouse’ = 'solid’, 'Vershire' = 'dotdash")) +
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scale_color_manual(values = INC1_colors) + #c('SOIL' = '#7E6148FF', 'CS2' = '#91D1C2FF',
'AD2' = '#8491B4FF', 'DASE1"' = '#F39B7FFF', 'DASE2' = '#E64B35FF', 'DASE3' = '#DCO000FF"))
+
theme_C +
#xlim(0, 25) +
labs(x = 'Years', y = 'Total C Respired [mg]',
#title = '100 Year Projections of C Respired in Incubation 1 Treatments',
col = 'Treatment’, linetype = 'Soil Type')
onetime_INC1_plot
ggsave("onetimelNC1_plot.png", plot = onetime_INC1_plot, width = 30, height = 20, units = "cm")
# change this accordingly

# residue conversion yield accounted for
onetimeCONV_INC1_plot <- ggplot(data = onetime_data_INC1 , aes(x = YEAR, y =
cummCO2respCONV, group = treatment)) +
geom_line(aes(col = type, linetype = soil), size = 2) +
scale_color_manual(values = INC1_colors) +
theme_C +
# xlim(0, 25) +
labs(x = 'Years', y = 'Total C Respired [mg]',
# title = "100 Year Projections of C Respired \n in Incubation 1 Treatments with Conversion
Rates',
col = "Treatment’, linetype = 'Soil Type')
onetimeCONV_INC1_plot
ggsave("VERonetimeCONV_INC1_plot.png", plot = onetimeCONV_INC1_plot, width = 30, height
= 20, units = "cm") # change this accordingly

# INC1 Retained version of above plots
onetimeRET_INC1_plot <- ggplot(data = onetime_data_INC1, aes(x = YEAR, y = Cret, group =
treatment)) +

geom_line(aes(col = type, linetype = factor(soil)), size = 2) +

scale_color_manual(values = INC1_colors) +

theme_C +

xlim(0, 50) +

labs(x = 'Years', y = 'Total C Retained [mg]', title = '100 Year Projections of C Retained in
Incubation 1 Treatments', col = "Treatment', linetype = 'Soil Type')
onetimeRET_INC1_plot
ggsave("onetimeRET50_INC1_plot.png", plot = onetimeRET_INC1_plot, width = 30, height = 20,
units = "cm") # change this accordingly

# residue conversion yield accounted for
onetimeRET_CONV_INC1_plot <- ggplot(data = onetime_data_INC1, aes(x = YEAR, y =
CretCONV, group = treatment)) +

geom_line(aes(col = type, linetype = soil), size = 2) +

scale_color_manual(values = INC1_colors) +

theme_C +

xlim(0, 50) +

labs(x = 'Years', y = 'Total C Retained [mg]’, title = '100 Year Projections of C Retained \n in
Incubation 1 Treatments with Conversion Rates', col = 'Treatment, linetype = 'Soil Type')
onetimeRET_CONV_INC1_plot
ggsave("onetimeRET50_CONV_INC1_plot.png", plot = onetimeRET_CONV_INC1_plot, width =
30, height = 20, units = "cm") # change this accordingly

# ONE TIME INPUT INC2

# Nature color palette
#EG64B35FF # orange red
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#F39B7FFF # salmon red
#DCOOOOFF # deep red

onetime_data_INC2 <- onetime_data %>%
filter(treatment == 'DASE_AVG' | treatment == 'AD_S' | treatment == 'POET_S' | treatment ==
'NREL_S' | treatment =='AD_N' | treatment == 'POET_N' | treatment ==
'NREL_N' | treatment == 'CS_N'| treatment == 'GWC16') %>%
mutate(dose = case_when(treatment == 'GWC16' ~ 'SOIL',
treatment =='CS_N' | treatment =="'AD_N'
| treatment =="'POET_N' | treatment == 'NREL_N' ~'N’,
treatment == 'DASE_AVG' | treatment == 'AD_S'
| treatment == 'POET_S' | treatment == 'NREL_S' ~'S")) %>%
mutate(type = case_when(treatment == 'GWC16' ~ 'SOIL',
treatment =='CS_N'~'CS',
treatment =="'AD_N' | treatment =="'AD_S' ~'AD’,
treatment == 'DASE_AVG' | treatment == 'POET_N' | treatment == 'NREL_N' |
treatment == 'POET_S' | treatment == 'NREL_S' ~ 'DASE")) %>%
mutate(type2 = case_when(treatment == 'GWC16' ~ 'SOIL',
treatment =='CS_N'~'CS2’,
treatment =="'AD_N' | treatment =="'AD_S' ~ 'AD2’,
treatment == 'DASE_AVG' ~ 'HLFB1',
treatment == 'POET_N' | treatment == 'POET_S' ~ 'HLFB3',
treatment == 'NREL_N' | treatment == 'NREL_S' ~ 'HLFB2')) %>%
mutate(cummCO2respCONV = case_when(type == 'SOIL' ~ cummCQO2resp,
type =='CS' ~ cummCOQO2resp,
type =="'AD' ~ ADconv*cummCO2resp,
type == 'DASE' ~ DASEconv*cummCO2resp)) %>%
mutate(dose = factor(dose, labels = c('Reduced’, 'Standard', 'Soil'))) %>%
mutate(init_totalC = case_when(treatment == 'DASE_AVG' ~ CinitsINC2[1],
treatment =="'AD_S' ~ CinitsINC2[2] ,
treatment == 'POET_S' ~ CinitsINC2[3],
treatment == 'NREL_S' ~ CinitsINC2[4],
treatment =="'AD_N' ~ CinitsINC2[5],
treatment == 'POET_N' ~ CinitsINC2[6],
treatment == 'NREL_N' ~ CinitsINC2[7],
treatment =="'CS_N' ~ CinitsINC2[8],
treatment == 'GWC16' ~ CinitsINC2[9])) %>%
mutate(Cret = init_totalC - cummCQO2resp) %>%
mutate(init_total CCONV = case_when(type == 'SOIL' ~ init_totalC,
type =='CS' ~ init_totalC,
type =="'AD' ~ ADconv*init_totalC,
type == 'DASE' ~ DASEconv*init_totalC)) %>%
mutate(CretCONV = init_total CCONV - cummCO2respCONV)

# code so only dosage group
# onetime_data_INC2 %>%
# filter(soil == 'Vershire')

onetime_INC2_plot <- ggplot(data = onetime_data_INC2, aes(x = YEAR, y = cummCO2resp,
group = treatment)) +
geom_line(aes(linetype = factor(dose), colour = type2), size = 2) +
scale_linetype_manual(values = c('Standard' = 'solid', 'Reduced' = 'twodash’, 'Soil' = 'dotted")) +
scale_color_manual(values = INC2_colors) +
theme_C +
xlim(0, 25) +
labs(x = 'Years', y = 'Total C Respired [mg]',
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#title = '25 Year Projections of C Respired in Incubation 2 Treatments',

linetype = 'Dosage’, color = 'Treatment’)
onetime_INC2_plot
ggsave("onetimelNC2_plot.png", plot = onetime_INC2_plot, width = 30, height = 20, units = "cm")
# change this accordingly

# residue conversion yield accounted for
onetimeCONV_INC2_plot <- ggplot(data = onetime_data_INC2 , aes(x = YEAR, y =
cummCO2respCONV, group = treatment)) +
geom_line(aes(linetype = dose, colour = type2), size = 2) +
scale_linetype_manual(values = c('Standard' = 'solid', 'Reduced' = 'twodash’, 'Soil' = 'dotted")) +
scale_color_manual(values = INC2_colors) +
theme_C +
xlim(0, 25.2) +
labs(x = 'Years', y = 'Total C Respired [mg],
# title = '25 Year Projections of C Respired \n in Incubation 2 Treatments with Conversion
Rates',
linetype = 'Dosage’, col = 'Treatment’)
onetimeCONV_INC2_plot
ggsave("onetimeCONV_INC2_plot.png", plot = onetimeCONV_INC2_plot, width = 30, height =
20, units = "cm") # change this accordingly

# INC2 RETAINED VERSION OF ABOVE PLOTS
onetimeRET_INC2_plot <- ggplot(data = onetime_data_INC2, aes(x = YEAR, y = Cret, group =
treatment)) +
geom_line(aes(linetype = factor(dose), colour = type2), size = 2) +
scale_color_manual(values = INC2_colors) +
theme_C +
xlim(0, 25) +
labs(x = 'Years', y = 'Total C Retained [mg]', title = '25 Year Projections of C Retained in
Incubation 2 Treatments', linetype = 'Dosage’, color = 'Treatment’)
onetimeRET_INC2_plot
ggsave("onetimeRET_INC2_plot.png", plot = onetimeRET_INC2_plot, width = 30, height = 20,
units = "cm") # change this accordingly

# residue conversion yield accounted for
onetimeRET_CONV_INC2_plot <- ggplot(data = onetime_data_INC2, aes(x = YEAR, y =
CretCONV, group = treatment)) +

geom_line(aes(linetype = dose, colour = type2), size = 2) +

scale_color_manual(values = INC2_colors) +

theme_C +

xlim(0, 25.2) +

labs(x = 'Years', y = 'Total C Respired [mg]', title = '25 Year Projections of C Respired \n in
Incubation 2 Treatments with Conversion Rates', linetype = 'Dosage’, col = 'Treatment')
onetimeRET_CONV_INC2_plot
ggsave("onetimeRET_CONV_INC2_plot.png", plot = onetimeRET_CONV_INC2_plot, width = 30,
height = 20, units = "cm") # change this accordingly

R R
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# LONGTERM MODELLING GRAPHS

longterm_data0 <- read.csv("Longterm_data.csv", stringsAsFactors = FALSE, header = TRUE) #
scan in document formatted like example

longterm_data0 <- longterm_data0 %>%
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select(-'CCBP_P', -'"CCBP_V', "GWC16', 'PALOUSE', -'VERSHIRE')

# c(DASE_C', 'DASE_O, 'DASE_AVG', 'AD_S','POET_S, 'NREL_S", 'AD_N',
'POET_N!, 'NREL_N!, 'CS_N', 'GWC16', 'GWC20', 'PALOUSE,
'CS_1P', 'AD_1P', 'CCBP_P, 'DASE_1P',  'VERSHIRE,
'CS_1V, 'AD_1V/, 'CCBP_V/, 'DASE_1V')

longterm_data <- longterm_data0 %>%
pivot_longer(

cols = ¢c('DASE_AVG/, 'AD_S', 'POET_S/, 'NREL_S', 'AD_N', 'POET_N',
'NREL_N/, 'CS_N', 'CS_1P', '‘AD_1P", 'DASE_1P', 'CS_1V',
'‘AD_1V', 'DASE_1V'),

names_to = 'treatment’,
values_to = 'cummCO2resp'

)

# longterm INC1
longterm_data_INC1 <- longterm_data %>%

filter(treatment == 'CS_1P' | treatment =="'AD_1P' | treatment == 'DASE_1P' | treatment
== 'CS_1V'| treatment == 'AD_1V'| treatment == 'DASE_1V'") %>%
mutate(soil = ifelse(treatment == ¢('CS_1P', 'AD_1P', 'DASE_1P"), 'P', 'V")) %>%

mutate(type = case_when(treatment =='CS_1P' | treatment =='CS_1V' ~'CS1’,
treatment =="'AD_1P' | treatment =='AD_1V' ~'AD1’,
treatment == 'DASE_1P' | treatment == 'DASE_1V' ~ 'HLFB1")) %>%
mutate(cummCO2respCONV = case_when(type =="'CS1' ~ cummCO2resp,
type =="'AD1' ~ ADconv*cummCQO2resp,
type == 'HLFB1' ~ DASEconv*cummCO2resp)) %>%
mutate(soil = factor(soil, labels = c('Palouse’, 'Vershire')))

data_ends <- onetime_data_INC1 %>%
group_by(treatment) %>%
top_n(1, YEAR)

longterm_INC1_plot <- ggplot(data = longterm_data_INCH1,
# %>% filter(soil == 'Vershire')
aes(x = YEAR, y = cummCO2resp, group = treatment)) +
geom_smooth(aes(col = type, linetype = soil), size = 2, alpha = 0) +
scale_linetype_manual(values = c('Palouse’ = 'solid’, 'Vershire' = 'dotdash")) +
scale_color_manual(values = INC1_colors) +
theme_C +
coord_trans( y="log2") + # otherwise DASE1 overwhelms plot
#xlim(0, 25) +
labs(x = '"Years', y = 'Total C Retained in Treatments \n log2([mg C]),
#title = '100 Year Steady State Projections \n of C Retained in Incubation 1 Treatments',
linetype = 'Soil Type', color = 'Treatment')
longterm_INC1_plot
ggsave("VERIongtermINC1_plot.png", plot = longterm_INC1_plot, width = 30, height = 20, units =
"cm") # change this accordingly

# check INC1 data

ggp <- ggplot(longterm_data_INC1, aes(x = YEAR, y = cummCOQO2resp, group = treatment)) +
stat_smooth(aes(col = treatment))

agp

ggp_data <- ggplot_build(ggp)
head(ggp_data$data[[1]])
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write.csv(ggp_data$data[[1]], 'inc1ggp_data.csv') # spits out data in color order, so graph it to see
what number corresponds w/ what

# palouse, standard -> 1: AD1, 3: CS1, 5: HLFB1

# vershire, standard -> 2: AD1, 4: CS1, 6: HLFB1

# longterm INC2
longterm_data_INC2 <- longterm_data %>%
filter(treatment == 'DASE_AVG' | treatment == 'AD_S' | treatment == 'POET_S' | treatment ==
'NREL_S' | treatment =='AD_N' | treatment == 'POET_N' | treatment ==
'NREL_N' | treatment == 'CS_N'| treatment == 'GWC16') %>%
mutate(dose = case_when(treatment == 'CS_N' | treatment == 'AD_N'
| treatment == 'POET_N' | treatment == 'NREL_N' ~'N',
treatment == 'DASE_AVG' | treatment == 'AD_S'
| treatment == 'POET_S' | treatment == 'NREL_S' ~'S")) %>%
mutate(type = case_when(treatment == 'CS_N'~'CS/,
treatment =="'AD_N' | treatment =="'AD_S' ~ 'AD',
treatment == 'DASE_AVG' | treatment == 'POET_N' | treatment == 'NREL_N' |
treatment == 'POET_S' | treatment == 'NREL_S' ~ 'DASE')) %>%
mutate(type2 = case_when(treatment =='CS_N' ~'CS2/,
treatment =="'AD_N' | treatment =="'AD_S' ~ 'AD2’,
treatment == 'DASE_AVG' ~ 'HLFB1',
treatment =='POET_N' | treatment == 'POET_S' ~ 'HLFB3',
treatment == 'NREL_N' | treatment == 'NREL_S' ~ 'HLFB2")) %>%
mutate(cummCO2respCONV = case_when(type == 'CS' ~ cummCO2resp,
type =="'AD' ~ ADconv*cummCO2resp,
type == 'DASE' ~ DASEconv*cummCO2resp)) %>%
mutate(dose = factor(dose, labels = c('Reduced’, 'Standard')))

longterm_INC2_plot <- ggplot(data = longterm_data_INC2
%>% filter(dose == 'Reduced’),
aes(x = YEAR, y = cummCO2resp, group = treatment)) +
scale_linetype_manual(values = c('Standard' = 'solid', 'Reduced' = 'twodash")) +
geom_smooth(aes(linetype = dose, colour = type2), size = 2, alpha = 0) +
scale_color_manual(values = INC2_colors) +
theme_C +
#coord_trans( y="log2") + # otherwise DASE3 overwhelms plot
labs(x = 'Years', y = 'Total C Retained in Treatments [mg CJ',
#title = '100 Year Steady State Projections \n of C Retained in Incubation 2 Treatments',
linetype = 'Dosage’, color = 'Treatment’)
longterm_INC2_plot
ggsave("REDIongtermINC2_plot.png", plot = longterm_INC2_plot, width = 30, height = 20, units =
"cm") # change this accordingly

# output geom_smooth data to check SS values

ggp <- ggplot(longterm_data_INC2, aes(x = YEAR, y = cummCQO2resp, group = treatment)) +
stat_smooth(aes(col = treatment))

agp

ggp_data <- ggplot_build(ggp)
head(ggp_data$data[[1]])

write.csv(ggp_data$data[[1]], inc2ggp_data.csv') # spits out data in color order, so graph it to see
what number corresponds w/ what
# reduced -> groups 1: AD2, 3: CS2, 5: HLFB2, 7: HLFB3

HEH R R R R R R
HEHBHHHH R
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# 13C PARTITIONING

# Read in data
thirteenC_data0 <- read.csv("thirteenC_data.csv", stringsAsFactors = FALSE, header = TRUE) #
scan in document formatted like example

thirteenC_data <- thirteenC_data0 %>%

filter(treatment = "CCBP_1P' & treatment !="CCBP_1V' & treatment != "TWENTY" ) %>% #&
treatment !="ONESIX' & treatment != 'PALOUSE' & treatment != 'VERSHIRE'

#select(-'X', -'X.1', -'X.2', -'X.3', -'X.4") %>%

filter(sample != 'V5C' & sample != 'V5A' & sample != 'P3B' & sample !='V1A") %>%

group_by(treatment, time, source) %>%

summarize_all(list(mean, sd)) %>%

select(-'num_fn1', -'sample_fn1', -rep_fn1', -'num_fn2', -'sample_fn2', -'rep_fn2', -'inc_fn2")
#%>%

#mutate(source = factor(source, levels = c('soil’, 'res')))

thirteenC_err_data0 <- read.csv("thirteenC_err_data.csv", stringsAsFactors = FALSE, header =
TRUE) # scan in document formatted like example

thirteenC_err_data <- thirteenC_err_data0 %>%
filter(treatment = "CCBP_1P', treatment |='"CCBP_1V', treatment |= 'ONESIX', treatment !=
"TWENTY', treatment !="PALOUSE!, treatment != 'VERSHIRE') %>%
filter(sample != 'V5C' & sample !="V5A' & sample != 'P3B' & sample != 'V1A") %>%
group_by(treatment, time) %>%
summarize_all(list(mean, sd)) %>%
select(-'num_fn1', -'sample_fn1', -rep_fn1', -'num_fn2', -'sample_fn2', -'rep_fn2', -'inc_fn2")

# priming data
priming_data <- thirteenC_data %>%

mutate(amt_fn1 = 1000*amt_fn1) %>%

mutate(amt_fn2 = 1000*amt_fn2) %>%

group_by(treatment, source) %>%

arrange(time) %>%

mutate(diff = amt_fn1 - lag(amt_fn1, default = first(amt_fn1))) %>%

mutate(diff = -1*diff) %>%

mutate(stdev = sqrt(amt_fn2"2 + (lag(amt_fn2, default = first(amt_fn2)))"2)) %>% # standard
deviation

filter(diff 1= 0) %>%

mutate(diff = ifelse(diff < 0, 0, diff)) # if priming says somehow soil gained carbon from
incubation, correct to 0

#write.csv(priming_data, file="priming_data.csv", row.names = FALSE)

# PRIMING STATISTICS
loss_data <- thirteenC_data0 %>%

filter(treatment = "CCBP_1P' & treatment !="CCBP_1V' & treatment !="ONESIX' & treatment !=
"TWENTY' & treatment != '"PALOUSE' & treatment != 'VERSHIRE') %>%

#select(-'X', -'X.1', -'X.2', -'X.3', -'X.4") %>%

filter(sample != 'V5C' & sample !="V5A' & sample != 'P3B' & sample != 'V1A") %>%

mutate(amt = 1000*amt) %>%

group_by(sample, source) %>%

arrange(time) %>%

mutate(diff = amt - lag(amt, default = first(amt))) %>%
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mutate(diff = -1*diff) %>%
filter(diff 1= 0) %>%
mutate(diff = ifelse(diff < 0, 0, diff)) #if priming says somehow soil gained carbon, correct to 0

priming_stats_data <- loss_data %>%
filter(source == "soil')

res_stats_data <- loss_data %>%
filter(source == "res')

# SOIL LOSS, INC 1, SOIL TYPE = PALOUSE

res.aov_priming <- aov(diff ~ treatment, data = priming_stats_data %>% filter(inc == '1" &
soil_type == 'P")) # test interaction btwn Num and Typ

Anova(res.aov_priming, type ="lll") # use because of unbalanced design
TukeyHSD(res.aov_priming)

# SOIL LOSS, INC 1, SOIL TYPE = VERSHIRE

res.aov_priming <- aov(diff ~ treatment, data = priming_stats_data %>% filter(inc == '1' &
soil_type == 'V')) # test interaction btwn Num and Typ

Anova(res.aov_priming, type ="llI')

TukeyHSD(res.aov_priming)

# SOIL LOSS, INC 2, NEW/REDUCED

res.aov_priming <- aov(diff ~ treatment, data = priming_stats_data %>% filter(inc == '2' & dose
=="'N")) # test interaction btwn Num and Typ

Anova(res.aov_priming, type ="llI')

TukeyHSD(res.aov_priming)

# SOIL LOSS, INC 2, STANDARD

res.aov_priming <- aov(diff ~ treatment, data = priming_stats_data %>% filter(inc == '2' & dose
=="'38")) # test interaction btwn Num and Typ

Anova(res.aov_priming, type ="llI')

TukeyHSD(res.aov_priming)

HEH R R R R R R
HEH B R

# RES LOSS, INC 1, SOIL TYPE = PALOUSE

res.aov_priming <- aov(diff ~ treatment, data = res_stats_data %>% filter(inc =='1" & soil_type ==
'P")) # test interaction btwn Num and Typ

Anova(res.aov_priming, type ="llI')

TukeyHSD(res.aov_priming)

# RES LOSS, INC 1, SOIL TYPE = VERSHIRE

res.aov_priming <- aov(diff ~ treatment, data = res_stats_data %>% filter(inc =='1" & soil_type ==
'V")) # test interaction btwn Num and Typ

Anova(res.aov_priming, type ="llI')

TukeyHSD(res.aov_priming)

# RES LOSS, INC 2, NEW/REDUCED

res.aov_priming <- aov(diff ~ treatment, data = res_stats_data %>% filter(inc == '2' & dose ==
'N')) # test interaction btwn Num and Typ

Anova(res.aov_priming, type ="llI')

TukeyHSD(res.aov_priming)
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# RES LOSS, INC 2, STANDARD

res.aov_priming <- aov(diff ~ treatment, data = res_stats_data %>% filter(inc == '2' & dose ==
'S")) # test interaction btwn Num and Typ

Anova(res.aov_priming, type ="llI')

TukeyHSD(res.aov_priming)

# 13C INC1
thirteenC_data_INC1 <- thirteenC_data %>%
filter(inc_fn1 =="1") %>%

#filter(freatment == 'CS_1P' | treatment =="'AD_1P' | treatment == 'DASE_1P' | treatment
== 'CS_1V'| treatment == 'AD_1V'| treatment == 'DASE_1V'") %>%
mutate(soil = ifelse(treatment =='CS_1P' | treatment == 'AD_1P' | treatment ==

'DASE_1P','P', V")) %>%

mutate(type = case_when(treatment =='CS_1P' | treatment =="'CS_1V' ~'CS1’,
treatment =="'AD_1P' | treatment =='AD_1V' ~ 'AD1’,
treatment == 'DASE_1P' | treatment == 'DASE_1V' ~ 'HLFB1")) %>%

mutate(amt_fn1 = 1000*amt_fn1) %>%

mutate(amt_fn2 = 1000*amt_fn2) %>%

mutate(err_max = amt_fn1+amt_fn2) %>%

mutate(err_min = amt_fn1-amt_fn2) %>%

mutate(soil = factor(soll, levels = c('P', 'V'), labels = c('Palouse’, 'Vershire")))

thirteenC_err_data_INC1 <- thirteenC_err_data %>%
filter(inc_fn1 =="1") %>%

#filter(freatment == 'CS_1P' | treatment =="'AD_1P' | treatment == 'DASE_1P' | treatment
== 'CS_1V'| treatment == 'AD_1V' | treatment == 'DASE_1V'") %>%
mutate(soil = ifelse(treatment =='CS_1P' | treatment == 'AD_1P' | treatment ==

'DASE_1P','P', V")) %>%

mutate(type = case_when(treatment =='CS_1P' | treatment =="'CS_1V' ~'CS1’,
treatment =="'AD_1P' | treatment =='AD_1V' ~'AD1’,
treatment == 'DASE_1P' | treatment == 'DASE_1V' ~ 'HLFB1")) %>%

mutate(resC_fn1 = 1000*resC_fn1) %>%

mutate(soilC_fn1 = 1000*s0ilC_fn1) %>%

mutate(resC_fn2 = 1000*resC_fn2) %>%

mutate(soilC_fn2 = 1000*s0ilC_fn2)

thirteenC_data_INC1 <- merge(x = thirteenC_data_INC1, y = thirteenC_err_data_INC1, by =
c('treatment’, 'time"))
thirteenC_data_INC1 <- thirteenC_data_INC1 %>%

mutate(v_adj = ifelse(source == 'soil', 0, soilC_fn1)) #this needs to be amt_fn1 of the other
source, 0))

thirteenC_INC1_plot <- ggplot(thirteenC_data_INC1, aes(fill=factor(source, levels = c('soil', 'res')),
y=amt_fn1, x=time)) +

geom_bar(position = position_stack(reverse = TRUE), stat="identity") +

scale_y_continuous(expand = ¢(0,0),

limits = ¢(0,2000)) +

geom_errorbar(aes(ymin=err_min+v_adj, ymax=err_max+v_adj), col = 'black’, width=.2, position
= 'identity') + # in aes(col = factor(source, levels = c('soil', 'res'))) to check if err bars are on right
bars

#position=position_dodge(.9)) +

facet_grid(soil.x ~ type.x) +

#scale_fill_discrete(limits = c("res", "source"), labels = c("Residue", "Soil")) +

scale_fill_npg( labels = c("Soil", "Residue")) +

labs(y = 'C in Treatments [mg C],
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# title = 'C Partitioning of Initial and Remaining C in Treatments Pre and Post Incubation 1,
fill = 'Source') +
theme_bar
#geom_text(aes(label = amt_fn2))
thirteenC_INC1_plot
ggsave("thirteenC_INC1_plot.png", plot = thirteenC_INC1_plot, width = 30, height = 15, units =
"cm") # change this accordingly

# priming INC1
priming_INC1 <- priming_data %>%
filter(inc_fn1 =="1") %>%
mutate(soil = ifelse(treatment =='CS_1P' | treatment == 'AD_1P' | treatment ==
'DASE_1P' | treatment == 'PALOUSE', 'P', 'V")) %>%
mutate(type = case_when(treatment =='CS_1P' | treatment =='CS_1V' ~'CS1’,
treatment =="'AD_1P' | treatment == 'AD_1V' ~ 'AD1’,
treatment == 'DASE_1P' | treatment == 'DASE_1V' ~ 'HLFB1")) %>%
filter(source == "soil') %>%
mutate(soil = factor(solil, levels = c('P', 'V'), labels = c('Palouse’, 'Vershire'))) %>%
rename(old_diff = diff) %>%
mutate(control = ifelse(soil == 'Palouse’, 21, 0)) %>% # values here from diff column of
priming data of PALOUSE and VERSHIRE
mutate(diff = old_diff-control) %>%
filter(treatment = '"PALOUSE', treatment != 'VERSHIRE')

priming_INC1_plot <- ggplot(priming_INC1, aes(x = type, y = diff, fill = type)) + # change "diff" to
"old_diff" if you want to just see soil derived losses

geom_bar(stat = 'identity') +

geom_errorbar(aes(ymin=diff-stdev, ymax=diff+stdev), col = 'black’, width=.2, position =
'identity') +

theme_bar +

labs(y = 'Soil Priming [mg]', fill = 'Substrate') +

#labs(y = 'Soil Derived Carbon Loss [mg], fill = 'Substrate') +

#theme(axis.text.x = element_text()) +

facet_grid(soil ~ type, scales = "free_x") +

scale_fill_manual(values = INC1_colors)
priming_INC1_plot
ggsave("adj_priming_INC1_plot.png", plot = priming_INC1_plot , width = 30, height = 15, units =
"cm") # change this accordingly

# RESIDUE LOSS
priming_INC1 <- priming_data %>%
filter(inc_fn1 =="1") %>%
mutate(soil = ifelse(treatment =='CS_1P' | treatment == 'AD_1P' | treatment ==
'DASE_1P','P', V")) %>%
mutate(type = case_when(treatment =='CS_1P' | treatment =="'CS_1V' ~'CS1’,
treatment =="'AD_1P' | treatment == 'AD_1V' ~ 'AD1’,
treatment == 'DASE_1P' | treatment == 'DASE_1V' ~ 'HLFB1")) %>%
filter(source == "res') %>%
mutate(soil = factor(soll, levels = c('P', 'V'), labels = c('Palouse’, 'Vershire')))

priming_INC1_plot <- ggplot(priming_INC1, aes(x = type, y = diff, fill = type)) +
geom_bar(stat = 'identity') +
geom_errorbar(aes(ymin=diff-stdev, ymax=diff+stdev), col = 'black’, width=.2, position =
'identity') +
theme_bar +
labs(y = 'Residue Derived Carbon Loss [mg]', fill = 'Substrate') +
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#theme(axis.text.x = element_text()) +

facet_grid(soil ~ type, scales = "free_x") +

scale_fill_manual(values = INC1_colors)
priming_INC1_plot
ggsave("resloss_INC1_plot.png", plot = priming_INC1_plot , width = 30, height = 15, units = "cm")
# change this accordingly

#13C INC2
thirteenC_data_INC2 <- thirteenC_data %>%
filter(inc_fn1 =='2") %>%
mutate(dose = case_when(treatment == 'CS_N' | treatment == 'AD_N'
| treatment == 'POET_N' | treatment == 'NREL_N' ~'N',
treatment == 'DASE_AVG' | treatment == 'AD_S'
| treatment == 'POET_S' | treatment == 'NREL_S' ~'S")) %>%
mutate(type = case_when(treatment == 'CS_N' ~'CS’,
treatment =="'AD_N' | treatment =="'AD_S' ~ 'AD',
treatment == 'DASE_AVG' | treatment == 'POET_N' | treatment == 'NREL_N' |
treatment == 'POET_S' | treatment == 'NREL_S' ~ 'DASE')) %>%
mutate(type2 = case_when(treatment =='CS_N' ~'CS2/,
treatment =="'AD_N' | treatment =='AD_S' ~ 'AD2’,
treatment == 'DASE_AVG' ~ 'HLFB1',
treatment =="'POET_N' | treatment == 'POET_S' ~ 'HLFB3',
treatment == 'NREL_N' | treatment == 'NREL_S' ~ 'HLFB2")) %>%
mutate(dose = factor(dose, levels = ¢('S', 'N'), labels = c('Standard', 'Reduced'))) %>%
mutate(amt_fn1 = 1000*amt_fn1) %>%
mutate(amt_fn2 = 1000*amt_fn2) %>%
mutate(err_max = amt_fn1+amt_fn2) %>%
mutate(err_min = amt_fn1-amt_fn2)

thirteenC_err_data_INC2 <- thirteenC_err_data %>%
filter(inc_fn1 =='2") %>%
mutate(dose = case_when(treatment == 'CS_N' | treatment == 'AD_N'
| treatment == 'POET_N' | treatment == 'NREL_N' ~'N',
treatment == 'DASE_AVG' | treatment == 'AD_S'
| treatment == 'POET_S' | treatment == 'NREL_S' ~'S")) %>%
mutate(type = case_when(treatment == 'CS_N' ~'CS’,
treatment =="'AD_N' | treatment =="'AD_S' ~ 'AD',
treatment == 'DASE_AVG' | treatment == 'POET_N' | treatment == 'NREL_N' |
treatment == 'POET_S' | treatment == 'NREL_S' ~ 'DASE")) %>%
mutate(type2 = case_when(treatment =='CS_N' ~'CS2/,
treatment =="'AD_N' | treatment =='AD_S' ~ 'AD2’,
treatment == 'DASE_AVG' ~ 'HLFB1',
treatment =="'POET_N' | treatment == 'POET_S' ~ 'HLFB3',
treatment == 'NREL_N' | treatment == 'NREL_S' ~ 'HLFB2")) %>%
mutate(dose = factor(dose, levels = c('S', 'N"))) %>%
mutate(resC_fn1 = 1000*resC_fn1) %>%
mutate(soilC_fn1 = 1000*s0ilC_fn1) %>%
mutate(resC_fn2 = 1000*resC_fn2) %>%
mutate(soilC_fn2 = 1000*s0ilC_fn2)

thirteenC_data_INC2 <- merge(x = thirteenC_data_INC2, y = thirteenC_err_data_INC2, by =
c('treatment’, 'time’"))
thirteenC_data_INC2 <- thirteenC_data_INC2 %>%

mutate(v_adj = ifelse(source == 'soil', 0, soilC_fn1)) #this needs to be amt_fn1 of the other
source, 0))
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thirteenC_INC2_plot <- ggplot(thirteenC_data_INC2, aes(fill=factor(source, levels = c('soil', 'res')),
y=amt_fn1, x=time)) +
geom_bar(position = position_stack(reverse = TRUE), stat="identity") +
scale_y_continuous(expand = ¢(0,0),
limits = ¢(0,1500)) +
facet_grid(dose.x ~ type2.x) +
geom_errorbar(aes(ymin=err_min+v_adj, ymax=err_max+v_adj),col = 'black’, width=.2, position
= 'identity') + # in aes(col = factor(source, levels = c('soil', res'))) to check if err bars are on right
bars
#scale_fill_discrete(limits = c("res", "source"), labels = c("Residue", "Soil")) +
scale_fill_npg(labels = c("Soil", "Residue")) +
labs(y = 'C in Treatments [mg C],
#title = 'C Partitioning of Initial and Remaining C in Treatments Pre and Post Incubation 2,
fill = 'Source') +
theme_bar
thirteenC_INC2_plot
ggsave("thirteenC_INC2_plot.png", plot = thirteenC_INC2_plot, width = 30, height = 15, units =
"cm") # change this accordingly

# priming INC2
priming_INC2 <- priming_data %>%
filter(inc_fn1 =='2") %>%
mutate(dose = case_when(treatment == 'CS_N' | treatment == 'AD_N'
| treatment == 'POET_N' | treatment == 'NREL_N' ~'N',
treatment == 'DASE_AVG' | treatment == 'AD_S'
| treatment == 'POET_S' | treatment == 'NREL_S' ~'S")) %>%
mutate(type = case_when(treatment == 'CS_N' ~'CS’,
treatment =="'AD_N' | treatment =="'AD_S' ~'AD',
treatment == 'DASE_AVG' | treatment == 'POET_N' | treatment == 'NREL_N' |
treatment == 'POET_S' | treatment == 'NREL_S' ~ 'DASE')) %>%
mutate(type2 = case_when(treatment =='CS_N' ~'CS2/,
treatment =="'AD_N' | treatment =='AD_S' ~ 'AD2’,
treatment == 'DASE_AVG' ~ 'HLFB1',
treatment =="'POET_N' | treatment == 'POET_S' ~ 'HLFB3',
treatment == 'NREL_N' | treatment == 'NREL_S' ~ 'HLFB2")) %>%
mutate(dose = factor(dose, levels = ¢('S', 'N'), labels = ¢('Standard', 'Reduced'))) %>%
filter(source == "soil') %>%
rename(old_diff = diff) %>%
mutate(control = 65) %>%
mutate(diff = old_diff-control) %>%
filter(treatment != 'ONESIX')

priming_INC2_plot <- ggplot(priming_INC2, aes(x = type2, y = diff, fill = type2)) + # change "diff"
to "old_diff" if you are interested in just soil derived losses

geom_bar(stat = 'identity') +

geom_errorbar(aes(ymin=diff-stdev, ymax=diff+stdev), col = 'black’, width=.2, position =
'identity') +

theme_bar +

labs(y = 'Soil Priming [mg]', fill = 'Substrate') +

#labs(y = 'Soil Derived Carbon Loss [mg], fill = 'Substrate’) +

#theme(axis.text.x = element_text()) +

facet_grid(dose ~ type2, scales = "free_x") +

scale_fill_manual(values = INC2_colors)
priming_INC2_plot
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ggsave("adj_priming_INC2_plot.png", plot = priming_INC2_plot , width = 30, height = 15, units =
"cm") # change this accordingly

# old priming plot w/ new color, no control correction
priming_INC2_plot <- ggplot(priming_INC2, aes(x = type2, y = old_diff, fill = type2)) +
geom_bar(stat = 'identity') +
geom_errorbar(aes(ymin=old_diff-stdev, ymax=old_diff+stdev), col = 'black’, width=.2, position =
'identity') +
theme_bar +
labs(y = 'Soil Derived Carbon Loss [mg]', fill = 'Substrate') +
#theme(axis.text.x = element_text()) +
facet_grid(dose ~ type2, scales = "free_x") +
scale_fill_manual(values = INC2_colors)
priming_INC2_plot
ggsave("priming_INC2_plot.png", plot = priming_INC2_plot , width = 30, height = 15, units =
"cm") # change this accordingly

# res loss
priming_INC2 <- priming_data %>%
filter(inc_fn1 =='2") %>%
mutate(dose = case_when(treatment == 'CS_N' | treatment == 'AD_N'
| treatment == 'POET_N' | treatment == 'NREL_N' ~'N',
treatment == 'DASE_AVG' | treatment == 'AD_S'
| treatment == 'POET_S' | treatment == 'NREL_S' ~'S")) %>%
mutate(type = case_when(treatment == 'CS_N' ~'CS’,
treatment =="'AD_N' | treatment =="'AD_S' ~ 'AD',
treatment == 'DASE_AVG' | treatment == 'POET_N' | treatment == 'NREL_N' |
treatment == 'POET_S' | treatment == 'NREL_S' ~ 'DASE')) %>%
mutate(type2 = case_when(treatment =='CS_N' ~'CS2/,
treatment =="'AD_N' | treatment =="'AD_S' ~ 'AD2’,
treatment == 'DASE_AVG' ~ 'HLFB1',
treatment =="'POET_N' | treatment == 'POET_S' ~ 'HLFB3',
treatment == 'NREL_N' | treatment == 'NREL_S' ~ 'HLFB2")) %>%
mutate(dose = factor(dose, levels = ¢('S', 'N'), labels = c('Standard’, 'Reduced"))) %>%
filter(source == "res')

priming_INC2_plot <- ggplot(priming_INC2, aes(x = type2, y = diff, fill = type2)) +
geom_bar(stat = 'identity') +
geom_errorbar(aes(ymin=diff-stdev, ymax=diff+stdev), col = 'black’, width=.2, position =
'identity') +
theme_bar +
labs(y = 'Residue Derived Carbon Loss [mg]', fill = 'Substrate') +
#theme(axis.text.x = element_text()) +
facet_grid(dose ~ type2, scales = "free_x") +
scale_fill_manual(values = INC2_colors)
priming_INC2_plot
ggsave("ressloss_INC2_plot.png", plot = priming_INC2_plot , width = 30, height = 15, units =
"cm") # change this accordingly

HEH R R R R R R R
HEHBHHHH R
# CORRELATIONS

correlations_data0 <- read.csv("correlations_data.csv", stringsAsFactors = FALSE, header =
TRUE) # scan in document formatted like example
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correlations_data <- correlations_data0 %>%
mutate(perSol = 100*perSol) %>%
mutate(Cret_tot = 100*Cret_tot)

theme_point <- theme_bw() + theme(
text = element_text(size = 20)

)

# C:N plot / analysis
C2N_plot <- ggplot(correlations_data, aes(x = C2N, y = Cret_tot)) +
geom_point(aes(col = id), size = 2) +
stat_smooth(method = "Im",
formula =y ~ x,
geom = "smooth", alpha = .25) +
theme_point +
labs(x = 'C:N of Substrate’,
y = '% of Carbon Retained in \n Treatment Containing Substrate [%],
col ='Substrate’) +
ylim(65, 100) +
scale_color_manual(values = INCtot_colors)
C2N_plot
ggsave("C2N_plot.png", plot = C2N_plot , width = 20, height = 15, units = "cm") # change this
accordingly

mod_C2N <- Im(Cret_tot ~ C2N, data = correlations_data)
anova(mod_C2N)
summary(mod_C2N)

# %lignin plot / analysis
lig_plot <- ggplot(correlations_data, aes(x = perLig, y = Cret_tot)) +
geom_point(aes(col = id), size = 2) +
stat_smooth(method = "Im",
formula =y ~ x,
geom = "smooth", alpha = .25) +
theme_point +
labs(x = '% Lignin of Substrate’,
y = '% of Carbon Retained in \n Treatment Containing Substrate [%],
col ='Substrate’) +
ylim(65, 100) +
scale_color_manual(values = INCtot_colors)
lig_plot
ggsave("lig_plot.png", plot = lig_plot , width = 20, height = 15, units = "cm") # change this
accordingly

mod_lig <- Im(Cret_tot ~ perlLig, data = correlations_data)
anova(mod_lig)
summary(mod_lig)

# Y%solubilization / analysis
sol_plot <- ggplot(correlations_data, aes(x = perSol, y = Cret_tot)) +
geom_point(aes(col = id), size = 2) +
stat_smooth(method = "Im",
formula =y ~ x,
geom = "smooth", alpha = .25) +
theme_point +
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labs(x = '% Solubilization of Substrate’',
y = '% of Carbon Retained in \n Treatment Containing Substrate [%],
col ='Substrate’) +
ylim(65, 100) +
scale_color_manual(values = INCtot_colors)
sol_plot
ggsave("sol_plot.png", plot = sol_plot , width = 20, height = 15, units = "cm") # change this
accordingly

mod_sol <- Im(Cret_tot ~ perSol, data = correlations_data)

anova(mod_sol)
summary(mod_sol)
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